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Abstract 

 

HCV infection increases steady-state autophagosome numbers but the mechanism of this 

effect is poorly understood. Flux assays suggest that an increase in autophagosomes results from 

a block in the fusion of autophagosomes with lysosomes. The aim of this study was to determine 

how HCV prevents autophagosome degradation. Autophagy induction and flux were measured 

by a flux assay involving western blotting for LC3-II after addition of the lysosomal inhibitor, 

bafilomycin A1. Flux through the autophagy pathway is greatly diminished compared to 

uninfected cells. To determine if HCV suppressed autophagosome-lysosome fusion events, 

control and HCV-infected cells were transfected with tandem RFP-GFP-LC3, where the 

quenching of the GFP fluorescence indicates autophagolysosome formation. In HCV-infected 

cells, there was no loss of GFP fluorescence from puncta indicating lack of fusion between 

autophagosomes and lysosomes even under conditions that activate autophagy. We then assessed 

the activity and maturation of lysosomal hydrolases from HCV-infected cells and determined 

that HCV did not decrease global lysosomal proteolytic activity. We next performed fusion 

assays with isolated subcellular organelles to assess whether lack of fusion was intrinsic to 

autophagosomes and lysosomes themselves. Vesicles isolated from HCV-infected cells fused 

with each other normally in vitro suggesting that the cellular fusion defect resulted from 

trafficking rather than inability of vesicles to fuse. To test this hypothesis, we studied organelle 

positioning focusing on Arl8b, an Arf-like GTPase that specifically localizes to lysosomes. In 

control cells, Arl8b was primarily found in a perinuclear localization and co-localized with LC3-

positive autophagosomes. In JFH-1-infected cells, Arl8b localization was more diffuse and 

peripheral and there was a complete failure of Arl8b to co-localize with LC3, even after 

autophagy induction. Since Arl8b has the ability to link lysosomes to the outwardly-directed 
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motor protein kinesin, we examined the effect of HCV on Arl8b itself. After HCV infection, 

mRNA and protein levels of Arl8b were both elevated three-fold. Lentiviral-mediated 

knockdown of Arl8b in infected cells restored autophagic flux to levels seen in control cells. In 

conclusion, HCV suppresses autophagic flux and increases the steady-state levels of 

autophagosomes by increasing the expression of Arl8b. This GTPase links lysosomes to kinesin, 

repositions them toward the cell periphery and suppresses their ability to fuse with 

autophagosomes. These trafficking changes may promote the HCV lifecycle.  
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Chapter I: Introduction 

 

 Hepatitis C virus (HCV) is a single-stranded, positive sense RNA virus and a member of 

the Flaviviridae family. It was known that cases of hepatitis from blood transfusions were caused 

by an agent other than Hepatitis A or Hepatitis B viruses as early as the 1970s, however, neither 

antibodies nor antigens could be identified using conventional methods. In 1989, a cDNA clone 

derived from RNA was discovered after screening a library with serum from a patient with non-

A, non-B hepatitis and this virus was named Hepatitis C (1). HCV is represented by six 

genotypes with genotype 1 accounting for most infections though genotype prevalence depends 

on geography (2).   

 HCV is a leading cause of liver disease and hepatocellular carcinoma worldwide. It is 

estimated that 130-170 million people globally are infected with almost half a million deaths 

from HCV-related complications yearly (3). Based on data from the National Health and 

Nutrition Examination Survey conducted from 2003-2010, the prevalence of chronic HCV in the 

United States is approximately 2.7 million people (4).  If HCV infection becomes chronic, up to 

30% of infected persons will go on to develop liver cirrhosis usually decades after initial 

infection and of those that develop cirrhosis, up to 4% per year will develop hepatocellular 

carcinoma (5).   

 Therapy for HCV infection has developed quickly in the twenty-five years since the 

discovery of the virus. Currently there are several available direct acting antivirals (DAA) that 

can be used in various combinations clinically to achieve a sustained virological response (SVR) 

in patients. SVR is defined as no detectable HCV RNA levels twelve or twenty-four weeks after 

the end of treatment. DAAs target either the viral protease NS3/4A, the viral RNA-dependent 

RNA polymerase NS5B, or the viral replication machinery through NS5A. Combinations of 
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DAAs with or without ribavirin can be used to achieve 98% SVR especially in patients with 

genotypes 1 and 2 (6). Ribavirin is a purine nucleoside analog that has been a longstanding part 

of HCV treatment prior to the advent of DAAs. It is possible that with increased screening for 

HCV and greater access to treatment regimens, the incidence of long-term deleterious effects 

from HCV infection will decrease substantially. However, there is still a need for a HCV vaccine 

and greater insight into the HCV immunological response will be needed to produce one (7).    

Hepatitis C Virus Genome  

 

 The HCV genome is approximately 9.6kB in length and is translated into a ~3000 amino 

acid polyprotein that contains ten viral proteins. The open reading frame for the polyprotein is 

flanked by a 5’ and 3’ untranslated region (UTR). The 5’ UTR contains the internal ribosome 

entry site (IRES) that is responsible for directing translation of the genome in a cap-independent 

manner (8). The endoplasmic reticulum signal peptidase cleaves the structural proteins, core, E1 

and E2, as well as the viroporin, p7. Viral proteases, NS2/3 and NS3/4A, cleave the nonstructural 

proteins, NS2, NS3, NS4A/B, and NS5A/B (9).  

 Core, E1, and E2 make up the structural proteins that form the nucleocapsid and envelope 

proteins of the HCV virion. After cleavage by the signal peptidase, core protein is further 

processed into its mature form by signal peptide peptidase (10). Core is a multifunctional protein 

that also exists freely in the cell and associates with lipid droplets. Core protein association with 

lipid droplets appears to be critical for the production of infectious virus (11). E1 and E2 are 

glycoproteins that form the viral envelope and play a role in viral entry into the cell. 

Additionally, E1 and E2 are at the center of strategies around vaccine development since 

challenge with E1/E2 can elicit neutralizing antibodies.  
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              Schematic of the open reading frame of HCV showing the 

9.6 kB RNA genome flanked by 5’ and 3’ UTR regions. The open reading frame encodes a 3000 

amino acid polyprotein made up of ten structural and nonstructural proteins. The triangles show 

where the polyprotein is cleaved and whether the cleavage is mediated by host or viral protease.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 HCV Viral Polyprotein. 



4 

 

 

 



5 

 

p7 is a viroporin that can form ion channels in membranes and is necessary for 

production of infectious virus. Our lab has previously studied the function of p7 and 

demonstrated that p7 could alkalinize acidic compartments within the cell raising the pH of 

vesicles to almost 6.0 compared with a pH of 4.0-4.5 in control cells. Additionally, either 

blocking p7 by using specific inhibitors could reduce the yield of infectious virus or alkalinizing 

vesicles pharmacologically could rescue virus production in a p7 channel-inactive mutant (12). 

p7 likely has other functions apart from its ion channel activity and may influence virion 

assembly through interactions with NS2 (13). 

 NS2, NS3, NS4A/B, and NS5A/B are the nonstructural proteins of HCV which function 

primarily in replication and assembly of the virus. NS2 is thought to play a role in virion 

assembly. NS2 can interact directly or in complex with p7, E1, E2, NS3, and NS5A (14, 15). 

NS2 localizes to ER-derived structures that may represent sites of virus assembly and mutations 

in viral proteins that affect NS2 localization impair infectious virus production. NS3 functions 

both as a protease in concert with NS4A and as a helicase to unwind RNA. In addition to 

cleaving the HCV polyprotein to produce the nonstructural proteins, the NS3/4A protease also 

functions in evasion of the host innate immune response. NS3/4A has been shown to cleave both 

MAVS, a mitochondrial antiviral signaling protein, and TRIF (Toll-IL-1 receptor domain-

containing adaptor inducing IFN-β) to inhibit downstream production of interferon-β (16, 17). 

NS4B has been implicated in the formation of the membranous web which is thought to be the 

site of viral replication. Though its functions are not well characterized, NS4B has been shown to 

interact with a wide range of host proteins and may influence a diverse set of pathways including 

cellular stress by inducing the unfolded protein response (UPR), lipid metabolism, and cellular 

transformation (18). NS5A is a protein that can be heavily phosphorylated and aids in viral 
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replication and assembly. It has been shown that core protein and NS5A localize to lipid droplets 

and interact with HCV RNA-positive structures which may serve as a site for viral particle 

assembly (19). NS5B is the RNA-dependent RNA polymerase which is responsible for the key 

steps in HCV replication of making a negative-strand RNA intermediate from the positive-strand 

template and then converting the negative-strand RNA back to positive-strand RNA. Replication 

is error-prone due to lack of proof-reading capability by NS5B which generates a diversity of 

RNA genomes resulting in a quasispecies within an infected individual (9). NS5A and NS5B are 

also the main targets of commercially available DAAs to inhibit replication of the virus.      

Hepatitis Virus Life Cycle  

 

 The HCV life cycle occurs completely in the cytosol of the cell. The main steps of the life 

cycle are binding of the virus and host cell entry, translation and polyprotein processing, RNA 

replication, virus assembly, and virus release from the host cell. Host tropism of HCV is limited 

to humans and chimpanzees with the hepatocyte being the primary cell type infected.  

Host Cell Entry  

 HCV entry into cells is mediated by the glycoproteins E1 and E2 from the virus and 

CD81, SR-BI, claudin-1, and occludin are considered the essential host cell receptors/co-

receptors. CD81 is the main HCV receptor and has been shown to bind directly to E2 (20). 

Normally, CD81 functions as a receptor for the B and T cell receptor complex and mediates 

vesicular fusion. It has been shown that HCV infection can be blocked by anti-CD81 antibodies 

and that cells can become permissive to HCV infection in cell culture by ectopically expressing 

CD81 (21, 22). SR-B1 (scavenger receptor call B type 1) also binds E2 and may act 

cooperatively with CD81 (23, 24). SR-B1 functions as a lipoprotein receptor and can bind  
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            1) The virus binds to receptors on the cell surface. The essential 

receptors are listed in the box. 2) After the virus is internalized by clathrin-mediated endocytosis, 

the RNA genome is released into the cytoplasm. The positive-stranded genome can be translated 

directly to produce the HCV polyprotein that is cleaved into the structural and nonstructural 

proteins or used for viral replication. 3) Viral replication takes place on a structure called the 

membranous web. The incoming RNA is a template to make negative-strand RNA which can 

then be used to make multiple copies of positive-strand RNA. 4) The RNA genome is then 

packaged into a viral particle containing a core capsid and envelope glycoproteins. Viral 

assembly takes place in proximity to lipid droplets. 5) The virions mature and then exit the cell 

through the secretory pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 HCV Lifecycle. 
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density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein 

(VLDL). Claudin-1 and occludin are tight junction proteins. It has recently been shown that an 

E1/E2 complex can interact with claudin-1 (25). Occludin can also interact with E2 and may play 

a role, like Claudin-1, in HCV entry at tight junctions (26). One hypothesis is that the CD81/SR-

B1/virus complex migrates to the tight junctions where it can then interact with the tight junction 

proteins to promote entry as has been described for other viruses (27). While these four are 

considered the major receptors, others such as LDL-R (low density lipoprotein receptor), the 

lectins DC-SIGN and L-SIGN, and NPC1L1 (Niemann-Pick C1-like 1) cholesterol transporter, 

also aid in HCV entry into the cell (28-30).  

 Due to the restricted host tropism of HCV, there have been recent attempts to make a 

humanized mouse model to study infection by expressing various combinations of human CD81, 

SR-B1, Claudin-1, and occludin in the mouse liver. CD81 and occludin were sufficient to make 

the cells permissive to HCV and permissiveness increased when all four were expressed (31).  

 Once the virus binds to the host cell via its receptors, the virus enters by clathrin-

mediated endocytosis and is trafficked by the early endocytic pathway. Then the genome is 

released into the cytosol through pH-dependent fusion between the envelope glycoproteins and 

endosome (32, 33).    

RNA translation 

 Since the HCV genome is positive-stranded it can be used directly for translation after its 

release into the cytosol. As previously mentioned, the 5’ UTR contains an IRES where the 40S 

ribosomal subunit will bind to initiate translation of the polyprotein. The polyprotein is then 

cleaved by cellular and viral proteases to generate the structural and nonstructural proteins 

required for HCV RNA replication and virus assembly.  
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RNA replication 

 Replication takes place in a complex called the membranous web. The membranous web 

is an alteration of ER-derived membranes that can be induced by expression of NS4B (34). The 

nonstructural proteins and viral RNA have been shown to localize in discrete foci in a membrane 

matrix by using a combination of immunofluorescence, fluorescence in situ hybridization, and 

electron microscopy in replicon-containing cells (35). Replicons are cells that express viral 

proteins and can support RNA replication but do not produce infectious virus (36). Though the 

exact function of the membranous web is unknown, it is thought to act as a physical scaffold to 

support the replication complexes.  

 The main steps of RNA replication are to 1) use the positive-strand RNA to serve as a 

template to make a negative-strand RNA intermediate and 2) make many copies of positive-

strand RNA from the negative-strand. The positive-strand copies then can be used for making 

more viral proteins or packaging into new viral particles. The RNA replication process is 

primarily governed by the enzymatic activity of NS5B.  

 RNA replication also appears to be linked to host cellular lipid metabolism with HCV 

infection increasing the amount of intracellular lipids. It has been shown that HCV replication 

may take place on lipid rafts, specifically in association with calveolin-2, and an inhibitor of 

sphingolipid production also impaired HCV replication (37, 38). Additionally geranylgeranyl 

lipid, a product in the mevalonate pathway that synthesizes cholesterol, is required for efficient 

HCV replication since it post-translationally modifies FBL2, a host protein that interacts with 

NS5A (39).  

HCV assembly and release   
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 After replication, the positive-strand RNA genome must be packaged into a viral particle 

containing core, E1, and E2. Lipid droplets are an important component of HCV virus assembly. 

Core protein physically associates with lipid droplets and this interaction is crucial for infectious 

particle production (40). However, lipid droplets are most likely not the sites of viral particle 

assembly but rather bring core into close proximity to assembly sites on the ER where the E1E2 

heterodimer is already localized. p7 and NS2 have been shown to re-localize core from lipid 

droplets to the ER and this change in localization correlates with increased virus production (41, 

42). NS5A is also recruited to lipid droplets which may serve to tether sites of replication 

together in close proximity to sites of assembly (43). The phosphorylation state of NS5A may 

play an important role as a switch between its function in replication and assembly with the 

hyperphosphorylated form associated with virus assembly (44, 45). Additionally, though its 

exact function in assembly is unknown, NS3 has been shown to interact with core protein and 

mutations in its helicase domain impair virus assembly.  

 Lastly, virus particles are released from the cell through the secretory pathway. HCV 

virion maturation and eventual egress out of the cell seem to be regulated by the VLDL pathway. 

HCV virions produced in cell culture have a low buoyant density similar to VLDL and also 

associate with apolipoproteins, in particular apoE (46). The ESCRT (endosomal-sorting complex 

required for transport) pathway has also been implicated in release of HCV virions. The ESCRT 

pathway is important in endosomal protein sorting and the formation of multivesicular bodies 

and functions in exosome release. Dominant negative mutants of the ESCRT-III pathway 

impaired release of extracellular virus (47). Exosomes have also been shown to carry HCV RNA 

(48) and in a cell culture system could transmit infectious virus to naïve cells to start a 

productive infection (49). Lastly virion maturation and secretion may be pH-dependent since 
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alkalinization of vesicles by p7 is required for efficient virus production and intracellular virus is 

acid-sensitive (12).     

Autophagy 

 Macroautophagy (hereafter referred to as autophagy) is a pathway that promotes cellular 

homeostasis and is especially crucial during times of cellular stress and/or starvation when a cell 

can “eat” parts of itself to provide amino acids and other cellular materials necessary for its 

survival. During autophagy, a cell can envelop organelles, unfolded proteins, pathogens, and 

other materials in a double-membrane structure called an autophagosome and target it for 

degradation by eventual fusion with a lysosome.  

 This pathway was first discovered in the 1950s by electron microscopy and Christian De 

Duve is credited with coining the term autophagy. Autophagy is governed by a set of autophagy-

related genes (ATG) that are conserved across eukaryotes and were initially identified in yeast 

mutants during genetic screens. The most likely membrane source for autophagosomes is the ER. 

Autophagosomes are double-membraned structures that are 0.5-1.5um in size in mammals and 

the half-life of an autophagosome within the cell is approximately ten minutes (50).  

 Autophagy has been found to play roles in many areas that affect human health including 

cancer, neurodegeneration, pathogen clearance and immune response, and aging.  

Sequestration  

 The early steps of autophagy involve nucleation and recruitment of ATG proteins, 

elongation of the autophagosomal membrane, and then its closure around cellular contents to 

form a complete autophagosome. Initiation begins with the recruitment of the ULK1 

(uncoordinated-51-like kinase I) and the PI3K (phosphoinositide-3 kinase)-Beclin1 complexes to 

the nascent phagophore (51). ULK1, a serine/threonine kinase, is bound to mTOR (mechanistic  
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              ULK1 remains bound to lysosomally-localized mTOR when 

autophagy is inactive. When autophagy is stimulated, ULK1 is phosphorylated and is released 

from mTOR. The ULK1 and Beclin1-PI3K complexes localize near the nascent phagophore and 

initiate autophagosome biogenesis. The isolation membrane forms around the cargo to be 

degraded. LC3 is conjugated to PE by the ATG5-ATG12 complex which acts like an E3-

ubiquitin ligase. LC3-PE decorates the inner and outer membranes of the autophagosome. Once 

the isolation membrane closes, the autophagosome matures by fusing with endosomes to form 

amphisomes or lysosomes to form autophagolysosomes. When fusion with a lysosome occurs, 

the hydrolases degrade the cargo and cellular materials are recycled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Overview of autophagy. 
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target of rapamycin) complex 1 (mTORC1) when nutrients are abundant within the cell. 

mTORC1, also a serine/threonine kinase, localizes to the lysosome through interaction with the 

Rag complex and inhibits autophagy by phosphorylating ULK1. Under nutrient-starvation 

conditions and autophagy induction, mTORC1 is inactivated and ULK1 is released (52, 53). 

Once ULK1 is released, it is phosphorylated by AMPK (AMP-activated protein kinase) to 

activate autophagy. ULK1 can bind to membranes and this may help recruit other ATG proteins 

and their binding partners to the site of autophagosome formation. The PI3K-Beclin1 and ULK1 

complexes produce a pool of phosphatidyl-inositol-3-phosphate (PI3P) that is found in the 

autophagosomal membrane leaflets and also serves to recruit other autophagy effector proteins. 

 Once autophagy is initiated and the phagophore, denoting the site of autophagosome 

formation, is formed then the isolation membrane begins to elongate around the cargo that it will 

target for degradation. As previously mentioned autophagosomes most likely form from the ER. 

DFCP1 (double FYVE domain – containing protein 1) can bind to PI3P localizing to the ER 

during amino acid starvation where it also interacts with LC3 (microtubule-associated protein 

light chain 3). These cup-like DFCP1 structures, also called omegasomes, are thought to be the 

site of biogenesis for autophagosomes (54).  The elongation step is dependent upon two 

ubiquitin-like conjugation systems: the ATG5-ATG12 and the ATG8-PE systems. ATG12 is 

conjugated to ATG5 via a lysine residue and then the ATG12-ATG5 complex binds to ATG16L 

which localizes it to the isolation membrane (55). ATG16L has been shown to directly bind to 

the ULK1 complex. The ATG12-ATG5 complex serves as the E3-ubiquitin ligase to attach 

ATG8 (also called LC3) to the lipid phosphatidylethanolamine (PE). PE is part of the 

composition of many intracellular membranes in the cell.  LC3-PE (also referred to as LC3-II) 

decorates the isolation membrane and remains associated with the autophagosomal membrane as 
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it matures and then the LC3-II on the outside of the autophagosome is recycled once it is 

degraded by lysosomal fusion. The ATG12-ATG5 complex dissociates from the autophagosome 

before it closes. The exact steps required for elongation and closure are not clear but it has been 

shown that PI3P can form a cytosol-facing bud in membranes when clustered and that other 

ATG proteins seem to have the ability to sense membrane curvature and may help stabilize the 

isolation membrane as it elongates (56). Another hypothesis regarding membrane elongation is 

that LC3-containing membranes from other cellular locations can serve as additional membranes 

that tether and fuse with an elongating isolation membrane through LC3-interacting regions (57).  

Autophagosome Transport to the Lysosome 

   Once autophagosomes are formed they must be transported to lysosomes for degradation. 

Maturation refers to the process by which autophagosomes acquire the proteins necessary to 

make them competent for fusion. Autophagosome maturation depends largely on the activity of 

GTPases. GTPases function by cycling between being bound to guanosine diphosphate (GDP) in 

its inactive form and to guanosine triphosphate (GTP) in its active form. GDP is dissociated from 

the GTPase by binding of a guanine nucleotide exchange factor (GEFs) which allows GTP to 

bind and facilitates recruitment of the GTPases to membranes where they can bind their effector 

proteins and carry out their function. GTPase-Activating proteins (GAPs) accelerate the 

hydrolysis of GTP to GDP inactivating the GTPase.  

 The most well-known family of GTPases involved in autophagy are the Rab proteins 

which regulate vesicular trafficking. Rab7 has been shown to play an important role in linking 

autophagy to the endo-lysosomal system. Rab7 is found on late endosomes, lysosomes, and 

autophagosomes though its presence on autophagosomes may be due to fusion events with late 

endosomes (58, 59). Maturation of the early endosome to a late endosome/lysosome is dependent 
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upon the switch from Rab5 to Rab7. Rab5 is found on early endosomes and is displaced by 

Mon1 which acts as a GEF for Rab7 recruiting it to the membrane through interaction with 

HOPS (homotypic fusion and protein sorting complex) marking the late endosome (60, 61). 

Autophagosomes can fuse with late endosomes to form an amphisome prior to fusion with a 

lysosome (62, 63). It is unknown what proportion of autophagosomes become amphisomes but it 

has been shown in hepatocytes that the majority of autophagosomes fuse with late endosomes 

before eventually fusing with lysosomes. It has been demonstrated that Rab7 co-localizes with 

LC3-positive structures that eventually become positive for LAMP-1 indicating fusion with a 

late endosome/lysosome. Knocking down Rab7 or expressing a dominant-negative version of 

Rab7 causes an accumulation of autophagosomes, reduced co-localization with LAMP1, and 

reduced degradation of long-lived proteins (64, 65). These studies and others have elucidated a 

role for Rab7 in the maturation of autophagic vesicles and fusion with late endosomes and 

lysosomes.  

 The functions that Rab7 carries out are due to which effectors are bound to it. Two 

proteins that regulates autophagosome maturation in coordination with Rab7 are Rubicon and 

UVRAG (UV-irradiation resistance-associated gene). Rubicon is an effector of Rab7 and can 

bind both Rab7 and UVRAG in different complexes. Rubicon sequesters UVRAG to prevent it 

from binding to the class C vacuolar protein sorting complex (C-VPS) which is part of the HOPS 

complex. Rab7 can compete with Rubicon-UVRAG binding through its own binding of Rubicon 

to free UVRAG. UVRAG is then free to interact with C-VPS and recruit this complex to 

autophagosomes. Rubicon negatively regulates endosomal maturation and endocytic pathways 

(66). UVRAG can also increase the association of Rab7 with autophagosomes and increase its 

activity thereby contributing to autophagosome maturation (67).  
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 Another set of Rab7 effectors with opposing functions that are important for autophagy 

are RILP (Rab interacting lysosomal protein) and FYCO1 (FYVE and coiled-coil domain 

containing 1). RILP and FYCO1 bind to motor proteins and are responsible for moving vesicles 

along microtubules. Autophagy depends on an intact microtubule network since treatment of 

cells with vinblastine or nocodazole inhibits fusion of autophagosomes and endosomes (68). 

RILP binds to dynactin which recruits the dynein motor and can mediate minus-end transport of 

Rab7-containing vesicles towards the perinuclear region of the cell (69, 70). While this mode of 

transportation for late endosomes and lysosomes is well documented, it is not as clear whether 

autophagosome movement  depends on Rab7-RILP. A recent study showed that autophagosome 

movement was dependent upon the Rab7 interaction with another effector, ORP1L (oxysterol-

binding protein-related protein 1L) which is a cholesterol sensor. Under low cholesterol 

conditions, ORP1L prevents binding of RILP to dynactin resulting in more peripheral 

autophagosomes (71). FYCO1 binds to kinesin-1 and is found on Rab7-containing endosomes 

and lysosomes. FYCO1 can also bind to LC3 through an LC3-interacting region potentially 

linking autophagosomes to kinesin and moving them to the cell periphery (72).   

 Autophagosomes are formed at various sites throughout the cytosol and move towards 

the perinuclear region of the cell where lysosomes are predominantly found. While 

autophagosomes are able to move bidirectionally, their net movement tends to be towards the 

centrosome. This movement is dependent on dynein as inhibiting dynein by microinjection of 

antibody against dynein heavy chain or by treatment with an ATPase-inhibitor abrogates 

autophagosome movement towards the perinuclear region (73, 74). Once autophagosomes and 

lysosomes are in close physical proximity, fusion between the membranes occurs through tethers 

and SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. 
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Tethering proteins bring membranes into close proximity prior to the engagement of SNARES. 

HOPS serves as a tether through its interaction with Rab7 to coordinate assembly of SNARE 

proteins on  membranes (75). PLEKHM1 has been identified as a protein that binds Rab7, 

components of the HOPS complex, and LC3 and therefore may serve as an adaptor linking 

autophagosomal and lysosomal membranes (76). Membrane fusion is achieved by the interaction 

of four SNARES: the Qa, Qb, Qc SNARES on one membrane and the R-SNARE on the other 

(77). The SNARES involved in autophagy are Syntaxin-17 (Stx17) present on autophagosomes 

and VAMP7/8 on late endosomes/lysosomes.  Stx17 is an ER-resident syntaxin and most likely 

appears on autophagosomes due to their ER membrane origin. Autophagosomes accumulate 

when Stx17 is knocked-down in cells indicating a role for Stx17 in autophagosome-lysosome 

fusion. SNAP-29, a Qbc SNARE protein, was also found to interact directly with Stx17 and is 

recruited to autophagosomes. Interactions between Stx17 and the lysosomal SNARE, VAMP8, 

were also found (78). Stx17 also can interact directly with the HOPS complex which may also 

serve to bring the autophagosome and lysosome together for fusion since knocking down HOPS 

subunits causes the accumulation of Stx17-positive autophagosomes (79). 

Lysosomal Degradation of the Autophagosome 

 Fusion with a lysosome allows the contents of the autophagosome to be degraded and 

components to be recycled back to the cytosol. The degradative capacity of the lysosome 

depends upon proper acidification and proper expression of lysosomal proteases. Presenilin 1 

targets the V0a1 subunit of the vacuolar ATPase to lysosomes which allows acidification by 

pumping protons into the lysosomal lumen. Presenilin 1-knockout cells were unable to degrade 

autophagosomes due to defects in proteolysis and acidification though fusion with lysosomes 

could still occur (80). Presenilin 1 mutations have been implicated in Alzheimer’s disease and 
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autophagic defects are present in many neurodegenerative diseases. Cathepsins B, D, and L play 

important roles in autophagy. Cathepsin D deficient or cathepsin B and L double deficient mice 

show an accumulation of autophagosomes in their brains leading to death (81). Additionally, 

cathepsin L-deficient fibroblasts also accumulated autophagolysosomes which could not degrade 

their contents properly (82). After degradation, the products, for example amino acids, are 

recycled by lysosomal efflux transporters. For example, ATG22 was shown to be an amino acid 

effluxer in yeast, most likely for leucine, and that this recycling step at the end of autophagy was 

necessary for continued cell viability (83). Lysosomes are also recycled after their participation 

in autophagy by a process termed autophagic lysosome reformation (ALR). During ALR, mTOR 

is reactivated and LAMP-1 positive membranes form tubular structures that initially are not 

acidic and lack degradative capacity but after maturation, these tubules become fully functional 

lysosomes (84). 

Arl8b  

 As previously discussed, an important aspect of autophagy maturation is organelle 

positioning and ensuring that autophagosomes are able to come into close spatial proximity with 

lysosomes for fusion to occur. An Arf-like GTPase that plays a main role in lysosomal 

positioning is Arl8b. Arl8b, as described above for Rab GTPases, cycles between GDP (inactive) 

and GTP (active) bound states. Arl8b was first characterized in 2006 and was found to bind to 

lysosomes as it co-localized with both CD63 and LAMP-2 positive vesicles (85). Arl8b did not 

co-localize with the early endosomal marker EEA1 and only partially co-localized with the late 

endosomal marker mannose-6-phosphate receptor. Tagged-Arl8b was also shown to affect the 

motility of lysosomes in transfected cells with an increase in peripheral lysosomes compared to 

untransfected cells (85, 86). Arl8b binds to the N-terminal portion of SKIP (SifA and kinesin-
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interacting protein) and SKIP binds to kinesin-1 enabling plus-end transport of lysosomes to the 

periphery via microtubules (87).   

 Arl8b is post-translationally modified by acetylation on its N-terminus (87). While 

acetylation is important for associating Arl8b with membranes, it does not recruit Arl8b 

specifically to lysosomes. Recently, the BORC complex (biogenesis of lysosome-related 

organelles complex (BLOC)-one related complex) was identified as responsible for linking 

Arl8b to lysosomes (88). Knocking down members of the BORC complex altered the 

localization of Arl8b to a diffuse, cytosolic pattern instead of being associated with lysosomes. 

 Additionally, the HOPS complex can be recruited to lysosomes by Arl8b. The HOPS 

complex is a hexameric complex made up of vacuolar protein sorting (Vps) subunits 41, 11, 18, 

39, 16, and 33a and Arl8b was found to directly interact with Vps41. Once Vps41 is localized to 

the lysosome, other Vps subunits can subsequently bind to complete the HOPS complex. Vps41 

interacts with Vps18 which then allows the recruitment of Vps11 and 16. Vps11 can interact 

with Vps39 and Vps16 can interact with Vps33a (89). Knocking down Arl8b in cells causes 

various Vps subunits to no longer localize to lysosomes and be predominantly localized to the 

cytosol. It is believed that the Arl8b-SKIP-kinesin complex counteracts the Rab7-RILP-dynein 

complex with the latter moving lysosomes to the perinuclear region and the former to the 

periphery. Rab7-RILP has been shown to also interact with the HOPS complex and it has been 

suggested that there can be competition for HOPS binding between Arl8b-SKIP and Rab7-RILP 

(88). One theory is that by localizing HOPS to lysosomes, Arl8b may play a role in fusion of late 

endosomes and lysosomes.    

 In macrophages and dendritic cells, Arl8b has been implicated in the formation of 

lysosomal tubules which are formed upon stimulation with compounds such as 
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lipopolysaccharide (LPS). Lysosome tubules may play a role in retaining fluid-phase content 

from pinocytosis as well as phagosome maturation and acidification. LPS enhances localization 

of Arl8b on membranes in an mTOR-dependent manner. Treating cells with torin1, an mTOR 

inhibitor, in the presence of LPS returned the amount of membrane-associated Arl8b back to the 

basal levels (90, 91). 

 What are the consequences of moving lysosomes to the periphery? Lysosomes may be 

heterogeneous in both structure and function within the same cell. Peripheral lysosomes were 

found to be less acidic than perinuclear ones using fluorescein-dextran as a reporter of 

intraluminal pH (92). This alkalinization could be due to increased proton leakage and reduced 

vacuolar ATPase activity in peripheral lysosomes. There were also differences in Rab7 and 

Arl8b localization on lysosomes depending on their location. Peripheral lysosomes had increased 

Arl8b on their membranes and little Rab7 while perinuclear lysosomes contained more Rab7 

which may indicate that the acquisition or depletion of Arl8b or Rab7 may play a role in 

lysosomal localization (92). There was also decreased cathepsin L activity in cells where 

peripheral localization of lysosomes was induced by dynamitin expression to break apart the 

dynein complex (92).  

 Another consequence of lysosomes moving to the periphery may be autophagy 

modulation. Autophagosomes and lysosomes fuse with each other in the perinuclear region of 

the cell (74). Arl8b overexpression decreased autophagic flux by decreasing co-localization 

between autophagosomes and lysosomes whereas Arl8b knockdown had the opposite effect 

enhancing autophagosome-lysosome fusion (93).  

Role of Arl8b in pathogenesis 
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 Arl8b has been shown to play a role in the pathogenesis of salmonella and tobamovirus 

through two different mechanisms. After invasion, Salmonella typhimurium occupies a vacuole 

termed the Salmonella-containing vacuole (SCV) that interacts with the endocytic pathway. The 

SCV does not fuse with lysosomes preventing degradation of the bacterium. SCVs eventually 

move to the cell periphery to enable cell-to-cell transfer. Arl8b was found to associate with SCVs 

in infected HeLa cells and was also localized to Salmonella-induced filaments (SIF) which are 

tubules formed by endosomal compartments (94). Knockdown of Arl8b kept SCVs in the 

perinuclear regions of cells and prevented them from moving to the periphery 24hrs post-

infection as is usual. Additionally, Arl8b knockdown significantly decreased the amount of cell-

to-cell spread of the bacterium.  

 Arl8b is highly conserved amongst eukaryotes and is found in plants and animals but not 

in yeast. The genus Tobamovirus contains positive-stranded viruses such as tomato mosaic virus 

and tobacco mosaic virus that infect plants. Tobamoviruses replicate on membranes that contain 

Arl8 and Tom1, a host protein that promotes viral replication by tethering viral proteins to 

membranes. Arl8 was found to be necessary for virus multiplication and negative-strand RNA 

synthesis (95). This suggests that Arl8 may help in the formation of tobamovirus replication 

complexes.   

Autophagy and HCV 

 The earliest reports looking at the effect of HCV on autophagy found that upon virus 

infection, autophagosome formation is induced. Evidence of autophagy induction is typically 

shown by double-membrane vacuole formation in infected cells by electron microscopy, 

increased LC3-positive puncta in infected cells by immunofluorescence, and increased LC3-II 

levels by western blot when compared to uninfected cells (96, 97). Autophagy induction has 
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been observed in cells where HCV RNA was electroporated, during cell culture infection by 

virus-containing supernatant, and in replicon-containing cells.  

 It has been proposed that HCV induces autophagy through the UPR pathway. Knocking 

down parts of the UPR pathway in HCV-infected cells, for example using siRNA against PERK, 

could reduce the amount of LC3-II induced in infected cells (97, 98). The UPR represents a 

series of signaling pathways to alleviate ER stress induced by misfolded proteins. PERK (protein 

kinase-like endoplasmic reticulum kinase) alleviates ER stress by decreasing protein translation 

(99). One mechanism by which the UPR may induce autophagy in HCV-infected cells is via the 

AKT pathway. ER stress induced by HCV infection is able to inhibit AKT which leads to 

mTORC1 inhibition. mTORC1 inhibition leads to the upregulation of ULK1 activity inducing 

autophagy (100).  

 There is one report that argues HCV-induced autophagy is independent of the UPR. The 

authors show that the induction of autophagy appears to precede induction of the UPR in HCV- 

infected cells since LC3-II protein levels increase prior to induction of CHOP, a protein induced 

by ER stress. Additionally, subgenomic replicons expressing NS3-NS5B do not induce the UPR 

but do induce autophagy by increasing LC3-II in cells. Knocking down Ire1, a component of the 

UPR pathway, did not alter autophagy in HCV-infected cells and also did not decrease viral 

replication (101).   

  Initially, autophagy was suggested to only be required for the translation of incoming 

viral RNA but is dispensable in cells where replication has already been established. This was 

based on data that knockdown of autophagy proteins impaired the translation of electroporated 

HCV RNA but not in replicon cell lines where replication has already been established (102). 

However, this theory seems to be contradicted by the effects of autophagy inhibition on later step 
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in the HCV life cycle like replication and viral particle release that subsequent studies have 

shown. Nevertheless, it appears that HCV-induced effects on autophagy are important for early 

life cycle events as well as late ones.   

 Early events in autophagy are governed by the PI3K-Beclin1 complex as described 

earlier. It has been shown that knockdown of Beclin1 impairs HCV-induced autophagy (103) and 

knockdown of Vps34 (the class III PI3K) or pharmacologic inhibition of the activity of this PI3K 

inhibits HCV replication (104). The viral protein NS4B can interact with both Vps34 and 

Beclin1 (105). Interestingly NS4B, which forms the membranous web complex where viral 

replication occurs, was also found to induce autophagosome formation when ectopically 

expressed in cells (105).  Therefore, there is speculation that autophagosomes induced by HCV 

infection could be the sites of viral replication. HCV membranous web complexes were isolated 

from JFH-1 replicon cells by fractionation and the fractions which were positive for LC3-II were 

also positive for NS3, NS5A, and HCV RNA (106). Additionally, LC3-positive puncta were 

found to co-localize with NS5A, NS5B, and HCV RNA by both immunofluorescence and 

electron microscopy and direct interactions were confirmed by immunoprecipitation (106, 107). 

However, there have also been studies that could not find any interactions between viral proteins 

known to be important for replication and autophagosomes (101, 102). Some of the 

discrepancies in these studies could be due to more transient associations of viral proteins with 

autophagy machinery that depend on stage of infection. For example, ATG5 was found to 

interact with NS5B by immunoprecipitation and co-localization by immunofluorescence at an 

early time point in infection but this association was abolished at later time points (108). NS5A 

also transiently co-localized with DFCP1, a marker of the omegasome, early in infection (104).   
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 There is still controversy regarding whether autophagy induced by HCV goes to 

completion with autophagosomes fusing with lysosomes or if fusion and degradation are 

impaired.  Long-lived protein degradation, which is a measure of autophagic degradation, was 

shown to be impaired in JFH-1 infected cells (97). Additionally, GFP-LC3 puncta did not co-

localize with Lysotracker, a dye that stains acidic organelles, in JFH-1 infected cells whereas 

autophagy induced by nutrient starvation showed a high degree of co-localization between GFP-

LC3 and Lysotracker in control cells.  

 However, other studies have showed complete maturation of the autophagosome into an 

autophagolysosome during HCV infection. Cells transfected with an RFP-GFP-LC3 plasmid 

showed predominantly red fluorescence after HCV infection indicating complete autophagy 

(100, 109). The RFP-GFP-LC3 plasmid is an indicator of autophagy progression. Intact 

autophagosomes appear yellow due to the presence of both fluorophores but once fusion with a 

lysosome occurs, red fluorescence remains while the GFP signal is quenched.  

 Recently, there is data to suggest a more nuanced view of autophagosome maturation in 

infected cells. There may be slowed maturation of autophagosomes in infected cells due to 

temporal regulation of Rubicon and UVRAG expression by HCV. As previously described, 

Rubicon negatively regulates autophagy by sequestering UVRAG and preventing 

autophagosome maturation. Once UVRAG is freed from Rubicon, it can then bind the HOPS 

complex and promote autophagosome maturation through Rab7. In a variant of JFH-1 that 

infects cells rapidly it appears that Rubicon is upregulated during early timepoints in infection 

causing autophagosomes to accumulate but at later timepoints, UVRAG expression is 

upregulated allowing autophagy to proceed to completion (110). The regulation of these proteins 

was shown to be tied to viral replication.  
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 HCV-infected cells also decreased the amount of syntaxin 17 which would decrease 

autophagosome-lysosome fusion. Stx17 is the SNARE protein responsible for autophagosome-

lysosome fusion. Overexpressing stx17 in HCV-infected cells decreased the release of viral 

particles which could be partially rescued by bafilomycin A1 treatment, which is a 

pharmacological way to block autophagosome-lysosome fusion (111).  

 Regardless, it is widely accepted that HCV relies on the induction of autophagy for its 

life cycle. Knocking down genes important for autophagy such as ATG7 (97, 112), ATG4B 

(102), Beclin1 (102, 112, 113), and LC3 (97) all impaired viral replication and infectious virus 

release. ATG7 helps to catalyze the ATG12-ATG5 conjugation reaction and ATG4B cleaves 

ATG8 to aid its conjugation with PE. Inhibition of the autophagy pathway by knockdown of 

Beclin1 or ATG7 abrogated extracellular release of HCV by an exosomal pathway (114). 

Exosomes from these autophagy knockdown cells are also less infectious.  

 Aspects of HCV infection in which autophagy may provide a pro-survival role are 

blocking the interferon-response and promoting cell survival. Knockdown of various autophagy 

genes was found to enhance the innate immune response to HCV infection as was demonstrated 

by the induction of interferon-stimulated genes (109, 113). HCV-infected cells that are knocked 

down for autophagy related genes, like Beclin1 or ATG7, undergo apoptosis at a higher rate than 

HCV-infected cells with normal autophagy machinery (113). This indicates autophagy may play 

a protective role for the virus during infection to promote viral persistence. Knockdown of 

autophagy also increased the amount of BST-2, also called tetherin, in HCV-infected cells (114). 

BST-2 is encoded by an interferon-inducible gene and is known to block release of other 

enveloped viruses.  
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 The effects of HCV on autophagy may also influence how the disease progresses in 

chronically infected patients. A study looking at liver biopsies from fifty-six chronic hepatitis C 

patients found an increase in autophagic based on increased LC3-II levels by western blot and 

the presence of more autophagosomes by electron microscopy (115). There was no observed 

increase in mature lysosomes by electron microscopy in these samples leading to the conclusion 

that there may be a block in autophagosome degradation in chronic HCV.  

Project Aims 

 Whether HCV-induced autophagy goes to completion is still controversial with evidence 

supporting both a lack of lysosome fusion or complete fusion. After our initial observation that 

infection with HCV virus caused a block in autophagic flux, we sought to characterize whether 

the block was caused by either (1) a trafficking defect where autophagosomes and lysosomes do 

not meet within a cell or (2) altered composition of autophagosomes or lysosomes within cells so 

that they are no longer competent for fusion. Once we determined that a trafficking defect was 

the reason for a block in fusion, we then set out to find a mechanism and began to explore the 

role of GTPases in HCV infection. The purpose of this dissertation was to explore the hypothesis 

that the HCV-induced block in autophagic flux is dependent upon Arl8b expression in infected 

cells.  

 Chapter 2 of this thesis explores the effect of HCV infection on the autophagic pathway 

and the potential roles for viral proteins in autophagic flux. Next, we looked at whether 

autophagosome-lysosome fusion was impaired in HCV-infected cells using subcellular 

fractionation coupled with an in vitro fusion assay and microscopy.  

 Chapter 3 of this thesis characterizes the effect of HCV infection on the expression and 

cellular localization of the Arf-like GTPase, Arl8b. The effect of organelle positioning on 
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autophagy is also explored by confocal microscopy looking at co-localization between 

autophagosomes and Arl8b-positive organelles. Lastly the effect of Arl8b knockdown on HCV-

induced autophagy is tested.   

 Chapter 4 of this thesis examines the potential cooperativity between Arl8b and Rab7-

RILP. Our lab recently demonstrated that HCV cleaves RILP breaking its linkage with dynein. It 

is known that the Arl8b and Rab7 complexes may be found on the same organelles and compete 

for HOPS binding.  

 This study is the first to demonstrate that an Arl8b-dependent mechanism governs 

autophagosome-lysosome fusion in HCV infection.   
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Chapter II: HCV infection causes a block in autophagosome-lysosome fusion  

 

Introduction 

 

 Autophagy plays an important role in maintaining cellular homeostasis and protecting the 

cell from stress. Intracellular pathogens interact with the autophagy pathway, also termed 

xenophagy, either to exploit it to aid in their own pathogenesis or encounter it as a host defense 

mechanism. As a defense mechanism, intracellular pathogens are enveloped by the phagophore 

becoming trapped within the autophagosome and then degraded by fusion with the lysosome. For 

example, during autophagy induction by Mycobacterium tuberculosis, the phagosomes where the 

bacteria reside acquire lysosomal markers, such as hydrolases, and bacterial survival is reduced 

(116). Autophagy has also been implicated in various immune responses to pathogens such as 

pattern recognition receptor activation or antigen presentation. Autophagy is induced to restrict 

Rift Valley Fever virus by activating the toll-like receptor signaling adaptor MyD88 (117). 

EBNA1, a viral protein from Epstein-Barr virus, is processed through the autophagic pathway so 

that it can be presented to CD4+ T cells on MHC class II for immune surveillance (118).  

 However, many pathogens have evolved various mechanisms to either evade or exploit 

the autophagy pathway or its components to ensure survival and spread. Herpesviruses have 

evolved mechanisms to suppress autophagy. Herpes Simplex Virus-1, an alpha-herpesvirus, 

inhibits phosphorylation of eIF2α suppressing the UPR response leading to autophagy inhibition. 

Kaposi’s sarcoma-associated herpesvirus, a gamma-herpesvirus, employs multiple methods to 

inhibit autophagy such as encoding a viral Bcl-2 protein that binds with high affinity to Beclin1 

to prevent it from initiating autophagy or encoding a viral FLIP protein that directly interacts 

with ATG3 to prevent its interaction with LC3 impairing LC3-II membrane attachment (119). 

Viruses may utilize autophagy to provide membranes for replication, prolong the survival of 
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infected cells, aid in the maturation of infectious virus particles, and secrete viral particles. The 

mechanisms employed to accomplish these tasks are varied and can include interactions with the 

mTOR pathway, Beclin1, direct interactions with autophagy proteins, modulation of SNARE 

proteins, and others (120).  

  We sought to explore how HCV manipulates autophagy and what effect that could have 

on the viral life cycle. Since previous work in our lab has shown that the p7 viroporin can 

alkalinize acidic vesicles within cells and the earliest reports of the effect of HCV on autophagy 

suggested an incomplete autophagic response, we evaluated whether the observed loss of acidic 

compartments could play a role in the autophagic response during HCV infection. Therefore, we 

set out to determine whether HCV blocked autophagosome-lysosome fusion and ultimately were 

able to conclude that autophagic flux is inhibited during HCV infection. Next, we determined 

which viral proteins played roles in autophagic flux and what mechanism caused the failure of 

fusion between autophagosomes and lysosomes. The data presented in this chapter demonstrates 

that the lack of fusion between autophagosomes and lysosomes is likely due to a trafficking 

defect that prevents these organelles from contacting each other within the cell as opposed to a 

virally-induced change in organelle composition that renders them incompetent for fusion.   

Materials and Methods  

Cells and Culture Conditions 

 Huh-7.5 and Huh7.5-GFP-IPS cells were obtained from Charles Rice (Rockefeller 

Institute). These cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

containing 4.5g/L glucose, L-glutamine, and sodium pyruvate, 10% fetal bovine serum (FBS), 

and 1% non-essential amino acids (NEAA). Cells were maintained at 37°C/5% CO2.      
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 The Super1a replicon cell line was obtained from Stanley Lemon (University of North 

Carolina School of Medicine). This cell line was grown in DMEM supplemented with 10% FBS, 

1% NEAA, 2ug/mL blasticidin, and 200ug/mL G418. The cured cell line was acquired by 

treating the Super1a cells with 200 U/mL interferon-α for four weeks to eliminate the HCV 

genome. Cured cells were grown using the same media as Super1a cells without the G418. Cells 

were maintained at 37°C/5% CO2.  

 A tetracycline-inducible Huh-7 cell line expressing core, E1, E2, p7, and NS2 was 

obtained from Kui Li (University of Tennessee Health Science Center). The cell line was 

cultured in DMEM containing 4.5g/L glucose, L-glutamine, and sodium pyruvate, 10% FBS, 1% 

NEAA, 2ug/mL tetracycline, and 200ug/mL G418. Cells were maintained at 37°C/5% CO2. To 

induce expression of viral proteins, tetracycline was removed and media containing tetracycline-

free FBS was used. Cells were washed daily with 1XPBS and media replaced. A tetracycline-

inducible Huh-7 cell line expressing core protein alone (called L14) was also used in the same 

way as the core-NS2 cells. 

 A replicon cell line expressing NS3-NS5B from JFH-1 was made in our lab and grown in 

DMEM supplemented with 10% FBS, 1% NEAA, 2ug/mL blasticidin, and 200ug/mL G418. 

Western blotting  

 Western blotting was performed using anti-LC3B, 1:1000 (Cell Signaling, Beverley, 

MA), anti-Cathepsin D, 1:500 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-GAPDH, 

1:1000 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-core, clone C7-50, 1:1000 (Thermo 

Fisher Scientific, Waltham, MA), and anti-LAMP-2, clone H4B4, 1:2000 (DSHB, University of 

Iowa). Horseradish peroxidase-conjugated secondary antibodies were from Thermo Fisher 
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Scientific and IR-Dye conjugated secondary antibodies were from LI-COR Biosciences 

(Lincoln, NE).  

HCV infection 

 JFH-1, a genotype 2a strain, was used for all experiments with HCV-infected cells. JFH-1 

plasmid was obtained from Takaji Wakita (Tokyo, Japan). JFH-1 RNA was made as described in 

Kato et al (121). The JFH-1 plasmid was linearized with XbaI and this template was used to 

transcribe RNA using the T7 RiboMAX™ Express Large Scale RNA Production (Promega, 

Madison, WI). 10ug of JFH-1 RNA was used to electroporate 5x106 Huh-7.5 cells. These cells 

were continuously passaged to allow the JFH-1 to become cell culture adapted. When greater 

than 75% of cells were infected, the cell culture supernatant containing virus was collected and 

stored at -80°C for future use. New stocks of virus were propagated by continuous cell culture 

infection with JFH-1 containing supernatant.  

 Huh-7.5 cells were infected with supernatant containing JFH-1 virus for twenty-four 

hours. Cells were passaged as necessary and infection was monitored by immunofluorescence 

for HCV core protein. JFH-1 infected cells were used in experiments when greater than 70% of 

the cells were infected. 

Immunofluorescence  

 Huh-7.5 cells were plated on 12mm circular glass coverslips in 4-well plates. Cells were 

transfected with Lipofectamine LTX or Lipofectamine 3000 (Thermo Fisher Scientific). ptfLC3 

plasmid (Addgene, Cambridge, MA) is the tandem RFP-GFP-LC3. For ptfLC3 experiments, 

twenty-four hours post transfection, cells were treated with either bafilomycin A1 (Sigma, St. 

Louis, MO) or Earle’s Balanced Salt Solution (EBSS) for thirty minutes. Cells were fixed with 

3% paraformaldehyde and permeabilized with acetone. Cells were blocked for one hour in 
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1XPBS containing 1% BSA and 1% EDTA at room temperature before being incubated with 

mouse anti-core clone C7-50, 1:300. The secondary antibody used was an AlexaFluor-647 

conjugated donkey anti-mouse. Coverslips were mounted onto slides using Prolong Gold 

antifade mountant containing DAPI (Thermo Fisher Scientific). 

 Images were taken with a Nikon eclipse Ti PFS Quantitative Fluorescence Live-Cell and 

Multidimensional Imaging System equipped with a digital monochrome Coolsnap HQ2 camera 

(Roper Scientific, Tucson, AZ) using the MetaMorph software. Analysis to determine mean 

GFP/RFP ratio for RFP-GFP-LC3 transfected cells was done using CellProfiler cell image 

analysis software (www.cellprofiler.org). 

Autophagy flux assay  

 Cells were treated with 100nM bafilomycin A1 for 4 four hours before being lysed with 

cell lysis buffer (20mM Tris-HCl (pH 7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% 

Triton X-100) containing protease inhibitors. Cells treated with 0.1% DMSO were used as a 

negative control.  

Lysosomal enzyme assays 

 For live cell imaging, Huh-7.5-GFP-IPS cells were plated on glass bottom Microwell 

dishes (Maktek, Ashland, MA) at 15,000 cells per dish. Bafilomycin A1 treatment was done at a 

concentration of 25nM overnight at 37°C/5% CO2. Cells were treated with Magic Red Cathepsin 

B reagent (Immunochemistry Technologies, Bloomington, MA) at a 1X concentration in HEPES 

buffer (10mM HEPES, 133.5mM NaCl, 2.0mM CaCl2, 4.0mM KCl, 1.2mM MgSO4, 1.2mM 

NaH2PO4, 11mM glucose; pH 7.4) for one hour at 37°C/5% CO2. Nuclei were stained with 

1ug/mL Hoechst stain in HEPES buffer for twenty minutes at 37°C/5% CO2. Live cell imaging 

was done using a Nikon eclipse Ti PFS Quantitative Fluorescence Live-Cell and 
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Multidimensional Imaging System equipped with a digital monochrome Coolsnap HQ2 camera. 

Fluorescence images were collected using Metamorph software at wavelengths of 560nm 

excitation/607nm emission for the Cathepsin B substrate. 

 For the plate reader assay, Huh-7.5 cells were plated in 96-well plates with clear bottoms 

at 10,000 cells per well. Cells were treated with Magic Red Cathepsin B reagent for two hours at 

37°C/5% CO2. Cells were washed twice with HEPES buffer and lysed with 1XRIPA buffer for 

five minutes at 4°C. Fluorescence measurements were taken at room temperature in a Fluostar 

Optima plate reader (BMG Labtech, Durham, NC) at excitation/emission wavelengths of 

584/620nm.  

 To assess cathepsin D processing, Huh-7.5 cells were treated with 25nM bafilomycin A1 

overnight at 37°C/5% CO2. Cells were trypsinized, washed, and resuspended in 2mL 

homogenization buffer (0.25M sucrose, 6mM EDTA, 20mM HEPES-NaOH; pH 7.4) and 

homogenized with a dounce homogenizer with loose-fitting pestle. Homogenate was centrifuged 

at 3000xg for ten minutes at 4°C to collect the heavy membrane pellet. The 3000xg pellet was 

resuspended in 100uL homogenization buffer containing protease inhibitors for western blot.        

Subcellular fractionation  

 Fractionation was carried out as described in Koga et al (122). Briefly, approximately 

200 million Huh-7.5 cells were collected and ruptured by nitrogen cavitation in a nitrogen bomb 

(Parr Instrument Company, Moline, IL) for seven minutes at a final pressure of 35psi in a 

volume of 1mL 0.25M sucrose. Disrupted cells were centrifuged at 2000xg for five minutes at 

4°C to remove intact cells and nuclei. Supernatant containing organelles was centrifuged at 

17,000xg for twelve minutes at 4°C to separate organelles (pellet) from cytosol and ER fractions 

(supernatant). The pellet was resuspended in 0.25M sucrose and mixed with 85.6% Nycodenz 
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(Accurate Chemical, Westbury, NY) and placed in the bottom of an ultracentrifuge tube. On top 

of the homogenate, 26% Nycodenz, 24% Nycodenz, 20% Nycodenz, and 15% Nycodenz was 

layered. Gradients were spun at 104,333xg for three hours at 4°C in a SW41Ti swinging bucket 

rotor. Autophagosomes were collected from the interface between 15-20% Nycodenz and 

lysosomes were collected between 24-26% Nycodenz. Fractions were washed with 0.25M 

sucrose and autophagosomes and lysosomes were resuspended in 100uL 0.25M sucrose with 

protease inhibitors for use in the in vitro fusion assay.    

In vitro fusion assay and Flow cytometry 

 In vitro fusion assay was carried out as described in Koga et al (122). Briefly, isolated 

autophagosomes were incubated with anti-LC3-PE antibody (Cell Signaling) at a 1:50 dilution 

and isolated lysosomes were separately incubated with anti-LAMP-2-APC (BD Biosciences, San 

Jose, CA) at a 1:20 dilution in 0.25M sucrose. Antibodies were incubated with organelles for 

thirty minutes at room temperature. Organelles were washed with 0.25M sucrose to remove any 

unbound antibody. Organelles were resuspended in 5uL fusion buffer (10mM HEPES, 10mM 

KCl, 1.5mM MgCl2, 1mM DTT, and 0.25M sucrose) per reaction and 5uL of autophagosomes 

were combined with 5uL lysosomes. 5uL of reaction buffer (0.25M sucrose, 3mM ATP, 3mM 

GTP, 0.16mg/mL creatine phosphokinase, 8mM phosphocreatine, and protease inhibitors) was 

added to the autophagosome-lysosome mixture and the fusion reaction was carried out at 37°C 

for thirty minutes. The total volume of the reaction was brought up to 100uL with 0.25M sucrose 

and 100uL of 2% paraformaldehyde was added for fixation. Fixed samples were subjected to 

flow cytometry using a LSR II instrument (BD Biosciences). 
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Results 

JFH-1 infection leads to altered autophagic flux 

 To better understand the effect of HCV on autophagy, we assessed autophagic flux in 

JFH-1-infected human hepatoma Huh-7.5 cells. The ability to study the effect of HCV infection 

has been greatly enhanced by the advent of a cell-culture system using an isolate from a Japanese 

patient with fulminant HCV-associated hepatitis developed in 2005 (123). This cell-culture 

system allows for the study of the entire HCV life cycle within cells. Huh-7.5 cells are a Huh-7 

clone that is more permissive for HCV replication due to a point mutation in the retinoic acid-

inducible gene-1 (RIG-I) which is a double-stranded RNA sensor (124, 125). To assess 

autophagic flux, lysosomal inhibitors were used to allow the accumulation of autophagosomes. 

Bafilomycin A1 was used to prevent the degradation of autophagosomes by inhibiting the 

vacuolar type H+-ATPase which results in alkalization of the lysosome (126). When bafilomycin 

A1 is added to cells undergoing normal, basal autophagy, autophagosome and lysosome fusion is 

inhibited and autophagosomes will accumulate. This accumulation can be monitored by western 

blot by an increase in LC3-II which decorates autophagosomes.   

 Huh-7.5 cells were treated with 100nM bafilomycin A1 for four hours. In uninfected 

cells, there was an approximate four-fold increase in LC3-II levels in bafilomycin-treated cells 

compared to cells treated with DMSO only (Figure 4A, B). As previously described, during JFH-

1 infection, the basal level of autophagy is increased compared to uninfected cells indicated by 

the increase in LC3-II in the untreated infected sample. However, treating JFH-1 infected cells 

with bafilomycin A1 does not further increase the level of LC3-II which would suggest that 

while HCV may initially induce autophagy, viral infection also prevents degradation of 
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                                                                                                                  Huh-7.5 cells were 

infected with JFH-1, HCV genotype 2a, and then treated with bafilomycin A1 (BafA). A) Huh7.5 

cells were treated with BafA for 4hrs prior to SDS-PAGE analysis. Western blot was done with 

anti-LC3 antibody, anti-GAPDH antibody as a loading control, and anti-core antibody to monitor 

HCV infection. B) Densitometry analysis of the changes in LC3-II levels, normalized to GAPDH 

levels, as determined from western blotting. Quantification of western blots (n=5) was done 

using ImageJ software. The difference between control and JFH-1 was statistically significant 

(p=0.029) as indicated by the Mann-Whitney Rank Sum test. C) Huh7.5 cells were treated with 

BafA for indicated time points and LC3-II levels were determined by immunoblotting. Plots 

represent the quantification (n=4) of the fold increase in LC3-II levels, normalized to GAPDH 

levels, as determined from western blotting. For control samples, there is a positive correlation 

between LC3-II levels and length of treatment time by calculating the linear regression. There is 

no significant correlation for the JFH-1 samples.  

 

                                                                                                                   

 

 

 

 

 

 

 

 

Figure 4 HCV infection causes a block in autophagic degradation.  
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autophagosomes. This would indicate that JFH-1 infection can impair autophagic flux in Huh-7.5 

cells.  

 Next, we treated cells with bafilomycin A1 at different timepoints up to eight hours. In 

control cells, there was a statistically significant time-dependent increase in LC3-II levels 

(Figure 4C). The slope of the line reflects the autophagy initiation rate. LC3-II decorated 

autophagosomes are intermediate structures and their steady-state abundance reflects a balance 

between rates of formation and destruction via lysosomal fusion (127). In JFH-1-infected cells, 

there was an absence of a time dependent accumulation of LC3-II under the same conditions. 

The slope of the line is not significantly different from zero. Using ANOVA, there was a 

significant difference (p=0.0290) between the accumulation of LC3-II in control cells compared 

to JFH-1 infected cells. This analysis reveals that the initial increase in autophagy observed in a 

cell culture model of HCV infection is due primarily to a suppression of LC3-II degradation and 

not from an increase in autophagy initiation.  

 The effect of autophagic flux was also examined in replicon cells. The Super1a replicon 

cells used in this study contain the full-length genome from HCV strain H77c, a genotype 1a 

virus. As mentioned previously, replicon cells lines can replicate viral RNA but do not produce 

infectious viral particles (128). Cured cells were compared to full-length Super1a replicons. 

Cured cells treated with bafilomycin A1 displayed an increase in LC3-II levels as expected 

(Figure 5). The Super1a cells did not show an increase in LC3-II after bafilomycin A1 treatment. 

Autophagic flux in the replicon cell lines reflected what was observed during JFH-1 infection in 

cells.   
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                                                                                                                        Huh7 cells either 

cured of the HCV genome or expressing the full length H77c HCV genome were treated with 

bafilomycin A1 (BafA) for 4 hours before cell lysates were collected for western blot. Western 

blot was done with anti-LC3 antibody, anti-GAPDH antibody as a loading control, and anti-core 

antibody to show HCV protein expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Full-length replicon shows block in autophagic degradation. 
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Effect of viral proteins on autophagic flux 

 Next the role of viral proteins in blocking autophagic flux was examined. The first set of 

proteins tested were core, E1, E2, p7, and NS2 using a tet-inducible Huh-7 cell line. Seven days 

after protein expression was induced by tetracycline removal, autophagic flux was assessed. In 

cells cultured with tetracycline where viral proteins were not expressed, LC3-II levels increased 

after bafilomycin treatment as expected. After expression of core, E1, E2, p7, and NS2 was 

induced, there was no increase in LC3-II levels after bafilomycin treatment similar to what was 

seen during JFH-1 infection (Figure 6A). This represented the subset of viral proteins that were 

sufficient to inhibit autophagic flux in Huh-7 cells. Expression of core alone could not cause the 

block in flux since LC3-II levels increased after treatment with bafilomycin in the presence of 

core (Figure 6B). Expression of NS3, NS4A/B, and NS5A/B did not seem responsible for the 

impaired flux because, when expressed via a replicon system, bafilomycin treatment could result 

in an increase in LC3-II levels (Figure 6C). The inability to increase LC3-II levels after 

bafilomycin treatment caused by JFH-1 infection was narrowed down to expression of E1, E2, 

p7, or NS2.  

 We were unable to further exclude any other viral proteins and to definitively conclude 

which protein or proteins were responsible for the impaired autophagic flux. We employed 

several methods to express viral proteins in Huh-7.5 cells including lipofectamine-based 

transfection, baculovirus transduction, lentivirus transduction, and creation of stable-cell lines. 

However, experiments were hampered by very low levels of protein expression. For example, we 

made lentiviral constructs expressing tagged-versions of p7, NS2, and p7-NS2 together. After 

transduction in Huh-7.5 cells, the presence of mRNA for the viral proteins was detected but 

protein expression could not be seen by western blot (data not shown).  
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                                                                    Cells were treated with bafilomycin A1 for four hours 

before cell lysates were collected for western blot. Western blot was done with anti-LC3 

antibody, anti-GAPDH antibody as a loading control, and anti-core or NS3 antibody to monitor 

viral protein expression. A) Tet-regulated Huh-7 cells expressing core, E1, E2, p7, and NS2 

(CNS2) viral proteins B) Tet-regulated Huh-7 cells expressing core protein and C) Replicon cells 

expressing NS3, NS4A/B, and NS5A/B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Viral proteins and autophagy. 
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JFH-1 infection does not alter cathepsin B and D activity  

 Previously Wozniak et al demonstrated that the HCV p7 protein inhibits the acidification 

of intracellular compartments in infected cells (12). Fusion of autophagosomes occurs with 

acidified organelles either endosomes to form amphisomes or lysosomes to form 

autophagolysosomes. It is possible that fusion is occurring but due to defects in acidification or 

impaired lysosomal hydrolase activity, degradation of autophagosomes does not occur.  

 We explored whether the block in degradation indicated by the autophagic flux assay was 

due to increased vesicular pH altering fusion with autophagosomes. To measure lysosomal 

activity, we monitored the proteolytic function of cathepsins during JFH-1 infection. Cathepsin 

B, a cysteine protease, localizes to lysosomes in its mature form. Procathepsin B is trafficked to 

the lysosome through binding to the mannose-6-phosphate receptor and undergoes autocatalytic 

proteolytic cleavage resulting in production of its mature form (129). Cathepsin B activity was 

measured using a substrate, Magic Red(z-Arginine-Arginine)2, that generates fluorescence upon 

enzymatic cleavage (130).  Huh-7.5 cells transduced with EGFP-IPS (IFN-β promoter 

stimulator-1) were used to monitor infection. Upon HCV infection, the GFP signal will appear 

diffuse in the cytosol when the viral NS3 protease cleaves the IPS tethered to the mitochondrial 

membrane. The GFP will remain localized to mitochondria in uninfected cells. Using live cell 

imaging, uninfected cells displayed red fluorescence indicating the cleavage of the Magic Red 

substrate by active cathepsin B (Figure 7A). Bafilomycin A1 treatment can inhibit the generation 

of red fluorescence by alkalinizing the lysosome. JFH-1 infected cells are also able to generate 

fluorescence by cathepsin B cleavage illustrating that HCV infection does not inhibit cathepsin B 

activity. (Figure 7A & B). 
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                                                                                                        Huh-7.5-GFP-IPS or Huh-7.5 

cells were treated with 25nM BafA overnight. Cells were then treated with Magic Red Cathepsin 

B reagent in HEPES buffer. A) Live cell imaging of GFP-IPS cells was done using a Nikon 

eclipse Ti PFS Quantitative Fluorescence Live-Cell and Multidimensional Imaging System 

equipped with a digital monochrome Coolsnap HQ2 camera. Fluorescence images were collected 

using Metamorph software at wavelengths of 560nm excitation/607nm emission for the 

Cathepsin B substrate. Nuclei were stained with Hoechst stain. Representative images are shown. 

B) Huh-7.5 cells were incubated as described, washed twice with HEPES buffer and lysed with 

RIPA buffer for 5min at 4°C. Fluorescence measurements were taken at room temperature in a 

Fluostar Optima plate reader at excitation/emission wavelengths of 584/620nm.  * p<0.001 by 

the Mann-Whitney Rank Sum test. C) Huh-7.5 cells were treated with 25nM BafA overnight. 

The 3000xg pellet from the post-nuclear homogenate was resuspended in homogenization buffer 

with protease inhibitors for analysis by SDS-PAGE. Western blotting was done for anti-

cathepsin D, anti-core, and anti-GAPDH. Western blot shown is representative of three 

experiments.  

 

 

 

 

 

 

 

 

Figure 7 HCV does not suppress cathepsin B and D activity.   
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 We also measured the activity of another enzyme, cathepsin D. The maturation of this 

aspartic enzyme from its preprocathepsin form to procathepsin D to its mature form is highly 

dependent on the acidic environment of the lysosome (131). The 28-kDa mature form of 

cathepsin D was present in equivalent amounts when comparing uninfected and JFH-1-infected 

cells indicating efficient enzyme maturation in both conditions (Figure 7C). Treatment of cells 

with bafilomycin A1 was able to reduce the appearance of the mature form of cathepsin D in 

both control and infected cells.  

 We were unable to find evidence that JFH-1 infection decreases the maturation of 

proteases or inhibits their proteolytic activity.  

Defects in autophagosome fusion during HCV infection are due to trafficking  

 Since HCV infection did not alter global lysosomal proteolytic activity, the HCV-induced 

defect in autophagosome degradation might be due to a lack of fusion between autophagosomes 

and lysosomes. A defect in fusion could be due to an altered composition of the autophagosome 

preventing fusion even if the organelles encounter each other or a defect in trafficking within 

HCV-infected cells preventing the autophagosomes from contacting lysosomes. To differentiate 

between these two possibilities, we performed an in vivo assay using an RFP-GFP-LC3 reporter 

plasmid as well as an in vitro fusion assay with isolated organelles. 

 To explore whether trafficking is altered in HCV infected cells, Huh-7.5 cells were 

transfected with the RFP-GFP-LC3 plasmid and left untreated, treated with EBSS, or treated 

with bafilomycin A1. EBSS treatment activates autophagy by simulating nutrient starvation by 

amino acid deprivation. Autophagosome formation is marked by yellow fluorescence due to the 

co-localization of the RFP and GFP signals of the LC3-II on the autophagosomal membrane. 

Autophagosome fusion with a lysosome to form an autophagolysosome causes quenching of the 
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GFP fluorescence and its eventual degradation and only the RFP fluorescence is visible as it is 

more resistant to the acidic environment of the lysosome. GFP has a pKa value of 6.0 whereas 

RFP has a pKa value of 4.5.  If fusion does not occur, autophagosomes will remain yellow. The 

characteristics and use of this plasmid are described in Kimura et al (132).  

 Uninfected Huh-7.5 cells had a mean green-to-red ratio of approximately 0.7 where a 

ratio of 1 means equal green-to-red signal. Treatment with bafilomycin increased this ratio 

whereas EBSS treatment decreased it (Figure 8A, B). This corresponds to the visual observation 

that bafilomycin made puncta appear more yellow in control cells while EBSS treatment caused 

puncta to be redder as the GFP signal was quenched in the lysosome. Similar to bafilomycin, 

HCV infection increased the ratio of green to red fluorescence of whole cells (Figure 8B) and 

prevented the formation of red puncta by EBSS (Figure 8A). These results indicate that HCV 

infection decreased autophagosome-lysosome fusion events even under conditions stimulating 

autophagy 

 Autophagosomes and lysosomes were isolated from Huh-7.5 cells using a discontinuous 

Nycodenz gradient and the identities of the fractions were confirmed by western blot for 

organelle markers (Figure 9A&B). LC3-II protein was found in the autophagosome and 

autophagolysosome fractions. LAMP-2 protein was a little more promiscuous which was also 

observed in the original paper detailing the method. Western blotting for cathepsin D showed 

more mature protein in the lysosomal fraction (data not shown). Autophagosomes and lysosomes 

were differentially labeled with fluorescent primary antibodies and used for an in vitro fusion 

assay where fusion events were measured by flow cytometry (Figure 9C&D). Autophagosomes 

and lysosomes from uninfected cells and JFH-1-infected cells were able to fuse with each other 

at similar rates (Figure 9E). As a control for no fusion, organelles were either fixed with  
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                                                                                                                                                Huh-

7.5 cells transfected with RFP-GFP-LC3 plasmid were treated with either BafA or EBSS. Cells 

were fixed with 3% paraformaldehyde and permeabilized with acetone. Cells were stained with 

anti-core antibody followed by an AlexaFluor 648-conjugated secondary antibody. DAPI was 

used to stain nuclei. Single wavelength fluorescence images were acquired using Metamorph 

software at 560nm excitation/607nm emission for TxRed (RFP), 485nm excitation/525 emission 

for FITC (GFP), 650 excitation/684nm emission for CY5 (HCV core), and 387 excitation/440 

emission for DAPI. A) Representative images of transfected control and JFH-1 infected cells are 

shown B) Analysis was carried out using CellProfiler software to determine the mean integrated 

intensity of the GFP/RFP ratio per cell. A total of 367 cells were analyzed. Box plots were 

created using R software and show the treatment groups analyzed. The differences between all 

groups are statistically significant by the Kruskal-Wallis test.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 HCV suppresses fusion of autophagosomes and lysosomes in Huh-7.5 cells. 
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                                                                                                                                                Huh7.5 

cells were fractionated on a discontinuous Nycodenz gradient. A) Representation of the 

Nycodenz gradient and where the organelle fractions are located. B) Organelle fractions from the 

Nycodenz gradient were collected and subjected to SDS-PAGE analysis. Western blotting was 

done using anti-LC3 antibody (autophagosome marker) and anti-LAMP-2 (lysosome marker). C) 

Flow cytometry of individual vesicle fractions. Autophagosomes were incubated with anti-LC3-

PE antibody (1:50) while lysosomes were incubated separately with anti-LAMP-2-APC (1:20). 

2% paraformaldehyde was added for fixation. PE- and APC-positive organelles were analyzed 

by flow cytometry using a BD LSR II instrument. D) Labelled autophagosomes and lysosomes 

were mixed together in reaction buffer for fusion to occur. Controls for “no fusion” were 

incubated at 4°C and had no ATP or GTP added to the reaction. 2% paraformaldehyde was 

added for fixation. Fusion is indicated by organelles that are both PE- and APC-positive. E) The 

bar graph illustrates the percentage fusion of autophagosomes and lysosomes from control and 

JFH-1-infected cells when compared to their “no fusion” controls. This graph is representative of 

three independent preparations and flow cytometry experiments. Differences between control 

and JFH-1 were not significant. 

 

 

 

 

 

 

 

Figure 9 Autophagosomes and lysosomes from HCV-infected cells can fuse in vitro. 
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paraformaldehyde immediately or were held at 4°C without ATP or GTP in the fusion buffer 

(Figure 9D). This suggests that HCV infection does not alter the ability of autophagosomes and 

lysosomes to fuse with each other and the fusion defects observed result from alterations in 

trafficking.  

Discussion  

 

 From these experiments, we concluded that JFH-1 infection blocks fusion of 

autophagosomes and lysosomes. We demonstrated a fusion defect in two ways. First, 

bafilomycin treatment is unable to increase LC3-II levels in infected cells and second, 

autophagosomes are not degraded in JFH-1 infected cells and therefore remain yellow using the 

tandem RFP-GRP-LC3 plasmid.  

 Besides a block in fusion with lysosomes, this data also suggests that after an initial 

induction of autophagy, JFH-1 infection may block autophagy initiation. If autophagy was 

constantly being induced during infection, then it would be expected that LC3-II levels would 

continue to increase after being treated with bafilomycin at different time points as new 

autophagosomes form within the cell. However, autophagy initiation is also blocked in JFH-1 

infected cells since LC3-II does not increase over the eight-hour time course. There is evidence 

that HCV infection may regulate autophagosome maturation in a temporal fashion by 

upregulating Rubicon or UVRAG at either early or late timepoints in infection (110). 

Additionally, there is a report that HCV infection upregulates Beclin1 as well as mTOR activity. 

While it has been suggested that upregulation of mTOR activity may not affect HCV-induced 

autophagy negatively, it is possible that upregulating mTOR activity could be a mechanism to 

blunt the initiation of HCV-induced autophagy at later stages in infection. This may lead to an 

accumulation of autophagosomes within the cell that the virus utilizes for viral replication. The 



56 

 

half-life of an autophagosome is approximately ten minutes so it would be interesting to 

determine whether JFH-1 infection increases the stability of autophagosomes. This could be 

done by using a photo-activatable PAGFP-LC3 which allows labeling of autophagosomes at a 

specific time point. These autophagosomes could then be followed by live-cell imaging to see 

how long they persist (133). Unfortunately, conventional methods of examining protein half-life 

by cycloheximide treatment must be used with caution in autophagy studies since cycloheximide 

inhibits autophagy.  

 Since the autophagosomes in HCV-infected cells remain yellow using the RFP-GFP-LC3 

tandem plasmid indicating a block in fusion, there is also the possibility that fusion occurs but 

the degradative capacity of the lysosome is impaired. However, we showed that cathepsin B and 

D activity and processing is not impaired by JFH-1 infection. This was surprising given previous 

findings regarding the role of p7 in altering lysosomal pH. It cannot be ruled out, however, that 

HCV infection does not affect a subset of lysosomes since the methods used to measure 

proteolytic activity are looking at global lysosomal activity within the cell. Previous studies have 

shown subpopulations of lysosomes exist in cells and can carry out different functions. For 

example, only a subset of lysosomes has been shown to participate in chaperone-mediated 

autophagy (134). Additionally, lysosome positioning within the cell may determine their 

function as well. If there are changes to the composition of organelles within HCV-infected cells, 

those alterations do not prevent autophagosome-lysosome fusion as was shown by using isolated 

organelles in an in vitro fusion assay. 

 We also observed a block in autophagic flux in replicon cells. This suggests that viral 

replication and viral protein expression are sufficient to block autophagosome-lysosome fusion. 

While we were unable to determine which viral proteins were responsible for inhibiting 
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autophagosome-lysosome fusion, we narrowed it down to E1, E2, p7, and/or NS2. E1 and E2 

have been implicated in the induction of the UPR response during HCV infection due to their 

maturation in the ER. p7 was shown to induce apoptosis in cells but did not activate autophagy 

despite being able to bind to Beclin1 (135). While NS2 has not been implicated in HCV-induced 

autophagy, it has roles in viral assembly and infectious particle production and can interact with 

many other viral proteins. Some preliminary data from our experiments suggests that expression 

of a HA-tagged NS2 may be able to decrease autophagic flux but not to the same levels seen in 

JFH-1 infection (data not shown). 

 From this data, we concluded that JFH-1 infection in Huh-7.5 cells blocks 

autophagosome-lysosome fusion due to a defect in trafficking. Isolated autophagosomes and 

lysosomes from HCV-infected cells remain fusion competent.  
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Chapter III: HCV infection overexpresses Arl8b expression to alter autophagy  

 

  

Background 

 

 Intracellular trafficking is important for the health of cells. Membrane and vesicular 

identity, trafficking, signaling, and regulation are determined by GTPases. GTPases can belong 

to multiple families with the most well-studied being the Ras superfamily, which includes the 

Rab, Arf, Ran, Ras, and Rho families. Additionally, phosphoinositides also contribute to 

membrane identity. Phosphoinositides can recruit GAPs and GEFs regulating GTPase activity 

and also act as effectors or co-receptors of small GTPases (136). For example, Rab5 can interact 

with phosphoinositide-3-kinases to generate phosphatidylinositol-3-phosphate on endosomes 

which in turn helps recruit effectors such as EEA1 (137). Membrane fusion and cargo movement 

is accomplished by binding of tethering factors to GTPases which contributes to specificity of 

fusion and may also coordinate the binding of the correct SNAREs for docking (138).  

 After concluding that impaired fusion between autophagosomes and lysosomes in HCV 

infection was likely due to a trafficking defect, the next step was to identify factors that could be 

responsible. One GTPase that we focused on was Arl8b due to its potential role in regulating 

autophagy by controlling lysosomal positioning. As previously mentioned, Arl8b localizes 

specifically to lysosomes. Lysosomes are emerging as critical organelles in signaling and 

regulation and not simply “suicide bags” as first described by Christian de Duve in the late 

1950s. The biosynthesis of lysosomes is regulated by TFEB (transcription factor EB). TFEB is 

held in an inactive phosphorylated state in the cytosol and upon activation, it is translocated to 

the nucleus where it induces the transcription of genes related to lysosomal hydrolases, 

lysosomal membrane proteins, and lysosome biogenesis regulators (139). A recent study also 
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showed that TFEB is also linked to autophagy and its upregulation can induce both autophagy-

related gene transcription and autophagosome formation (140). Lysosomal hydrolases are then 

acquired by trafficking via the mannose-6-phosphate receptor. Lysosomes can fuse with multiple 

types of organelles and in the case of autophagy are recycled by autophagic lysosome 

reformation.    

 Arl8b is recruited to lysosomes via the BORC complex and binds to kinesin-1 through 

the effector SKIP to control microtubule-dependent movement of lysosomes to the cell 

periphery. Positioning of lysosomes by Arl8b seems to be important for, not only autophagy, but 

also for cell spreading and motility (88), lytic granule transport (141), and invasion and protease 

secretion in prostate cancer (142). Changes to the lysosome, either their positioning or function, 

have not been implicated in HCV infection. Our previous data showed no HCV-induced defects 

in lysosomal hydrolases and no changes to lysosome composition that would inhibit fusion with 

autophagosomes. However, we decided to focus on exploring whether HCV infection altered 

Arl8b expression and localization and what effect Arl8b knockdown would have on autophagy.  

Materials and Methods 

Cells and Culture Conditions 

 Huh-7.5-RFP-NLS-IPS cells were obtained from Charles Rice. This cell line was 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5g/L glucose, L-

glutamine, and sodium pyruvate, 10% FBS, and 1% NEAA. Cells were maintained at 37°C/5% 

CO2.      

 293FT cells were purchased from Thermo Fisher Scientific. This cell line was cultured in 

DMEM containing 4.5g/L glucose, 6mM L-glutamine, 1mM sodium pyruvate, 10% FBS, 1% 

NEAA, and 500ug/mL G418. Cells were maintained at 37°C/5% CO2.      
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Western blotting 

 Western blotting was performed using anti-LC3B, 1:1000 (Cell Signaling), anti-GAPDH, 

1:1000 (Santa Cruz Biotechnology), anti-core, clone C7-50, 1:1000 (Thermo Fisher Scientific), 

and anti-Arl8b, 1:1000 (Proteintech, Rosemont, IL). Horseradish peroxidase-conjugated 

secondary antibodies were from Thermo Fisher Scientific and IR-Dye conjugated secondary 

antibodies were from LI-COR Biosciences.  

Immunofluorescence 

 Huh-7.5 cells were plated on 12mm circular glass coverslips in 4-well plates. Cells were 

transfected with Lipofectamine 3000 (Thermo Fisher Scientific). Plasmids used were Arl8b 

wildtype-GFP, Arl8bQ75L-GFP, and Arl8bT34N-GFP in a pcDNA3.1/CT-GFP-TOPO 

backbone (gifts from Don J. Mahuran, University of Toronto). Cells were fixed with 4% 

paraformaldehyde and blocked for one hour in 1XPBS containing 1% BSA and 1% EDTA at 

room temperature. For staining with anti-LAMP-2, clone H4B4, 1:500 (DSHB, University of 

Iowa), cells were permeabilized with acetone for five minutes. For staining with anti-LC3B, 

1:400 (Cell Signaling), cells were fixed and permeabilized with ice-cold methanol for ten 

minutes. JFH-1 infection was monitored by staining for anti-core, clone C7-50, 1:300 (Thermo 

Fisher). Secondary antibodies used were AlexaFluor-conjugated (Thermo Fisher Scientific) and 

Phalloidin-647 (Abcam, Cambridge, MA) was used to stain actin. Coverslips were mounted onto 

slides using Prolong Gold antifade mountant containing DAPI (Thermo Fisher Scientific). 

 Confocal images were taken on a Leica TCS SPE confocal configured with a Leica 

DM550 Q upright microscope.  

Real time quantitative PCR  
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 RNA was isolated from Huh-7.5 cells using TRI reagent (Thermo Fisher Scientific) 

followed by cDNA synthesis using the High Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher Scientific). qPCR reactions were set up using iQ SYBR Green (BioRad, Hercules, CA) on 

a CFX96 Real Time system on a C1000 Thermal Cycler (BioRad). The following primers were 

used for Arl8b, forward primer: 5’-GCGGTATTGCAGAGGAGTCA-3’ and reverse primer: 5’-

CCAAGCACTAGCACTGGAA-3’, and GAPDH, forward primer: 5’- 

GGAGCGAGATCCCTCCAAAAT-3’ and reverse primer: 5’- 

GGCTGTTGTCATACTTCTCATGG-3’. Primers were validated using a temperature gradient 

cycling protocol to identify the appropriate melting temperature and run on agarose gels to 

ensure only one PCR product was present.  

shRNA mediated knockdown of Arl8b 

 MISSION Arl8b shRNA (clone ID NM_018184.2-671s21c1) and TRC2 pLKO.5-puro 

non-Target shRNA control plasmid (SHC216) were obtained from Sigma-Aldrich. 293FT cells 

were transfected with MISSION plasmids, psPax2, and pMDG.2 vectors at a ratio of 

1ug:0.75ug:0.25ug using X-tremeGENE HP transfection reagent (Roche Indianapolis, Indiana) 

to produce lentivirus. Lentivirus was collected after 24-48 hours. Huh-7.5 cells were transduced 

with lentivirus and 8ug/mL polybrene for 48 hours. Cells were selected with 3ug/mL puromycin 

and maintained with 1ug/mL puromycin.  

Results  

HCV infection alters the lysosomal Arf-like GTPase, Arl8b 

 In trying to identify potential proteins involved in autophagosome-lysosome fusion, we 

focused on Arl8b. We found that during HCV infection, both Arl8b protein and mRNA levels 
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are elevated approximately three-fold indicating that HCV alters Arl8b at a transcriptional level 

(Figure 10A-C). Next, we examined the localization of Arl8b-positive organelles during 

infection. Uninfected and HCV-infected Huh-7.5-RFP-NLS-IPS cells were transfected with the 

wildtype Arl8b-GFP plasmid. After transfection with Arl8b, uninfected cells displayed large, 

circular structures that were usually in the perinuclear region with some vesicles in the periphery 

(Figure 10D). These vesicles co-localized with LAMP-2 indicating that the expressed protein 

was indeed decorating lysosomes (Figure 10E). Similar results were obtained when expressing 

the constitutively active version of Arl8b with a Q75L mutation which remains locked in a GTP-

bound state. When the dominant-negative Arl8b T34N mutant is expressed that remains bound to 

GDP, there are punctate structures that are most likely aggresomes but do not co-localize with 

LAMP-2 (86) (Figure 11B). Wildtype Arl8b-positive structures also co-localized with cathepsin 

D in fixed cells and Magic Red substrate, indicating cathepsin B activity, in live cells further 

identifying them as acidified lysosomes (Figure 11A).  

  HCV-infected cells displayed a dramatically altered localization of Arl8b-positive 

vesicles dispersed throughout the cell periphery (Figure 10D). There was no longer a perinuclear 

clustering as seen in control cells. HCV infection does not alter the identity of the Arl8b-positive 

vesicles as they still co-localize with LAMP-2 (Figure 10E). These findings suggest that HCV-

induced increase in Arl8b results in an increased peripheral lysosomal positioning.  
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Huh7.5 cells were infected with JFH-1, HCV genotype 2a A) Cells were lysed and western 

blotting was done using anti-Arl8b antibody, anti-GAPDH antibody as a loading control, and 

anti-core antibody to monitor HCV infection. B) Densitometry analysis of the changes in Arl8b 

levels, normalized to GAPDH levels, as determined from western blotting. Quantification of 

western blots (n=3) was done using Licor Odyssey software. C) Quantification of Arl8b mRNA 

levels normalized to GAPDH from n=3 experiments D) Arl8b-GFP was transfected into Huh7.5-

RFP-NLS-IPS cells and stained with Phalloidin-647 to define cell boundaries. Infection was 

monitored by the RFP signal. Nuclei were stained with DAPI. Fluorescence images were 

collected using LasX software. Representative images are shown. E) Arl8b-GFP was transfected 

into Huh7.5-RFP-NLS-IPS cells and stained with anti-LAMP-2. Nuclei were stained with DAPI. 

Fluorescence images were collected using LasX software. Representative images are shown. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Arl8b expression is increased and its localization altered by HCV infection. 
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                                                                            A) Huh7.5 cells were transfected with wildtype 

Arl8b-GFP and either incubated with Magic Red substrate (upper panel) or fixed and stained for 

cathepsin D (lower panel). Nuclei were stained with DAPI. Fluorescence images were collected 

using Metamorph software. Representative images are shown. B) Cells were transfected with 

Arl8bQL-GFP or Arl8bTN-GFP, fixed, and stained for LAMP-2. Nuclei were stained with 

DAPI. Fluorescence images were collected using LasX software. Representative images are 

shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Arl8b expression in Huh7.5 cells. 
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Impaired autophagic flux in HCV infection is due to an Arl8b-dependent mechanism  

 We wanted to see what effect lysosomal positioning had on fusion with autophagosomes. 

Control and JFH-1 infected Huh-7.5 cells were transfected with wildtype Arl8b-GFP and the 

cells were stained for the presence of endogenous LC3. In uninfected Huh-7.5 cells, Arl8b-

positive vesicles once again were found primarily in the perinuclear region in large puncta and 

co-localized with LC3-positive vesicles indicating autophagosome-lysosome fusion (Figure 

12A). Autophagosome-lysosome fusion occurs in the perinuclear space. In HCV-infected cells, 

Arl8b-positive vesicles were dispersed into the periphery as previously shown and the amount of 

co-localization with LC3-positive puncta drastically decreased (Figure 12A). This data agrees 

with previous observations that there is a decrease in the amount of fusion between lysosomes 

and autophagosomes in HCV infected cells. Cells were also treated with EBSS to simulate amino 

acid starvation and activate complete autophagy. In control cells, Arl8b-positive lysosomes and 

autophagosomes displayed a high degree of co-localization while EBSS treatment did not 

enhance autophagosome-lysosome fusion in JFH-1 infected cells (Figure 12B).  

  Next, we determined if knocking down Arl8b in HCV-infected cells could alter 

autophagic flux. It has been shown that knocking down Arl8b in cells results in increased fusion 

of autophagosomes and lysosomes thereby increasing autophagic flux (93). By transducing Huh-

7.5 cells with a lentivirus expressing an Arl8b shRNA and selecting cells with puromycin, we 

obtained cells that had a greater than 80% knockdown of Arl8b by western blot for protein 

levels. We also transduced and selected for cells expressing a nontarget shRNA which had 

comparable levels of Arl8b expression to non-transduced Huh7.5 cells (Figure 13A). Knocking 

down Arl8b did not seem to have an effect on the ability of cells to be infected by JFH-1 virus. 

Autophagic flux in HCV-infected Arl8b knockdown cells was then measured by  
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                                                                                                                            Huh7.5 cells were 

infected with JFH-1 virus. A) wildtype Arl8b-GFP was transfected into cells, fixed with 

methanol, and stained with anti-LC3 and anti-core antibodies. Fluorescence images were 

collected using LasX software. Nuclei were stained with DAPI stain. Representative images are 

shown. B) Cells were treated as in panel A except they were also treated with EBSS for thirty 

minutes prior to fixation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Arl8b co-localization with LC3 is decreased by HCV infection. 
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                                                                                                                                    Huh7.5 cells 

were transduced with lentivirus expressing an Arl8b or nontarget shRNA A) Cells were lysed and 

western blotting was done using anti-Arl8b antibody and anti-GAPDH antibody as a loading 

control. B) Cells were infected with JFH-1 and treated with 100nM bafilomycin A1 for four 

hours. Western blotting was done using anti-LC3 antibody, anti-GAPDH antibody as a loading 

control, and anti-core to detect HCV infection. C) Densitometry analysis of the changes in LC3-

II levels after bafilomycin treatment, normalized to GAPDH levels, as determined from western 

blotting. Quantification of western blots (n=3) was done using Licor Odyssey software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Arl8b knockdown restores autophagic flux in HCV-infected cells. 
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treating cells with bafilomycin A1 to block lysosomal fusion as in Figure 4A. In agreement with 

our hypothesis, knocking down Arl8b in HCV-infected cells could restore autophagic flux to 

similar levels seen in uninfected cells with almost a six-fold increase in LC3-II levels after 

bafilomycin A1 treatment (Figure 13C&D). Autophagic flux remained impaired in HCV-

infected nontarget shRNA-expressing cells when compared to uninfected cells as was previously 

demonstrated. The difference in autophagic flux between JFH-1 infected non-target cells and 

JFH-1 infected Arl8b knockdown cells was statistically significant.  

Discussion  

 

 From these experiments, we concluded that upon HCV infection, Arl8b protein levels are 

increased and this leads to a dispersal of lysosomes into the cell periphery. This altered 

lysosomal positioning reduces fusion with autophagosomes allowing them to persist within 

HCV-infected cells. Knocking down Arl8b was sufficient to restore autophagosome-lysosome 

fusion in HCV-infected cells indicating it is a key player in the mechanism of how HCV impairs 

autophagic trafficking.  

 Previous studies reported that Arl8b protein overexpression forced lysosomes into the 

cell periphery, however, in our cell-culture system using Huh-7.5 cells, we consistently observed 

the majority of Arl8b-positive lysosomes in the perinuclear region. While there were some 

Arl8b-positive puncta that could be found in the periphery, there was always a concentration of 

puncta in the perinuclear region. When the same transfection and fixation protocol was used in 

HeLa cells, Arl8b was more peripheral when compared to Huh-7.5 cells (data not shown) leading 

to the conclusion that there may be cell type-specific differences in localization when Arl8b is 

exogenously introduced rather than an artifact of the transfection technique used.  
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 While an increase in Arl8b expression does not necessarily mean an increase in activity, 

this data suggests that since lysosomes are more peripheral in HCV infected cells there may be 

an increase in linkage to kinesin through Arl8b. One way to more directly measure Arl8b activity 

would be to look at binding to its effector SKIP and whether there was more binding during 

HCV infection. We tried to do this by purifying the portion of SKIP corresponding to the first 

300 amino acids that binds to Arl8b as a GST fusion protein and then looking for binding of 

Arl8b in cell lysates. Unfortunately, endogenous Arl8b bound nonspecifically to the GST protein 

only negative control and could not confirm specific binding to the SKIP construct. 

 While the main function of Arl8b is associated with lysosomal movement, we also cannot 

rule out that Arl8b may have other functions during HCV infection. As previously mentioned, 

Arl8 plays a role in the tobamovirus replication complex in plants. We did explore the effect of 

Arl8b knockdown on infectious virus production by electroporating a JC1-luc virus into non-

target and Arl8b knockdown Huh-7.5 cells and then infecting naïve Huh7.5 cells with 

extracellular virus. JC1-luc is a virus that contains a luciferase reporter to allow for monitoring 

translation of the viral genome. Preliminary results showed that there was less extracellular virus 

from Arl8b knockdown cells compared to the non-target expressing cells though the decrease 

was not statistically significant (data not shown). A more extensive analysis of the effect of the 

loss of Arl8b on HCV infection would have to be undertaken looking at various steps in the life 

cycle including viral replication and particle production.   

  This data suggests that pathogens may alter lysosomal positioning as part of their 

pathogenesis. Viruses may prevent their destruction by evading fusion with lysosomes while 

others may need to fuse with the endo-lysosomal compartment for their life cycle or use 

lysosomal membranes for replication. While this is the first report of lysosomal positioning being 
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altered during HCV infection, this has been reported for other viruses. For example, dynein binds 

to the hexon capsid of adenovirus in order to move it towards the perinuclear region of the cell 

where viral replication takes place in the nucleus. The protein kinase A (PKA)–dependent 

mechanism that modulates dynein for virus binding also moves late endosomes and lysosomes to 

the cell periphery due to dynein displacement from RILP. This raises the possibility that 

adenovirus may utilize acidic compartments in the periphery to induce rapid acidification of 

virus-containing compartments for release into the cytosol (143). Our data shows that during 

HCV infection, lysosomal movement to the periphery serves to impede autophagosome-

lysosome fusion. If HCV uses autophagosomal compartments for viral replication and/or 

assembly, then preventing fusion with lysosomes may prevent degradation of intracellular virus 

in autophagolysosomes.  
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Chapter IV: Potential cooperativity between Rab7 and Arl8b 

 

Introduction  

 

 Arl8b resides on lysosomes and links this organelle to kinesin for anterograde movement 

to the cell periphery. The opposing dynein force is primarily controlled by the Rab7 GTPase and 

its effector RILP. The Rab7-RILP complex localizes to late endosomes and lysosomes and binds 

to the dynein complex (70, 144). RILP binds directly to p150glued (also called dynactin) which 

then binds to the ~1.2 megadalton dynein complex comprised of multiple subunits (69). RILP 

has been implicated in proper late endosomal structure and function. Knockdown of RILP 

decreased the number of intraluminal vesicles in late endosomes and delayed EGFR (epidermal 

growth factor receptor) degradation (145). Intraluminal vesicles are part of the multivesicular 

bodies which transport membrane proteins to lysosomes for degradation. RILP plays a role in 

endosomal maturation by binding to Vps22 and Vps36, two components of the ESCRT-II 

pathway (146). Additionally, RILP directly binds to members of the HOPS complex which 

implicates it in tethering vesicles for fusion though this interaction may be independent of Rab7 

(147, 148). RILP can also bind to Rab24 and Rab34, both involved in endosomal/lysosomal 

function.   

 While Rab7 is a well-known regulator in autophagosome maturation, the specific role of 

RILP in autophagy is less understood. Autophagy leading to the degradation of lipid droplets, 

termed lipophagy, in hepatocytes appears to be regulated by Rab7 and impaired RILP binding of 

microtubules caused decreased association of both multivesicular bodies and lysosomes with 

lipid droplets (149). It was also shown that Rab7-RILP and LC3 could co-localize indicating the 

presence of Rab7-RILP on autophagosomes and modulating RILP levels affected 

autophagosome localization. This study also found roles in autophagic flux for additional Rab7 
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binding proteins, ORP1L, a cholesterol sensor, and PLEKHM1, which interacts with HOPS and 

contains a LC3-interacting region (71). A different study, however, indicated that the retrograde 

transport of lysosomes for fusion with autophagosomes was Rab7-RILP independent and instead 

was dependent upon the TRMPL1-ALG-2 complex where ALG-2 binds directly to dynein-

dynactin (150). 

 Correct cellular function depends upon proper transport of organelles using molecular 

motors to move along the cytoskeleton. Dynein and kinesin move vesicles along microtubules in 

a bidirectional manner by saltatory movement where they are pulled in both directions but there 

is net movement in one direction depending on the stimuli. There are two main theories 

governing how bidirectional movement is accomplished: 1) a tug-of-war when both motors are 

active and compete to move cargo and 2) coordination when motors are not active at the same 

time so that one motor is dominant. The tug-of-war option is the most readily accepted with 

support from both in vivo and in vitro experiments. Kinesin produces about 6 piconewtons (pN) 

of force whereas dynein upon binding to dynactin and its adaptor bicaudal-D2 produces about 

4.3 pN of force making it possible that one dynein motor can resist and potentially overcome the 

force of kinesin (151). In reality, the model is likely more complex than the tug-of-war due to the 

“paradox of codependence” where it has been observed experimentally that inhibiting one motor 

can also inhibit movement in the opposite direction (152).      

 Our lab has studied the effect of HCV infection on the Rab7-RILP complex. Wozniak et 

al. found that HCV infection can induce the cleavage of RILP which abolishes its interaction 

with dynein (153). This cleavage is important to produce infectious virus and overexpressing the 

C-terminal portion of RILP, which binds to Rab7 but not dynein, during HCV infection can 

increase the amount of extracellular virus compared with infection alone.  
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 There are some conflicting data on whether or not Arl8b and Rab7-RILP are found on the 

same vesicles (147, 154). It is known that Arl8b and RILP can both recruit the HOPS complex 

and may compete with each other for HOPS binding (155). Therefore, we explored the 

relationship between Rab7 and Arl8b during HCV infection.   

Materials and Methods 

Immunoprecipitation  

Huh7.5 cells were transfected with GFP-Rab7Q67L or Arl8bQ75L-GFP using 

Lipofectamine 3000 (Thermo Fisher Scientific). Forty-eight hours post-transfection, cells were 

scraped in a hypotonic lysis buffer (10mM HEPES pH7.5, 10mM NaCl, 1mM KH2PO4, 5mM 

NaHCO3, 1mM CaCl2, 0.5mM MgCl2, 5mM EDTA, 10mM sodium pyrophosphate, 1mM 

Na3VO4, 1mM PMSF, protease inhibitor). Cells were incubated on ice for thirty minutes and 

then homogenized with a dounce homogenizer. A post-nuclear homogenate was prepared by 

centrifuging homogenate at 800xg for fifteen minutes at 4°C. 500ug of homogenate was used per 

immunoprecipitation (IP) reaction and 2ug rabbit anti-GFP (Thermo Fisher Scientific) or 2ug of 

anti-rabbit IgG (Thermo Fisher Scientific) as a negative control were used. IP reactions were 

rotated overnight at 4°C. The next day, 50uL of sheep anti-rabbit IgG Dynabeads M-280 

(Thermo Fisher Scientific) was added to each IP reaction and rotated for four hours at 4°C. 

Beads were washed with hypotonic buffer three times before being boiled and loaded on an 

SDS-PAGE gel.  

To evaluate the effect of detergent on IP reactions, an NP-40 based buffer (20mM Tris 

pH 8.0, 137mM NaCl, 10% glycerol, 1% NP-40, 2mM EDTA, 2mM Na3VO4, protease inhibitor) 

was also used. Cell lysates were incubated on ice for thirty minutes before being clarified at 
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14000xg for fifteen minutes at 4°C. IP reactions were done the same way as with the hypotonic 

buffer.  

Membrane fractionation  

At six days post-JFH-1 infection, control and infected Huh-7.5 cells were scraped into 

hypotonic lysis buffer. Cells were incubated for thirty minutes on ice before homogenizing them 

with a dounce homogenizer. Cells were centrifuged at 800xg for fifteen minutes at 4°C to collect 

a postnuclear homogenate. The homogenate was centrifuged at 20,000xg for twenty minutes at 

4°C to collect a membrane fraction and supernatant. The membrane pellet was washed twice 

with hypotonic buffer centrifuging at 20,000xg between each wash. The membrane pellet was 

resuspended in RIPA buffer prior to loading on a SDS-PAGE gel.  

Western blotting 

Western blotting was performed using anti-LC3B, 1:1000 (Cell Signaling), anti-GAPDH, 

1:1000 (Santa Cruz Biotechnology), anti-core, clone C7-50, 1:1000 (Thermo Fisher Scientific), 

anti-JL-8, 1:2000 (Clontech, Mountain View, CA) to recognize GFP, anti-RILP H-85, 1:500 

(Santa Cruz Biotechnology), anti-FLAG M2, 1:2000 (Sigma Aldrich), anti-dynamitin, 1:500 

(Abcam), anti-p150glued, 1:500 (BD Bioscience) and anti-Arl8b, 1:1000 (Proteintech, 

Rosemont, IL). Horseradish peroxidase-conjugated secondary antibodies were from Thermo 

Fisher Scientific.  

Immunofluorescence 

Huh-7.5 cells were plated on 12mm circular glass coverslips in 4-well plates. Cells were 

transfected with Lipofectamine 3000 (Thermo Fisher Scientific). Plasmids used were Arl8b 

wildtype-GFP, pDestmCherry-FYCO1, pEGFP-NI-FYCO1, and pTre2-Bla-RILPΔ1-216-FLAG. 
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The FYCO1 plasmids were a gift from Terje Johansen (University of Tromsø, Norway) and the 

RILP plasmid was made by Ann Wozniak (University of Kansas Medical Center). Cells 

transfected with RILPΔ1-216-FLAG were fixed with methanol/acetone for five minutes prior to 

staining. Staining for FLAG was done with a rabbit anti-FLAG antibody, 1:200 (Sigma Aldrich). 

Cells transfected with FYCO1 were fixed with 4% paraformaldehyde and permeabilized with 

acetone for five minutes. For staining with anti-LC3B, 1:400 (Cell Signaling), cells were fixed 

and permeabilized with ice-cold methanol for ten minutes. Cells were blocked for one hour in 

1XPBS containing 1% BSA and 1% EDTA at room temperature. JFH-1 infection was monitored 

by staining for anti-core clone C7-50, 1:300 (Thermo Fisher). Secondary antibodies used were 

AlexaFluor-conjugated (Thermo Fisher Scientific). Coverslips were mounted onto slides using 

Prolong Gold antifade mountant containing DAPI (Thermo Fisher Scientific). 

Confocal images were taken on a Leica TCS SPE confocal configured with a Leica 

DM550 Q upright microscope. Images were taken with a Nikon eclipse Ti PFS Quantitative 

Fluorescence Live-Cell and Multidimensional Imaging System equipped with a digital 

monochrome Coolsnap HQ2 camera (Roper Scientific, Tucson, AZ) using the MetaMorph 

software. 

RILP manipulation  

RILP shRNA plasmids were purchased from Origene (Rockville, MD). Huh7.5 cells 

were transfected with empty vector, scrambled shRNA, or RILP shRNA with Lipofectamine 

LTX. Transfected cells were selected using 3ug/mL puromycin. Clones were picked and 

expanded and RILP expression was analyzed by RT-PCR and western blot.  
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pTre2-Bla-HA-RILP and pTre2-Bla-RILPΔ1-216 were transfected into Huh-7.5 cells 

using Lipofectamine 3000. Cells were treated with 5ug/mL blasticidin for six days to kill any 

untransfected cells and then split into two wells of a 6-well plate for bafilomycin A1 treatment.  

Tet-regulated Huh-7.5 cells stably expressing pTre2-Bla(HA-ncRILP-FLAG) were infected with 

JFH-1 virus overnight. ncRILP is a non-cleavable RILP and was made by mutating amino acids 

81-85 within the RILP sequence to alanine. The next day, HA-ncRILP-FLAG expression was 

induced with tetracycline-free media. A set of JFH-1 infected cells was left uninduced by leaving 

tetracycline in the media as a control. At time of bafilomycin A1 treatment, cells had been 

infected for six days and HA-ncRILP-FLAG had been induced for five days.  

Results 

Membrane-bound components of dynein complex are reduced during HCV infection 

 After the observation that HCV decreases full-length RILP through cleavage, we sought 

to identify how motor protein binding to Rab7 complexes is affected. During infection, the 

cleaved portion of RILP is also eventually degraded. The RILP cleavage product remains bound 

to Rab7 so it is unclear whether other Rab7 effectors are able to bind bringing new molecular 

motors to Rab7-positive organelles. Multiple methods exploring the Rab7-RILP-dynein 

interaction during HCV infection were employed. Immunoprecipitation procedures were done 

using a GFP-tagged Rab7Q67L protein. Rab7Q67L was used to enhance the amount of GTP-

bound Rab7 within the cell. Using a hypotonic buffer to keep organelles intact, we identified an 

interaction between Rab7 and RILP (Figure 14A). Unfortunately, an interaction of Rab7 with 

motor proteins could not be identified through immunoprecipitation by western blot for 

components of dynein or kinesin complexes under any condition tested. Additionally, 

performing the reciprocal IP for dynein or kinesin could not demonstrate an interaction with 

Rab7 (data not shown).  We also unsuccessfully tried to find an  
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                                                                                                                                              A) 

Huh7.5 cells were transfected with GFP-Rab7QL and a GFP antibody was used for 

immunoprecipitation using magnetic dynabeads. Beads were boiled and loaded onto an SDS-

PAGE gel and probed for the presence of GFP and RILP. B) Huh7.5 cells were infected with 

JFH-1 and fractionated into a membrane fraction and supernatant fraction at 20,000xg. Fractions 

were run on an SDS-PAGE gel and probed for RILP, p150glued, dynamitin, GAPDH as a 

loading control, and core to monitor infection. C) Densitometry was done using Odyssey LICOR 

software and expressed as the ratio of protein in control cells (n=3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Dynein-associated proteins are decreased on HCV-infected membranes. 
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interaction between Rab7 and dynein or kinesin using a proximity-ligation assay (PLA) which 

produces a fluorescent signal if the interaction is within 40nm. A different group reported 

previously that they were also unable to identify interactions between RILP and motor proteins 

using multiple techniques such as yeast-two hybrid and co-IP  (70).  

 Next, we decided to look at the presence of dynein complex motor proteins on 

membranes from HCV-infected cells. If the portion of RILP that binds to dynein is cleaved, then 

it would be expected that the presence of proteins associated with the dynein complex would be 

decreased on membranes. JFH-1 infected cells were homogenized in a hypotonic buffer to keep 

organelles intact and total homogenate, supernatant, and membrane pellet were run on a SDS-

PAGE gel. A 20,000xg pellet should contain most organelles except for ER based on subcellular 

fractionation techniques used previously. RILP was decreased in the pellet fraction from HCV-

infected cells as would be expected from our lab’s previous data. Dynamitin (also called p50) 

and p150glued were also decreased in the membrane fraction from HCV-infected cells (Figure 

14B&C). Dynamitin and p150glued are both components of the eleven-protein dynactin complex 

which is a cofactor of the dynein complex (156). Dynactin bridges RILP to dynein. This result 

suggests that HCV-infection decreases dynein binding to organelles.   

Effect of RILP mutants on autophagic flux 

 Since Rab7-RILP has been reported to reside on autophagosomes/amphisomes, we 

explored whether the changes in RILP induced by HCV-infection could affect autophagy. To do 

this we measured autophagic flux in cells where full-length RILP was partially knocked down 

and in cells where RILPΔ1-216-FLAG or HA-ncRILP-FLAG were expressed. If RILP plays a 

major role in autophagic flux in HCV infection, then we would expect that either decreasing 

RILP protein or expressing the cleaved RILP that HCV produces would be sufficient  
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                                                                                                                                                      A) 

Huh7.5 cells were transfected with empty, nontarget, and RILP shRNA plasmids and selected 

with puromycin. Level of RILP knockdown was confirmed by western blot using anti-RILP 

antibody and anti-GAPDH as a loading control and RT-PCR using GAPDH as a control. B) 

Huh7.5 cells from panel A were treated with 100nM bafilomycin A1 for four hours. Western 

blotting was done using anti-LC3 antibody and anti-GAPDH antibody as a loading control. C) 

Huh7.5 cells were transfected with HA-RILP or RILPΔ1-216-FLAG, selected with blasticidin, 

and treated with 100nM bafilomycin A1 for four hours. Western blotting was done using anti-

LC3 antibody, anti-GAPDH antibody as a loading control, and anti-HA or anti-FLAG antibody 

for levels of transfected plasmid. D) Tet-regulated Huh7.5 cells were induced to express ncRILP 

and infected with JFH-1 virus. Cells were treated with 100nM bafilomycin A1 for four hours. 

Western blotting was done using anti-LC3 antibody, anti-GAPDH antibody as a loading control, 

anti-HA for levels of ncRILP expression, and anti-core to monitor HCV infection.  

 

 

 

 

 

 

 

 

 

Figure 15 RILP knockdown or RILP mutant expression does not alter autophagic flux. 
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to produce a block in autophagy. Conversely, expressing a non-cleavable form of RILP should 

restore autophagic flux in JFH-1 infected cells if cleaving RILP serves to alter autophagy.     

Using a RILP shRNA plasmid could decrease RILP levels by greater than 60%. Knockdown of 

RILP or expression of RILPΔ1-216-FLAG could not reproduce the defect in autophagic flux 

seen in HCV infection alone (Figure 15B&C). Expression of ncRILP during HCV infection 

could not correct the defect in autophagic flux raising LC3-II levels after bafilomycin A1 

treatment (Figure 15D). ncRILP expression did decrease LC3-II levels during HCV infection 

suggesting that it might suppress autophagy induction.  

Arl8b and Rab7 occupy the same vesicles 

 Since Arl8b and Rab7 are both reported to reside on lysosomes, we looked at whether 

they could be found on the same vesicles in Huh7.5 cells. Performing co-IP using cells 

transfected with Arl8bQL-GFP and homogenized in a hypotonic buffer, the presence of Arl8b, 

RILP, Rab7, and LAMP-2 could be identified (Figure 16A). This would indicate that Arl8b and 

Rab7-RILP complexes reside on the same organelles and since they are LAMP-2 positive, they 

likely represent lysosomes. When RILPΔ1-216-FLAG is co-transfected with wildtype Arl8b-

GFP in Huh-7.5 cells, there are vesicles that are positive for both Arl8b and the RILP mutant but 

the co-localization is not perfect (Figure 16B). There are vesicles that are positive for only Arl8b 

or RILP. This is not surprising considering that Rab7-RILP is also found on late endosomes and 

amphisomes where Arl8b is not known to be present. Additionally, expressing the N-terminally 

truncated RILP alone did not seem to be sufficient to rearrange Arl8b-positive organelles to the 

periphery as seen in JFH-1 infected cells. This would suggest that other changes during viral 

infection are necessary for the changes observed in Arl8b localization.  

 



89 

 

                                                                                                                     A) Huh7.5 cells were 

transfected with Arl8bQL-GFP, lysed in a hypotonic buffer, and an anti-GFP antibody was used 

to immunoprecipitate vesicles. The vesicles were loaded onto an SDS-PAGE gel and probed 

with anti-GFP, anti-RILP, anti-Rab7, and anti-LAMP-2. B) Huh7.5 cells were transfected with 

wildtype Arl8b-GFP and RILPΔ1-216-FLAG. Dashed lines represent cell boundaries as defined 

by Phalloidin-647 staining. Nuclei were stained with DAPI. Images were collected using LasX 

software and representative images are shown.  

 

 

 

 

 

 

 

 

 

 

Figure 16: Arl8b and Rab7-RILP co-localize on a subset of vesicles. 
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FYCO1 localization is not altered during HCV infection 

 The Rab7 effector, FYCO1, has been implicated in plus-end directed movement by 

linking Rab7 to kinesin-1. FYCO1 is found on autophagosomes, late endosomes, and lysosomes 

and contains domains that allow it to bind to PI3P and LC3-II. It is believed that FYCO1 

competes with RILP for binding Rab7 (72). Control and JFH-1 infected cells were transfected 

with a tagged FYCO1 and stained for either endogenous Rab7 or LC3. FYCO1 strongly co-

localized with both Rab7 and LC3-II regardless of the infection status of the cell (Figure 

17A&B). Exogenous FYCO1 appeared as large puncta that appeared to decorate the outside of 

vesicles. Rab7 and LC3 stained these large FYCO1 structures also appearing to decorate the 

outside of these membranes. There were also many peripherally localized vesicles in FYCO1 

transfected cells indicating a linkage to kinesin. However, there did not appear to be a difference 

in localization of FYCO1-positive vesicles in control cells compared to JFH-1 infected cells.  

Discussion  

 RILP cleavage does appear to reduce the amount of proteins associated with the dynein 

complex present on cellular membranes in HCV-infected cells. This data is in agreement with 

Jordens et al. who found that overexpression of an N-terminal truncation of RILP missing amino 

acids 1-199 could decrease the amount of p50/dynamitin present on membranes from a 

100,000xg fractionation (70). This truncation is very similar to the one identified in our lab as 

that produced when HCV cleaves RILP. By reducing the amount of dynein present on 

membranes, HCV infection may be priming the cells for organelle movement to the periphery.  
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                                                                                                                                          Huh-7.5 

cells were infected with JFH-1 virus. A) MCherry-FYCO1 was transfected into Huh-7.5 cells. 

Cells were fixed and stained for endogenous Rab7. Images were collected using MetaMorph 

software and representative images are shown. Control on pg. 93 and JFH-1 on pg. 94. B) GFP-

FYCO1 was transfected into Huh-7.5 cells. Cells were fixed and stained for endogenous LC3. 

Images were collected using MetaMorph software and representative images are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Co-localization of FYCO1 with Rab7 and LC3 in HCV-infected cells. 
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       From these experiments, cleavage and/or loss of RILP produced during HCV infection could 

not be implicated in autophagy or to the movement of Arl8b-positive organelles to the periphery. 

Potential reasons for no changes in autophagy when manipulating RILP could be the transfection 

efficiency and lack of sensitivity of western blot though we did select for pools of transfected 

cells or used selected clones. Additionally, since endogenous RILP is still present in transfected 

cells, it is unclear what proportion of the transfected RILP or RILP mutants are bound to Rab7 

and therefore membranes at any given time. While it may also be surprising that expression of 

the N-terminal RILP truncation did not move Arl8b-positive vesicles to the periphery, previous 

studies have produced conflicting data regarding RILP manipulation. For example, Progida et al. 

did not observe peripheral displacement of late endosomes in RILP knockdown cells and Van 

der Kant et al. still observed clustering of late endosomes despite abrogating the RILP-dynein 

interaction (145, 147). Also, there are other effectors that can bind to Rab7 and have known roles 

in autophagy such as FYCO1, ORP1L, and PLEKHM1 so manipulating RILP alone may not be 

sufficient to alter autophagy.  

 While there are no obvious differences in FYCO1 localization comparing control and 

HCV-infected cells, a more careful analysis of the effect of HCV infection on FYCO1 would 

have to be undertaken to rule out a role for this effector. For example, it would be important to 

examine if the interaction of Rab7 with other effectors is increased due to RILP cleavage though 

this may be unlikely if the C-terminal portion of RILP remains bound to Rab7. While we focused 

on Arl8b-dependent movement of lysosomes, there might also be peripheral movement of 

autophagosomes as well. Some of our confocal images suggest that HCV may induce peripheral 

movement of autophagosomes in addition to lysosomes. It is possible that cleaving RILP might 

allow autophagosomes to move more readily to the periphery through Rab7-FYCO1. A similar 



98 

 

more peripheral autophagosome distribution was also described in cells overexpressing Arl8b so 

it is possible that by increasing Arl8b expression during HCV infection, autophagosome 

transport may also be affected through an unknown mechanism (93). 

 There is evidence that Arl8b and Rab7-RILP reside together on a subpopulation of 

vesicles and it is tempting to speculate that HCV infection affects organelle positioning by 

altering both complexes by cleaving RILP and upregulating Arl8b expression to reduce dynein 

linkages and increase kinesin linkages respectively. Though RILP cleavage mutants were not 

sufficient to induce the Arl8b effects seen in lysosomal positioning or autophagy, this may 

indicate that multiple changes induced by HCV infection are necessary.  
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Chapter V: Conclusions 

 

 Autophagy is an important cellular pathway with many functions in cellular homeostasis, 

aging, cancer, and the pathogenesis of microbes. The importance of autophagy was recognized 

this year with the 2016 Nobel Prize in Physiology or Medicine awarded to Yoshinori Ohsumi for 

discovering essential genes for autophagy in yeast. Since autophagy is known to be important in 

either promoting or impairing the pathogenesis of viruses, we explored the effect of HCV 

infection on the autophagic pathway. As described in Chapter 2, we showed that infection with 

JFH-1, a genotype 2a virus, could decrease autophagic flux. LC3-II levels could not be increased 

after bafilomycin A1 treatment in infected cells indicating a block in the final step of autophagy 

when the autophagosome is degraded by the lysosome. We then demonstrated that lack of 

autophagosome degradation in HCV-infected cells was due to a trafficking defect. Global 

lysosomal cathepsin activity and maturation was not impaired during HCV infection and 

autophagosomes and lysosomes from infected cells fused at a normal rate in an in vitro fusion 

assay. However, in vivo, using the tandem RFP-GFP-LC3 plasmid, autophagosomes from HCV-

infected cells retain both RFP and GFP on the LC3-II decorating their membranes displaying 

yellow fluorescence indicating a lack of lysosomal degradation.  

This led to the exploration in Chapter 3 of the role of Arl8b in lysosomal trafficking 

during HCV infection. The Arl8b GTPase is upregulated nearly three-fold at both the mRNA and 

protein levels after HCV infection. The localization of transfected Arl8b changes dramatically 

going from a largely perinuclear cluster of vesicles in control cells to vesicles that are entirely in 

the periphery of the cell in infected cells. Arl8b decorates vesicles that are positive for LAMP-2 

and contain acidic hydrolases both in control and HCV-infected cells. In control cells, Arl8b-

positive lysosomes and autophagosomes co-localize in the perinuclear region and this co-
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localization is increased when autophagy is induced. In HCV-infected cells, the co-localization 

between lysosomes and autophagosomes is drastically decreased even when autophagy is 

stimulated. We established a role for Arl8b in HCV-induced autophagy defects by knocking 

down Arl8b protein levels which could restore autophagic flux in infected cells to levels seen in 

control cells.  

We also hypothesized that HCV may induce changes in multiple GTPase complexes to 

coordinate vesicle movement. HCV cleaves RILP uncoupling the Rab7 complex from dynein 

while at the same time upregulating Arl8b expression to increase linkages to kinesin. In Chapter 

4, we verified that Rab7 and Arl8b reside on a subpopulation of vesicles but not exclusively. 

However, the presence of an N-terminal truncation of RILP that cannot bind to dynein was not 

sufficient in the experiments performed to cause a block in autophagic flux or move Arl8b-

positive vesicles to the periphery.  

This is the first study to demonstrate that HCV infection blocks autophagic flux as a 

result of a trafficking defect caused by Arl8b overexpression in infected cells.  

Lysosomal positioning in disease and infection 

 

 There is a growing recognition of the importance of lysosomal positioning as a 

determinant of lysosomal function and a mechanism influencing disease states. Aberrant 

lysosomal positioning has been implicated in lysosomal storage diseases, Huntington’s disease, 

and cancer. TRPML1 has been shown to move lysosomes to the perinuclear region upon 

autophagy induction in a Rab7-RILP independent manner (150). Mutations in TRPML1 result in 

the lysosomal storage disease Mucolipidosis type IV. Many lysosomal storage diseases are 

characterized by defects in autophagy. In Huntington’s disease, expression of mutant huntingtin 

makes lysosomes accumulate in the perinuclear region of cells which increases autophagic flux. 
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This enhanced flux results in premature fusion between empty autophagosomes that do not 

contain cargo and lysosomes which is known to occur in Huntington’s (157). Lysosomal 

function and positioning is also important in cancer progression. Lysosomal hydrolases are often 

altered in cancer and lysosomes usually move to the periphery of cells where their contents can 

be secreted into the extracellular space (158). It is thought that lysosomal contents, such as 

cathepsins, can promote cellular invasion and motility. Arl8b has been shown to play a role in 

peripheral lysosome movement in prostate cancer. Arl8b was required for protease secretion and 

for the formation of invasive structures of cancer cells grown in a 3D matrix and knockdown of 

Arl8b limited tumor growth in a xenograft model in mice (142). Also, our data suggests that even 

though HCV does not inhibit cathepsin activity, cathepsin B activity was significantly increased 

in infected cells. While there is one report of increased immature cathepsin B secretion in a 

Con1, a genotype 1b virus, replicon but this did not hold true for a JFH-1 replicon so this is not 

likely an explanation for our result (159). Overexpression of cathepsin B has been found in many 

types of cancers and downregulating its expression can decrease some hallmarks of cancer cells 

such as increased motility and invasion (129). Increased cathepsin B protein levels have also 

been associated with hepatocellular carcinoma and is higher levels of the protein are correlated 

with worse prognosis (160). While we did not explore the mechanism of why cathepsin B 

activity was increased, it is interesting to speculate that this may be related to cellular changes 

that could promote cancer progression after HCV infection.   

 Salmonella typhimurium is the pathogen that has the most similarities to HCV regarding 

alterations to GTPases. As previously mentioned, S. typhimurium replicates within SCVs which 

must be prevented from fusing with lysosomes as well as moved to the cell periphery to enable 

efficient spread of the bacteria. SCV formation requires the microtubule network of the cell and 
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Rab7 localizes to SCVs (161). Mature SCVs form filamentous structures called Sifs (Salmonella 

induced filaments) which promote pathogenesis. Salmonella excludes RILP from binding to 

Rab7 on the Sifs (162). The bacterial effector SopD binds to Rab7 preventing RILP and other 

effectors from binding (163). Expressing exogenous RILP during S. typhimurium infection 

causes the SCVs to acquire the dynein motor as indicated by the presence of dynamitin and 

p150glued on the SCVs. This causes SCVs to fuse with lysosomes and intracellular survival of 

the bacteria is reduced (164). Arl8b localizes to maturing SCVs and is required for the formation 

of Sifs and cell-to-cell transfer of the bacteria. Arl8b knockdown abrogates peripheral movement 

of SCVs and Sif formation (94).  

 Similarly, HCV cleaves RILP removing the dynein motor and upregulates Arl8b 

providing linkages to kinesin. Knockdown of Arl8b in HCV-infected cells restores autophagic 

flux hinting that the main role of Arl8b in the context of HCV infection may be to inhibit 

autophagy by creating a more peripheral distribution of lysosomes so that autophagosomes and 

lysosomes do not physically contact each other. There are multiple reasons why it might be 

advantageous for HCV to inhibit the autophagic pathway. If HCV utilizes autophagosomal 

membranes as part of the replication complexes, then causing an accumulation of 

autophagosomes by inhibiting their degradation would provide a source of membranes. 

Additionally, inhibiting autophagy and repositioning lysosomes may also prevent the 

degradation of, not just autophagosomal membranes, but also components of the replication 

complex or viral particles if they physically associate with autophagosomes.     

HCV and cholesterol 

 

HCV infection is intimately linked to lipid metabolism within hepatocytes. A hallmark of 

HCV infection is the dysregulation of lipid homeostasis. Most aspects of the HCV lifecycle 
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depend upon lipids including entry, replication, and virus assembly. The membranous webs 

where replication takes place are made up of double membrane vesicles as well as cholesterol 

and sphingolipids (165, 166). Viral assembly takes place in close proximity to lipid droplets 

where core and other nonstructural proteins, like NS5A, localize. Breakdown of lipid droplets 

can occur via lipophagy whereby lipid droplets, either by engulfment by autophagosomes or by 

kiss-and-run interactions with lysosomes, are hydrolyzed to produce free fatty acids or free 

cholesterol. Inhibition of autophagy by HCV may aid in the viral lifecycle by allowing the 

accumulation of lipids. However, this increase in lipids does not seem to alter the membrane 

composition of lysosomes, which does cause autophagy dysfunction in lysosomal storage 

diseases, since we showed that isolated autophagosomes and lysosomes from HCV-infected cells 

fuse normally. Additionally, an NS5A-interacting protein, TIP47, is targeted to lipid droplets 

where viral assembly takes place and then in complex with Rab9 helps target viral particles for 

egress out of the cell. TIP47 mutants that abolish their Rab9 interaction redirect viral particles to 

the autophagic pathway and are destroyed (167). This data suggests that viral egress depends 

upon diversion from the autophagic pathway and that directing HCV particles through this 

pathway leads to their destruction.    

There is also a recent study looking at the effect of cholesterol on autophagosome 

positioning mediated by Rab7 binding of its effectors RILP, ORP1L (a cholesterol sensor), and 

PLEKHM1 (recruits the HOPS complex). Their data suggests that the level of endosomal 

cholesterol may effect autophagosome maturation and transport for lysosome fusion with high 

levels of cholesterol resulting in retrograde transport of autophagosomes (71). While HCV-

induced effects on Arl8b would reposition lysosomes away from perinuclear fusion sites 

inhibiting the degradative step in autophagy, it is possible that the cleavage of RILP could also 
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play a role in preventing maturation and movement of autophagosomes regardless of the 

cholesterol status of a cell.  

Future directions 

 

While we have shown that HCV infection inhibits autophagic flux through an Arl8b-

dependent mechanism, there are still many questions to ask and avenues to explore. Though 

autophagosome-lysosome fusion is inhibited, we did not determine whether the autophagosomes 

remain in an early state or whether they are able to mature into amphisomes in HCV-infected 

cells. In hepatocytes, it is believed that the majority of autophagosomes fuse with late endosomes 

to become amphisomes. To assess this, we could look for co-localization of LC3-II with late 

endosomal markers, like mannose-6-phosphate receptor, though there is much overlap between 

proteins residing on late endosomes and lysosomes. Also, to more closely examine the late stages 

of autophagy, the degree of ALR in HCV-infected cells could be assessed. I would predict that 

since HCV inhibits autophagosome degradation, ALR would be decreased in HCV-infected cells 

compared to uninfected cells.  

 It would also be important to assess organelle movement within HCV-infected cells using 

live cell imaging techniques. Labelled lysosomes could be tracked independently within cells to 

confirm their peripheral dispersal in HCV-infected cells and the kinetics of movement, including 

the speed of particles and the amount of retrograde vs. anterograde movement, could be 

determined. I would predict that HCV-infected cells, at a late stage in infection, would show 

increased peripheral movement of lysosomes with very little retrograde movement though there 

may be other dynein-binding proteins, besides RILP, present on lysosomes. Live cell imaging 

could also be used to assess autophagosome movement within cells and whether they also 

increase their peripheral localization within infected cells. Arl8b has not been implicated in 
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autophagosome movement but we cannot rule out that proteins like FYCO1 may play a more 

prominent role during HCV infection.  

 Tethering and fusion of vesicles in HCV-infected could also be explored in more detail 

by examining the HOPS complex. Since it has been reported that Arl8b-SKIP and Rab7-RILP 

may compete for the HOPS complex, I would expect that there would be increased binding of 

HOPS complex partners with Arl8b in infected cells. The cleavage of RILP would also abolish 

HOPS binding in infected cells since the portion that is most likely cleaved contains the domain 

for HOPS binding. HOPS binding of Arl8b could be examined by immunoprecipitation or co-

localization studies based on immunofluorescence of various Vps subunits and Arl8b. It is 

unclear what effect increased HOPS binding would have in the context of HCV infection though 

it might increase endosome-lysosome fusion. Another possibility is that viral infection may also 

affect the localization of the HOPS complex to promote viral particle secretion through the 

ESCRT pathway. It is currently unclear what the relationship is between HOPS and ESCRT but 

it is thought that there must be a way to balance sorting of intraluminal vesicles and membrane 

fusion events (168). It would be interesting to explore whether HCV pushes the balance towards 

the ESCRT pathway for viral secretion by redirecting HOPS binding.  

 There are studies exploring the link between autophagy and HCV infection that conclude 

that autophagy goes to completion in infected cells. It is possible that different stages in infection 

affect autophagy differently. Protein expression or trafficking may be temporally changed during 

infection as has been suggested for UVRAG and Rubicon expression during HCV infection. My 

experiments are usually done at a late time point in infection once almost all the cells in a culture 

are infected. JFH-1 is also a more cytopathic virus eventually causing cell death at late time 

points in infection but experiments are done prior to substantial cell death. Different virus strains 
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or genotypes may also alter autophagy differently in cell culture. A more thorough time course of 

autophagy changes could be done looking at when post-infection autophagy becomes inhibited 

and how this correlates with protein expression levels, for example when Arl8b expression is 

maximal, or virus replication/production. 

 In conclusion, we have confirmed a role for Arl8b in defective autophagic flux caused by 

HCV infection. This study sheds light on how viral infection can modulate GTPases to support 

their pathogenesis and provides some insight into the importance of organelle positioning in 

cellular function. While HCV is now curable and it may not be worthwhile to seek new drug 

targets or treatments, the virus can be useful as a tool for illuminating how cells function by 

studying viral alterations of cellular pathways.  
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