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Abstract              
 

 

 The objective of this dissertation is to characterize heat transfer from cylindrical heat 

pipes (HPs) in cross flow with attached extended surfaces. The extended surfaces investigated 

include uniform thickness fins, open-cell highly porous metal foam, and an array consisting of 

periodic layers of metal fins and open-cell metal foam.  

First, benchmark direct numerical simulations are used to compare existing analytical 

models for predicting convection heat transfer coefficients associated with a finned HP. The 

benchmark simulations are also used to identify the shear stress transport (SST) turbulence 

model as the preferred numerical model for the prediction of convection heat transfer from a 

finned HP. The SST external model is then coupled to a multiphase 2D internal HP model. 

Predictions from the resulting coupled numerical model are compared with experimental 

measurements for validation. A previously unreported phenomenon, localized depression of 

temperatures in the heat pipe wall, is identified.  

A novel analytical model of annular foam-only arrays is subsequently developed, along 

with a generalized expression for the fin efficiency of square arrays based upon corresponding 

annular efficiencies. Numerically predicted thermal efficiencies compare favorably with 

predictions generated from the novel expressions for both the annular and square arrays. 

Comparison of experimentally measured heat rates and predicted heat rates found with the new 

expressions for a square metal foam array provides further validation.      

Finally, novel expressions for the thermal resistance associated with annular composite fin-foam 

arrays are developed. Experimentally measured heat rates for such an array are compared to 

corresponding predictions generated with the new expressions to verify the model. A preliminary 

comparison of predicted heat transfer for the annular fin array, the foam-only annular array, and 

the new combined fin-foam array is generated, demonstrating the improved thermal performance 

associated with the metal foam-based configurations.  
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P1: J.R. Stark, T.L. Bergman, Prediction of convection from a finned cylinder in 

cross flow using direct simulation, turbulence modeling, and correlation-based 

methods, Numerical Heat Transfer, Part A: Applications 71 (3) (2017) 1-18.  

 

This work is aimed at ascertaining the best performing (i) turbulence model to employ in larger 

parametric studies by comparison to benchmark direct numerical simulations and (ii) analytical 

models to approximate the area averaged heat transfer coefficients associated with a finned heat 

pipe. My contributions comprise all of the analytical and numerical work detailed within.  

 

P2: J.R. Stark, N. Sharifi, T.L. Bergman, A. Faghri, An experimentally verified 

numerical model of finned heat pipes in crossflow, International Journal of Heat 

and Mass Transfer 97 (2016) 45-55. 

 

A novel, coupled numerical model is developed that is comprised of external flow simulations, 

similar to those of Paper P1, and simulations of the complex heat transfer mechanisms within the 

heat pipe (performed by post-doctoral researcher Nourouddin Sharifi). Predictions made via 

these models are then compared to experimental measurements. My contributions include all 

external numerical modeling, as well as assisting in the design, construction, and use of the 

experimental testing apparatus.  

 

P3: J.R. Stark, R. Prasad, T.L. Bergman, Experimentally validated analytical 

expressions for the thermal efficiencies and thermal resistances of porous metal 

foam-fins, International Journal of Heat and Mass Transfer 111 (2017) 1286-

1295. 

 

Novel analytical models for open-cell, metal foams attached to a cylindrical base are developed 

for annular arrays, and are subsequently extended to square arrays. My contributions include 

generating the novel analytical models, performing all numerical modeling, overseeing 

experimental testing performed by an undergraduate student (Raki Prasad), and conducting all 

analyses within.  



v 

 

P4: J.R. Stark, C.D. Sevart, T.L. Bergman, Experimentally validated analytical 

expressions for the thermal resistance of a novel composite fin-foam annular 

array, Applied Thermal Engineering (Submitted). 

 

An analytical model is developed for an array comprised of periodic layers of metal fins and 

open-cell, metal foam attached to a cylindrical base. Predictions generated with the novel model 

are compared to experimental measurements for validation. Additional comparisons are made 

between analytically predicted heat rates for a bare cylinder, a finned cylinder, a foam array, and 

a combined fin-foam array to assess relative performance. My contributions comprise all work 

detailed within, including oversight of an undergraduate student researcher (Chadwick Sevart).  

 

P5: N. Sharifi, J.R. Stark, T.L. Bergman, A. Faghri, The influence of thermal contact 

resistance on the relative performance of heat pipe-fin array systems, Applied 

Thermal Engineering 105 (2016) 46-55. 

 

The complex internal and external phenomena associated with the cooling of a finned HP 

described in Paper P2 are reduced to a thermal resistance model. My contributions include 

performing numerical modeling of a conduction constriction resistance within the heat pipe wall, 

as well as identifying the newly described heat pipe limitation associated with the constriction of 

vapor condensation at the fin root. The majority of the work was performed by post-doctoral 

researcher Nourouddin Sharifi.  

 

  



vi 

 

 

 

Table of Contents         

   

 

 

1. Introduction                    1 

1.1. Background     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1 

1.2. Scope of Dissertation    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3 

 

 

2. The Finned Heat Pipe (Papers P1, P2, and P5)                5 

2.1. Introduction and background   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5 

2.2. External modeling benchmark problem     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6 

 2.2.1. Direct Numerical Simulation     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7 

 2.2.2. Turbulence models       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    8 

 2.2.3. Benchmark numerical results    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9 

2.2. Analytical modeling of a finned heat pipe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

2.4. Coupled internal and external numerical model of a finned heat pipe   . . . . . .  15 

 2.4.1. Internal and external coupled simulations    . . . . . . . . . . . . . . . . . . . . . . .  15 

 2.4.2. Coupled model results   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

2.4.3. Comparison to experimental measurements    . . . . . . . . . . . . . . . . . . . . . .  19 

2.5. Contact resistance and HP thermal resistance network   . . . . . . . . . . . . . . . . . .  20 

 

 

3. The metal foam array (Paper P3)               21 

 3.1. Introduction and background   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

3.2. Analytical model of annular porous array   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

 3.3. Numerical model for annular and square arrays  . . . . . . . . . . . . . . . . . . . . . . . .  23 

 3.4. Experiments    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

3.5. Results and discussion    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

  3.5.1. Annular analytical model     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

  3.5.2. Extension to square arrays    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

  3.5.3. Comparison of predicted and measured heat rates   . . . . . . . . . . . . . . . . .  29 

 

 



vii 

 

4. The combined fin-foam array (Paper P4)                30 

 4.1. Introduction and background    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

4.2. Analytical model of combined fin-foam array   . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

 4.3. Results and discussion    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

4.3.1. Comparison of predicted and measured heat rates   . . . . . . . . . . . . . . . . .  33 

4.3.2. Parametric simulations    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

 

 

5. Discussion                   35 

 5.1. Comparison of fin, foam, and composite fin-foam arrays    . . . . . . . . . . . . . . . .  35 

 5.2. Conclusions and recommendations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

   

 

6. References                   39 

 

 

7. Publications                  45 

 P1    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   46 

 P2    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   65 

 P3    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   77 

 P4    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   88 

 P5    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

 

 



1 

 

 

Introduction               1 

 

 

1.1. Background 

 

Nearly all consumption of energy ends ultimately with the conversion to thermal energy 

in the form of waste heat. Efficient management of this thermal energy is necessary in a wide 

variety of applications, ranging from industrial processes to consumer goods. For example, the 

efficiency of all thermodynamic cycles increase as the thermal resistance associated with the 

dispersion of waste heat is reduced. Other applications, such as cooling of electronic devices, 

require low thermal resistances for the dissipation of waste heat to avoid excessive operating 

temperatures. These and other applications are discussed elsewhere [1]. Air and water are 

frequently used to remove heat from a process, as they (i) allow for the thermal energy to be 

carried by the movement of the material (as opposed to pure conduction) and (ii) are readily 

available. As a result, a multitude of designs for heat sinks [2] and heat exchangers [3] have been 

developed.  

Novel heat exchanger designs centered on heat pipes (HPs) are one promising new 

technology that may allow for more efficient transfer of heat to the environment [4-10]. Heat 

pipes (and closely related thermosyphons) leverage the latent heat of vaporization to transport 

the thermal energy. A diagram of a typical HP and its working principles may be seen in Fig. 

1(a). The working liquid (for example, water) is evaporated at the high temperature (or 

evaporator) section of the HP, after which the vapor flows through the hollow HP core to 

eventually condense on the low temperature (or condenser) section of the HP. This closed loop 

system is completed as the liquid working fluid returns to the evaporator section by capillary 

action in a wick and/or by gravitational forces.  
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(a)        (b) 

Fig. 1. (a) Diagram of a HP [11] (b) Finned HP heat sink for a CPU [12]. 

 

  As a result of the low thermal resistances associated with evaporation and condensation 

of the HP working fluid, HPs present incredibly low thermal resistances (corresponding to 

effective thermal conductivities greater than 100,000 W/mK in some cases [11, 13]). Of course, 

heat transfer to the evaporator section or from the condenser section of the HP must involve heat 

transfer from or to external sources or sinks. This transfer usually occurs by convection from (or 

to) an external fluid or fluids, and the flow of heat through such a heat pipe system may be 

dominated by the thermal resistances external to the HP. Hence, extended surfaces are typically 

attached externally to HPs in an effort to reduce the overall system resistance.  

Currently, small scale HP heat exchangers with finned designs are used for cooling 

consumer electronics (as shown in Fig. 1(b)), but proposed designs including open-cell, high-

porosity metal foams, and metal foam-fin systems are of interest since they may lead to relatively 

low overall system resistances. Due to the multiple material interfaces in a HP system, it is also 

necessary to have a quantitative understanding of how the thermal performance is influenced by 

potential contact resistances. Lastly, a clear understanding of how the external and internal heat 

transfer processes are coupled, and how the coupling affects the performance of the HP system, 

is necessary for the accurate prediction of overall system thermal behavior.  
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1.2. Scope of Dissertation 

 

The objective of this dissertation is to investigate and/or generate predictive correlations 

and mathematical expressions describing heat transfer from a cylindrical heat pipe with attached 

extended surfaces consisting of (i) fins (Papers P1, P2, and P5), (ii) open-cell high-porosity 

metal foams (Paper P3), and (iii) combined fin and foam arrays (Paper P4). In Papers P1 through 

P4, analytically (or empirically) predicted thermal performance is validated against numerically 

predicted and experimentally measured values. Further work investigating the interaction of 

internal (within the HP) and external (outside of the HP) thermal processes is also described 

(Papers P2 and P5). The ultimate goal is to identify and create accurate correlations and 

expressions that represent the complex conductive and convective phenomena associated with 

the various types of extended surfaces applied externally to cylindrical HPs. Once developed, the 

correlations and expressions may be used to design various HP systems. 

To accomplish the preceding goal, the performance of various steady-state turbulence 

models for the prediction of convective heat transfer from finned HPs or tubes in cross flow are 

first investigated (Paper P1). To reveal the underlying physical mechanisms and identify the 

preferred model(s), benchmark direct numerical simulations (DNS) predictions are performed. 

The benchmark predictions are based on a fully-elliptic, transient, incompressible, 3D numerical 

description of conservation of mass, energy, and momentum associated with the mixed (forced 

and free) convection about a finned cylinder. Once the preferred turbulence model is identified 

by comparison of its predictions with those of the DNS, both DNS and turbulence model 

predictions of time- and area-averaged heat transfer coefficients are compared to those calculated 

from correlations reported in the literature.  

Following the investigation of the performance of the various predictions for the 

convective heat transfer from a finned HP, investigations of the combined internal and external 

performance of a finned HP are made (Papers P2 and P5). The selected turbulence numerical 

model identified in Paper P1 (a shear stress transport, or SST model) is employed to develop and 

demonstrate a novel computational methodology to couple 2D internal and 3D external 

simulations for a common configuration: a vertical HP with isothermal conditions at its lower 

evaporator section, and 3D convective conditions external to its upper finned condenser section. 
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This numerical model is validated by comparing its predictions against experimental results, and 

is used to examine the relationship between heat transfer internal and external to the finned HP.  

The next extended surface considered is open-cell, high-porosity metal foam (Paper P3). 

For the investigation of metal foams, (i) a continuum-based, analytical description for conduction 

and forced convection heat transfer within an annular porous matrix attached concentrically to a 

circular tube, reported in terms of a thermal efficiency, is developed, (ii) a continuum-based 

numerical model is used to develop a semi-analytical expression for the thermal efficiency of a 

cubical porous block attached on-center to a circular tube, and (iii) the thermal behavior 

predicted with the semi-empirical expression is compared to experimental measurements 

conducted with convectively cooled foam blocks of square cross section attached on-center to a 

nearly isothermal warm cylinder (heat pipe) using a unique experimental setup. 

Finally, an annular fin-foam array is modeled with a novel, continuum-based analytical 

description in a manner similar to that of the corresponding foam array (Paper P4). This model is 

validated through comparison with corresponding numerically predicted and experimentally 

measured heat transfer rates for a fin-foam array of square cross section. Quantification of the 

heat transfer performance of these extended surfaces enables future work to predict the relative 

performance of HP systems implementing the various designs.  

The dissertation is presented in summary style, by first providing an overview of the 

published articles which constitute the dissertation. Chapters dedicated to the three extended 

surfaces of interest include a brief introduction, followed by a summary and discussion of key 

results. Note that the definitions of variables are consistent with those provided in the relevant 

papers.   
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The Finned Heat Pipe (Papers P1, P2, and P5)        2 
 

 

2.1. Introduction and background 

 

The analysis of finned heat pipes (HPs) is an example where accurate and efficient 

prediction of heat transfer coefficients is essential to ultimately create practical, system-level 

models. Because HPs have internal thermal resistances that can be orders of magnitude smaller 

than those associated with high thermal conductivity media of similar dimensions [13-14], 

accurate prediction of the convective heat transfer external to the HP is crucial in order to 

quantify the overall thermal resistance of convectively heated and/or cooled HPs. Papers P1, P2, 

and P5 present models-for and predictions-of heat transfer for finned HPs. The focus will be on 

the convection processes external to the HP.  

Numerical modeling has been used to analyze heat transfer processes both (i) within HPs 

(internal modeling) [15-30] and (ii) external to HPs (external modeling), such as those equipped 

with exterior fin arrays [25-27]. Both internal and external modeling employ simplifying 

assumptions. For example, interior modeling often includes accurate descriptions of the 

evaporation, condensation, and heat transfer processes within the HP itself, but is hampered by 

the specification of simplified external thermal boundary conditions at the HP evaporator and 

condenser sections. Alternatively, recently reported external modeling efforts provide detailed 

predictions of the external convective heat transfer processes, but typically treat heat transfer 

within the HP in a simplified manner [25-26]. A few recent studies involve development of 

overall HP system models that include detailed descriptions of both internal and external heat 

transfer processes. However, these models have been limited to 2D systems [25, 19-21]. For a 

finned HP subjected to 3D external forced convection, a unified and full 3D approach to solve 

both the internal and external heat transfer processes concurrently would be computationally 
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expensive.  To the author’s knowledge, full 3D predictions of heat transfer both internal and 

external to a HP have not been reported in the literature.  

Paper P1 presents a benchmarking study of various numerical modeling methodologies 

which have been developed to predict laminar, turbulent, and transitional convective heat 

transfer processes and rates as applied to heat transfer external to the finned HP. In addition to 

investigating the relative performance of the various models, Paper P1 compares the predictive 

capability of multiple analytical models. Paper P2 details a coupled numerical model that 

consists of (i) a 3D model of the flow external to the finned HP (using the preferred turbulence 

model identified in Paper P1) and (ii) a 2D model of the complex heat and mass transfer that 

occurs within the HP. Comparisons to experimental measurements are used to verify the 

relatively strong performance of the coupled HP model, despite the 2D treatment of the heat 

transfer and fluid flow internal to the HP.  

 

2.2. External modeling benchmark problem 

 

 The benchmark study of Paper P1 is performed for the computational domain of Fig. 2, 

which corresponds to air flow within a channel of an experimental testing apparatus employed in 

Paper P2 (to be described in Section 2.4) as it passes over a HP with, in this case, three attached 

square fins. At one extreme of numerical modeling, direct numerical simulation (DNS) solves 

discretized forms of the governing equations that describe both spatially and temporally complex 

flows, providing detailed velocity and temperature distributions within the fluid. To capture 

relevant phenomena accurately, DNS simulations often require fine spatial resolution and small 

time steps. Hence, DNS typically requires significant computational resources to generate even a 

single set of predictions.  

Many applications, such as those involving finned HPs, require simulations covering a 

range of operating conditions or entail large computational domains, and use of DNS may not be 

appropriate. To address the limitations of DNS, various turbulence models have been developed 

to predict the approximate average of the time-dependent variations within such flows [31-37]. 

Such models differ in their approximations, resulting in a multitude of predictions for a given 

physical situation [38-41], and the preferred model is sometimes case-dependent. At the other 

extreme, recourse to existing simple-to-use correlations may provide approximate, yet adequate 
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prediction of overall heat transfer rates or convection coefficients, which will be discussed in 

Section 2.4.  

 

2.2.1. Direct Numerical Simulation 

 Direct modeling of the complex, time-dependent flow over the finned array of Fig. 2 is 

performed by solving transient conservation of energy, 
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Fig. 2. Schematic of the computational domain. (a) Top view (x-y plane), (b) side 

view (x-z plane), (c) fin section (x-y plane), (d) flow direction (y-z plane), [P1] 
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Throughout this dissertation, the flow is assumed to be incompressible, and the fluid (air) is 

treated as a Boussinesq ideal gas [42] with properties evaluated at T0 = 25°C and an absolute 

pressure of 1 atm. Initial conditions are a uniform fluid temperature of T∞
 
and zero velocities 

throughout the domain.  

 

2.2.2. Turbulence models 

Five turbulence models, all of which employ additional equations to describe the 

transport of turbulence quantities and quantify turbulent (effective) transport, are considered. 

Two variations of Wilcox’s κ-ω model, namely Menter’s Shear Stress Transport model (SST) 

[31] and the Gamma-Theta transitional model (γ-Reθ SST) [32-34], are investigated. Additional 

simulations using a classic κ-ε model [35], along with two common variations, the Re-

Normalization Group model (RNG κ-ε) [36], and Explicit Algebraic Reynolds Stress model (κ-ε 

EARSM) [37], are performed. All five models are implemented in a consistent manner, and their 

predictions are compared to those of the DNS. The turbulence model simulations are performed 

for steady state conditions, governed by conservation of energy
1
 (Eq. (4)), mass (Eq. (2)), as well 

as x-, y-, and z-momentum (Eqs. (5a) – (5c)).  

 
2 2 2

turb 2 2 2
       x y z

T T T T T T
u u u

x y z x y z
 

      
      

      
                     (4) 

 
2 2 2

turb 2 2 2

1x x x x x x
x y z

u u u u u up
u u u

x y z x x y z
 



     
       








 
    

                   (5a) 

  
2 2 2

turb 2 2 2

1 y y y

x

y y

z

y

y

u u u u u up
u u u

x y z y x y z
 



     
       

  

 
 
    

                   (5b) 

    
2 2 2

turb 2 2 2

1
  1z z z

x y z
z z z

o

u u u u u up
u u u T T g

x y z z x y z
  



     
              

 
 
    

          (5c) 

Because the focus at this stage of the dissertation is on external convective effects, the cylinder 

and fin are considered to be isothermal. This restriction is relaxed starting with Paper P2 (Section 

2.4). Details of the additional governing turbulence equations and their corresponding boundary 

conditions may be found in Paper P1. 

               

1
 Note that while it was inadvertently omitted in Paper P1, the turbulent thermal diffusivity, αturb, is included in the 

conservation of thermal energy. Values of the turbulent Prandtl number (used to calculate αturb) may be found 

elsewhere [43]. 
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2.2.3. Benchmark numerical results 

 Simulations were run for low (0.5 m/s) and high (1.5 m/s) channel inlet velocities for the 

DNS and the five turbulence models. Samples of the results presented in Paper P1 are as follows. 

Velocity distributions in the vertical mid-plane of the channel are shown in Fig. 3 with the mean 

flow traveling from left to right. The distributions of the steady-state SST and γ-Reθ SST models 

are in qualitative agreement with those of the DNS. As in the DNS results, buoyancy effects are 

evident in the low velocity SST predictions but a similar buoyancy effect is not evident in the κ-

ε, RNG κ-ε, or κ-ε EARSM predictions. For either the low- or high speed cases, the DNS and 

SST predictions show similar behavior immediately upstream and downstream of the vertical 

finned cylinder. In contrast, the three κ-ε models predict significantly larger velocities 

immediately downstream of the cylinder, relative to the benchmark DNS predictions. Predictions 

of the SST and γ-Reθ SST models are nearly indistinguishable qualitatively.  

 

Fig. 3. Velocity distributions in the channel vertical centerplane (x-z plane). DNS predictions are shown 

at t = 1.75 s for both the low and high velocity cases. [P1] 

 

u [m/s]0 0.75 u [m/s]0 2.0

V = 0.5 m/s V = 1.5 m/s

DNS

SST

γ-Reθ SST

κ-ε

κ-ε EARSM

RNG κ-ε
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Temperature distributions in the vertical mid-plane are displayed in Fig. 4. As discussed 

relative to Figs. 2 and 3, buoyancy effects are noted for the low inlet velocity case with warm air 

rising as it propagates downstream. The effects of buoyancy are not evident in the high velocity 

case. Overall, the predicted temperatures of the DNS, SST, and γ-Reθ SST models are in 

qualitative agreement. The κ-ε, RNG κ-ε, and κ-ε EARSM models behave poorly, and only the κ-

ε predictions are shown. From these qualitative results (as well as velocity and temperature 

distributions displayed midway between two fins as shown in Figs. 4 and 6, respectively, of P1), 

the poor performance of κ-ε predictions is readily apparent.  

Comparisons of local heat transfer coefficients are made in Figs. 5 and 6. Note that, due 

to inability of the κ-ε models to even qualitatively predict the flow field, local convection 

coefficient predictions associated with these models are in poor quantitative agreement with 

DNS-predicted values, and are not reported here or in Paper P1. Instantaneous (DNS) and time-

averaged (SST) local convection coefficient distributions for the cylinder are shown in Fig. 5. In 

general, the largest local coefficients are on the upstream portion of the cylinder (θ = 0°, Fig. 1c), 

and are smallest near θ = ±180°. Small local convection coefficients also exist in the vicinity of 

each fin because of the velocity reduction associated with boundary layer development on the 

fins. Overall, SST-predicted local heat transfer coefficients are substantially closer to the DNS 

benchmark predictions than those from the κ-ε models. Instantaneous (DNS) and time-averaged 

(SST) local heat transfer coefficients on the top surface of the middle fin are reported in Fig. 6. 

Whereas boundary layer development on the fins influences local heat fluxes on the cylinder 

(Fig. 5), flow around the cylinder influences local fluxes on the fins. The fin surface downstream 

of the cylinder experiences relatively high local coefficients associated with the shedding of 

vortices from the cylinder.  
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Fig. 4. Temperature distributions in the channel vertical centerplane (x-z plane). [P1] 

 

 
Fig. 5. Predicted transfer coefficient distributions on the cylinder. Coefficients range from hcyl = 0 to 

75 W/m
2 
K and 0 to 150 W/m

2 
K for the 0.5 and 1.5 m/s cases, respectively. Contour bands are plotted 

at intervals of 7.5 and 15 W/m
2 
K for the two velocity cases. [P1] 
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Fig. 6. Heat transfer coefficient distributions on the upper surface of the middle 

fin. Convection coefficients range from hf = 0 to 75 W/m
2 
K and 0 to 150 W/m

2 

K for the V = 0.5 and 1.5 m/s cases, respectively. [P1] 

 

Area- and time-averaged convection coefficients for the total exposed fin ( fh ) and 

exposed cylinder ( cylh ) surfaces are determined during the quasi-steady state with the DNS 

model using Eqs. (13a) and (13c) of Paper P1. In both the high and low velocity cases, 

information at 150 distinct times (every fifth step over a time window of 0.75 s) were used to 

calculate the time average values. The values from the DNS were then compared with the area-

averaged values of fh  and cylh  obtained from steady state simulations, as defined by Eqs. (13b) 

and (13d) of Paper P1.  

Comparison of the predicted convection coefficients, listed in Table 1, confirms the 

ability of the SST and γ-Reθ SST models to closely replicate the benchmark DNS predictions. 

Specifically, the SST and γ-Reθ SST values of fh  differ from the DNS model by 13% (V = 0.5 

m/s case) to 18% (V = 1.5 m/s case). In contrast, the κ-ε, RNG κ-ε, and κ-ε EARSM predictions 

are in error by approximately 58% (V = 1.5 m/s case) and 70% (V = 0.5 m/s case). DNS, SST, 

and γ-Reθ SST predictions of cylh are in agreement to within 4% for each case, while the κ-ε, 

RNG κ-ε, and κ-ε EARSM predictions exhibit errors between 41% and 65%. 

 

V = 0.5 m/s V = 1.5 m/s

DNS

SST

hf [W/m2 K]
0 75

hf [W/m2 K]
0 150
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Table 1. Predicted time- and area-averaged fin and cylinder heat transfer 

coefficients predicted using various numerical models. [P1] 

 

As a compromise between cost and accuracy, the SST model is used in the subsequent 

predictions of external convection simulations of Paper P2 (Section 2.4). 

 

2.3. Comparison of analytical models  

  

 Identifying analytical correlations that can approximate the thermal characteristics of the 

various extended and cylindrical (HP) surfaces analyzed for this dissertation is also desirable, as 

they allow for an expedient comparison of the relative performance of the fin arrays. To this end, 

the benchmark study was used as an opportunity to compare the accuracy of various correlations 

to predict the convective heat transfer coefficients associated with the fin and exposed HP 

surfaces.  

The simplest correlation-based approach involves use of existing expressions for (i) 

cylinders in cross flow (Eqs. (14a) and (14b) of Table 2 of Paper P1) and (ii) flat plates in 

parallel flow (Eqs. (14c) to (14e) of Table 2 of Paper P1) to independently estimate cylh and fh , 

neglecting all interaction and coupling between cylinder and fin boundary layer development. A 

more sophisticated approach involves utilization of numerical simulation-based correlations such 

as those of Romero-Mendez et al. [44] for convection from a finned tube, Eqs. (14f) and (14g) of 

Table 2 of Paper P1. (The +S correlation is affiliated with larger fin pitches.) Alternatively, an 

experimentally-derived correlation due to Sparrow and Samie [45] (Eq. (14h) of Table 2 of Paper 

P1) is tested. 

 
V = 0.5 m/s V = 1.5 m/s 

 fh  cylh  fh  cylh  

 
W/m

2
 K W/m

2
 K W/m

2
 K W/m

2
 K 

DNS 12.9 28.9 23.2 50.9 

SST 11.3 29.4 19.1 52.5 

γ-Reθ SST 11.4 29.5 19.2 52.9 

κ-ε 4.84 13.4 9.76 30.0 

RNG κ-ε 3.98 11.3 8.80 23.1 

κ-ε EARSM 3.90 10.2 9.44 23.2 
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Predicted area-averaged heat transfer coefficients for the fin and cylinder surfaces using 

the DNS, SST, κ-ε, and various analytical correlations for the V = 0.5 and 1.5 m/s cases are listed 

in Table 2. Predicted fin heat transfer coefficients, fh , using the three flat plate correlations are 

shown in rows 4 through 6 of Table 2. The Churchill and Bernstein correlation for a cylinder in 

cross flow yields results (see top cylh values in rows 4 through 6 of Table 2) that are within 5.5% 

and 1.4% of the SST predictions (see cylh values in row 2 of Table 2) for the V = 0.5 and 1.5 m/s 

cases, respectively. The Sparrow correlation for a cylinder in cross flow (see parenthetical cylh

values in rows 4 through 6 of Table 2) yields results that are within 0.4% and 0.8% of the SST 

predictions for the V = 0.5 and 1.5 m/s cases, respectively. Both correlations exhibit excellent 

agreement with the DNS and SST predictions.  

 

 
V = 0.5 m/s V = 1.5 m/s 

 

fh  cylh  
toth  fh  cylh  

toth  

 

W/ 

m
2
 K 

W/ 

m
2
 K 

W/ 

m
2
 K 

W/ 

m
2
 K 

W/ 

m
2
 K 

W/ 

m
2
 K 

N
u
m

er
ic

al
 DNS 12.9 28.9 16.0 23.2 50.9 28.7 

SST 11.3 29.4 14.9 19.1 52.5 25.7 

κ-ε 4.8 13.4 6.5 9.8 30.0 13.8 

C
o
rr

el
at

io
n

-b
as

ed
 

Flat Plate Laminar + 

Cylinder 
8.72 

31.0 

(29.5) 

9.20 

(9.17) 
15.1 

53.2 

(52.9) 

15.9 

(15.9) 

Flat Plate Turbulent 

+ Cylinder 
5.31 

31.0 

(29.5) 

5.87 

(5.84) 
12.8 

53.2 

(52.9) 

13.7 

(13.7) 

Flat Plate Transition 

+ Cylinder 
8.43 

31.0 

(29.5) 

8.92 

(8.89) 
16.1 

53.2 

(52.9) 

16.9 

(16.9) 

Romero-Méndez 
 

 8.01 - - 14.1 

Romero-Méndez + S - - 8.35 - - 14.5 

Sparrow and Samie - - 10.8 - - 23.2 

 

Table 2. Numerically- and correlation-predicted time- and area-averaged heat transfer coefficients for Lf = 100 mm. 

Predictions for cyl
h  based on Eq. (14b) of Paper P1 are shown parenthetically. [P1] 
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Predicted time- and area-averaged total array heat transfer coefficients, determined using 

cylh and fh , correspond to a weighted average of both the fin and heat pipe surface areas,

 tot cyl cyl cyl( ) /f f fh h A h A A A   , and are in poor agreement with the benchmark DNS and SST 

values. The top and parenthetical values for toth  are determined using the Eqs. (14a) (Churchill 

and Bernstein [1]) and (14b) (Sparrow et al. [46]) of Paper P1, respectively. Similarly, the 

Romero-Mendez based predictions are in poor agreement with the benchmark. Predictions 

generated with Eq. (14h) of Paper P1 (Sparrow and Samie) show better agreement with the DNS 

and SST predictions, especially for the V = 1.5 m/s case. Therefore, if analytical expressions are 

to be used, the Sparrow and Samie correlation (Eq. (14h) of Paper P1 correlation is 

recommended for fin array geometries and flow conditions similar to those discussed here. Note 

that Paper P1 presents additional results assessing the impact of changes to the fin location and 

size on the ability of the analytical models.  

 

2.4. Coupled internal and external numerical model of a finned heat pipe  

 

2.4.1. Internal and external coupled simulations 

With the SST numerical model identified as the best performing steady state simulation 

of the external airflow around the finned HP (as outlined in Paper P1), numerical simulations 

which additionally incorporate the heat transfer internal to the fins and HP were performed as 

outlined in Paper P2. A novel overall model, consisting of two coupled sub-models (one internal 

and one external), was used to predict the heat transfer performance of the array.  

The internal sub-model describes axisymmetric, multiphase heat transfer and fluid flow 

within the HP. Details of the model, including the descriptive equations, are available in Sharifi 

et al. [28].  This model utilizes the thermal resistances external to the heat pipe, inferred from the 

second sub-model, as boundary conditions.  In the second, external sub-model, the 3D single 

phase convection external to the HP condenser section is predicted using the SST modeling 

approach. Conduction within the fins and walls of the HP is included, and the transport of latent 

thermal energy via the complex phase change process associated with the HP working fluid is 

approximated by assigning an effective thermal conductivity to the vapor region of the HP in the 

external simulations. Further details of the external simulation may be found in Paper P2.  
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Fig. 7. Coupling of the internal (2D HP) and external (3D SST) numerical models. [P2] 

 

The SST (external) and HP (internal) sub-models are coupled as diagrammed in Fig. 7. 

The overall simulation is initialized by first solving the steady-state, 3D, SST model. Upon 

convergence, the area-averaged convection heat transfer coefficients for the fins, fh , and the 

exposed HP condenser wall surfaces, wh , are determined from the predicted values of the SST 

model.  

Step 1 of the iteration between the two sub-models involves prediction of the HP heat 

rate, Qhp,3D, using the external SST model and an assumed value of keff,v. Predicted heat rates and 

temperature differences across the HP (T) are saved for comparison to corresponding quantities 

predicted by the 2D internal HP model. In Step 2, values of wh and fh  predicted by the 3D SST 

external model are used in the 2D internal HP model. Values of the heat rate, Qhp,2D , and average 

temperature difference T2D are then obtained from the internal model. If 2T D≉ 3T D , a new 

value of effective thermal conductivity of the vapor is specified, and Steps 1 and 2 are repeated 

until  3D 2D 2D 0.02T T T    . A comparison of the final predicted values of the HP heat rates 

obtained by the 2D (internal) and 3D (external) models, Qhp,2D and Qhp,3D respectively, is used as 

a check of the overall modeling strategy.   

 

2.4.2. Coupled model results 

Comparisons of experimentally measured and numerically predicted (both 2D internal 

and 3D external) heat rates are reported in Table 3 for 8 cases consisting of all combinations of 

two velocities, two fin counts, and two excess temperatures. Also included in the table are the 

converged values of the effective vapor thermal conductivity and the heat transfer coefficients on 

the cylinder and fin surfaces. 

3D SST 
Yes

No

Adjust keff,v

End2D HP

Start

Set inputs

V, T∞

Te

N

keff,v

Is ΔT2D ≈ ΔT3D?
, wf

h h 

Heat rate, Qhp,3D

ΔT3D = Te – Tc

Heat rate, Qhp,2D

ΔT2D = Te – Tc
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Table 3. Conditions (left) and predicted values (right) for parametric calculations. [P2] 

 

the cylinder and fin surfaces. Predicted (2D and 3D) heat rates within 7 percent of the average of 

the two heat rates for all cases considered. Measured heat rates are consistently lower than 

predicted heat rates (an average discrepancy of 10 percent). This discrepancy may be attributed 

to contact resistances between the HP and the fins that are not accounted for in either (SST or 

HP) model.  

Predicted (SST) and measured local fin temperatures (for the top surface of the upper 

square fin) are reported in Fig. 8 for a representative case. The minimum fin temperature shown 

for the measurements is Tmin ≈ 37.5ºC and occurs at the outer leading edges of the square fin, 

while maximum temperatures (Tmax ≈ 56.0ºC) occur at the fin root. The minimum and maximum 

SST-predicted temperatures occur at the same locations and are Tmin = 37.7ºC and Tmax = 56.2ºC, 

respectively. Advective effects are evident in both the measured and predicted temperature 

distributions, but regions closer to the fin root have a more uniform temperature distribution in 

the azimuthal direction. The nearly axisymmetric temperature distribution near the base of the fin 

gives further credence to the 2D modeling of the HP taken here. 

Predicted temperature distributions along the length of the HP wall for both N = 3 and N 

= 6 fins ( eT = 60ºC, V = 1.5 m/s) are shown in Figs. 9(a) and 9(b), respectively, for both the 2D 

and 3D simulations of the coupled model. Both figures also include predicted temperature 

distributions for N = 0 for purposes of comparison. All simulations involve a HP evaporator 

temperature of 60ºC and an ambient air temperature of 25ºC. Significant temperature depressions  
 

Input parameters Predicted values 

N  
V  eT  ,vkeff  

wh  fh  Qhp,3D Qhp,2D expQ  

m/s °C W/m K W/m
2
 K W/m

2
 K W W W 

3 

0.5 
34.5 47,500 28.5 10.7 4.4 3.8 4.1 

60 52,000 28.5 10.7 15.9 14.8 15.4 

1.5 
34.5 39,000 55.3 20.3 6.0 5.5 5.0 

60 63,000 55.3 20.3 23.1 20.7 19.3 

6 

0.5 
34.5 35,000 26.3 11.0 7.6 6.9 5.9 

60 64,000 26.5 11.0 29.9 26.6 26.5 

1.5 
34.5 32,000 51.2 19.5 10.4 9.2 7.3 

60 70,000 51.5 19.5 42.0 37.0 36.3 
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Fig. 8. Predicted (upper half) and measured (bottom half) fin top 

surface temperature distribution for V = 1.5 m/s (left to right): Te = 

60ºC, N = 6. See Section 4.2 of Paper P2 for isotherm values. [P2] 

 

 

Fig. 9. Predicted HP wall temperature distributions (r = rhp) for Te = 60ºC. (a) N = 3, (b) N = 6. [P2] 
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exist within the HP wall adjacent to the fin roots. The depressions are a result of the interplay 

between the external convection processes, conduction within the fins, and multimode heat 

transfer within the HP. Depressions predicted by the 2D model are consistently larger than those 

for the 3D model. This may be attributed to the approximate treatment of the heat transfer within 

the HP vapor region in the 3D model which is unable to replicate, for example, variations in 

local condensation rates internal to the HP and, in turn, the correspondingly high local heat 

transfer rates adjacent to the fin roots. It is well known that increased constriction resistances are 

associated with large temperature depressions of the type noted here [1]. These resistances will 

increase the overall thermal resistance of the HP system, and reduce the HP heat rate predicted 

by the 2D model relative to those predicted by the 3D model, consistent with the results of Table 

3. To the author’s knowledge, this constriction resistance effect has not been previously reported 

in HP-related research. 

 

2.4.3. Comparison to experimental measurements 

Values of Qhp,2D and Qhp,3D determined from the coupled numerical model of Paper P2 

are compared to experimentally measured heat rates for validation. The experiments involve a 

copper-H2O HP whose condenser fin array is cooled by forced convection of air, as shown in 

Figs. 3 and 4 of Paper P2. Heat rates predicted by the 2D HP and 3D SST models, along with 

measured heat rate values, are reported graphically in Fig. 10 for N = 3 and 6 fins, T∞ = 25ºC, 

and a range of convective conditions. As evident, heat rates increase as N, eT , and V are 

increased, with general agreement between the heat rates that are predicted and measured. 

 

 

 
Fig. 10. Heat transfer rates versus HP exterior evaporator wall temperatures for 

different inlet air velocities. (a) N = 0, (b) N = 3, (c) N = 6. [P2] 
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2.5. Contact resistance and HP thermal resistance model 

 

 The complex interaction of local condenser section heat rates and the internal HP 

mechanics, described in conjunction with Fig. 9, are investigated further in Paper P5. The 

condenser section boundary conditions of the internal HP model of Paper P2 are written to 

accommodate the potential thermal contact resistances at the fin-HP interface. 

 As discussed in the preceding section, the increase in local condensation rates at the HP 

wick adjacent to the fin roots leads to a (previously unreported) temperature depression in the HP 

wall. This temperature drop reflects a thermal constriction resistance. Paper P5 compares heat 

transfer rates for (i) individual fin arrays and (ii) a finned HP-heat sink, which has additional 

base material concentrically attached to the HP. The hypothesis is that inclusion of a base 

material on the fin (the HP-heat sink) will reduce thermal depressions in the HP wall, making 

condensation rates more uniform within the HP, and extending the range of the operation of the 

HP by avoiding the condensation limit [20] beyond which local condensation rates cannot be 

increased.  

For similar operating conditions, the HP-heat sink typically provides lower overall 

thermal resistances than the fin array without the heat-spreading base material. This is due to the 

mitigation of the constriction resistance by allowing for a larger amount of heat to reach the fin 

root by way of axial conduction. The impact of a thermal contact resistance between the HP and 

the two array designs is also investigated, finding that the plain fin array is more sensitive to a 

change in the thermal contact resistance than the fin with base array. 

 In addition to the numerical modeling, Paper P5 presents a thermal resistance model of 

the HP. This model allows for the approximation of the HP thermal resistance, and was 

employed in the analysis of Papers P3 and P4.   

 
 

  



21 

 

 

The metal foam array (Paper P3)          3 

  

 

3.1. Introduction and background 

 

 As discussed in Section 1, open-cell high-porosity metal foams have many potential heat 

transfer applications, due to their extremely large surface areas per unit volume [47-49]. Large 

surface areas typically lead to low thermal resistances, making the prospect of metal foam (as 

opposed to metal fins) arrays attractive for application in HP systems. Heat transfer within a 

metal foam (depicted in Fig. 11) is complex, consisting of conduction within the metal 

component, convection between the metal and the saturating working fluid, and potentially 

radiation throughout the fluid domain.  

Numerous efforts have been made to model the heat transfer processes using both multi-

phase local, and continuum approaches. Local multi-phase analyses are often performed with the 

intent of informing continuum scale models through the quantification of effective thermal 

transport properties. Analytical [50-52] and numerical [53-59] models of idealized unit cells 

have been used to derive correlations describing foam properties that are necessary for 

continuum modeling [60-68].  
 

 
Fig. 11. Photograph of 10 PPI aluminum Duocel® foam. [P3] 

0 10(mm)

(a)
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 In Paper P3, (i) a continuum-based, analytical description for conduction and forced 

convection heat transfer within an annular porous matrix attached concentrically to a circular 

tube, reported in terms of a thermal efficiency, is developed, (ii) a continuum-based numerical 

model is used to develop a semi-analytical expression for the thermal efficiency of a cubical 

porous block attached on-center to a circular tube, and (iii) the thermal behavior predicted with 

the semi-empirical expression is compared to experimental measurements. 

 

3.2. Analytical model of annular porous array 

 

Consider a cool, ambient fluid that is forced through an open-cell, annular metal foam 

block that is attached to the exterior of a hot cylindrical tube (or heat pipe), as illustrated in Fig. 

12(a). Consistent with standard fin analyses [1], steady, one-dimensional conduction heat 

transfer in the radial direction is assumed. In addition, the block is taken to be isotropic with 

constant properties, and both (i) radiation heat transfer and (ii) heat transfer in the radial direction 

at r = r2 are assumed to be negligible. The fluid flow within the porous material is assumed to 

provide a uniform convection coefficient between the fluid and solid phase, and is described by a 

characteristic temperature, that is either (i) that of the ambient fluid (as in the analysis below) or 

(ii) an appropriate log-mean temperature (as in a the comparison of model predictions with 

experimental results to be discussed later). Conduction within the gas can be shown to be 

negligible for the porous medium and fluid of interest here, and is neglected. 

 
Fig. 12. Description of the 1D annular analytical domain. (a) overall 

domain, (b) annular control volume energy balance. [P3] 
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Applying conservation of thermal energy to a radial differential element within the 

porous cylindrical block, as illustrated in Fig. 12(b), ultimately yields 

2
2

2

1
0 

d d
m

dr r dr

 
      where    2

,eff

v

s

h
m

k


          (6)   

Here, αv is the specific surface area (surface area per unit volume) of the porous medium and ks,eff 

is the effective thermal conductivity of the solid phase. The heat transfer coefficient within the 

medium, h , represents the spatially averaged value of the local heat transfer coefficient, h, at the 

metal-fluid interfaces. The excess temperature is θ(r) ≡ T(r) − T∞. When solved under the 

boundary conditions of (i) constant base temperature, θ(
1r ) = θb, and (ii) adiabatic behavior at the 

outer radius of the annular block,  
2

  0
r

d dr  , expressions for the annular porous matrix heat 

rate and porous matrix efficiency for the annular block may be written as 
 

 
   
   

1 1 1 2 1 1 1 2

1 , eff 1

0 1 1 2 0 1 1 2

( ) ( )
2

( ) ( )
s b

K mr I mr I mr K mr
q r k rt m

K mr I mr I mr K mr
 





           (7) 

and 

 
   

   
1 1 1 2 1 1 1 21

2 2
0 1 1 2 0 1 1 22 1

( ) ( )2

( ) ( )
a

b

K mr I mr I mr K mrr

K mr I mr I mr K mrm r r






 
   

  
                 (8) 

respectively. The porous matrix efficiency, a, is analogous to the traditional fin efficiency [21] 

and leads to an expression for the equivalent thermal resistance associated with the combined 

conduction and convection processes within the foam, 

 
   , 2 2

1 2 1

1 1b
f a

s a v a

R
q r A h t r r h



   
  


             (9) 

Correlations for determining αv, ks,eff, and h in open-cell metal foams are provided in Section 2.2 

of Paper P3.  

 

3.3. Numerical model for annular and square arrays 

 

 In order to extend the application range of the annular correlations of Section 3.2, 

numerical analysis of both annular and square array geometries were performed
2
 using a   

 

               
2
 Metal foams are commercially available in rectangular block forms with a square footprint, suggesting the 

relevance and importance of extending the preceding analysis for the annular block to square geometries.  
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Fig. 13. Numerical domains for the (i) annular and (ii) square geometries. [P3] 

 

 

consistent set of assumptions as described for the preceding analysis, with the exception that the 

numerical simulations include 3D effects. The predicted efficiencies associated with the two 

foam geometries of Fig. 13
3
 were then compared over a range of square block lengths (Lsq), 

annular block radius ratios (r2/r1), and porous matrix constants (m) as defined in Eq. (6), in order 

to describe the square block behavior with expressions for the thermal efficiency and resistance. 

Both geometries are described in terms of a common outer lateral dimension of r2 = Lsq/2 

and common thickness, t. Heat transfer within each domain is governed by a two-temperature 

porous model [69], which describes both the moving fluid (air) within the porous medium, and 

the solid component of the medium (aluminum). Heat transfer and fluid flow within the air are 

governed by conservation of energy, Eq. (10), conservation of mass, Eq. (11), and conservation 

of momentum, Eqs. (12a - 12c). Momentum conservation is described by the Brinkman-

Forchheimer-extended Darcy model [69], which includes both pressure loss terms associated 

with the Darcy coefficient (K) and second order losses (Kloss), as calculated using the correlations 

provided by Calmidi [70].  

 

 

 

               

3
 Symmetry is taken advantage of in the numerical modeling, resulting in the 45° computational domains for the (i) 

annular and (ii) square block cases of Fig. 13.  
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Heat transfer in the solid domain is governed by conservation of energy 
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                         (13) 

where the heat transferred between the two media is represented by 

    sf fs v s fTq q h T                (14) 

The convection coefficient and the specific surface area (associated with the exposed surface 

area of the solid, shown in Fig. 11) are calculated as described in Section 2.2 of Paper P3.  

Both the solid and gas domains are subject to a common base temperature of Tb at r1. 

Adiabatic conditions are applied to both the solid and the gas at the outer edges of the two blocks 

in order to be consistent with the annular domain analysis, while symmetry conditions are 

assumed along the thin, vertical faces at θ = 0° and 45° (45° and 90°) for the annular (square) 

domain of Fig. 13. Additional boundary conditions are listed in Paper P3. 

 

3.4. Experiments 

 

 Experiments were conducted to both validate and demonstrate usage of analytical 

expressions for the efficiency of a square porous matrix, to be developed in Section 3.5. A flow 

channel similar to the one described in Paper P2 was used to generate benchmark data. An 

electrically heated heat pipe (HP) of cylindrical cross section is used to deliver thermal energy to 

the bases (at r = r1) of four, stacked square porous block structures which surround the condenser 

section of the HP. The heat is ultimately transferred to cold air drawn through the channel and 
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porous metal blocks. The channel is similar to (but smaller than) that of Fig. 4 of Paper P2. 

Details of the experimental setup are provided in Paper P3.  

Detailed information regarding measurement of local temperatures, local and average 

channel air velocities, as well as the calibration and validation procedures may be found in Paper 

P2. Measured heat rates are compared with predictions generated using the new expression for 

the thermal efficiency of the square foam block that is developed in Section 5.2 of Paper P3.  

 

3.5. Results and discussion 

 

3.5.1. Analytical versus numerical models 

 Numerically predicted porous matrix efficiencies for the annular porous block are first 

compared to the analytically derived efficiency provided in Eq. (8) for validation purposes over 

the ranges 0.001 ≤ mLc ≤ 2.5 and 1.2 ≤ r2/r1 ≤ 10.  

Analytically determined (lines) and numerically predicted values (circles) of the porous 

matrix efficiencies for the annular block are shown in Fig. 14(a). The efficiency decreases as 

either mLc or r2/r1 increases, in a manner similar to the efficiency behavior of solid, annular fins 

[1]. Over the entire ranges of mLc and r2/r1 used to generate Fig. 14(a), the mean difference 

between the analytically determined and numerically predicted efficiencies is less than 0.05%.  
 

 

Fig. 14. Analytically- and numerically predicted porous matrix efficiencies versus mLc. (a) annular analytical and 

numerical predictions for r2/r1 = Lsq/(2r1) =  1.2, 1.5, 2, 3, 5, 7.5, and 10, (b) predicted efficiencies for r2/r1 =  

Lsq/(2r1) =2, (c) predicted efficiencies for r2/r1 = 5, (d) predicted efficiencies for r2/r1 = Lsq/(2r1) = 10. [P3] 

(a)2

1 1

1.2
2

fLr

r r
 

1.5

2 3
5

7.5

10Analytical

Numerical

(b)

2

1 1

2
2

sqLr

r r
 

Annular

Analytical

Square

(c)

2

1 1

5
2

sqLr

r r
 

Annular

Analytical

Square

(d)

2

1 1

10
2

sqLr

r r
 

Annular

Analytical

Square



27 

 Representative numerically predicted porous matrix efficiencies for annular and square 

blocks are shown in Figs. 14(b) through 14(d). The predictions were generated using the same 

mLc and r2/r1 ranges as in Fig. 14(a), but with r2 replaced by Lsq/2 when square blocks are 

considered. As evident, the annular block efficiencies are consistently higher than those of the 

square blocks at any given mLc value. This is expected due to the relatively low local heat fluxes 

in the corner regions of the square block, reducing their efficiency relative to that of the annular 

blocks.  

 

3.5.2. Extension to square arrays 

One of the primary contributions of Paper P3 is the development of an explicit 

mathematical expression for the efficiency of square foam blocks attached on center to circular 

tubes or HPs. The development involves extension of the analytical model. Annular and square 

results were compared for various r2/r1 (or Lsq/(2r1)) over the range 0.001 ≤ mLc ≤ 2.5.  

As noted in Fig. 15(a), ηsq/ηa → 1 with both efficiencies approaching unity as mLc → 0. 

Conversely, as mLc increases, the ratio of volume-weighted efficiencies (V) will approach unity 

(as shown in Fig. 15(b)), because the heat rates of the arrays converge as the additional material 

in the corners of the square array approaches the fluid temperature. This collapse of volume-

weighted efficiencies to similar values for mLc   2.5 is consistent with infinite fin behavior 

exhibited for mLc   2.5 for traditional fins [1]. 

 Since ηsq/ηa → 1 at small mLc, and (sqVsq)/(aVa) → 1 at large mLc, analytical 

expressions for the annular porous block may be applied to the square block to determine the 

square block efficiency at small and large mLc using sq/a and (sqVsq)/(aVa), respectively. In 

Paper P3, this limiting-case behavior was leveraged to create an expression which is valid over 

the entire range of mLc by making use of a function that employs K0(mLc) to appropriately 

weight the desirable behavior of the efficiency and the volume-weighted efficiency ratios, as 

shown in Fig. 15(c). The recommended analytical expressions, derived in detail in Paper P3, to 

determine the porous matrix efficiencies of both annular and square blocks are listed in Table 4. 

Also shown are the recommended ranges of application as well as the average and maximum 

discrepancies between the analytical values and numerical predictions. Analytically predicted 

efficiencies for the square array are compared to corresponding numerical predictions in Fig. 

15(d), yielding errors of less than 1% for the investigated cases. 
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Fig. 15. Relationship of analytically- and numerically predicted porous matrix efficiencies versus mLc. 

(a) ratio of square to annular efficiencies, (b) ratio of square to annular volume-weighted 

efficiencies, (c) scaled Bessel function from Eq. (20) for various r2/r1 = Lsq/(2r1), (d) square 

semi-analytical and numerical predictions for Lsq/(2r1) = 1.2, 1.5, 2, 3, 5, 7.5, and 10. [P3] 
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Table 4. Recommended expressions for the porous matrix efficiencies of annular and square porous blocks; 1.5 ≤ 

r2/r1 = Lsq/(2r1) ≤ 10. [P3] 
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3.5.3. Comparison of predicted and measured heat rates  

 The expression for the square foam efficiency was also employed to predict 

corresponding experimentally measured heat rates. Predicted and measured heat transfer rates are 

reported in Fig. 16. The agreement between the predicted and measured heat rates is, on average, 

within 3%, and is considered to be excellent.  

 

 

Fig. 16. Experimentally measured and semi-analytical predicted heat rates for a square 

porous matrix under various ambient velocity and thermal conditions. [P3] 

 

 

Hence, the performance of (i) the novel annular continuum model for the foam efficiency and (ii) 

the subsequent extension to the square array are confirmed.  

Importantly, because the forms of the governing one-dimensional heat equation (Eq. (6)) 

and boundary conditions for the annular foams considered here are identical to those of a thin, 

solid annular fin with an adiabatic tip available in undergraduate textbooks [1], the extension 

methodology developed in this study may also be applied to well-known expressions for the 

thermal efficiency of an annular thin fin [1] to thin fins of square shapes attached on-center to 

cylindrical tubes.  
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The combined fin-foam array (Paper P4)        4 

 

 

4.1. Introduction and background 

 

The low thermal resistances per unit volume associated with the open-cell, high-porosity 

metal foams discussed in Chapter 3 (due to the large surface area per unit volume) is beneficial 

for designing thermal systems. Several thermal management devices comprised of both metal 

foam and solid metal fins have been proposed [71-82].  

A combination of the fin (Chapter 2) and the metal foam (Chapter 3) arrays is 

investigated in Paper P4, where it is sought to take advantage of the (i) low convective resistance 

of the foam and (ii) low radial conduction resistance of the fin. In doing so, a novel, approximate 

analytical model is developed and tested against corresponding experimental measurements. 

 

4.2. Analytical model of combined fin-foam array 

 

An approximate analytical model of the composite annular fin-foam array shown in Fig. 

17(a) is developed to predict thermal efficiencies, resistances and heat rates when experiencing 

convective cooling (or heating) in a similar manner to the foam-only array of Paper P3. The 

model approximates the three-dimensional conduction and convection heat transfer in a manner 

that builds upon a standard annular fin analysis [1].  

The analysis is performed for a representative axial segment of a composite fin-foam 

array, of characteristic unit pitch S, as shown in Fig. 17(a). A number of assumptions, consistent 

with those of Paper P3 are employed, and are the same as those listed in Section 3.2 unless 

otherwise noted.  
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 Assuming one-dimensional conditions in the radial direction, application of conservation 

of thermal energy to a differential radial element, shown within the fin (of thickness t) of Fig. 

17(b) yields (see Paper P4 for further detail) 
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where the excess fin temperature is  fn fnT r T   . An effective fin thermal conductivity, kfn,eff 

> kfn (where kfn is the molecular thermal conductivity of the fin material), and overall heat 

transfer coefficient, U, are used in Eq. (15). As detailed in Section 2.2 of Paper P4, kfn,eff is 

applied to the fin of thickness t, but accounts for radial conduction in both the solid fin and solid 

foam matrix. In a similar manner, the overall coefficient, U, accounts for (i) convection from the 

portions of the fin surface that are exposed directly to the fluid and (ii) conduction from the 

surface of the fin to the solid foam through a potential thermal contact resistance. Heat transfer to 

the solid foam by conduction from the fin is ultimately transferred to the fluid by convection.  

Applying radial boundary conditions of (i) constant base temperature, θ(
1r ) = θb, and (ii) 

adiabatic behavior at the outer radius of the array,  
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d dr  , to Eq. (15) leads to 

expressions for the fin efficiency 
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and the thermal resistance of the fin  
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Fig. 17. Description of the annular analytical domain. (a) overall domain, (b) annular control volume 

energy balance, (c) thermal resistance network for overall heat transfer coefficient. 
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 Heat transfer by convection also occurs at the exposed surface of the cylinder (r = r1) that 

is not in contact with the solid foam matrix and is represented as 

 conv,cyl

cyl cyl 1 cyl

1 1
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A h r S t h  
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
           (18) 

where the convection heat transfer coefficient is determined as discussed in Section 2.4 of Paper 

P4. The overall resistance to heat transfer in the radial direction at r = r1 for a representative unit 

pitch of the array is therefore given by  
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or, for an array with N number of repeating pitches 
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In order to employ this model as a predictive tool, several sub-calculations must be 

performed. Correlations for the determination of the surface area per volume (αv), the contact 

resistances between the foam and either fin ( ,t c ffR 
 ) or base of the fin ( ,t c bR 

 ), as well as the 

convection heat transfer coefficients associated with the exposed foam ( fmh ), fin ( fnh ), and 

cylinder ( cylh ) surfaces are provided in Section 2.4 of Paper P4. The effective thermal 

conductivity of the fin, kfn,eff, is determined by equating its corresponding radial thermal 

resistance to the radial thermal resistance posed by conduction in the fin and foam as detailed in 

Section 2.2 of Paper P4.   

 The overall fin heat transfer coefficient, U, is defined in Section 2.3 of Paper P4 to 

account for heat transfer at the upper and lower fin surfaces, which occurs by (i) conduction to 

the solid phase of the foam (after passing through a potential contact resistance) and (ii) direct 

convection to the fluid, as diagramed in Fig. 17(c). Heat transfer into the foam by conduction is 

then passed to the fluid by convection from the exposed surface area of the metal foam. The axial 

conduction and convection within the foam is approximated as if it were a Cartesian extended 

surface (of thickness dr and length (S-t)/2) attached to the fin as shown in the dark shaded region 

of Fig. 17(b). This treatment is similar to that of Paper P3, and has been taken elsewhere [61-63]. 

Detailed, explicit instructions for implementing of Eqs. (19) or (20) are provided in Section 2.5 

of Paper P4.  

 

 

 



33 

4.3. Results and discussion 

 

4.3.1. Comparison of predicted and measured heat transfer rates 

 Experiments were performed to validate the novel approximate analytical model of the 

combined fin-foam array. The experimental apparatus is identical to the one used in Paper P3, 

except for the addition of N = 2 aluminum fins (same as those used in the experiments of Paper 

P2). The electrically heated heat pipe (HP) of cylindrical cross section is used to deliver thermal 

energy to the bases of two equal fin-foam unit-pitches, as shown in Fig. 2(a) of Paper P4. The 

heat is dissipated to the air drawn through the channel and fin-foam array. Further details of the 

experimental setup are provided in Papers P2 and P3.  

 Predictions using Eq. (20) and the methodology of Section 2.5 of Paper P4 are modified 

to account for one (i) the expected temperature rise of the channel air through a LMTD analysis 

and (ii) the square outer dimension of the array by the extension detailed in Section 3.5.2. A 

detailed description of these modifications and the resulting expression for predicted heat rate 

may be found in Section 3.2 of Paper P4. Predictions using the detailed, step-by-step procedure 

of Section 3.2 of Paper P4 were compared with experimentally measured heat rates for three 

average velocities and four excess temperatures, as displayed in Fig. 18. The relatively good 

agreement between the measurements and predictions confirms the efficacy of the proposed 

analytical model for the conditions considered here. 

 

 

Fig. 18. Experimentally measured and predicted heat rates for a square fin-foam array 

under various ambient velocity and thermal conditions. Error bars on the 

experimental data points are of approximately the same size as the symbols and are 

not shown. 

Analytical Experimentalu∞

0.4 m/s
1.7 m/s
3.0 m/s
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4.3.2. Parametric simulations 

 Once validated through comparison with experimental measurements, the model was 

exercised to determine the dependence of predicted heat rates to key parameters. Discussions of 

the sensitivity of the combined array to the thermal contact resistances (
,t c ffR 
  and 

,t c bR 
 ), array 

radius (r2/r1), and the fin thickness (t) may be found in Sections 4.2.1, 4.2.2, and 4.2.3 of Paper 

P4, respectively. These investigations yield results which are consistent with physical 

expectations, further demonstrating the capability of the newly developed model.   
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Conclusions and recommendations          5 

 

 

5.1. Comparison of fin, foam, and composite fin-foam arrays  

 

With the successful identification and development of expressions for the determination 

of thermal resistances of the three types of extended surfaces established, the primary objective 

of this dissertation has been met. While the scope of this research is focused on obtaining 

correlations describing the heat transfer performance of the (i) fin (Chapter 2, Paper P1), (ii) 

foam (Chapter 3, Paper P3), and (iii) combined fin-foam (Chapter 4, Paper P4) arrays, it is 

desirable to generate preliminary comparisons of the relative thermal performance for systems 

involving the various extended surfaces. In this discussion, the dimensions, materials, and 

temperatures of Section 4.2 of Paper P4 are employed, but with the fin replaced by foam for the 

foam-only case, and with the foam removed for the fin array case. Heat transfer from the bare 

cylinder, corresponding to convection from a cylinder in cross flow where the convection heat 

transfer coefficient is determined using the correlation of Sparrow et al. [45], is also considered. 

Analytical predictions for the finned HP are made in a manner consistent with those presented in 

Section 2.3 (Paper P1). Predicted heat rates for the foam-only case are made using the 

methodology described in Section 3.2 (Paper P3). 

 Predicted heat transfer rates corresponding to a base temperature of 60ºC and ambient 

temperature of 25ºC are reported in Fig. 19(a) (and in more detail in Fig. 19(b)) for the velocity 

range 0.1 ≤ u∞ ≤ 10 m/s. Heat rates are highest for the combined fin-foam foam array, followed 

by those of the foam-only and then the fin arrays, respectively. The smallest heat rates 

correspond to the bare cylinder, as expected. A comparison of the relative performance of the 

two foam-based configurations when normalized to those of the fin array case is made in Fig. 

20(a). For the velocity range 0.1 ≤ u∞ ≤ 10 m/s, the predicted heat rates for the combined fin-

foam array (foam array) are, on average, 4.8 (3.8) times larger than those associated with the fin  
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Fig. 19. Predicted heat rates for equal lengths of a (i) bare cylinder, (ii) finned cylinder, (iii) foam array, 

and (iv) composite fin-foam array versus u∞. (a) for 0 ≤ u∞ ≤ 10 m/s, (b) for 0 ≤ u∞ ≤ 0.5 m/s. 

 

 
 

array. Alternatively, the thermal resistances associated with the various configurations may be 

normalized relative to those of the fin array and are reported in Fig. 20(b) where each resistance 

is defined as (Tb−Tlm)/q.  

 It is clear from the preliminary comparison of the arrays that improved thermal 

performance may be attained using either the foam or the combined fin-foam arrays as compared 

to traditional fins. However, the improvement in thermal performance is likely associated with 

appreciable increases in the fan power needed to drive the cooling air flow through the foam. 

The ultimate choice of which extended surface configuration to employ in a HP system will 

require a more nuanced investigation than presented here. 

 

 
 

Fig. 20. Predicted heat transfer rates and thermal resistances normalized to the fin array case.     

(a) heat rate ratios for 0 ≤ u∞ ≤ 10 m/s, (b) thermal resistance ratios for 0 ≤ u∞ ≤ 10 m/s. 
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5.2. Conclusions and recommendations   

 

 Over the five published articles that constitute this dissertation, several key contributions 

to the field are identified. The major outcomes of this research effort include: 

  

•    Through the use of the benchmark DNS study of Paper P1, the SST turbulence model and 

the Sparrow and Samie [45] analytical model are shown to be the perferred turbulence 

and analytical models, respectively, for the prediction of convection heat transfer 

associated with a finned cylinder. Adding this information to the literature will allow 

future practitioners and researchers to choose the appropriate models with confidence. 
 

•    The coupled numerical model of Paper P2 details a novel numerical solution for the 

prediction of heat transfer from a finned HP which incorporates (for the first time) 

descriptions of the detailed internal and external heat transfer processes. Again, this may 

be leveraged by practitioners and researchers who seek to accurately model such systems. 

Experimental validation of the numerical model confirms its performance.  
 

•    A constriction resistance that affects local condensation rates within a HP at the wick 

(adjacent from fin roots) is, for the first time, identified in Paper P2, and investigated 

further in Paper P5. Designing HP-based thermal systems requires knowledge of physical 

HP operational limits, making the identification of a previously unreported limiting 

behavior valuable.  
 

•    Novel expressions for the thermal resistances associated with foam (Paper P3) and 

combined fin-foam (Paper P4) arrays have been developed. These expressions will allow 

for a broader study on the relative performance of the various extended surfaces and 

enable practitioners to design novel thermal management devices.     
 

•    A correlation for the thermal efficiency of a foam array of square outer bounds is 

developed in Paper P3.  Importantly, this expression, which allows results generated for 

annular fins attached to a cylindrical HP or tube to be extended to fins of square 

planform, may also be employed for uniform-thickness fins or composite fin-foam arrays.   
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 During the course of meeting the objectives of this dissertation, several topics for future 

investigation have been identified.  

 While Paper P1 determined the preferred correlation for the prediction of heat transfer 

from a finned cylinder, even the best performing expression still yielded an error of more than 

10% in comparison to the benchmarks. Further numerical or experimental work to develop an 

improved correlation for convective heat transfer from a finned cylinder would be valuable. This 

dissertation does not investigate vortex generating fin surfaces, which may allow for improved 

thermal performance in fin arrays. Also, characterization of multi-row thermal systems may yield 

differing performance results, and may be considered in possible HP system designs. The 

coupled model of Paper P2 produces excellent agreement with experimental results, but may 

possibly be limited by approximating the internal heat transfer as 2D. Axisymmetric phenomena, 

such as tilting to off-vertical configurations [83], has been shown to impact thermal performance, 

and accordingly, it may be beneficial to develop a finned HP numerical model consisting of 3D 

internal and external modeling to account for such complexities. 

 The developed expressions describing heat transfer for foam and the fin-foam arrays were 

compared to a selection of numerical and experimental results for validation; however, an 

investigation into the performance of these models over a much larger array of parameters would 

be of great value. Clearly identifying the range of application for various parameters would allow 

practitioners and researchers to employ the correlations with a greater degree of confidence.  

 Finally, there is much more research that could be carried out toward the relative 

performance of the fins, foam, and combined fin-foam arrays. The ultimate objective for this 

dissertation is the development of the expressions which allow for the comparison of thermal 

performance, but there are a multitude of considerations which may impact the relative array 

performance for each individual case. Future research comparing the performance of various 

geometries, flow conditions, and excess temperatures for the various extended surfaces may be 

necessary, as it is unknown if the relative array performance will be consistent throughout such 

changes. Further, use of these arrays in real world applications requires considerations beyond 

just thermal performance. The larger pressure drops (and resulting fan powers) and capital costs 

associated with metal foams must be considered. Ideally, hydrodynamic and economic models 

could be employed in unison with the thermal models developed herein to produce a more 

complete analysis of the benefits and tradeoffs of each type of array.  
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Abstract 

 Novel expressions are developed for the thermal resistance associated with an array 

consisting of periodic layers of metal fins and open-cell, high porosity metal foam attached 

annularly to a base cylinder. Predictions generated with the new expressions are verified by 

comparison with experimental measurements involving such an array and a cylindrical heat pipe. 

Parametric simulations are performed to assess the performance of the array over a range of 

geometric configurations, thermal contact resistances, and air velocities. Analytically predicted 

heat rates for an annular fin array, a foam-only annular array, and the new combined fin-foam 

array are compared, illustrating the improved thermal performance made possible by combining 

metal fins and foam into a composite array.  

 

 

 

 

 

 

Keywords 

Metal Foam; Porous Media Convection; Fin and Foam Array; Heat Pipe 
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Nomenclature  

A  area (m
2
) 

cp  specific heat at constant pressure (J/kg K) 

D  diameter, unit cell length (m) 

h  convection coefficient (W/m
2 

K) 

H  height (m) 

k  thermal conductivity (W/m K) 

L  length (m) 

mfm  porous matrix constant (m
-1

) 

mfn  fin constant (m
-1

) 

m    mass flow rate (kg/s) 

N  number of unit pitches 

Nu  Nusselt number 

Pr  Prandtl number 

PPI , PPM pores per inch, pores per meter (m
-1

) 

q  heat rate (W) 

r, z  coordinate directions  

r1, r2  inner radius, outer radius (m) 

r , r    geometric constants 

R  thermal resistance (K/W) 

R   area based thermal resistance (m
2
 K/W) 

Re  Reynolds number 

S  unit pitch (m) 

t  fin thickness (m) 

T  temperature (°C) 

u  velocity (m/s) 

U  overall heat transfer coefficient (W/m
2 

K) 

W  width (m) 

Greek  

αv  surface area per unit volume (m
2
/m

3
) 

ε  porosity 
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η  porous matrix efficiency 

θ  excess temperature (˚C) 

 

Superscripts 

   average 

 

Subscripts 

app  apparatus 

b  base, bottom 

c  cell, characteristic, condenser 

ch  channel 

cond  conduction 

conv  convection 

cyl  base cylinder 

e  evaporator 

eff  effective 

f  fiber, fluid 

ff  composite fin-foam 

fm  foam 

fn  fin 

hp  heat pipe 

hs  heat spreader 

i  insulation 

in  insert 

lm  logarithmic mean 

max  maximum 

p  pore 

r  radial 

s  solid, surface 

sq  square  

S  per unit pitch 
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t  top 

t,c  thermal contact 

tc  thermocouple 

tp  thermal paste 

tot  total 

∞  ambient 

 

1. Introduction  

Open-cell, high-porosity metal foams have many possible heat transfer applications due 

to their large surface area to volume ratios [1-4]. As a result, metal foams are generally 

associated with low thermal resistances per unit volume; however, they also exhibit low effective 

thermal conductivities due to their high porosities. When employed as an extended surface, these 

factors contribute to relatively large temperature gradients in the foam (and as a result, a lower 

thermal surface efficiency) when compared to traditional fins. In an effort to overcome this 

limitation, several thermal management devices comprised of both metal foam and solid metal 

fins have been proposed. 

Heat sinks comprised of traditional linear fins of uniform thickness with metal foams 

filling the intermittent spaces were first proposed by Bhattacharya and Mahajan [5-6]. 

Subsequent numerical [7-9] and experimental [9-10] work assessed the performance of such 

arrays. The impact of thermal contact resistance between the fin and foam for this configuration 

was investigated by DeGroot et al. [11], who found the thermal performance of the array to 

exceed that of a corresponding traditional fin array, even if there is an infinitely large thermal 

contact resistance between the two media. Similar geometries for which a porous medium 

constructed of a 3D-printed solid matrix with a prescribed periodic unit cell geometry have been 

proposed by Hernon et al. [13]. Seyf and Layeghi [12] performed numerical analysis of a foam-

filled pin fin array. Foam-filled flat plate heat exchangers, first proposed by Kim [14], have been 

proposed to include solid metal fins that penetrate into the foam to promote conduction into the 

foam [15].  

Like metal foams, incorporation of heat pipes (HPs) can improve heat exchanger 

performance due to their low thermal resistances [16-17]. However, the overall resistance of 

thermal management systems incorporating HPs (or thermosyphons) is often dominated by 
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convective resistances external to the HP when air cooling is used [18-19]. Therefore, extended 

surfaces are routinely attached to HPs (which are typically of cylindrical cross section). Metal 

foam attached externally to a base cylinder have been modeled experimentally [20-23], 

numerically [23-24], and analytically [23].  

Unlike annular foam or fin arrays, little research has been devoted to combined annular 

fin-foam arrays with a cylindrical base. Jeng and Tzeng [25] experimentally investigated an array 

consisting of an axially-finned cylinder, where the space between the longitudinal fins have 

attached metal foam, and the authors report up to a 78% reduction in the arrays thermal 

resistance. To the authors’ knowledge, no studies have been undertaken to characterize a system 

where periodic fin-foam layers are attached orthogonally to a cylinder.  

The objective of this study is to propose a novel, analytical model to quantify the thermal 

resistance and heat transfer from a combined fin-foam annular array. Model predictions will be 

compared to experimentally measured heat rates. Parametric simulations will be performed to 

assess the sensitivity of heat rates and thermal resistances to the array’s geometrical 

configuration, thermal contact resistances, and the air velocity. Finally, comparisons are made 

between predicted heat rates for the combined fin-foam array, and those of (i) a bare cylinder, (ii) 

an annular fin array, and (iii) a foam-only annular array to demonstrate the advantages of 

combining solid fins and metal foam in an annular array configuration.  

  

2. Analytical model of a composite annular fin and foam extended surface 

 An approximate analytical model of the composite annular fin-foam array shown in Fig. 

1(a) is developed to predict thermal efficiencies, resistances and heat rates when experiencing 

convective cooling (or heating). The model approximates the complex, three-dimensional 

conduction and convection heat transfer in a manner that builds upon a standard annular fin 

analysis [26].  

The analysis is performed for a representative axial segment of a composite fin-foam 

array, of characteristic unit pitch S, as shown in Fig. 1(a). A number of assumptions, consistent 

with those of Stark et al. [23], are employed. The open-cell foam is assumed to be geometrically 

isotropic with constant properties, and it is assumed that radiation heat transfer is negligible. 

Conduction within the fluid is neglected, as it can be shown to have a negligible impact on heat 

transfer for the materials and operating conditions considered here. Fluid flowing through the 
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foam is assumed to provide uniform convection coefficients between the solid foam and the 

fluid, as well as between exposed fin and cylinder surfaces and the fluid. The constant property, 

incompressible fluid is described by either (i) the ambient fluid temperature (as in the analysis 

below or for cases where the temperature variation of the fluid is negligible) or (ii) an 

appropriate log-mean temperature (as will be employed in the experimental analysis and the 

parametric simulations to be presented later). Additional assumptions are noted in the following 

discussion. 

 

2.1. Annular composite fin-foam model 

 Assuming one-dimensional conditions in the radial direction, application of conservation 

of thermal energy to a differential radial element, shown within the fin (of thickness t) of Fig. 

1(b), yields 

 
2

2

,eff

1 2
0

fn fn

fn

fn

d T dT U
T T

dr r dr k t
                 (1) 

An effective fin thermal conductivity, kfn,eff > kfn, and overall heat transfer coefficient, U, are 

introduced in Eq. (1). As detailed in Section 2.2, kfn,eff is applied to the fin of thickness t, but 

accounts for radial conduction in both the solid fin and solid foam matrix. The overall coefficient 

accounts for (i) convection from the portions of the fin surface that are exposed directly to the 

fluid and (ii) conduction from the surface of the fin to the solid foam through a potential thermal 

contact resistance. Heat transfer to the solid foam by conduction from the fin is ultimately 

transferred to the fluid by convection.  

By defining an excess fin temperature,  fn fnT r T   , Eq. (1) may be reduced to 

2

2

2

1
0 

fn fn

f fn n

d d
m

dr r dr

 
        where     

2

,eff

2
fn

fn

U
m

k t
             (2) 

Applying radial boundary conditions of (i) constant base temperature, θ(
1r ) = θb, and (ii) 

adiabatic behavior at the outer radius of the array,  
2

  0
r

d dr  , to Eq. (2) leads to expressions 

for the fin efficiency 

 
 

   
   

1 1 1 2 1 1 1 21

2 2

0 1 1 2 0 1 1 22 1

( ) ( )2

( ) ( )

fn fn fn fn

fn

fn fn fn fnfn

K m r I m r I m r K m rr

K m r I m r I m r K m rm r r


 
  

   

        (3) 
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and the thermal resistance of the fin  

 
   2 2

1 2 1

1 1

2

b
fn

fn fn fn fn

R
q r A U r r U



  
  


                  (4)  

 Heat transfer by convection also occurs at the exposed surface of the cylinder (r = r1) that 

is not in contact with the solid foam matrix and is represented as 

 conv,cyl

cyl cyl 1 cyl

1 1

2
R

A h r S t h  
 


             (5) 

where the convection heat transfer coefficient is determined as discussed in Section 2.4. The 

overall resistance to heat transfer in the radial direction at r = r1 for a representative unit pitch of 

the array is therefore given by  

 
1

1 1

, conv,cylff S fnR R R


                  (6) 

or, for an array with N number of repeating pitches 

 
1

1 1

conv,cylff fnR N R R


   
                 (7) 

If a thermal contact resistance exists at the root of the fin and the solid phase of the foam, Eq. (6) 

may be modified to  

  
1

1
1

, conv,cyl ,ff S fn t c bR R R R





      where    , , 12t c b t c bR R r S 
           (8) 

and Eq. (7) may be modified accordingly. The contact resistance is described further in Section 

2.4.  

 

2.2. Determination of kfn,eff 

The effective thermal conductivity of Eq. (1), kfn,eff, is determined by equating its 

corresponding radial thermal resistance (for the fin of thickness t) to the radial thermal resistance 

posed by conduction in the fin and foam 

cond, ,eff cond, cond,

1 1 1

fn fn fmR R R
     or   

   

 

 
,eff ,eff

2 1 2 1 2 1

2 2 2

ln ln ln

fn fn fmtk tk S t k

r r r r r r

   
           (9) 

which may be simplified to 

,eff ,efffn fn fm

S t
k k k

t


                    (10) 
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The effective thermal conductivity within the solid phase of the foam, kfm,eff, is taken from the 

analytically derived correlation of Calmidi and Mahajan [27] 

 

 

1

,eff

3
12 2
2 413

3 3 3

fm

s
s s

rr rr r
k

rr k
rk rk



  
  

    
  

    

           (11) 

where r   = 0.09, r  is a geometric parameter expressed as  

 2 3 4
4 1 2 1

6 3

2 4
2 1

3 3

r r r

r

r


  

         
  


  

   
  

          (12) 

and ks is the thermal conductivity of the solid phase of the foam.  

 

2.3. Determination of U  

Heat transfer at the upper and lower fin surfaces occurs by (i) conduction to the solid 

phase of the foam (after passing through a potential contact resistance) and (ii) direct convection 

to the fluid. The two processes are represented by the thermal resistance network shown in Fig. 

1(c). 

Conduction to the foam is handled as if it were a Cartesian extended surface of thickness 

dr and length (S-t)/2, allowing a thermal efficiency to be defined in a manner similar to classical 

analysis of a fin with a uniform cross section [26]. A similar approach for modeling metal foams 

has been taken elsewhere [28-32]. An energy balance applied to the annular dr element 

illustrated in Fig. 1(b) yields 

 
2

2

, eff

0
fmfm

fm

s

d T h
T T

dz k


                (13) 

where the first term represents the net conduction heat transfer into a dz element and the second 

term represents the convection heat transfer from the solid phase of the foam within the element 

to the fluid. The convection heat transfer coefficient is determined as described in Section 2.4. 

Equation (13) may be simplified by defining an excess temperature,  fm fmT z T   , yielding  
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2

2

2
0

fm

fm fm

d
m

dz


    where  2

, eff

fm

fm

s

h
m

k

                     

(14)  

Equation (14) is applied from the interface between the fin and foam (at z = t/2) to the plane 

midway between two adjacent solid fins (at z = (S-t)/2). The thermal boundary conditions 

associated with these two planes are (i) a yet-to-be-determined radially dependent base 

temperature,    ,b ,b , 2fm fmr T r z t T    , and (ii) adiabatic conditions at z = (S-t)/2 due to 

symmetry. When solved under these conditions, the z-direction heat flux at the base of the axial 

foam segment and the associated thermal resistance per unit base area are 

  , eff ,tanh
2

fm fm fm fm fm b

S t
q m k m r

 
   

 
                  (15a) 

and 

 

1

, eff tanh
2

fm fm fm fm

S t
R m k m



  
    

  
             (15b) 

The thermal resistance fmR  is utilized in the resistance network of Fig. 1(c). The remaining two 

thermal resistances are associated with (i) the contact between the fin and solid phase of the 

foam, ,t c ffR 
 , and (ii) the convection from the exposed surface of the fin  

conv,

1
fn

fn

R
h

                       (16) 

which allows the equivalent overall heat transfer coefficient to be written as 

 

1
1

, , eff tanh
2

fn t c ff fm s fm

S t
U h R m k m






    
     

    

        (17) 

Quantification of ,t c ffR 
  and fmh  is described in the next section. 

 

2.4. Determination of αv, fmh , fnh , cylh , ,t c bR 
 , and ,t c ffR 

  

 Values of various parameters introduced in the preceding sections depend on the porous 

medium and operating conditions of interest. The medium employed in the experiments 

(described in Section 3) is an open-cell, high-porosity aluminum foam (Duocel® Al 10-44) with 
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a nominal pore size of 10 pores per inch (PPI) and a measured porosity of ε = 0.941. The 

characteristic pore size, Dp, is determined as a function of the pore density, expressed in terms of 

PPI or pores per meter (PPM), and the volume porosity, ε, as in Eq. (18a) [33]. The characteristic 

diameter of the metal fibers of the foam, Df, is determined by taking the difference between the 

average unit cell length, Dc (which includes both fibers and pores), and Dp, as shown in Eq. (18b)  

 
1 1

1 2
( ) 3

pD
PPI or PPM





 
  

  
 ; f c pD D D                  (18a;18b) 

The surface area per unit volume of foam, (also known as the specific surface area) is determined 

from the values of Dp and Df as [33]  

2

3 f

v

p

D

D


                 (19) 

The area-averaged heat transfer coefficient between the solid and fluid phases of the 

foam is determined by an experimentally derived correlation [28] 

0.8 0.40.039
f

f

fm f
D D

f

h D
Nu Re Pr

k
                  (20) 

in which Df is the length scale in both the Reynolds and Nusselt numbers, and the average pore 

velocity 

   

2

2

2 2

2 1

p

rS
u u

S t r r



  


 
 

   

            (21) 

is utilized in calculating the Reynolds number. The velocity u∞ is the average air velocity 

immediately upstream of the array through the projected area 2r2NS. 

To the authors’ knowledge there are no existing correlations that describe the convection 

heat transfer coefficients for the exposed fin and cylinder surfaces in the configuration presented 

here. However, for similar geometries without the presence of foam, it has been shown that by 

approximating the fins and cylindrical segments as flat plates and plain cylinders, respectively, 

analytically determined coefficients are in close agreement with those determined by detailed 

numerical modeling [23]. Accordingly, a correlation for the area-averaged heat transfer 

coefficient associated with a flat plate attached to a porous medium experiencing forced 

convection [34]  
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 
1 2

1.128
fn

fn

fn fn
L L

f

h L
Nu Re Pr

k
                      (22)  

is used to approximate fnh . The characteristic length of the fin, Lfn (=2r2), and the average pore 

velocity are used in the Reynolds and Nusselt numbers. 

Similarly, the convection heat transfer coefficient associated with the exposed surface of 

the cylindrical segment between adjacent fins (at r = r1), cylh , is determined using a correlation 

for a cylinder that is embedded in a porous medium [34]  

  1
1

1 2cyl 1
1.015D D

f

h D
Nu Re Pr

k
                          (23) 

The characteristic length used in calculating the Reynolds and Nusselt numbers is the base 

cylinder diameter, D1 = 2r1 and the average pore velocity is again used in calculating the 

Reynolds number. 

Values of the thermal contact resistances ,t c bR 
  and ,t c ffR 

  are determined as follows. For 

the metal foams considered here, the contact resistances have been shown to depend on (i) the 

method of manufacture [35], (ii) the normal pressure on the interface between the foam and solid 

[36], and (iii) the possible presence of a bonding agent [32]. Values of the contact resistances are 

taken from experimental measurements from De Jaeger et al. [32], as explained in Section 3.2.  

 

2.5. Calculation procedure  

Calculation of Rff, given by Eq. (7), proceeds as follows. First, values of kfm,eff and αv are 

determined using Eqs. (11) and (19), respectively. The area-averaged convection heat transfer 

coefficient for the foam ( fmh ) is calculated via Eq. (20), which is followed by calculation of 

fmR  using Eq. (15b). The area-averaged convection heat transfer coefficient for the exposed fin 

surfaces ( fnh ) is determined using Eq. (22), which allows for the calculation of conv,fnR  using Eq. 

(16). These two thermal resistances (as well as the potential contact resistance ,t c ffR 
 ) may be 

combined to determine U using Eq. (17). Equation (10) is then employed to determine kfn,eff. The 

thermal resistance of the fin with attached foam (Rfn) may subsequently be determined using Eq. 

(4). Equation (23) is then employed to determine cylh , which in turn allows for the calculation of 
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conv,cylR  using Eq. (5). Finally, the array thermal resistance is determined using Eq. (6) or Eq. (8) 

for a single unit pitch or Eq. (7) (or equivalent if a contact resistance ,t c bR 
  is important) for an 

array of N unit pitches. Finally, the total array heat transfer rate may be found by using the 

relation qtot = θb/Rff. 

 

3. Experiments  

Experiments were performed to validate the analytical model of Section 2. 

 

3.1. Experimental apparatus 

The experiments were conducted using the flow channel described in Stark et al. [23]. Air 

is drawn through the tunnel’s main channel of cross sectional width (Wch = 100 mm) and height 

(Hch = 120 mm), along a length of Lch = 1.2 m. The air cools a fin-foam array consisting of two 

equal unit-pitches, as shown in Fig. 2(a). Thermal energy is transported to the base of the fin-

foam array by an electrically heated heat pipe (HP) of cylindrical cross section. The heat is 

dissipated to the air drawn through the channel and fin-foam array.  

The copper-H2O, sintered-wick HP (Enertron HP-HD06DI17500BA) is positioned 

vertically in a heavily insulated HP carrier which is attached to the bottom of the channel, as 

detailed in Fig. 3(a) of Stark et al. [23]. The cylindrical HP is of diameter Dhp = 6 mm and length 

Lhp= 175 mm. Physical and effective properties, as well as additional geometric dimensions, are 

reported elsewhere [23,37-38]. Within the HP carrier (a detailed description of which may be 

found in [37]) is a cylindrical heat spreader constructed of aluminum (Al 2024-T4; khs = 121 

W/m∙K) that surrounds the evaporator section of the HP (of length Le = 50.8 mm). The spreader 

has an inner diameter of 6.05 mm, an outer diameter of 25.4 mm, and a height of Lhs = Le. A 0.05 

mm wide gap between the heat spreader and the HP is filled with thermal paste (Artic Silver 5; 

ktp = 8.7 W/m K). An adhesive-backed electrical patch heater (McMaster 35765K634) [37] 

energized by a DC power supply (Dr. Meter HY3005F-3) is employed to provide thermal energy 

to the exterior of the heat spreader. The rate of joule heating within the patch heater is measured 

by a voltmeter (AMPROBE AM-510; accuracy ±0.8% of reading +1 LSD; resolution 10 mV) 

and an ammeter (FLUKE 77 IV; accuracy ±1.5% of reading +2 LSD; resolution 1 mA). 
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The HP condenser section (of length Lc = 51.4 mm) is placed at the center of the 

composite fin-foam array, consisting of two unit pitches (S = 26.2 mm) with an outer square 

dimension of Lfn = 100 mm. (The array is similar to the square foam-only array described in 

detail in Stark et al. [23].) Each pitch consists of two blocks of aluminum foam (10 PPI Duocel® 

Al 10-44) of thickness 12.7 mm attached to an aluminum fin (Al 3003-h14 ; kfn = 159 W/m K) of 

thickness t = 0.8 mm, as shown in Fig. 2(a). The foam blocks have a measured porosity of ε = 

0.941 and are attached to a threaded aluminum insert made of the same alloy as the heat spreader 

that is described in detail in Stark et al. [23]. The solid inserts have threaded outer diameters of r1 

= 25.4 mm (UNC 1-8 threads [39]) and inner diameters of 6.05 mm. An undersized hole (of 

diameter 5 mm) is drilled through the center of the foam, which the insert is then screwed into, 

crushing the foam into the screw threads in order to minimize the thermal contact resistance 

between the inserts and foam. The 0.05 mm gaps between the inserts and the HP are packed with 

Artic Silver thermal paste. The thermal paste is also applied to the interface between the fin and 

foam prior to assembly. Closed-cell styrofoam blocks (of outer dimension Li = Lfn = 100 mm, Li,t 

= 55 mm, and Li,b = 14.2 mm, ki = 0.033 W/m K) are employed to ensure that the air flow is 

directed entirely through the fin-foam array, as well as to provide further thermal insulation.  

A detailed description of the data acquisition systems associated with measurement of 

local temperatures and bulk channel velocities (including instrumentation, calibration, and 

validation) may be found in [23, 37].  

  

3.2. Experimental data analysis  

 A resistance network affiliated with the experimental measurements is shown in Fig. 

2(b). For a particular experiment the heat rate (q), the average channel velocity (uch), the 

upstream air temperature (T∞), and the temperature of the thermocouples in the heat spreader 

(Ttc) are measured directly. (Note that the experimentally measured heat rates are corrected to 

account for parasitic heat losses which were found to be small, approximately 5 percent of the 

electrical power dissipated by the patch heater, and independent of the channel air velocity [23]). 

Values of five of the six resistances in the network of Fig. 2(b) are as follows.  

Conventional conduction analysis is used to calculate the resistance posed by the 

aluminum heat spreader, yielding Rhs = 0.019 K/W [23]. The same methodology is employed to 

determine the resistance of the thermal paste located between the heat spreader and the 
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evaporator section of the HP (Rtp,e = 0.003 K/W). Previous work by Sharifi et al. [38] has shown 

that the complex heat and mass transfer phenomena associated with the HP used here may be 

reduced to a single resistance, Rhp = 0.22 K/W which exists between the outer walls of the 

evaporator ( eT ) and condenser ( cT ) sections of the HP. At the condenser section, heat is 

conducted through another layer of thermal paste (with resistance Rtp,c =0.0029 K/W) and then 

through the aluminum inserts (with resistance Rin,r = 0.036 K/W) until it reaches the base of the 

composite fin-foam array at r = r1. The thermal resistances of the experimental apparatus 

between (i) the location corresponding to Ttc and (ii) the base of the array have a sum of Rapp = 

Rhs+Rtp,e+Rhp+Rtp,c+Rin,r = 0.70 K/W.  

 The sixth resistance of Fig. 2(b), Rff,sq, is determined using the analysis of Section 2.5, 

which is augmented by a recently developed semi-analytical method [23] to account for the 

usage of foam and fins with a square (instead of circular) planform in the experiments. Following 

the circular-to-square conversion procedure of Stark et al. [23], Rff,sq is ultimately expressed in a 

form similar to the annular array resistance of Eq. (7) as  
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where N is the number of unit pitches in the array, Afn,sq = 
2 2

1
4

fn
L r , and ηfn is determined by 

using Eq. (3) with r2 replaced by Lfn/2. Note that cylh  is calculated as in Eq. (23), but the value 

of Acyl used in Eq. (5) is modified to account the larger surface area due to the threading and the 

pore velocity is 
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The value of ,t c ffR 
  (= 0.00125 m

2
K/W) is taken from De Jaeger et al. [32], and is associated 

with a thermal paste placed between a metal foam and flat, solid surface. The value of ,t c bR 
  is 

set to zero, because the fin is a continuous solid at r = r1, as evident Fig. 2. For the experimental 

conditions investigated here, the value of Rff,sq
 
is between 50% and 75% that of Rapp.  

The temperature of the channel air increases appreciably (defined as an increase in the 

bulk temperature relative to θb that exceeds 5%) in the experiments. Accordingly, a log mean 

temperature difference (LMTD) is employed when calculating the heat transfer rate across Rff,sq, 

leading to [23] 
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where m  is the air mass flow rate and cp,f is the specific heat of the of the channel air. Note that 

flow work, which may be significant for large velocities and pressure drops [40] is not included 

in the analysis. Using measured values of Ttc and T∞, along with known values of Rapp and 

predicted values of Rff,sq, predicted values of q can be obtained with Eq. (28) and will be 

compared to the corresponding measured heat rates. Since Rff,sq ≈ Rapp, the values of q predicted 

using Eq. (28) are sensitive to the value of Rff,sq predicted with the model developed in this study. 

 

4. Results and discussion 

4.1. Comparison of measured and predicted heat transfer rates 

 To validate the model, predictions using Eq. (28) were compared with experimentally 

measured heat rates for three average velocities (u∞ = 0.4, 1.7, and 3.0 m/s) as shown in Fig. 3. 

Four excess temperatures, ranging from 8    θ = Ttc - T∞    21°C, were specified for each 

velocity with air properties evaluated at a temperature of (Tb + Tlm)/2. The uncertainty in the 

measured heat rates (excess temperatures) is approximately ±3% (±1%) of the reported values 

while the average deviation of the predictions from the experimental measurements is less than 

3%, with the largest discrepancies occurring for the lowest velocity cases. The relatively good 

agreement between the measurements and predictions confirms the efficacy of the proposed 

analytical model for the conditions considered here. 
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4.2. Parametric simulations 

 Once validated, the model can be exercised to determine the dependence of predicted 

heat rates to key parameters. Fins and foams of circular shape are considered with base case 

dimensions similar to those of the experiments. Specifically, N = 1, S = 26.2 mm, t = 0.8 mm, r1 

= 12.7 mm, and r2 = 50 mm. Base case properties of the foam, fin, and air, as well as ,t c ffR 
  and 

,t c bR 
  are the same as for the experimental comparisons of Section 4.1. Predicted heat rates are 

based on T∞ = 25°C and Tb = 60°C, while Eq. (28) is again used to account for the increase in the 

air temperature as it flows through the foam. Various average air velocities are considered for 

each case. 

 

4.2.1. Sensitivity to contact resistances ,t c ffR 
  and ,t c bR 

  

 Figure 4(a) shows the dependence of the heat rate on the average air velocity and the 

contact resistance between the fin and foam, ,t c ffR 
 , with the thermal resistance at the base of the 

fin set to ,t c bR 
 = 0. Base case dimensions are used. For each value of ,t c ffR 

 , the heat rate becomes 

larger as the air velocity increases, as expected. The dependence of the heat rate to ,t c ffR 
  is also 

as expected, with the smallest heat rates corresponding to ,t c ffR 
  = 1 m

2
K/W for which heat 

transfer to the air occurs primarily from the fin and cylinder surfaces that are not in direct contact 

with the solid phase of the foam. 

 The dependence of the heat rate on both ,t c ffR 
 and ,t c bR 

 is reported in Fig. 4(b) for which 

,t c bR 
 is arbitrarily set equal to ,t c ffR 

 . The largest heat rates correspond to ,t c bR 
 = ,t c ffR 

 = 0, and are 

identical those associated with the ,t c ffR 
 = 0 case of Fig. 4(a). In contrast, extremely small values 

of q are associated with ,t c bR 
 = ,t c ffR 

 = 1 m
2
K/W reflecting the fact that heat transfer to the air 

occurs almost exclusively from the cylinder surface at r1 that is not in direct contact with the 

solid phase of the foam. 
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 Figure 4(c) shows the dependence of the heat rate on ,t c ffR 
  in more detail. For any air 

velocity, the predicted heat rates exhibit both upper (at small ,t c ffR 
 ) and lower (at large ,t c ffR 

 ) 

limits, with a gradual transition between the two limiting heat rates. When ,t c ffR 
  is small, the 

corresponding thermal resistance of Fig. 1(c) is negligible, and the fin heat loss is dominated by 

fmR  and conv, fnR . In contrast, when ,t c ffR 
  is large, the fin loses heat primarily through conv, fnR . 

Since conv, fnR  decreases as the air velocity is increased, the transition between the large and small 

heat rates shifts to smaller ,t c ffR 
 at higher air velocities. When ,t c ffR 

 and ,t c bR 
  are increased 

simultaneously the small heat rates are reduced relative to those of Fig. 4(c), as expected, and are 

reported in Fig. 4(d).  

 

4.2.2. Sensitivity to array radius r2/r1 

The dependence of the heat rate to r2/r1 is shown in Fig. 5(a) for various u∞, where r2/r1 is 

varied by changing r1. As evident, for each velocity there is a value of r2/r1 = (r2/r1)max which 

yields a maximum predicted heat rate. For r2/r1 > (r2/r1)max, the relatively small base areas of the 

array (and corresponding lower surface efficiencies) limit performance. For r2/r1 < (r2/r1)max, the 

lack of sufficient convective surface area within the foam reduces performance. In the limiting 

case of r2/r1 = 1, heat transfer occurs only from the cylindrical surface at r2 = 50 mm and its rate 

is relatively small. As u∞ is increased, the convection heat transfer will increase and the surface 

efficiency of the array will decrease, resulting in decreasing values of (r2/r1)max. 

Similar comparisons are presented in Fig. 5(b) for which r1 is fixed. In general, 

increasing r2/r1 will increase the convective surface area within the foam, resulting in larger heat 

rates. In the limiting case of r2/r1 = 1 heat transfer occurs only from the inner cylindrical surface 

at r1 = 12.7 mm, and for any value of r2 its rate is smaller than the corresponding rate of Fig. 

5(a).  

 

4.2.3. Sensitivity to fin thickness t 

 The impact of varying the ratio of foam to fin thicknesses on the heat rate is shown in 

Fig. 6(a) where (S−t)/t is changed by varying the fin thickness, t. For a given average air 

velocity, u∞, increasing t (decreasing (S-t)/t), simultaneously increases the pore velocity and 
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reduces the radial conduction resistance of the array. Hence, q is shown to increase at small 

values of (S-t)/t. However, the model breaks down when the foam thickness is at or below the 

characteristic pore diameter, (S−t)/t = Dp/t ≤ 2.7 (for the foam and fin used in the experiments). 

For foam-to-fin ratios of (S−t)/t ≳ 3, the heat rate is relatively insensitive to increases in the fin 

thickness due to the offsetting effects of (i) enhanced radial conduction in the solid fin and (ii) 

reduced surface area of the foam available for convection heat transfer to the air.  

 The dependence of the heat rate on (S−t)/t and up is reported in Fig. 6(b). As evident, q 

→ 0 as (S−t)/t → 0 regardless of the pore velocity, since (i) the air temperature quickly 

approaches the value of Tb as it flows through the array and (ii) less fluid is available for cooling. 

As noted in Fig. 6(b), the heat rate becomes relatively insensitive to the fin thickness for (S−t)/t 

≳ 3. 

 

5. Comparison of fin, foam, and composite fin-foam arrays  

 Predicted heat rates for the combined fin-foam array are now compared with rates 

associated with (i) a bare cylinder, (ii) an annular fin array, and (iii) a foam-only annular array. 

Comparisons are made employing the dimensions, materials, and temperatures of Section 4.2, 

but with the fin replaced by foam for the foam-only case, and with the foam removed for the fin 

array case. Heat transfer from the bare cylinder corresponds to convection from a cylinder in 

crossflow, where the convection heat transfer coefficient is determined using the correlation of 

Sparrow et al. [41]. It has been shown that heat transfer from finned cylinders may be modeled 

as a combination of transfer from plain cylinders (as in the previous case) and flat plates [42], 

and this approach is taken here. Predicted heat rates for the foam-only case are made using the 

methodology developed by Stark et al. [23].  

 Predicted heat transfer rates from the combined fin-foam array exceed those of the other 

configurations, as shown in Fig. 7(a) and in more detail in Fig. 7(b).  Heat rates from the foam 

array are the next largest, followed by those of the fin array. As anticipated, the bare cylinder is 

affiliated with the smallest heat rates. Heat rates for the various configurations can be normalized 

to those of the fin array case, and are shown in Fig. 8(a). For the velocity range 0.1 ≤ u∞ ≤ 10 

m/s, the predicted heat rates for the combined fin-foam array (foam array) are, on average, 4.8 

(3.8) times larger than those associated with the fin array. In contrast, predicted heat rates for the 

bare cylinder are ~78% less than those of the fin array. Alternatively, the resistance associated 
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with the various configurations may be normalized relative to those of the fin array and are 

reported in Fig. 8(b) where each resistance is defined as (Tb−Tlm)/q.   

 

6. Conclusions and recommendations 

 Novel, analytical expressions have been developed for the thermal efficiency and thermal 

resistance of a composite annular array, consisting of periodic layers of open-cell metal foam and 

metal fins attached concentrically to a base cylinder, subjected to convective cooling (or 

heating). Heat rates predicted by the model are compared to experimentally measured rates 

associated with an array of square outer dimension (where the methodology developed in Stark 

et al. [23] is used to extend the annular model), in order to validate the model and demonstrate its 

usage. Parametric simulations were performed to assess the sensitivity of the heat rate to the 

array’s geometrical configuration, contact resistances, and the air velocity. Finally, predictions 

associated with (i) a bare cylinder, (ii) an annular fin array, and (iii) a foam-only annular array 

were compared to those of the composite fin-foam array configuration, demonstrating its 

superior thermal performance. 

 The analytical model makes use of multiple assumptions which may impact the accuracy 

of its predictions. For example, approximation of the foam as a continuum is invalid for cases in 

which certain geometrical dimensions are smaller than the characteristic pore diameter (e.g., at 

small values of r2/r1 or (S−t)/t).  Multidimensional effects may become significant for relatively 

large unit pitch values (S/(r2−r1)), fin thicknesses (t/(r2−r1)) or for large variations of the air 

temperature and velocity as it flows through the foam. Inaccuracies may arise from the 

prediction of convection heat transfer coefficients for the exposed surfaces of the fin and 

cylinder, which are approximated as Darcy flow across a flat plate and plain cylinder [34], 

respectively. Large pressure drops within the air may invalidate the assumption of a constant 

property fluid, and buoyancy effects could become significant at smaller air velocities.  

 Although the model performs well in predicting the experimental measurements reported 

here, further work is required to check its validity over a broad range of composite array 

dimensions, array materials, fluids used as a coolant, and operating conditions. In addition, an 

investigation of the tradeoffs between (i) reducing the thermal resistance of such arrays and (ii) 

increasing the fan power needed to force the air through the arrays is warranted. Although there 

are numerous opportunities to further investigate the thermal behavior of composite fin-foam 



108 

arrays, the results presented here clearly indicate that improved performance can be easily 

achieved by combining the beneficial aspects of metal foams and solid metal fins in a hybrid 

annular array configuration.  
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Figure captions    

 

Fig. 1. Description of the annular analytical domain. (a) overall domain, (b) annular control 

volume energy balance, (c) thermal resistance network for overall heat transfer coefficient. 

 

Fig. 2. Experimental setup. (a) detail of the heat pipe and fin-foam, (b) thermal resistance 

network. 

 

Fig. 3. Experimentally measured and predicted heat rates for a square fin-foam array under 

various ambient velocity and thermal conditions. Error bars on the experimental data points are 

of approximately the same size as the symbols and are not shown.  

 

Fig. 4. Influence of thermal contact resistance on predicted heat rates for an annular geometry. 

(a) q versus u∞ for ,t c ffR 
  = 0, 510 , 410 , 310 , 210 , 110 , and 1 m

2
K/W ( , 0t c bR 

  ), (b) q versus 

u∞  for , ,t c b t c ffR R 
   = 0, 510 , 410 , 310 , 210 , 110 , and 1 m

2
K/W, (c) q versus ,t c ffR 

  (

, 0t c bR 
  ) for u∞ = 0.01, 0.1, 1, and 10 m/s, (d) q versus , ,t c b t c ffR R 

   for u∞ = 0.01, 0.1, 1, and 

10 m/s. 

 

Fig. 5. Influence of r2/r1 on predicted heat rates. (a) inner radius r1 is varied, (b) outer radius r2 is 

varied. 

 

Fig. 6. Influence of foam-to-fin thickness on predicted heat rates. (a) for various u∞, (b) for 

various up. 

 

Fig. 7. Predicted heat rates for equal lengths of a (i) bare cylinder, (ii) finned cylinder, (iii) foam 

array, and (iv) composite fin-foam array versus u∞. (a) for 0 ≤ u∞ ≤ 10 m/s, (b) for 0 ≤ u∞ ≤ 0.5 

m/s. 

 

Fig. 8. Predicted heat transfer rates and thermal resistances normalized to the fin array case. (a) 

heat rate ratios for 0 ≤ u∞ ≤ 10 m/s, (b) thermal resistance ratios for 0 ≤ u∞ ≤ 10 m/s. 
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Fig. 6 

0.1

1

10

100

1000

0 5 10 15 20

q
(W

)

(S−t)/t

up = 10 m/s

5
2

1
0.5

0.1
0.05

0.02
0.01

0.2

(b)

0.1

1

10

100

1000

0 5 10 15 20

q
(W

)

(S−t)/t

(a)u∞ = 10 m/s

5
2

1
0.5

0.1
0.05

0.02

0.2

0.01



119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 
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Fig. 8 

0.1

1

10

0 5 10

R
/R

fn

u∞ (m/s)

Foam

Fin and Foam

Bare Cylinder

Fin (≡1)

(b)

0.1

1

10

0 5 10

q
/q

fn

u∞ (m/s)

Foam

Fin and Foam

Bare Cylinder

Fin (≡1)

(a)



121 

 

 

Paper P5                 

 

 

Title: 

The influence of thermal contact resistance on the relative performance of heat pipe-fin array 

systems 

 

Authors: 

Nourouddin Sharifi 

John R. Stark 

Theodore L. Bergman 

Amir Faghri 

 

Journal: 

Applied Thermal Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 

.  



123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 

 

 

 

 

 


