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Abstract

Future wireless networks will face a compound challenge of supporting large traf-
fic volumes, providing ultra-reliable and low latency connections to ultra-dense mo-
bile devices. To meet this challenge, various new technologies have been introduced
among which mutual-information accumulation (MIA), an advanced physical (PHY)
layer coding technique, has been shown to significantly improve the network perfor-
mance. Since the PHY layer is the fundamental layer, MIA could potentially impact
various network layers of a wireless network. Accordingly, the understanding of im-
proving network design based on MIA is far from being fully developed. The purpose
of this dissertation is to study the fundamental performance improvement of mutual
information accumulation over wireless networks and to apply these fundamental re-
sults to guide the design of practical systems, such as cognitive radio networks and

massive machine type communication networks.

This dissertation includes three parts. The first part of this dissertation presents the
fundamental analysis of the performance of mutual information accumulation over
wireless networks. To begin with, we first analyze the asymptotic performance of mu-
tual information accumulation in an infinite 2-dimensional(2-D) grid network. Then,
we investigate the optimal routing in cognitive radio networks with mutual informa-
tion accumulation and derive the closed-form cooperative gain obtained by applying
mutual information accumulation in cognitive radio networks. Finally, we characterize
the performance of mutual information accumulation in random networks using tools

from stochastic geometry.
The second part of this dissertation focuses on the application of mutual information
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accumulation in cognitive radio networks. An optimization problem is formulated
to identify the cooperative routing and optimal resources allocation to minimize the
transmission delay in underlay cognitive radio networks with mutual information ac-
cumulation. Efficient centralized as well as distributed algorithms are developed to
solve this cross-layer optimization problem using the fundamental properties obtained
in the first part of this dissertation. Simulation results show that mutual information
accumulation can reduce more than 77% delay compared to conventional two-hop

transmission in underlay cognitive radio network.

The third part of this dissertation focuses on the application of mutual information ac-
cumulation in massive machine type communication (massive MTC) network. A new
cooperative retransmission strategy is developed for massive MTC networks. Theoret-
ical analysis of the new developed retransmission strategy is conducted using the same
methodology developed in the fundamental part of this dissertation. Monte Carlo sim-
ulation results and numerical results are presented to verify our analysis as well as to

show the performance improvement of our developed strategy.
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Chapter 1

Introduction

1.1 Motivation

According to the International Telecommunication Union (ITU) [2], the number of mobile cellular
subscriptions globally is estimated to surpass 7.09 billions at the end of 2015, a number repre-
senting more than 96% of the world population. In the Americas, the impact of mobile cellular
communications is even more significant with the current penetration rate of 108% [2]. Following
this trend, in May 2015, it was predicted that there would be over 11.5 billion mobile-connected
devices by year 2019, nearly 1.5 mobile devices per capita [3]. An important drive behind this
is the worldwide rapid adoption of smart phones and mobile tablets. These devices are much
more data-hungry: the data consumption of a single smart phone is equivalent to that generated
by 37 featured phones; a mobile tablet can produce 2.5 times more traffic than the average smart
phone [4]. As a result, Cisco Systems predicted a staggering 57% compound annual growth rate
(CAGR) for global mobile cellular data traffic from 2014 to 2019: a 10-fold increase.

To meet the increasing communication demand, the future 5G systems must dramatically out-

perform previous generation systems and should support [5]:
e User experienced data rate: 0.1 ~ 1 Gbps

e Connection density: Imillion connections per square kilometer
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End-to-end latency: millisecond level

Traffic volume density: tens of Gbps per square kilometer

Mobility: higher than 500Km per hour

Peak data rate: tens of Gbps

User Experienced

Peak Data Rate Data Rate

(Gbit/s) (Mbit/s)

Area Traffic Spectrum
Capacity Efficiency
(Mbit/s/m2) 10 3x
100x 500
Network Mobility
Energy Efficiency (km/h)

Connection Density Latency
(devices/km?) (ms)

Figure 1.1: Key capabilities from IMT-Advanced (4G) to IMT-2020(5G)[1]

Figure 1.1 shows enhancement of key capabilities from 4G to 5G. As indicated in this figure, future
5G has to be able to support large traffic volumes and provide reliable connections to ultra-dense
mobile devices. This is a challenging task, especially considering the unreliable nature of wire-
less channels. Conventionally, the design of wireless networks has borrowed the design of wired
networks. Functionalities such as modulation, channel coding, resource allocation, routing are
partitioned into separate network layers with minimum interaction between adjacent layers. Each
lower layer serves as a black box abstraction for higher layers. For example, from a network layer

point of view, the overall performance of the underlying physical and data link layer are modeled



as "bit pipes" that deliver data at a fixed rate with occasional random errors [6]. Recently various
techniques, such as Massive Multi-Input and Multi-Output (Massive MIMO), polar codes, mutual
information accumulation etc., have been developed to improve the physical layer performance
of wireless networks. However, new network layer algorithms and protocols that can take full
advantage of these physical layer techniques remain unexplored.

The rapid development in physical layer design is partially due to the Shannon information
theory which describes fundamental relationships between the performance of point-to-point com-
munication and system parameters. Unfortunately, there is no such simple yet fundamental theory
for the capacity of a wireless network. Although the scaling laws [7] reveals significant insight
on the performance of ad hoc networks, a tool that could provide a finer view is needed to guide
the design of wireless networks. Stochastic geometry recently has been proven a powerful tool
in characterizing the performance of cellular networks [8]. By modeling the location of nodes in
a network as a spatial random process, stochastic geometry can be used to analyze the average
performance of networks over many spatial topology realizations. However, how to use stochastic
geometry to analyze the performance of multi-hop networks still remains an open problem. Es-
pecially, how to use stochastic geometry to analyze wireless networks with mutual information

accumulation remains unexplored.

1.2 Mutual Information Accumulation

In this section, we introduce the details and potentials of mutual information accumulation. Mutual
information accumulation is a natural extension of energy accumulation. In energy accumulation,
a receiver can decode a packet as soon as the total received energy from multiple transmissions of
that packet exceeds a certain threshold [9]. Energy accumulation can be achieved through repeti-
tion codes or chase combining in hybrid automatic repeat request (hyrid ARQ) [10], etc. Instead of
accumulating energy, mutual information accumulation enables a node accumulate mutual infor-

mation for a packet from multiple transmissions until it can decode the packet successfully [11].



In practice, mutual information accumulation can be realized through the use of rateless codes,
of which Fountain [12] and Raptor codes [13], are examples. Rateless codes encode information
bits into potentially infinite length codewords and additional parity bits are sent by the transmitter
until the receiver is able to decode. Different from fixed coding-rate schemes, rateless codes can
adaptively combat the dynamic wireless channels by just knowing the channel statistics [14], [11].
This advantage of mutual information accumulation (using rateless codes) is of vital importance
in cognitive radio networks where the cost of gathering instantaneous channel state information is
more difficult.

The difference between energy accumulation and mutual information accumulation can be
seen clearly by considering communication over an additive white Gaussian noise (AWGN) chan-
nel over two time slots. For energy accumulation, the transmitter will send the same codeword
across two time slots. Using maximal ratio combination, the receiver can obtain a throughput of
TWlog, (1+2P/Ny) bits, where P is the transmit power spectral density, Ny is the noise power
spectral density, T is the slot duration, and W is the bandwidth. For mutual information accumula-
tion, instead of transmitting the same codeword, independent codewords will be sent to the receiver
over the two time slots, and the receiver will decode the data jointly. Accordingly, a throughput
of 2TW log, (14 P/Np) bits can be achieved. Since (14 P/N)? is greater or equal to 1 +2P/N,
mutual information accumulation can obtain higher throughput than energy accumulation. It is
interesting to observe that in the low signal-to-noise ratio (SNR) regime the approximation of
log(1 4+ SNR) ~ SNR holds. This suggests that the performance of energy accumulation is close
to that of mutual information accumulation in this regime. However, as SNR increases, mutual
information accumulation will have better performance.

Ever since the idea of mutual information accumulation was introduced to cooperative relay
networks in [15, 14], many works have been conducted to solve the associated cooperative routing
and resource allocation problems for a general wireless network. In [16], mutual information ac-
cumulation was introduced to an arbitrary wireless ad hoc network and the optimal/near-optimal

routing and resource allocation strategies are identified. It has been shown that the performance



of the underlying wireless network with mutual information accumulation can be significantly
enhanced. Scheduling problems in wireless networks using mutual information accumulation is
investigated in [17]. The results suggest that by employing mutual information accumulation, the
stability region of wireless networks can be expanded. Mutual information accumulation has been
extended to the scenario of multi-packet transmission in a wireless network in [18]. In [11], the
authors studied the optimal routing of a wireless network equipped with mutual information accu-
mulation and showed that under the sum-bandwidth constraint, allocating all the system resources
to a single user in each transmission slot can achieve the minimum delay in any one-dimensional
networks. Recently, in [19] and [20], energy minimization problems are studied in wireless net-
works employing mutual information accumulation and efficient algorithms are introduced to solve

the routing and power allocation problems.

1.3 Cognitive Radio Networks

Cognitive radio (CR), also known as dynamic spectrum access (DSA), has been regarded as one
of the key techniques to improve the spectral efficiency of a wireless system. The basic idea
of CR is to allow secondary users (SUs) to utilize primary users’ (PUs’) radio spectrum under
the condition that the interference from the SUs to the PUs is constrained. In existing literature,
several approaches have been introduced on how SUs should access PUs’ radio spectrum: overlay
cognitive radio [21], cooperation between PUs and SUs [22], underlay cognitive radio [23, 24]
and, sensing based spectrum sharing [25].

In overlay cognitive radio networks, SUs will transmit after sensing PUs’ spectrum idle. If
PUs are sensed as busy or transmitting, SUs will stop transmitting. In the underlay cognitive
radio approach, SUs and PUs are transmitting simultaneously on the same radio spectrum. In
order to make sure that the interference from SUs to PUs are tolerable, SUs are usually required to
transmit at a low power level resulting in a rather limited communication coverage. By introducing

cooperation between PUs and SUs, a win-win situation can be achieved for both PUs and SUs. In



cooperative CRNs, SUs can act as relays for PUs. Therefore, the performance of PUs can be
improved while SUs can earn more transmit opportunities. Sensing based spectrum sharing is a
combination of overlay and underlay. To be specific, in sensing based cognitive radio networks,
SUs will access the spectrum with a low probability/power when sensing PUs busy; SU will access
the spectrum with a high probability/power when sensing PUs idle. This dissertation will focus on
multi-hop cognitive underlay networks. Therefore, the following will give a detailed introduction
on routing in multi-hop cognitive underlay networks.

In multi-hop cognitive radio networks, routing, which is to find a path from the source to the
destination, is a fundamental and challenging issue [26]. To guarantee PUs’ priority on spectrum
access while optimizing SUs’ performance by route selection, several approaches have been come
up in current literature. To maximize SUs’ end-to-end throughput, mixed integer linear/non-linear
programming are employed to model the routing problem in [27] and [28]. Layered graph frame-
work was introduced in [26] to exploit dynamic spectrums resource in routing from the perspective
of graph theory. To reduce the control overhead, distributed routing algorithms for multi-hop cog-
nitive radio networks were designed in [29] and [30], where routing performance depended on the
design of routing metrics. The above mentioned routing algorithms in multi-hop cognitive radio
networks were formulated based on either one of the following one-hop reception models [31]: the
protocol model and the physical model. According to these models, if user A transmits a packet to
user B that is one-hop away, the neighboring transmitters of this link have to keep silent and the
neighboring receivers have to drop the received packets no matter whether it can decode it or not.
In reality, neighboring users can partially overhear packets within a certain range of the transmit-
ting user as pointed out in [32]. To take advantage of the broadcast nature of the wireless media,
cooperative routing has been introduced to reduce the end-to-end energy consumption in routing
packets between two users [33].

Using maximal ratio combining at the receiver, multiple partially overheard copies of the same
data would enable the receiver to decode the data with higher reliability. This technique is usu-

ally called energy accumulation (EA) or accumulative relay (AR) [34]. Distributed space-time



codes [35] or amplify-and-forward relay [9] can be regarded as special cases of two-hop energy
accumulation strategies. Energy accumulation routing in multi-hop wireless networks enables a
node to store a copy of the received signal that is too weak for decoding and combine it with other
copies of the same packet that arrives later [32]. It is shown in [34, 36, 37] that by energy accu-
mulation, even the suboptimal routing and resources allocation algorithm can achieve 30% ~ 50%
percent of energy reduction in multi-hop wireless networks. However, traditional routing methods
like the layered graph framework [26] and mixed integer nonlinear programming [38] can not be

directly applied in networks with energy accumulation or mutual information accumulation.

1.4 Massive Machine Type Communication

In February 2016, Cisco predicted the number of machine type devices (MTD) would grow from
604 million in 2015 to 3.1 billion by 2020 [39]. With the expected increase of machine type
communication (MTC), a single macro-cell may need to support 10,000 or more devices in the
future [40]. The challenges of designing a MTC network are different from those of a conven-
tional broadband network because of the characteristics of MTC applications: small payloads,
large numbers of devices, extended range and enhanced device energy efficiency [41]. Due to
these characteristics, the current deployed 4G cellular technologies, which have extremely effi-
cient physical and media access control layers performance, are still lagging behind supporting
massive MTC. Therefore, to support massive MTDs is one of the main driving force of 5G net-
works. In most of the current MTC systems, MTDs communicates directly with the eNodeB in
one cell. This single-hop paradigm may not be able to support massive MTD where hundreds or
thousands of MTDs attempt to set up wireless communication links. Furthermore, MTDs located
at the boundary of a cell suffer from a high outage probability due to the interference from other
MTDs. A costly solution is to deploy more eNodeBs and split the cell into multiple small cells.
Instead of investing a huge amount of money on deploying extra eNodeBs or relays, coopera-

tive communication has been demonstrated as an efficient and effective way to extend the coverage



region and improve the throughput of cellular networks [42] [43] [44] [45]. In [43], the authors
introduced ad hoc GSM (A-GSM) system which integrates multi-hop communication into cellular
networks. In [44] and [45], power allocation schemes were studied in two-hop relaying cellular
networks and the performance gains were demonstrated by simulation results. Cooperative com-
munication has been studied to extend the coverage range in heterogeneous M2M networks [46].
A two-hop transmission protocol to minimize total energy consumption in both flat and frequency-
selective fading channels was studied in [47]. Guided routing protocols which aim at efficiently
selecting relay nodes to enhance the delivery probability with partial network information were
studied in [48] and [49]. It was shown in [50] that multi-hop cooperative communication could
effectively reduce the end-to-end delay in a massive MTC network. However, there are still several
key technique open questions remaining unsolved. The first question is relay selection with limited
channel state information (CSI). Different from conventional relay selection with full CSI [42], it
may be impossible for a MTD to estimate its wireless channels to potential relays due to the
potentially huge amounts of overhead. The second question is the lack of systematic network per-
formance analysis. Theoretical analysis on the performance of cooperative communication in a
massive MTC network is challenging because the network performance depends on interference
and network topologies. Due to the complexity of network performance analysis, most of the
current literature only demonstrated the network-level benefits of cooperation using simulation

results.

1.5 Stochastic Geometry and Wireless Networks

Information theory has played a central role in the design of the physical layer of a wireless com-
munication system. However, information theory, which lays a foundation for improving the per-
formance of point-to-point communication, has failed to characterize the performance of wireless
networks. New tools need to be developed to analyze the performance and guide the design of

wireless networks. Actually, one of the main challenge to analyze the performance of a wireless



network is the randomness in network topology and wireless channels. Recently, stochastic geom-
etry has been regarded as a promising mathematical tool which can characterize the throughput,
outage probability and transmission capacity of wireless networks.

Stochastic geometry deals with random spatial patterns [8]. By modeling the location of nodes
as a stochastic process points in the two- or three-dimensional space, stochastic geometry can pro-
vide an average performance for wireless networks over different topologies just like the queueing
theory provides averaged response times or congestion over all potential arrival patterns within a
given parametric class. Hence wireless network modeling and analysis is a very natural applica-
tion of stochastic geometry, and, indeed, the last decade has witnessed a significant growth in this
area [8]. Using stochastic geometry as a tool to characterize interference in wireless networks can
data back to 1978 [51], and was further advanced by Sousa and Silvester in the early 1990s [52].
Recently, stochastic geometry has been widely used to analyze the performance of cellular net-
works and D2D networks after the pioneering work of Andrews [53], Martin [8] and Baccelli [54].

For a cellular network, the downlink coverage probability and throughput for the typical user
is given in [53]. Furthermore, the authors compare the theoretical result to the grid model and an
actual base station deployment. They found that modeling the location of nodes as a Poisson point
process (PPP) can provide a lower bound on coverage probability for the real systems performance.
Fractional power allocation is studied using stochastic geometry to compare how power allocation
strategies affect the performance of cellular systems [55]. Fractional frequency reuse is studied
in [56] for cellular networks. Stochastic geometry is widely used to analyze the performance of
wireless networks because it is tractable and can reveal fundamental relationship between system
performance of system parameters. Recently researchers around the world are using stochastic
geometry to analyze the performance of D2D networks [57], networks with carrier sensing [58],
cognitive radio [59], heterogeneous networks [60] and networks with clustered devices [61].

Although stochastic geometry is quite success on characterizing the performance of One-hop
networks, e.g., cellular networks and D2D networks, it is quite challenging to characterize the

performance of multi-hop networks. The main issue in multi-hop wireless network is that interfer-



ence in different locations and time-slots are correlated [62]. Furthermore, as indicated in [62], the
effect of interference correlation depends on the path loss exponent. When temporal interference
correlation is considered, it is proved in [63] that there is no diversity gain in simple retransmission
schemes, even with independent Rayleigh fading over all links. This indicates that if in this time-
slot a node is in outage, with high probability it will be in outage in the next time-slot. In [64], the
authors characterize the transmission capacity of an ad hoc network with multi-hop transmissions
and automatic repeat request on each hop under an assumption that interference is independent in
different time. In [65], the author studied the throughput-delay-reliability tradeoff with ARQ in
wireless ad hoc network without considering the spatiotemporal correlation of interference. Re-
cently, correlation of interference is considered in [66] [67] for one-hop networks. Both results

show that no-correlation assumption is significantly optimistic compared to the true performance.
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Chapter 2

Fundamentals: Analysis of Wireless
Networks with Mutual Information

Accumulation

In this chapter, we study the fundamental performance of mutual information accumulation in
various wireless networks. To begin with, we first analyze the performance of mutual information
accumulation in an infinite 2-dimensional(2-D) grid network. Then, we study the optimal routing
in cognitive radio networks with mutual information accumulation and characterize the cooperative
gain we can obtain by applying mutual information accumulation in cognitive radio networks.
Thirdly, we extend our work to random networks and characterize the performance of mutual

information accumulation in a Poisson field of interferers using tools from stochastic geometry.

2.1 Asymptotic Analysis on MIA in 2-D Grid Network

The performance improvement of combing mutual information accumulation with cooperative
routing for a simple 1-D wireless network was illustrated in [16]. It was shown that the cooperative

gain converges to 712/6 ~ 1.64 in the low signal-to-noise ratio (SNR) regime. In this section, we
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characterize the cooperative gain for a two-dimensional (2-D) wireless network in the low SNR

regime.

2.1.1 Problem Statement

Let us consider the routing problem for a simple 2-D grid network with (N + 1)? nodes equally
spaced in a D x D square area. Let (0,0) be the coordinate of the source node and (N,N) be
the coordinate of the destination node, as shown in Fig. 2.1. The source wants to transmit a
message of B bits to the destination under the help of all other nodes in Fig. 2.1. The total system
bandwidth is denoted as W and the transmit power spectrum density of each node is denoted as P.

The channel power gain between two nodes, (7, j) and (m,n), is proportional to (d(; j) (mn))~ % =

Edest.

100p

80P

60p

40P

ORNORNOCRNORNORORNONNG®)

20p

s

‘ ‘ ‘ ‘ %)
0 20 40 60 80 100
source

Figure 2.1: The topology of the 2-D grid network

(N/D)*(\/(m—i)2 4 (n— j)?)~ %, where « is the path loss exponent. Small scaling fading is
omitted here to simplify the analysis. The routing and resource allocation strategy is designed to
minimize the end-to-end delay from the source to the destination. In the following, we provide an
asymptotic analysis of the cooperative gain of this network in low SNR regime when the number

of nodes goes infinite.
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2.1.2 Performance Analysis

In the low SNR regime, the optimal route for the 2-D cooperative network using mutual informa-
tion accumulation in this topology is tagged by the black line in Fig. 2.1. That is, the cooperative
strategy that minimizes the transmission duration is: for the source, node (0,0), keeps transmit-
ting until node (1,0) decodes the message. Then, node (1,0) takes over the transmission. This is
because node (1,0) has better connections to the rest of the nodes in the route compared to node
(0,0). Therefore, it is better to allocate the full system bandwidth to node (1,0) rather than reserv-
ing some for node (0,0). Subsequent transmissions continue until the next node in the route (black
line) decodes. The duration of each transmission is shorter than its previous one due to the fact
that the receiving node has already accumulated some mutual information from the transmission
of the previous nodes. On the other hand, the optimal route for non-cooperative multi-hop net-
work can be obtained through Dijkstra’s shortest path algorithm [68]. It is important to note that
unlike the cooperative route where all nodes in the black line participate, in the non-cooperative
network the optimal route depends on the transmission power of P. When P is sufficiently low, the
optimal route is the same as the cooperative one. However, as P increases, some relay nodes are
skipped. When P is sufficiently large, the minimum delay strategy is to let the source transmit to
the destination directly.

Let the minimum delay of cooperative routing with mutual information accumulation be Tys;4
and the minimum delay of traditional multi-hop routing be Tyc. In the following, we will refer the
node by its location. The optimal route from the source to the destination is shown (black line)
in Fig. 2.1 and the optimal decoding order is (0,0)— > (1,0)— > (1,1)— > (2,1)— > ---— >
(N,N—1)— > (N,N). The link capacity between node (i, j) and (m, n) is

PN?/T
D>No ((i—=m)*+(j—n)*) ]’

Cli,j)(mm) = logy | 1+

where we assume the path loss exponent is 2. When N is large and P is small, such that N2P is
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small, the spectral efficiency can be approximated as

PN?/T
Cii ~1 . 2.1
(i,j)(m.n) ngeDzNo((i—m)z-i-(j—n)z) 2.1
The incremental delay for traditional multi-hop delay-optimal case AT, can be expressed as
B BNyD’T
ATy = ~ 0 (2.2)

Ciijijs)Wr — WrPN?logye’

For nodes which accumulate mutual-information, the incremental delay is reduced and in a large
network the A(; j)i11,;) and A; jy(; j+1) Will be the same and approach a steady state value At.. For
a specific node (i, j), since the node is allocated the full bandwidth Wr, if its transmission lasts A,
the corresponding time-bandwidth product is A(; j)i11,j) = ATeWr or A(; ji j+1) = ATWr. As N
becomes large, the steady state time-slots dominate the overall delay. The information accumulated
at node (k, k) can be divided into two parts: the first part is the information accumulated from
nodes (i, i), 1 <i < k—1; the second part is the information accumulated from nodes (i + 1, i),

1 <i< k— 1. Therefore, the decoding condition for node (k, k) can be expressed as,

k k
Z (kD) (A Gt Dy ket 1) T 3 Clhmtt ) () A (k1 i) (el 1 1)
= =1
N?/T k PN?/T
~ AT W, 1 ——— + AT W, 1
r 1:21 ngezDzN p AT ,:ZI P82 DN+ (1= 1)2)

PN?)T & /1 1
= At Wrlog,e—=— D2N, Z <—+—_1)2)

N—so0 k300 PNZ/F (nz T n))
> 4 7))

AtWrlog,e (2.3)

Therefore, the incremental delay is

BD?NyI'
Wrlog, ePN? (% +73 tanh(%))

AT, = 2.4)
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Therefore, the cooperative gain in two-dimension case is

AT.  2NAt.

A 2NA 2
Tue _ 2NATy <E_+§tanh(§

=+ )) ~2.2631. (2.5)

The cooperative gain of this 2-D grid network is simulated and plotted out in Fig.2.2 (N = 100,

D =100 m, B = 20 bits, No = 1 W/Hz, and &« = 2) as a function of PWy. Here Wy is the total

3.2 b

26 b

24r b

2.2r : b

Cooperative gain T C/«:NII A

1-8 1 1 1 1
0 20 40 60 80 100

Transmission power: PWT

Figure 2.2: The cooperative gain of 2-D grid network

spectrum bandwidth of the system. It can be clearly seen in Fig.2.2 that the cooperative gain
increases as transmit power increases. Furthermore, the cooperative gain curve is piece-wise. The
non-differentiable break points correspond to the powers at which the optimal non-cooperative
(shortest-path) route changes. As N becomes large and P approaches zero such that the product of
N?P stays small, we show that the cooperative gain converges to 7% /12 + 7 /2 tanh(7 /2) ~ 2.2631.
Note that the cooperative gain for 1-D networks is characterized in [16] as 72 /6 = 1.64. Therefore,
the cooperative gain in 2-D networks is larger than its courter part in 1-D networks. It is also
important to note that the cooperative gain obtained here is very similar to that obtained in [33].

This is because the transmission strategy used in [33] is energy accumulation which performs
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close to mutual information accumulation in the low SNR regime. Interestingly, the cooperative
gain is not monotone increasing as a function of PWr in each sub-domain as its corresponding
one-dimensional case is. Instead, the cooperative gain first decreases and then increases as PWr
increases in each sub-domain. This can be explained by the fact that after selecting a new delay-
optimal route, nodes will first works in the low SNR region and then works in the high SNR region
as PWr continues increasing. In the low SNR region, the end-to-end delay in non-cooperative
networks can be expressed as C/SNR, where C is a constant decided by the length of packet,
bandwidth and number of hops etc. While in the high SNR region, the delay can be expressed as
C/log(1+SNR). Since 1/x decreases much faster than 1/log(1+x) w.r.t. x, the delay as a function
of power for non-cooperative networks decreases much faster when nodes are in low SNR region
than in the high SNR region. Since there is no route change when transmit power increases in
cooperative networks using mutual information accumulation, the increasing or decreasing trend
will be dominated by Tyc. This explains why the cooperative gain is not monotone increasing
as shown in Fig. 2.2. This section shows that mutual information accumulation can achieve high

cooperative gain in non-cognitive networks.

2.2 Analysis on MIA in Regular Cognitive Radio Networks

In this section, we analyze the fundamental performance of multi-hop underlay cognitive radio

networks with mutual information accumulation.

2.2.1 Problem Statement

Consider an underlay cognitive network where PUs use orthogonal transmissions, such as orthog-
onal frequency-division multiplexing (OFDM) and different PU pairs occupy different subbands.
N SUs try to access one subband of the cellular spectrum while keeping the total interference to the
PU pair under a threshold. Accordingly, the underlay cognitive radio network considered in this

paper can be modeled as a cognitive network with 1 PU transmitter, 1 PU receiver, 1 SU source,
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1 SU destination and N — 2 SU relays, as shown in Fig. 2.3. The spectrum bandwidth of a PU

put ¢ B B -

o - o @

sSU1l
source

sus
destination

o o

su2 su4

Figure 2.3: System model for MIA in cognitive radio networks

pair’s subband is denoted as Wy and PU’s interference threshold is denoted as I7. The objective
of SUs’ network is to transmit a data packet with entropy B bits from the SU source to the SU
destination with the help of the SU relay nodes. All SU relay nodes can actively help forwarding
the data packet or keep silent on PU’ spectrum, depending on the cooperative routing and resources
allocation strategies.

Both PUs and SUs operate in half-duplex mode. All SUs use orthogonal frequency-division
multiplexing (OFDM) and all transmitting SUs are allocated orthogonal time-bandwidth resources
by transmitting in different time slots and on different OFDM sub-carriers. Therefore, all the
transmitting SUs can transmit without interference with each other while all the receiving SUs
can overhear the respective transmission. Let Py denote the transmit power spectral density of
SUs . The wireless channel between each pair of nodes is assumed to be a quasi-static flat-fading
channel. The channel power gain between user i and user j is assumed to be £;;. Let C;; denote
the achievable transmission rate per degree of freedom between node i and node j which can be

expressed as [69]

h; P, bit
Cl‘j:lng <1+ i ) 1S

(No+hyjP,)I" ) sec-Hz’
where P, is the transmit power spectral density of PU, I" denotes the signal-to-noise (SNR) gap

that defines the gap between the channel capacity and a practical modulation and coding scheme

(MCS). The SNR gap depends on the MCS used and the targeted error probability. For a coded
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quadrature amplitude modulation system, the gap is given by I' = 9.8 + n,,, — n.(dB). n,,, is the
system design margin and 7, is the coding gain.

Equipped with mutual information accumulation, if SU i is allocated the time-bandwidth prod-
uct A; sec-Hz for transmission, the potential information flow from SU i to SU k can be expressed
as A;Cy; bits. Assume that SUs are designed to use perfect rateless codes at all desired rates and that
a receiver can combine information flows from two or more transmitters. If, for example, a pair
of transmitting nodes, SU i and SU j, are allocated time-bandwidth products of A; and A, respec-
tively, our assumption means that SU k can decode the message as long as its mutual information

accumulated exceeds the entropy, i.e.,
AiCy+A;Cyy > B.

Note that it is impossible to generate rateless codes that are perfect simultaneously at all possible
rates. However, in practice, the overhead of rateless codes like fountain codes is bounded and not
too large compared to perfect codes. Including an overhead factor 1+ €, € > 0, our computations

can be achieved trivially by replacing B with (1+ €)B [14] [70].

2.2.2 General Characteristics of the optimal route

PUT 1 - . PUR 7

Figure 2.4: A simple three-node SU network

Let’s first consider a basic three-node SU network shown in Fig. 2.4. Assume that node 1
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and node 2 have already successfully decoded the codeword and both of these two nodes have
a certain amount of energy that can support the following data transmission for a while. Node
3 still need to receive By bits of mutual information before successfully decoding the codeword.
The interference power spectral density of node 1 and node 2 to the PU receiver are denoted as
I} £ h,Pand b, £ hy, P>, respectively. The link capacity among node 1, node 2, and node 3 are
denoted as Cyp, Ci3 and Cp3. The interference power threshold set by the PU receiver is I7 and
the total bandwidth is normalized to Wy = 1. Let 0; and 6, be the spectrum bandwidth allocated
to node 1 and node 2, respectively. To decrease the transmission delay of node 3 is equivalent to

maximize the sum of link capacity from both node 1 and node 2 to node 3, i.e.,

argmax 01Ci3+ 6,Co3
01,6,
st. 01+6, <1,
011, + 6.5 <Ir,

0<6,,60<1.

Note that here the sum-energy constraint is neglected since the route minimizes the end-to-end
delay also minimizes the sum-energy [16]. The solution to the above linear programming problem

is summarized in the following,

(1,0), if I} <Ir,Cy3 <Ci3;
)

(0,1), if b <Ir,Cyz > Ci3;

e 2) : if b > Ir,Co3 > 12213,11 # b;
(67,6,) = e (2.6)
> ; if Iy > 1p,Cp3 < 208, 1 # I

: LC
11—12’ﬁ) , ifly >Ir,L <Ir,and C13 > Cy3 > 21—113;

L—Ir Ir—I : LC
(740, i 0 <Ir,b > Ir,and Cis < Gy < 201,

It is proven in [11] that the delay-optimal cooperative route for a wireless network is to let just one

node to transmit within any time slot. However, this is not true in underlay cognitive radio net-
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works. The delay-optimal cooperative route for underlay cognitive radio networks depends on both
the interference conditions and the link capacity conditions. That is, under some interference and
link capacity conditions, both node 1 and node 2 have the opportunity to participate in the trans-
mission simultaneously. To be specific, the fifth and sixth items in (2.6) indicate that it is possible
for node 1 and node 2 to conduct concurrent transmission and share the spectrum orthogonally in
a time slot. Furthermore, we observe that if two nodes transmit concurrently in a time slot, one
of the node’s interference power spectral density has to be bigger than It while the other node’s
interference power spectral density has to be smaller than /7. This observation is summarized into

the following Lemma.

Lemma 1 If two nodes, say node 1 and node 2, transmit concurrently in a time slot, then either
L > It,L < Iy or I} <Ir,I, > It holds, and the total interference power spectral density to the

PU receiver is Ir.

Proof 1 Node 1 and node 2 transmitting concurrently means that the bandwidth allocated to them
(01 and 6,) are not zero. That is, the solution to maximize the sum of link capacity is either the
fifth or the sixth item of (2.6). This indicates either I} > I, I, < It or Iy < Ir,I; > It. Under this

condition, the total interference power to the PU receiver is
Ir—1h I —Ir L —Ir It —1)

X I X1 =T X I
7 A Ay At AL A Iy

xXbh =Ir.

Note that the delay-optimal route for a conventional wireless network can be found by letting
It — . Under this situation, the solution becomes the first two terms of (2.6) which coincides
with the intuition obtained in [11].

The analysis on the three-node SU network tells us the following intuition: after node 2 decodes
the packet, it will take over the transmission and inform node 1 to stop transmitting if 68; = 0; else
if 6 > 0,0, > 0, node 2 and node 1 will conduct concurrent transmission with bandwidth of
6, and Oy, respectively; otherwise, node 2 will keep silent and node 1 will continue transmitting.

However, equation (2.6) is just the optimal result for a three-node network. How should this result
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be generalized and extended to a multi-node network and how can a new node make a decision on
whether it should participate in the transmission after it decodes the data packet? We solve this
problem by introducing the concept of virtual node. 1f there are two nodes, say node 1 and node
2, doing concurrent transmission at the same slot, these two nodes combined can be regarded as a
virtual node 2. To be specific, by Lemma 1, the equivalent interference of this virtual node to the
PU receiver is I7 and by equation (2.6) the equivalent link capacity between this virtual node and

the destination can be expressed as Csy,

CQN =0Cy+ (1 — G)CZN,

where, 0 is the bandwidth allocation factor within the virtual node and can be expressed as

Ir—I
L-5>
0 — 1—h

LI .
Ii—[f’ if 1 < I, I, > I7.

if[l >Ir, L <lIr;

After introducing the concept of virtual node, if a new node which has decoded the message
finds out that there are two nodes transmitting concurrently in the slot, this new node will make
routing and resources allocation decision again by (2.6) where it should substitute its local infor-
mation and the information of the virtual node. We have the following lemma for the routing and

resource allocation for the new node.

Lemma 2 If a node decodes the packet and finds out that a virtual node is transmitting in the

network, this node will not transmit concurrently with the virtual node.

Proof 2 Lemma 1 tells us that the equivalent interference power spectral density of the virtual
node to the PU receiver is IT. Therefore, the routing and resources allocation result for the virtual
node and the new decoding node belongs to the first four items in equation (2.6), i.e., this virtual

node will not transmit concurrently with the new decoding node.

Lemma 2 indicates that, during a transmission slot A;, there are at most two nodes transmitting

concurrently in a slot. This result is summarized and proved in the following theorem.
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Theorem 1 For the underlay cognitive radio network of our interests, within a transmission slot,

there are at most two SUs sharing PU’s spectrum and transmitting concurrently.

Proof 3 We prove this theorem using the fundamental theorem of linear programming [71]. As-
sume there have been N nodes already decoded the message. Our goal is to find the best com-
bination of transmitting nodes in the next slot to maximize the total throughput from these nodes,
denoted asi=1,...,N — 1, to the destination N. This problem can be summarized to the following

linear programming problem:

N
mgx Z 9,-Cl~7N

toj=1
YN, 6 <1, 2.7)
st.4 Y, 6 <Ir,

0<6,<1,i=1,2,..,N.

If the optimal feasible solution to the above optimization problem is 6; =1,i € {1,2,...,N}, this the-
orem holds since there is only one node transmitting. Otherwise, if 6; < 1, for all nodes, then there
are only two active constraints in the standard format of linear programming problem. Therefore,
there are at most two non-zero items, i.e., at most two non-zero 0;, in the optimal basic feasible

solution since the rank of the basis of the linear programming is at most 2.

The above theorem shows that there will be at most two nodes that share one transmission slot
and therefore the cooperative routing and resources allocation over-head is limited. In the more
general case where there are multiple primary receivers in the network, we can obtain the following

corollary:

Corollary 1 For the underlay cognitive radio network with M primary pairs, within a transmission

slot, there are at most M + 1 SUs sharing PU’s spectrum and transmitting concurrently.

The following theorem shows that under certain conditions, the distributed resource allocation

algorithm can obtain optimal performance on end-to-end delay.
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Theorem 2 Assume a transmission order [1,2,... L] has the property that the spectral efficiency
from each node to the destination increases w.r.t. i, i.e., Ciy < C(i+ N> 1 <i<N-—1. If the path
meets either the following two conditions:

N>, 1<i<N-1;

2) L <Iliv1,1 <i<N—1, while Ciy /I; < Ci11)n/liv1,1 <i<N—1,

then the optimal routing and resources allocation strategy for this path is in the following: assume
current transmitting node is node i,1 <i <N —2, ifnode j,i < j <N —1 decodes the packet, then
node j will take over the transmission and node i will stop transmitting. The spectrum bandwidth
for node j is l(I,-SIT) +1Ir/1;- 1(1j>IT)’ where 1(Ij>IT) is the indicator function. Here the optimality
means to minimize the transmission delay or equivalently to maximize the equivalent link capacity

to the destination.

Proof 4 We first prove condition 1). Assume node i,1 < i < N — 2 is transmitting and node j,i <
J <N —1 first decodes the packet. If I; < Ir, since Cjy > Cin, all the spectrum bandwidth, i.e.
Wr =1, should be assigned to node j by the second item in equation (2.6). The spectrum resource
for node i is 0, therefore, node i will stop transmitting. If I; > Ir, since I; < I;, we can get Ciy /I; <
Cin/1j. Then It /1; part of spectrum should be assigned to node j in order to maximize SU’s
throughput by the third item in equation (2.6). The spectrum resource for node i is 0, therefore,
node i will also stop transmitting. Therefore, we can conclude that as long as node j decodes
the packet successfully, it will take over the transmission with bandwidth 1 <t HIr /1;- L I;>Ir)-
This ends the proof of condition 1). The proof of condition 2) is very similar to that of condition

1), therefore it can be omitted.

2.2.3 One-dimensional underlay cognitive radio network

In this section, we analytically characterize the cooperative gain for a one-dimension underlay
cognitive radio network using mutual information accumulation. The network topology is shown
in the following Fig. 2.5. N + 1 SU nodes are deployed equally in a line from (0,0) to (D,0). The

PU transmitter (PUT) is located at (0,d}) and the PU receiver (PUR) is located at (1,d;). The path
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Figure 2.5: one-dimensional special case in underlay cognitive radio networks

loss exponential is @ = 2. We assume the noise at the SU receivers (SUR) can be ignored compared
to the interference from PUT and all SUs transmit at the same fixed power P;. The channel power
gain between each pair of two nodes are proportional to the distance d~%. Denote the SU source
node as node 0 and the destination as node N. In the low signal-to-interference ratio (SIR) regime,
1.e., P is very small, the spectral efficiency of the channel between node i and the destination node

N can be expressed as,

P (D—iD/N)_2> P (d}+D?)

Ciyn=1log, | 1+ = = = - .
2( P, (2+D2) ') Pp(D—iD/N)’T

Obviously, as the node index increases, the corresponding spectral efficiency to the destination

increases. Node i’s interference power spectral density to PUR can be expressed as
=P (&2 +([D—iD/N?) ",

which is also increasing as the node index increases. The ratio between spectral efficiency and

interference spectral density can be expressed as

Gy _ d}+D? <1+ & >

I; P, (D—iD/N)*
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As i increases, C;y/I; also increases. By Theorem 2, this indicates that in this 1-D cognitive radio
network, as long as node i decodes the information, it will take over the transmission from the
previous transmitting node. Accordingly, the optimal routing and resources allocation strategies
are similar to those for conventional wireless networks described in [16], i.e., the data packet is
transmitted one-by-one and in each transmission order, the whole available spectral bandwidth
will be allocated to the current transmitting node. The overall delay can be computed by solving

Ap1Co1 = B,A12C12 +Ap1Cor = B or in general
k—1
Y Ayt Cik =B,
i=0

for each k,1 < k < N, which we can write as

Coi O 0 Ao1
Co Cn2 0 Ar
=B1, (2.8)
0
Cov Civ Cv-1n AN-1)N
where 1=[1,1,..., I]T and the available spectrum means the SU will be assigned the bandwidth to

guarantee that the total interference at the PUR is less than I7. Therefore, there are three different
cases based on different interference conditions:

The first case is ly, 1,1, ...,Iy—1 > I7. In this case, for each node i, the available spectrum band-
width is I7/I;. The delay of cooperative routing using mutual information accumulation can be

expressed as

= NA~— NA- Il =2 T
c=Y A=) (1—1)11—1/T—IT ;
i=1 i=1

where .# ~! is the inverse of the spectrum efficiency matrix shown in (2.8) and . = [Iy, I,...,Iy_1]".

Since P; is small, the multi-hop route crossing every node one-by-one is delay optimal both for the
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cooperative routing with mutual information accumulation and traditional multi-hop delay-optimal
routing. The optimal delay of traditional multi-hop routing can be expressed as
B N—1 I;

INC = 7 .
It =5 Ciivn)

(2.9)

The second case is Iy,I,1p,...,Iy—1 < Ir. In this case, each node can fully use its spectrum and

the cooperative delay is the same as that in [16],
c=B1". 7 '1. (2.10)

The third case is that there exists a node M which meets that [; < I7,i < M and I; > I7,i > M, i.e.,
M = {M : Iyy < Ir,Iy+1 > It }. In this case, the optimal end-to-end delay of traditional multi-hop
routing can be divided into two parts: the first part is the delay from node 1 to node M. Since node
1 to node M’s interference is less than or equal to Iz, this part of nodes can use the full spectrum;
the second part is the delay from node M + 1 to node N. Since these nodes’ interference is larger

than I, this part of nodes can only use I /I;, M < i < N — 1 part of the full spectrum, i.e.,
M B N B

e = + e B 2.11)
;’) Citir1) a1 IrCigir)

Accordingly, the delay obtained by cooperative routing using mutual information accumulation

can be expressed as,

wc=BY ¢\, (2.12)
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where 3;/ =[1,1,...;1, ;41 /17, ..., In—1/I7]. Therefore, the cooperative gain can be summa-

rized as,
' e -
=0 Ci(it1 .
yT%/< Tl> ) IO Z IT’
INC o' e
G. = — H+l) < [r: 2.13
E— ) T , Iy <Ir; (2.13)
Yoo — Z—M+11 C
zz+1 T%i(i+1) , IM S IT,IM+1 > IT'
\ fﬂ Vs

Note that from (2.13) we can find the cooperative gain in underlay cognitive radio network is quite
different from the result in traditional ad hoc network as discussed in [16]. Specifically, the coop-
erative gain of traditional ad hoc network can be regarded as a special case of underlay cognitive
radio network when I7 is sufficiently large. Furthermore, in the special case of mutual information
accumulation, i.e., each node can only accumulate information from its previous transmit node, the
spectral efficiency matrix will be # = diag{Co1,C12, -+ ,Cy_1)y }- Then the cooperative gain in
underlay cognitive radio network will be 1. That is, the hop-by-hop transmission in traditional ad
hoc network can also be regarded as a special case of networks with mutual information accumu-

lation where each node can only accumulate information from its previous transmitting node.

2.2.4 Evaluation Results

Fig. 2.6 shows both the simulation and theoretical results on the cooperative gain as a function
of PUR’s interference power threshold I7 in the 1-D cognitive radio network which is shown in
Fig. 2.5. The simulation parameters are in the followings. The PUT is placed at [0,0.8], and
the PUR is located at [1,0.8]. The SU source is fixed at [0,0.5] and the SU destination is fixed
at [1,0.5]. Other parameters include Wy = 1 Hz, Er = 20 Joule, Nop = 0 W/Hz, P, = 1 W/Hz,
o = 2 and B = 3bits. There are 20 SU nodes equally deployed in the 1-D network. From Fig. 2.6,
we can see that the theoretical results match very well with the simulation results. This verifies
our simulation codes as well as our theoretical analysis. Furthermore, it is important to note that

the cooperative gain is much higher when PU’s interference constraint is tight. That is, as the
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Figure 2.6: Simulation and theoretical results on cooperative gain as a function of I

interference power threshold decreases, the cooperative gain will increase. This result suggests that
in underlay cognitive radio networks, using mutual information accumulation will bring significant
benefits especially in the case where PUs have tight interference power constraint. Finally, it is
shown in Fig. 2.6 that as P; increases, the cooperative gain increases. It is clear that when P
increases, the end-to-end delay of both shortest path and mutual information accumulation routing
will decrease. However, the decrease speed of mutual information accumulation routing is much
faster than that of shortest path routing. This is because for any transmission slot all nodes can
benefit from the increase of Py in mutual information accumulation routing as opposed to only one

node can benefit from the increase of P in the traditional multi-hop routing.

2.3 Analysis on MIA in Random Networks

It has been shown in [72] that mutual information accumulation can significantly reduce end-to-
end delay in a multi-hop wireless network. However, theoretical results on the performance of

mutual information accumulation with interference from random networks still remain unknown.
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In this section, we theoretically analyze the performance of mutual information accumulation in
random networks using tools from stochastic geometry. To be specific, we first model the various
network topologies as a Poisson point process. Then we analyze the coverage probability of the
two-hop network under retransmission, energy accumulation and mutual information accumulation
strategies at the receiver side. Finally, simulations results and numerical results are presented to

verify the correctly of our analysis and provide system design guidance.

2.3.1 Problem Statement
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Figure 2.7: System model for MIA in random networks

Consider a two-hop network with source node S, relay node R and destination node D. The
distance of the source-relay link, source-destination link and relay-destination link are denoted as
v,z and x, respectively. Other nodes in the network are modeled as a Poisson Point process(PPP) &
with a intensity of A as shown in Fig 2.7. All other nodes will randomly access a common band of

spectrum using slotted ALOHA protocol with access probability of p. Therefore, for any time-slot
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i, the locations of interference nodes in this network can be modeled as a PPP ®,; with intensity
of A, = pA. The destination or relay can successfully decode packets if its received signal-to-
interference-ratio(SIR) is greater than a threshold 7" or accordingly its spectral efficiency is greater
than Cp = log(1+ 7). Here we assume the system works in interference limited regime and the
noise power is omitted to simplify our analysis. Extension to including the analysis of noise power
is straight forward and is omitted here. Channels of the link is modeled as a combination of the
power-law path loss and Rayleigh block fading. Assume all nodes in the network transmit with the
same power P, the received power at the receiver side can be expressed as P, = PG, 4 ;x~ %, where
G;.q.i ~ exp(1) is the small scale fading gain between the link from node s to node d in time slot i
and o > 2 is the path loss exponent. The small scaling fading between different link in the same
time slot and between the same link in different time slots are assumed to be i.i.d. If the relay node
can decode the packet in the first slot while the destination node fails to decode the packet, the relay
node will retransmit the packet or the re-encoded packet to the destination. The destination can
try to decode the retransmitted packet directly, named in the following as retransmission strategy.
Or the destination node can try to combine the packet received in the first time slot and the packet
received in the second time slot using maximum ratio combination (MRC), named in the following
as MRC or energy accumulation (EA). Or the destination can combine the packet in the first time
slot and the packet received in the second time slot as a long code-word and decode the packets
using mutual information accumulation, named in the following as MIA strategy. In the following,
we will theoretically analyze and compare the performance of retransmission, MRC and MIA

using tools from stochastic geometry.

2.3.2 Performance Analysis on Retransmission, EA and MIA

We first analyze the coverage probability of the transmission in the first slot. Denote I;; and

SIR; 41 as the interference and SIR received at the destination in the first time slot. The received
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SIR can be expressed as

P, PG —a
SIRs7d7l _ I s5,d,1%

A —. (2.14)
liy  Yxew,, PGxailx—D|~*

The coverage probability is defined as P = IP(SIR, 4,1 > T). Note that the probability here should
consider the randomness from small scale fading, random access and network topologies. The
randomness of network topologies is modeled as Poisson point process and the interference from
nodes in different locations can be characterized by tools from stochastic geometry. To be specific,
the coverage probability in the first time slot can be calculated in the following steps. Similar
procedures can be found in the book [8]. We present details of the calculation here to show how

we deal with different randomness using tools from stochastic geometry.
P = P(SIRs7d71 > T)

= Eo {Gyu, Aloha [XD(=T 11,1 /P2%)]

= Eo (6,4} Aloha [Mxcawexp(—TGxq,1|x—D||~%z%)]
b p
ZEg |11 1—
<D|: XECD( p+1—|—TZO‘HX—D||_O‘>} (2.15)

c 1
£ -2 1— d
exp( p/Rz 1+ T7%x— D] @ )

— exp (—2n7Lp/az2T2/aB(1 - 2/a,2/a))

= exp(—ci ApTH %),

where < comes from averaging over the small scale fading Gsa1; 2 comes from averaging over the
access policy of slotted ALOHA and small scale fading of Gy 4 1; < comes from the probability
generating functional (PGFL) [8]; B(x,y) is the Beta function; ¢; = 2x/aB(1 —2/a,2/a) is a
constant only related to the path loss exponent. Equation (2.15) characterizes the one-hop coverage
probability of the random network by taking account of small scale fading, random access and
random topologies. Network optimization can be conducted based on this equation to further

optimize the network performance by adjusting the related parameters.
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In the following, we analyze the coverage probability under retransmission. If the relay node
can decode the packet in the first slot, then the relay node can forward the packet to the destination
in the second slot. The successful decoding condition after two-slot transmission includes two
events: 1) the destination can decode the packet in the first slot; 2) the destination fails to the
decode the packet in the first slot while the relay decodes the packet in the first slot, the destination
decodes the packet from the relay in the second time slot. Note that in the first time slot the
interference is from Poisson field of @, ; and in the second slot the interference is from Poisson

field of ®,>. Mathematically, the coverage probability can be expressed as
pRe — P(SIRs 41 < T,SIRs 1 > T,SIR.q2>T)+P(SIR; 41 >T). (2.16)

As each nodes in the network will access the spectrum with a probability of p independently, @, ;
and @, ;> are not independent. Therefore, we cannot split the analysis into two time slots. Instead
the coverage probability in two time slots has to be considered jointly. Furthermore, the interfer-
ence at the relay node and the interference at the destination node are also correlated. The closer
the relay node to the destination node, the stronger the correlation between the interference at the
relay node and the interference at the destination node. These phenomenon are called the spatio-
temporally correlated interference which makes the analysis of two-hop networks challenging and
complex. The coverage probability under retransmission strategy is summarized in the following

Lemma.

Lemma 3 Under retransmission strategy, the coverage probability of a two-hop network in a Pois-

son field of interference can be expressed as

pre—p Al 1-(1- P 1 P d
phexp{ =4 , P k=R “Ty® P xe—porxe ) **

_ (1= p _ - p
_ o MR (1-r+ et ) (! "+1+nxfun—am)d"_

(2.17)

Proof 5 See Appendix A.1 for details.
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Lemma 3 captures the coverage probability under retransmission strategy. Note that, the coverage
probability is averaged over various network topologies. The expression of the coverage probabil-
ity is complex as there is a two-dimensional integration inside the exponent function.

Similar to the retransmission strategy, energy accumulation (EA) strategy allows the relay to
retransmit the same packet to the destination if the relay can decode the packet in the first time
slot. If the receiver of the destination can do MRC, then the actual SIR at the destination after
the second slot can be expressed as SIR; 41 + SIR,;>. Therefore, compared to retransmission
strategy, MRC or energy accumulation can achieve better coverage probability. Mathematically,

the coverage probability of energy accumulation can be expressed as
pEA _ P(SIR 41 <T,SIRs ;1 > T,SIR.q2+SIR; 41 >T)+P(SIR; 41 >T). (2.18)

Compared to the analysis of retransmission, calculation of the coverage probability of energy
accumulation strategy is more challenging as it is related to the sum of two random variables. The
main idea to attack this challenge is to analyze the coverage probability under a given topology or
a given realization ¢ of the Poisson point process ®. Under a given topology, we can first analyze
the coverage probability under a fixed SIR, ;> and then average the coverage probability over the
distribution of SIR, ;5. Note that here the distribution of SIR, ; is the distribution under a fixed
topology, which is quite complex than the distribution of S/R, 4 > under Poisson point process. The
theoretical result of coverage probability is summarized in the following Lemma and the detailed

proof can be found the Appendix.

Lemma 4 Under energy accumulation strategy, the coverage probability of a two-hop network in
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a Poisson field of interference can be expressed as

e A|x-D|~%x* 1 1
pEA _ p / / 14 1— d
" fy e Ut eD w2 \ P PI T — o) D]~ 1 1 [x-R-oTye )

_ (1= [ _ 1 1
Lo M2t (1 ”+1+ny-n|r“x“w>(1 PP w) 7 yD] @ 1+uy-R|rarya)dydw

_ _ 1 1
_ M e R e X

(2.19)
Proof 6 See Appendix A.2 for details.

If the relay can decode the packet in the first time slot, the relay can re-encode the packet
and forward the re-encoded packet to the destination. The destination can accumulate the mutual
information of this packet by treating the two received information bits as a long code-word. The
successful decoding condition under mutual information accumulation now becomes that as long as
the mutual information accumulated at the destination is larger than a threshold, the destination can
decode the packet. Compared to energy accumulation strategy, mutual information accumulation
can further improve the performance. The coverage probability under the mutual information

accumulation strategy can be expressed as

PMIA =P(SIR; 41 < T,SIR; 1 > T,log(1+SIR,42)+log(1+SIR, 4 1) >log(1+T))+P(SIRy 41 >T).
(2.20)
Using the same analysis technique, the coverage probability under the mutual information ac-

cumulation can be derived and is summarized in the following Lemma.

Lemma 5 Under mutual information accumulation strategy, the coverage probability of a two-hop
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network in a Poisson field of interference can be expressed as

°° Ap||x-D||~%x® 1 1
PMIA — p, // 1— d
"o Je (D adeR PP T el b T eR] oy )
0]

_ Y I . pr _ 1 1
M1 (1 "+1+|y-n|%°‘w><l PHP 0 D7 1+|y-R|aTya>dy
T+o d

e (0]

_ _ 1 1
—e lprzl 1+|x-D|| %1% 1+Hx-RH_aTyadx.

(2.21)
Proof 7 See Appendix A.3 for details.

Even though we obtained the coverage probability for retransmission strategy, energy accumulation
strategy and mutual information accumulation strategy, the expression of the coverage probability
is very complex. Especially, the expression of the coverage probability of mutual information ac-
cumulation. In the following, we are focusing on simplifying and approximating these expressions
so that the relationship between the network parameters and network performance can be more

intuitive.

2.3.3 Approximation and Simplification

In this subsection, we develop some tricks to approximate the simplify the coverage probability.
The complex expression of coverage probability makes it difficult to get design intuition and opti-
mize network performance. The direction of approximation is to reduce the number of integrations.
One trick we can use is that for any X, ||x — D|| ~ ||x — R|| = ||x— R/2 — D/2||, i.e., the distance
from x to D and from x to R can be approximated by the distance from x to the middle point of the
segment from D to R as shown in Fig. 2.8. Note that this approximation is accurate only when x is
far away compared to the distance from D to R. However, numerical results show that this approx-

imation is still accurate when we do integration on R%. Under this approximation, the coverage
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Figure 2.8: Illustration of the distance approximation

probability of retransmission can be simplified as

P p
PR~ p A 1—-(1-— T 1-— — | d
1*‘”“3( /R < ”+1+||x||-arya>( "+1+||x||—arxa> ) 2.22)

_ _(1— P _ I
_ e P! (1-r+ reremat e ) (! ”+1+ux\|—ma)d",

By some mathematic simplifications, the following two-dimensional integrations can be expressed

as followings:

p p
1—(1-p+—L  V(1-p+—2 )4
/Rz ( ”+1+||x||arya>( "+1+||x||aTxa> X

) ) ) ) ) xa+2_ya+2
= p(1=p)ei T (y* +x7) + p*erT /“W;
/ 1—<l—p+ N _ ><l—p++)dx (2.23)
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where ¢ = %’B(l — %, %) Therefore, the coverage probability under retransmission strategy can

be simplified as

a+?
pRe ~ p—ciAp2TH® +e—p(l—p)7tmT2/“‘(y2+x2) p*Acy Tz/“‘%—}af

-y

(2.24)

L0+ 2a+2(yo¢_zo¢) 2a+2(x _Za) Z206+2(Xoc

(x& —y @) (y& —20) (x* —z &)

—%)

—p(1=p)Aei T/ —p(1—p)he T OX =202 2 c 2/

After approximation and simplification, the previous two-dimension integration is removed from
the final expression. In the following, we are going to simplify the coverage probability of energy
accumulation strategy. The result is summarized in the following Lemma and details can be found

in the Appendix.

Lemma 6 Under energy accumulation strategy, the coverage probability of a two-hop network in

a Poisson field of interference can be approximated as

* 2_ (- )
0

a+2
e AT —lpc TZ/‘“i
—|—€ 1APT _ Pl ,
(2.25)
a (adoFi(1,2—2:3:1—ag/co)—b3a Fi (12— 2:3:1—by /o))
where ag = (T — @) Tz% by = Ty*, co = x® o, ho(ag, by, co) = ~2 27; a ;
(ao—bo)cy
1+2 1+2
_2r 2 2y, . 8 27BQ2-Z.1+3) a27B(1-g.1+3) . A 2o * ’
Cl_EB<1_a E) 2= o y €3 = o ,hl((l(),b(),C())—CO +b() a0+a0 —by’

(bo)** & ()& ()
(bo—ao)(bo—co) ' (ao—bo)(ao—co) ' (co—bo)(co—ap)’

and hy(ag,bo,co) =

Proof 8 See Appendix A.4 for details.

Note that both ag and ¢( are functions of . After simplification and approximation, there is only
one integration left. Using the similar technique, the coverage probability under mutual infor-
mation accumulation strategy can be approximated. Furthermore, we can find that the different

between the energy accumulation equation (2.19) and the mutual information accumulation equa-

(T—w)"z*

tion is small. If we define a; = ~—

and replace ag in equation (2.25) with a;, we can get the
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approximation of the coverage probability under mutual information accumulation strategy, which

is summarized in the following Lemma.

Lemma 7 Under mutual information accumulation strategy, the coverage probability of a two-hop

network in a Poisson field of interference can be approximated as

pMIA / <p/IC3x2a>%—1 — PPAx%esholar, bo,cO)) ¢~ Ap(1=p)cih(ar.bo.co)—ApPerha(arbo.co) 7 g
0

a+2_o+2
_ 272/ —Ape T e o=y T
e ciApz°T e P EECE

(2.26)

a}rFi(1,2—2:3i1-ay /co)—b3aFi (1,2—2:3;1—by /c
wherealé—(T 1+20 bo = Ty%, co = x%®, ho(ay,bo,co) = o (arzfi 1/c0)=bg2 i( 0/0)) .
(a1— bO)Co ¢ ) )
plra 1+4
2 2 2y, . A 2mBQR-21+42) A 27B(1-2,142) . A 2/a a gt
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2.3.4 Evaluation Results

In this section, we provide both Monte Carlo simulation results and numerical results to verify our
fundamental analysis and provide some system design guidance as well. Monte Carlo simulation
steps are as follows: 1) select a sufficiently large region denoted as C and calculate the average
number nodes in this area by N = |C|A, where |C| represent the area of the selected region; 2)
put the source, relay and destination at three locations S, R and D; 3)for each round of simula-
tion, generate the actual number of nodes according to Poisson distribution with an average of N
and randomly distribute these number of nodes in the simulation region; 4) for each node, decide
whether this node is active or not based on the slotted Aloha; 5) generate small scaling fading chan-
nel and calculate the received SIR. Details on the parameters of the simulation will be illustrated
in the following.

Fig. 2.9 shows both Monte Carlo simulation results and numerical results on the coverage

probability of one-hop transmission, two-hop decode and forward strategy, two-hop energy accu-
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Figure 2.9: Coverage Probability of two-hop network

mulation and two-hop mutual information accumulation strategy. Numerical results on one-hop
transmission strategy is obtained from equation (2.15); numerical results on two-hop decode and
forward strategy is obtained from equation (2.16); numerical results on two-hop energy accumu-
lation strategy is obtained from equation (2.19); numerical results on two-hop mutual information
accumulation is obtained from equation (2.21). The simulation parameters are as follows: the in-
tensity of the Poisson process of interference node A = 0.001m~2; the path loss exponent ¢ = 4;
the SIR threshold for successfully decoding T = 6; the locations of the source node and the des-
tination node are S = (0,0),D = (40,0). The location of relay node changes from the source to
the destination; the random access probability for the slotted Aloha p = 0.2. From this figure,
we can observe that numerical results and Monte Carlo simulation results match very well, which
verify our theoretical analysis. Furthermore, we can find that the optimal relay location will move
closer to the source node when the cooperative strategy changes from decode and forward to en-
ergy accumulation and to mutual information accumulation. For example, the optimal location for

the decode and forward strategy is at location of (19.46,0) with a coverage probability of 0.1721;
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the optimal location for the energy accumulation strategy is at (18.95, 0) with a coverage proba-
bility of 0.1883; the optimal location for mutual information accumulation strategy is at (16.69,0)
with a coverage probability of 0.2249. Therefore, under this simulation settings, we can find that
mutual information accumulation can improve the coverage probability by 30.60% compared to
decode-and-forward and can improve the coverage probability by 19.44% compared to energy

accumulation.
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Figure 2.10: Approximation of coverage probability in two-hop network

Fig. 2.10 compares the accurate numerical results on coverage probability and the approxi-
mated results on coverage probability. Parameters are kept the same as the parameters in Fig. 2.9.
From this figure, we can see that the approximation is close to the true value. Fig. 2.11 shows the
coverage probability under different decoding threshold 7. Other parameters are kept the same
as the parameters in Fig. 2.9 except the decoding threshold which are marked in the figure. From
this figure, we can observe that mutual information accumulation has better performance gain
compared to energy accumulation when the decoding threshold is high. For example, when the
decoding threshold 7 = 6dB, mutual information accumulation will achieve 13.49% gain on cov-
erage probability compared to energy accumulation. However, the gain will be only 2% when the

decoding threshold 7 = 0dB and 0.3% when the decoding threshold 7= —6dB. This is because
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Figure 2.11: Coverage probability under different decoding threshold T

when the decoding threshold is low, the system works in low SNR regime where accumulating mu-
tual information and accumulating energy will have similar performance as log(1 + x) ~ x holds
when x is small.

Fig. 2.12 shows the cooperative gain as a function of random access probability p. Here the
cooperative gain is defined as the ratio between the coverage probability of mutual information
accumulation and the coverage probability of retransmission strategy. In this figure, the distance
of source-destination link z = 90m, the location of the relay node is set as at the optimal location
which is obtained by one-dimensional search, A = 5 x 1095m 2, o = 4. Ttis clearly shown that
the cooperative gain increases as the decoding threshold increases. Furthermore, this figure shows
that the cooperative gain also increases as the random access probability p increases. When the
random access probability increases, the interference in the network will increase. Therefore, we
can conclude that mutual information accumulation can achieve much more cooperative gain in

high interference scenarios. This conclusion is further confirmed in Fig. 2.13, where cooperative
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Figure 2.12: Cooperative gain as a function of random access probability p

gain as a function of network intensity is plot out. In this figure, p = 0.5, z = 100m and ox = 4. As

shown in this figure, cooperative gain increases as the network intensity increases.

2.4 Conclusions

In this chapter, we provide fundamentally theoretical analysis on the performance of mutual infor-
mation accumulation over wireless networks. Asymptotic analysis shows that when the number
of cooperating nodes goes to infinity, the cooperative gain in a two dimensional grid network will
be greater than 2.6 which is much larger than the asymptotic cooperative gain in one-dimensional
grid network. Furthermore, we study the characteristics of the optimal route in cognitive radio
networks with mutual information accumulation and theoretically analysis the cooperative gain of
mutual information accumulation in underlay cognitive radio networks. Analytical results show
that mutual information accumulation can achieve higher cooperative gain especially in the sce-

nario with tight interference tolerant threshold networks. Finally, we analyze the performance of
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retransmission, energy accumulation and mutual information accumulation of a two-hop network
with Poisson field of interference. An accurate approximation of the coverage probability is de-
rived and verified by numerical results. This chapter lays a foundation for the following chapters

on application.

43



Chapter 3

Applications: Mutual Information

Accumulation in Cognitive Radio Networks

In this chapter, we are going to apply mutual information accumulation into underlay cognitive ra-
dio networks. In underlay cognitive radio networks, resource allocation and routing algorithms are
studied to explore the advantage of mutual information accumulation. To be specific, both central-
ized and distributed resource allocation and routing algorithms are developed in underlay cognitive
radio networks with mutual information accumulation. This chapter is organized as follows: Sec-
tion 3.1 presents the system model of underlay cognitive radio network with mutual information
accumulation; Section 3.2 presents the developed centralized routing and resource allocation al-
gorithm for underlay cognitive radio networks with mutual information accumulation; Section 3.3
discussed the distributed routing and resource allocation algorithm for underlay cognitive radio
networks with mutual information accumulation; Simulation results are presented in Section 3.4

and Section 3.5 concludes this chapter.

3.1 System Models

In this subsection, we will extend mutual information accumulation to underlay cognitive radio

networks and investigate cooperative routing and resources allocation for such networks. Based on
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various constrains, the following builds the mathematical model of resources allocation problem
after a transmission order is given.

Let L be the total number of nodes in the transmission order. Denote 7; as the time at which
user i decodes the message and A; = T; — T;_; as the inter-user delay between user i and user j.
Note that A; can also be regarded as the length of the ith time-slot. For a given route/transmission

order, the objective of the SU network will minimize end-to-end transmission delay:

This linear objective function is optimized subject to the following constraints: (i) A; > 0 for all i,
(i1) node i must decode by time 7; = 22:1 A;, (iii) the energy constraint(s), (iv) the constraint(s) on
the use of time and bandwidth, and (v) the interference constraint for the primary users. We state
constraints (ii)-(v) in turn.

First, there are L decoding constraints resulting from the nodes’ positions in the transmission
order. That is, the condition for successful decoding can be expressed as the accumulated mutual

information exceeds the entropy:

k=1 k
Y ) AGi>B, k=1,... L (3.1)
i=0 j=i+1

where A;; denotes the time-bandwidth product assigned to the ith user in the jth time slot.
Second, we consider constraints on energy and bandwidth. There are per-node energy/power
constraint [16], [73], [74] and sum-energy/power constraint [75], [76], [77] in the current litera-
ture. Per-node energy/power constraint is widely used to maximize the network life time as shown
in [73], [74] while sum-energy/power constraint is widely used to maximize the network through-
put as shown in [77]. Per-node energy constraint means that each node’s consumed energy for

transmitting the message should not exceed its own energy budget as follows,

L
Y AP <Ep, 0<i<L-1. (3.2)
Jj=i+1
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Sum-energy constraint means the total energy consumption for delivering the message throughout

the SU network should not exceed the energy budget E7:

L-1 L

Z Z A;iPs < ET. (3.3)

i=0 j=i+1

In this paper, we focus on the case of sum-energy constraint since we are trying to minimize the
end-to-end delay in the networks instead of maximizing the network life time. Therefore, in the
case where per-node energy constraint is considered, if a transmitting node runs out of energy,
a new routing can be obtained by re-running the centralized algorithm over the available nodes
as indicated in [74] or conducting routing repair procedure in the distributed algorithm. Sum-
bandwidth constraint suggests that all the nodes in the SU network share a sum-bandwidth of Wr,
1.e.,
i1
Y Aij<AWr, j=1,... L (3.4)
i=0
Finally, to protect PU’s quality of service, SUs should make sure that their total interference
power to the PU receiver should not exceed I7:
i1
AijhiyPsJAj <Ir, A;j#0,j=1,...,L—1, (3.5)
i=0
where h;, is the channel gain from the ith SU to the PU receiver.
Therefore, the problem of minimizing SUs’ end-to-end delay under sum-energy constraint,

sum-bandwidth constraint and PU’s interference power constraint can be written in the following

optimization problem OP1:

m 56

5.2.(3.1),(3.3),(3.4),and (3.5).

It is clear that given the transmission order, the resource allocation problem (3.6) is a linear pro-

gramming problem and can be solved efficiently. However, how to find the optimal transmission
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order is a NP-Hard problem. In the following, we presented a centralized heuristic solution.

3.2 Centralized Routing and Resource Allocation

Since the resource allocation problem for a fixed route/transmission order can be efficiently solved,
the remaining question becomes how to find the optimal route/transmission order. Unfortunately,
in [34] it is shown that finding the optimal route/transmission order for a wireless ad hoc network is
NP-complete. It is clear that the additional constraint on interference power will only complicate
the problem. In the following theorem, we show that the method to improve the transmission
order introduced in [16] still holds in the underlay cognitive radio networks of our interests. Let
X" = [A’[,AE, S ALLAG AN AT ,AZ‘L_I)L] be the optimal solution obtained from OP1 for
a given route/transmission order. Denote the corresponding optimal end-to-end delay as 7;" =

L A}, we have the following theorem:

Theorem 3 If A7 = 0, use T;"" to denote the optimal end-to-end delay (under the same sum-

bandwidth, sum-energy, and interference power constraint) of the ‘swapped’ transmission order:

0,...,i—2,i,i—1,i+1,....L] if i<L-1

[0,...,L—=2,L] if i=L.
We have T;™ < T;.

Proof 9 We prove the theorem by constructing a feasible resource allocation solution for the
‘swapped’ transmission order which has a decoding delay equal to the optimal decoding delay of

the original transmission order. Denote X* = [A], A5, ..., A} A5 ALy - Adp ATy - AT

(L—l)L] as the

optimal solution obtained from OPI for a given transmission order [0,...,i —2,i—1,i,i+1,...,L].
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Deﬁne X = [Al,Az, ...,AL,A()I,A()Z, ...,A()L,Alz, ---vA(L—l)L]’ where

A=AL0<i<L
Au=AL0<kl<Lk+Ai—1,1#i
Ai—1;=0,
Ajnj = AL j € fi+1,- L}

Aij=Af_p i e{i+1,- L} 3.7

We can find Y& | A; =YX | At and by Theorem 2 in [16], we know that x meets the decoding and
sum-bandwidth constraint. To show that X is a feasible solution to the ‘swapped’ transmission

order, we only need to show that X meets the interference constraint, i.e.,

i1
Alesl’llr < ITAj,j =1,2,...,L.
=0

This is true because Z{;& A;jiPshy, = Z{;&A}‘}Pshl, < ITA;‘. =IrA;,j=1,2,....L.

This theorem indicates that if a user in the transmission order decodes the data packet before
its previous user, a better delay performance can be achieved by moving forward this user in the
transmission order. After executing the ‘swapping’ operation, the following ‘deleting’ operation

can further improve the delay performance.

Theorem 4 [f user i’s transmission time is 0, i.e., t; = Z§:1Ai i =0, let T;"" denote the optimal
end-to-end delay (under the same sum-bandwidth, sum-energy, and interference power constraint)

of the ‘deleted’ transmission order:
[0,....i—1,i+1,....L] if i<L-—1.

*ok *
Then, T, < Tj".
Proof 10 Since the transmission time of user i is zero, it is clear that user i does not participate
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in the cooperative routing for the original transmission order. Therefore, deleting node i from the
original transmission order will not cause extra delay. However, since we delete node i from the
original transmission order, the feasible solution space of OPI is enlarged as node i’s success-
ful decoding constraint is deleted. Therefore, the optimal delay of the new linear programming

problem will be less or equal to that of the original linear programming problem.

Considering both Theorem 3 and Theorem 4, we know that for any route/transmission order, the
‘swapping’ and ‘deleting’ operation can be used to obtain a better route/transmission order. The
details of the iterative route optimization and resource allocation algorithms are summarized in
Algorithm 1. It is important to note that the final route/transmission order is a swapped or deleted
version of the initial one. Therefore, selecting the initial route/transmission order is of vital impor-
tance for the centralized resource allocation algorithm. Considering the protection of PU’s quality
of service, we can consider the initial route/transmission order as the one causing the minimal
interference to the PU receiver. In Section 3.4, the transmission order obtained from distributed

algorithm is used as the initial transmission order for the centralized resource allocation algorithm.

3.3 Distributed Routing and Resource Allocation

In this section, we introduce distributed cooperative routing and resources allocation algorithms
for underlay cognitive radio networks. Distributed resources allocation algorithms for wireless
networks using mutual information accumulation have been developed in [16] and [11]. How-
ever, they can not be directly applied to underlay cognitive radio networks. This is because these
distributed routing and resources allocation algorithms did not take the interference to PUs into
consideration. The distributed routing algorithms introduced in [29], [30], [78] addressed the is-
sue of protecting PUs in cognitive radio networks. However, these distributed algorithms can not
be directly applied to cognitive radio networks with mutual information accumulation since they

failed to take full advantage of mutual information accumulation. Therefore, distributed coop-
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Algorithm 1: Centralized cooperative routing and resources allocation algorithm
Input: System parameters:
[Pl, - ,PL] s Pp,No, &, I, ET, {hij‘l <i,j< N}, {]’lir‘l <i<N-— 1}, {]’lp,"2 <i< N};
Output: Route from the SU source to the destination and corresponding resources
allocation A, ;;
Initialization: Apply Dijkstra algorithm [68] to find the path from the source to the
destination with the minimal interference to the PU receiver; take this minimal interference
path as the initial transmission order ;

[

2 repeat

3 solve the linear programming OP1 to get the resources allocation solution for current
transmission order;

4 (Based on Theorem 3 swap the transmission order);

5 ifA;j=0and A;_1 #0,i=1,...,L then

6 |_ swap the positions of the two nodes in the order;

7 if A; = 0 then
8 | drop node L— 1 from the order;

9 Based on Theorem 4 delete the silent node;
10 if 7; = O then
1 |_ drop node i from the order;

12 until An order with A; > 0 and t; > 0 for all i is obtained,

erative routing and resources allocation algorithms for underlay cognitive radio networks should
take both link capacity, link interference to the PU receiver and the features of mutual information
accumulation into account. It is important to note that the interference power constraint could com-
pletely change the structure of the optimal solution to the routing and resources allocation problem
in the networks using mutual information accumulation. For example, it has been shown in [11]
that the delay-optimal route under sum-bandwidth constraint allows only one user transmit in each
transmission slot. However, due to the interference power constraint, there may be multiple users
transmitting concurrently within a single transmission slot in underlay cognitive radio networks.
Therefore, new distributed resources allocation algorithms need to be introduced. In the following,
we will first develop the criteria under which there will be more than one node transmitting in a
single transmission slot and then introduce a new distributed algorithm.

The details of the packet format in the distributed algorithm is shown in Fig. 3.1 and Fig. 3.2.

The information contained in the control packet is 8; where 0; denotes the bandwidth allocated

50



for the current transmitting node. If the decoded node finds that it is a better forwarding node than
the current transmitting one, it will set 8; = 0 and send out the control packet. If the decoded
node finds that it should transmit concurrently with the current transmitting node, it will add the
calculated 0; in the control packet and send it out. The control packets are assumed to be sent
out through a specific control channel and can be successfully and immediately received by the
receivers. Since each time there is only one node decoding the message and the control packet is
sent to inform the current transmitting node to stop or continue to transmit, it is a unicast instead
of broadcast. Therefore, there will be no collision among control packets. After a node decides
to take over the transmission, it will also add its own information to the header of the data packet.
The information contained in the header of the data packet is V_flag, Cjy and I;. V_flag is a
one-bit information to indicate whether this node is part of the virtual node. Cjy is the current
transmitting node’s capacity to the destination and /; is its interference to the PU receiver. If the
current transmitting node is part of the virtual node, it will set V_falg TRUE, set Cjy field in the
header of the data packet to the virtual node’s equivalent capacity and set /; in the header of the data
packet to I7; otherwise, it will set V_flag FALSE, add Cjy and I; in the header of the data packet.
These information is to help the next decoding node to do routing decision. Our new distributed

cooperative routing and resources allocation algorithm is summarized in Algorithm 2.

Pkt length | Source Addr Dest Addr

6,

Figure 3.1: The format of control packet in the distributed algorithm

In the initialization stage of this distributed algorithm, /; can be estimated by periodically sens-
ing PU receiver’s ACK packets or be estimated through the a priori knowledge on the location of
PU receiver [79]; Ciy can be estimated through the sounding signals sent by the destination node
as indicated in [16]. The complexity of the distributed algorithm lies in the calculation of equa-
tion (2.6) which consists of mathematical operations of comparison and division. Therefore, the

computation complexity of this distributed algorithm for each node is &(1). The overhead of this
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Pkt length Source Addr

Dest Addr

V_flag Cin

I;

Payload: 1000 bytes

Figure 3.2: The format of data packet in the distributed algorithm

Algorithm 2: Distributed cooperative routing and resources allocation algorithm for underlay

cognitive radio networks with mutual information accumulation

1 Initialization: (For node i) Estimate its interference power spectral density /; to the PU
receiver; estimate its channel to the destination and calculate C;y; obtain the information of
current transmitting node /;_; and C(;_)y from the header of the data packet it has

decoded;
calculate 0y, 8, by equation (2.6);
if 6; = 0,6, > 0 then

w N

4 Set 8; = 0 in the control packet and send it out to inform current transmitting node to
stop transmitting ; set V_ flag FALSE; add Cjy, I; in the header of the data packet and

start to transmit;
Ise if 6; > 0,6, > 0 then

wn
[«

6 Set 0 in the control packet with the calculated value 0; in step 2; send out the control
packet; in the header of the data packet, set V_flag TRUE; set Cjy to the equivalent
capacity of the virtual node; set /; to I7; transmit data packet with bandwidth 6,;

else
|_ node i keeps silent.

® 3

distributed algorithm lies in the information feedback about 6, link capacity of Cjy and ;. To be
specific, the newly decoded SU node needs to send out 0; to the current transmitting node. In the
header of data packets, the capacity C;y and interference /; should be added. Refer to our current
designed packet format, if Cjy, I; and 0; is 2 bytes each, the total overhead of the distributed al-
gorithm will not exceed 6 bytes for each data packet. Since the size of data packet can be on the
order of 1000 bytes, the overhead of our distributed algorithm can be made quite small.

If all SU nodes are under per-node energy constraint and one node runs out of energy while
transmitting, routing repair procedure will be conducted. The procedures are listed in the follow-

ing: if there is only one node transmitting in current slot, this transmitting node will inform its
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previous node in the transmission order to take over the transmission before running out of its en-
ergy. If one of the two nodes in the virtual node runs out of energy, the left node will continue to
transmit. In case where SU source tries to send multiple packets to its destination, the source SU
node can transmit the packets one-by-one. Specifically, the source can send out the first packet and
wait for the ACK from the destination. If the source receives an ACK packet from the destination,

it will send out another new packet until it finishes transmitting all its packets.

3.4 Simulation Results

In this section, we present simulation results to demonstrate the performance gains of mutual
information accumulation and the effectiveness of our algorithms for underlay cognitive radio
networks.

Fig. 3.3 gives an examples to compare the routing and resources allocation solutions between
traditional multi-hop delay-optimal routing without mutual information accumulation and cooper-
ative routing using mutual information accumulation in underlay cognitive radio networks. The
system setup for Fig. 3.3 is in the following. All the nodes are distributed in the area of 1 x 1
(meter x meter). The PUT is placed at [0.4,0.8] and the PUR is located at [0.6,0.8]. There are
altogether 16 SU nodes in the system: the SU source (node 1) is placed at [0.1,0.4] and the SU
destination (node 16) is located at [0.9,0.4]. The other 14 SU relay nodes are uniformly distributed
in the area. The total system bandwidth is set to be Wy = 1Hz and the total system energy is set
to be Er = 20Joule. Other parameters include No = 1W/Hz, Py = 1W/Hz, P, = 2W/Hz, It = 2W,
o =2,I'=0dB and B = 1bit. As shown in the figure, the traditional multi-hop delay-optimal
routing (red dashed, obtained by Dijkstra algorithm) is [1, 15,4, 16]. The corresponding bandwidth
allocation results are labeled on the links. For example, when the source node transmits to node 15,
it will use 82% of the total bandwidth due to the interference power constraint. The route for co-
operative routing with mutual information accumulation is [1,(8,1),(8,3),(8,6),15,4,(4,2),16],

where the second item (8,1) means node 8 and node 1 will share PU’s spectrum jointly in the
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Figure 3.3: Compare of MIA routing with conventional multi-hop routing in the underlay CRN.

second slot and these two nodes can be regarded as a virtual node. Within the virtual node, node
1 will occupy 54.3% of the PU’s spectrum and node 8 will occupy the rest 45.6% of the spec-
trum. From Fig. 3.3, we can see that the delay-optimal route of cooperative routing using mutual
information accumulation for underlay cognitive radio network is very different from that using
traditional multi-hop routing. It is important to note that the cooperative routing and resources
allocation solution in [16] can be regarded as a special case of our algorithm where I7 — oo.

In Fig. 3.4, we show the cumulative delay distribution for the following four approaches:
traditional multi-hop delay-optimal routing by using Dijkstra’s algorithm (denoted as TM Rout-
ing delay-optimal in the figure), centralized algorithm for mutual information accumulation, dis-
tributed algorithm for mutual information accumulation, and optimal solution for mutual informa-
tion accumulation obtained by exhaustive search. 6 SU nodes are randomly deployed in the net-
work as SU relays. It = 3W, a = 3. Other parameters are the same as those shown in Fig. 3.3. The
cumulative delay distribution is based on 1000 runs. The average delay of the traditional multi-hop
delay-optimal routing is 11.546sec, while the average delay of centralized and distributed coop-
erative routing using mutual information accumulation are 1.620sec and 1.622sec, respectively.
The optimal delay obtained by exhaustive search is 1.608sec. On average, both the centralized
and distributed cooperative routing algorithms can reduce up to 85.9% of the end-to-end delay

compared to traditional multi-hop delay-optimal routing. Furthermore, compared to the optimal

54



—

© o o o
o N ® ©

o
~

o
w

Cumulative distribution
o
(&)}

= = =TM Routing delay-optimal| -
v Distributed algorithm
e Centralized algorithm
Exhaust search .

o
[N

©
—

10 15 20 25
End-to-end delay

o

Figure 3.4: Compare of delay distributions of different algorithm

route and resource allocation strategies using exhaustive search, our proposed centralized and dis-
tributed algorithms only add 0.75% and 0.87%, respectively, additional delay. Under the same
simulation parameters, if we change the number of SU nodes to 48, the centralized and distributed
algorithms can, on average, reduce 77.7% and 77.5%, respectively, percent of the end-to-end delay
compared to the traditional multi-hop delay-optimal routing. Finally, from Fig. 3.4, we can see that
the introduced distributed algorithm can obtain almost the same performance on end-to-end delay

compared to the centralized algorithm.

3.5 Conclusions

In this chapter, we introduce cooperative routing for underlay cognitive radio networks using mu-
tual information accumulation and studied the associated problem of routing and resources alloca-
tion. An optimization problem has been formulated to identify the cooperative routing and optimal

resources allocation for the minimum delay transmission. The problem is further decomposed into

55



two subproblems: routing problem and resources allocation problem. Efficient centralized as well
as distributed algorithms were introduced to address these two problems. Since our solutions are
linear programming based, they can be readily applied to large scale cooperative cognitive radio
networks. Simulation results suggest that using the introduced resources allocation strategies, co-
operative cognitive radio networks using mutual information accumulation can significantly reduce

the end-to-end delay of SUs’ transmission.
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Chapter 4

Applications: Mutual Information

Accumulation in Massive MTC Networks

In this Chapter, we explore the possibility and potential of applying mutual information accumu-
lation into massive machine type communication (massive MTC) networks. In a massive MTC
network, wireless connections between machine type devices (MTDs) and eNodeBs are unreliable
due to the interference caused by uncoordinated random access of other MTDs. Conventionally, if
an eNodeB fails to decode the packet, the MTD will retransmit the packet in the following available
slot. However, it is with a high probability that the retransmission will fail again due to the cor-
related interference [80]. To address this problem, we first apply energy accumulation and mutual
information accumulation in MTC networks to improve the network performance. Furthermore,
we design and analyze a location-based cooperative strategy to further improve the performance
of massive MTC networks. One of the main idea of the new design is to select an inactive MTD
acting as a relay for outage MTDs. Unlike the work in [81] [82] where the authors assumed the
packet was known at the relay (base station) in prior, the new designed protocol considers the case
where the relay has no prior information about the packet. To be specific, an inactive MTD is
selected as a relay if it has successfully decoded the packet and if it is located within a circular area

around the eNodeB. Otherwise, if there is no inactive MTD that can decode the packet, the source
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MTD will retransmit the packet. The chapter is organized as follows: Section 4.1 describes the
system models. Section 4.2 presents the performance analysis. Simulation and numerical results

are presented in Section 4.3 and Section 4.4 concludes the chapter.

4.1 System Model

We consider a static massive MTC network consisting of machine type devices (MTDs) and eN-
odeBs as shown in Fig. 4.1. The locations of MTDs are modeled as a homogeneous Poisson point
process (HPPP) @ with a density of A. We assume MTDs transmit collected data to eNodeBs
over a Random Access Channel (RACH) of LTE or LTE-A with a probability p by the one-stage
protocol [83]. In the one-stage protocol, a MTD will transmit the data payload and device identity
altogether in one packet without any other handshaking overhead. One-stage protocol is consid-
ered here because it may not be worthwhile to invest overhead on handshaking mechanism due to
the small payload size of MTC. During a random access slot, we call the transmitting MTDs as
active MTDs and the non-transmitting MTDs as inactive MTDs. Therefore, the locations of active
MTDs in kth slot can be modeled as a HPPP ®* with a density of pA; the locations of inactive
MTDs in kth slot can be modeled as a HPPP &% with a density of (1 — p)A. We assume that for
each active MTD, its receiver (eNodeB) is located at a distance of z away. Extending this bipolar
model to random link length is straight forward [84]. By Slivnyak’s theorem, the performance of
the MTC network can be represented by the performance of the typical MTD-eNodeB link [85].
Without loss of generality, the typical eNobeB is located at the origin of a two dimension topol-
ogy. Assume the system operate in the interference-limited regime, i.e., the background thermal
noise power is negligible compared to the total aggregate interference power. We call the typical
eNodeB fails to decode a packet if the received signal-to-interference ratio (SIR) is less than a
threshold 7. The uplink channel of the considered massive MTC network is modeled as a com-
bination of the power-law path loss and Rayleigh block fading. In this chapter, we focus on the

uplink (link from MTD to eNodeB) performance analysis. We assume that all MTDs transmit
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with the same power F,. Therefore, the received power at the typical eNodeB from a MTD at a
distance of zis P, = B,G, 4,12~ %, where Gy 41 ~ exp(1) is the small scale fading gain between the
typical MTD s and the typical eNodeB d during the first transmission, and & > 2 is the path loss
exponent. The Rayleigh small scale fading is assumed to be i.i.d between different wireless links
during different transmission slots.

Cooperative Strategy: The wireless connection between the typical MTD and the eNodeB is
unreliable due to the interference caused by other uncoordinated and randomly accessing MTDs.
If the destination or the eNodeB fails to decode the packet due to interference or fading, the MTD
will retransmit the packet in the next available time slot. In the eNodeB side, the eNodeB can try
to decode the retransmitted packet or the eNodeB can do energy accumulation by using MRC to
combine the signal received from the first transmission and the signal received from retransmission.
Another approach is that the MTD can transmit a redundancy version of the packet and the eNodeB
will accumulate mutual information by combining the signal received from the first transmission
and the signal received from the retransmitted redundancy version. Instead of letting the typical
MTD retransmit the packet, we can also consider to select an inactive MTD act as a relay for
the typical MTD according to the following conditions: 1) the inactive MTD decodes the packet
in the first time-slot; 2) the inactive MTD is within a circular region .7, centered at the typical
eNodeB with a radius of R,. .7 is called the cooperative region. The inactive MTDs which
meet the above two conditions are called potential relays. If potential relays decode the packet,
they will send an acknowledge message (ACK) to the typical eNodeB. The typical eNodeB will
randomly select one potential relay to forward the packet if there are multiple potential relays.
After the relay is selected, the typical MTD will remain silent as if the packet has been transmitted
successfully. Accordingly, the density of the active MTDs in the network remains as pA. Denote
the locations of inactive MTDs during the first transmission, the locations of active MTDs during

! ®! and @2, respectively. Note ®! , ®! and &2 are

the first transmission and retransmission as ®; , ins
not PPPs since points are not independently displaced after the selection of relays [85]. However,

we approximate CIDI.ln, ®! and @2 as PPPs and this approximation is verified by simulation results.
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If there is no potential relay, the typical MTD will retransmit the packet. To simplify the analysis,
we only consider the case where the selected relay only retransmits once. Extensions on multiple
retransmissions remains as our future work. Therefore, under the designed cooperative strategy, the
typical eNodeB is in outage if: 1) there is a potential relay selected, however, the typical eNodeB
fails to decode the packet after the retransmission from the potential relay; 2) there is no potential
relay and the typical eNodeB fails to decode the packet after the retransmission from the typical
MTD. In the following section, we analyze the outage probability of retransmission from MTD as

well as this cooperative retransmission strategy.
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Figure 4.1: System model for massive MTC networks

4.2 Performance Analysis

This section presents a theoretical analysis on the outage probability of the designed cooperative

strategy for massive MTC networks. In the considered massive MTC network, the SIR at the
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typical eNodeB d during the first transmission can be expressed as,

-
Sd,l Gs,d,lz

lig  Lxea, Oxalxill =

4.1)

where S, 1 and I; 1 denote the power of received signal and interference at the destination d during
the first transmission, respectively. As a benchmark, the outage probability of the conventional
MTD’s retransmission, P, can be expressed as the outage probability in the first slot minus the

probability that the retransmission in the following available slot success. Mathematically,

P*=P(SIR;; <T)—P(SIR;; <T,SIR;»>T) 4.2)

According to equation (2.15), P(SIRy; < T) = 1 — e~ where k; = §nApz?TOT(1 — §)['(8) and
0= %. By averaging over the small scale fading of the source-destination link in two time slots
Gy,4.1, Gy 4,2, the probability that the retransmission in the following available slot succeed can be

further expressed as

P(SIRz; <T,SIRz» >T) =Eg 0 [(1 — e—T’d-,lZ’“)e—de,zf"‘] , (4.3)
By averaging over random access strategy, the above equation can be simplified as

P(SIRy1 <T,SIRip>T)=Ei5 0 [erq)(l —p—Fpe*TGx,d,lHX*Dniaza)]

4.4)
_ E{G}ﬂ) [erq)(l _p_|_pe_THX_DH7an,d,11a)erq)(l _p_|_pe—THX—DH7an,d,zza)] ,
By averaging over the small scale fading, the above equation can be simplified as
P(SIR; 1 <T,SIR;» >T)=Eg |I1 1—
( d,1 ) d2 ) CD|: XEq)( p+p1—|—T||X—DH_O‘ZO‘>]
4.5)

—Ecp

Y

1 2
“"6‘1’(1"’+p1+T||x—DH—aza>
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By using PGFL and further simplification on integrations, we can get

P(SIR;y < T,SIRgy >T) =e¢ 1 — e 2kitp1=0)k1 (4.6)

Therefore, the outage probability under retransmission from the MTD is summarized in the fol-

lowing Lemma.
Lemma 8 /n a massive MTC network, the outage probability under pure retransmission from the
MTD can be expressed as

Pre —1— 2e—k1 +e—2k1+p(l—6)k1 (47)

Y

where ky = StA p2TOT (1 — §)I(8) and 8 = %.

Note that equation (4.7) takes temporal correlation of interference into account, i.e., inter-
ference at the first time-slot /;; and second time-slot I, are temporally correlated. If we as-
sume that I; 1 and I, > are independent, the retransmission outage probability can be expressed as
Pr =1- 2¢ k1 472k As P7", < P, we can find that the independent interference assumption
underestimates the outage probability as in [86].

In the eNodeB side, instead of decoding the packet purely rely on the signals received in the
second transmission slot, the eNodeB can combine the signals received in two time slots by energy
accumulation or MRC so that the outage probability can be further reduced. In this case, the outage

probability after the retransmission, P"F4, can be expressed as

P'FA —P(SIR;, < T)—P(SIRy 1 < T,SIRy +SIRy2 > T). (4.8)

Using the same methodology developed in the first part of this dissertation, the probability that the
SIR under energy accumulation is larger than the threshold while the SIR of the first transmission

is smaller than the threshold under a fixed topology ® and SIR, > can be calculated in the following
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steps.

IP(SIRdJ <T, SIRdJ +SIRd72 > T|¢,S1Rd72)

< E {6} atoha [€Xp (—2%T g1 (T — SIR42)") —exp (—2%T1y,1T)]
! IT 1 + !
1+2%(T —SIRyq2) " |[x— D] @ xe@ \ 1T PP ey x— D@
4.9)

b
= Ilxeco (1—p+p

where = comes from averaging over the small scale fading of the source-destination link; 2 comes
from averaging over the small scale fading and the random access. Denote SIR; > as  and accord-
ing to equation (A.6), the PDF of Q given a fixed topology ® can be expressed as

plx-D[|~*z*

)4
W)= 1—-p+ .
foro(©) X§><1+Hx-nll—%“>2wye§¢x( P b))

Therefore, the probability that the eNodeB can decode the retransmission under energy accumula-

tion can be expressed as

P(SIRCLI <T, SIRdJ —|—SIRd72 > T)
* 1
=E IT 1— w)dw
e (1= r e ) foteol
1
—E|I1 1—
{"@( p+p1+z°‘THx—D||‘“ﬂ
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where ki = STAp2TST(1— 8)T(8), fi(0) = (T — ) w2 F (1,2— 231 M);fz(w) -

a’ w
2 2 _o)HE ot 27B(2—2,142
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2tB(1-2,1+2) a

o ; = comes from averaging over ® and 2 comes from Appendix A.2. The results on
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the outage probability of combining retransmission with energy accumulation is summarized in

the following Lemma.

Lemma 9 In a massive MTC network, the outage probability under retransmission with energy

accumulation from the MTD can be expressed as

Pt —1- [ (pheol ! —aapiR(e)e PR IRl @)
0

where fi(0) = (T— o) oi % (1,2 2331 - T20); (@) = 0i +((T- )i fi()=
2

T—w) T a !t 2B(2—2,1+2) 27B(1-2,1+2)
s e = 81— 3, 3)s g = T bl o = 2lta)
Similarly as the analysis in Appendix A.3, by replacing (T — @)™ with (- T w) in Lemma 9, we can

get the outage probability in the case under mutual information accumulation, which is summarized

in the following Lemma.

Lemma 10 In a massive MTC network, the outage probability under retransmission with mutual

information accumulation from the MTD can be expressed as

preMiA _ y _ / w (Phes?oi™ = cdp?2fa() ) e imrad bl Arasi©)l e, @13)
0

5 2 o)t 2
Wh€}"€f4( ) %ZFI (172 2 ;351 — l+(J) > f5< ) wa+[(T1+CZ)) ]a;clz%B(l_
y 27B(2—21+2) 27B(1-2 142 (USIARTES SRS

) ) A+35).
)= o , C3 = o @, f6(w) = 1+(E)T )T
1+w

2
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Qll\)

Another method to improve the performance of massive machine type communication network
is to use cooperative transmission. Basically, if a MTD can decode the packet and the MTD is
much close to the eNodeB, then this MTD can serve as a relay for the outage MTD. Under the
designed cooperative strategy, the event that the typical eNodeB is in outage after retransmission
can be divided into two exclusive events: 1) if there exists at least one potential relay and the typical
eNodeB fails to decode the retransmission from the selected relay; 2) if there is no potential relay

and the typical eNodeB fails to decode the retransmission packet from the typical MTD. Denote
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the first transmission from the typical MTD fails as event B. Denote there is at least one potential
relay as event A. Denote the retransmission from the selected relay succeeds as event E and denote
retransmission from the typical MTD succeed as event F'. The outage probability of the designed

cooperative strategy can be expressed as

P’ =P(B)—-P(ANBNE)—P(A°NBNF), (4.14)

where A denotes the complement of A and P(B) = 1 — e is the outage probability of the first
transmission [80]. P(ANBNE) is the probability that the outage eNodeB successfully decode the
retransmission from a selected relay. P(A°NBNF) is the probability that there is no potential relay
for the outage eNodeB and the outage eNodeB successfully decode the retransmission from the
typical MTD. Note that event A, B and E are correlated together due to spatiotemporally correlated
interference. Basically, the interference at the typical eNodeB during the first transmission I,
and the interference at the typical eNodeB during the retransmission I, > are temporally correlated;
the interference at the typical eNodeB during the first transmission I, ; and the interference at the
selected relay during the first transmission /1,y are spatially correlated. These spatiotemporally
correlated interference will significantly affect the performance analysis of cooperative strategies.
Before we go deep into the calculation of P(ANBNE), let’s first look at the probability of finding

potential relays while the eNB fails to decode the first transmission, i.e., P(ANB).

4.2.1 Probability of Finding Potential Relays

Recall that in a massive MTC network, the potential relays for an outage MTD are those inactive
MTDs which meet two conditions: 1) the potential relays have successfully decoded the packet;
2) the potential relays are within the cooperative region .o7.. To simplify our analysis, we assume
that for any inactive MTD Yy inside the cooperative region, its distance to the typical MTD and
other active MTDs can be approximated to the corresponding distance to the typical eNodeB, i.e,

|x —y]|| = ||x||, where x € ®%. This assumption is accurate as most of the outage events happen
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at the boundary of the cell, which means the radius of cooperative region is far smaller than the
transceiver distance of the typical link, i.e., R, < z. The accuracy of this approximation is further
justified by simulation results in the following section. Note that within the cooperative region
<y, the locations of inactive MTDs are HPPP with intensity of (1 — p)A. The number of inactive
MTDs in ¢, denoted as .4, is a Poisson random number with average a = TR?(1 — p)A. The
number of potential relays, denoted as .#, is also a random variable. It is quite difficult to directly
calculate the expression of P(A N B) because event A includes various sub-events, i.e., different
combinations of relays who can decode the packet. Instead, we can calculate the complement of
event AN B. By De Morgan’s law, the probability that there is at least one potential relay can be

expressed as

P(ANB) = 1 —P(A°) —P(B°) + P(A°N B), (4.15)

where P(A¢) is the probability that no potential relay can be found after the first transmission;
P(A° N BC) is the probability that the first transmission succeed while there is no potential relay.
In the following, we show some detailed derivation of the probability that no potential relay can
be found after the first transmission. Note that there are two cases that no potential relay can be
found: 1) there is no inactive user in the cooperative region; 2) there are k,k = 1,2, ..., inactive
users in the cooperative region, however, all these inactive users fail to decode the packet in the

first slot. Therefore,

(o)

P(AY) =P(A =0)+ Y P(AN =k)P(SIR;; <T,--- ,SIR; 1 <T) (4.16)
k=1

where ./~ denotes the number of inactive users in the cooperative region. Recall that . 4" is Poisson

distributed with average of a = TR2(1 — p)A, therefore, P(.#" = 0) = ¢~ “. By substituting the
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expression of SIR; ; and averaging over the small scaling fading, we can get

k

H —TZ I/l

(4.17)

B

It is not convenient to average over multiplication of multiple items, [E [ i (1= e—TZaI.ixl) . In-

stead, we can express the multiplication out and get the following,

—ak k

+) (—1)fc,{e—TZ“Z?—1’f=1] , (4.18)

L

where C/ = & Then, we can do average on each items in the summation. By changing the
k= k=)

. D . . w o
summation in the exponent to the multiplication of exponential functions and note that Y7 ( 77 =

e?, we can get

—a k k % Gm,i,l

Z 1YCJE H ] e ™ (4.19)

J=1 i=1x,ed]

e

Averaging over the small scale fading G,, ;1 and using the PGFL, we can get

x o—agk k i 27rpl Iy ( %)vdv
P(A°) = l_i_kz*’l i Z 1+T20y~®)
_ _a_k B (4.20)
214y Z(—l)fcge—ﬂg@
k! 4 ’
k=1 j=1

j i I C .
where C| = ﬁ, g(j) £ nr? Zsm@%) i C ]W which is similar to the definition of

F, in [80]. The following Lema summaries the above derivation,

Lemma 11 In a massive MTC network, the probability that no potential relay can be found after

the first transmission is

k k o )
Y (—1)/Cle r*eV) (4.21)
j=1

e %
k!

PA)=1+Y
k=1
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§2 78 I'(8)
where g(j) £ AT GI0 V| Ch s e

In the following, we are going to derive the probability that there is no potential relay in the
cooperative region while the first transmission is successful, i.e., P(A° N B¢). Note that the event
A and B are not independent, so the probability P(A° N B¢) cannot be split into the product of two
probabilities of P(A¢) and P(B¢). The result of P(A° N B¢) is summarized in the following Lema

and the proof is in the appendix.

Lemma 12 In a massive MTC network, the probability that no potential relay can be found while

MTD’s first transmission is successful can be expressed as

k
1)/ClePrslrl) o=hi, (4.22)

< k e‘“a
c c\
PANB) =) ) k'
k=1 j=1
where ky = StA p2TOT(1 — §)I(8).
Proof 11 See Appendix A.5.

Substitute (4.21) (4.22) into (4.15), the probability of finding potential relays for the outage MTD

can be summarized into the following theorem:

Theorem S In a massive MTD network, the probability that the outage typical MTD can find at

least one potential relay is

o k e—aak Y . _ .
rare) = £ o i e Pt o), 423
i (6
where C]i = _(]Z{‘ DIk g(]) = nTs Zsm;fgﬁ) C rar ((6 )i+l)'

Note that P(ANB) can also be interpreted as the portion of MTDs which are forwarding the data for
other outage MTDs. In a massive MTC network, it is quite common that MTDs are inactive/idle
for most of time. Therefore, by allowing inactive MTDs to forward the data of outage MTDs, we

save the investment of deploying specific relays. Furthermore, for a specific deployed relay, it is
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not guaranteed that the relay can decode the packet when the source MTD is in outage. However,
in our designed cooperative strategy, only the inactive node which has already decoded the packet
in the first time-slot is selected. Therefore, we can expect that our designed cooperative strategy
can further reduce the outage probability. In the derivation of Theorem 5, the spatiotemporal
correlation of interference is considered. As a benchmark, if the correlation of interference is
neglected, i.e., interference at different locations and time slots are independent, the probability
of finding potential relays for the outage MTD will be the multiplication of two events: the first
event is the MTD is in outage, of which the probability can be expressed as 1 — e~¥1; the second
event is there is no potential relay in the cooperative region. Note that the number of inactive
MTDs in the cooperative region is a Poisson distribution with an average of a = TR2(1 — p)A.
Since every node in the cooperative region can decode independently with a probability of e %1
(under the independent assumption), the number of potential relay in the cooperative region is also
a Poisson distribution with an average of ae 1. Therefore, under the independent assumption, the
probability that there is at least one potential relay in the cooperative region, the second event, can
be expressed as 1 —e™ % s Therefore, under independent interference assumption, the probability
that the outage typical MTD can find at least one potential relay is summarized in the following

Lemma.

Lemma 13 In a massive MTC network, the probability that the outage typical MTD can find at

least one potential relay under independent interference assumption is

k

P*(ANB)=(1—e*)(1—e% ). (4.24)
where ki = SmAp2TOT (1 — 8)I'(8) and a = wR2(1 — p)A.

4.2.2 Outage Probability Analysis

If the typical eNodeB can find a potential relay for the outage typical MTD, the selected relay will

retransmit the packet to the typical eNodeB. Whether the typical eNodeB can decode the packet
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after retransmission depends on the received signal and interference. Assume the potential relay
y is selected to do the retransmission. The distance from y to the typical eNodeB, denoted as
y, is a random variable. It is untractable to find the real distribution of y, however, under our
previous assumption of ||x —y|| = [|x||, Vx € ®%, the distribution of y can be calculated out because
all the inactive mobile user within the assist region will have an identical probability of becoming

potential relays. The distribution of y is summarized into the following lemma:

Lemma 14 In a massive MTC network, if the relay is uniformly randomly selected from potential
relays, the distribution of the distance from the selected relay to the typical outage eNodeB, y, can

be expressed as
2y

H) = ok (4.25)

Note that the locations of selected relays cannot be modeled as a PPP because the process of
selecting relays is not an independent thinning of the original PPP. However, the location of active
MTDs which includes selected relays and active MTDs can still be approximated as a PPP. This
is because the active relays can be regarded as random displacement of outage MTDs and random
displacement of a PPP will generate another PPP as indicated in [85].

It is quite challenging to directly calculate P(ANBNE) as A denotes that there is at least one
potential relay. Instead the probability of A€ is much easier to calculate. By De Morgan’s law, we

can interchange intersection and union. Therefore,

P(ANBNE)
=1-P(A) —P(B°) —P(E°) + P(A“NB) + P(A“NE®) + P(B°NEC) —P(A“NB°NE) (4.20)

= P(ANB) — P(EY) + P(A° N E) + P(B° NE) — P(A NB° N E°).

The probability that retransmission from the selected relay can be successfully decoded by the

typical eNodeB can be expressed in the following lemma.

Lemma 15 In a massive MTC network, the probability that the typical eNodeB can successfully
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decode the retransmission from the selected relay can be expressed as

R,
PUNBNE) = [ P02/ Ry (4.27)
0
where
ok e—aak . ‘ .
Pe) =Y Y~ Gieali+1.5)=80), (4.28)
k=1j=1 "

which represents the probability that the typical eNodeB successfully decodes the retransmission

from the selected relay given y, and

i 2exp(—2mn [ p(1-pr—2P N\ (i- £
gz(J,y)—eXP< 2”/0 p (1 p+1+p—°‘y°‘T> (1 p+(1+P‘“Z°‘T)j>pdp>'

(4.29)

Proof 12 See Appendix A.6.

If there is no potential relay in the cooperative region, the typical MTD will retransmit the
packet. The probability that the typical eNodeB can successfully decode the retransmission packet

from the typical MTD can be expressed in the following lemma.

Lemma 16 In a massive MTC network, when there is no potential relay, the probability that MTD’

retransmission succeeds is

oo k41 (_1)je—aak(k_|_1) .
P(A°NBNF) = e — g a=2kitp(1=0)k 1 : ) gps(+ DA
( ) I;ljzi JlUk+1—j)!

(4.30)

where ki = SmAp2TOT (1 — 8)I(8).
Proof 13 Proof can be found in Appendix A.7.

Note that here the retransmission probability P(A° N BN F) is quite different from the retransmis-

sion probability defined in equation (4.7). This is because in our designed strategy retransmission
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from the typical MTD only happens when there is no potential relay. Finally, the outage prob-
ability for a massive MTC network under our designed cooperative strategy can be obtained by

substitute (4.27) and (4.30) to (4.14), which is summarized as:

Theorem 6 In a massive MTC network, the outage probability for a typical MTD link under our

designed cooperative strategy can be expressed as

oo k+1 —a,
P — 1 ek 4o 2tn(-9k _ Y o (—D)e k<k+1>e—pz(g(j)—(1—p)g<1>—p<g(j+1>—g<j>>>
Pt BV G R L

N k e—a k 2 ) .
—ZZ I /0 RZ(gz(JJrl,y)—gz(J,y))dy,

i1 (k
P B B ALL

(4.31)

where ky = STApZ>TOT(1 — 8)T(8), a = mR2(1 — p)A and g5(j,y) is defined in equation (4.29).

4.3 Evaluation Results

In this section, numerical and Monte Carlo simulation results are presented to verify our theoreti-
cal analysis and to demonstrate the performance gain of mutual information accumulation as well
as our designed cooperative strategy in massive MTC networks. Fig. 4.2 shows both simulation
and numerical results on the outage probability of retransmission under three different strategies:
pure retransmission, retransmission with energy accumulation and retransmission with mutual in-
formation accumulation. In this figure, A = 107>m ™2, p = 0.001, z = 400m and o = 4. From
this figure, we can observe that mutual information accumulation can reduce the network outage
in both low SINR regime and high SINR regime compared to energy accumulation. Furthermore,
we find that the outage probability achieved by mutual information accumulation will approximate
to the outage probability of energy accumulation when the decoding threshold is low. However,
when the decoding threshold is high, the outage probability of mutual information accumulation
will be much lower that the outage probability of energy accumulation and the outage probability

of energy accumulation approximates to the outage probability of retransmission. Basically, this
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Figure 4.2: Compare of outage probability under three retransmission strategies

result indicates that in high SINR regime energy accumulation or MRC cannot reduce too much
outage in MTC networks as the combined energy is not high enough for decoding. However, by
directly combining mutual information, the destination can decode the packet. Fig. 4.3 shows
the probability of finding potential relays as a function of the cooperative radius R,. In this fig-
ure, T =2dB,oc = 4,p = 0.001,z = 400. This figure justifies the correctness of our theoretical
analysis. Furthermore, we can find that independent interference assumption overestimates the
probability of finding potential relays and the corresponding results are far away from simulation
results. Therefore, we can conclude that in massive MTC networks, the analysis has to consider
spatiotemporal correlation of interference.

Fig. 4.4 presents simulation results as well as numerical results on the probability of outage
for both conventional retransmission P and our cooperative strategy P°. In this figure, each
point is an average over 5,000 realizations and A = 103m 2, p = 0.001, & = 4,z = 400m. From

this figure, we can see that our designed cooperative strategy can significantly reduce the outage
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Figure 4.3: Probability of finding potential relays

probability compared to conventional retransmission. Specifically, with a decoding threshold of
2dB, the outage probability of massive MTC network with cooperative region of 65 m is 14.5%
while corresponding conventional retransmission has an outage probability of 39.7%. Note that the
outage probability of conventional retransmission is higher than the outage probability of the first
time-slot transmission (which is 37.0%) due to the temporally correlated interference. The reason
why our designed cooperative strategy can reduce the outage probability is because :1) the relay
is selected only when it can decode the packet; 2) the selected relay within the cooperative region
is much closer to the eNodeB. Furthermore, we can find that as the radius of cooperative region
becomes small, the outage probability of cooperative communication will approach to the outage
probability of conventional retransmission. This is because as the cooperative region reduces, it is
difficult to find potential relays. Finally, the numerical results match simulation results quite well,
which verifies our theoretical analysis and assumptions once more.

Fig. 4.5 shows simulation results of coverage probability as a function of cooperative radius.
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Four different strategies are compared: 1) retransmission from the typical MTD; 2) cooperative
retransmission; 3) cooperative retransmission with energy accumulation; 4) cooperative retrans-
mission with mutual information accumulation. In this figure, the source-destination distance is
7 =400m, o¢ = 4, decoding threshold 7' = 10dB, access probability p = 0.001. From this figure,
we can find that compared to retransmission, cooperative retransmission can improve the cover-
age probability from 0.15 to more than 0.45. Furthermore, compared to pure cooperation with no
accumulation, energy accumulation can further improve the coverage probability by 10% ~ 76%

under different cooperative radius.
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Figure 4.5: Coverage probability as a function of cooperative radius
4.4 Conclusions

In this chapter, we analyze the retransmission performance of massive MTC networks with mutual
information accumulation. Furthermore, we design and analyze a novel cooperative strategy for
massive MTC networks where inactive MTDs are allowed to act as relays for outage MTDs. Using
point process theory, analytical expressions of outage probability for this kind of massive MTC
network are obtained. Both numerical and simulation results show the potential of cooperative

communication in massive MTC networks.
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Chapter 5

Summary and Future Work

This dissertation is to make fundamental analysis on the performance of wireless networks with
advanced physical layer technique, mutual information accumulation, and design new network
scheduling/transmission protocols or strategies to explore the full potentials of mutual informa-
tion in various wireless networks. To achieve this goal, we first make fundamental analysis on
the asymptotic performance of mutual information accumulation in an infinite 2-dimensional(2-D)
grid network. Then, we investigate the optimal routing in cognitive radio networks with mutual
information accumulation and derive the corresponding closed-form cooperative gain obtained by
applying mutual information accumulation in cognitive radio networks. Finally, we characterize
the performance of mutual information accumulation in random networks using tools from stochas-
tic geometry. The analysis presented in this dissertation guide us to develop both centralized and
distributed routing and resource allocation algorithms for cognitive radio networks with mutual
information accumulation. Furthermore, the analysis methodology provides us a solid tool to an-
alyze the performance of massive machine type network with mutual information accumulation.

The insights obtained from this work include the following system design guidelines.

e By exploring the broadcast nature of wireless channels, mutual information accumulation
can provide much more gain in two dimensional or three dimensional networks compared to

one dimensional network.
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e Mutual information accumulation can provide better performance in the scenario where the
signal-to-interference-plus-noise (SINR) ratio is high or when the decoding SINR threshold
is high compared to energy accumulation. The performance of mutual information accumu-
lation will approximate to the performance of energy accumulation in low SINR regime or

when the decoding SINR threshold is low.

e Cooperative transmission using mutual information accumulation can achieve higher coop-
erative gain in cognitive radio network with tight interference threshold constraint. Coop-
erative transmission using mutual information accumulation can achieve higher cooperative

gain in the scenario with high interference.

e In underlay cognitive radio networks, the optimal routing and resource allocation under mu-
tual information accumulation is quite different from the that under traditional decode-and-
forward strategy. Instead of allocating all the spectrum to the nodes in the route one-by-one,
it may be beneficial to split spectrum resource between two neighbor nodes and let two nodes

transmit concurrently.

e In random networks, spatiotemporal correlation of interference will strongly affect the per-
formance analysis of wireless networks. Independent assumption on interference at different

locations and in different time slots will lead to inaccurate analytical results.

e The optimal location of the relay node in a cooperative network with mutual information
accumulation is much closer to the source node compared to the optimal location under

energy accumulation or decode-and-forward strategy.

The results in this dissertation lead to new research questions on the topics of mutual informa-
tion accumulation over wireless networks. Further extensions of mutual information accumulation

over wireless networks include the following topics.

e Analysis of Queueing Delay in Wireless Networks with Mutual Information Accumulation:

In this dissertation, the analysis on mutual information accumulation is focused on the trans-
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mission of one packet. For a given packet, we know that mutual information accumulation
can reduce the transmission time of this packet. We can expect that mutual information ac-
cumulation will also reduce the queueing delay in wireless networks. However, it is still
unclear how much queue delay we can reduce by using mutual information accumulation,
especially the coding delay may need to be taken into account when mutual information ac-
cumulation is used as new redundancy version of the packet needs to be generated. Based on
the analytical results, revision on the back-pressure routing algorithm, which is one of the op-
timal scheduling and routing algorithms to achieve maximum stable throughput in wireless
networks, may be needed to explore the full potential of mutual information accumulation

in the scheduling of wireless networks.

Analysis of Mutual Information Accumulation in Random Multi-hop Wireless Networks: In
this dissertation, the analysis on mutual information accumulation in random networks is
focused on a one-hop and two-hop cases. It is still unclear on the performance of mutual
information accumulation in multi-hop random networks. Results on multi-hop networks
will help us understand the achievable network throughput or the network capacity, which
remains as an open question in information theory field. As we have already witnessed the
complex expression of the coverage probability in a two-hop special case, multi-hop analysis
will be much more challenging. Spatiotemporal correlated interference is one of the main
obstacles. New approximation and simplification techniques are needed to get an elegant

and accurate analytical results.
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Appendix A

Proofs

A.1 Proof of Lemma 3

Proof 14 The locations of active transmitters in the first and second time slot can be modeled
as Poisson point processes ®,1 and @, respectively. As the coverage probability is captured
in (2.15), in the following, we focus on deriving the coverage probability of forwarding packets
from relay to the destination. The probability that the destination can successfully decode the

packet from the relay can be expressed as

Pr,d,Z = P(SIRSAJ <T, SIRSJJ > T7SIRr7d72 > T)

=P (Gy1 <I51Tz% Gr1 > L1 Ty*,Gyp > 1, 2Tx%)

_ _ —IdJTZa —I_’lTya —Id72Tx°‘
—E¢a,17¢a,27{6} [(1 e e’ e

=Ko, | 0,,.(G} [exp(—Ianya — Id72Tx°‘)} ~Eo, | ®,..{G) [exp(—Ianya — 12 Tx% — Id71Tz°‘)}
(A.1)
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Now let’s look at the two items in (A.1) separately. For the first item,

Eq)a,l :q)a,Z:{G} [eXp(—Irleya - Id,ZT-xa)}
(A.2)

=Eo 6y | [1 exp(Gxlx —R|=*Ty*1xca,,) exp(hy|ly — D[~ *Tx*1ycy,,)
x,yed

where the indicator function lxco,, is decided by the slotted-aloha algorithm. Averaging over
the slotted-aloha algorithm where we assume in each slot the nodes will independently access the

spectrum with a probability p, we get,

E(I)a,l 7(I)a,27{G} [exp(_lr,l Tya - Id72TXa)j|

loh _ _
= Eo 1 [H (1= p+pexp(—hea|lx —R||“*Ty*)) (1 = p+ pexp(—he 2 |x —D|| “Tx“))]

xed

4 P
l—p+ 1—p+
f&( P+ ) (17 1+||x—D||—aTxa)]

14 14
= A 1-(1- 1— d
e’“’( . ( p+1+|x—RH‘°‘Ty°‘)< p+1+||x—DH—aTxa) x)

=Eo

(A.3)

The main technique used here is PGFL. Coming to the second item,

]Eq)a.lvq)a,Z [exp(—ImTya - Id,ZT-xa - Id,lTZa):I

— o — o - (04
— Eg He— w1 |[Xx—R||"*Ty lredg ,~ w1 [x—D||"*Tz lred, ) ,~ w2|[x—D| " “Tx 1xe<1>a_’2]

| xed

=FEo H (1 — p+ pe Cupal—R[Z4Ty% = x,R,le_DlraTZa) (1 _p+pe—Gx,D’2|x—D|°‘Tx°‘)]
| xed

_ _ _ P _ )4
— o Ml (1-r+ et e ) (1P e )i

(A4)
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A.2 Proof of Lemma 4

Proof 15 Given the topology ® and SIR, 45, the coverage probability at the second slot can be

expressed as

IP(SIRS7d71 <T, SIRSJJ >T, SIRr7d72 +SIRs7d71 > T|¢,S1Rr7d72)
=P ((T—SIR42) " 1512% < Ggy <I51Tz% 1 > L1 Ty*|®,SIR, 4 5)

=Ey [exp (—(T = SIRka2) " 1g12% — 1 Ty*) —exp (g1 Tz — 1,1 Ty*) | ®,SIR,.4 5] (A.5)

1
= l—p+p )
xl;!p ( (1+ (T = SIRya2)*2%|x-D||=*)(1 + |lx-R||~*Ty%)

1 1
— l—p+p = — )
g( 1+ [[x-D||=*Tz% 1 + ||x-R||~*Ty*

After getting the coverage probability for a fixed topology and a fixed SIR,.; >, we need to derive the
distribution of SIR,.; > under a given topology ®. Denote SIR, 4> as Q, now we need to calculate

the cumulative distribution function (CDF )for € given the topology ®.

P(Q < o|®)
=P (Grap <lax“0|®)

=1—E(exp(—I;2x%0)| D)

(A.6)
=1 —E(H (1 —p—|—pexp(—Gx72Hx-D||_°‘x°‘a))) |P)
xcd
p
I (1-r+ paraes)
After getting the CDF of , we can get the PDF of Q by derivation as follows,
IP(Q < 0|D)
0)=——-—F"—"=
fojo(®) S0
_ Z pllx-D||~%x* H (1_p+ p ) (A.7)
L&+ D e, 4L [+ D ex%w
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Therefore,the probability that the destination can decode the packet with energy accumulation in

the second time slot can be obtained by averaging the result in equation (A.5) over both Q and ®,

which can be expressed as,

0 4 g p p1+(T—a))+Za||x-D||*a 1+||x-R||*O‘TyO‘ fQ|¢>( )
! 1
—Eo (1—p+p )
4 [+ [w-D][#T2# 1+ [[o-R]-Ty®
) ple-D| %" < 1 1 >
/o x;p(1+||x-D||—axaw)2 1+ (T — ) @[x-D| %1+ |[x-R| Ty

p 1 1
I—-p+ )(1—p+p ) do
yeg#( I+ [y-D[-*x% I+ (T — ) 2% [y-D| = 1 + [[y-R[~*Ty*

e A / 1 ! ! dx
JE— X JE— JE—
P AT Jg 14 [w-D] @72 1+ [x-R| “Ty®

(A.8)
By[Theorem 8.9 in [8]], we have, for any measurable function h(x),

Eo Zh(x,(b\{x})] _ / EL [h(x, ®)| Adx — / E [h(x, ®)| Adx (A.9)

xcd R? R?

Therefore,

I [ 1 1 |
o Jr2 (1+]x-D|~*x*w)? 1+(T — @) z%|x-D||~* 14 ||x-R|| ~*Ty*

p 1 1
Ee (l—p-i- )(1—p+p ) dw
LL[# 1+ [ly-D[|~*x*@ 1+(T — 0)*z%|)y-D[|~* 1 4 [ly-R||~*Ty*

1 1
_ | 1- d
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(A.10)
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A.3 Proof of Lemma 5

Proof 16 Similar to the steps in the proof of coverage probability under energy accumulation
strategy, the coverage probability of mutual information accumulation can be calculated by first
calculate the coverage probability under fixed topology and fixed SIR, 4> and then average over
the topology and the distribution of SIR, ;5. The coverage probability of mutual information ac-

cumulation under fixed topology and fixed SIR, > can be expressed as

P(SIRs 4.1 < T,SIRy 1 > T,log(1+SIR42)+1og(1 +SIR 41) > log(1+T)|®,SIR,42)

(T — SIRr7d72)+
1 +SIRr7d72

=P(SIRy 4,1 < T,SIR; ;1 > T,SIR 41 >

o (T =SIRa2) " 1a12*
N 1+ SIR, 42
T —SIR,4,) V1 2%
=E |exp —( rd.2) la.12
1+ SIRrde

|, SIRy.q2)

<Ggy <I41Tz%,G1 > Ir7lTya|q)>SIRr7d72>

- r7lTya) —exp (—Lg 1 T2% — 1,1 Ty%) |¢7S1Rr,d,2]
1 1

= H l=p+p (T=SIRea2) 2 [xDI® | + |[x-R|[~*Ty®
T-+SIR, 4

1 1
— 1—
[1 ( PP D] *T @ 1-|-||x-R||—0‘TyO‘>

(A.11)

94



By averaging the conditional coverage probability over random topologies and the distribution of

SIR, 42, the coverage probability of mutual information accumulation can be expressed as

pMIA :/ Eg
0

1 1
l-p+p eI = foo(®)|do
xg,( [ Tl D 1 [k aTya> |

1 1
1—p+
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—Eo
i plle-D||~ % 1 |
= ECI) — 1 — p+p = — - .
/0 L T lepaor 1 el leDl 2 1 R =Ty

p 1 1
1—p+ 1—-p+ dow
yeql:}#( b 1+||y-D||-axaw)< pp )]

(T—)*z%|ly-D||~* -R||—*Ty“
1+ T 1+ ly-R[|=*Ty

1 1
— A 1— d.
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:/ / pllx-D|~%x 1= ptp N dx-
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w

_ (1= _____pr _ 1 1
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e TFo

dw

1 1
—e APIRZI 1+|x-D| %1% 1+Hx-RH*aTyadx.

(A.12)

A.4 Proof of Lemma 6

Proof 17 The first two-dimensional integration can be expressed as

/ Aple-D|~ (o 1 1 W
w2 (11 |[x-D]~*x% )2 PP — @) 2%|x-D|[~% 1 + |[x-R||-*Ty*
1

Q
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0 0
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(A.13)
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Let’s first address the second integration in equation (A.13) and denote ay = (T — ®)"z%,by =

Ty*, co = x*®. Using the equation that

1 a 1 b 1
- - - - - A14
(14 ax)(1+bx) a—b( l—I—ax) a—b( 1—|—bx>’ @A-19)

The second integration in equation (A.13) can be simplified as
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2np*Ax®B(2— 2,14 2) 2 2
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(A.15)

where = comes from the equation (3.197.5) in [87] and »Fy (a,b;c;z) = %fol P11 —

—b— —a g : . SR (1,2-2:3:1— —bjaFi (12— 2:3:1-b
1)e=P=1 (1 —t2) =%t is the hypergeometric function; ho(ag,bo,co) = (g2Fi (1,2 3311 ~do/ o) P 21( ¢ /<)),

2_7
(ao—bo)co «
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= o . The first integration in equation (A.13) can be simplified as
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= B(l—=,14+2) 2 pAcsx o« (A.16)
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a 2nB(1-2,1+2)

where c;3 o

. Similar to the results in equation (2.23), the second two-dimensional

integration can be simplified in the following:

p 1 1
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2 2 2
4 e (bo)* @ N (ag)*t@ N (co)* @
(bo—ao)(bo—co)  (ao—bo)(ao—co)  (co—bo)(co—ap)
2 p(1—p)erhi(ao, by, co) + p>erha(ag, by, co),
(A.17)
s 2/a b(l)+% “(1)+% s () (a)>" &
where hlz(a(),bO,CO) = Tha T apy 44 ha(ao, bo, co) = (bo—ao)(bo—co) * (ao—bo)(ao—co)
(co)*t @

(co—bo)(co—ao)"
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A.5 Proof of Lemma 12

Proof 18

P(A°NB°) = P(A =0,5IRg; > T)

=P(A =0)P(SIRy; >T)+ Y P(N =k)P(SIR; <T,--- ,SIR | <T,SIRz) >T)

k=1

oo e—aak o k
=Y o E e T (1 —exp(=T2%11)) | +e ™

k=1 " j=1

> e gk k P J > ek X
=) 5 E (—1)/Clexp(=Tz*Y L) | + ) X E (exp(—Tz%Iy;)) +e 4"

k=1 " j=1 i=0 k=1 "

o k ,—ak
= Z Z 4 (—1)iC]e PASUHT) 4 o=kt

k=1j=1 "

(A.18)

where C]{ = ]k—L g(j) = nTSZZ% {:1 C;% which is similar to the definition of

A.6 Proof of Lemma 15

Proof 19 The following proof is to calculate each item in the right hand of equation (4.26). Here

we only list the calculation of P(A° N BN EC), others are omitted and can be derived following the
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similar steps. Given a specific y, P(A“NB“NE€) can be calculated as

P(A°NB°NE")

= P(% = O,SIRdJ > T,SIRCLQ < T)
=P(AN =0)P(SIRy; >T)+ Y P(AN =k)P(SIR;y <T,--- ,SIRz» <T,SIRy; >T)
k=1
k
e_Id,lTZa H(] —e j,1Tz°‘)
j=1

k
o 11T p=la o Ty" H(l e liaT® )]
j=1

_|_ e—a—cl

= Y P(N =k)E
k=1

e}

— Y P(A =k)E
k=1

. (1415 (-1)icfe T 2R )
=P(A°NB°) k;IP(JV = k)E A T+l 2 Tye

~ k e—aak _1)]
=PANB) —g2(1y) = ) Y~

= = ]'(k_])' g2<]+17y)7
= ]:

where g>(j,y) is defined as

8(j,y) =E [e_TyaId*ze_TZazi‘c:kfjHIi,1:|
(A.19)

) P o Y A
_ e*ZTL’lfO pf(lfp%*m) (1 P+<1+p—aza7—)j>l)dp

Averaging over the distribution of y, the lemma is proved.
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A.7 Proof of Lemma 16

Proof 20 Note that the condition of MTD'’s retransmission is that there is no potential relay can

be found. Therefore, the condition that .# = 0 should hold.

P(A°“NBNF) =P(SIRgy > T, M =0,5IRg, <T)

= Y P(AN =k)P(SIRs» > T,SIRj1 <T,0< j<k)

k=0
p &= I k+1 i
=Y P(N =k)E |exp(—TI;2z%) [ [(1 —exp(—=Tz%1;,1))
k=0 i j=1 i
oo i k+1 i
£ Z P(N = k)E GXp(—TZaIdQ) H(l — exp(—TzO‘IjJ)) + e_a]P’(SIRd@ > T, SIRdJ < T)
k=1 i j=1 i
vy EDe i k) () (1 ps()ple( )2 ()) o ki a2kt p(1-5)k,
= Z : ‘ +e e
P R JUk+1— )

(A.20)

where = comes from we number out every relay in the cooperative region and all relays in the
. . . . b
region failed to decode the packet; denote SIR| = SIR; | to make the expression more simple; =

comes from averaging over small scale fading; = comes from splitting the first summation item,

i.e., k=0, out.
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