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Abstract

The Internet of Things (IoT) is an emerging paradigm that seamlessly integrates elec-

tronic devices with sensing and computing capability into the Internet to achieve intel-

ligent processing and optimized controlling. In a connected world built through IoT,

where interconnected devices are extending to every facet of our lives, including our

homes, offices, utility infrastructures and even our bodies, we are able to do things in a

way that we never before imagined. However, as IoT redefines the possibilities in envi-

ronment, society and economy, creating tremendous benefits, significant security and

privacy concerns arise such as personal information confidentiality, and secure com-

munication and computation. Theoretically, when everything is connected, everything

is at risk. The ubiquity of connected things gives adversaries more attack vectors and

more possibilities, and thus more catastrophic consequences by cybercrimes. There-

fore, it is very critical to move fast to address these rising security and privacy concerns

in IoT systems before severe disasters happen. In this dissertation, we mainly address

the challenges in two domains: (1) how to protect IoT devices against cyberattacks;

(2) how to protect sensitive data during storage, dissemination and utilization for IoT

applications.

In the first part, we present how to leverage anonymous communication techniques,

particularly Tor, to protect the security of IoT devices. We first propose two schemes

to enhance the security of smart home by integrating Tor hidden services into IoT

gateway for users with performance preference. Then, we propose a multipath-routing

based architecture for Tor hidden services to enhance its resistance against traffic anal-

ysis attacks, and thus improving the protection for smart home users who desire very
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strong security but care less about performance.

In the second part of this dissertation, we explore the solutions to protect the data

for IoT applications. First, we present a reliable, searchable and privacy-preserving

e-healthcare system, which takes advantage of emerging cloud storage and IoT in-

frastructure and enables healthcare service providers (HSPs) to realize remote patient

monitoring in a secure and regulatory compliant manner. Then, we turn our attention to

the data analysis in IoT applications, which is one of the core components of IoT appli-

cations. We propose a cloud-assisted, privacy-preserving machine learning classifica-

tion scheme over encrypted data for IoT devices. Our scheme is based on a three-party

model coupled with a two-stage decryption Paillier-based cryptosystem, which allows

a cloud server to interact with machine learning service providers (MLSPs) and con-

duct computation intensive classification on behalf of the resourced-constrained IoT

devices in a privacy-preserving manner. Finally, we explore the problem of privacy-

preserving targeted broadcast in IoT, and propose two multi-cloud-based outsourced-

ABE (attribute-based encryption) schemes. They enable the receivers to partially out-

source the computationally expensive decryption operations to the clouds, while pre-

venting attributes from being disclosed.
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Chapter 1

Introduction

1.1 Internet of Things

The Internet of Things (IoT) is a term coined in 1999 by Kevin Ashton, a British technology

pioneer working on radio-frequency identification (RFID), to describe a system where the physical

world is connected to the Internet via ubiquitous sensors. Since then, although IoT has become a

very hot topic in industry and academia, there is still no standard universally-accepted model for

the IoT [115]. For example, the definition for high complexity IoT system from IEEE is:

“Internet of Things envisions a self-configuring, adaptive, complex network that interconnects

’things’ to the Internet through the use of standard communication protocols. The things offer

services, with or without human intervention, through the exploitation of unique identification,

data capture and communication, and actuation capability. The service is exploited through the

use of intelligent interfaces and is made available anywhere, anytime, and for anything taking

security into consideration” [2].

The International Telecommunication Union (ITU) focuses more on the communication aspect

of IoT and defines it as:

“A global infrastructure for the information society, enabling advanced services by intercon-

necting (physical and virtual) things based on existing and evolving interoperable information and

1
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Figure 1.1: IoT system

communication technologies [12]”.

Since the concept was coined, IoT is changing the world to a type of information system,

where objects embedded with sensors gather data, share them, and take action on them across

a network. Today’s computing technologies and ubiquitous connectivity have led to a pervasive

deployment of intelligence into our daily life in areas as diverse as healthcare (e.g., wearable

fitness tracking, remote patient monitoring), home automation (e.g., smart thermostat, security

monitoring), smart grid (e.g., load balancing, smart pricing), smart cities (e.g., smart traffic control,

distributed pollution monitoring), etc. By 2016, the total economic potential of IoT had already

reached $120 billion and could reach $6.2 trillion by 2027 [128]. With more than 20 billion devices

to be connected to the Internet by 2020, as forecast by Cisco and Ericsson [49], IoT materializes

a vision of a future Internet that utilizes the sensing and computing capabilities of various devices

to facilitate interaction of humans with the environment. This has led to the emergence of new

categories of applications with impact across industries, businesses, and ultimately, end users.

Simply put, IoT is the future of technology that can make our lives more convenient and efficient.
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According to IEEE IoT definition [2], a typical IoT system is comprised of three core compo-

nents shown in Figure 1.1: a collection of front-end devices with the capability of sensing, com-

putation and communication, a back-end computing and storage facility which provides analytics

and intelligence, and a communication infrastructure which connects front-end sensors to back-

end intelligence. In IoT applications, the front-end devices vary in different functionalities and are

tailored to a specific task. A majority of them are resource-constrained devices such as sensors,

actuators and micro processors, which have very limited capacity in terms of storage, computa-

tion, communication and even energy for those ones using battery as the power. In contrast, the

back-end servers are much more powerful. With the fast development of cloud computing, many

services have been deployed on the cloud to leverage the cheaply and easily accessible storage

and computing resources. The major cloud vendors such as Amazon AWS, Microsoft Azure and

Google Cloud all provide an IoT suite to accelerate the IoT development where they help clients

collect and send data to the cloud, make it easy to load and analyze that information, and provide

the ability to manage the devices. In this dissertation, we mainly consider the scenarios where

the back-end services are deployed on the cloud. Finally, the key enabler is the communication

infrastructure where wired and wireless networks such as Wi-Fi, cellular, Bluetooth, Zigbee and

Internet connect front-end devices to the back-end servers and each other. Note that, different from

the conventional communication paradigm in industrial networks where the data usually flows

from the end sensors to the control center in a unidirectional way, the two-way communication is

adopted in IoT applications where the data is exchanged between sensors and servers. For exam-

ple, connecting millions of sensors and smart meters to the utilities and power plants makes the

aging power grid “smart”. The two-way communication capability not only facilitates utilities to

collect a variety of real-time, fine-grained data (e.g., power consumption, voltage, phase angle)

from smart meters, but also enables them to publish important messages (e.g., control commands,

dynamic prices) to smart devices [114].
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1.2 Security and Privacy concerns in IoT

However, as each coin has two sides, there is a downside to IoT: when everything is connected,

everything is at risk. Theoretically, any Internet-connected device can be hacked. More connected

devices mean more attack vectors and more possibilities for adversaries who are attracted by the

tremendous economic benefits and scale of IoT systems. With enormous benefits brought by IoT,

IoT devices also make organizations and individuals vulnerable. Generally speaking, the attack

surfaces that cause the security and privacy issues fall into two categories:

1.2.1 Attacks on IoT Device Level

1.2.1.1 Hardware Attacks

Since many IoT devices are not built for security functions and are exposed without physical pro-

tection, they are vulnerable to physical attacks on hardware such as de-packaging of chip, micro

probing, reverse engineering, etc.

Example 1: JTAG and UART debugging test pins left on the device are still one of the most

effective physical hardware attack vector available to an attacker, who can use these access points

to steal credentials on IoT devices such as encryption keys [33]. Wurm et al. exploit UART of a

smart device to change the boot parameters of the unit and extract the login information [156]. �

1.2.1.2 Cyber Attacks

Since IoT devices are Internet-connected, the major attacks come from cyberattacks. Some of the

very frightening vulnerabilities have been exposed to the public or exploited by the adversaries.

Example 2: A wide range of popular Internet-connected baby monitors lack basic security fea-

tures, making them vulnerable to even the basic hacking attempts. Those vulnerabilities could be

exploited by adversaries to carry out nefarious actions such as monitoring live video, changing

camera settings, authorizing other users to remotely view and control a monitor, and even talking

to the babies [59, 125]. �
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Example 3: Security researchers have discovered a potential way to steal users’ Google Calendar

information from a Samsung smart fridge by performing man-in-the-middle attack, which is due

to the poor implementation of SSL in their communication protocol. While the fridge implements

SSL, it fails to validate SSL certificates, thereby enabling adversaries to sit between the fridge and

the Google server to view user’s Google Calendar [100]. �

Example 4: A more recent severe attack was launched by an IoT device botnet named Mirai.

Mirai is a type of malware that finds IoT devices such as remote cameras and home routers to

infect and conscripts those zombie devices into a botnet [36]. The mechanism of Mirai is pretty

simple: It continuously scans the IoT devices. If the target device uses the common or factory-

default user name and pass word, Mirai logs in, inspects it and then spreads the malware across

the network. Due to the huge number of IoT devices in the Internet, such a simple malware even

infects around 1 million devices. It announced its existence with dramatic flair by DDoSing the

Dyn DNS, a company that provides a significant portion of the US Internet’s backbone, resulting in

the inaccessibility of several popular websites such as GitHub, Twitter, Reddit, Netflix and many

others. �

We have heard more hack stories on IoT devices spanning from vehicles to wearable devices

to many others, such as causing car accident [146] and switching off pacemakers [124]. The

vulnerabilities on IoT devices make them become the targets of many attacks, which steals the

privacy of an individual and even causes the death. What’s worse, since the number of IoT devices

is tremendous, they are not only victims of cyber attacks, but also becoming a very powerful

weapon to crash any web service.

1.2.2 Attacks on IoT Application Data

Huge benefits of IoT lie more in data than things, which gives us the insights and help make the

strategy. And meanwhile, it also gives the attackers possibilities to infer user’s privacy from the

combined data sources collected by numerous sensors. The attack surfaces appear throughout the

data lifecycle including data collection, storage, utilization and dissemination. Due to the limited
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storage and computing capacity on IoT devices, nowadays, most IoT applications use cloud as

their external storage and computing infrastructure, and thus the attack surface is extended to the

cloud. Once data is outsourced to the cloud vendor, if we cannot fully trust them, those sensitive

data are at risk. Even if the data looks like non-private, it may still be used by the attackers to refer

user’s privacy.

Example 5: Wang et al. found that hackers can use the data collected by the motion sensors

embedded in smart watches to steal the information about what the user is typing on a regular

keyboard [148]. �

Example 6: Some experts worry that a smart watch user’s health and fitness stats, location or

buying habits could be discovered and later used against the owner - to deny a work promotion or

an insurance claim or to cause any number of other problems [82]. �

In the above examples, since those data do not directly reveal user’s secret, they draw little

attention from user and thus are less well protected. As a result, they may be transmitted through

the Internet without encryption, stored in the cloud in an unencrypted format, or shared with third-

party service providers without special processing beforehand. However, valuable privacy of a user

could be mined by a malicious adversary with advanced techniques by combining side-channel

knowledge. In addition, even if the cloud vendor honestly follows the agreement and regulation,

the data on cloud is still at risk. Because of the high value of IoT data being stored on the cloud,

those data become attractive targets for corporate hackers and industrial spies who rely on big data

to make profits [71]. We have seen massive data breaches and data theft in recent years [97].

1.2.3 Countermeasures

Many countermeasures have been proposed to secure the IoT devices and the data collected by

them, including but not limited to controlling the access to physical devices, ensuring strong au-

thentication such as strong password or even two-factor authentication if possible, enforcing the

ability to encrypt data at rest or in transit, and limiting the usage on the data and so on. Traditional

security countermeasures heavily depend on cryptographic primitives (symmetric/asymmetric en-
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cryption, hash functions, etc.), which usually require non-negligible computing capacity, they may

not be suitable for the resource-constrained IoT devices. Therefore, this raises the challenge of

designing a new IoT-device-friendly approach to protect IoT device and user’s data. More detailed

introduction about countermeasures related to our work is presented in each chapter correspond-

ingly.

1.3 Our Solutions and Contributions

The contribution of this dissertation is multifold covering both how to protect the IoT devices from

cyber attacks, particularly the devices in home area network, and how to protect the privacy of users

during data collection, storage, utilization and dissemination. The structure of this dissertation can

be found in Figure 1.2.

The first part of this dissertation is to protect the IoT devices from cyber attacks by using

anonymous communication techniques such as Tor. First, we propose two novel Tor hidden ser-

vices based solutions to secure smart home: IoT gateway over multipath Tor hidden services and

IoT gateway with separate command and data channels. Tor hidden service is integrated into the

IoT gateway to tunnel all the data traffic from the device to the end user via Tor network, eliminat-

ing the use of the public Internet, and thus the remote users attempting to access an IoT device will

have to have the Tor onion address. As a result, the hackers cannot know which devices users are

connecting to, and thus, they cannot scan IoT devices that are protected by Tor, which is usually

the first step of an attack. In the first solution, we use multipath routing scheme to improve the

performance of Tor hidden services. With all data routed in the Tor network, this solution suits

users who desire strong security but acceptable performance. To further improve the performance,

our second solution transfers small-size command through Tor and transfers bulk data through the

Internet so that we can leverage both the strong security of Tor and the good performance of the

Internet.

Then, we enhance the resistance of Tor hidden service to traffic analysis attacks for those
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users who prefer stronger security than performance. In this dissertation, we propose a different

multipath routing based scheme that exploits flow mixing and flow merging to distort or destroy

inserted traffic patterns in a victim’s flow. We believe this is an effective complement to the existing

protection mechanism.

Another important contribution of this dissertation is to explore the potentials of cloud-assisted

IoT security. We present a reliable, searchable and privacy-preserving e-healthcare system, which

takes advantage of emerging cloud storage and IoT infrastructure and enables healthcare service

providers (HSPs) to realize remote patient monitoring in a secure and regulatory compliant man-

ner. More specifically, our system allows the data collected by patient’s wearable devices to be

stored on the cloud in an encrypted format, and meanwhile HSPs to search over the encrypted

data without decrypting them first and verify the search results. Our system is built upon a novel

dynamic searchable symmetric encryption scheme with forward privacy and delegated verifiability

for periodically generated healthcare data.

Our Fourth contribution is to apply machine learning classification over encrypted IoT data

stored on the cloud. In the above scheme, the user (i.e., patient) has to trust HSPs to view the

raw data to analyze. It will not cause privacy concerns when the HSPs are trustworthy doctors.

However, when machine-learning-as-service becomes a popular business paradigm where any or-

ganization owning data and machine learning techniques can provide data analysis services, the

privacy concern arises, namely, whether we can trust them to view our data. To address this,

we propose a cloud-assisted, privacy-preserving machine learning classification scheme over en-

crypted data for IoT devices. Our scheme is based on a three-party model coupled with a two-stage

decryption Paillier-based cryptosystem, which allows a cloud server to interact with MLSPs and

conduct computation intensive classification on behalf of the resourced-constrained IoT devices in

a privacy-preserving manner.

At last, we pay attention to the privacy-preserving data publishing scheme for IoT applications.

In this dissertation, we explore the problem of privacy-preserving targeted broadcast in IoT, and

propose two multi-cloud-based outsourced-ABE (attribute-based encryption) schemes, namely the

9



parallel-cloud ABE and the chain-cloud ABE. They enable the receivers to partially outsource the

computationally expensive decryption operations to the clouds, while preventing attributes from

being disclosed. The proposed solution protects three types of privacy (data, attribute and access

policy) by enforcing collaboration between multiple clouds.

1.4 List of Related Publications

1. Lei Yang, Chris Seasholtz, Fengjun Li and Bo Luo. Hide Your Hackable Smart Home From

Cyber Attacks. In submission. July 2017.

2. Lei Yang, Fengjun Li, Qingji Zheng and Xinxin Fan. Cloud-Assisted Machine Learning

Classification over Encrypted Data for IoT Devices. In submission. July 2017.

3. Lei Yang, Qingji Zheng and Xinxin Fan. RSPP: A Reliable, Searchable and Privacy-

Preserving e-Healthcare System for Cloud-Assisted Body Area Networks. IEEE Interna-

tional Conference on Computer Communications (INFOCOM), May 2017.

4. Lei Yang, Abdulmalik Humayed and Fengjun Li. A Multi-Cloud based Privacy-Preserving

Data Publishing Scheme for the Internet of Things. 2016 Annual Computer Security Appli-

cations Conference (ACSAC), December 2016.

5. Lei Yang and Fengjun Li. Enhancing Traffic Analysis Resistance for Tor Hidden Services

with Multipath Routing. the 11th EAI International Conference on Security and Privacy in

Communication Networks (SecureComm), October 2015. (Best Paper Award Winner)

1.5 Organization

The rest of the dissertation is organized as follows:

Part 1 - Protect IoT Devices from Cyberattacks Using Tor: Chapter 2 presents the security

problem of smart home, including the challenges, case study and current countermeasures. In
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Chapter 3, we present two Tor hidden services based solutions to enhance the security for smart

home users who require better performance. In Chapter 4, we solve another problem of Tor hidden

services, namely, Tor hidden service is vulnerable to traffic analysis. We investigates the use of

multipath routing in Tor hidden services to resist the traffic analysis attacks for those users who

desire stronger security.

Part 2 - Protect Data Privacy of IoT Devices in Data Storage, Utilization and Dissemina-

tion: This part consists of three chapters. Chapter 5 presents a reliable, searchable and privacy-

preserving e-healthcare system which allows the data collected by patient’s wearable devices to

be stored on the cloud in an encrypted format, and meanwhile HSPs to search over the encrypted

data without decrypting them first and verify the search results. In Chapter 6, we propose a cloud-

assisted, privacy-preserving machine learning classification scheme over encrypted data for IoT

devices. In Chapter 7, we present two multi-cloud outsourced ABE schemes for privacy-preserving

targeted broadcast for IoT devices.
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Part I

Protect IoT Devices from Cyberattacks

Using Tor

12



Chapter 2

Security of IoT Devices in Smart Home:

Problems and Challenges

2.1 Introduction

Today’s computing technologies and ubiquitous connectivity are leading us into the era of Internet

of Things (IoT), where a network of interconnected physical objects with the capability of sensing,

computing and communication are changing the way we live and work, including our homes,

offices, vehicles, cities and even our bodies. As forecast by Gartner, 8.4 billion connected things

will be in use worldwide in 2017, up 31 percent from 2016, and will reach 20.4 billion by 2020.

Total spending on endpoints and services will reach almost $2 trillion in 2017 [72]. Within the

huge markets, smart home, interchangeably called home automation, is one of the fastest-growing

IoT practices. Smart home refers to a residence that has appliances, lighting, HVAC, security and

camera systems in your home network, which are capable of communicating with each other and

can be controlled remotely through the Internet. Since these smart devices make the home more

comfortable, secure, energy-efficient and convenient, we are witnessing an accelerating trend of

smart devices flooding into our homes.

Nevertheless, when everything is connected, everything is at risk. Theoretically, any Internet-
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connected device can be hacked. More connected devices mean more attack vectors and more

possibilities for adversaries. The threats are even more disastrous than the traditional attacks on

PCs, since those smart home goods are monitoring our very private life at home. Imagine a scenario

where burglars no longer have to walk around your house looking for an opportunity. Instead, they

only need to hack into your surveillance system [23] or analyze your electricity metering data [162]

to observe your life pattern, and finally conducts the burglary even with the help of your smart

locks [53]. What is worse, hacked home devices are turned into DDoS weapons to take down the

Internet. The Mirai botnet compromising millions of cameras and digital video recorders attacked

the Dyn DNS servers and caused a massive network outage which may have lost companies up to

$110 million in revenue and sales [46].

Consider the tremendous loss due to cyber attacks on IoT devices, security and privacy has

become one of the most important aspects in the design and deployment of smart home. Various

schemes have been proposed to secure IoT devices, which spans over a variety of topics including

but not limited to authentication schemes [120, 105], light-weight communication protocols such

as CoAP [131], RPL [152], and 6LoWPAN [130], secure operating system for IoT [25], and up-

dating in-use IoT devices with security patches such as applying traditional encryption schemes,

fixing software bugs and updating firmwares, etc. Most of the existing proposals try to find a so-

lution that aims to secure each individual device so that we raise the fence against cyberattacks.

However, they neglect the fact that all these solutions need to be implemented by device manu-

facturers. Even regardless of millions of insecure devices already in use, it is very difficult, if not

possible, to force all manufacturers to apply security mechanisms to their new products. It is even

more difficult to guarantee that the implementation is correct. These solutions can mitigate the

security problem, but consider the heterogeneity of device types and even device manufacturers,

the above solutions may not achieve the desired security goals in reality. Therefore, to enhance

the security of smart home, if improving the resistance of each individual device against cyberat-

tacks cannot solve the problem completely, can we find a complementary strategy that reduces the

possibility of adversaries attacking on those vulnerable devices?
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One possible attempt is isolation-based solution. A practical implementation is IoT gateways,

which manage devices, realize home automation and integrate security mechanism. By adding an

IoT gateway between home devices and the Internet, we isolate our private home from the public

Internet to some extent, and thus reduce the risk of devices being exposed. Although such an

isolation prevents the adversary from sniffing each susceptible device behind it, the attack surface

still exists on the gateway. Therefore, to further enhance the isolation, Nathan Freitas from Tor

Project [70] integrates Tor hidden services into gateway to allow users to remotely access the

gateway without using IP address. By hiding IP address of the gateway, adversaries cannot scan

the gateway, and thus Tor hidden services act as a buffer of security between our smart home and

the adversary. The Tor-based isolation approach routes all traffic through the Tor network so that

our home is never exposed to the open Internet at all. However, poor performance is a well-known

problem of Tor, especially for bulk traffic such as video streaming, which is technically throttled by

Tor. Users adopting this approach will experience significant delays to access the gateway through

Tor network compared to direct access in the public Internet. Therefore, such an approach with

disincentive of poor performance is not a practical solution in practice.

2.2 Smart Home Models

Figure 2.1 shows two typical smart home models. In the traditional model shown in Figure 2.1a, all

home devices directly connect to the home router and allow users to remotely access each device

through its own built-in interface with web browser or a mobile application. The home router is

bypassed using port forwarding or remote server, e.g., cloud, which relays traffic between device

and user. However, one drawback of the traditional model is that users need to install different apps

for each type of device, which will increase the complexity of managing smart home. Another

drawback is that this model can only provide very limited automation if the home automation is

implemented through the direct interaction between devices. Image a scenario where garage door

automatically opens and lights turn on when you arrive home at night. To implement this simple
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Home router

Smart devices

(a) Smart Home model: all devices directly
connect to the Internet via router

Home routerGateway, i.e., 
Home Assistant

Smart devices

(b) Smart home model: IoT gateway manages all de-
vices, e.g., Home Assistant on Raspberry Pi

Figure 2.1: Two smart home models

scenario, a smart garage door needs to know the sunset time and be able to inform lights of turn-on

event. However, the interaction between devices are not well supported by different manufacturers

because they may not design APIs for such interaction.

To solve these problems, an IoT gateway has become a viable solution shown in Figure 2.1b.

The gateway can be a dedicated hardware such as a Raspberry Pi with home automation software

installed. In this model, all devices are connected to an IoT gateway, which facilitates the interac-

tion between different types of device and realize the home automation logic. Besides, instead of

each device offering an interface for remote access, all devices are managed and controlled through

the gateway. Nowadays, plenty of IoT gateways, such as Home Assistant [10] and openHAB [16],

have been developed and used to manage various devices at home and realize home automation.

In addition, cloud-based IoT gateways for IoT are also very popular, such as Samsung’s Smart-

Things [20], which consists of a dedicated gateway purchased by user, a cloud backend server,

and a smart-phone companion app. Instead of directly accessing the gateway, users manage and

implement home automation through the cloud. However, the cloud-based solutions suffer two

drawbacks: (1) Because private data is stored on the cloud which cannot be fully controlled by

users, users may have concerns that data is abused by cloud providers or they cannot enforce

sufficient security protection for their data [66]; (2) The dedicated commercial gateway is more

expensive than the Raspberry Pi with free home automation software. For example, SmartThings

Hub is twice expensive than the latest Raspberry Pi 3. Therefore, huge amount of users are still
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using the model of IoT gateway without cloud assistance. In this paper, we particularly focus on

the security problem of this model.

2.3 Vulnerabilities and Attacks

Simply put, a successful cyberattack on IoT device is conducted in three steps: (1) analyze the

vulnerabilities of a device including hardware, system, protocol, etc.; (2) discover the vulnerable

ones from billions of Internet-connected devices; (3) exploit the vulnerability.

Frightening vulnerabilities found on IoT devices at home, including baby cameras, garage

doors, light bulbs, smart plugs, and more: D-LINK DCS-2132L camera is found that management

interface uses plain HTTP [9]; the iBaby M6 has a web service issue that allows easy access to

other people’s camera details by changing the serial number in URL [1]; Ling et al. exploited the

insecure communication protocols to compromise Edimax plug [108]; Samsung RF28HMELBSR

smart fridge implements SSL, but it fails to validate SSL certificates, thereby enabling man-in-the-

middle attacks against most connections [7]; LG 50GA6400 smart TV is hijacked by ransomware

that held the display hostage [17] and also randomware for smart thermostats [8].

No one can guarantee that a device is 100% secure, and in fact, more and more emerging

vulnerabilities are exposed in the market of hackers. Once the vulnerable IoT devices are connected

to the Internet, hackers can easily find them using the specific search engine for IoT, like Shodan

[19] and Censys [5], or their own tools. These IoT search engines are much like a network scanner,

which scans the entire Internet by connecting to open ports of Internet devices and parses the

headers or banners that are returned by them. The headers or banners of the reply tell us things

like device type, model, vendor, firmware version and much other information [106]. The search

engine attempts various protocols like HTTP, HTTPS, FTP, SSH, DNS, SIP and RTSP, etc., to scan

the open ports of Internet-connected devices. Besides, IoT search engine provides API to allow

other tools to access the data for legitimate purposes, but attackers can also take advantage of it.

Figure 2.2 shows an example of a vulnerable surveillance camera found by Shodan by using the
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Figure 2.2: A screenshot of a vulnerable camera found by Shodan. We hide the last 16-bit IP
address for security purpose.

search keyword “has_screenshot:true port:554”.

Finally, once these vulnerable devices are found, attackers can exploit them and launch a variety

of attacks. For example, the above camera found by Shodan first leaks the privacy and then it may

further lead to a potential burglary. Besides, when an attacker can compromise a huge number of

devices, he may even take down the Internet using DDoS attack like Mirai [36].

A case study. Let us take a closer look at a recent DDoS attack, i.e., Mirai, which is a typical

attack that follows the above three steps. Mirai is a botnet consisting of millions of IoT devices

such as IP cameras and home routers, which caused a severe network outage in October 2016 by

DDoSing DYN DNS service. The bot in Mirai does brute force scanning of IP addresses in search

of other devices to infect. The bot looks for targets in an IP range and applies a port can (SYN scan)

against it. If the bot successfully connects to an IP and open port, then it will try to authenticate by

attempting a dictionary of known credentials or check if it can connect directly via telnet. Once the

authentication is passed, the information is reported back to the command and control server, which

in turn pushes down executable binary codes and uses it for DDoS attacks including UDP flooding,

DNS water torture and HTTP request flooding. An infected device will repeat the above process

to scan and infect other devices. Corresponding to the three steps for a cyberattack, we can see

that the vulnerability is pretty straightforward - devices owners use default/weak passwords; then,

infected devices discover other victims using simple port scan techniques; finally, exploitation of
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vulnerabilities is a classic DDoS attack. More details can be found here [34].

If we can prevent any of the above three steps, we can fail the cyberattacks on our smart

home. For example, improving the security of devices and using strong password can reduce the

vulnerability; protecting devices with firewall can block scanning; and filtering network traffic at

ISP can mitigate DDoS attack.

2.4 Challenges

However, securing smart home is a challenging problem. The first challenge is that we cannot

rely on device manufacturers for making cyberattack-resistant devices. They do not pay enough

attention to security or even are not capable of enforcing a reliable security scheme due to several

reasons: (1) In the race to be first to market and meet the need for custom-free setup, security

is not their first priority; (2) To reduce the cost of cheap IoT devices such as smart switches and

bulbs, small manufacturers do not apply security mechanisms on IoT devices adequately; (3) Even

big vendors make mistakes when implementing security schemes, e.g., hacked Samsung smart

fridge [24]. Second, since IoT devices are usually resource-constrained, they may not afford the

traditional security schemes applied on PCs. Third, billions of IoT devices are already in use and

many of them have fixed firmware, so it is difficult to patch security vulnerabilities for all in-use

devices. Even if they can be updated, very few users will update them periodically. Fourth, the

heterogeneity of devices at home makes the situation worse. Since all different types of devices

from different vendors are connected at home for automation, the most susceptible device may

determine the security strength of the whole smart home, and thus the adversary may eventually

escalate his privilege from a cheap and vulnerable bulb to an expensive and robust lock.

2.5 Current Countermeasures

Enhance the security of individual IoT device. This type of solutions make efforts to reduce the

vulnerability on device. Several dedicated communication protocols, i.e., CoAP [131], RPL [152],
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and 6LoWPAN [130], and operating systems, i.e., KasperskyOS [25] for IoT applications have

been proposed. Since these new components have security consideration in the design, they will

mitigate the vulnerabilities of IoT devices once they are widely adopted. Besides, classic security

mechanisms are used in industry, such as two-factor authentication, encrypted communication,

security patches and firmware update, etc. However, as we discuss in Section 2.4, it is very difficult

to guarantee that every IoT device at home is secure.

Protect all devices at home with an IoT gateway. Corresponding to the new smart home model

in Figure 2.1b, an IoT gateway with security integration has become a complementary solution for

securing smart home. Note that this kind of solution is not exclusive to the above ones that enhance

individual device. On the contrary, it offers one more layer protection to the smart home. In the

gateway-assisted model, security mechanisms such as encryption and access control are integrated

into the gateway. For example, HTTPS is used to access gateway instead of HTTP in some cheap

IoT device. As long as the gateway is secure, all devices behind it is safe. Simply put, such an

approach is an isolation that isolates vulnerable devices from the public Internet. However, such

an isolation is not complete, which makes the gateway become the target of adversaries. They can

still scan and exploit the vulnerabilities on the gateway, and thus, any security flaw of gateway

will lead to protection failure. Therefore, to further enhance the isolation, Nathan Freitas from

Tor Project [70] proposed an approach that integrate Tor hidden service, which is an anonymity

tool that allows server operators to run a web server or SSH server, etc., without revealing their IP

address to clients, into the IoT gateway. The IP address is no longer needed to access the gateway,

instead, all requests and data go to a .onion address through Tor network, which is an anonymous

overlay darknet on top of the public Internet, so, adversaries are not able to access/scan the gateway

and any individual device any more, and even know the existence of gateway and any IoT device.

However, the Tor-based isolation approach routes all traffic including bulk data such as video

streaming in the Tor network, which will aggravate the performance problem of Tor. Consider the

huge number of smart home users, if most of them adopt this solution, Tor will become very slow

and even unavailable eventually.
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Chapter 3

Hide Your Hackable Smart Home from

Cyberattacks

3.1 Introduction

Using Tor hidden services to prevent adversaries from scanning the IoT gateway is a novel and

promising direction to secure the smart home. However, it is well known that Tor is very slow

compared to the direct access through the public Internet, which makes Tor hidden service based

solution less attractive to be adopted. Therefore, in this chapter, we aim to address the performance

problem of Tor hidden services. For users with strong performance-preference, to tackle the per-

formance problem of Tor-based approach and meanwhile achieve strong security, we propose two

novel isolation-based solutions: IoT gateway over end-to-end multipath Tor hidden services and

IoT gateway with separate command and data channels. In the first solution, we propose a multi-

path Tor hidden service scheme, which constructs multiple circuits and form a tunnel between user

and IoT gateway. By applying a self-adaptive scheduling scheme to transfer data over multiple cir-

cuits, our solution can achieve better performance. And meanwhile, since all traffic are still routed

through the anonymous tunnel in our solution, the security level of our scheme is as strong as the

original Tor-based approach. Therefore, our first solution fits users who require strong security and
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an reasonable performance. In our second solution, to further improve the performance but without

degrading the security too much, we use separate channels for command and data transmission.

More specifically, the gateway which is ran as a hidden server only accepts user’s command sent

through the Tor network, such as turning on video streaming for surveillance camera, which is a

tiny message, while to avoid the performance disadvantage of Tor, the real data transmission for

bulk traffic temporally goes through the public Internet. By separating command and data channel,

we utilize both the security benefit of the anonymous Tor network and the performance benefit of

the public Internet.

Besides the performance problem, Tor hidden services also suffer security problems. Accord-

ing to recent studies Tor hidden services are still under the risk of de-anonymization due to spe-

cialized traffic analysis attacks [121, 38]. As a result, the attacker is still able to locate the IP

address of the hidden server by using traffic analysis even if it is not that easy, and thus, our Tor

hidden services based solution may fail to protect the smart home. Therefore, for those users who

desire very strong security but care less about performance, we propose another “partial” multipath

routing scheme to improve the security of hidden services, which will be presented in next chapter.

3.2 Preliminaries

In this section, we will introduce some preliminaries related to our work. We will fist present the

specific home automation software that we use in our work. Then, because this work is based the

one type of anonymous communication techniques, namely, location hidden services, we will also

give some background about the anonymous communication systems. In this work, we specifically

use Tor hidden services to achieve the security goal, so we will focus on the introduction about Tor,

Tor hidden services and their related problems.
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3.2.1 One Instance of Smart Home Gateway: Home Assistant

Home Assistant (HA) is an open-source home automation platform running on Python 3, which is

able to automatically discover, monitor, control and automate various devices at home [10]. It can

be run on all major operating systems (Linux, Windows, OS X) and a variety of hardwares ranging

from powerful computers to a cheap Raspberry Pi. Home Assistant offers a web interface and

allows users to remotely access it through web browser or a mobile application. Figure 3.1 shows

the interaction between components and the Home Assistant core, where the rectangles with blue

background represent the Home Assistant core and the red ones are built-in components, while

the green ones are the specific IoT devices. Each component is responsible for a specific domain

within Home Assistant and defines the basic functionalities that all instances of this component

should have. For example, light component is the interface for different brands of light bulbs,

while automation component which responds to events that happen in Home Assistant is for the

automation logic. In the core, Event Bus is the connection of all the components, which facilitates

the firing and listening of events. State Machine keeps tracks of the states of devices and fires a

state_changed event when a state has been changed, while Service Registry allows components to

register services and listens on the event bus for call_service events.

We choose Home Assistant as the test platform for server reasons. First, since Freitas’s Tor-

based scheme is implemented on Tor [70], it is a fair comparison between his scheme and ours

on the same platform. Second, since HA is a free and open-source platform with many tutorials

and supports in its community, it is widely used for home automation. Third, a general-purpose

Raspberry Pi with HA installed is one of the most affordable IoT gateway solutions. Although

a dedicated device with hardware support such as Intel’s IoT gateway [11] may provide faster

processing and stronger security, it is much more expensive ($980 for an Intel gateway[4] v.s. $40

for a Pi). Fourth, our two solutions do not heavily depend on HA, which can be implemented in

other platforms with a little efforts. Note that our multipath Tor hidden service-based scheme can

be applied on other platforms directly.
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Figure 3.1: Interaction between components and the Home Assistant core [10].

3.2.2 Background for Tor

3.2.2.1 Anonymous Communication Systems

The goal of anonymous communication systems is to hide the identity of a communication partic-

ipant (sender or receiver) or their linkability from being learned by adversaries. Chaum proposed

the first high-latency anonymous communication system based on mix for the anonymous emails

in 1981 [51]. Since then, a large number of anonymity systems have been proposed. They could

be classified into two general categories: the high-latency and the low-latency systems. Generally,

the high-latency anonymity systems can provide stronger anonymity due to the larger anonymity

set introduced by the high latency, but they are only applicable to applications which are able to

tolerate delays of several hours or even days, such as email, e-voting and broadcast messaging. Dif-

ferent from high-latency anonymity systems, low-latency anonymity systems usually have better

performance, which are designed for real-time interactive applications, especially for web brows-

ing, instant messaging and SSH. Since we focus on the low-latency anonymity systems in this

dissertation, particularly Tor, we only discuss the low-latency anonymity systems and the details

of Tor in the following sections.
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3.2.2.2 Low-latency Anonymous Communication Systems

Unlike high-latency anonymity systems [51, 58, 116, 54] introducing delays on the order of sev-

eral hours or more, low-latency anonymity systems are designed to provide better performance

to support interactive applications at the cost of vulnerability to some certain traffic analysis at-

tacks. Various low-latency anonymity systems are proposed for commercial intention or research

purposes. For example, Anonymizer.com [3] is a leading commercial anonymity system, which is

a proxy accepting client’s traffic and replacing the client’s IP address with its own address. This

approach is simple and efficient, but the centralized structure is vulnerable to subpoena attacks

from intelligence agency. Distributed anonymity systems can overcome this drawback, such as

Crowds [126], onion routing [76], Tarzan [69], and Tor [60]. Tarzan and Tor are both based on

onion routing. In a onion routing network, clients select a sequence of proxies to build an anony-

mous path to the intended destination. Payload and the next-hop router in the path are encrypted

in nested layers. For example, a client S sends a message M to D via three proxies A, B and C.

The leaving message from S looks like EA(B||EB(C||EC(D||M))). After receiving this message,

A peels of the outermost layer to learn that B is the next hop and forwards the remaining part to

B. This process is repeated until D receives the original message. In onion routing, each relay

router along the path only knows the predecessor and successor, so the anonymity is achieved in

a distributed manner. Crowds uses a different approach to achieve anonymity: each client runs

proxy called jondo locally. When a jondo receives a message, it will either forward the message to

a random jondo when x > p f where x ∈ [0,1] is randomly selected and p f is predefined, or directly

deliver the message to the actual receiver. Next, we present the detailed background on Tor.

3.2.2.3 Tor

Tor, also known as the Second-Generation Onion Router, is the most popular and widely deployed

tool for anonymous communications over the Internet today. It provides services to millions of

users on a daily basis [141] and allows users to access generic Internet services and location-hidden

services. The Tor network is a distributed overlay network of more than 6,000 relays operated by
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Figure 3.2: An example of the Tor Network

volunteers all around the world. These Tor relays are known as onion routers (ORs). Each relay

operator configures his OR about its IP address, port, public key, bandwidth capacity and its exit

policy. The configuration information contained in a router descriptor is uploaded to directory

authorities , which also actively measure the real bandwidth capabilities of each OR, negotiate

the network status with each other and publish a consensus containing the network parameters

and all ORs’ information. Tor clients, known as onion proxies (OPs), periodically download the

consensus file from directories, and build virtual path, referred to circuits, through several available

ORs which are selected in proportion to their weighted bandwidth from the consensus. Generally, a

Tor circuit consists of three ORs, which are called entry guard, middle, and exit, depending on their

positions in the circuit. Tor only works for TCP streams and can be used by any applications with

SOCKS support. Therefore, OP attaches a client TCP stream to a circuit, encrypts the application

data in layers, packs them to 512-byte cells and sends data cells through the circuit. Each relay

along the circuit decrypts its layer and forwards the cell to the next relay until it reaches the last

relay (known as “exit”), which further forwards the data to the original destination. Each hop only

knows who has sent the data (predecessor) and to whom it is relaying (successor) due to layered

encryption. Figure 3.2 shows an example of Tor network.
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Circuits and Streams:

To avoid delays, an OP usually preemptively maintain a certain number of clean circuits, which

are circuits that have not yet been used for any streams. When a new stream arrives, OP can attach

it to a pre-established circuit quickly. If no existing circuits satisfy the exit request of the stream,

OP builds a new circuit on demand. To build a default 3-hop circuit, OP selects an OR for each

position in proportion to its weighted bandwidth. These weights are computed according to all

ORs’ real capacities, the fraction of exit and guard nodes to total bandwidth, and the position they

are being selected for. OP first chooses the exit node, followed by the entry guard and middle node.

The selection follows some constraints to guarantee that no same OR appears twice in a circuit,

no routers come from the same /16 subnet, and all selected routers are running. After all routers

are selected, OP incrementally builds a circuit through them. The circuit is extended one hop at

a time, and negotiates a session key with the router through the Diffie-Hellman handshake. Each

extended router only knows which router sends it data and which router it is forwarding data to.

Once the circuit is established, it is ready to accept client’s application streams. Usually, a circuit

can be multiplexed by many TCP streams. Any TCP-based applications can use Tor via SOCKS

proxy which is listened by OP. The data of each stream is padded into fixed-sized cells (i.e., 512

bytes). The data cell format is shown in Figure 3.3. Then, the onion-encrypted data cells are sent

through the circuit to the intended destination.

Flow Control:

Tor uses a two-layer window-based end-to-end flow control scheme to guarantee a steady flow

between the client and the exit. Since multiple streams multiplex a circuit, the outer layer is

circuit-level control which restricts the number of cells that can be transmitted on a circuit for all

streams. The inner layer is a stream-level control applied to individual streams. At two edges of a

circuit, OP and exit control the speed of data cells entering and leaving the circuit by keeping track

of circuit and stream windows. By default, a circuit window starts with 1000 cells (500KiB) and

a stream window is initialized to 500 (250KiB) cells. When a data cell is sent, both windows will

be decreased by one. When a stream window is decreased to zero, the sender stops sending from
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Figure 3.3: Data cell format

this stream. When a circuit window reaches zero, the sender stops sending from all streams on this

circuit. Windows are increased when the corresponding acknowledgment cell known as SENDME

is received. For every 100 cells received on a circuit, the receiver sends a circuit SENDME to

inform the sender to forward another 100 cells from this circuit. For every 50 cells received from

a stream in this circuit, the receiver sends a stream SENDME to request another 50 cells from this

stream.

OR-Connection Multiplexing:

ORs in Tor connect to each other using TCP connections, in other words, each pair of onion routers

has a single TCP connection. Multiple circuits that belong to different clients may share the same

pair of ORs, so all the circuits between the pair are multiplexed over the single TCP connection.

As a consequence, the TCP congestion control scheme will be unfairly applied to all circuits on

the pair, that is, the circuit carrying low volume of traffic will be negatively affected by the circuit

with large amount of traffic. In the current Tor network, it is recognized that the performance

low-volume interactive traffic is greatly affected by the high-volume bulk traffic. In addition, since

Tor allows OR operators to limit their bandwidth usage through a token bucket approach, the

bandwidth contributed by each OR is very limited. All circuits on an OR have to contend for the

limited bandwidth resource. Therefore, it is very important to reduce the influence of bulk traffic

over interactive traffic. The current Tor does it through circuit scheduling. Before going to the

details of scheduling, we first present the cell processing and queuing architecture inside an onion

router.
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Figure 3.4: Queuing architecture inside an OR

Cell Processing and Queuing Architecture:

Figure 3.4 visualizes the inner queuing architecture and the connection between ORs. When a data

cell arrives at an OR, the cell is first stored in the kernel TCP buffer, which is later retrieved to Tor

input buffer by Tor through libevent [15]. Since an OR may connect to multiple ORs, the socket

of each TCP connection is registered to libevent scheduler and associated to a notification callback

function. The livevent scheduler will asynchronously executes the callback function on the active

socket.

Once a data cell arrives in input buffer, it is immediately processed: the data cell is either

encrypted or decrypted according to its direction. After the process, the cell is sent into the corre-

sponding first-in-first-out (FIFO) queue based on the circuit identify (circID) in the cell. Cells stay

in the circuit queue until the circuit scheduler chooses an active queue to send cells to the output

buffer.

Circuit Scheduling:

Tor provides two circuit scheduling policies when the output buffer has space and more than one

circuit have cells to send. The first one uses round-robin scheduling to ensure the fairness of

bandwidth sharing among all circuits. However, due to the distinction of different applications, for
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example, interactive applications like web browsing have higher requirement on timeliness, round-

robin scheduling may hurt the interactive traffic when a bulk traffic circuit is on the same router.

Another optional policy is exponentially-weighted moving average (EWMA) scheduler, which is

the default scheduler [139]. EWMA prioritizes the circuit with interactive traffic over bulk traffic

through choosing the circuit with lowest packet count.

Tor Hidden Services:

Another significant feature that distinguishes Tor from other low-latency anonymity systems is Tor

hidden services, which allows server operators to hide their locations (i.e., IP addresses) while

providing a variety of Internet services. The Tor hidden services use rendezvous points(RPs) to

support hidden TCP-based services, such as web servers and instant messaging servers, without

revealing real IP addresses of hidden servers. Figure 3.5 illustrates basic components of Tor hidden

services: (1) To make a service reachable, the hidden server (HS) selects several routers at random

as introduction points (IPs) and builds circuits to them. IPs wait for connections on behalf of the

hidden server. (2) HS then uploads its service descriptor to the hidden service directory (HSDir).

The descriptor containing its public key and a set of introduction points signed by the private key.

After this step, HS is ready to accept connections from clients. (3) To connect to the hidden service,

we assume a client (Alice) learns about HS’s onion address out of band. Then, Alice contacts

HSDir and retrieves the service descriptor of HS using this onion address. (4) After getting the set

of introduction points and HS’s public key from the service descriptor, Alice randomly selects a

router as the rendezvous point (RP) by assigning it a rendezvous cookie (RC) which is a one-time

secret, and builds a circuit to it (i.e., client circuit). (5) After that, Alice sends an introduce message

to one of the introduction points and (6) asks the IP to forward it to HS. The message containing the

rendezvous cookie, RP address and the first part of a Diffie-Hellman (DH) handshake is encrypted

by HS’s public key. (7) After decrypting the introduce message, HS establishes a new circuit to

Alice’s RP (i.e., hidden server circuit), and sends a rendezvous cell with RC and the second part of

DH handshake. (8) If RP verifies RC successfully, it then relays the rendezvous cell to Alice. After

generating the end-to-end session key, Alice and HS start communicating with each other through

30



Hidden 
Server

Alice Rendezvous Point
(1)

(2)(3)

(4)

(5) (6)

(7)(8)

HSDir

Introduction Point

Figure 3.5: Tor hidden services architecture

RP.

3.3 Tor’s Performance Problem

Recall that Tor was initially designed to provide anonymity service with low latency and reasonable

throughput for interactive applications such as web browsing, instant message and SSH. However,

Tor users often experience performance with large variance, which becomes a big obstacle to

impede Tor’s further expansion.

Many causes lead to Tor’s performance variance. Two main reasons that slow down Tor are: (1)

the path selection schemes designed for balancing traffic over the entire Tor network [133, 149],

and (2) bulk traffic contending for bandwidth with interactive users [113, 139, 91]. The current path

selection scheme excludes slowest relays while selecting from the remaining relays in proportion

to their weighted bandwidth (i.e., consensus weight). In other words, a router with higher weighted

bandwidth is more likely to be selected. The preference on high-bandwidth relays in the current

path selection scheme makes some routers persist in being under-utilized or congested [149]. A

single congested relay becomes the performance bottleneck of a Tor circuit between client and

server. It is even worse for Tor hidden services, since 6 relays are used to connect client to hidden

server. Any of them may become congested, which increases the probability of the circuit getting

congested. On the other hand, bulk traffic also significantly affects the performance under the cur-

rent Tor architecture. McCoy et al. found that 40% of network capacity is consumed by only a
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small fraction of BitTorrent users (3.5% of all connections) [113]. To achieve a good performance,

most of BitTorrent traffic go through the scarce high-bandwidth relays, which increases the con-

gestion and degrades the performance of interactive users. The performance problem may become

worse in the era of IoT, which is one of the biggest sources of big data.

To solve Tor’s performance problems for interactive traffic, the existing work follows three

thrusts. The first attempt is to increase the overall network capacity. [89, 119, 117, 90] proposed

various incentive schemes to attract more people in contributing more Tor relays. The increased

overall bandwidth benefits both interactive and bulk data clients. However, we argue that without

an effective allocation mechanism, the newly introduced resources may attract more bulk traffic

requests that consume bandwidth more aggressively than interactive traffic and thus make the situ-

ation worse. Along the second direction are the schemes aiming at optimizing path selection based

on relays’ geographic locations [27] or performance history [133, 149]. A better performance is

achieved for interactive users by avoiding instinctively slow relay and/or transiently congested re-

lays being selected in the anonymity route. However, while optimizing the performance of individ-

ual circuits, these approaches reduce the global utility of the anonymity network by imposing too

many restrains that excludes the capacity of low-bandwidth relays despite very limited. A different

attempt in improving the performance of interactive traffic is to prioritize it over bulk traffic [139]

or completely throttle bulk traffic [91]. However, one problem with these schemes is that the met-

rics used to detect bulk traffic are simple to game [29]. Besides, the throttling techniques enforce

strict restrictions to block bulk traffic resulting in reduced overall network utilization.

3.4 Basic Solution: IoT Gateway over Multipath Tor Hidden

Services

To overcome the performance problem of the current deployment of Tor for IoT gateway, we

present an end-to-end multipath routing scheme for Tor hidden services, namely mTorHS. As il-

lustrated in Figure 3.6, mTorHS constructs an anonymous tunnel consisting of m circuits where m
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Figure 3.6: An example of mTorHS architecture where m = 3.

is a client-specific parameter. While the capacity of each circuit is dynamic over time, our pro-

posed mTorHS scheme can adaptively distribute traffic onto circuits in proportion to their dynamic

capacities, and thus avoid the communication being blocked by a congested circuit and achieve

an acceptable overall performance. mTorHS is transparent to the Tor network, that is, no modifi-

cations need to be made on the existing Tor relays. Only the Tor codes for users who decide to

use mTorHS need to be changed on user side (i.e., Tor onion proxy OP for browser) and hidden

server side (i.e., Tor OP for Home Assistant), for associating multiple circuits to a client stream,

adding sequence number to data cell, reordering out-of-sequence cells and scheduling cells across

multiple circuits. Next, we elaborate the process of tunnel construction and data transmission. We

call user’s onion proxy as OP or Alice interchangeably, and call hidden server’s OP as HS in the

following sections.

3.4.1 Tunnel Construction

The server establishes hidden service and client retrieves service descriptors as same as the current

Tor hidden services (i.e., step 3-6 in Figure 3.5). Our modification starts from step 4.

Tunnel initialization. Different from the current scheme which randomly selects one router as the

rendezvous point (RP), Alice, the client side, chooses m routers and constructs m circuits of 3 hops

ending at them. Then, Alice gives m different rendezvous cookies (RC) to each RP, which will

be used to link the joining circuits established by the hidden server. To ease the presentation, we
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denote the first established circuit as the primary circuit and the other m−1 ones as the auxiliary

circuits. Once m circuits are established, Alice does the same thing as step 5-6 in Figure 3.5:

sends an introduce1 message to an introduction point which will forward it to hidden server with

an introduce2 message. The message contains the rendezvous cookie, RP address and the first

part of a DH handshake for the primary circuit. Besides them, we also add two new fields to this

message, namely, is_multipath and tunnel_width, which indicate that Alice is requesting to build

a multipath tunnel with tunnel width m. After receiving the introduce2 message, HS checks if

is_multipath is set. If so, HS generates a unique 32-bit tunnel identifier (T ID), otherwise, HS

follows the current single-path Tor scheme. In response, HS establishes a new circuit to the RP

of the primary circuit and sends Alice a rendezvous1 cell containing RC and the second part of

DH handshake. If RP successfully verifies RC, it relays the rest of the rendezvous1 cell to Alice

with a rendezvous2 cell. Once Alice receives it, she extracts the second part of DH handshake and

generates the end-to-end session key. A 6-hop circuit is established between Alice and HS. Now,

Alice and HS can communicate with each other through the primary circuit.

Then, Alice sends a multipath_m1 cell to HS through the primary circuit to retrieve the tun-

nel ID. With T ID, Alice adds the remaining auxiliary circuits to the tunnel by sending m− 1

next_rp_m messages to HS along the primary circuit. The format of each next_rp_m message is

similar to the introduce1 message, which contains T ID and RP’s address used in auxiliary circuits.

In response to the next_rp_m message, HS builds a new circuit connecting to the corresponding

RP, and knowledges each successful joining with a rendezvous1 to that RP. HS associates all cir-

cuits with the same T ID to form a tunnel for Alice. After Alice receives all m rendezvous2 cells

including 1 cell from the primary circuits and m− 1 cells from the auxiliary circuits, a multipath

tunnel is successfully constructed.

Tunnel management. Atop circuit management of Tor, mTorHS introduces additional tunnel

management to avoid the congested circuit degrading the tunnel performance. mTorHS manages

the multipath tunnel dynamically according to the congestion status of member circuits over time.

1To distinguish from the commands in current Tor, all the newly added commands in mTorHS have a suffix m.
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If OP detects that the transmission on a member circuit becomes very slow, it will construct a

new circuit to replace the slow one. We will discuss how to define “slow” in next section. The

slowcircuit-closing scheme provides OP the ability of responding real-time network dynamics,

which prevents a slow circuit from becoming a bottleneck of the entire tunnel. In particular, OP

can add new auxiliary circuits or tear down any existing circuit as follows: a new auxiliary circuit

can join the tunnel by sending a next_rp_m command to inform HS of the new RP address. To tear

down a circuit, OP informs HS to drop it using a drop_m message. After receiving drop_m cell,

HS immediately stops sending on this circuit and responds to OP using a dropped_m message with

the number of cells that have already been sent on this circuits (denoted as ns). Once OP receives

ns cells on this circuit, it tears down the circuit.

3.4.2 Data Transmission

When Alice’s stream arrives at OP via SOCKS, OP spawns the client stream (denoted as the parent

stream) to m subflows and appends them to the tunnel by associating each subflow with a member

circuit. Each subflow has its own stream window and inherits a common stream ID from the parent

stream. Next, OP sends a relay_begin cell through a randomly selected member circuit to start the

access.

Scheduling and data cell allocation. Conceptually, data cells can be forwarded through any mem-

ber circuit in the tunnel. However, if the number of allocated cells on a particular circuit exceeds

its capacity, it will become congested. Since the overall performance of a tunnel is bounded by

the slowest circuit, two endpoints of a tunnel need to cooperate to schedule cells across multiple

circuits based on the capacities of individual circuits. A straightforward approach for cell alloca-

tion is to probe the capacity of each circuit after it is initiated and schedule traffic in proportion to

the probed capacity. However, the method is unrealistic and less accurate. First, it will introduce

a large amount of extra traffic to the Tor network. Moreover, the capacity of each circuit may

change dramatically after the probing. Therefore, the static scheduling scheme cannot adapt to

network dynamics which makes the allocation less useful. In [28], Alsabah et al. presented an
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opportunistic probing approach to estimate the round-trip-time (RTT) of a circuit based on Tor’s

circuit-level congestion control scheme, where RTT is measured as the difference between the time

of sending out every 100th cell and the time of receiving a circuit SENDME flag. The number of

cells allocated to a circuit is reversely proportional to the measured RTT. The RTT-based approach

is reactive to network dynamics, but it is still not very accurate because the congestion feedbacks

are received infrequently (every 100 cells) [30]. Besides, cells may spend several hundred mil-

liseconds in the circuit queue before being transmitted over a TCP connection [139], after which

the circuit’s capacity may change non-negligibly. Based on this consideration, we argue that RTT-

based approach may not be a good choice in cross-layer scheduling, which is also recognized in

multipath TCP design [35]. In mTorHS, we adopt a “pulling” scheduling – instead of pushing data

cells to circuits by a scheduler, we let each subflow actively pull data from a shared send buffer

whenever its stream window becomes nonempty. Initially, each subflow has a stream window of

500 cells. As described in Section 3.2.2.3-Flow Control, the stream window decreases by one

when sending a cell out and increases by 50 when receiving a stream-level SENDME notifica-

tion. Consequently, a subflow stops sending cells when its stream window size drops to zero and

resumes when it receives a SENDME. It is obvious that when the circuit to which a subflow is

appended becomes congested, cells will be moving much slowly towards the receiver resulting in

delayed stream-level SENDMEs and long waiting at the sender end. Whereas, subflows on fast

circuits will send out data cells fast and steadily. In this way, the “pulling” scheduling is subflow

self-adaptive without accurate explicit circuit RTT measurements. When multiple subflows have a

nonzero stream window, we adopt a FIFO (first-in-first-out) queue to schedule them.

Slow circuits detection. Another challenging issue in mTorHS design is the detection of slow cir-

cuits. To avoid a congested circuit becoming the bottleneck of the entire tunnel, OP will construct

new circuits to replace the slow ones. In this work, we adopt a distance-based outlier detection

approach to determine whether a circuit is congested based on a sliding window of 50 cells. In par-

ticular, we measure the time of receiving every 50 cells and find the lower and upper quartiles (Q1

and Q3) of ten most recent records to calculate the interquartile range (IQR) where IQR=Q3−Q1.
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Figure 3.7: New cell format: a new filed, sequence number marked in red, is added as the multipath
header, representing the sequence number of sent-out cells.

If a new measurement falls out of the range of (0,Q3 +1.5IQD], it is considered as an outlier in-

dicating the circuit is experiencing a congestion. To increase detection reliability, OP considers

a circuit as congested if at least three consecutive outliers occur. Once detected, OP and HS will

collaborate to tear down the congested circuit and replace it with a new one. This can be done

through the tunnel management discussed above.

Data re-ordering. Combining the self-adaptive “pulling” scheduling and active congestion de-

tection schemes, mTorHS is able to adapt to network dynamics, which potentially prevents slow

circuits from degrading the overall performance of multipath tunnel. However, due to dynamic

scheduling, data cells may arrive at the receiver out of order. To solve this issue, we have to

modify the format of Tor data cell to incorporate a 32-bit sequence number in the multipath data

packets. As shown in Figure 3.7, the first four bytes of data payload is reserved for this purpose.

Moreover, we add a new relay_subdata_m command to indicate a data cell is multipath data.

When OP receives a multipath data cell from a subflow, it first checks if the sequence number is

what it expects. An expected cell is immediately forwarded to the application stream, while an

out-of-order cell is stored in a buffer and ordered according to its sequence numbers.

3.4.3 Discussion

By applying congestion detection, users of multipath hidden services can route their traffic through

other circuits having light load and thus improve the overall performance. Such a congestion

avoidance also benefits single-path users, since it yields the bandwidth on the congested path so
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that it can be used to relay others’ traffic. In terms of security, this solution, namely IoT gateway

over multipath Tor hidden services, transmits all traffic including incoming and outgoing traffic on

gateway through Tor network, so the IP address of gateway is still hidden from the public Internet

and thus the adversary cannot scan and attack the gateway.

Multipath hidden services can improve the performance of a single user, but it will not increase

the overall bandwidth of Tor network. If millions of users access their gateways via Tor, especially

for bulk traffic like watching camera videos, the huge demand on bandwidth may exceed the ca-

pacity of Tor. As a result, even if they all use multipath schemes, the performance eventually will

become very poor. Therefore, IoT gateway over multipath Tor hidden services cannot be a viable

solution for all users. Instead, it suits those users who have very strong security requirement but

only need an acceptable performance. For the majority users who want to achieve a better balance

between security and performance, we propose an alternative solution, namely IoT gateway with

separate command and data channels, which will be presented in next section.

3.5 The Improved Solution: IoT Gateway with Separate Com-

mand and Data Channels

Tor provides very strong security protection but poor performance, while the public Internet has

the opposite properties. We propose a novel solution, namely IoT gateway with separate com-

mand and data channels, which combines the advantages of Tor and the public Internet. More

specifically, the gateway only accepts incoming traffic from the Tor channel, while responds to

the remote access with outgoing traffic through the Internet channel. This scheme is based on the

fact that the IoT gateway can defend against the vulnerability scanning by refusing responding to

any request coming from the Internet, such as ICMP ping, telnet, or HTTP request. The adver-

sary obtains nothing by scanning the gateway with IP address. Besides, since the onion address of

hidden service is only known by the user himself, the adversary cannot send any scanning traffic

to the gateway through Tor. Therefore, the security is still well protected. On the other hand, the
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Figure 3.8: An example of IoT gateway with separate command and data channels: user requests
to watch camera video on temporary port 56789 through the Tor channel, while Home Assistant
temporarily opens port 56789 and sends video to user from the requested port through the Internet
channel.

incoming command is usually transient and very small, so transmitting the command through Tor

will not introduce much extra overhead to Tor. In response to the command coming from the Tor

channel, the gateway sends out bulk traffic such as camera videos to the user through the Internet

channel. Since the video stream is transfered through the public Internet, we need to make sure

that user and Home Assistant are mutually authenticated and the traffic is encrypted. With separate

incoming command channel and outgoing data channel, we can leverage both the security of Tor

and the good performance of the public Internet. Next, we will use an example that user requests

video stream to demonstrate our design, which is shown in Figure 3.8. The interactive protocol

between user and Home Assistant is as follows:

Step 1: User initiates a connection through Tor. To access Home Assistant, user types its

onion address (e.g., abc.onion) in the mobile application. After user connects to the control panel

through hidden service, she specifies a random high TCP port, a 256-bit random token rA, a 1024-

bit random number x and its corresponding Diffie-Hellman number gx in the camera dialog. The

port number will be used by Home Assistant to send video to user, the random token rA will be
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used for mutual authentication later, and the Diffie-Hellman data gx will be used to generate session

key. Then, user sends this command to Home Assistant through Tor.

Step 2: Home Assistant gets the requested service ready. In the original Camera Component

of Home Assistant, the video received from the camera will be shown on the web interface, and

thus, in response to the request from the Tor channel, the video is also directly sent back to the

user through Tor. In our scheme, we rewrite the Camera Component so that it can redirect the

video stream to a temporary port specified by the user and forwards the stream from that port

to user through the Internet channel. To do so, we just add a new functionality to the Camera

Component and register this service to Service Registry. Since this new service is implemented on

the component level, it can work with different types of cameras.

When Home Assistant receives user’s command from the Tor channel, it generates a 256-bit

random token rHS, a 1024-bit random number y and its corresponding Diffie-Hellman number

gy. HA uses the received gx and y to generate the session key gxy and responds to user with the

random token rHS through the Tor channel. Meanwhile, HA opens port 56789 and waits for the

connection for video streaming. Note that the socket that listens on port 56789 is set to accept

only one connection, and close after the connection is finished. Now, Home Assistant is ready to

receive request from user through data channel.

Step 3: User requests data through the Internet. After user receives the random token rHS

and the second half Diffie-Hellman handshake data gy through Tor, she will generate the session

key gxy, and sends a request containing rHS to Home Assistant through data channel, which is

encrypted with the session key gxy.

Step 4: Home Assistant authenticates the request and sends encrypted data. Once user’s

request for video stream arrives at port 56789 through the Internet channel, Home Assistant first

decrypts it with the session key and verifies whether the token in this request matches the previous

one that it sends to user. If the verification succeeds, HA sends rA and the subsequent steaming

data to user, which will be encrypted with the session key. Otherwise, HA discards the request

without any reply and closes the port 56789. Note that this request containing the authentication

40



data is the only packet that HA will accept. After that, HA will not receive any incoming packet

from port 56789 except ACK.

Step 5: User authenticates the reply and receives data. After user receives the reply and can

correctly decrypt it to get rA, she will accept the subsequent data. Otherwise, the connection is

closed. After user stops receiving data from HA, this connection will tear down and port 56789 on

HA side is also closed.

3.6 Performance Evaluation

To explore the performance improvement introduced by our two schemes, we perform experiments

on the live Tor network and compare the average time of video stream transmission between the

original Home Assistant without Tor hidden services (denoted by HA-No-Tor), HA with single-

path hidden services (HA-sTorHS), HA with multipath hidden services (HA-mTorHS) and HA with

separate command and data channel (HA-Separation).

Setup. We turn a Raspberry Pi 2 [18] into a dedicated Home Assistant hub, which connects to a

VStarCam IP camera [22] where the video stream is feed into Home Assistant via FFmpeg. The

Raspberry Pi 2 is equipped with 700MHz ARM A6 microprocessor and 512 MB RAM. A client

accesses to Home Assistant through a laptop with 2.5GHz Intel i5 CPU, 8GB RAM and OSX.

To compare the performance, we measure the time that client receives 10MB streaming data from

Home Assistant. For HA-Separation, our modification to Home Assistant is made using Python

3 on the backend and Polymer on the frontend. For HA-mTorHS, we change the source code of

Tor-v0.2.9.10. Note that all changes are made to the client’s proxy and hidden server’s proxy, so

no modification is needed on the Tor network. We compare different multipath settings where the

tunnel width m is set to 2 and 4, respectively. To eliminate the difference of different circuits’

capacities used by different schemes, we ask HA-4TorHS scheme to use the default path selection

algorithm to choose relays for 4 circuits and record the used relays. Then, HA-2TorHS scheme

randomly chooses 2 out of 4 circuits, while HA-sTorHS randomly chooses 1 from 4 circuits.
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Figure 3.9: Comparison of transmitting 10MB video streaming data between user and hidden
server (i.e., Home Assistant).

Results. Figure 3.9 compares the performance of different schemes. The Y-axis is the average

time of transferring 10MB video data after we run the experiment 60 times over different time of

a day. From the figure, we can see that the current proposal (blue bar in Fig. 3.9) that directly in-

tegrates Tor hidden services into Home Assistant achieves the worst performance, which is almost

7 times slower than the direct access to HA through the public Internet (green bar). In contrast,

our proposed multipath Tor hidden services improve the performance greatly: HA-2TorHS having

2 circuits is 1.7 times faster than HA-sTorHS , while HA-4TorHS is 3 times faster than it. As we

discussed in Section 3.5, to further improve the performance and alleviate the overload on Tor net-

work, most users should adopt HA-Separation (red bar), which can achieve the same performance

as directly accessing to Home Assistant without using Tor.

mTorHS improves the performance, because it can overcome the problem that a single path gets

congested. To verify this, we test a case where the 6-hop path between client and hidden server

is established using very fast relays, but the path is congested, meaning that the performance is

much worse than the average time. For HA-sTorHS, 3 relays used by user are 2391A, 92CFD

and 3E13E, while 3 relay used by HS are A7047, 96DAF and 8C23B. They are respectively Top

1%,5%,14%,30%,11% and 20% fastest relays in all Tor routers at measurement time (July 12,

2017). This path consisting of very fast relays should have provided very good performance, but

its real performance is 55 seconds, which is much slower than the average of HA-sTorHS. The poor
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performance on this path are usually due to congestion on at least one of relays in the path [150].

To see the effect of our multipath scheme, for HA-2TorHS, we do not change the first path and

add another less congested path. The performance is improved to 16 seconds, since most traffic

can be routed through the second path, which also alleviates the congestion on the first path. For

HA-4TorHS, we add another 2 less congested paths, and the performance is further improved to 10

seconds.

3.7 Security Analysis

In this section, we analyze the security of two proposed schemes in terms of authentication, en-

cryption and anti-scanning.

Authentication. Although Home Assistant itself supports optional password-based authentication,

it does not enforce users to apply it. Besides, such an authentication approach has numerous

deficiencies. The most well know problem is weak password. Since hackers are not forbidden on

unlimited attempts at guessing the password through the public Internet, the authentication may

be compromised. Therefore, the authentication provided by Home Assistant is not reliable. In

contrast, besides password required by HA, our proposed two schemes offers two additional layers

of authentication with Tor hidden services. First, adversaries cannot access Home Assistant over

hidden services without knowing the onion address. Since onion address generated by Tor is an 80-

bit number in base32, it is not easy for adversaries to predict the one used by a target. In addition,

even if the adversary obtains the onion address by chance or does brute force to attempt all onion

addresses, Tor hidden services also require users to have a 132-bit authentication cookie in base64

to access the hidden server. It is very difficult for adversaries to guess the correct combination

of onion address and authentication cookie. Therefore, our schemes which integrates Tor hidden

services can provide a very strong authentication for IoT gateway. In HA-Separation scheme,

when user connects to HA to receive data through the public Internet, a mutual authentication

is enforced by verifying random numbers exchanged through Tor. Because those two random
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numbers transferred through the Internet are encrypted by session key, they cannot be forged by

adversaries, and thus the mutation authentication for the data channel is reliable. In addition, since

the socket on HA is set to accept only one connection, adversaries cannot do unlimited attempts.

Note that the secret onion address and the authentication cookie are stored in the Tor configuration

file on client’s device , such as his laptop or smart phone. Our schemes cannot defend against

the attack that an adversary can hack into client’s device to steal onion address and authentication

cookie. This is a very complex problem about how to protect the secret key on a laptop or smart

phone from cyber attacks, which is out of the scope of this work. Besides, since we assume that

smart home owners will not share the secrets including onion address and authentication cookie to

many people except family members, it will not be a difficult task to manage them and keep them

secret.

Encryption. Home Assistant does not use HTTPS by default, so it is very insecure to access it

remotely. To solve it, users are suggested to set up encryption using Let’s Encrypt [14]. How-

ever, this requires a tedious process to finish the setup, especially for users who know little about

network and security, which usually discourages users to use it in reality. In our schemes, since

Tor hidden services have built-in onion encryption and end-to-end encryption, once it runs for IoT

gateway with a very simple configuration, all traffic that goes through Tor is well protected with-

out user’s involvement any more. In our HA-mTorHS scheme, since all communication is over

Tor, the data confidentiality completely relies on Tor’s strong cryptography technologies. In our

HA-Separation scheme, we use Tor channel for command and Internet channel for data. All com-

mands are protected by Tor as discussed before, while data is also encrypted by an AES session

key, which is negotiated through the command channel between user-end application and Home

Assistant over hidden service.

Anti-scanning. As we discussed in Chapter 2, anti-scanning approach is a very effective solution

to cyberattacks on smart home. The current Home Assistant running on default port 8123 will

respond to adversary’s scanning on this port, so the adversary can find vulnerabilities and exploit

them. In our HA-mTorHS scheme, all accesses to Home Assistant must go through hidden ser-
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vice. Without knowing the onion address and authentication cookie, adversary does not know the

existence of Home Assistant, and thus cannot probe and access it. In our HA-Separation scheme,

authentication and key negotiation are conducted through the command channel over Tor, so those

vulnerability scanning techniques discussed in Chapter 2 will not work any more. For data chan-

nel, it is also resistant to scanning when the port is temporarily open to the public Internet for

data transmission due to two reasons: (1) Since the port on Home Assistant is a random port and

only temporarily open during data transmission, the adversary even may not have enough window

of time to detect a open port via massive scanning, let alone a successful attack; (2) Even if we

assume that the adversary controls a large number of machines and is able to scan all ports of an

IP address, the adversary only knows that a high port, e.g., port 56789, is open, but nothing else.

That is because after the TCP handshake, Home Assistant accepts only one authentication data

packet that contains the nonce encrypted by session key. Any other traffic will be dropped, so

the subsequent scanning for detailed information such as version, OS and model, will receive no

response.

3.8 Related Work

All related work to this paper can be roughly classified into two categories:

Countermeasures enhancing IoT security. Extensive research has been done to enhance the

security of individual devices. For authentication, Liao et al. [105] propose a secure ECC-based

RFID authentication scheme to realize the mutual authentication between devices. Wu et al. [155]

further improve the security by proposing lightweight private mutual authentication and private

service discovery. For encryption, traditional cryptography can be applied to secure IoT. Dinu

et al. introduce a benchmark framework to evaluate how well lightweight block ciphers, such as

AES, RC5, Simon and Speck, etc., are suited to IoT devices. For communication, a bunch of

dedicated protocols such as CoAP [131], RPL [152], and 6LoWPAN [130] and their variants have

been proposed, which are not only lightweight for IoT devices but also security-oriented. Another
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type of approach that achieves both security and lightweightness is cloud-assisted IoT security.

Since resource-constrained IoT devices usually cannot afford costly cryptographic techniques and

large data storage, many schemes are solving this problem by leveraging cloud which provides

powerful computation and storage capacity [83, 157, 163, 86]. [17, 29] both focus on cloud-

assisted healthcare IoT, which mainly use the storage resources of the cloud. In [17], they proposed

a scheme to add watermark into the collected data of a patient to avoid the privacy leakage on the

cloud, while Yang et al. proposed a scheme that allows health service providers such as doctors

to access and verify the encrypted medical records stored on the cloud by using a searchable

encryption with forward privacy support [29]. In contrast, [28] utilizes the computation resources

of the cloud to implement a data publishing scheme adopting attribute-based encryption, while [86]

proposes a data access control scheme for constrained IoT devices and cloud computing based on

hierarchical attribute-based encryption. The above solutions mainly focus on securing individual

IoT devices, while IoT gives us a way to manage and secure a bunch of heterogeneous devices. For

example, Intel IoT gateway can support comprehensive device protection with integrated McAfee,

including secure boot, application integrity monitor, encrypted storage and more [11].

Multipath Tor schemes. Several multipath Tor schemes have been proposed to solve the perfor-

mance and anonymity problems of Tor [28, 160, 159]. AlSabah et al. [28] first explore how to use

multipath routing to improve Tor’s performance, and then Yang et al. [160] further analyze the re-

lay utilization and propose that using low-bandwidth relays to construct multiple circuits can both

improve the performance and increase the network utilization. Different from [28, 160] focusing

on improving performance for general Tor services, Yang et al. [159] proposes a partial multipath

routing scheme for Tor hidden services to enhance the resistance to traffic analysis attacks. In their

scheme, the tunnel is built between the rendezvous point and the hidden server. They improve the

anonymity based on the insight that traffic pattern will be somewhat distorted by flow splitting and

flow merging operations in multipath routing and by the multiple routes with different network

dynamics. In contrast, with the goal of improving the performance, our proposed multipath Tor

hidden services for IoT gateway adopts an end-to-end multipath structure, which leverage the end-
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to-end traffic management to overcome the network dynamics. Another notable difference between

the above schemes and ours is that our multipath scheme is transparent to Tor network, namely, no

modifications are required on existing Tor routers except user proxy who is using multipath Tor,

and thus, our scheme can be used immediately, while all the above three schemes require new Tor

routers to support their designs.

3.9 Summary

In this chapter, we discuss the threats on smart home and analyze the challenges of realizing coun-

termeasures against those threats. To tackle those problems, we propose two novel Tor hidden

services based solutions to secure smart home: IoT gateway over multipath Tor hidden services

and IoT gateway with separate command and data channel. In the first solution, we use multipath

routing scheme to improve the performance of Tor hidden services. With all data routed in the

Tor network, this solution suits users who desire strong security but acceptable performance. To

improve the performance, our second solution transfers command through Tor and transfers data

through the Internet so that we can leverage both the strong security of Tor and the good perfor-

mance of the Internet. Our experimental results and security analysis show that the proposed two

schemes are promising solutions for securing smart home in practice.
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Chapter 4

Enhancing Traffic Analysis Resistance for

Tor Hidden Services with Multipath

Routing

4.1 Introduction

In the previous chapter, the goal of using multipath routing scheme is to improve the performance

of Tor hidden services for users who require strong security and acceptable performance. However,

another well known problem of Tor hidden services is the security problem, namely, Tor hidden

service is vulnerable to traffic analysis. As a result, once adversaries can find the existence of

hidden service for smart home gateway, the gateway will become the target of adversaries and thus

the protection on home gateway may fail. Therefore, the questions that we ask in this chapter

are: What if smart home user wants stronger security? Can we still improve the anonymity of Tor

hidden services and further improve the security of smart home gateway? In this chapter, we will

answer those questions still using multipath routing technique but in a different way.

According to recent studies Tor hidden services are still under the risk of de-anonymization due

to specialized traffic analysis attacks [121, 38]. It is argued that the current Tor design is vulnerable
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to traffic analysis attacks if the adversary can monitor a user’s traffic entering and leaving the

anonymous network at both sender and receiver ends. Since the malicious client always resides at

one end of the anonymous path, she can successfully perform the traffic analysis attack if she is

able to observe the traffic at the hidden server end. Øverlier et al. proposed the first documented

attack against Tor hidden services by exploiting traffic analysis techniques. They experimentally

verified that a hidden server can be located within a short period of time if the adversary is able to

control one Tor (or preferably two) router(s) [121]. Biryukov et al. also confirmed the practicality

of traffic analysis attacks by conducting an opportunistic de-anonymization attack to Tor hidden

services [38]. The effectiveness of such attacks is mainly caused by the low latency in anonymized

paths, which unwillingly preserves the inter-cell timing correlation between the original flow and

the anonymized flow. The adversary can exploit traffic analysis techniques to correlate common

patterns between the original flow and the anonymized flow to infer identities and relations of

the communicating parties. Therefore, the key to mitigating the threats of traffic analysis attacks

is to reduce the timing correlation between cells. Dummy traffic is considered as an effective

countermeasure to obscure the timing features of the original flow [132]. However, due to the high

cost introduced by dummy traffic, it is not a practical solution for the already heavily loaded Tor

network.

In this chapter, we propose a multipath routing scheme for Tor hidden services (mTorHS-S)

to defend against traffic analysis attacks (To distinguish the multipath Tor hidden services aiming

to improve performance in the previous chapter, we add an "S" to this scheme, representing that

the goal of this scheme is to improve security). Our scheme routes data cells between the ren-

dezvous point and the hidden server through multiple circuits, which exploits flow splitting and

flow merging functionalities of multipath routing to remove identifiable patterns of the original

flow. Through experiments on the Shadow simulator [88], we show that mTorHS-S is resistant

to traffic analysis, even when robust watermarking-based techniques are employed. In addition,

by integrating multi-flow detection scheme [96] into mTorHS-S, our scheme is able to combine

multiple watermarked flows to detect the presence of watermarks, if they have not been completed
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destroyed by multipath routing.

Abbreviation Term Abbreviation Term
HS Hidden server SRP Server’s rendezvous point

Alice Malicious client RC Rendezvous cookie
RP Rendezvous point DH Diffie-Hellman
OR Onion router IP Introduction point

Table 4.1: Definitions of abbreviations used in this chapter.

Because a large number of abbreviations are used in this chapter, we summarize the notions

in Table 4.1. The remainder of this chapter is organized as follows. After introducing two repre-

sentative traffic analysis attacks against Tor hidden services in Section 4.2, we present the threat

model in Section 4.3. Then, we elaborate the detailed design of our multipath Tor hidden services

in Section 4.4. In Section 4.5, we experimentally evaluate the effectiveness of mTorHS-S against a

very robust watermarking-based attack. Finally, we summarize this chapter in Section 4.6.

4.2 Traffic Analysis Attack against Hidden Services

It is recognized that Tor hidden service is vulnerable to traffic analysis attacks. In general, traffic

analysis attacks can be classified into two categories: passive traffic analysis and active traffic anal-

ysis. Passive traffic analysis correlates the sender’s outgoing traffic with the receiver’s incoming

traffic by comparing the traffic features, such as packet timings and counts. To launch a success-

ful passive traffic analysis, the adversary needs to monitor the traffic for a long time to obtain

a reliable traffic pattern. The biggest advantage of passive traffic analysis is its stealth, but it is

time-consuming and less accurate compared with the active attacks. To improve the accuracy and

reduce the cost, many active traffic analysis techniques have been proposed to generate traffic with

a special pattern at one end of the communication path and identify it at the other end.

The security of Tor hidden services was first challenged by Øverlier et al. [121]. They experi-

mentally attacked an early version of hidden services in which the entry guard protection mecha-

nism has not yet been implemented in Tor. In response to a client request, HS will randomly select
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three routers to build a circuit to RP. Assume a malicious client controls a set of routers in the Tor

network. By establishing a large number of connections to HS, she can eventually force HS to

choose an entry router (i.e., the fist hop of a circuit) that she controls. Then by requesting files of

different sizes at different time from HS, the attacker can generate a special traffic signature and

exploit simple traffic analysis techniques (e.g., packet counting combined with timing information)

at the malicious entry node and the RP to correlate flows with the same traffic pattern.

Another attack is proposed by Biryukov et al. [38]. They generated traffic with a special pattern

and applied packet counting traffic analysis to identify flows with the injected pattern. For example,

a malicious RP can send 50 padding cells and a destroy cell to HS after receiving the rendezvous

cell in Step (7) (as shown in Figure 3.5). If the corresponding malicious entry guard observes

53 cells (including the destroy cell, 50 padding cells and 2 additional extended cells in circuit

construction) going towards HS and 3 cells (including the rendezvous cell and 2 extend cells)

leaving HS, the adversary can decide that this malicious guard node is chosen as the entry node by

HS.

However, these two attacks also suffer drawbacks. Since Øverlier’s attack was conducted in

the early stage of Tor with much fewer routers, clients and hidden servers, at that time their gen-

erated traffic pattern was unique enough and hence can be preserved after going through the Tor

network. Nevertheless, the current Tor with much more traffic will make this simple packet count-

ing based analysis less effective. For Biryukov’s attack, because special cells (i.e., padding cells)

are used to generate a unique traffic signature, it may not be invisible to hidden server. Therefore,

more advanced active watermarking-based traffic analysis techniques [151, 109, 85, 84] are pro-

posed, which can make the traffic analysis attacks targeting Tor hidden services more efficient and

stealthy. They embed a specific traffic pattern to the victim’s flow on the sender side by manipulat-

ing the timings of selected cells. The adversary breaks the anonymity guarantee if the watermark is

uniquely identified on the receiver side. Compared to passive traffic analysis and other active traffic

analysis techniques, watermarking is more robust to flow transformations such as dummy traffic,

flow mixing, traffic padding and network jitter, so it is considered a more efficient and severe threat
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Figure 4.1: Threat model in this chapter where RP and OR1 are controlled by the adversary

to Tor hidden services.

4.3 Overview of the Problem and the Threats

The attacks described in Section 4.2 show that the adversary can successfully correlate two com-

municating parties if she is able to observe the traffic at two ends of a Tor circuit. As shown in

Figure 4.1, the anonymous path between a client and the hidden service server consists of 6 hops.

Since a malicious client is always at one end of the path, she only needs to trick HS to choose a

compromised router controlled by herself, i.e., OR1. Her success rate relies on the proportion of

compromised routers in the Tor network. Therefore, this attack particularly threatens the hidden

services. Moreover, the adversary can further select a node that she controls to be the rendezvous

point and build a one-hop circuit to this RP. In this way, she can shorten the path to four and thus

reduce the latency between herself and HS to help correlate the traffic pattern. To mitigate this

threat, efforts can be made from two perspectives: (1) preventing an adversary from controlling

both ends of a circuit to impede the occurrence of traffic analysis (2) reducing the success rate of

traffic analysis even when both ends of a circuit are compromised.

The concept of “entry guards” [121] is introduced into the current Tor design to solve this

problem following the first direction. Entry guards are a set of routers that are considered reliable

by a Tor node to be the first relay of an anonymous path. By default, each user constructs its

guard set of three routers, which will expire in 30 to 60 days. After that, the entry guards will be

reselected. With entry guards, whenever the hidden server builds a circuit to the rendezvous point
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in response to a client’s request, it will pick an entry guard from the set for its first hop instead of

choosing a random router in the network. Since the entry guards are evaluated by several measures

and considered reliable, they are less likely to be controlled by the adversary. As a result, the

chance that an adversary controls both ends of a circuit is significantly reduced. However, it is

unreliable that the security of hidden servers merely relies on the goodness of the entry guard set.

Given enough time, a user will eventually select a malicious entry node into his guard set. Johnson

et al. showed that for an adversary with moderate bandwidth capacity, it only takes 50 to 60 days

to include a malicious router to a user’s guard set [92]. As noted by Elahi et al., the design of

entry guard is still an unclear research problem [62] and subtle parameter selection is required to

achieve expected protection. Therefore, it is critical to develop protection mechanisms which are

parallel to the entry-guard-based solution to enhance the resistance of Tor hidden services to traffic

analysis attacks in case the guard set is compromised.

In this chapter, we make efforts following the second direction to reduce the success rate of

traffic analysis when the attacker has successfully controlled both ends of a Tor circuit. Our work

can be applied in concert with entry guard protection mechanism. Figure 4.1 illustrates our threat

model. We assume an adversary Alice pretends to be a client of the hidden server and tricks the

hidden server to select a node controlled by her (OR1) to be the entry node in the return anonymous

path. Alice then selects another controlled router as the rendezvous point. We assume Alice can

exploit any traffic analysis technique to passively observe or actively manipulate the traffic passing

through OR1 and RP. The primary goal of the traffic analysis is to identify flows with the same

traffic pattern at OR1 and RP to confirm that both malicious nodes are recruited in HS’s circuit,

from which she can learn the location of the hidden server.

4.4 Multipath Tor Hidden Services for Security (mTorHS-S)

To prevent the adversary’s RP and entry node from correctly identifying the traffic pattern, we

present a multipath routing scheme for Tor hidden services. This scheme is based on the key
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Figure 4.2: mTorHS-S architecture

insight that the traffic pattern observed or intentionally generated at the malicious entry guard

(e.g., OR1) will be somewhat distorted by flow splitting and flow merging operations in multipath

routing and by the multiple routes with different network dynamics. The architecture of mTorHS-

S is illustrated in Figure 4.2. Different from the selection of rendezvous point in the current Tor

implementation, the hidden server also selects its own “rendezvous point”. To distinguish two

rendezvous points, the one selected by the client is denoted as “CRP” and the one selected by

hidden server is denoted as “SRP”. In respond to a client’s request, HS builds an anonymous

tunnel consisting of m circuits, where m is a server specific parameter. HS then splits the original

flow onto m subflows and attaches each subflow to a circuit in the tunnel. All m circuits will go

through the same entry guard OR1 and merge at SRP, which further relays the merged flow towards

the client. Next we will present the detailed process of connection initiation and data transmission.

4.4.1 Connection Initialization at Client Side

For the client, the connection initialization remains the same as the current Tor hidden services

(i.e., step 3-6 in Section 2.2). More specifically, Alice first selects a client rendezvous point (CRP)

and constructs a rendezvous circuit to it by sending an establish_rendezvous request. Then, she

builds an introduce circuit to one of HS’s introduction points and sends an introduce request, which

requests for the hidden service at HS and informs HS with CRP’s address (i.e., fingerprint).
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4.4.2 Multipath Tunnel Construction on Hidden Server Side

After receiving the introduce request, HS decrypts it with its private key and extracts the finger-

print of CRP, rendezvous cookie (RC) and the DH handshake message. Then, HS selects its own

rendezvous point (SRP) and constructs a multipath tunnel to SRP, following the same approach

described in [161].

SRP selection. The selection of SRP is very critical. From Figure 4.2, we see that subflow merg-

ing occurs at SRP. Hence, even when multipath routing is adopted between SRP and HS, if the

adversary controls SRP and OR1, she can observe traffic patterns before merging from both ends

of each subflow and thus perform traffic analysis successfully. The adversary may follow the same

strategy as described in [121] to trick HS into selecting a controlled node as SRP by continuously

sending a large number of requests. If HS selects a new SRP for each received access request, it

may eventually select one of the compromised router. Inspired by the entry guard idea, we propose

“rendezvous guard” for SRP selection, which is a set of reliable routers selected by the hidden

server. A hidden server initially selects three routers to compose its rendezvous guard set, each

of which stays in the set for a random period between 30 and 60 days. Whenever HS builds a

rendezvous circuit in response to the client request, it sticks to the same rendezvous guard set and

randomly picks one router from it.

Tunnel initialization. As discussed previously, mTorHS-S constructs a tunnel with multiple cir-

cuits to SRP instead of one anonymous circuit to CRP. In the original Tor hidden service design,

the hidden server responds to an introduce request by establishing a four-hop anonymous circuit

ending at CRP selected by the client. To ease the presentation, we denote this anonymous circuit

as the primary circuit and the other m−1 anonymous circuits in the tunnel as the auxiliary circuits.

As shown in Figure 4.2, all circuits merge at the SRP. Therefore, it is the third router for every

three-hop anonymous circuit in the tunnel. Besides that, HS follows the default Tor path selec-

tion algorithm to select all other routers to form the tunnel. When the circuit is established, HS

sends a multipath_m cell along the primary circuit to SRP to request a multipath connection. In
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response, SRP generates a unique 32-bit tunnel identifier (TID) and incorporates it into the replied

multipath_ack_m cell to indicate a successful multipath tunnel construction. With TID, HS adds

each auxiliary circuit to the tunnel by sending a join_m request to SRP along the circuit. SRP

acknowledges each successful joining with a joined_m message. Finally, when HS receives m−1

acknowledgments, a multipath tunnel is successfully constructed. Note that all the cells are lay-

ered encrypted so only HS and SRP at two ends see TID and the newly added tunnel construction

command. This prevents the entry and middle nodes of HS’s circuit from linking TID with HS. In

fact, they even do not know if they are involved in any tunnel construction.

Once the tunnel is established, HS follows the same process of the current hidden service

protocol to extend path construction to CRP and the client. In particular, HS sends a rendezvous1

cell containing DH handshake message and rendezvous cookie (RC) to CRP along the primary

circuit, which verifies RC and joins the client’s circuit with the server’s primary circuit. Then,

CRP sends a rendezvous2 cell containing the DH handshake message to the client to finish the

construction. Note that from CRP’s view, it sees only the primary circuit connecting itself to SRP,

and hence it has no idea about how many circuits are involved in the multipath tunnel between SRP

and HS.

Tunnel management. The hidden server can add new auxiliary circuits or tear down any existing

circuit in the tunnel after it is established. In particular, a new auxiliary circuit can join the tunnel by

sending a join_m command with the corresponding TID. To tear down a circuit, HS immediately

stops sending on this circuit and informs SRP to drop it using a drop_m message. Note that the

number of cells that have already been sent on this circuit (denoted as ns) should also be passed

to SRP to avoid packet loss. After receiving drop_m cell, SRP extracts ns and replies with a

dropped_m cell after it receives the remaining ns cells. Finally, HS tears down the circuit when it

receives the dropped_m message. Since each tunnel is constructed in response to a client’s request,

it will be closed after the request is completed. However, this will not result in the closure of all

circuits in the tunnel, since the circuits may be reused for other purposes until it gets “dirty” - after

its lifetime exceeding 10 minutes and no streams on it, similar as in Tor circuit management.
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Figure 4.3: mTorHS-S cell format

4.4.3 Data Transmission between Client and HS

Once the connection is set up, the client and HS can communicate through the anonymous path

consisting of the server’s and the client’s anonymous circuits joined at CRP. Data cells between

SRP and HS can be routed through any circuit in the tunnel. To indicate a cell is a multipath cell

used in mTorHS-S, we add a new cell command (i.e., MULTIPATH_CELL). HS is responsible for

assigning data cells to circuits. Obviously, if HS schedules consecutive cells onto a same subflow,

it is highly likely that the traffic pattern inserted by the malicious guard on this subflow will be

preserved in the merged flow and detected by the malicious CRP. To reduce the likelihood of inter-

cell correlations, HS randomly assigns data cells to subflows with different capacities. As a result,

a data cell from a fast circuit needs to wait at SRP for earlier cells arriving from slow subflows to

be merged in an orderly manner. In this way, we utilize the network properties of different circuits

to distort or destroy potential traffic patterns inserted by the malicious guard. This greatly reduces

the likelihood of inter-cell correlation (we will explain this in Section 4.4.4).

Data cell format. Since the capacity of each circuit in the tunnel varies, different delays will be

introduced to these subflows. Therefore, the data cells in different subflows may arrive at SRP

out of order. To solve this issue, we modify the format of Tor data cell to incorporate a 4-byte

sequence digest and a 4-byte sequence number for multipath data packets, as shown in Figure 4.3.

Originally the 512-byte cell consists of a 3-byte cell header including a circuit identifier and a cell

command for cell type, and 509-byte cell payload with a payload header and the payload data.

We use 8 bytes of the cell payload as multipath header for cell reordering, where 4 bytes are used

as sequence digest for integrity check and 4 bytes are used for sequence number. The multipath

header is only used by SRP and HS to reorder data cells, and the remaining 501-byte end-to-end
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cell payload is used to carry the real payload data between client and HS.

Data cell encryption. In Tor anonymous routing, data cells are encrypted in layers with the shared

session keys of the intermediate relays in the order of their relative positions in the anonymous

path. Since the end-to-end cell payload and the multipath header are designed for the client and

SRP respectively, HS needs to encrypt the two parts separately. The end-to-end cell payload should

be encrypted in five layers with the inner-most layer encrypted by the end-to-end session key and

the outer-most layer encrypted by the key of OR1, while the multipath header is only encrypted in

three layers with the keys of SRP, the middle router OR2 and the entry router OR1, respectively.

When an intermediate router receives a multipath cell, it applies its secret session key onto both

end-to-end cell payload and the multipath header to unwrap one encryption layer. Consequently,

at SRP the multipath header will be completely unwrapped and recognized by SRP for further

processing, while the end-to-end cell payload is still encrypted and remains secure.

Data cell reordering. To merge multiple circuits in a tunnel, SRP orders the received cells from all

circuits according to their sequence number and temporarily stores the out-of-order cells in a buffer.

When SRP receives a multipath data cell from a subflow, it first decrypts the multipath header and

generates a digest for the last four bytes of the multipath header using the symmetric key shared

with HS. If it is the same as the received sequence digest, SRP verifies the sequence number is

not tampered. If the sequence number of this cell is what SRP expects, it will be immediately

forwarded to CRP, otherwise it will be stored and ordered according to the sequence number. The

multipath header field is only used for data cell reordering. Hence, after SRP reorders the cells and

merges them into one output stream, this field becomes useless. To avoid unnecessary information

leak, SRP will replace it with random bits. Similarly, when the client sends data to HS, the client

reserves these eight bytes for SRP by padding them with random numbers.
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Figure 4.4: Tor router queuing architecture [30]

4.4.4 Discussions

In Tor network, two Tor routers are connected over a TCP connection, which is multiplexed by

several circuits. Due to the multiplexing of a TCP connection, flow mixing actually occurs at

every router. However, we argue that the cell distribution is well preserved after flow mixing so

that a maliciously inserted traffic pattern can still be observed by the attacker. First, let us explain

the data cell processing at a Tor router. When a cell arrives from a TCP connection, it triggers the

connection read event of libevent to first put it into the application-layer input buffer and then send

to the corresponding circuit queue according to its circuit identifier. As shown in Figure 4.4, five

different circuits arrive SRP from four TCP connections. Then, a connection write event will select

a circuit based on pre-determined scheduling algorithms such as priority-scheduling [139] to pull

cells from the circuit queue and send them to the output buffer. As a low-latency system, a router

will send out cells in the circuit queue as fast as possible until the output buffer is full. Therefore, it

is not surprising that cells from a same subflow will be outputted in a batch with inter-cell features

well preserved.

In this chapter, we propose a multipath routing approach that introduces an interdependent

subflow mixing to SRP data cell processing. For example, in Figure 4.4 suppose the circuits

in gray belong to the same tunnel. Each of them is associated to a subflow, which transfers a

portion of data cells. Since the malicious guard has no clue about the flow membership of the
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subflows passing through it, it has to treat each subflow independently when inserting detectable

traffic patterns. Oppositely, SRP will treat subflows of a same flow in a way that considers flow

interdependency. In particular, when subflows are merged at SRP, cells from one subflow may be

inserted into two cells that are adjacent in another subflow. This interpolation causes difficulty in

pattern detection on the merged flow. Passive traffic analysis such as packet counting will fail.

Moreover, due to differences in router bandwidth and other network dynamics, the capacity of

circuits vary [149, 161]. Some cells with larger sequence numbers from a fast circuit (e.g., cell 4

on the first circuit in Figure 4.4) may arrive earlier than those with smaller sequence numbers but

assigned to a slow circuit (e.g., cell 1 on the second circuit). The cells must be reordered at SRP.

Consequently, the waiting time introduced by such reordering will distort or destroy the inter-cell

timing correlations of a manipulated subflow and makes active traffic analysis less effective.

4.5 Experiment Evaluation

In this section we test the performance of mTorHS-S against a well-known active traffic analy-

sis scheme, i.e., interval centroid-based watermarking (ICBW) [151], and evaluate the enhanced

anonymity in our multipath hidden services. In particular, we conducted experiments with the

Shadow simulator [88], which is an accurate, discrete event simulator running real Tor protocol

over a simulated Internet topology. We implemented the multipath Tor router (please read [161]

for details) and plugged it into the Shadow simulator to support multipath hidden services in a

private Tor network. We also implemented an adversary node following the threat model described

in Section 4.3, which first inserted watermarks to flows at the malicious entry guard OR1 using

ICBW protocol, and then examined packets at the malicious client rendezvous point for expected

traffic signatures
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4.5.1 Implementing ICBW watermarking scheme

To assess the resistance of the proposed scheme against traffic analysis, we implemented a state-

of-the-art traffic watermarking scheme, the interval centroid-based watermarking (ICBW) protocol

to attack low-latency anonymity systems [151]. The ICBW was verified on a leading commercial

anonymizing service platform www.anonymizer.com as an effective attack. Here we briefly ex-

plain its working mechanism. As illustrated in Figure 4.5, ICBW embeds a watermark into a

sufficiently long flow by intentionally changing the centroid of several randomly selected inter-

vals. This scheme divides the duration of flow starting from an offset O into 2n intervals of equal

length T. The centroid is then calculated by averaging each packet’s relative arrival time to the start

of its interval. The intervals are randomly grouped into two subsets ({IA1, ..., IAl} and {IB1 , ..., IBl}),

each with l elements. Each element in set A and B contains r intervals for redundancy such that

n = rl. The random grouping is illustrated in Figure 4.5a. To encode a watermarking bit 1 (or 0),

two elements (IAi and IB j) of the set A and B are selected, respectively. The packets in all intervals

of IAi (or IBi) will be delayed by a maximum value of a. Figure 4.5b illustrates the delaying, which

actually changes the distribution of relative arrival time from U(0,T ) to U(a,T ) where U(,) stands

for uniform distribution. After encoding, the difference between the average centroids of IA and IB

will be a
2 for watermark bit 1 and −a

2 for watermark bit 0. To decode, the decoder starts from the

same offset O and checks the existence of the watermark. Because each watermark bit is encoded

by averaging the delays of packets that are randomly selected from many intervals, ICBW is very

robust to network delay jitter and flow mixing along a circuit. We refer the readers to [151] for

details.

For ICBW, we follow the suggested parameter setting: 32-bit watermarks are randomly gener-

ated and the redundancy r is set to 20. The interval length T and the maximum delay a are set to

500ms and 350ms, respectively. We use an offset O = 10s to delay cells in the selected intervals

according to the watermark bits at the malicious guard and meanwhile log the arrival time of each

cell using the same offset at CRP. From the logged arrival time we compute the difference between

the average centroid of IA and IB to derive a watermark bit 1 if it is closer to a
2 or 0 if it is closer
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to −a
2 . Hamming distance, which is the number of mismatched bits, is computed between the

derived watermark and the original watermark to evaluate how successful the watermarking attack

is. Since the network delay is unknown, a set of different offsets are tested. The one that matches

most to the inserted watermarks is chosen as the correct decoding offset to decode the watermark.

4.5.2 Implementing mTorHS-S

We implemented mTorHS on Tor v0.2.5.6-alpha. The construction of the client’s circuit remains

the same as in the current Tor hidden service design, but we change the implementation for the

server circuit construction. As explained previously, the server’s circuit consists of an entry guard,

a middle relay, SRP and CRP. Since we assume the malicious client controls the guard node and

CRP, we fix the selection of the two nodes in the implementation. The middle relay is randomly

selected from the Tor router set and SRP is randomly selected from the “rendezvous guard set”. For

simplicity, in our current implementation we form the rendezvous guard set with routers flagged

as entry guard. This is because the concept of “rendezvous guard set” is derived from the idea of

entry guard set to denote a set of routers trusted by the hidden server. In the future, we will develop

selection criteria to assist the selection of reliable rendezvous guards.
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Finally, we build a small private Tor network in the Shadow simulator with 50 Tor routers,

1 hidden server, 20 general HTTP servers, 1 malicious client and 100 general web clients to run

our experiments. Among the 50 routers, two are configured as malicious CRP and OR1. This is

a general case for evaluation. Obviously, the fewer the general clients in the network, the more

likely the adversary identifies the hidden server. So, we choose an extreme setting for comparison,

where the adversary is the only client in the network. As pointed out by Wang et al. in [151], the

longer the flow, the more robust the watermark. To ensure a sufficiently long flow for successful

watermarking, we let the client to request a 100MiB file at the hidden server under both settings.

4.5.3 Results

We perform the ICBW attack on the original Tor and the proposed mTorHS-S, where m is set to

2, 4, 6 and 8. To rule out random noise, we repeat the watermarking attack for ten times for each

setting. The results shown below are the average results of ten experiments. Table 4.2 shows the

comparison in terms of Hamming distance between Tor and mTorHS-S under different settings.

A larger Hamming distance indicates that the anonymity system can better transform the original

flow and prevent the traffic analysis. No matter in general cases or extreme cases, mTorHS-S can

better obscure the embedded watermark in the victim’s flow. The Hamming distance achieved on

mTorHS-S is always larger than the maximum Hamming distance threshold (i.e., 8) [151]. When

the Hamming distance exceeds the threshold, the adversary has less confidence to correlate the

watermarked flow to the suspected flow. We note that with m increasing, the Hamming distance

does not increase obviously. One reason might be that when we decode the watermark, we tried a

set of different offsets and picked the minimum value.

Tor mTorHS-S
m=2 4 6 8

General case 6 9 9 10 12
Extreme case 3 8 9 9 11

Table 4.2: Comparison of Hamming distance between Tor and mTorHS-S with different m where
each flow is encoded using different watermarks.
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From the adversary’s perspective, if she wants to circumvent the multipath routing scheme,

she should use the same watermark for different flows. Since two circuits between OR1 and HS

multiplex the common TCP connection, the cells that HS sends out through two different subflows

arrive at OR1 within the same coding interval of 500ms. If the adversary uses different watermarks

to encode them, it is possible that one subflow is delayed while the other one not, which causes

the distribution of the delayed subflow is squeezed to U(a,T ) while the other one is still U(0,T ).

When SRP receives these cells from two subflows, SRP will merge them so that the distribution

of the merged flow will be a uniform distribution U(x,T ) where 0 < x < a depending on which

subflow the majority of the cells belong to. Therefore, when the malicious CRP receives the

merged subflow, she cannot recover the correct centroid of this interval. To avoid this, the adversary

ought to use the same watermark to encode all flows going through OR1 so that they will have a

same distribution. When they are merged at SRP, the merged flow still preserves the distribution.

Table 4.3 shows the results when the adversary embeds the same watermark to all flows. In order

to verify this assumption without being influenced by general traffic, we perform this experiment

in the extreme cases. As shown in Table 3, when the same number of subflows are used, the

Hamming distance of the merged flow in cases where a same watermark is embedded is always

smaller than the one when different watermarks are used.

Tor mTorHS-S
m=2 4 6 8

Extreme case 3 4 7 6 7

Table 4.3: Comparison of Hamming distance between Tor and mTorHS-S with different m where
all flows are encoded using the same watermark.

However, once the adversary encodes multiple flows with the same watermark, her watermark-

ing is vulnerable to the multi-flow attacks [96] (from the defending perspective, we call it multi-

flow detection (MFD) in this chapter.) The idea of MFD is that the MFD detector will aggregate all

flows into a single flow after it collects a number of watermarked flows. This aggregation scheme

in MFD is different from our subflow mixing, which overlaps the relative arrival time of each flow

to the same start. If several abnormally long periods of silence (i.e., no packets for hundreds of
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Figure 4.6: Comparison of time pattern of the aggregated flow between watermarked flows and
unwatermarked flows.

milliseconds) are observed in the aggregated flow, the detector considers the presence of water-

marking attack, extracts the watermarking keys and removes the watermarks from the observed

flows. Since SRP merges multiple subflows, which is naturally compatible to MFD, we deploy

the MFD detector at SRP. Figure 4.6 shows the aggregated arrival time of six flows with and with-

out the presence of watermark. Compared to the aggregated unwatermarked flows, the silence of

the victim’s aggregated flow is more obvious and periodic. Once SRP recognizes the existence

of a watermark with higher confidence, it can remove it by randomly delaying some cells on the

suspicious flow.
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4.6 Summary

Hidden services based gateway can improve the security of IoT smart home, but it is vulnerable

to traffic analysis attacks especially when the entry guard protection is broken. In this chapter, we

propose a multipath routing based scheme that exploits flow mixing and flow merging to distort

or destroy inserted traffic patterns in a victim’s flow. We believe this is an effective complement

to the existing protection mechanism. Therefore, our “partial” multipath routing Tor hidden ser-

vices scheme is suitable for users who require very strong security. Besides, since the multipath

architecture is naturally compatible to detection mechanisms based on multiflows, it can be further

integrated with multiflow detection protocols to detect the presence of watermarks. We experi-

mentally verify the effectiveness of our scheme in defending one of the most robust watermarking

schemes on the Shadow simulator.
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Part II

Protect Data Privacy of IoT Devices in Data

Storage, Utilization and Dissemination
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Chapter 5

RSPP: A Reliable, Searchable and

Privacy-Preserving e-Healthcare System for

Cloud-Assisted Body Area Networks

5.1 Introduction

In Part I, we explore the solutions of protecting IoT devices from cyberattacks using Tor hidden

services. To address the performance and security of Tor hidden services, we present the corre-

sponding solutions for them in Chapter 3 and Chapter 4. In the second part, we will present our

first solution to protect data for IoT applications. In this chapter, we particularly focus on how to

secure the IoT data storage on cloud and meanwhile keep the usability of data.

In recent years, with the fast development of cloud computing and Internet of Things (IoT), the

conventional healthcare industry is being reshaped to a more flexible and efficient paradigm of e-

healthcare. In a typical e-healthcare setting, a group of wearable and/or implantable devices (e.g.,

smart watches, bracelets, pacemakers, etc.), which forms a wireless body area network (BAN),

gathers key vital signs (e.g., heart rate, blood pressure, temperature, pulse oxygen, etc.) from

patients at home periodically. Those information is aggregated into a single file called personal
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health information (PHI) at an IoT gateway and then forwarded to a cloud server for storage.

Third-party healthcare service providers (HSPs) can monitor patients’ PHI and provide timely

diagnosis and reactions by submitting on-demand queries to cloud storage. Although the increasing

adoption of cloud computing and IoT services in healthcare industry helps reduce IT cost and

improves patient outcomes, security and privacy of PHI are still major concerns as highlighted

by the numerous reported data breaches due to malicious attacks, software bugs or accidental

errors [97]. In particular, the healthcare regulations such as the Health Insurance Portability and

Accountability Act (HIPAA) explicitly require that PHI be secured even as it migrates to the cloud.

While simply encrypting PHI before outsourcing it to the cloud can ensure the regulatory

compliance of a healthcare system, it makes PHI utilization (e.g., query by third party HSPs)

particularly challenging. Searchable encryption technology (see [134, 56, 41] for pioneering

work), which allows encrypted documents to be searched as is by augmenting them with an en-

crypted search index, provides a promising solution to addressing the aforementioned dilemma.

An important line of research on searchable encryption is searchable symmetric encryption (SSE),

which is considered more practical in terms of search efficiency for large datasets when com-

pared to its public key-based counterpart. During the past decade, many provably secure SSE

schemes [56, 147, 48, 94, 93, 118, 47, 81, 135] have been proposed, which make trade-offs among

security, search performance and storage overhead by exploring static- [56, 147, 48] and dy-

namic datasets [94, 93, 118, 47, 81, 135] as well as various data structures such as an inverted

index [56, 94], a document-term matrix [98], a dictionary [47], etc.

We note that previous SSE schemes mainly focus on general search applications on encrypted

database. The static SSE schemes that process static datasets and do not support subsequent up-

dates are clearly not suitable for our e-healthcare applications. Moreover, most previous dynamic

SSE schemes (except for [81]) work on a setting where a large static dataset is first processed and

outsourced to the cloud storage, followed by a number of (infrequent) update operations, which is

quite different from the e-healthcare applications where PHI files are created and uploaded to the

cloud periodically at a fixed frequency (e.g., every 10 minutes). If we adopt the static SSE scheme
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for the streaming IoT data, the process of adding new files will lead to a statistical attack. To help

interested readers to understand this problem, we show an example in Figure 5.1: The static dataset

consists of 3 files as shown in Figure 5.1a. To realize SSE, client first extract keywords from the

dataset and builds inverted index for it. Then, he hashes the keyword in the inverted index with

a keyed hash function and encrypts the file itself with AES. After that, client uploads them to the

cloud. To search for a keyword, e.g., w3, client just hashed it and sends the search token to cloud,

and then cloud can look it up and find the corresponding file list. However, if client adds a new

file to dataset, statistical attacks happens, which is shown in Figure 5.1b. To add File4 containing

keywords w1 and w2, client needs to hash the keyword and encrypt file, and then upload. Since the

hash function is deterministic, when cloud appends File4 to the tail of w1, it knows 3 files contains

w1. Even though it does not know the content of w1, after many files are uploaded one by one, the

cloud can obtain the frequency information of all keywords. We know, in English, some words are

used more frequently than others. So, the cloud can compare the obtained frequency to the existing

knowledge. Then, the cloud can guess what the keywords are. The process relates to the concept

of forward privacy. For a dynamic SSE scheme, forward privacy means that when a new keyword

and file identifier pair is added, the cloud server does not know anything about this pair [135].

To prevent the cloud server from inferring sensitive information related to a patient (e.g., activ-

ity pattern, diet habit, etc.) based solely on observation of the stored encrypted indices, a dynamic

SSE scheme with forward privacy is highly desirable. In addition, for remotely monitoring pa-

tients’ health status, HSPs should be able to perform search on PHIs encrypted by patients. Hence,

our system should support a multi-user setting where the data owner and data user might be differ-

ent. Last but not least, the reliability of an e-healthcare system is also critical and any incorrect or

incomplete search results could lead to significant consequences, thereby highlighting the require-

ment for a verification mechanism to be deployed into the system.

Motivated by the above observations, we present a reliable, searchable and privacy-preserving

e-healthcare system for cloud assisted BAN in this paper. The proposed system is built upon a

novel dynamic SSE scheme with forward privacy and delegated verifiability, which enables both
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Figure 5.1: SSE scheme and its forward privacy problem for new data.

patients and HSPs to conduct privacy-preserving search on the encrypted PHIs stored in the cloud

and verify the correctness and completeness of retrieved search results simultaneously. Our con-

tributions can be summarized as follows:

1. We proposed a dedicated and efficient dynamic SSE scheme for e-healthcare applications

where PHIs are generated and stored in the cloud periodically. Our scheme is able to achieve

a sub-linear search efficiency and forward privacy by maintaining an increasing counter for

each keyword at an IoT gateway.

2. We presented an efficient mechanism that provides patient-controlled search capability for

HSPs, thereby extending our system to a multi-user setting. This desired property is realized

71



through a novel application of Bloom filter [39] on the data owner (i.e., a patient) side.

3. We designed a lightweight delegated verification scheme based on a combination of Bloom

filter, Message Authentication Codes (MACs) and aggregate MACs [95], which enables

patients to delegate the capability of verifying the search results to HSPs.

5.2 Problem Formulation

5.2.1 System Model

The system model of our proposed reliable, searchable and privacy-preserving e-healthcare system

involves four entities as shown in Fig. 5.2: a patient, an IoT gateway, a cloud server and several

HSPs. The patient is the data owner whose health status is monitored by a group of wearable

devices forming a BAN. The IoT gateway is the data aggregator which aggregates the periodically

collected data into a single PHI file, extracts keywords, builds an encrypted index, and encrypts

the PHI files. The encrypted index and PHI files are then sent to the cloud server for storage.

Multiple HSPs act as the data users that provide healthcare services for the patient by querying and

retrieving his/her encrypted PHIs from the cloud. We note that the e-healthcare system described

above has the following unique properties with respect to data processing:

• The PHI files are created by the IoT gateway and stored in the cloud periodically (e.g., every

10 minutes).

• The PHI files are always added into the cloud storage and file deletion or modification is not

needed.

• The total number of unique keywords extracted from all the PHI files is not very large, due

to the limited range of values for vital signs.
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Figure 5.2: The system model of a reliable, searchable and privacy-preserving e-healthcare system.

5.2.2 Threat Model

As assumed in most previous work on SSE [134, 56, 94, 135, 81], the cloud server is generally

“honest-but-curious”, thereby faithfully performing the protocol but making inferences about the

stored encrypted documents and data owner’s private information. More specifically, in our e-

healthcare system, the cloud server might try to infer whether a newly uploaded PHI file contains

certain keyword or two PHI files contain the same keyword. Furthermore, the cloud server may

also observe the queries submitted by HSPs (so-called search pattern) or the search results (so-

called access pattern) to determine whether the same keyword is being searched. Additionally,

considering the possibility of accidental system errors on the cloud server as well as the potential

attacks from external adversaries, the cloud server might return incorrect or incomplete search

results to data user. Finally, we assume that there is no collusion between data users and cloud

server, or between users.
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5.2.3 Design Goals

In this work, we aim to design a reliable, searchable and privacy-preserving e-healthcare system

which enables third-party HSPs to provide healthcare services for patients by searching on their

encrypted PHIs incrementally stored on the cloud in a privacy-preserving and verifiable manner.

The design goals of our system are as follows:

1. Search efficiency. The search complexity on the cloud should be optimally sub-linear O(k),

where k is the number of PHIs containing the queried keyword.

2. Forward privacy. The cloud should not learn whether the newly stored PHIs contain some

specific keywords.

3. Multi-user support. HSPs should be able to perform patient-controlled search on behalf of

a patient.

4. Verifiability. HSPs should be able to verify the correctness and completeness of the search

results.

Note that hiding search and access patterns in a general SSE setting can be achieved using the

oblivious RAM (ORAM) [75]. However, ORAM-based schemes, while providing strong pro-

tection for privacy, incur significant computational and communication overhead for search. To

ensure the practicality of our system, we did not consider employing the ORAM based approach

to protect those patterns in this work.

5.3 Notations, Preliminaries and Definition

5.3.1 Notations and Preliminaries

Let e← S denote selecting an element e from a set S uniformly at random, {0,1}n be the set

of binary strings of length n, {0,1}∗ be the set of all finite length binary strings, and || denote

the concatenation of two strings. The data file f is uniquely identified by the identity ID( f ) and
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contains a set of distinct keywords W ( f ) = {w1,...,wl}. Let TBL be a hash table storing key-

value pairs (key,val) such that TBL[key] = val, TBL[key] := val denote assigning val to key, and

key ∈ TBL denote that key is an element of the key set in TBL.

Let F1 : {0,1}λ×{0,1}∗→{0,1}λ ,F2 : {0,1}λ ×{0,1}∗→{0,1}2λ ,F3 : {0,1}λ×{0,1}∗→

{0,1}3λ be three secure pseudorandom functions and H : {0,1}∗→{0,1}λ be a secure hash func-

tion. Let SE = (SE.GenKey,SE.Enc,SE.Dec) be a semantic secure symmetric encryption where

SE.GenKey is the key generation algorithm, SE.Enc is the encryption algorithm and SE.Dec is the

decryption algorithm. Let Mac = (Mac.GenKey,Mac.GenMac) be a secure message authentica-

tion code scheme, where Mac.GenKey is the key generation algorithm, and Mac.GenMac is the

message authentication code generation algorithm.

Bloom filter is a space efficient data structure to represent a set S and allow efficient member-

ship query. A Bloom filter BF is an array of m-bit, which are set to 0 initially, and associated with k

independent universal hash functions H1, . . . ,Hk, such that Hi : {0,1}∗→ {0, . . . ,m−1}. Given

e ∈ S, the bits with respect to Hi(e),1≤ i≤ k, are set to 1. To query whether e is an element of S

or not, one can check whether all bits with respect to Hi(e),1≤ i≤ k, are equal to 1. If not, e /∈ S

for sure. Otherwise, e ∈ S in a high probability due to the false positive rate. Suppose the outputs

of all hash functions are in uniform random distribution and n elements are hashed into the BF, the

false positive rate is (1− e−kn/m)k. A BF usually associates with two algorithms:

• BF← BFAdd(BF,e) : This algorithm hashes an element e into the Bloom filter BF.

• {0,1}←BFVerify(BF,e): This algorithm outputs 1 if e is an element of S where all elements

were hashed into BF (with certain false positive rate); and 0 otherwise.

5.3.2 Definition for Dynamic Symmetric Searchable Encryption

Similar to the notation [135], let ((cout),(sout))← protocol((cin),(sin)) denote the protocol run-

ning between the data owner and the server, where the data owner takes as input cin and outputs

cout , and the server takes as input sin and outputs sout .
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Definition 1 The verifiable DSSE scheme that supports streaming data consists of the following

algorithms/protocols:

• K←GenKey(1λ ): Given a security parameter λ , the data owner runs the algorithm to generate

the secret key K.

• ((state′c),(state
′
s,C))← AddFile((K,statec, f ), (states)): The data owner takes as inputs the

secret key K, current state information statec and the file f containing a set of keywords W ( f ),

and the server takes as input its current state information states. The data owner runs this

protocol to outsource C (the encryption form of the file f ) to the server and updates its own

state to state′c. The server also updates its own state to state′s. Initially, both statec and states

are empty.

• token← GenToken(K,statec,w) : The data owner runs this algorithm to generate search token

token, by taking as input K, statec and w.

• (rst,prof)← Search(states,token): Given the search token token, the server runs this algorithm

to output the search result rst consisting of a set of file identifiers. Moreover, the server generates

the proof prof showing the correctness of the search result.

• {0,1} ← SSEVerify(K,statec,w,rst,prof): The data owner (or authorized user) runs this algo-

rithm to verify the correctness of the search result rst, given K, statec, w, and prof.

Basically, the verifiable DSSE scheme supporting streaming data aims to achieve the following

security goals: forward privacy, verifiability and confidentiality of outsourced data and queried

keyword.

5.4 Dynamic SSE Achieving Forward Privacy

For the sake of simplicity, we first present the DSSE construction achieving forward privacy, and

leave the full-fledged DSSE design to the next section.
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5.4.1 Design Rational

Informally, forward privacy in DSSE demands that when adding a new file, the server should not

learn whether the newly added file contains certain keyword that has been queried before or not,

unless the keyword is queried again. Therefore, it is sufficient to achieve forward privacy if any

keyword in the newly added file will not be linked to any encrypted keywords stored in the server.

Instead of using computationally heavy cryptographic primitives (e.g., ORAM), in this paper

we exploit the combination of locally stored state information and chaining technique in a subtle

way, and utilize the lightweight cryptographic primitives to achieve forward privacy, which is

explained as follows.

The data owner associates to each keyword a counter, indicating the number of outsourced

encrypted files having the keyword so far. That is, the data owner locally maintains the state infor-

mation (i.e., pairs of keyword and counter). Suppose the counter associated to keyword w is cnt, the

index with respect to w, stored in the server, is a collection of tuples {(τ1, ID( f1)), . . . ,(τcnt, ID( fcnt))}

where τi = F1(K,w||i),1≤ i≤ cnt,F1 is a secure pseudorandom function, K is a private key and

f1, . . . , fcnt are files having keyword w. When adding a new file f containing the keyword w, the

data owner sends to the server the following tuple

(τcnt+1, ID( f ))

where τcnt+1 = F1(K,w||cnt+ 1). Thanks to F1, without knowing K the server cannot know

whether τcnt+1 is generated from the same keyword as that of τi,1 ≤ i ≤ cnt. Note that the data

owner does not need to maintain all previous states for each keyword because file deletion is not

needed in healthcare.

While binding counter to a keyword can break the correlation of two identical keywords, it

raises another challenge: given one search token generated from the keyword and the counter,

the server can only retrieve one single file identifier. That is, to retrieve all file identifiers having

the specific keyword, the data owner has to enumerate all previous counters and generate search
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tokens, which is rather costly in term of bandwidth for search.

To mitigate this disadvantage, we use the following chaining technique, which implicitly links

the tuples corresponding to the same keyword together (let τi = F1(K,w||i),0≤ i≤ cnt):

τ1, 〈τ0||0λ 〉
⊕

F2(K1,τ1), ID( f1)

τ2, 〈τ1||K1〉
⊕

F2(K2,τ2), ID( f2)

. . .

τcnt, 〈τcnt−1||Kcnt−1〉
⊕

F2(Kcnt,τcnt), ID( fcnt)

where F2 is another secure pseudorandom function and Ki,1 ≤ i ≤ cnt, is a random key derived

from the counter i. Obviously, without knowing Ki, i ≥ cnt, the server cannot correlate τcnt with

τ j, j < cnt, even though they might be generated from the same keyword (but different counter).

On the other hand, given τcnt and Kcnt, the server is able to obtain ID( fcnt) and recover τcnt−1 and

Kcnt−1 by computing

〈τcnt−1||Kcnt−1〉
⊕

F2(Kcnt,τcnt)
⊕

F2(Kcnt,τcnt).

The server then obtains all file identifiers by iterating such process until that the key is λ -bit of

zero.

A simplified example is shown in Figure 5.3 to illustrate the rationale. In Figure 5.3a, client

first add File1 which contains 3 keywords, so 3 entries are inserted to the local table where ctr is

the counter for the corresponding keyword. Then, clients uploads the inverted index to the cloud.

We can see that, on the cloud side in Figure 5.3a, the key of the remote table is in the format of

keyed hash value, while the value of the table is a virtual address. In Figure 5.3b, to add File2,

client first update his local table. Since File2 also contains w1 and w3, we can see their counters

are increased to 2. On the cloud side, two new entries are inserted: one for w1 and another for w3.

After insertion, although those two entries with gray background contain the same keyword w3,
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the cloud cannot correlate them because the counters are different. If we take a closer look at the

virtual address, we can see that the virtual address points to the previous entry which contains the

same keyword. All entries containing the same keyword form a linked list, but this link is invisible

to the cloud, because we use the second part to blind the virtual link relation. The relation will be

revealed when we search for the keyword. In Figure 5.3c, to search for keyword w3, client can use

the keyword and counter to generate a search token. Then, cloud uses the search token to find the

entry. After cloud removes the blinder using the key in search token, it can use the virtual address

to look up all the previous entries containing w3 until a virtual address with all 0s.

5.4.2 Construction

We show the construction in Fig. 5.4. Here the random key Kcnt for keyword w is generated by

applying the pseudorandom function such that Kcnt = F1(K,H (w||cnt)). In addition, the data

owner stores the state information (i.e., pairs of (w,cnt)) in the hash table TBLc, which maps

keyword w to the counter cnt. On the other hand, the server also stores the state information (i.e.,

the encrypted index) in the hash table TBLs. We can see that given the keyword w, the search

complexity is linear to the number of files containing w, which is sublinear to the number of

outsourced encrypted files.

Optimization I: Speed up search operation. Note that the server might be able to speed up the

search further: given token = (τcnt,Kcnt) where τcnt = F1(K,w||cnt), the server can update its

state information by setting TBLs[τcnt] =⊥ ‖rst, where ⊥ is a stop sign and rst is the search result

with respect to token. By doing this, the server not only accelerates the search without repeating

the iterations, but also saves the storage by storing file identifiers only.

5.5 Full-fledged DSSE Construction

In this section, we present the full-fledged DSSE. In contrast to the DSSE presented above, the

full-fledged DSSE not only achieves forward privacy, but also supports search capability enforce-
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Figure 5.3: SSE scheme and its forward privacy problem for new data.

ment and delegated verifiability, where the former allows the data owner (i.e., patients) to enforce

controlled search capability, and the latter enables authorized data users (i.e., HSPs) to verify the

correctness of the search result.

5.5.1 High Level Idea

Search Capability Enforcement. In order to enforce search capability, we need to resolve two

questions: (i) how to grant authorized data users with search capability; (ii) how to revoke au-
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(c) Client searches for keyword w3.

Figure 5.3 (Continued): A simplified example of our basic construction.

thorized data user’s privilege if necessary. Furthermore, we require that the approach should be

efficient without extensive interaction between the data owner and authorized data users.

Granting search capability requires the data owner to distribute the secret key (i.e., KSE and K)

and state information (i.e., the counter for each keyword) to authorized data users efficiently and

securely. While secret key distribution can be done efficiently through a one-time off-line setup,

state information distribution might be costly because authentication (between the data owner and

the authorized user) is needed when authorized data users fetch the fresh state information, which is

frequently updated. Note that making the data owner’s state information public (even if encrypted)

will harm the forward privacy because the server can infer which keyword (or encrypted keyword)

was contained in the newly added file.

To address the above issue, we adopt the “document-and-guess” approach: The server main-

tains a Bloom filter BFs, and puts each received encrypted keyword F1(K,w||cnt) into the Bloom

filter BFs, and the authorized user, having the secret key already and fetching BFs from the server,

can guess the latest counter value by enumerating (1, . . . ,cnt,cnt+ 1) such that F1(K,w||cnt) is

an element hashed to BFs but F1(K,w||cnt+ 1) not (suppose the false positive rate of BFs is

extremely low, e.g., 2−30 in our experiments).
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• K← GenKey(1λ ): Let F1 : {0,1}λ × {0,1}∗ → {0,1}λ ,F2 : {0,1}λ × {0,1}∗ →
{0,1}2λ be two pseudorandom functions, H : {0,1}∗→{0,1}λ be a secure hash func-
tion and SE be a secure symmetric key encryption. Given the security parameter λ , the
data owner selects K←{0,1}λ , runs SE.GenKey to get KSE, and sets K= (KSE,K).

• ((state′c),(state
′
s,C))← AddFile((K,statec, f ),(states)): Suppose that the identifier of

file f is ID( f ) and the set of keywords extracted from f is W ( f ) = {w1, . . . ,wl}. Note
that when the system was initialized, statec = TBLc = /0 and states = TBLs = /0 where
TBLc and TBLc are hash tables. The protocol proceeds as follows:

The data owner:
Let Ind be an empty set, and run C← SE.Enc(KSE, f ) for file f
for each keyword w ∈W ( f ) do

Let Kprev = 0λ , cnt= 1 and cntprev = 0
if w ∈ TBLc then

Retrieve cnt from TBLc with respect to w
Let Kprev = F1(K,H (w||cnt)), cntprev = cnt and cnt= cnt+1

end
Compute Kcnt←F1(K,H (w||cnt))
Compute τcnt = F1(K,w||cnt) and
µcnt = 〈F1(K,w||cntprev)||Kprev〉

⊕
F2(Kcnt,τcnt)

Let TBLc[w] := cnt and Ind= Ind
⋃
{(τcnt,µcnt)}

end
Send (C, ID( f ), Ind) to the server and let state′c = TBLc

The server:
Upon receiving (C, ID( f ), Ind) from the data owner, the server proceeds as follows:

for each (τ,µ) ∈ Ind do
Let TBLs[τ] := µ||ID( f )

end
Store C locally and set state′s = TBLs

• token← GenToken(K,statec,w): Given the keyword w to be queried, the data owner
generates the search token as follows: (i) Retrieve cnt from statec with respect to w, (ii)
Compute Kcnt = F1(K,H (w||cnt)) and (iii) Let token= (F1(K,w||cnt),Kcnt), which
will be sent to the server.

Figure 5.4: The DSSE construction achieving forward privacy. Note that downloaded encrypted
files can be decrypted with KSE.
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• rst← Search(states, token): Given token = (F1(K,w||cnt),Kcnt), the server conducts
the search by letting rst be an empty set, τ ′ = F1(K,w||cnt), K′ = Kcnt, and running
the following algorithm:

while K′ 6= 0λ do
Retrieve µ||ID( f ) from TBLs with respect to τ ′ and let rst= rst

⋃
{ID( f )}

Let τ ′||K′ = µ
⊕

F2(K′,τ ′) (which results in F1(K,w||(i−1))||Ki−1 if the
current counter is i)

end
Return rst as the search result

Figure 5.4 (Continued): The DSSE construction achieving forward privacy. Note that downloaded
encrypted files can be decrypted with KSE.

On the other hand, in order to allow the data owner to revoke authorized users’ search capa-

bility, we use the group key idea: The data owner generates a symmetric key r, which is securely

shared with the server and all authorized users, such that the search token of keyword w gen-

erated by authorized users should be SE.Enc(r,F1(K,w||cnt)||Kcnt) and the server can recover

(F1(K,w||cnt),Kcnt) with the stored r via SE.Dec, where SE is a secure symmetric encryption.

When an authorized data user was revoked, the data owner only needs to update the group key r to

r′ and the revoked user cannot generate valid search token without knowing r′.

Delegated Verifiability. The purpose of delegated verifiability is to allow authorized users (in-

cluding the data owner) to verify that (i) correctness and completeness of search result, meaning

the search result correctly consists of all file identifiers; and (ii) the integrity of the retrieved data

files.

First, authorized users can leverage the counter value (if existing) to check whether the server

returned the correct number of file identifiers because the counter value indicates the number of

files having the specific keyword. Hence, in order to assure that authorized users get correct counter

value (which is guessed from BFs), we need to enable the data user to verify that the cloud faithfully

inserts the keywords into Bloom filer. To do so, the data owner also maintains a Bloom filter BFc,

which is built from F1(K,w||cnt), and generates a MAC on BFc (together with a time stamp). If
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• K← GenKey(1λ ): Let F1 : {0,1}λ × {0,1}∗ →
{0,1}λ ,F3 : {0,1}λ ×{0,1}∗→{0,1}3λ be two pseudorandom functions,
H : {0,1}∗ → {0,1}2λ be a secure hash function, SE be a secure symmetric
key encryption, Mac be a secure message authentication code. Given the security
parameter λ , the data owner selects K ← {0,1}λ , runs SE.GenKey to get KSE, runs
Mac.GenKey to get KMac, and sets K= (K,KSE,KMac).

• ((state′c),(state
′
s,C))← AddFile((K,statec, f ),(states)) : Suppose that the identifier of

file f is ID( f ) and the set of keywords extracted from f is W ( f ) = {w1, . . . ,wl}.
Note that when the system was initialized, statec = (TBLc = /0,BFc = /0) and states =
(TBLs = /0,BFs = /0) where TBLc and TBLs are two hash tables, and BFc and BFs are
two Bloom filters. The protocol proceeds as follows:

The data owner:
Let Ind be an empty set, and run C← SE.Enc(KSE, f ) for file f
for each keyword w ∈W ( f ) do

Let Kprev = 0λ , cntprev = 0, cnt= 1, γprev = 0λ (γprev is an aggregate MAC)
if w ∈ TBLc then

Retrieve (cnt,γcnt) from TBLc with respect to w
Let Kprev = F1(K,H (w||cnt)), cntprev = cnt, γprev = γcnt, and cnt= cnt+1

end
Compute Kcnt←F1(K,H (w||cnt)), γcnt = γprev

⊕
Mac.GenMac(KMac,C||w)

(The output of Mac.GenMac is λ -bit length)
Compute τcnt = F1(K,w||cnt),
µcnt = 〈F1(K,w||cntprev)||Kprev||γcnt〉

⊕
F3(Kcnt,τcnt)

Compute BFc← BFAdd(BFc,τcnt)
Let TBLc[w] := (cnt,γcnt), Ind= Ind

⋃
{(τcnt,µcnt)}

end
Generate the MAC σ ←Mac.GenMac(KMac,BFc||T ) where T is the current time stamp
Send (C, ID( f ), Ind,σ ,T ) to the server and let state′c = (TBLc,BFc)

The server:
Upon receiving (C, ID( f ), Ind,σ ,T ) from the data owner, the server proceeds as fol-
lows:

for each (τ,µ) ∈ Ind do
Let TBLs[τ] := µ||ID( f ) and BFs← BFAdd(BFs,τ)

end
Store C locally and set state′s = (TBLs,BFs,σ ,T )

Figure 5.5: The full-fledged DSSE construction achieving forward privacy, search capability en-
forcement and delegated verifiability. Note that the downloaded encrypted files can be decrypted
with KSE.
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Suppose the data owner generated r← SE.GenKey and securely shared r with authorized
users and the server.

• token← GenToken(K,BFc,r,w): The data owner generates the search token as fol-
lows: (i) Retrieve (cnt,γcnt) from TBLc with respect to w; (ii) Compute Kcnt =
F1(K,H (w||cnt)); and (iii) Let token = SE.Enc(r,F1(K,w||cnt)||Kcnt), which will
be sent to the server.

• (rst,prof)← Search(states,r, token): The server runs SE.Dec(r, token) to get
(F1(K,w||cnt)||Kcnt, and conducts the search by retrieving µcnt||ID( f ) from TBLs
with respect to τ ′ = F1(K,w||cnt), computing µcnt

⊕
F3(Kcnt,τ

′) to get γcnt, letting
K′ = Kcnt, prof = (σ ,T,BFs,γcnt), rst= /0, and

while K′ 6= 0λ do
Retrieve µ||ID( f ) from TBLs with respect to τ ′, and let rst= rst

⋃
{ID( f )}

Let τ ′||K′||γ ′ = µ
⊕

F3(K′,τ ′) (which results in F1(K,w||(i−1))||Ki−1||γi−1 if
the current counter is i)

end
Return rst as the search result and prof as the proof

• SSEVerify(K,w,cnt, rst,prof): Given prof = (σ ,T,BFs,γcnt), the data owner check
whether the size of rst is equal to the counter cnt or not. If not, then return 0 and
abort. Otherwise, the verification proceeds as follows:

– Given ID( fi) ∈ rst,1 ≤ i ≤ cnt, fetch encrypted data files C1, . . . ,Ccnt from the
server.

– If both equations hold, then output 1; otherwise output 0 (The data owner might
not check Eq.(2) because of knowing correct cnt):

cnt⊕
i=1

Mac.GenMac(KMac,Ci||w)
?
= γcnt (1) Mac.GenMac(KMac,BFs||T )

?
= σ (2)

Figure 5.5 (Continued): The full-fledged DSSE construction achieving forward privacy, search
capability enforcement and delegated verifiability. Note that the downloaded encrypted files can
be decrypted with KSE.
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the server operates correctly, BFc = BFs holds. Thus, only the MAC is uploaded to the server,

which is then used by authorized users to check the integrity of the received BFs to assure the

correctness of the guessing counter value.

However, only assuring correct number of file identifiers is not enough, authorized users need

to verify the correctness of the retrieved files with respect to the keyword w. To achieve this,

each keyword is associated to an aggregate MAC, which is the result of aggregating MACs of all

outsourced encrypted files containing w.

5.5.2 Main Construction

Based on the above ideas, we present the full-fledged DSSE construction as shown in Fig. 5.5,

which highlights the difference from the basic construction in red color. The data owner maintains

the state information (i.e., tuples of (w,cnt,γcnt)) with a hash table TBLc mapping w to cnt,γcnt,

where γcnt is the aggregation of the MAC for the concatenation of the file and w so far. The reason

of concatenating the file and w as input, rather using the file itself, is to prevent the replacement at-

tack: given keyword w1, the server might intentionally return the search result for another keyword

w2, an aggregate MAC and the set of file identifiers, which has the same number of file identifiers

as that for keyword w1.

Also, the data owner uses the timestamp T (together with the Bloom filter BFc) to generate the

MAC for preventing the replaying attack that the server might possibly return stale search result.

We implicitly leverage the fact that the new file is periodically uploaded (e.g., every 10 minutes),

so that authorized users can use the timestamp T to assure the aggregate MAC is newly generated

by the data owner.

Due to the lack of knowledge about cnt, authorized users (other than the data owner) generate

the search token as shown in Fig. 5.6, where the WHILE loop is to guess the counter value. Note

that with the guessing counter value and the shared key from the data owner, authorized users are

able to run SSEVerify to verify the correctness of the research result.

Optimization II: Speed up guessing the latest counter with binary search. Instead of guessing
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token← GenToken(K,BFs,r,w): After fetching the Bloom filter BFs from the server, the au-
thorized data user generates the search token as follows:

Let cnt = 1;
while TRUE do

τcnt = F1(K,w||cnt)
if BFVerify(BFs,τcnt) outputs 1 then

cnt= cnt+1
else

cnt= cnt−1
break;

end
end
Compute Kcnt = F1(K,H (w||cnt));
Let token= SE.Enc(r,F1(K,w||cnt)||Kcnt), which will be sent to the server.

Figure 5.6: The algorithm for the authorized user generating search token. The data owner has
already distributed K = (K,KSE,KMac) and r to the authorized user.

the counter value linearly, authorized users can use the binary search to accelerate the guessing:

The authorized user sets a large enough upper bound Max, and conducts the binary search for

the latest counter cnt within [1,Max] such that F1(K,w||cnt) is an element hashed to BFs while

F1(K,w||cnt+1) not.

Optimization III: Reduce the number of elements hashed to BFs. Note that the number of ele-

ments hashed into BFs might become huge due to the increasing counter value cnt when generating

F1(K,w||cnt) for keyword w. This results into a drawback: In order to keep low false positive rate,

the size of BFs becomes very large, which incurs costly bandwidth when authorized users retrieve

it from the server. To get rid of it, the “regular update” strategy can be used:

• Given the state information TBLc, the data owner regularly (e.g., annually) generates a new

Bloom filter BFc, which implicitly stores the current counter cntL for each keyword w, gen-

erates the MAC and sends BFc and the MAC to the server.

• The server lets BFs = BFc and proceeds as in Fig. 5.5.

• After receiving BFs, the authorized user extracts the counter cntL first, and then guesses the
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latest counter starting from cntL.

By doing this, BFs only contains elements with counters beginning with cntL (rather than from

1) for keyword w, and therefore its size can be reduced when keeping the same false positive

rate. In addition, implicitly storing cntL for keyword w in BFc can be done as follows: Given

cntL, the data owner hashes F1(K,w||pos||digitpos) to BFc where digitpos is the least significant

digit of cntL when pos = 1, and the authorized user can guess cntL by enumerating the com-

bination of pos = 1, . . . and digitpos = 0, . . . ,9. For example, given cntL = 456 for keyword w,

F1(K,w||1||6),F1(K,w||2||5) and F1(K,w||3||4) were hashed to BFc. Authorized users can

guess cntL by enumerating pos and digitpos and checking BFs (since BFs = BFc) to determine

whether F1(K,w||pos||digitpos) has been hashed into BFs or not, until that there exists some pos

such that none of elements F1(K,w||pos||digitpos),digitpos = 0, . . . ,9, was hashed into BFs.

5.6 Security Analysis

We evaluate the security of our full-fledged construction to show that it achieves the security goals

described in Section 5.2.3.

Data confidentiality. The outsourced files are encrypted with the secure symmetric encryption

together with secret key KSE. Without leaking KSE to the server, data confidentiality is naturally

assured by the secure symmetric encryption.

Index confidentiality. Since each keyword in the index (i.e., states) is encrypted by the secure

pseudorandom function F1, without knowing the secret key, the server cannot learn the keyword

from the index.

Forward privacy. As discussed in the Section 5.5, our construction encrypts the combination

of the increasing counter and the keyword together, which makes the server unable to link the

keyword in the newly added file to any stored encrypted keyword, without knowing the secret key

K. In addition, a secure pseudorandom function is used to mask the connection of tuples generated

from the same keyword but with consecutive counter values, without knowing the corresponding
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secret key, the server cannot correlate these tuples together. That is, the server cannot know whether

the newly added file contains any stored encrypted keyword, without knowing the secret keys for

the pseudorandom functions.

Search token privacy. The keyword associated with the search token is protected with a secure

pseudorandom function. Without knowing the key K, the server cannot learn the keyword.

Search capability enforcement. Our construction implicitly shares the state information using the

Bloom filter, and uses the group key to assure that only authorized users can generate valid search

tokens. Therefore, the data owner can enforce the search capability securely (note that the cloud

and users are not allowed to collude in our assumption).

Verifiability. Our construction uses the timestamp and the MAC to assure the freshness and cor-

rectness of Bloom filter BFs, which further assures the correctness of the counter value for any

keyword, forcing the server honestly returning correct number of the encrypted files. Moreover,

the construction uses the aggregate MAC to assure the integrity of the returned files with respect to

the keyword. Therefore, given the secure message authentication scheme, our construction assures

that the authorized users and data owner can correctly verify the returned search result with an

overwhelming probability.

5.7 Performance Evaluation

In this section, we present the empirical performance result by simulating the e-healthcare system

with the full-fledged DSSE implementation.

Implementation: We implemented the full-fledged DSSE in JAVA, and instantiated F1,Mac with

HMAC-SHA-1, F3 with HMAC-SHA-512, SE with AES and H with SHA-1. In addition, we

implemented all optimizations as mentioned above. We simulated the e-healthcare system by

developing three separate processes for the data owner, the server and the authorized user respec-

tively. The three processes communicate with each other via RESTful API, and were running in a

laptop with 2.5GHz Intel i5 CPU, 8GB RAM and MAC OS.
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Figure 5.7: Performance for search operation running by the server storing one million files and
the corresponding index (i.e., states). Note that for recurring keyword search, half the number of
file identifiers in the search result were newly added since the last time of the same keyword query
(called unvisited identifiers), and the other half has been added to the server before the last time of
the same keyword query (called visited identifiers).

Dataset: In the experiment each PHI file consists of 15 pairs of attribute1 in the format of at-

tribute:value, which is treated as one single keyword (e.g., w = heartbeat : 75). To simulate the

scenario that the IoT gateway assembles and uploads a new PHI file in every 10 minutes and lasts

for 20-year, 1,051,200 synthesized PHI files were uploaded.

Performance on the Data Owner. The average time for the data owner running AddFile is 190

milliseconds, and the size of hash table (i.e, TBLc) is around 1.3MB after uploading one million

PHI files. The data owner also maintains a Bloom filter (i.e., BFc) of around 5MB by setting the

false positive rate as 2−30, and updates it every year (i.e., after adding 144× 365 = 52,560 new

files as in Optimization III). We note that if the Bloom filter can be updated more frequently (e.g.,

less than every year), the size of the Bloom filter can be further reduced.

Performance on the Server. We note that given a search token for keyword w at time Ti+1, the

complexity of running Search is linear to the number of encrypted files that contain w and were

uploaded within the interval of Ti and Ti+1 (sublinear to the number of encrypted files), where Ti is

1The attributes include heartbeat, blood sugar, blood pressure, temperature and so on as in http://www.clouddx.
com/downloads/Heart-Friendly-Report-2015-12-24-092313.pdf

90

http://www.clouddx.com/downloads/Heart-Friendly-Report-2015-12-24-092313.pdf
http://www.clouddx.com/downloads/Heart-Friendly-Report-2015-12-24-092313.pdf


the last time when w was searched for (The time of initializing the system can be regarded as T0, at

which the search result for any keyword is null). The reason is that, with Optimization I, the server

stores in a consecutive manner all identifiers of encrypted files having w at Ti, and can access them

in a constant time thereafter. Therefore, we evaluated the search performance in the two scenarios:

(i) new keyword search, which simulates that keyword w has never been queried before, and (ii)

recurring keyword search, which simulates that keyword w has been queried before. Fig. 5.7 shows

the performance. We can see that the search performance is closely related to the number of newly

added files within the interval between two consecutive queries for the same keyword. In addition,

we can see that the search performance is quite practical since returning 100 files identifiers for

new keyword search (resp. recurring keyword search) only costs around 2 seconds (resp. 1 second)

(note that one million files and the corresponding index were stored in the server).

Performance on the Authorized User. The time for the authorized user generating search token

can be neglected (approximately 10 ms) due to the binary search (Optimization II). Therefore, we

concentrated on the execution time for the authorized user verifying the correctness of the search

result. The performance result is shown in Fig. 5.8, where we divided the verification time into two

parts: one is for verifying the correctness of the Bloom filter (i.e., BFs retrieved from the server)

and the other one is for verifying the aggregate MAC over all returned files. We can see that the

time for verifying the correctness of the Bloom filter is quite similar (e.g., around 55 ms in our

experiments) no matter how many files are within the search result, and the time of verifying the

aggregate MAC over all returned files is linear to the number of files. We can see that verification

is practical because, even when dealing with the search result having 1,000 files, the verification

time is only around 135 ms.

5.8 Related Work

Cloud-assisted IoT system has become a popular design paradigm in many applications [138, 104,

140, 157], since the powerful computation and storage capabilities of cloud can overcome the
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Figure 5.8: Performance for the authorized user verifying the correctness of the search result, i.e.,
verifying the correctness of the Bloom filter and aggregate MAC over all returned files.

constrains of IoT devices. This paper particularly relates to searchable encryption in e-healthcare:

Searchable Encryption. Song et al. [134] first explored the problem of searchable symmetric

encryption and presented a scheme with linear search time. Curtmola et al. [56] gave the first

inverted index based scheme to achieve sub-linear search time. Although this scheme greatly

boosts search efficiency, it does not support dynamic dataset. Since then, several schemes [94,

93, 118, 47, 81, 135] about dynamic SSE have been proposed, among which [94, 93, 118, 47] fail

to provide forward privacy. Moreover, the previous work in [135] offers forward privacy using

a complicated hierarchical data structure, whereas the contribution in [81] only achieves limited

forward privacy (i.e., leaks the keywords contained in a new file if they have been searched for in

the past). Besides dynamic SSE, verifiable SSE have been studied by [98, 165, 52, 137], which

enables users to verify search results by using some verifiable structure such as the Merkle tree or

an accumulator. However, previous work did not pay special attention to dataset with sequentially

added files, which might leak additional information during the process of updating verifiable

structure.

Secure data storage for e-healthcare. Several searchable encryption schemes [138, 104, 140]

have been proposed for e-healthcare applications. Tan et al. [138] proposed a lightweight IBE
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scheme to encrypt the sensing data and store it on a cloud. However, their public-key based scheme

makes search over encrypted data very inefficient. Li et al. [104] presented an authorized search

scheme over encrypted health data, which aims to realize search in a multi-user setting by enforcing

fine-grained authorization before performing search operations. However, their search scheme is

based on the predicate encryption, which is less efficient than SSE. Tong et al. [140] proposed a

SSE-based healthcare system, which achieves high search efficiency and partially hides the search

and access patterns by using the redundancy. However, their scheme depends on a trusted private

cloud and is not able to support dynamic data.

5.9 Summary

In this chapter, we proposed a reliable, searchable and privacy-preserving e-healthcare system.

The core of our system is a novel and full-fledged dynamic SSE scheme with forward privacy and

delegated verifiability, which is dedicatedly designed to protect sensitive PHI files on cloud storage

and enable HSPs to search on the encrypted PHI under the control of patients. The salient features

such as forward privacy and delegated verifiability are achieved by a unique combination of the

increasing counter, Bloom filter and aggregate MAC. Our experimental results and security anal-

ysis demonstrate that the proposed system provides a promising solution for meeting the stringent

security and performance requirements of the healthcare industry in practice.
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Chapter 6

Cloud-Assisted Machine Learning

Classification over Encrypted Data for IoT

Devices

6.1 Introduction

In the previous chapter, we propose a symmetric searchable encryption scheme with forward pri-

vacy for IoT data, which enables IoT clients to store their data on the cloud in an encrypted format,

and meanwhile allows third parties, such as primary doctor, to retrieve the data and analyze the

data. However, it introduces another drawback. That is, to enable third parties to analyze the

data, we have to show them the cleartexts, but that is what we do not know if we cannot fully

trust them. Nowadays, not only doctors with expertises can provide healthcare services, machine

learning companies also want to offer diagnostic or predictive services. For example, DeepMind

is planing to and make its healthcare AI charge by results [6]. However, clients have big concerns

to give their very private data to a company to realize data analysis. Therefore, in this chapter, to

tackle this privacy concern, we explore how to analyze the data without seeing the cleartexts for

IoT data.
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Recall that IoT integrates the ubiquitous sensing capability with advanced computing and data

analysis capabilities of backend applications to provide automated extraction of insights by mak-

ing sense of plethora of data generated by these sensors. This has led to a pervasive deployment of

intelligence into our daily life, ranging from healthcare (e.g., remote patient monitoring, wearable

fitness tracking) and security (e.g., community monitoring) to home automation, smart communi-

ties and smart cities (e.g., smart traffic control, distributed pollution monitoring).

In the IoT platform, the frontend IoT devices are usually resource-constrained, which have very

limited storage and computing power to support complicated computations. Therefore, the intel-

ligence is often provided by machine-learning applications running on powerful backend servers.

With the large volume of data generated by IoT devices, backend servers train predictive models to

map feature vectors to categorical or real-valued outputs. Taking future sensing data as the input,

the models output classification or predication results to the clients. For example, wearable devices

with accelerometer and gyroscope, depth cameras, etc. are deployed in the home of old adults for

fall detection [136, 74]. With the realtime sensor data, the predictive model trained at cloud servers

analyze the vertical state of objects to detect a fall and notify caregivers almost in a ubiquitous way.

The success of machine learning (ML) on IoT platforms has led to an explosion of demands. In

fact, providing classification and predication services that are customized to different application

domains is becoming an emerging business paradigm, known as “machine-learning-as-a-service”

(MLaaS). For example, many companies provide automatic medical assessments and risk pro-

filing service by analyzing the physical measurements collected by the wearable fitness tracking

device of a client. To simplify and broaden machine learning model deployment, major cloud

service providers, such as Amazon, Google, Microsoft, BigML, etc. are offering cloud-based

MLaaS, which trains predictive models and charges future usage of the model at a pay-per-query

or subscription-based cost.

However, IoT applications atop MLaaS raise several privacy concerns, which may hinder fur-

ther adoption of this emerging business paradigm. Privacy involved in the described application

scenario is two-fold: privacy of the subject (i.e., data owner) and privacy of the ML model. In many

95



applications, data collected by IoT devices such as electrocardiogram or environmental tempera-

ture are sensitive or proprietary data of its owner. ML models trained on the sensitive or proprietary

data are also sensitive or proprietary. Revealing models may leak information about the underly-

ing training data [32, 68]. Additionally, predictive models (e.g., type, structure and parameters) are

core intellectual property items of machine learning service providers (MLSPs). However, without

proper protection, these models are under the risk of model extraction attacks, which query a pre-

diction API to reverse-engineer model characteristics and extract an equivalent or near-equivalent

model of the original one [142]. Therefore, the ML models need to be well protected from being

leaked. Meanwhile, for privacy protection purposes, the client may not want to reveal her sensi-

tive data measured by an IoT device to MLSP, during the use of predictive models. The concern

comes from clients’ trust to MLSP regarding not only their appropriate use of the data, but also

their protection to the data considering the numerous data breaches reported in recent years [97].

Therefore, it is important to keep both the data and the ML models private in IoT applications

that handle sensitive or proprietary data. Ideally, this requires the ML model to take data from

the IoT device of the client in the encrypted form as input, and generate predication or classi-

fication results as the output. The output is still in the encrypted form that only the client can

recover. Furthermore, in the end of the classification, the client only knows the classification re-

sult but nothing else about the model, and MLSP learns nothing about the client’s input nor the

classification result. The problem has recently been studied in the literature of privacy-preserving

classification [44, 43, 154].

Supervised classification algorithms typically consists of two phases: the training phase, in

which the algorithm learns a model w from the dataset, and the classification phase, in which

the input data, known as feature vector x, is fed into the trained classifier C, which returns the

classification result by applying the model as C(x,w). Privacy-preserving classification assumes

the model (i.e., the classifier C) has already been trained through privacy-preserving training ap-

proaches (please refer to Section 7.6 for details), and thus focuses on the second phase, in which

MLSP provides privacy-preserving classification service to the clients. Existing solutions often
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adopt the classic client-server setting to establish a communication protocol between the two par-

ties and conduct several rounds of secure multi-party computation to realize privacy-preserving

classification. However, these approaches either lack the protection to the models [43], or intro-

duce a large communication and computation overhead at the client side [44, 154], which make

them impractical for IoT applications.

To provide privacy-preserving classification service on IoT platforms, we need to reduce the

computation and communication overhead at the resource-constrained IoT device. To tackle this

problem, we propose a novel cloud-assisted privacy-preserving classification approach, which

introduces an additional cloud as a third party in the model and outsource a part of computationally

expensive operations from the client (i.e., IoT devices). Moreover, we develop the communication

protocol among the three parties, which avoids unnecessary communications between the client

and the other two and thus reduces the participation of the client in the protocol.

6.2 Problem Formulation

6.2.1 System Model

In this work, we focus on a popular classification algorithm, called hyperplane decision-based clas-

sifiers, which is a parametric and discriminative classifier widely used in practice through various

instances, such as support vector machines (SVM), logistic regression and least squares. Generally

speaking, the hyperplane decision-based classifier consists of k weight vectors, corresponding to k

distinct classes: Ŵ = {W1, . . . ,Wk}, where Wi ∈ Rd is a vector of d dimensions.

To determine which class the input Y belongs to, the classifier evaluates the index k∗ such that

k∗ = argmax
1≤i≤k

〈Wi,Y〉

where 〈·, ·〉 denotes the inner product operation.

The proposed three-party privacy-preserving classification scheme for IoT applications is shown
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Figure 6.1: The system model of three-party privacy-preserving classification system.

in Fig. 6.1. The system consists of three entities: an IoT device (i.e., the client), a machine learning

service provider (MLSP), and an assisting cloud server (AS). The IoT device, e.g., a smart watch

or a smart gateway, is generating sensitive data about the client, from which a feature vector of

d dimensions is extracted as Y = (y1, · · · ,yd) ∈ Rd . Since the extracted feature vector is sensi-

tive, the device encrypts it so that it is protected from any other entity in the system. J·K in step

1 denotes each element of the vector is in the encrypted form. MLSP holds the machine learning

model to provide the classification service by taking Y as input. The AS is included so that heavy

communication/computation overhead can be delegated from the IoT devices to AS.

6.2.2 Threat Model

As assumed in most previous work on privacy-preserving “machine-learning-as-a-service” work

[44, 43, 154], the user (i.e., the IoT device), MLSP and AS are generally “honest-but-curious”,

meaning that they can faithfully perform the protocol while trying their best to infer any private
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information from other parties. To be more specific, because the machine learning model is re-

garded as the core intelligence property, the user is curious about the machine learning model held

by MLSP. On the other hand, MLSP tries to sniff the user’s input and the classification result. Note

that AS is interested in the private input from the user and the machine learning model from MLSP.

Finally, we assume that there is no collusion between MLSP and AS. Note that either MLSP or AS

may output incorrect results to the user due to accidental errors or malicious attacks. While this

problem could be solved by employing existing verifiable computation techniques, it is out of the

scope of this paper.

6.2.3 Design Goals

In this work, we aim to design a light-weight and mutually privacy-preserving approach in the

paradigm of “machine-learning-as-a-service” for IoT devices. In terms of security, our approach

should minimize the privacy leak without requiring mutual trust between user and MLSP. In

addition, due to the limited computation and storage capacity of IoT devices owned by the user, it

is expected that the overhead on the user side should be as small as possible. Therefore, our design

goals include two aspects:

1. Security. After the classification is finished, the user should only know the classification

result but nothing else about the machine learning model. On the other hand, MLSP should

not know any information regarding the model’s input and output. Moreover, AS should

know nothing at all.

2. Lightweight operations on IoT device. The operations on the user should be minimized so

that resource-constrained IoT device could afford it.
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6.3 Preliminaries

6.3.1 Two-stage decryption Paillier-based cryptosystem

Paillier cryptosystem is a probabilistic asymmetric algorithm proposed by Pascal Paillier [122]

for public key cryptography. A notable feature of the Paillier cryptosystem is the homomorphic

properties along with its non-deterministic encryption. More specifically, the encryption function

is additively homomorphic, so the the product of two ciphertexts will decrypt to the sum of their

corresponding plaintexts, namely, Dec(Enc(m1) ·Enc(m2)) = m1 +m2.

Ateniese et al. [31] proposed a variant of Paillier cryptosystem built from two-trapdoor Pail-

lier [55, 45] with the promising properties: (i) it inherits the additively homomorphic property,

and (ii) the ciphertext decryption can be done in a two-stage procedure. The second property is

essentially useful in our context because it allows the private key owner to delegate the decryp-

tion capability to a third party in a control manner. In this way, the private key owner can control

one stage decryption so that without tight cooperation, any third party only holding one stage de-

cryption key cannot fully decrypt the ciphertext. To be specific, the model for the cryptosystem

involves three parties: sender, receiver and a proxy, where the sender encrypts the message with

the receiver’s public key. The proxy first partially decrypts the ciphertext and then the receiver

finally recovers the plaintext from the transformed ciphertext. The proposed scheme consists of

the following five functions (KeyGen,Enc,DirectDec,Transform,FinalDec):

• KeyGen: This algorithm generates the public/private keys for the receiver, where x is the

private key, gx is the public key, x1 and x2 are the private shares of x such that x = x1 + x2.

• Enc: This algorithm encrypts the plaintext with the input of the receiver’s public key gx.

• Dec: This algorithm decrypts the ciphertext with the private key x.

• Transform. This algorithm partially decrypts the ciphertext with the private key share x1.

100



• FinalDec: This algorithm decrypts the transformed ciphertext to the plaintext with the private

key share x2.

6.3.2 Privacy-preserving integer comparison protocol

Another building block of our model is the private-preserving integer comparison protocol, where

two parties, each possessing a respective integer, jointly compare their integers while without re-

vealing one’s own integer to each other. More specifically, we adopt the DGK comparison protocol

proposed by Damgård, Geisler and Krøigaard [57]. Suppose that party A holds x and party B holds

y where x and y are two integers of l bits. The high-level idea of the protocol is that: The integer

can be denoted by the binary representation such that x = x1x2 · · ·xl and y = y1y2 · · ·yl respectively,

and x < y holds if and only if there exist an index i ∈ [1, l] such that xi < yi and for all j < i,

x j = y j. In another word, if there exist i ∈ [1, l], such that zi = xi− yi +1+∑ j<i(x j⊕ y j) = 0, then

x < y. Based on this idea, the protocol runs as follows (informal): A encrypts each bit of x using an

additively homomorphic encryption scheme with A’s public key and sends the bitwise encryptions

to B. B homomorphically computes encryptions of z1r1, . . . ,zlrl where ri,1 ≤ i ≤ l are randomly

chosen from Zn. Note that the encryption of zi can be computed over the ciphertexts sent from A,

because xi⊕0 = xi and xi⊕1 = 1−xi where yi is known to B. B sends the ciphertexts back to A in

a random order, so that A can decrypt all ciphertexts to see whether there exists a single ciphertext

decrypted to 0 and l−1 ciphertexts decrypted to non-zero random numbers.

6.4 Three-party Privacy-preserving classification

In this section, we present our proposed solution which is to securely evaluate the hyperplane-based

classifier:

k∗ = argmax
1≤i≤[k]

〈Wi,Y〉.

This classifier typically supports binary classification (k = 2): given a user’s input Y , we label

Y as an instance of class c1 if 〈W,Y 〉 ≥ 0, otherwise, we label it to class c2. To extend the binary
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Figure 6.2: Two-party model proposed by Bost et al. [44].

classifier to the one supporting k classes, one of the most common methods is adopt, one−versus−

all, namely, k different binary classifiers are trained, each of which is used to distinguish one from

others. So, the index i that leads to the greatest classification score can finally determine the

classification result out of k classes.

Therefore, in order to protect the privacy for the user’s data and MLSP’ classification model

respectively, evaluating this classifier demands two basic protocols : (i) the privacy-preserving

inner product protocol that can securely compute the inner product of Wi and Y without leaking

the vectors to each other, and (ii) the argmax protocol which is to privately determine which index

i,1≤ i≤ [k], leads to the greatest inner product.

6.4.1 Design Rationale

Before talking about the details of our three-party scheme, let us first see how this problem is

addressed in the current two-party setting, i.e., client and MLSP. Fig. 6.2 shows the two-party

scheme proposed by Bost et al [44]: MLSP holding the key pair sends k encrypted weight vectors

to the client in Step 1. Then, client homomorphically computes k inner products between weight
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User Input : Y = (y1, · · · ,yd) ∈ Zd , secret key SKA and public key PKA
MLSP Input : W = (w1, · · · ,wd) ∈ Zd , public key PKA
MLSP Output: J〈W,Y〉K

1. The user encrypts y1, · · · ,yd and sends the encryptions Jy1K, · · · ,JydK to MLSP.

2. MLSP performs the private inner product by computing JvK = ∏iJyiKwi mod N2.
// v = ∑wiyi

3. MLSP outputs JvK, which is used as the input to the argmax protocol.

Figure 6.3: Privacy-preserving inner product

vector and his input vector. After obtaining k values, client wonders which one is the greatest but

he should not know the exact value. Since the client does not have the private key, he needs the

help from MLSP to finish this task. To avoid revealing the relative order and thus the classification

result to MLSP, the client cannot send k values back. To achieve this goal, the client needs to

blind the values and compare every pairs with the help of MLSP, which is a multiple rounds of

interaction involving heavy cryptographic computation. Interested readers please refer to [44].

However, the huge cost of computation and communication imposed to the client device in

Step 3 of Fig. 6.2 may overwhelm its capacity, especially resource-constrained IoT devices. Other

two-party schemes [154] also require the client to participant in the laborious process except [43]

adopting fully homomorphic encryption, which is considered several magnitudes slower than par-

tially homomorphic schemes used in ours and [44, 154]. To the best of our knowledge, no existing

schemes propose a light-weight solution for IoT devices. Therefore, in our scheme, we intro-

duce the assisting cloud server (AS) to mitigate the overhead on the IoT devices and meanwhile

achieving the security goals. To implement our scheme, the privacy-preserving integer comparison

protocol mentioned in Section 6.3.2 is used as a sub-building block in Step 4 of Fig. 6.1. Besides,

by leveraging the nice property of two-stage Paillier mentioned in Section 6.3.1, we outsource the

costly computation to AS.
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6.4.2 Compute Inner Product over Ciphertext

When running the classification service, the user owns a sensitive feature vector (which is extracted

from some raw data) and the server holds the private machine learning model. In order to achieve

the security goals mentioned in Section 6.2.3, assuming there exists an additively homomorphic

encryption scheme (we can instantiate it with Paillier-based cryptosystem as in Section 6.3.1),

the inner product could be computed with two different alternatives: (1) User-initiated: The user

generates a pair of public/private key, encrypts the feature vector with the public key and uploads

the encrypted input to MLSP, which in turn performs the private inner product; (2) MLSP-initiated:

Inversely, MLSP generates the public/private keys, encrypts the machine learning model, which is

a set of weight vectors, and sends those encrypted vectors to the user, such that the user is able to

compute the inner product together with his own feature vector.

Bost et al. adopt the MLSP-initiated strategy (corresponding to Step 1 of Fig. 6.2), while we

choose the user-initiated approach. A potential benefit of MLSP-initiated strategy is that, since

the overhead of the aggregation operation used in computing inner product is more light-weight

than the encryption operation, it seems to incur less computation to the user. However, let us

take a closer look at their scheme: at the end of the classification, the encryptions of user’s data

still be stored on the user side. After a long period, the storage on the client will be exhausted,

which will be worse for the resource-constrained IoT devices. To avoid exhausting storage, two

options are available now: (1) Discard the historical data after getting the classification result.

However, it violates one principle of IoT applications, namely, value comes from the data. Once the

historical data is discarded, even if machine learning techniques are improved greatly in the future,

it is impossible to further study over a long period of data, which is nevertheless very valuable

particularly for healthcare applications. (2) So, a practical solution is to upload the historical

data to a remote storage server such as cloud. However, to achieve strong security guarantee, all

outsourced data should be encrypted before leaving the client. In this regard, it is inevitable for

the user to encrypt the data, so our scheme actually does not introduce extra overhead to the IoT

device. Therefore, we argue that our design is more practical for the real IoT applications.

104



In Fig. 6.3, we present an instantiation that implements the user-initiated strategy by using the

aforementioned two-stage Pallier cryptosystem. More specifically, the client performs the KeyGen

and Enc algorithms (Step 1 of Fig. 6.1):

• KeyGen: Given two large safe primes p and q, such that p and q are primes of the form

p = 2p′+ 1, q = 2q′+ 1, where p′ and q′ are also primes, the algorithm computes n = pq,

selects x ∈ [1,n2/2] uniformly at random and sets the public key as (n,g,h = gx) where g of

order λ (n) = 2p′q′ (As remarked in [55], such that g can be easily generated by selecting a

random value a ∈ Z∗n2 and setting g = −a2n.), and the private key as x. In order to enable

the two-stage decryption, the private key x can be divided into two shares x1 and x2 such that

x = x1 + x2. The client holds the private key x, and distributes one private key share x1 to

MLSP and another share x2 to AS securely.

• Enc: To encrypt a message m ∈ Zn, it selects r uniformly at random from Zn2 and computes

the ciphertext C = (c1,c2) where

c1 = gr mod n2,c2 = hr(1+mn) mod n2.

For the simplicity of exposition, we denote the ciphertext of value y as JyK, which actually consists

of two parts: c1 and c2. As we can see, MLSP holds its model (i.e., a set of weight vectors), and

performs the inner product computation together with the user’s input (i.e., an encrypted feature

vector), which is referred to Step 2 of Fig. 6.1. Here, we leverage the homomorphic property of

the two-stage Paillier, which states that: (1) the product of two ciphertexts will decrypt to the sum

of their corresponding plaintexts, and (2) an encrypted plaintext raised to a constant k will decrypt

to the product of the plaintext and the constant, namely, Dec(Enc(m1)∗Enc(m2)) = m1 +m2 and

Dec(Enc(m)k) = km. The correctness is briefly proved as follows:
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Enc(m1) = (gr1 mod n2,hr1(1+m1n) mod n2)

Enc(m2) = (gr2 mod n2,hr2(1+m2n) mod n2)

Enc(m1)∗Enc(m2) = (gr1+r2 mod n2,hr1+r2(1+(m1 +m2)n+m1m2n2) mod n2

= Enc(m1 +m2) (1)

Enc(m1)
k = (gr1k mod n2,hr1k(1+m1n)k mod n2)

= (gr1k mod n2,hr1k(1+ km1n+
(

k
2

)
m1

2n2 + · · ·+m1
knk) mod n2)

= (gr1k mod n2,hr1k(1+ km1n) mod n2) = Enc(km1) (2)

where the Dec algorithm is defined as:

• Dec: Given the private key x, the ciphtertext C could be decrypted as:

m = L(c2/cx
1 mod n2),

where L(u) = u−1
n for all u ∈ {u < n2|u = 1 mod n}.

6.4.3 Compute argmax over Ciphertext

After MLSP computes the inner products (i.e., encrypted inner product values) by taking as input its

owned model and the encrypted feature vector from the user, it needs to figure out which ciphertext

corresponds to the maximum value. Therefore, we propose a private comparison protocol which

can preserve the data privacy while allowing MLSP to determine the maximum value, which is run

between MLSP and the assisting cloud AS (note that we assume AS never colludes with MLSP) by

leveraging the two-stage decryption technique discussed in Section 6.3.1.

Comparison of two encrypted integers. To be more specific, MLSP wants to compare two en-

crypted integers Jv1K and Jv2K of l bits without revealing the real values, MLSP holds a private

key share x1 and AS holds the other private key share x2 (x1 and x2 can be used to recover the
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user’s private key x). We modify the comparison scheme proposed by Veugen [145], which is

shown in Fig. 6.4. In our scheme, besides Paillier, we use another homomorphic cryptosystem

over individual bits, namely Quadratic Residues (QR) [77]. Let [·] denote the ciphertext of the QR

cryptosystem, and zl+1 denote the (l+1)-th bit of integer z.

The basic idea of the comparison protocol is to use the significant bit of the value δ = v1 +

2l − v2, determining whether v1 > v2. Note that if the significant bit δl+1 is 1, then v1 ≥ v2, and

v1 < v2 otherwise. Given that δ is a (l+1)-bit number (at most), its significant bit can be obtained

through δ ÷ 2l where ÷ is the integer division, and δ = 2l(δ ÷ 2l)+ (δ mod 2l) where 0 ≤ (δ

mod 2l)< 2l . Moreover, in order to hide the difference between v1 and v2, let δ ′ = δ + r where r

is a l +1-bit random value. Therefore,

δ
′ = 2l(δ ′÷2l)+(δ ′ mod 2l) = 2l(δ ÷2l + r÷2l)+(δ mod 2l + r mod 2l).

and δ ′÷2l = δ ÷2l + r÷2l + t where t = 0 if (δ mod 2l)+(r mod 2l)< 2l , and t = 1 otherwise.

On the other hand, t = 0 means that (δ ′ mod 2l) is equal to (δ mod 2l)+(r mod 2l). Therefore,

if (δ ′ mod 2l)≥ (r mod 2l), then t = 0. Hence, the significant bit δl can be determined as follows:

δ ÷2l = (δ ′÷2l)− (r÷2l)− t mod 2 = zl+1⊕ rl+1⊕ t.

Based on the above idea (together with the two-stage decryption cryptosystem), we present

the detailed comparison protocol as shown in Fig. 6.4. This comparison protocol corresponds to

one interaction between MLSP and AS mentioned in Step 4 of Fig. 6.1. Note that in Step 8 of

Fig. 6.4, MLSP and AS need to privately compare two integers, which is known as millionaires

problem [164], and can be achieved by any garbled circuit scheme. Nevertheless, we implement

it by applying a cryptography-based scheme, known as DGK [57], for the sake of compatibility to

our cryptography-based framework.

Unlike existing work [57, 44, 154], where the comparison protocol was implemented with the

help of the client holding the secret key through multiple-round interaction, our comparison pro-
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MLSP Input: Jv1K, Jv2K, partial secret key x1, and public QR key PKQR
AS Input : partial secret key x2, and private QR key SKQR

1. MLSP: Jδ K← Jv2K·J2lK·Jv1K−1 mod N2 // δ ← v2+2l−v1

2. MLSP chooses a random value r to blind δ

3. MLSP: Jδ ′K← Jδ K · JrK mod N2 // δ ′← δ + r

4. MLSP runs the algorithm Transform to partially decrypt Jδ ′K to Jδ ′K′ with x1, and sends
Jδ ′K′ to AS, where the Transform algorithm is defined as letting the transformed
ciphertext Jδ ′K′ = (c′1,c

′
2): c′1 = c1 and c′2 = c2/cx1

1 .

5. AS runs the algorithm FinalDec to decrypt Jδ ′K′ with x2: δ ′ = L(c′2/c′x2
1 mod n2).

6. MLSP: c← r mod 2l

7. AS: d← δ ′ mod 2l .

8. MLSP and AS privately compute the encrypted bit [t] such that t = 1 if
d < c, and t = 0 otherwise.

9. AS encrypts zl using QR encryption and sends [zl] to MLSP.

10. MLSPencrypts rl to [rl].

11. Server computes [t ′]← [δ ′l+1]·[rl+1]·[t] and sends [t ′] to AS

// t ′← δ ′l+1⊕rl+1⊕t ≡ (t ′ = δ÷2l)

12. AS decrypts to get t ′

Figure 6.4: Comparison protocol of two encrypted integers

tocol reduces the heavy computational overhead without having the user engaged in the protocol,

while leveraging the assisting cloud AS and the two-stage decryption cryptosystem.

Classification result permutation. Given the comparison protocol for two encrypted integers as

above, we extend it to a complete protocol implementing argmax. An intuitive way is that AS

sends the comparison result back to MLSP so that the comparison process can be repeated until

finding the greatest one, incurring linear complexity (i.e., O(k)). This approach, however, violates

the security goals as mentioned in Section 6.2.3, because each comparison reveals the greater one
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MLSP Input : k encrypted integers Jv1K, · · · ,JvkK, partial secret key x1, and public QR key
PKQR

AS Input : partial secret key x2, and private QR key SKQR
User Output: classification result i

1. MLSP: chooses a random permutation π over {1, · · · ,k}, re-indexes the k
values, and sends the permutation map to the user.

2. MLSP and AS perform the following iteration to get index s that leads to the greatest JvK:

MLSP: Let JmaxK = Jvπ(1)K
AS: Let JmaxK = Jvπ(1)K and s = 1

for i = 2 to k do
Server↔AS: interact to compare JmaxK and Jvπ(i)K using the comparison
protocol in Figure 6.4
if JmaxK < Jvπ(i)K then

JmaxK = Jvπ(i)K
s = i

end
AS: randomizes JmaxK as JmaxK = JmaxK·J0K and sends JmaxK back to MLSP
//max = max + 0

end

3. AS: sends s to client

4. User: gets the classification result π−1(s)

Figure 6.5: argmax protocol

to MLSP, which therefore eventually leaks the classification result. Another alternative is that

MLSP and AS compute all two-element combinations of the k values JvK. By doing this, AS will

learn which one is the greatest, but MLSP knows nothing, which then achieves the security goal.

Unfortunately, this approach incurs O(k2) complexity. In addition, since AS is semi-honest, and it

should not know the final classification result as well.

To overcome the drawbacks of the above two approaches, we propose a three-party protocol

by applying permutation, which is depicted in Fig. 6.5, which incurs only linear complexity O(n)

and hides the classification result from MLSP and AS. The basic idea works as follows (referred
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to Step 3, 5, 6 of Fig 6.1): MLSP applies a random permutation π over k values JvK such that

the i-th value becomes the π(i)-th value, and then sends the permutation map to the client; then

MLSP and AS iteratively perform the comparison protocol (Fig. 6.4) until the index s that leads

to the greatest JvK after k− 1 iterations. More specifically, at each iteration, MLSP compares the

current maximal value JmaxK to the next value with the help from AS. Once the maximum of

the two compared values is determined, to prevent MLSP from linking the maximum to the value

compared, AS randomizes it by adding an encrypted J0K to JmaxK. Since Paillier encryption allows

adding randomness to the ciphertext, the same JmaxK blinded with different encryptions of 0 looks

like different random numbers to MLSP. Hence, MLSP does not know which value is greater in

the comparison. When comparisons finish, AS sends the index s that leads to the greatest value to

the user, who in turn gets the classification result by reversely mapping s to the class. Eventually,

MLSP knows nothing about the order of the k values. Although AS learns that the s-th value is the

greatest, it cannot correlate it to a specific class due to the permutation. Therefore, the classification

result is hidden from MLSP and AS as we expect. Note that in the argmax protocol, the user only

receives a mapping (generated by the permutation π) and does a very lightweight lookup, and

which bring very little communication and computation overhead to the user.

6.4.4 Discussion

To make the classification over encrypted data feasible for IoT devices, we outsource most part of

the computation and communication to an assisting cloud AS. However, we need to clarify that,

if we consider all participants including client, MLSP and AS as a whole, our three-party scheme

does not reduce the whole complexity of computation and communication. On the contrary, since

we adopt two-decryption Paillier scheme, the computation cost on MLSP may be increased. And

thus, it is not guaranteed that the time spent on an entire process of one-time classification service

from initiating service request by client to receiving the classification result is shorter. The im-

provement on shortening the time of the entire classification process will rely on multiple factors,

such as the load and job scheduling on the cloud, the hardware of instances used on MLSP and
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AS, and the network latency between them, etc. We want to make it clear that, like many other

cloud-assisted schemes, the goal of introducing an assisting cloud is to shift the computation and

communication from one device to the cloud, particularly from a resource-constrained device, but

such a shifting is not straightforward especially with privacy constraint. Our contribution lies in

the way how we realize the privacy-preserving shifting. Without that shifting, some applications

may be infeasible. For example, if energy-constrained wearable devices use the costly two-party

scheme, the energy will be used up very soon. Nevertheless, with our cloud-assisted scheme, al-

though it may not always speed up the classification process, it can definitely reduce the overhead

on wearable devices and make them last longer.

6.5 Security Analysis

In this section, we analyze the security of the proposed scheme in terms of input data privacy,

machine learning model privacy and classification result privacy. Note that in our model, the three

parties (i.e., the user, AS and MLSP) cannot collude with each other.

Input data privacy. When computing the inner product protocol as shown in Fig. 6.3, the feature

vector is encrypted by the user’s public key. Note that either MLSP or AS only possesses a share of

the secret key, they cannot decrypt the encrypted data as we assume that both MLSP and AS cannot

collude together. In addition, in the comparison protocol as shown in Fig. 6.4, AS blinds the inner

product with a random value (i.e., r in Step 3), so that MLSP cannot know the inner product

without knowing that random value. Furthermore, with the privacy-preserving integer comparison

protocol (i.e., DGK protocol in our proposed scheme), AS only knows which inner product value

is the greatest but not knowing its exact value (only learning the index of the classification result).

That is, either AS or MLSP cannot learn either the input data or the inner product values.

Machine learning model privacy. Note that in the inner product and comparison protocols, be-

cause the comparison protocol (Fig. 6.4) is implemented in a privacy-preserving way, either the

user or AS cannot know the inner product values with the given feature vectors. That is, the user

and AS has no chance to learn the machine learning model.
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Classification result privacy. MLSP permutes the indexes of the classes so that the permutation

mapping is only shared between the user and MLSP. Moreover, AS only knows the permuted index

for the classification result (through the comparison protocol). Therefore, MLSP has no knowledge

about the classification result. Only the user can get the classification result by using the permuted

index and the permuted mapping. Therefore, only the user can know the classification result while

the other two parties are blind to that.

6.6 Performance Evaluation

We have implemented the proposed cloud-assisted machine learning service scheme in real-world

clouds, i.e., Amazon EC2, and compared the performance of our scheme with existing works [44,

43] in terms of asymptotic complexity and the experimental performance. More specifically, we

compare our work to Bost et al.’s scheme [44], which adopts lightweight cryptographic primitives

to protect the user’s input data and MLSP’s model mutually in a two-party setting. Note that we

did not compare our proposed scheme with that in [43], which uses fully homomorphic encryption

(FHE) to allow the server to compute some medical predication functions over patient’s encrypted

input. The reason is that, on the one hand, FHE is still far more practical and will introduce

significant overhead, and on the other hand, [43] only protects the user’s input and assumes that

MLSP’s model is known to the public, thereby achieving weaker privacy guarantee when compared

to our work.

When conducting the performance comparison, we focus on the computational overhead at the

user side, due to the fact that our goal is to minimize the cost on the recourse-constrained IoT

devices and it is commonly assumed that MLSP and AS have unlimited computational capability.

6.6.1 Asymptotic Complexity Analysis

Table 6.1 shows the asymptotic complexity comparison of the two schemes at the user side, where k

denotes the number of classification classes, d denotes the dimension of the feature vector, Exp de-
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Scheme Inner Product Argmax
Ours d×Enc Dec

Bost’s k×d×(Exp + Add) k×(5Add + Exp + 2Enc + DGK)

Table 6.1: Comparison of asymptotic complexity at the user side between our proposed scheme
and Bost’s [44].

Scheme Number of messages
Ours (d +1)× ciphertext + Permutation-Map

Bost’s (d + k× (3+2l))× ciphertext

Table 6.2: Comparison of communication overhead on the client of two schemes in terms of the
number of messages.

notes the exponentiation operation, DGK denotes the overhead on the user side when executing the

DGK protocol used in argmax protocol, Enc, Dec, Add denote encryption, decryption and adding

two ciphertexts, respectively. We can see that when comparing with that of [44], our proposed

scheme greatly offloads the computational overhead on the user side.

In addition, we also compare the communication overhead for the user. In our scheme, it is

easy to see that the communication overhead only comprises d ciphertexts as the user’s input, a

permutation map and a ciphertext containing the classification result. Note that as in our scheme,

all communication involved in the argmax protocol has been offloaded to AS and therefore save

the communication cost for the user. In contrast, the user in [44] engages in both the inner product

protocol and argmax protocol, and incurs significant communication overhead. We detailed the

communication overhead comparison on the user in Table 6.2 in terms of the number of messages

because in our scheme the size of permutation map (which is sent to the user) is much less sig-

nificant than that of ciphertexts to be transfered, which dominates the communication overhead

complexity. From Table 6.2, we can see that the communication overhead on the user side in our

scheme is much less than that of the Bost’s scheme.
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6.6.2 Implementation and Performance Evaluation

We have implemented the Bost’s scheme and our proposed scheme with Java where three crypto-

graphic primitives are used, i.e., the original Paillier, the revised Paillier and the Goldwasser-Micali

(QR) cryptosystems. In our implementation, we set the bit length of the large prime numbers p and

q used throughout three cryptosystems to a strong security level, i.e., 512, so n is 1024-bit length.

The experiments are conducted on the Raspberry Pi 2, with 700MHz ARM A6 microprocessor and

512MB RAM, to simulate the resource constrained IoT devices such as smart phone acting as the

gateway for wearable devices and smart meters.

Fig. 6.6 compares the computation time spent on the client finishing a classification service

with different parameter settings. Since the performance goal of this work is to mitigate the over-

head on resource-constrained IoT device, we measure the time spent on all computational opera-

tions which are performed by the client. Theses computational operations include encryption of

feature vector, multiple-round comparison of encrypted integers and decryption of classification

result, if any of above operation is applicable in the compared schemes. Note that the time is not

the entire time from initiating the service request to receiving the classification result, which ex-

cludes the time of network communication and processing time on MLSP and AS. For example,

in the setting where there are 10 classes and 10 features, and the key length is 1024, we can see

in Fig 6.6, the overhead on user in Bost’s two-party scheme [44] is almost 200 times than our

three-party scheme. Our asymptotic complexity analysis is confirmed by the real implementation,

that is, the overhead on the client is much more lightweight than Bost’s scheme, since our scheme

outsources the costly operations to the cloud. It is worth noting that the overhead on the client in

Bost’s scheme is proportional to the number of classes, while the client’s overhead in our scheme

is independent from the number of classes but proportional to the number of features due to the

encryption of features.
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Figure 6.6: Comparison of overhead on client between our scheme and Bost’s [44] with varying
key length, number of features and number of classes. The Y-axis is the computation time on client,
which includes the time of all computational operations in process of finishing one-time classifica-
tion service, such as encryption of feature vector, comparison of encrypted integers, and decryption
of the classification result (if applicable), but it excludes the time on network communication and
processing on MLSP and AS.

6.7 Related Work

All related work to this paper can be roughly classified into three categories:

Privacy-preserving training. Training the model is the first phase of a complete machine learning

process. Most existing work falls into this category, which either use cryptographic techniques

[107, 143] or privacy-preserving data mining techniques such as value distortion [26], randomized

response [61] and partitioned data [144, 63]. These work span over variety of training algorithms

including logistic regression [50], decision trees [144, 63, 61], clustering [143], Naive Bayes [153],

etc.

Privacy-preserving classification. Little work has been done in the category of privacy-preserving

classification, namely, apply the trained model to client input. Our paper falls in this category.

Erkin et al. proposed a privacy-preserving face recognition scheme to hide biometrics from the

server conducting the matching operation [64]. Bos et al. proposed a fully homomorphic encryp-
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tion (FHE) based scheme to allow third party to perform predication over the encrypted medical

record of a patient [43]. However, the performance problem of FHE makes their scheme less prac-

tical in reality. Besides, in their work, the server’s model is assumed to be known by the public,

so they provide no protection to the predictive model, and thus weaker security guarantee than

our scheme. Wu et al. proposed a protocol to privately evaluate decision trees [154] using DGK

comparison protocol [57], oblivious transfer and tree permutation techniques. In their scheme, the

client’s input and the server’s tree model are mutually hidden from the opposite party. In contrast

to the previous schemes that focus on a specific learning algorithm, Bost et al. proposed a set of

building blocks to construct more complex classifiers, and meanwhile they also protect the infor-

mation of client and server simultaneously [44]. However, to make their scheme support more

classification algorithms such as decision trees besides hyper-plane based classifiers focused in

out paper, they view the decision tree as a polynomial and adopt FHE to compute the polynomial,

which inevitably results in worse performance. More importantly, all the above schemes work in a

two-party client-server model and did not pay special attention to the fact that the client may have

very limited capacity of computation and communication, such as the IoT devices on which we

focus.

Cloud-assisted IoT security. A broader topic related to our work is cloud-assisted IoT secu-

rity. Since IoT sensors such as wearable devices, smart meters, in-home monitoring cameras usu-

ally collect and report sensitive data, and plenty of application use the data in various ways, to

keep the data secure, cryptographic techniques are often an alternative option. However, resource-

constrained IoT devices usually cannot afford costly cryptographic techniques and large data stor-

age. Many schemes are solving this problem by leveraging cloud which provides unlimited com-

putation and storage capacity [166, 83, 157, 163]. Zhou et al. proposed a privacy-preserving key

management scheme for cloud-assisted wireless body area networks where the computationally-

intensive key material updating is outsourced to the cloud in a privacy-preserving way [166].

[83, 163] both focus on cloud-assisted healthcare IoT, which mainly use the storage resources

of the cloud. In [83], they proposed a scheme to add watermark into the collected data of a patient
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to avoid the privacy leakage on the cloud, while Yang et al. proposed a scheme that allows health

service providers such as doctors to access and verify the encrypted medical records stored on

the cloud by using a searchable encryption with forward privacy support [163]. In contrast, [157]

utilizes the computation resources of the cloud to implement a data publishing scheme adopting

attribute-based encryption.

6.8 Summary

In this chapter, we proposed a cloud-assisted, privacy-preserving machine learning classification

scheme for resource-constrained IoT devices. By introducing an additional cloud server and em-

ploying a two-stage decryption Paillier-based cryptosystem, our scheme allows an IoT device to

offload expensive classification computations to the cloud server in privacy-preserving manner,

thereby ensuring data privacy for both IoT client and machine learning service provider. The ex-

tensive complexity analysis and performance evaluation demonstrate that the proposed scheme

provides an efficient solution for conducting machine learning on IoT devices, where compared to

the existing solutions in the literature.
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Chapter 7

A Multi-Cloud based Privacy-Preserving

Data Publishing Scheme for the Internet of

Things

7.1 Introduction

In Part II, we aims to secure the data and privacy for IoT applications and we have proposed two

schemes for privacy-preserving data storage and privacy-preserving data analysis in Chapter 5 and

Chapter 6, respectively. In this chapter, we will explore the next problem, that is, targeted broadcast

in IoT.

Recall that the charm of IoT lies in its capability of interconnecting various sensing devices

with varying computation and communication capacity to the Internet. For example, connecting

millions of sensors and smart meters to the utilities and power plants makes the aging power grid

“smart”. The two-way communication capability not only facilitates utilities to collect a variety

of real-time, fine-grained data (e.g., power consumption, voltage, phase angle) from smart meters,

but also enables them to publish important messages (e.g., control commands, dynamic prices) to

smart devices [114]. Similarly, the success of wearable devices and e-health depends not only on
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the real-time data sensing and reporting, but also on the timely reaction (e.g., firmware upgrade,

parameter adjustment) and value-added services (e.g., customized healthy living tips, targeted ad-

vertisements) from healthcare service providers and third parties [21]. For example, consider the

high risk of heart attacks in extremely hot weather, it is a desirable feature for a wearable device

manufacturer to send control messages to devices to increase the measurement frequency of blood

pressure and oxygen saturation for elder users with heart diseases and overweight issues.

Nevertheless, with all devices connected and using the Internet infrastructure for data exchange,

IoT and its two-way communication expose a new attack surface to adversaries, which makes it

susceptible to various security and privacy issues. Consider the tremendous loss due to system

failures and attacks, such as power outage and patient data breach, security and privacy has be-

come one of the most important aspects in the design and deployment of IoT applications. Various

schemes have been proposed to secure IoT communication and data exchange, which span over a

variety of topics including but not limited to privacy-preserving data collection [102, 111], detec-

tion and prevention of false data injection [101, 110, 80, 158], patient monitoring [127, 112], etc.

However, most of the attention has been concentrated on secure data collection, which considers

only one direction (i.e., the upward link) of the two-way communication. Little work has been

done to secure the other direction (i.e., the downward link), where messages are pushed to mil-

lions of end devices, neglecting the fact that data along this direction sometimes contains sensitive

information, such as system parameters, user-specific prices and healthcare information, and thus

needs an enhanced protection.

Conventionally, to securely publish data to a specific target group, the sender (e.g., a control

center in smart grid or a value-added service provider in an e-health system) sends data in an

encrypted form to each device in a unicast manner. Given the huge number of devices in IoT

applications, this will incur a large communication and computation overhead [79] as well as a

high complexity for key management. To alleviate the overhead, approaches based on broadcast

encryption have been proposed to encrypt the message for an arbitrary set of receivers so that only

members of the target group can recover its content. However, solutions based on conventional
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broadcast encryption [67, 42] require the sender to store key materials for all recipients and incur a

storage requirement for the sender. This makes them impractical for IoT applications with a huge

number of receiving devices. Besides, in the conventional broadcast encryption, all members in the

broadcast set need to be notified of the change [42], which incurs a non-negligible communication

overhead to support the incremental growth of the number of users. Therefore, neither option is

particularly appealing in the context of IoT.

A more promising solution is to encrypt the message according to common characteristics that

specify a set of users as the qualified recipients. For example, recipients can be categorized by their

geographical locations such as “users in San Francisco”. Bethencourt et al. proposed the concept

of ciphertext policy (CP-ABE) [37], which is conceptually similar to role-based access control but

more fine-grained and flexible. In the CP-ABE model, a user is associated with a set of attributes

reflected in her secret key and the access policies, which define the attributes that an authorized

user should own, are embedded in the ciphertext. The sender encrypts a message under an access

policy so that only authorized users with attributes satisfying the access policy can decrypt the

message. The ABE schemes enable a sender to define dynamic access policies without knowing

specific receivers in the system beforehand, and thus suit the IoT scenario to enforce fine-grained

access control on a large number of receivers. However, a major drawback of ABE is the com-

putational cost for decryption, which increases linearly with the complexity of the access policy

(i.e., the number of attributes), due to the expensive paring operations when the receiver matches

her attributes to the access policy. As tested in [79], it took about 30 seconds for a smart phone

(in particular an iPhone 3G in that experiment) to decrypt a ciphertext containing 100 attributes.

For resource-constrained recipients that are typical in an IoT application, the computational cost is

too expensive to afford. With the emergence of cloud computing infrastructures such as Amazon

EC2 and Microsoft Azure, outsourced-ABE schemes have been proposed [79, 167, 87, 103] to

leverage the computational power of the clouds by outsourcing a part of the expensive decryption

operations to them.

However, privacy becomes a critical concern when outsourcing decryption operations to a
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cloud. Most of the existing outsourced-ABE approaches assume that the cloud is fully trusted

to host all attributes of a user. In the real world, a cloud server is rarely fully trusted by both

the sender and the recipient, especially when user attributes involve multiple sensitive categories.

For example, a cloud that is trusted to process attributes such as “age” and “location” may not

be able to access attributes related to users’ health status, such as “having heart disease X” and

“weight>Y ”. Therefore, it is more reasonable to assume a cloud as honest-but-curious, that is,

it follows the protocol honestly but tries its best to infer users’ private information. Specifically,

there are three major privacy concerns: (1) Data privacy. The sender, e.g., value-added service

providers, requires its messages and services to be only accessible to a group of qualified users.

Neither the cloud nor other unauthorized users should be able to access the published data. (2) At-

tribute privacy. As explained in the above example, attributes contain sensitive information about

the user and thus should be protected as much as possible from being disclosed to the cloud. And

(3) Access policy privacy. Access policies containing information about data to be published, data

sender and data recipient also need to be protected. A stronger privacy requirement is to hide the

access policy to avoid privacy inference attacks. We argue that the importance of three types of

privacy can be ranked as: data privacy > attribute privacy > access policy privacy.

In general, outsourcing the decryption operations to the cloud is a promising technique to

publish information to a group of resource-constrained devices in IoT applications. However, pro-

tecting the three types of private information in the targeted broadcasting is still challenging. To

address the privacy issues discussed above, we propose two novel CP-ABE schemes that employ

multiple clouds to collaboratively complete the outsourced operations, namely parallel-cloud CP-

ABE and chain-cloud CP-ABE. Our schemes delegate user attributes and the decryption operations

to multiple clouds, and coordinate them to translate an ABE ciphertext into an ElGamal-type ci-

phertext, without revealing the original message, the accurate set of user attributes, or the complete

access policy to the clouds.

Besides protecting the three types of privacy, our schemes also provide two additional features

that are desirable in the IoT data publishing scenario: (i) Delegation verifiability. When we out-
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source the operations for matching attributes to the access policy to the cloud, it is important for

the receiver to be able to verify the correctness and completeness of the messages processed by

the cloud. For example, a “cheating” cloud server may violate the honest-but-curious assumption

and discard messages without performing the matching operation to save its own communication

and computation resources. Therefore, the delegation verifiability can be considered as a security

enhancement for IoT data publishing applications. And (ii) Lightweight operations on receivers.

Since the receivers are resource-constrained devices, the operations of decryption and verification

at the receiver end are expected to be kept light-weight, which is supported in our solution.

The main contributions of this work are as follows:

• To the best of our knowledge, our work is among the first to protect user attributes against

cloud service providers in an outsourced-ABE setting using multiple clouds.

• We propose two multi-cloud-based, outsourced-ABE schemes. The parallel-cloud scheme

provides a better performance with strong privacy protection but less system flexibility and

less expressiveness for access policies, while the chain-cloud scheme supports flexible cus-

tomization and expressive access policies at the cost of processing latency.

• We present a lightweight mechanism that allows users to efficiently verify the correctness

and completeness of the partial decryption in clouds.

• Our schemes enable a new application for data publishing in IoT, namely privacy-preserving

targeted broadcasting, which is not possible in the past. This new type of data publishing

application will benefit not only end users but also information senders such as third-party

value-added services providers.

• We thoroughly analyze the security of our proposed schemes and evaluate the performance

with experiments using Amazon EC2 and Windows Azure.
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7.2 Preliminaries

7.2.1 Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime order p, and g be a generator of G0. e

is a bilinear map e : G0×G0→G1 with the following properties:

1. Bilinearity: e(ua,vb) = e(u,v)ab for all u,v ∈G0 and a,b ∈ Zp.

2. No-degeneracy: e(g,g) 6= 1.

3. Computability: for all u,v ∈G0, the bilinear map e is efficiently computable.

7.2.2 Linear Secret Sharing Scheme (LSSS)

A (k,n)-LSSS shares a secret s over a set of n parties with linear reconstruction property. The secret

s is divided to n parties in such a way that any k or more parties can recover the secret and any k−1

or less leave the secret completely undermined. Specifically, Shamir’s secret-sharing scheme [129]

is constructed as:

1. Pick k−1 random points to define a polynomial q(x) of degree k−1 with q(0) = s.

2. Share the secret over n parties by computing q(i) for any i ∈ {1, · · · ,n}.

3. Reconstruct the polynomial from any k parties denoted by a set S, using interpolation q(x) =

∑
k
i=1 q(i)∆i,S(x). The Lagrange coefficient is ∆i,S(x) = ∏ j∈S, j 6=i

x− j
i− j , where S(x) denotes an

element of S. Finally, recover the secret s = q(0).

7.2.3 Bloom Filter

Bloom filter (BF) [39] is a space-efficient probabilistic data structure for an approximate represen-

tation of a set S, which is typically implemented using a bit-array of w bits with k hash functions.

Given an arbitrary element x, a BF supports approximate membership queries “x ∈ S?”. It can
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Figure 7.1: Framework of privacy-preserving targeted broadcast in e-healthcare using parallel-
cloud scheme.

yield false positive answers but never false negative ones. The probability of false positives can be

adjusted by varying w and k, as a tradeoff between space efficiency and the false positive rate.

7.3 Parallel-cloud Scheme

Existing outsourced ABE schemes assume the cloud provider is fully trusted and thus delegate

attributes to a single cloud server. However, under the honest-but-curious setting, this assumption

is no longer valid. To prevent the cloud server from inferring user privacy from outsourced keys and

attributes, we propose a new secure data publishing approach that employs multiple non-colluding

cloud servers. We first present a parallel-cloud scheme that divides the attribute set into m parts

and outsources each part to one cloud server. The cloud servers operate on the received access

structure and ciphertext messages in parallel, and send the intermediate results to the receiver

separately. In this process, as long as the cloud servers do not collude with each other, we can

protect the complete set of user attributes from any single semi-honest cloud server.
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7.3.1 System Model and Scheme Overview

In this scheme, the system consists of three entities, as shown in Figure 7.1: the sender, such as

a value-added service provider or a wearable device manufacturer, publishing a message in the

encrypted form; m cloud servers partially decrypting the ciphertext; and a large set of targeted de-

vice users receiving and decrypting the message. In addition, a trusted authority (TA) is implicitly

assumed to be in charge of the distribution and management of attributes and private keys to users

and cloud servers.

To enforce the fine-grained broadcasting, the sender encrypts a message according to a specific

access policy A in the form of a series of AND gates. For instance, an access structure A =

DeviceA∧HeartDisease∧Overweight ∧CityB defines that only the user living in City B who

is a customer wearing device A with the heart disease and the overweight issue can decrypt the

message. For the simplicity of exposition, we let N denote the universal attribute set of n attributes.

The TA divides N into m mutually exclusive subsets as N = N1∪ ·· · ∪Nm, where Ni∩N j = /0 for

any i 6= j, and then outsources each Ni to a cloud server.

For privacy preserving considerations, the attribute splitting and distribution should follow

two strategies. First, each subset of attributes is only about one aspect (or domain) of the user.

Attributes in any single subset should not provide information for inference attacks. Secondly, the

attribute subset is assigned to a cloud considering its service domain and trust level. For example,

the cloud server of a private hospital is trusted to host all health-related attributes, while common

user attributes such as location can be distributed to a public cloud server.

Correspondingly, the access structure is also divided into m parts such that A=A1∪·· · ∪Am.

When the sender sends the main ciphertext and access structures to cloud servers, each cloud

server, on behalf of the receiver, checks if the attributes of the receiver satisfy the access structure.

Based on the result of this fine-grained access control, each cloud server decrypts a part of the

message and sends it to the user, who will combine the intermediate results received from all the

servers to recover the original message.
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7.3.2 Construction

Setup(λ , N, m). The TA calls the Setup algorithm to generate a public key PK and a master key

MK. The algorithm takes as input the security parameter λ , a universal attribute set N and the

number of cloud servers m. It chooses a bilinear group G0 of prime order p with a generator g, and

the bilinear map e : G0×G0→G1. Next, the setup algorithm chooses two randoms α,β ∈ Zp and

generates PK and MK:

PK = (G0,g,h = gβ ,e(g,g)α),

MK = (β ,gα).

KeyGen(MK, S, t). Assume each user has a set of attributes S = S1 ∪ ·· · ∪ Sm, where S1 ⊆

N1, · · · ,Sm ⊆ Nm and ∀i6= jSi∩S j = /0. When a new user (e.g., a wearable device) joins the sys-

tem, it registers to the TA with S and a random t ∈ Zp chosen by itself. Then, the TA calls

the key generation algorithm to prepare a transformation key T K for the clouds to perform par-

tial decryption, from which the user can recover the final message with his private key SK = t.

In particular, KeyGen selects a random r ∈ Zp and a random r j ∈ Zp for each attribute j ∈ S,

and takes S, t, and the master key MK as input to generate the transformation key. T K is set

as T K = (D = gt(α+r)/β ,D j = grH( j)r j ,D j
′ = gr j ,∀ j ∈ S). H and H1 denote collision-free hash

functions, where H : {0,1}∗→G0. Finally, the TA distributes D, D j, and D′j to Cloud j.

Encrypt(PK, M, A). To broadcast a message M under the access structure A, the sender first

chooses m random numbers s1, · · · ,sm ∈ Zp, where the secret si is shared by all attributes in Ai.

Let ki = |Ai| be the number of elements in Ai and index(y) be the index of the attribute y in Ai. To

share the secret, a polynomial qi(x) of degree ki−1 is constructed for Ai, where qi(0) = si and the

other ki− 1 values are randomly set to complete the construction. Given Ai, the ciphertext CT is

then constructed as:

C̃ = Me(g,g)αs,C = hs,CTi
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where s = ∑si, and CTi =

Ai,Cy = gqi(index(y)),C′y = H(y)qi(index(y)),∀y ∈ Ai

To allow the receiver to verify the correctness and completeness of the transformation per-

formed by the clouds, the sender also generates a verification value V = senderID|H1(A)|seq(H1(A))|T ,

where “|” denotes concatenation. H1(A) is the digest of the access policy A, seq(H1(A)) is the

sequence number of the message regarding the access policy A, and T is the timestamp of the mes-

sage. The sender maintains the sequence number for each access policy, and increases its value

by 1 when sending a new message under that access policy. Then, the sender generates the signa-

ture of message M and verification value V as σ = sign(H1(M|V )). Finally, the sender randomly

chooses a cloud, e.g., Cloud1, to hold (C̃,C,σ), and sends CTi and V to Cloudi.

Transform(CTi, T Ki). When a cloud, e.g., Cloudi, receives CTi, it uses the transformation key T Ki

to partially decrypt the ciphertext and transforms it into a form whose decryption is less computa-

tionally costly. In particular, the cloud first checks if Ai ⊆ Si. If not, it returns an error symbol ⊥,

indicating that the user does not satisfy the access structure. If Ai ⊆ Si, for each attribute j ∈ Ai, it

computes:

DecryptNode(CTi,T Ki, j) =
e(D j,C j)

e(D′j,C
′
j)

=
e(grH( j)r j ,gqi(index( j)))

e(gr j ,H( j)qi(index( j)))

= e(g,g)rqi(index( j))

After the cloud computes the values for all attributes in Ai, it combines them to partially recover

the secret si that is shared in Ai. In particular, it computes F(Ai) as below and sends the result
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together with V to the receiver:

F(Ai) = ∏
j∈Ai

(e(g,g)rqi(index( j)))∆ j,Ai(0)

= e(g,g)r ∑ j∈Ai qi(index( j))·∆ j,Ai(0)

= e(g,g)rqi(0)

= e(g,g)rsi

With C and D, Cloud1 computes D̃ as:

D̃ = e(C,D)

= e(gβ s,gt(α+r)/β )

= e(g,g)st(α+r)

Finally, it sends the partially decrypted ciphertext C̃, D̃ and σ to the receiver.

Decrypt(C̃, D̃,F(Ai),SK). If the receiver receives m parts of partial ciphertexts, she knows that

her attributes satisfy the access policy. Otherwise, she discards the partial ciphertext without de-

cryption.

With its private key SK and the ciphertext transformed by the clouds (i.e., D̃ and F(Ai)s), the

receiver recovers the original message as:

C̃
(D̃)1/t

∏
m
i=1 F(Ai)

=
C̃

(e(g,g)st(α+r))1/t

∏
m
i=1 e(g,g)rsi

=
C̃

e(g,g)s(α+r)

e(g,g)rs

=
Me(g,g)αs

e(g,g)αs = M.

In the above computation, it is obvious that the receiver does not need any paring operation

to recover the message. Instead, it only takes one exponentiation and m multiplication operations

regardless of the complexity of the access structure. Compared to the original CP-ABE, which
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requires 2∑ |Ai| pairings, our scheme greatly reduces the computational overhead at the receiver.

Verify(M,σ , V). To verify the completeness of the operations done by the clouds, the receiver

needs to check if all the verification values are consistent. As long as at least one cloud is honest,

the received verification data is authentic. Then, the receiver randomly chooses a V from m partial

ciphertexts, and uses senderID and H1(A) to look up the sequence number seqprv(H1(A)) of the

previous round for H1(A) from senderID. The receiver verifies the completeness, that is, she has

received all messages intended to her, by checking if seq(H1(A)) = seqprv(H1(A))+1. If not, this

indicates some messages are discarded by dishonest cloud(s). After the completeness verification,

the receiver checks M|V against the signature σ to verify the correctness of the recovered message,

and updates seq(H1(A)).

Discussions. The parallel-cloud scheme hides the complete set of user attributes from a single

cloud server, and significantly reduces the computational overhead at the receiver. However, it

yields three drawbacks. First, the scheme only supports the AND gate in the access structure.

Thus, it is less expressive comparing to the monotone structure proposed in the original CP-ABE

design [37], which supports k-threshold gates. Secondly, the scheme uses the number of clouds,

m, as a system-wide parameter, which makes the system structure very rigid. It requires all the re-

ceiver to use the same value for m, and imposes an additional burden to the sender, who is required

to split the access structure into m pieces and distribute to m cloud servers. As individual users

may have different needs regarding the protection of the attribute privacy, schemes that provide a

flexible privacy setting are more desirable. Finally, the parallel-scheme incurs unnecessary com-

munication between a cloud and the receiver. For example, when Cloudi successfully matches Ai

to Si but Cloud j fails to match A j, Cloudi has to partially decrypt the message and forward the in-

termediate result to the receiver, regardless of the fact that the message cannot be decrypted by the

user eventually. Frequent partial matchings incur an increasing computation and communication

overhead to the clouds. To overcome these drawbacks, we propose an enhanced scheme using a

chain-cloud structure and present it in the next section.
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Figure 7.2: Framework of privacy-preserving targeted broadcast in e-healthcare using chain-cloud
scheme.

7.4 Chain-cloud Scheme

7.4.1 Overview and System Model

Unlike the parallel-cloud scheme, which requires the senders to connect to a same m cloud servers

simultaneously, the chain-cloud scheme allows each receiver to specify how many clouds to use

and how attributes are delegated to each cloud. As shown in Figure 7.2, three receivers choose three

sets of clouds to form three different paths to three devices. Moreover, the chain-cloud scheme

allows the sender to encrypt a message under an expressive access policy A with k-threshold gates.

That is, an access policy can be satisfied with any k or more attributes.

To support this, we employ a Bloom filter [39] in each cloud to hold the part of attributes

delegated to it. In particular, when a cloud receives an encrypted message, it first checks if the at-

tributes that are delegated to it satisfy the access structure: if so, the cloud server partially decrypts

the message and sends the result to the receiver; otherwise, it further looks up all the attributes in

the access policy against the Bloom filter to check if the attributes have a chance to satisfy the ac-

cess structure. If the Bloom filter look-up returns a positive result, it indicates that it is possible the

receiver has the required attribute(s) to satisfy the access structure. So, the cloud should decrypt the
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attributes in the access structure as many as possible and forward the partially decrypted message

to a next cloud. If the Bloom filter returns a negative result, which means the user does not have

the required attribute(s) for sure, the cloud should stop propagating the message. Starting from the

first cloud, this process repeats until either a cloud in the path finds that the access structure cannot

be satisfied, or the partially decrypted message is successfully forwarded to the receiver.

7.4.2 Construction

Setup(λ ,N). The setup algorithm is similar to the one in the parallel-cloud scheme, except that it

does not require a specific value for m, i.e., the number of clouds to be used.

BloomFilterGen(S, [Cloudi]). In the parallel-cloud scheme, the user (i.e., receiver) decides the

clouds to be used and calls the BloomFilterGen algorithm, which takes the user’s attribute set S

and the number of clouds m as input to generate m Bloom filters. Therefore, the user has a full

control in deciding how to delegate her attributes to multiple clouds and in what order, by taking

the sensitiveness of her attributes and her trust to cloud service providers into account. This not

only provides a flexible mechanism for the user to determine her own multi-cloud platform setting,

but also fits the real-world cloud usage scenario. That is, health-related attributes are likely to be

stored in a private hospital cloud (and thus more trusted), while profile attributes can be delegated

to public clouds.

The selected m clouds are organized as a chain. Each cloud delegates a subset of attributes

(Si), from which the Bloom filter is generated. Here, we use an example to explain the generation

process. Suppose the size of the universal attribute set N is 200 and the user selects three clouds,

where Cloud1 is responsible for the attributes in S1 ⊆ [1,100], Cloud2 for S2 ⊆ [101,160] and

Cloud3 for S3 ⊆ [161,200]. To build the Bloom filter BF1 for Cloud1, the attributes j ∈ S2 and

j′ ∈ S3 are inserted into the BF1. We can adjust the false positive rate by changing the size of

the Bloom filter and the number of hash functions. To further increase the probability of false

positives, we randomly set some bits in the filter to 1 to introduce noise. As shown in Figure 7.3,
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Range: 𝑁𝑖+1 𝐶𝑙𝑜𝑢𝑑𝑖+1

Range: 𝑁𝑚 𝐶𝑙𝑜𝑢𝑑𝑚

…

Figure 7.3: The Bloom filter sent to each cloud.

our Bloom filer consists of two parts. The first part is a lookup table used by a cloud to locate the

next cloud, which is in charge of a specific range of attributes, and the second part is the noisy

Bloom filter, which contains attributes in Cloudi+1, · · · ,Cloudm, and the noise bits.

In the chain-cloud scheme, each user has her own cloud usage specification (CUS) for attribute

delegation and can change it anytime without informing the senders. This makes it more flexible

than the parallel-cloud scheme. Then, the user sends the cloud usage specification to the TA to

correctly distribute the corresponding transformation keys to the clouds in use.

KeyGen(MK,S, t,CUS). The KeyGen algorithm takes as input the master key, a user’s attribute set

S and private key t, and her cloud usage specification CUS. It generates the private key SK and

the transformation key T K in the same way as described in Section 7.3.2. Then, the TA sends the

corresponding transformation key T K to each cloud according to the CUS.

Encrypt(PK, M, A). The chain-cloud scheme can support expressive access policies such as

access tree defined in the original CP-ABE [37]. Here, we take access tree as an example to briefly

explain the encryption algorithm.

Let T be the access tree representing the access structure A. Each non-leaf node x of the tree is

a threshold gate associated with a threshold value kx, where 0 < kx ≤ numx for a node with numx

children. A leaf node is associated with an attribute and a threshold k = 1. We index the children

of each node from 1 to numx, and use index(x) to return the index value of x among its sibling

nodes.

Upon receiving an encrypted message, the cloud checks if the access tree is satisfied. Let Tx

denote a subtree rooted at node x. If a set of attributes γ satisfies the access tree Tx, we denote it as

Tx(γ) = 1. Tx(γ) can be computed recursively: for a leaf node x, Tx(γ) returns 1 if the attribute of
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x is in γ; for a non-leaf node y, the cloud evaluates Ty′(γ) for all the children y′ of node y, and sets

Ty(γ) to 1 if at least ky children return 1.

To encrypt a message, the Encrypt() algorithm first chooses a polynomial qx in a top-down

manner, starting from the root R, for each node x in the tree. For each node x in the tree, the degree

dx of the polynomial qx is set to kx− 1, where kx is the threshold. For the root R, the algorithm

chooses a random secret s∈Zp and sets qR(0) = s. Then, it chooses dR additional random values to

construct qR completely. For any other node x, it sets qx(0) = qparent(x)(index(x)), where parent(x)

denote the parent node of x, and chooses dx additional randoms to define qx.

Let Y be the set of leaf nodes in A. Once the access tree is defined, the algorithm encrypts the

message as below and sends the the ciphertext to the first cloud server in the chain.

CT =(A,C̃ = Me(g,g)αs,C = hs,

∀y ∈ Y : Cy = gqy(0),C′y = H(y)qy(0)).

Transform(CT,T Ki). When Cloudi receives the partially decrypted ciphertext from the previous

cloud in the chain, it calls Transform() for further decryption.

For a leaf node x with attribute j ∈ Ni and j ∈ Si, Cloudi calls DecryptNode(), which is de-

scribed in Section 7.3.2, and computes e(D j,C j)

e(D′j,C
′
j)
= e(g,g)rq j(0). The node is then marked as satis f ied

and the node value is set to e(g,g)rq j(0).

If j ∈ Ni but j 6∈ Si, which means attribute j is in charge of Cloud j but does not belong to

the attribute set S j of the user, we should set the node value to an error symbol ⊥, indicating

unsatis f ied.

If j 6∈ Si but j /∈ Ni, the attribute j (i.e., a leaf node) may be outsourced to another cloud. So,

Cloudi looks it up in the Bloom filter and sets the node to ⊥ if the result is negative. Note that, a

positive result cannot guarantee the ownership of the attribute due to the false positive introduced

by the Bloom filter. Also, not all the leaf nodes are associated with an attribute. Some are the

internal nodes before the transformation done by the previous cloud.
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We then compute the value for the non-leaf nodes in a bottom-up manner. For a non-leaf node

x, we choose an arbitrary kx−sized set Ex of its child nodes z to test if it satisfies node x. If such

set exists, we compute the value of x as Vx:

Vx = ∏
z∈Ex

V
∆i,E′x(0)
z ,where i=index(z) and E ′x={index(z):z∈Ex}

= ∏
z∈Ex

(e(g,g)rqz(0))
∆i,E′x

(0)

= ∏
z∈Ex

(e(g,g)r·qparent(z)(index(z)))
∆i,E′x

(0)

= ∏
z∈Ex

e(g,g)r·qx(i)·∆i,E′x
(0)

= e(g,g)r·qx(0).

Otherwise, the value of x is set to ⊥. Repeatedly, we compute the value of the root node R as

VR = e(g,g,)rqR(0) = e(g,g)rs.

Next, Cloudi computes D̃ = e(g,g,)st(α+r) as described in Section 7.3.2, and forwards C̃, D̃,VR

to the receiver. If the computation stops before arriving at root R but the Bloom filter indicates that

an attribute satisfying the access structure may exist in subsequent cloud servers, Cloudi looks up

the table in Figure 7.3 and forwards the intermediate result to the next cloud that probably hold the

attributes to satisfy the entire tree. If no such cloud exists, it stops propagating and thus reduces the

computation and communication overhead in the subsequent clouds. In this way, the noisy Bloom

filter designed for the chain-cloud scheme increases the transformation efficiency. Only when an

access policy can probably be satisfied by certain subsequent clouds, the current cloud forwards

the message.

As shown in the example in Figure 7.4, when Cloud1 finds that the access tree is satisfied by

itself and Cloud3, it skips Cloud2 and directly forwards the intermediate result to Cloud3.

Decrypt(C̃, D̃,VR,SK). Once receiving the partially decrypted message from a cloud server, the
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receiver performs the final decryption operation as below.

C̃
(D̃)1/t

VR

=
C̃

(e(g,g)st(α+r))1/t

e(g,g)rs

=
C̃

e(g,g)s(α+r)

e(g,g)rs

=
Me(g,g)αs

e(g,g)αs = M.

Obviously, the decryption overhead on resource-constrained devices is reduced to one exponentia-

tion operation in the chain-cloud scheme.

Verify(M,σ ,V ). The verification algorithm of the chain-cloud scheme is similar to the one in the

parallel-cloud scheme discussed in Section 7.3.2. The sender counts the message encrypted under

the access policy A, generates the verification data V = senderID|H1(A)|seq(H1(A))|T , and signs

the message and verification data as σ = sign(H1(M|V )).

Once the receiver recovers the plaintext M and the verification value V , she first checks them

against the signature σ to verify the correctness of the transformation, and then verifies the com-

pleteness by comparing if the received sequence number is greater than the stored sequence number

by 1, for the access policy A.

7.5 Security Analysis and Performance Evaluation

In this section, we first analyze the security features of the proposed multi-cloud ABE schemes,

and then explain our implementation of the two schemes on Amazon EC2 and Microsoft Azure.

7.5.1 Security Analysis

Data Privacy. The sender does not want the clouds or other unauthorized parties to access the

message it sends to a target group of users. From the decryption algorithms in Section 7.3.2 and

Section 7.4.2, we see that an adversary needs to be able to cancel out e(g,g)αs from the ciphertext

C̃ to recover the plaintext message. In doing so, he needs to be able to compute the pairing value
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over C from the ciphertext and D from the transformation key, respectively, to cancel out the secret

e(g,g)rs. The security of the pairing operation ensures that an unauthorized party without knowing

the correct r and s cannot recover this secret. Meanwhile, since the paring value is blinded by the

private key t in our scheme, it is impossible for a cloud to recover the plaintext, even though it has

access to e(g,g)rs.

Attribute Privacy. To reduce the computational cost at the devices, the operation of matching

the attributes to the access structure is outsourced to the cloud. As the attributes of the user are

disclosed to the cloud, it introduces a serious privacy concern, especially when the attributes con-

tain sensitive information about the user. One may argue that in real-world, attributes delegated

to the clouds are represented in the form of a hash value, instead of the meaningful raw text, and

thus incurs less privacy risk. Actually, a malicious cloud can still launch the dictionary attack to

check every possible word against the hash value. Therefore, the attribute privacy is considered

unprotected in all the existing outsourced ABE schemes using a single cloud.

In our multi-cloud schemes, each cloud server is only in charge of a part of attributes, so that

no single cloud can learn the complete set of attributes of a user. This significantly reduces the

privacy leakage caused by the attribute-based inference attacks due to outsourced decryption. To

formally assess the improved protection to attribute privacy in our multi-cloud schemes, we define

accuracy as a measure of the degree of knowledge about a user, and compare with the outsourced

ABE schemes using a single cloud. The higher the accuracy, the more the cloud knows about a

user.

Accuracy =
T P+T N

T P+FP+T N +FN

where TP, FP, TN, FN represent true positive, false positive, true negative, and false negative,

respectively. Specifically, TP denotes the number of attributes that the cloud is certain that a

user has, and TN denotes the number of attributes that the cloud is certain that a user does not

have. From the definition, we see that the lower bound of accuracy is 0.5, when the cloud has no

knowledge about a user and thus can only guess with a probability of 0.5.
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Assume the universal attribute set is N, a user’s attribute set is S, and the number of clouds is m.

In the single-cloud outsourced ABE, the accuracy achieves its upper bound, (|S|+ |N−S|)/|N|= 1,

since the cloud clearly knows that the user owns |S| attributes and does not own the remaining

|N−S| attributes.

In the parallel-cloud scheme, each cloud server works independently from other clouds. It

knows only the attributes outsourced to itself, i.e., |S|/m attributes. For the remaining attributes, it

can only guess with a probability of 0.5. So, the accuracy is at most (|S|/m+0.5(|N|−|S|/m))/|N|.

In a setting that |N| = 200, |S| = 100,m = 5, the accuracy is 0.55. Obviously, the parallel-cloud

scheme improves attribute privacy significantly compared to the single-cloud outsourced ABE.

In the chain-cloud scheme, for the sake of efficiency, each cloud stores a Bloom filter to check

if the access policy has a chance of being satisfied by the subsequent clouds. This incurs attribute

privacy leakage. However, the degree of leakage is controllable by the user by carefully selecting

the cloud and determining its position in the cloud chain. This is because the cloud which is closer

to the tail of the chain cannot test the membership of any attribute in the clouds that are closer to

the head of the chain. Moreover, the user can further adjust the false positives caused by the Bloom

filter by adding noise, changing its size and the number of hash functions. In an extreme case, to

prevent a cloud from inferring the attributes in other clouds from the Bloom filter, all positions in

a Bloom filter need to be set to 1. With these noise bits, the cloud forwards all the messages that

are not satisfied so far, which is actually equivalent to disabling the Bloom filter. As a result, each

cloud knows only the attributes it holds.

To measure the accuracy, we need to set pFP, which is the probability of false positive of the

Bloom filter, and compute:
|S|
m + |N−S| ∗ (1− pFP)+0.5(|N|− |S|m −|N−S| ∗ (1− pFP))

|N|

where the fist part of the numerator is the true positives of attributes that are outsourced to the

cloud, the second part is the true negatives that the cloud gets from the Bloom filter, and the third

part is the correct guess of the remaining attributes with the probability of 0.5.

Let us set pFP to 0.6, for example, the accuracy on the fist cloud of the chain, who knows the
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most information about a user, is 0.65. We see that the cloud gets more accurate information about

a user from the chain-cloud scheme than the parallel-cloud scheme. When the probability of false

positive is set to 1, it becomes equal to that in the parallel-cloud scheme.

Access Policy Privacy. In the single-cloud outsourced ABE, a cloud server can see the complete

access policy and further infer the underlying message. In our parallel-cloud scheme, since an

access policy is divided into multiple pieces, each cloud knows only a part of the policy. In the

chain-cloud scheme, to support the flexible system structure and the complete expressiveness of

the access policy, the access structure is distributed over the chain. Any cloud in the chain has no

knowledge about the attributes in previous clouds, since the attributes that are satisfied in previous

clouds have been replaced with node values, which looks like a random value. Therefore, a cloud

that is closer to the tail sees less about access structure. Besides, the chain is organized in a way

that more trusted clouds are placed at the beginning positions, thus it is reasonable to assume that

allowing them to see a more access structure will not cause severe privacy leakage.

Collusion Resistance. A major challenge to construct a secure ABE scheme is to prevent colluding

users so that they cannot combine their attributes to satisfy an access policy, which they cannot

decrypt individually. Our proposed schemes are resistant to the colluding attacks. Similar as the

original CP-ABE design, we select a random r for each user in the key generation algorithm, which

results in distinct values for different users when recovered by the secret sharing scheme.

Verifiability. Some messages from the sender may include critical content, such as control com-

mands, and thus the correctness verification of the transformation is very important. We use the

public-key signature scheme in both schemes to enable end-to-end verification. Since the private

key for singing the message is only known to the sender, no cloud nor adversary can forge a valid

signature.

Another challenge is to verify the completeness of the transformation. A cloud may acciden-

tally fail in matching an access policy to the attributes, due to system errors or intentional misbe-

havior. To verify the completeness, the sender and the receiver need to share a common knowledge
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Scheme Complexity of decryption
CP-ABE (2n+1)P + 2M2
Parallel-cloud CP-ABE E2 + 2M2
Chain-cloud CP-ABE E2 + (m+2)M2

Table 7.1: Comparison of asymptotic complexity of decryption operation of different scheme.

about how many messages are transmitted. We adopt a stateful verification scheme for complete-

ness, which maintains a continuously increasing counter for the messages that are encrypted under

a specific access policy A as the shared knowledge. Since the counter is also signed by the sender,

the receiver can trust it to verify if any message is accidentally or maliciously discarded. However,

this completeness verification still has limitations. If a malicious cloud never forwards a message

under a specific access structure, which should have been satisfied by the receiver, the receiver

cannot build the shared knowledge and know the existence of a message without interacting with

the sender. A simple yet effective countermeasure for the parallel-cloud scheme is that the sender

sends the complete access policy A instead of a part Ai to each cloud and the cloud forwards it to

the receiver. The parallel-cloud scheme introduces redundancy for completeness verification. As

long as at least one cloud is honest, the receiver can verify if she matches the access policy, and de-

termines if a malicious cloud exists. The receiver can afford such lightweight matching operation

as it only needs to compare if two attributes are identical. However, the drawback of this counter-

measure is that the cloud knows the complete access policy, which may cause privacy leakage. We

argue that this is a reasonable price to pay, considering the criticalness of the completeness. More-

over, completeness verification remains a challenging task for the chain-cloud scheme. Since only

the last cloud successfully satisfying the access policy will forward the message to the receiver, it

does not provide redundancy as the parallel-cloud scheme does. In fact, the completeness verifi-

cation is still a challenging task even for the general outsourcing applications such as searchable

encryption, which involves only one cloud. To the best of our knowledge, only accumulator [123]

can provide the completeness verification at a very high cost, and there is no known solution for

outsourced ABE scheme. We consider completeness verification for the chain-cloud outsourced

ABE scheme an open problem for our future work.
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CP-ABE OP-CP-ABE OC-CP-ABE
2 clouds 1444 830 1620
5 clouds 1444 732 1931

Table 7.2: Comparison of the delay between the sending time and the receiving time in the 2-cloud
and 5-cloud settings with 60 attributes in the access policy.

7.5.2 Performance Evaluation

We implement the proposed parallel-cloud and chain-cloud outsourced ABE schemes in real-world

clouds, i.e., Amazon EC2 and Microsoft Azure, and compare the performance of our schemes

with the one of the original CP-ABE [37] in terms of asymptotic complexity and the experimental

performance.

Since we do not make changes to the encryption algorithm, and the partial decryption is del-

egated to the cloud which is assumed to have unlimited computation capability, we focus on the

comparison of the overhead at the recipient devices. Note that in the implementation, a message

itself is actually encrypted using AES keys, which has fixed computational overhead. So, we only

evaluate the overhead introduced by the ABE operations.

Table 7.1 compares the asymptotic complexity of the three schemes, where P denotes the paring

operation, E2 denotes the group exponentiation, M2 denotes the group multiplication in G2, n

denotes the number of attributes in the access policy, and m denotes the number of clouds used

in the parallel-cloud outsourced ABE. Obviously, the computational complexity of our schemes is

independent from the complexity of access policy, which only needs a constant time to recover the

plaintext.

Next, we implement the original CP-ABE and our schem- es using the Java Pairing-Based

Cryptography Library [13]. We use Type A elliptic curve of 160-bit group order, which provides

1024-bit discrete log security equivalently. The experiments are conducted on the Raspberry Pi

2 [18], with 700MHz ARM A6 microprocessor and 512 MB RAM, to simulate the resource-

constrained IoT devices such as smart phones acting as the gateway for wearable devices and smart

meters. We launch multiple Amazon EC2 and Windows Azure instances to simulate the cloud
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Figure 7.5: Comparison of the decryption time between the original CP-ABE, the parallel-cloud
outsourced CP-ABE and the chain-cloud outsourced CP-ABE with varying number of attributes in
the access structure.

service providers in our schemes. The partial decryption in the clouds in the parallel-cloud scheme

is obviously efficient since all the cloud servers decrypt the corresponding pieces simultaneously.

However, for the chain-cloud scheme, since the partial decryption is conducted in a sequential

manner, we are interested in evaluating the delay introduced by the chain structure.

Figure 7.5 compares the decryption time of the original CP-ABE, our proposed parallel-cloud

CP-ABE and chain-cloud CP-ABE on the Raspberry Pi 2, using a multi-cloud platform of 5 clouds.

Our asymptotic complexity analysis is confirmed by the real implementation, that is, the decryp-

tion time of the original CP-ABE is proportional to the complexity of the access structure, while

the overhead in our schemes is significantly reduced to a constant value, regardless of the access

structure. This shows the benefit of lightweight decryption introduced by the outsourcing.

Finally, we evaluate the delay introduced by the multi-cloud structure. To evaluate the chain-

cloud scheme, we connect the instances of EC2 and Azure alternately to measure the delay, since

the communication time between two servers from the same cloud service provider (e.g., two

Amazon instances) is negligible. The round trip time (RTT) of two EC2 virtual machines (VMs)

is less than 2 milliseconds, while the RTT between an EC2 VM and an Azure VM is around 60

milliseconds. The sender and the recipient are synchronized through a Socket communication.

Table 7.2 compares the delay between the time of sending out the ciphertext and the time
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of receiving all the partially decrypted ciphertexts from the cloud servers. In this experiment, the

message is encrypted under an access policy with 60 attributes. We use the single-cloud outsourced

ABE as the base line, and compares the delay in the 2-cloud and 5-cloud settings. We see that the

parallel-cloud scheme achieves the best performance in terms of delay, since each cloud partially

decrypts a small part of the ciphertext and transmits it in a parallel way. Compared to the base

line, the chain-scheme has a larger delay, because all the clouds need to sequentially decrypt the

ciphertext, which introduces the transmission delay and the delay caused by the serialization and

un-serialization of data for network transmission.

7.6 Related Work

Attribute-based messaging. Extensive studies have been done on secure data publishing. Bobba

et al. developed an attribute-based messaging system where senders can dynamically create a

list of recipients based on their attributes [40]. However, this scheme incurs high computational

overhead and thus only suits for traditional PC-based applications. Fadlullah et al. proposed a

secure targeted broadcast scheme for smart grid where the utility encrypts a message using key

policy attribute-based encryption (KP-ABE) and broadcasts the ciphertext to a specific group of

users [65]. KP-ABE is the first ABE scheme introduced by Sahai and Waters [78]. In KP-ABE,

each encrypted message is labeled with a set of attributes and each user is assigned a private

key associated with an access structure. A user decrypts an encrypted message only when the

attributes associated with the ciphertext satisfy her access policy. Compared to CP-ABE, KP-ABE

is less expressive in specifying who has access to the encrypted message. Fadlullah’s ABE-based

broadcast exploits the original KP-ABE construction without outsourcing the decryption operation.

Although it avoids the problem of attribute privacy leakage, it imposes a very large computational

overhead on receivers, which is prohibitively high for resource-constrained devices. In [87], the

authors proposed a practical ABE-based data sharing scheme using CP-ABE and the outsourcing

technique to reduce the overhead on smart meters. However, this scheme is still susceptible to the
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privacy leakage risk, that is, when a user delegates all the attributes to a single cloud, the cloud is

able to infer her sensitive information from the attributes.

Verifiable outsourced attribute-based encryption. The presented work is also related to verifi-

able outsourced ABE. While the outsourced schemes [79, 167, 87] protect the data privacy, they

provide no guarantee to the correctness of the transformation performed by the cloud server. Lai

et al. implemented a verifiable outsourced ABE approach by attaching an additional encrypted

random message to the real message and computing the digest of the two messages together [99].

The receiver recovers both messages and checks the digest to verify the correctness of the re-

ceived messages. Similarly, Li et al. proposed an outsourced ABE with checkability by adding

a redundant pre-shared k-length bit string to each message. The receiver can detect the dishon-

est action by checking the bit string. Although these schemes can verify the correctness of the

transformation at the cloud server, they provide no guarantee to the completeness of the forwarded

messages. That is, checking whether the cloud completely forwards all messages that a user is

qualified to receive. This problem is somehow related to verifiable computation [73, 123] and ver-

ifiable searchable encryption [165], which guarantee the returned result is correct and complete.

However, these schemes rely on either expensive fully homomorphic encryption or the pre-sharing

of certain knowledge about the underlying message between the sender and the receiver, which is

obviously infeasible in the privacy-preserving targeted broadcast applications.

7.7 Summary

In this chapter, we present two multi-cloud outsourced-ABE schemes for privacy preserving tar-

geted broadcast for IoT devices. By enforcing the collaboration between multiple clouds, our

schemes significantly reduce the computational overhead at the resource-constrained IoT devices.

The new schemes protect data privacy, attribute privacy and access policy privacy. To the best of

our knowledge, this is the first work to utilize multi-cloud structure to prevent the disclosure of

attributes and access policies in outsourcing. Our schemes also provide verifiability, which allows
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receivers to verify the correctness and completeness of the outsourced operations. Through inten-

sive security analysis and experiments with simulated IoT devices and commercial cloud platforms,

we demonstrate the security guarantees and outstanding performance of the proposed schemes.
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Chapter 8

Conclusions

Internet of Things are extending to every facet of our lives, and thus, it is very critical to move

fast to address these rising security and privacy concerns in IoT systems before severe disasters

happen. In this dissertation, we mainly address the challenges in two domains: (1) how to protect

IoT devices against cyberattacks using Tor; (1) how to leverage cloud-assisted techniques to protect

sensitive data during storage, dissemination and utilization for IoT applications.

First, we propose two novel Tor hidden services based solutions to secure smart home: IoT

gateway over multipath Tor hidden services and IoT gateway with separate command and data

channels. In the first solution, we use multipath routing scheme to improve the performance of Tor

hidden services. With all data routed in the Tor network, this solution suits users who desire strong

security but acceptable performance. To further improve the performance, our second solution

transfers small-size command through Tor and transfers bulk data through the Internet so that we

can leverage both the strong security of Tor and the good performance of the Internet.

Second, for those smart home users who require very strong security but care less about the

performance, we enhance the resistance of Tor hidden service to traffic analysis attacks. We pro-

pose a different multipath routing based scheme that exploits flow mixing and flow merging to

distort or destroy inserted traffic patterns in a victim’s flow.

Another important contribution of this dissertation is to explore the potentials of cloud-assisted
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IoT security. We present a reliable, searchable and privacy-preserving e-healthcare system, which

enables users to store private data on the cloud in an encrypted format, and meanwhile health

service providers can search over encrypted data.

Our fourth contribution is to apply machine learning classification over encrypted IoT data

stored on the cloud. We propose a cloud-assisted, privacy-preserving machine learning classifica-

tion scheme over encrypted data for IoT devices.

At last, we pay attention to the privacy-preserving data publishing scheme for IoT appli-

cations. We explore the problem of privacy-preserving targeted broadcast in IoT, and propose

two multi-cloud-based outsourced-ABE (attribute-based encryption) schemes, namely the parallel-

cloud ABE and the chain-cloud ABE.
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