
A Simplex Architecture for Intelligent and Safe Unmanned
Aerial Vehicles

By

Prasanth Vivekanandan

Submitted to the Department of Electrical Engineering and Computer Science and the
Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Master of Science

Committee members

Prof.Yun,Heechul, Chairperson

Prof.Kulkarni,Prasad

Prof.Luo,Bo

Date defended:



The Thesis Committee for Prasanth Vivekanandan certifies
that this is the approved version of the following thesis :

A Simplex Architecture for Intelligent and Safe Unmanned Aerial Vehicles

Prof.Yun,Heechul, Chairperson

Date approved:

ii



Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly demanded in civil, military and

research purposes. However, they also possess serious threats to the society because

faults in UAVs can lead to physical damage or even loss of life. While increasing their

intelligence, for example, adding vision-based sense-and-avoid capability, has a poten-

tial to reduce the safety threats, increased software complexity and the need for higher

computing performance create additional challenges software bugs and transient hard-

ware faults that must be addressed to realize intelligent and safe UAV systems.

In this thesis, we present a fault tolerant system design for UAVs. Our proposal is

to use two heterogeneous hardware and software platforms with distinct reliability

and performance characteristics: High-Assurance (HA) and High-Performance (HP)

platforms. The HA platform focuses on simplicity and verifiability in software and

uses a simple and transient fault tolerant processor, while the HP platform focuses on

intelligence and functionality in software and uses a complex and high performance

processor. During the normal operation, the HP platform is responsible for controlling

the UAV. However, if it fails due to transient hardware faults or software bugs, the HA

platform will take over until the HP platform recovers.

We have implemented the proposed design on an actual UAV using a low-cost Arduino

and a high-performance Tegra TK1 multi core platform. Our case-studies show that

our design can improve safety without compromising performance and intelligence of

the UAV.
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Chapter 1

Introduction

The use of Unmanned Aerial Vehicles (UAVs) is rapidly increasing in recent years due to diverse

recreational, commercial, and military applications. Modern UAVs have begun incorporating a

range of new technology, including electronic sensors that stabilise them. Some models can even

be programmed to fly set paths or patterns. Another good example is a UAV with a small camera

attached to it that gives the birds-eye view of the surroundings.

These advancements have not only seen UAVs becoming popular amongst even the most casual

of hobbyists, but also in commercial endeavours. Large companies such as Facebook, Google and

Amazon have already invested heavily in research related to drones, and even smaller companies

such as florists, pizza restaurants (and even real-estate agencies) have started to investigate how

drones can be used in their industry. More recently news agencies have begun to look at using

drones when covering certain news stories, and Hollywood has already started using drones during

the production of movies and TV shows.

Most of the UAVs work in close proximity with the humans and the physical environment.

Hence, there is an increasing demand for intelligent UAV systems that are cognizant of the sur-

rounding environment and perform sophisticated tasks including collision avoidance.

An intelligent UAV system requires integration of advanced sensor packages (e.g. vision) and

high computational performance to process the enormous amount of real-time sensor data and to
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execute complex algorithms in a timely manner. The rapidly increasing computing capacity of

modern embedded computing platforms multiple CPU cores, GPU, and other accelerators makes

it feasible to develop such a UAV system while satisfying size, weight, and power (SWaP) require-

ments of UAVs. In order to get the full benefits of this powerful hardware, a powerful software

frame work like CUDA for GPU applications, opencv for vision based application and so on is

required. The combination of powerful hardware together with the powerful software makes the

computing platform in the UAV to look almost like a desktop computer.

1.1 Motivation

The push for higher intelligence in UAV systems also creates serious side effects in terms of safety

and reliability. First, the complexity of software systems is rapidly increasing, which makes it

difficult to weed out software bugs. For example, an intelligent flight control system with vision

based collision avoidance capability, which in itself can be complex and difficult to verify, may

also depend on complex middleware packages (e.g., Robot Operating System, ROS [32]) and the

OS (e.g., Linux), each of which may be comprised of multi-million lines of code.

Second, to achieve high intelligence, the use of high performance computing platforms is nec-

essary. However, high performance computing platforms are increasingly prone to transient hard-

ware faults (soft errors) due to environmental effects such as single-event upsets (SEUs) [15].

SEUs are caused by high energy particle strikes from cosmic rays [39] which result in bit flips.

The technology treads to develop efficient and high-performance processors shrinking dimensions

and operating voltage, and increased frequency and density have dramatically increased the possi-

bilities of SEUs [15], which could result in unexpected failures in the system [23, 36]

There has been a large body of research in the control systems community regarding the design

of fault tolerant control of UAV systems [34]. While these fault tolerant controllers are designed

to handle structural damage, actuator and sensor failures, they typically do not handle system-level

failure such as on-board computing platform malfunction, which prevents execution of the control

algorithms in the first place. System-level reliability can be generally improved by redundancy. A

2



well-known technique is triple modular redundancy (TMR) [26] in which three identical systems

produce control outputs in order to survive from failures of any one of the system. However, the

size, weight, and power considerations as well as the cost make the TMR solution undesirable,

especially in small UAVs.

1.2 Contribution

To address the safety and reliability challenges of UAV systems, we present a UAV system design

and implementation based on Simplex architecture [35]. The main idea of the Simplex architec-

ture is that a simple verifiable controller provides safety of the system, while a complex, high-

performance controller strives to achieve high system performance. The choice between the two

controllers is determined by a decision module, which constantly assesses the safety status of the

system and makes the decision.

Our contribution is a novel application of the Simplex architecture to develop both intelligent

and reliable UAV systems in a cost effective manner. Specifically, we realize the Simplex ar-

chitecture using two heterogeneous hardware platforms with distinct reliability and performance

characteristics. The idea is that we use a reliable but less performance hardware platform, which

we call a High-Assurance (HA) platform, to be responsible for safety while we use a more per-

formance, but potentially less reliable platform, which we call a High-Performance (HP) platform,

for performance and intelligence of the UAV. Only the HA platform both software and hardware

forms the trusted computing base (TCB) of the UAV. The HP platform, on the other hand, can be

affected by software bugs and SEUs, which could result in failures (e.g., crashes), but the whole

system safety will still be insured by the safety platform.

1.3 Implementation

We applied the proposed design in implementing a custom fixed-wing UAV system, shown in

Figure 1.1, using a low-cost Arduino as our HA platform and a Tegra TK1 as HP platform. We
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Figure 1.1: DG 808S with our custom built avionics

demonstrate the ability to recover from crashes through a set of fault-injection experiments in a

hardware-in-the-loop simulation setup. The results suggest that the proposed design can substan-

tially increase safety of intelligent UAVs.

1.4 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 discusses various fault types in a UAV

and related background. Chapter 3 presents the proposed UAV simplex architecture. Chapter 4

describes our implementation of a fixed-wing UAV based on the proposed architecture. Chapter 5

presents our evaluation results and we conclude in Chapter 6.
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Chapter 2

Background and Related Work

In this section, we discuss various types of faults that can occur in a UAV and safety conditions

that should be followed by the aircraft in order to be safe and reliable. We then discuss related

work.

2.1 Faults

An UAV is a cyber-physical system, which includes cyber part (computing hardware and software)

and physical part (sensors, actuators, UAV frame, and etc).

Faults in physical components of an UAV and their handling has been well studied in the

control and aerospace communities. For example, structural damage or bias in sensor readings

can be tolerated by advanced adaptive control algorithms that take such effects into account. A

comprehensive review on the topic can be found in [34]. However, advanced control algorithms

must be realized in software binaries running on computing platforms i.e., the cyber system.

Faults in the cyber system can arise from a number of different reasons. The most common type

of faults are logical faults in software i.e., software bugs. As the demand for higher intelligence

and functionality increase, the size and complexity of flight control software keeps increasing [20].

While model-based design and verification methodologies have made great progress [21, 20, 16],

it is still difficult to completely weed out all bugs.
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Another type of faults are temporal faults, which occur when the real-time requirements (i.e.,

deadlines) of various tasks in the system are not met. Temporal correctness is difficult to guarantee

especially in multi core architecture because of uncontrolled sharing of many performance critical

hardware resources such as cache and DRAM among concurrently executing tasks can cause highly

variable timing [25, 30].

Third, often overlooked but increasingly important type of faults are transient hardware faults

due to single event upsets (SEUs). SEUs are caused by cosmic radiation and alpha particles [39, 27]

resulting bit flips. Because SEUs can occur anywhere in SRAM, registers, and combinational

logic, it can cause, for example, an invalid instruction exception, a parity error, a memory access

violation, a wrong conditional branch, and ultimately a system crash [36]. As technology scaling

continues (i.e., more transistors in a chip), sensitivity to radiation has dramatically increased [15].

Traditional circuit-level solutions—special circuit design and manufacturing process—are not only

expensive but also often lag several generations behind the state-of-the-art processors [18]. This

is a serious impediment to develop intelligent UAVs that require cutting edge high performance

computing capabilities.

2.2 Safety Conditions

In a UAV, the controller program acts in conjunction with the physical dynamics of the system.

Based on the dynamics, the system has safety conditions that needs to be respected to maintain

the safety of the UAV. Aircraft stall is one example for the safety condition [2]. When an aircraft

flies at a certain altitude, it makes an angle called angle of attack with the wind. If the autonomous

controller gives output such that the aircraft starts to climb then this angle of attack increases.

Once the angle of attack crosses the threshold value (varies from one aircraft to another and it

is determined using the aircraft’s dynamics), the wings of the aircraft will not be able to lift the

aircraft.

Another safety condition that needs to be respected by the UAV system is the regulations. The

UAVs operate at close proximity with humans and physical environment. The government makes
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the regulations that must be followed by commercial UAVs. One such regulation is the limit on

the altitude that commercial UAVs should fly. In United States the commercial UAVs are allowed

to fly less than 400 feet from ground level [3].

In summary, as the demand for higher intelligence in UAVs increases, the importance of re-

liable computing software and hardware platform the cyber system increases. However, the in-

creased software complexity and the use of high performance multi core processors, while neces-

sary, would increase all three types of faults logical, temporal, and transient hardware faults of the

cyber system of an UAV. The UAV systems face safety threats not only from these faults but also

from the autonomous controller that is not obeying the physical constraints.

2.3 Related Work

Software reliability have long been a major concern in safety-critical cyber-physical systems. For

example, software in commercial airplanes must follow certain standards (e.g., DO-178C [33] and

ARINC-653 [13]) and be certified by certification authorities. At the application-level, model-

based designs and formal-methods [20, 16, 21] have made significant advance, it is still difficult

to verify the correctness of the software at the code-level [28]. Furthermore, the applications also

rely on many other system software components, including the OS and middleware, each of which

may contain bugs.

System-level reliability and fault-tolerance techniques, especially in the context of intelligent

cyber-physical systems, have been studied to mitigate possible software bugs. SAFER is a middle-

ware framework that uses software-level redundancy to enhance system-level reliability. However,

such a middleware solution may not survive from an OS failure (e.g., BSOD). The seL4 is a micro-

kernel where its functional correctness was formally verified [24]. However, functional correctness

does not means its temporal correctness is guaranteed. Nor it guarantees correct operations in the

presence of transient hardware faults (SEUs), which are becoming more prevalent as technology

scaling continues [18]. C’Mon focuses on detecting OS-level timing faults (e.g., deadline misses

due to scheduling) that are caused by SEUs [36]. To guard the OS code and data against SEUs,
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dOSEK proposed to use a special encoding in storing OS code and data, which enables detection

and recovery from the SEUs [23]. However, its software-based approach comes at a significant

performance penalty.

SEUs can be reduced at each hardware component-level by, for example, adopting ECC and

other so called “hardening” techniques [15]. Also, hardware redundancy solutions, such as Triple-

modular redundancy (TMR) [26] or dual-redundancy, can protect the system from transient hard-

ware faults [15]. In today’s commercial airplanes and satellites, the physical redundancy based

techniques are used due to their high safety-critical requirements [19]. However, these hardware

techniques comes at substantial space and performance penalties and high cost and development

time—unsuitable for UAVs. Also, the processors used in these applications often several genera-

tions behind the stat-of-the-art COTS processors [25, 17]. This is a serious problem for intelligent

UAVs where high computing performance is a key to achieve high intelligence.

The simplex architecture [35] is a special form of redundancy in which safety and performance

are decoupled to safety and performance controllers, respectively. It was originally implemented

at the application software-level in a single computing platform and used to upgrade/verify con-

trollers without stopping the system [35]. More recently, Bak et al. implemented the safety-critical

parts of the system—safety controller and decision logic—in FPGA so that it can tolerate system-

level faults in the computer system running the performance controller for an inverted pendulum

and a cardiac pacemaker [14]. [10] is an extension of simplex architecture and Abdi et al showed

that a software fault in cyber-physical system can be recovered by restarting the system at run-

time. In [12], Abdi et al proposed a novel approach to design a controller that enables the system

to restart and remain safe during and after the restart. Their approach is also based on simplex

architecture and it requires only one processing unit. Hence, [12] is almost similar to the original

simplex architecture, but it also provides recovery from system level faults. Another version of

simplex is shown in [38] and it is used to detect intrusion in cyber-physical systems. Abdi et al

in [11] proposed a version of simplex architecture that adds security to the cyber-pyhsical systems

by adding a monitoring module(checks for any intrusion) inside complex system. If monitoring
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module fails to detect any security failures, the periodic restart protects the system.
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Chapter 3

UAV Simplex Architecture

In this chapter, we review the Simplex architecture [35] and describe our two heterogeneous plat-

forms based approach.

The Simplex architecture is composed of three components: a safety controller, a performance

controller, and a decision logic [35]. Normally, the performance controller drives the plant (in our

case, the UAV) as it offers higher control performance. However, if the safety conditions of the

plant are to be violated, as determined by the decision logic, the safety controller will assume the

control of the plant until the performance controller is recovered (for example, by restarting it). In

this way, faults in the performance controller does not cause safety failure of the system.

In the original Simplex applications, however, all three components share the same computing

hardware (processor) and software platform (OS, middleware) [35]. This means that system-level

faults in the shared hardware and software platform—SEUs in the processor, bugs in the OS and

middleware—could still compromise the safety of the system. as shown in Table 3.1. To overcome

the limitations, we propose to realize the Simplex architecture by using two platforms with distinct

reliability and performance characteristics, as shown in Table 3.1. The High-Assurance (HA)

platform focuses on safety and verifiability over performance and functionality. For hardware, we

assume that it uses chips that are more tolerant to SEUs. While a number of techniques can be

used to reduce the SEU rate of a chip—ECC, manufacturing process, and etc.—using simple, low-
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Table 3.1: Platform characteristics

Platform High-Assurance (HA) High-Performance (HP)

Hardware SEU resistant SEU susceptible
Software Verifiable Unverifiable

density chips running at low operating frequency could also help reduce the overall SEU rate [15].

For software, we assume that the platform uses a small RTOS with proven (verified) reliability. For

example, the seL4 micro-kernel’s functional correctness was formally verified [24]. Also, there are

many other commercial/open-source RTOSs that have been used in critical applications.

On the other hand, the High-Performance (HP) platform focuses on performance and function-

ality over safety. For hardware, it may use a complex, high-performance (multicore) processor,

which runs at multi-gigahertz frequencies and is composed of multi-billion transistors. Generally,

such a processor suffers more SEUs than a simpler, low-performance one because higher density

and operating frequency negatively affect SEUs [15]. For software, it may use a rich OS (e.g.,

Linux) and middleware solutions (e.g., Robot Operating System: ROS) to offer sophisticated ca-

pabilities needed to implement high intelligence. However, each of the software package may be

comprised of many million lines of code, which makes it very difficult, if not impossible, to verify

its correctness.

Among the three components in the Simplex architecture, we assign the safety controller and

the decision logic on the HA platform, while assign the performance controller on the HP platform.

The performance controller may implement an advanced control algorithm and intelligent sens-

ing capabilities, such as vision-based collision avoidance, that require high computing performance

and rich OS and middleware support. The HP platform offers such computing power and func-

tionality but it does not guarantee safety and reliability. On the other hand, the safety controller

implements a simple and proven control algorithm that is always ready to take over the perfor-

mance controller, if necessary, as determined by the decision logic. In our design, as in the original

Simplex architecture, correct functioning of the safety controller and the decision logic is required.

In addition, the HA platform provid es a safe and reliable execution environment although it may
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Table 3.2: Fault detection

Observed behaviors Faults in the HP platform

No output OS/controller crash
Delayed output Deadline miss

Unsafe output Bugs, SEUs, bad controller design, etc.

not provide high computing performance or rich middleware support.

3.1 Fault Model

We assume that faults can occur only in the HP platform. In other words, we trust the correct func-

tioning of the HA platform the safety controller and decision logic. To ensure this, hardware of the

HA platform must be resistant to transient hardware faults, and the complexity of its software must

be limited to a level that can be rigorously tested and possibly verified. On the other hand, we do

not trust both hardware and software of the HP platform—i.e., the OS can crash, the performance

controller may crash or produce invalid outputs (e.g., NaN output) or simply miss the deadline due

to resource contention. Also, the HP platform can suffer transient hardware faults (SEUs) which

lead to system crash or application failure.

Lastly, in this work, we do not consider physical faults, such as structural damage, bias in

sensor readings, sensor and actuator malfunction, and so on. We assume that these physical issues

are tolerated by adaptive control algorithms, which have been extensively studied in the aerospace

engineering community [34].

3.2 Safety Region

Physical systems, especially UAVs, have limits and constraints that need to be respected. For

example, a UAV should have angle of attack less than critical angle of attack [2] to avoid stall

condition. Safety region S is a subset of State Space Model SSM where all this constraints are

respected.
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SSM = Ax+Bu (3.1)

S⊆ SSM (3.2)

Where x denotes the states of the system and u represents the inputs to the system. A and

B matrices are the dynamics of the system. The safety region can be defined by the following

equation.

S = {x|Sx · x≤ 1} (3.3)

Equation 3.3 conveys that for every state x in the system state space model SSM there exists a

safety matrix Sx such that dot product of safety matrix and their corresponding state should be less

than or equal to one. If the system state is outside this safety region then the system is said to be

unsafe.

Safety region also considers the limits on the actuators. The actuators have their range for

operation. Hence this range should also be considered while defining the safety region. The safety

region that defines this operating range for the actuators are formulated as follows.

Su = {u|Su ·u≤ 1} (3.4)

Equation 3.4 conveys that, for every actuator value generated by the controller algorithm or the

input to the system u in the system state space model, there exists a safety matrix Su such that dot

product of safety matrix and their corresponding system input should be less than or equal to one.

If the controller generates the value to the actuators outside this region, then actuators will not be

able to handle them.

13



Chapter 4

Prototype Avionics

We have designed an avionics based on the UAV simplex architecture. In this chapter, we discuss

about the hardware and software that are used in our custom built avionics.

4.1 Hardware

4.1.1 Sensors

We categorize sensors into two groups: basic and advanced sensors. Basic sensors include GP-

S/IMU, airspeed, and pressure sensors and they are essential to flight. For GPS/IMU, we use a

VectorNav VN-200 [8] module. For airspeed and pressure, we use an AMS 5812 pressure sensor

and a pitot tube. The basic sensors are shared by both safety and performance controllers. On

the other hand, advanced sensors are only used by the performance controller and considered not

essential to flight although they may increase performance of the system. The advanced sensors in-

clude, for example, radars and cameras, which can be used to implement advanced sense-and-avoid

capabilities. We are currently implementing a vision and radar based sense and avoid system.
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Figure 4.1: UAV simplex architecture

4.1.2 High Performance Platform

The HP platform is responsible for real-time processing of advanced sensors (e.g., vision and

radar) and sophisticated control algorithms to achieve high control performance and sense-and-

avoid capabilities. To satisfy the performance demand, we use Nvidia’s Tegra K1 processor, which

equips four ARM Cortex-A15 cores, running at 2.3 GHz, and 192 Kepler based GPU cores [31].

4.1.3 High Assurance Platform

The HA platform is ultimately responsible for safety of the system and therefore must be simple

and highly resistant to transient hardware faults. For this, we use an Arduino Due platform. The

platform equips a single-core Cortex-M3 processor with 80 MHz maximum operating frequency.

It is based on simple in-order architecture and the number of transistors of the chip is much smaller

than that of the Tegra K1. These characteristics make the HA platform less susceptible to SEUs.

Also, the platform supports numerous I/O options GPIO, PWM, I2C, and etc that are needed to

connect various basic sensors.
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4.2 Software

4.2.1 High Performance Controller

The performance controller is implemented on the Tegra K1. We use Ubuntu 12.04 Linux as the

OS and the Robot Operating System (ROS) as the middle ware framework. In ROS, the system,

a robot, is composed of a set of nodes, each of which is a separate Linux process participating

in the communication network for the robot. A node can publish messages to a communication

channel, called a topic, which can be subscribed by other nodes to receive the published messages.

Figure 4.2 shows the nodes and topics of the performance controller. In the figure, the controller

DG808 node is the main control node. The node subscribes the /vectornav/ins topic, to receive

GPS and IMU sensor values, and the /arduino/pwm, to receive commands from the remote con-

troller (RC) and pressure sensor values. (The RC is used for manual control of the UAV). The

controller node publishes control outputs to the servo_op topic, which is then subscribed by the

arduino node and is forwarded to the HA platform via serial. The MICORHARD ground station

node is responsible for communicating with the remote ground station on the laptop PC. We use the

open-source Qgroundcontrol [6] as the ground station software. We use a microhard modem for

long range communication [4] between the UAV and the ground station to send/receive statistics

(UAV to groundstation) and waypoints (groundstation to UAV) Currently, the performance con-

troller only uses the basic sensors, and it does not utilize radar and vision sensors; we are actively

developing radar and vision-based sense-and-avoid capability in the performance controller

4.2.2 High Assurance Controller

The safety controller runs on the Arduino Due platform. The control algorithm is a simple PID

based one [22] and it is modeled and validated using Matlab Simulink [7]. Figure 4.3 shows the

simulink model. We then generate C code of the controller using Matlab Simulink Coder. In this

way, we minimize the possibility of bugs in the safety controller, although it does not guarantee

the absence of bugs in the model. In fact, our initial model contained a divide zero bug, which was
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Figure 4.2: ROS based software architecture on the highperformance platform (Tegra K1)

manifested only in a certain sensor input value ranges. Nevertheless, model-based design is highly

desired for a safety controller as it can significantly reduce the possibility of coding mistakes and

other common software bugs [20, 16].

4.2.3 Decision Logic

The decision logic also runs on the Arduino Due, along with the safety controller. In fact, the

generated C code of the safety controller is merged with the decision logic. The safety controller

is directly called by the decision logic while the output of the performance controller is received

asynchronously from the Tegra K1 via serial. Which output is used to actuate the UAV is then

determined by the decision logic. Figure 4.4 shows the overall process of the decision logic. Note

that each loop is executed periodically at a regular interval (20Hz in our current implementation).

The implementation assumes that the safety controller always completes within the interval without

errors—i.e., out_hap is always valid and computed within the interval (deadline). On the other

hand, the output of the performance controller can be deemed unsafe or invalid due to a number of

reasons.

4.3 Fault Detection and Recovery

The decision logic detects faults in the HP platform by observing its outputs (See Line 14 in

Figure 4.4). Once a fault is identified, the decision logic switches its control to the safety controller

and tries to recover the HP platform by restarting the system.

Table II shows the observations by the decision logic and the corresponding faults at the HP
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Figure 4.3: Autonomous controller block diagram
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1 void l oop ( )
2 {
3 / / b a s i c s e n s o r i n p u t
4 s e n s o r _ d a t a = r e a d _ s e n s o r s ( ) ;
5 send_to_HPP ( s e n s o r _ d a t a ) ;
6
7 / / e x e c u t e s a f e t y c o n t r o l l e r
8 ou t_hap = s a f e t y _ c o n t r o l l e r ( s e n s o r _ d a t a ) ;
9

10 / / w a i t f o r t h e per fo rmance c o n t r o l l e r
11 out_hpp = rece ive_f rom_HPP ( t i m e o u t ) ;
12
13 / / d e c i s i o n l o g i c
14 i f ( d e c i s i o n _ c h e c k ( s e n s o r _ d a t a , ou t_hpp ) ) ;
15 r u n _ s e r v o ( ou t_hpp ) ;
16 e l s e {
17 r u n _ s e r v o ( ou t_hap ) ;
18 / / r e c o v e r HPP
19 t r y _ r e c o v e r _ h p p ( ) ;
20 }
21
22 s l e e p _ u n t i l _ n e x t _ p e r i o d ( ) ;
23 }
24
25 i n t d e c i s i o n _ c h e c k ( s t a t e s , h p p _ o u t p u t )
26 {
27 / / c o n d i t i o n f o r f a u l t s check
28 i f ( d e t e c t _ f a u l t s ( ) )
29 re turn 0 ;
30
31 / / c o n d i t i o n s f o r s a f e t y check
32 / / check i f s y s t e m s t a t e s are i n s i d e s a f e t y r e g i o n
33 i f ( Sstates· s t a t e s ≥ 1)
34 re turn 0 ;
35 / / check i f HPP o u t p u t s are i n s i d e a c t u a t o r s a f e t y r e g i o n
36 i f ( Sactuators·h p p _ o u t p u t ≥ 1)
37 re turn 0 ;
38 }

Figure 4.4: Decision logic on Arduino.
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platform. First, ‘No output’ means that the decision logic does not receive performance controller’s

control outputs. This can be caused by software faults such as OS or controller crashes. In our cur-

rent implementation, the decision logic waits one more control period before it makes a switch to

the safety controller. If the outputs are received in the next period, the decision logic’s observation

is ‘Delayed output’ and the system continues to use the performance controller. The aircraft states

for every cycle, must be inside a safety region in order to maintain the stability of the system.

4.3.1 Safety Region

The safety region depends on the aircraft dynamics and hence this region varies from one aircraft

to another. The safety region for the UAV is defined based on Section 3.2. We added our custom

built avionics whose design is based on our UAV simplex architecture to a glider named DG808

that is shown in Figure 1.1. The safety region for this UAV is defined based on its states and the

inputs to the system.

The critical angle of attack for the DG808 glider is 30 deg 1. Therefore the safety region

containing the set of states where UAV will not have stall condition is given by,

S =

 0 1/30 0 0 0 0 0

0 0 1/30 0 0 0 0





airspeed

angleo f attack

sideslipangle

roll

pitch

P

Q

R



≤

 1

1

 (4.1)

The actuators used in this UAV have their operation angles. The servo motors used for aileron

and rudder are capable of handling deflection angles from -15 to +15 deg where as the servo motor

1The critical angle of attack for DG808 was calculated using Advanced Aircraft Analysis software. [1].
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assigned to the elevator operates with in -20 to +20 deg. Therefore the actuator safety region is

given by,

Su =



1/15 0 0

−1/15 0 0

0 1/15 0

0 −1/15 0

0 0 1/20

0 0 −1/20




aileron

rudder

elevator

≤



1

1

1

1

1

1


(4.2)

4.3.2 Decision Logic Conditions

In this section we define the decision logic conditions for DG808 glider. In every cycle, the outputs

of high performance platform are sent to the decision logic and evaluated against all the conditions

mentioned in this section. If the controller output is valid against all these conditions then the

decision logic says that high performance platform is not safe and allows it to handle the system.

The conditions are described using Linear Temporal Logic (LTL) which is a mathematical language

for describing linear time properties [29].

4.3.2.1 Condition 1: Valid Controller Output

• Aim : To check whether the controller generates the outputs within the servo motor range.

The controller may diverge and produce outputs that cannot be handled by the servo motors

or the controller program might have crashed.

• LTL condition :

−15 deg ≤ � aileron ≤ 15 deg (4.3)

−20 deg ≤ � elevator ≤ 20 deg (4.4)
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−15 deg ≤ � rudder ≤ 15 deg (4.5)

• Explanation : The controller generally produces aileron, elevator and rudder surface outputs.

These outputs are given to the servo motors. The servo motors have operation range. This

condition is used to verify whether the controller produces outputs within the operation range

or not.

4.3.2.2 Condition 2: Kalman Filter Divergence

• Aim : Most of the autonomous system will use kalman filters in their logic to estimate some

of the missing sensor values or to reduce the noise level in the sensor data. These kalman

filter, if designed with improper gains and coefficients, are highly unstable and will diverge

the controller.

• LTL condition : The controller program in our test bed estimates the side slip and angle of

attack.

−30 deg ≤ � α ≤ 30 deg 2 (4.6)

Where α is the angle of attack

−30 deg ≤ � β ≤ 30 deg 2 (4.7)

where β is the side slip angle

• Explanation : The side slip and angle of attack estimation should always be converged. If

this condition fails then the kalman filter has diverged. The failure of this condition is due to

improper value for the filter gains and co efficient. This failure will eventually lead to failure

of condition in the section 4.3.2.1.
2This value is calculated using AAA software [1] based on the vehicle dynamics.
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4.3.2.3 Condition 3: Sensor Communication with the Performance Controller

• Aim : In UAV simplex architecture, the performance controller is not directly connected to

the sensors. All the sensors are connected to the assurance platform and then passed to the

performance controller through a communication medium. In our glider UAV, we used the

USB communication between the platforms. Unfortunately, the USB communication is not

always reliable. The connection can be lost due to some vibrations to the system and it can

restored by re-spawning the program. In order to restore the communication, we currently

treat this as an safety issue and restart the performance platform.

• LTL condition : The high performance platform always monitors the USB health condition

and sends this health status to the decision logic in high assurance platform.

� USB |= T RUE (4.8)

where USB denotes the USB health status

• Explanation : The communication between high performance platform and the sensors is

always monitored by the high performance platform and this health condition should always

be good for the high performance controller. This failure will eventually lead to failure of

condition in the sections 4.3.2.1 and 4.3.2.2.

4.3.2.4 Condition 4: Stall Speed Condition

• Aim : An aircraft will experience a stall condition when its angle of attack is greater than

threshold value.

• LTL condition :

� ((alt > alt0) → (vair > vstall )) (4.9)

where alt is the altitude measured and alt0 is the ground altitude, vair is the air speed mea-

sured by the sensor and vstall is the stall speed of the aircraft and its value depends on the
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flight dynamics.

• Explanation : In most of the small commercial UAVs, there is no dedicated sensor for mea-

suring this angle. But the stall condition can be checked using the altitude and air speed

measured from GPS sensor and the pitot tube respectively. The condition given in Equa-

tion 4.9 shows that when the aircraft is air bound identified by monitoring the altitude value

from GPS sensor, then the air speed of the vehicle should be always greater than the stall

speed. If this condition fails, then it indicates that the aircraft is climbing up at a high angle

such that the pitot tube is not able read the air speed.

4.3.2.5 Condition 5: FAA Regulation on Altitude

• Aim : The Federal Aviation Administration (FAA) has regulations like the commercial UAV

should always fly within 400 feet [3] from ground. This condition checks whether the high

performance controller is obeying this regulation.

• LTL condition :

�(alt ≤ 400) (4.10)

• Explanation : When the high performance controller produces output that makes the aircraft

to climb altitude above 400 feet from ground level, then this condition fails and the decision

logic switches to high assurance controller and restarts the high performance controller.
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Chapter 5

Evaluation

In this chapter, we evaluate our UAV simplex architecture through a case study using Hardware-

in-the-Loop (HiL) simulation. We also talk about the flight test using our custom built avionics.

More detailed explanation regarding the flight test is described in Section 5.2.

5.1 HiL Test

Hardware-in-the-Loop (HiL) simulation is a technique that is used for testing control systems.

In UAVs the physical parts (sensor and actuators) are connected with the cyber part(controller).

In HiL testing the physical parts are replaced by simulation(flight simulator) that can mimic the

sensors and actuators of the UAV.

5.1.1 Setup

Figure 5.1 shows the Hardware-in-the-Loop (HIL) experiment setup that we used to evaluate our

Simplex based UAV system. The experiment setup consists of an Arduino Due, a Tegra TK1,

and a laptop. The Arduino Due executes the safety controller and decision logic, while the Tegra

TK1 platform executes the performance controller. Together, they form the cyber system of the

UAV. On the other hand, the laptop runs the ground station and a custom built flight simulator.

The flight simulator, which is implemented in Matlab, provides simulated sensor values to both
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Figure 5.1: Experiment setup for UAV simplex

the controllers and in turn receives the control command surface outputs from the controllers and

calculate the next inputs.

5.1.2 Case Study: Performance Controller Crash

In this case-study, we intentionally crash the performance controller in the HP platform to evaluate

the system’s ability to detect and recover from the fault.

Figure 5.3 shows the outputs of the performance controller (top), the safety controller (middle),

and the decision logic (bottom), collected over 200 seconds duration (Note that the figure shows

only one of the four control outputs.) For the first 100 seconds, both safety and performance

controllers are working in parallel on HA and HP platforms, respectively. In this normal operation

mode, the decision logic chooses to use the outputs of the performance controller. At 100 seconds,

however, we inject a fault by manually terminating the performance controller in the HP platform.

Because the decision logic observes no outputs from the performance controller, it switches to use

the outputs from the safety controller. At about 130 seconds, the performance controller is restarted

and produces control outputs. However, the decision logic does not immediately switch back to the

performance controller because the outputs of the performance controller is not stabilized yet. The

26



Figure 5.2: The flight path
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Figure 5.3: Outputs of safety controller, performance controller, and decision logic. A fault is
injected at time 100 second.

stability factor depends on the convergence of the filters and the guidance logic of the controller.

Once the outputs are stabilized, the decision logic switches back to use performance controller’s

outputs. Figure 5.2 shows the ground station tracking of the UAV system during the test. The solid

orange lines denote the waypoint trajectory uploaded to the UAV system from the ground station

and the red lines show the trajectory followed by the flight and the white dots represent the position

update from the UAV system on the ground station. Our UAV system is designed to update the

ground station at 10Hz.
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5.2 Flight Test

In this section, we discuss about the test that we conducted using our avionics (mentioned in

Chapter 4) in a real aircraft shown in Figure 1.1. In this test, we disabled the safety controller and

decision logic in high assurance platform. Instead, we used two performance controllers in high

performance platform and we manually switched the control from one performance controller to

another. The aim of this test was to ensure that the aircraft is stable, while switching the control

from one controller to another.

The test procedure was to takeoff the aircraft using pilot commanded RC values. Once the

aircraft reached a steady state, the autopilot was engaged. The way points required by the autopilot

was uploaded from the ground through ground station application. We integrated two autonomous

controller programs (“autopilot1 and autopilot2") in the high performance platform of our avionics.

Both the controllers mission was to follow the waypoints uploaded from ground station. Instead

of using decision logic to switch control from one controller program to another controller, the

ground station application was used for switching. We modified our avionics program to accept

the switching command from ground station to switch between the controllers. It can be seen from

the third sub plot in Figures 5.4, 5.5, 5.6 and 5.7, the control was switched from one controller

to another. The sub plot shows us that at 270th second of the test, value in this plot has changed

from ‘0’ to ‘1’ indicating that the avionics has switched the control from “autopilot1" controller

to “autopilot2" controller. The control was again switched back to “autopilot1" controller at 350th

second of the flight test. The switching between controllers was repeated in the shorter and longer

leg of the mission trajectory to see any sort of instability or rough transition.

We have recorded the video of ground station during the test. The details about this video is

mentioned in Apendix A.

Figures 5.4, 5.5, 5.6 and 5.7 shows the states of the system while it was in autopilot. The x-axis

of the figures shows the time in seconds and the y-axis shows the angles in deg and rates in deg/s

respectively. It can be seen from the figures that there was no sudden spike in any states during

the switch between controllers (at 270th, 350th and 380th second of the flight test) and there was no
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Figure 5.4: Accelerator values measured from flight test, X-axis: Time in seconds, Y-axis: Accel-
eration in G

Figure 5.5: Aircraft orientation in Euler angles measured from flight test, X-axis: Time in seconds,
Y-axis: Euler angles in degrees
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Figure 5.6: Body rates measured from flight test, X-axis: Time in seconds, Y-axis: Body rates in
deg/s

Figure 5.7: Aircraft velocity measured from flight test, X-axis: Time in seconds, Y-axis: velocity
in ft/s
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Figure 5.8: Rosgraph plot showing the nodes and topics and for the switch between controllers
case
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instability in the system behavior, thus the switching between the controllers in the middle of the

mission was smooth while following the mission.

However, the above test did not include the decision module for fault detection because the

aim of the test was to see the stability of the aircraft, after switching the controller. In this test, the

switch between the controllers was initiated by the ground station operator. Figure 5.8 shows the

ROS software architecture of the test. As a future work, we plan to integrate the decision logic and

do a flight test with fault injection.
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Chapter 6

COTS Autopilot with UAV Simplex

Architecture

In UAV simplex architecture, two different hardware platforms were used. They were classified as

High Performance platform and High Assurance platform. So far, we have used an ARM Cortex-

M3 based custom built computing board as the HA platform, which runs the decision logic and the

safety controller.

The realization of UAV simplex architecture was hindered by this custom built board since it

takes more time and cost to develop and verify. Hence in this chapter, we replaced the custom built

board with an available COTS autopilot that also provides sensor acquisition and a simple mission

controller. We used Pixhawk [5] as our COTS autopilot along with our onboard computer.

Pixhawk, as shown in Figure 6.1, is a famous COTS autpilot that also provides easy interface

to connect with an on board computer and runs a simple PID controller that follows the uploaded

mission from ground station. Pixhawk uses a cortex-M4F processor that operates at 168 MHz. It

also provides 14 PWM pins, that are required for the servo motors and supports peripherals like I2C

and CAN, that are essential for communicating with the sensor. However, the main advantage of

using Pixhawk over our custom built avionics is the that, the Pixhawk software framework provides

integration support to the sensors required for an UAV. Whereas, in our custom built avionics, we
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Figure 6.1: Pixhawk outer view

need to take care of sensor integration.

6.1 Implementation

The following steps are involved in replacing the custom built avionics board with the Pixhawk

COTS board.

The pixhawk board comes with two telemetry ports. These ports output all the sensor data

encrypted using mavlink protocol. The telemetry port 1 will be always used for communication

with ground station. Hence the communication between pixhawk and the onboard computer is

established using a usb2ttl converter between telemetry port 2 and the onboard computer.

The mavlink encrypted data is available to the onboard computer. These data should be de-

crypted before sending them to the complex controller algorithm. The ROS provides a mavlink

encryption and decryption package called MAVROS. MAVROS decrypts these data and publishes

sensor data. To support our complex controller, an extra ROS node is implemented that converts

the sensor data from MAVROS topic to the topics supported by the complex controller node.

The Figure 6.2 shows the rosgraph containing all the nodes and topics in this setup. Once the

inputs are given to the on board controller algorithm, the output will be generated. The pixhawk

also generates its output value. The values generated by the pixhawk should be replaced with the
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Figure 6.2: ROS nodes outline for PX4 and the controller program

values from the on board computer. For this, Pixhawk supports the offboard mode that rewrites its

output with the on board computer’s output.

6.2 HiL Test

The UAV simplex architecture using the Pixhawk is in Hardware In the Loop simulation. The

setup consists of the following applications.

1. Xplane Flight gear simulator: Xplane [9] simulator runs the model of the aircraft and it

takes the controller output as its input and generates the states. These states are sent to the

controller program.

2. QGround station: The states generated by the Xplane are delivered to the controller program

running in the pixhawk through Qground station. The Qground station is connected with the

Pixhawk and communicates with the Xplane using UDP communication.

The Qground station receives all the state information from Xplane. Then, Qground station

encrypts the values using mavlink protocol. The mavlink encrypted values are given to the on board

computer. The on board computer generates the control output based on the state information and

sent them to Xplane through Qground station.
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Figure 6.3: Hardware in the Loop for PX4 as the safety platform

In this work, we have not added the decision logic into the Pixhawk. The Pixhawk will auto-

matically switch its mode from "offboard" to "return to land" when it stops receiving the values

from on board computer. This feature provides safety against the fail stop case. But it cannot detect

and recover from the unsafe output conditions. Adding the decision logic into the Pixhawk is our

future work.

6.3 Aircraft Setup using Pixhawk and On Board Computer

We have installed the avionics containing Pixhawk (as a HA platform) and an Odroid-XU4 board

(as a HP platform). As shown in the Figure 6.4, this is the avionics setup installed in the aircraft

named Skyhunter.
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Figure 6.4: Skyhunter using Pixhawk and odroid avionics
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Chapter 7

Conclusion

We have presented a fault-tolerant UAV design based on the Simplex [35] architecture. The pro-

posed design uses two heterogeneous platforms with distinct reliability and performance charac-

teristics.

Our main idea is that we use a reliable but less performance hardware platform, we call a

High-Assurance (HA) platform, to be responsible for safety while we use a more performance, but

potentially less reliable platform, which we call a High- Performance (HP) platform, for perfor-

mance and intelligence of the UAV. During the normal operation, the HP platform is responsible

for controlling the UAV. However, if it fails due to transient hardware faults or software bugs,

the HA platform will immediately take over until the HP platform recovers. As such, our design

provides a much needed fail-operational property in the UAV.

We have implemented the proposed design on an actual UAV using a low-cost Arduino and a

high-performance Tegra TK1 platform. We have demonstrated the system’s ability to detect and

recover from failures through a set of experiments in a hardware-in-the-loop simulation setting.

We did a flight test to show that the system is stable after switching between the controllers. We

have also showed using hardware in the loop simulation that UAV simplex architecture can be

implemented using COTS autopilot. In the future, we plan to implement more sophisticated vision

sense-and-avoid capability.
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Appendix A

Videos

We have made few videos showing our HiL test

1) The Hardware in the Loop simulation using our custom built avionics, showing fault toler-

ance against the crash fault video can be found in this link https://youtu.be/p6BT3UN8qJE

2) The video playback of the ground station during the real flight test with switch between

controllers can be found in this link https://www.dropbox.com/s/qrctgrqe5k1dz2i/CTRL_

Switch_LQR2H2-2017-03-26_18-09-41.avi?dl=0
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Appendix B

Issues Faced and Solved

This appendix includes information about some of the issues that we faced and solved while inte-

grating and using our avionics, matlab code generation and in bench test.

B.1 Divide by Zero

We are using kalman filters in our controller program for prediction and estimation of the system

states. Divide by zero occured at the estimation of ‘VT’, the true velocity which is calculated using

the pressure value from the ‘pitot tube’. Pitot tube is connected to a differential pressure sensor.

When the UAV system is static in ground, it reads zero pressure that results in zero velocity value.

This zero velocity is given to the kalman filter block as seen in Figure B.1. This block outputs

‘NaN’ and will cause the controller to diverge. We fixed this issue by giving a small constant value

to the velocity, when it reads zero in ground.

Figure B.1: Estimation of True velocity
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Figure B.2: Matlab code to convert GPS position from global to local

B.2 Structure Ordering

The autonomous controller in initial stages, is designed using Matlab. For the guidance block(guides

in following the mission) in autonomous controller, the GPS position in local frame is required.

Usually, all GPS sensors output GPS values in global frame. Hence we need to convert them from

global to local frame. The Figure B.2 shows the Matlab code to convert the GPS position from

global to local frame. The conversion consist of current GPS position in global frame, reference

position in global frame and conversion factor based on the reference position. We use Matlab

Embedded code generator to generate C code from the autonomous controller Matlab files. The

Figure B.3 shows the generated C code. In generated code, the values of the conversion factor

based on the reference position and the reference position in global frame are interchanged. This

interchanged values lead to wrong guidance values. Hence the aircraft in hardware in the loop

testing did not follow the mission. The reason for this value interchange in the generated code

was, these variables are created as structures. The order in which the elements inside this structure

was different from the order in which the elements inside the structure was defined. This declara-

tion and definition mismatch showed no impact on Matlab simulation, but in code generation, this

mismatch was reflected. This issue was resolved by following uniform structure order during its

declaration and definition.

B.3 USB Hub Power Issue

In our avionics, we used usb connection to connect with our custom built data acquisition board,

with GPS and IMU sensor and with the telemetry module to communicate with the ground station.
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Figure B.3: Matlab generated C code to convert GPS position from global to local

Figure B.4: Picture of our avionics containing a usb hub

In order to support all the usb connections, we use an non powered usb hub as shown in Figure B.4.

The Vector Nav VN-200 sensor [8](GPS and IMU) draws current from the usb hub to operate.

Since we were using a non powered hub, the current drawn by the hub from the processing board

was not sufficient, the VN-200 sensor values had a huge variation for successive reading. This huge

variation caused our autonomous controller to diverge (NaN values). this issue was resolved by

using a powered usb hub. Though the powered usb hub resolved the VN-200 sensor data issue, it

produced another issue during flight tests. The aircraft that we used had small area to accommodate

the avionics. Hence the avionics and the usb hub were placed very close to each other. The avionics

and the usb hub inside the aircraft are covered using the aircraft’s canopy. Somehow, this canopy

put more pressure on the power cables to the usb hub and the power line to hub was broken. Since

the hub was not powered the controller program did not receive any values from the sensors, that
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resulted in landing the aircraft. This issue was fixed by soldering the power cables.

We have encountered other hardware related issues, like battery used in the aircraft did not

provide enough power to motor. This added difficulty in aircraft take off. Another issue that we

faced is, the motor mount got broken while the aircraft was flying. The pitot tube, required for

measuring the air speed, was not reading proper values. This happened because the tube was

covered with frozen ice during the winter.
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Appendix C

Avionics Installation

We have included the instructions to install our avionics in this appendix. In this thesis, we used

Tegra K1. We have included the bash commands detailed instructions on setting up the Tegra K1

processor.

C.1 Software Dependencies

1. OS - Ubuntu

2. Middleware - ROS

C.2 Installing our Avionics Code

All our code are maintained in our github repository [37]. Clone our repository inside the ROS

workspace. After building the code, the avionics is ready to install into the aircraft. The description

about each folder in our repository is as follows:

1. aircraft: This folder contains all the Matlab and generated C codes of our test aircrafts.

2. autopilot_releases: This folder contains all the Matlab files that are required for the simula-

tion tests.
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3. launch: This folder contains all the ROS launch files that are created for each aircarft. This

launch file calls all the required programs like sensor data reading, controller and ground

station communication.

4. mavlink: We use mavlink protocol to communicate with the ground station. his folder con-

tains library files for supporting mavlink.

5. msg: ROS using topics to publish and subscribe from other nodes. This folder contains the

structure for all custom messages.

6. src: This folder contains all the source files. This includes the main controller program,

reading sensor data, writing to servo and ground station communication.
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Appendix D

Source Code Listing

This appendix lists the source code for important programs we developed for the avionics.

D.1 Controller Function Code

This is the most important code. It subscribes all the sensor data and assigns it to Matlab generated

variables. It calls the controller function and then it publishes the controller output.
1 /∗∗

2 ∗ @ f i l e c o n t r o l l e r _ D G 8 0 8 . cpp

3 ∗ @author P r a s a n t h Vivekanandan

4 ∗ @date 8 / 1 8 / 2 0 1 6

5 ∗∗ /

6

7

8 # d e f i n e DEBUG 1

9 # i n c l u d e < r o s / r o s . h>

10 # i n c l u d e < s t d d e f . h>

11 # i n c l u d e < s t d i o . h>

12 # i n c l u d e < t ime . h>

13 # i n c l u d e < u n i s t d . h>

14 # i n c l u d e < i n t t y p e s . h>

15 # i n c l u d e < u n i s t d . h>

16 # i n c l u d e < g e t o p t . h>

17 # i n c l u d e < s t d l i b . h>

18 # i n c l u d e <math . h>

19

20 # i n c l u d e "DG808_GNC_mov . c "

21 # i n c l u d e " rtGetNaN . c "

22 # i n c l u d e " r t _ n o n f i n i t e . c "

23 # i n c l u d e " r t G e t I n f . c "

24 # i n c l u d e " r t w t y p e s . h "

25 # i n c l u d e " h e l p e r s . h "
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26

27 # i n c l u d e < d r o n e _ r o s / i n s . h>

28 # i n c l u d e < d r o n e _ r o s /pwm. h>

29 # i n c l u d e < d r o n e _ r o s / d a t a . h>

30 # i n c l u d e < d r o n e _ r o s / way . h>

31 # i n c l u d e < d r o n e _ r o s / h i l _ d a t a . h>

32

33 / / messgae l i b r a r y f o r GPS p o s i t i o n

34 # i n c l u d e " senso r_msgs / NavSatFix . h "

35 / / message l i b r a r y f o r GPS v e l o c i t y

36 # i n c l u d e " geometry_msgs / Twis t . h "

37 / / message l i b r a r y f o r PQR and a c c e l e r a t i o n

38 # i n c l u d e " senso r_msgs / Imu . h "

39 / / message l i b r a r y f o r Phi , The ta and P s i

40 # i n c l u d e " geometry_msgs / P o i n t . h "

41 # i n c l u d e " senso r_msgs / Tempera tu r e . h "

42 # i n c l u d e " senso r_msgs / F l u i d P r e s s u r e . h "

43 # i n c l u d e " senso r_msgs / B a t t e r y S t a t e . h "

44 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

45 ∗ P u b l i c D e f i n i t i o n s

46 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

47 # d e f i n e PDEBUG( fmt , . . . ) \

48 do { i f (DEBUG) f p r i n t f ( s t d e r r , fmt , __VA_ARGS__ ) ; } whi le ( 0 )

49

50

51 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

52 ∗ P u b l i c Types

53 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

54 # d e f i n e SAVEFILE 1

55 # d e f i n e DEG2RAD 0.0174532925

56 # d e f i n e GRAVITY 9 . 8

57 # d e f i n e DENSITY 0.002295

58 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

59 ∗ Globa l V a r i a b l e s

60 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

61 r o s : : P u b l i s h e r g _ p u b _ d a t a _ a r d u i n o ;

62 r o s : : P u b l i s h e r g_pub_da t a_gs ;

63

64

65 r o s : : P u b l i s h e r g _ p u b _ d a t a _ h i l ; / / used t o p u b l i s h da ta t o t h e Hardware In t h e Loop node

66 void c a l l _ c o n t r o l l e r ( ) ;

67

68

69 s t d : : s t r i n g g _ c o n t r o l l e r _ f r a m e _ i d ;

70

71 s t r u c t u s b _ s t a t u s _ s t r u c t u s b _ s t a t u s ; / / S t o r e s t h e h e a l t h c o n d i t i o n o f USB d e v i c e s ; Used by t h e d e c i s i o n l o g i c b l o c k i n t h e

au to g e n e r a t e d code

72 s t r u c t p w m _ c o n v e r s i o n _ s t r u c t p w m _ c o n v e r s i o n _ f a c t o r s ; / / S t r u c t u r e t o s t o r e t h e c o n v e r s i o n f a c t o r s f o r each s u r f a c e s

73 s t r u c t h e l p e r s _ s t r u c t h e l p e r s ; / / To be used i n ROS s u b s c r i p t i o n i n l o g node and c o n t r o l l e r node

74

75 ExtU_DG808_GNC_mov_T ∗ c o n t r o l l e r _ i n = &DG808_GNC_mov_U ;

76 ExtY_DG808_GNC_mov_T ∗ c o n t r o l l e r _ o u t = &DG808_GNC_mov_Y ;

77 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

78 ∗ P u b l i c F u n c t i o n P r o t o t y p e s

79 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

80 void send_pwm ( ) ;
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81

82 u i n t 6 4 _ t g e t _ e l a p s e d ( s t r u c t t i m e s p e c ∗ s t a r t , s t r u c t t i m e s p e c ∗end )

83 {

84 u i n t 6 4 _ t dur = ( end−>t v _ s e c ∗ 1000000000 + end−>t v _ n s e c ) −

85 ( s t a r t −>t v _ s e c ∗ 1000000000 + s t a r t −>t v _ n s e c ) ;

86 re turn dur ;

87 }

88

89 double g e t _ t i m e ( s t r u c t t i m e s p e c ∗c a l c , s t r u c t t i m e s p e c ∗c a l c 1 )

90 {

91 double dur = ( ( double ) c a l c 1−>t v _ s e c + ( ( double ) c a l c 1−>t v _ n s e c /1000000000) ) −

( ( double ) c a l c−>t v _ s e c + ( ( double ) c a l c−>t v _ n s e c /1000000000) ) ;

92

93 re turn dur ;

94 }

95

96 void pwm_cal lback ( c o n s t d r o n e _ r o s : : pwm : : C o n s t P t r & msg )

97 {

98

99 c o n t r o l l e r _ i n −>RC . t h r o t t l e _ c m d = msg−> T h r o t t l e ;

100 c o n t r o l l e r _ i n −>RC . e l e v a t o r _ c m d = msg−>E l e v a t o r ;

101 c o n t r o l l e r _ i n −>RC . a i l e r o n _ c m d = msg−>A i l e r o n ;

102 c o n t r o l l e r _ i n −>RC . rudder_cmd = msg−>Rudder ;

103 c o n t r o l l e r _ i n −>VTalphabetameas . VT = msg−> v e l o c i t y ;

104

105 i f ( msg−>PICCIC == 1) {

106 i f ( h e l p e r s . SAS_flag == 2)

107 c o n t r o l l e r _ i n −>PICCIC = 0 ;

108 e l s e

109 c o n t r o l l e r _ i n −>PICCIC = 1 ;

110 }

111 i f ( msg−>PICCIC == 0) {

112 c o n t r o l l e r _ i n −>PICCIC = 0 ;

113 / / t r i m up da t e

114 c o n t r o l l e r _ i n −> t h r o t t l e t r i m = c o n t r o l l e r _ i n −>RC . t h r o t t l e _ c m d ;

115 c o n t r o l l e r _ i n −> e l e v a t o r t r i m = c o n t r o l l e r _ i n −>RC . e l e v a t o r _ c m d ;

116 c o n t r o l l e r _ i n −> a i l e r o n t r i m = c o n t r o l l e r _ i n −>RC . a i l e r o n _ c m d ;

117 c o n t r o l l e r _ i n −>r u d d e r t r i m = c o n t r o l l e r _ i n −>RC . rudder_cmd ;

118

119 }

120 u s b _ s t a t u s . u s b _ a r d u i n o = msg−> u s b s t a t u s ;

121 }

122

123

124 void D A Q _ p re s s u r e _ c a l l b a c k ( c o n s t senso r_msgs : : F l u i d P r e s s u r e : : C o n s t P t r & m s g _ p r e s s u r e )

125 {

126 h e l p e r s . p r e s s u r e = msg_pres su re−> f l u i d _ p r e s s u r e ;

127 }

128

129 void DAQ_vo l t age_ca l lback ( c o n s t senso r_msgs : : B a t t e r y S t a t e : : C o n s t P t r & m s g _ b a t t e r y _ s t a t e )

130 {

131 h e l p e r s . v o l t a g e = m s g _ b a t t e r y _ s t a t e −>v o l t a g e ;

132 }

133

134

135 void w a y _ c a l l b a c k ( c o n s t d r o n e _ r o s : : way : : C o n s t P t r & msg_waypoin ts )
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136 {

137 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g w a y p o i n t s " ) ;

138 c o n t r o l l e r _ i n −>WaypointsIN . rp = 1 ;

139 f o r ( i n t w=0;w<32;w++)

140 {

141 c o n t r o l l e r _ i n −>WaypointsIN . n [w] = msg_waypoints−>n o r t h [w ] ;

142 c o n t r o l l e r _ i n −>WaypointsIN . e [w] = msg_waypoints−> e a s t [w ] ;

143 c o n t r o l l e r _ i n −>WaypointsIN . h [w] = msg_waypoints−>h e i g h t [w ] ;

144 c o n t r o l l e r _ i n −>WaypointsIN . v [w] = msg_waypoints−> v e l o c i t y [w ] ;

145 c o n t r o l l e r _ i n −>WaypointsIN . fp = msg_waypoints−>fp ;

146 }

147 p r i n t f ( " t h e way p o i n t a r e %f %f %f %f " , c o n t r o l l e r _ i n −>WaypointsIN . n [ 0 ] ,

148 c o n t r o l l e r _ i n −>WaypointsIN . e [ 0 ] , c o n t r o l l e r _ i n −>WaypointsIN . h [ 0 ] , c o n t r o l l e r _ i n −>WaypointsIN . v [ 0 ] ) ;

149 }

150

151

152 void g p s _ c a l l b a c k ( c o n s t d r o n e _ r o s : : i n s : : C o n s t P t r & msg_gps_imu )

153 {

154 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g gps s i g n a l s " ) ;

155 u s b _ s t a t u s . u s b _ v e c t o r n a v = msg_gps_imu−> u s b s t a t u s ;

156 h e l p e r s . g ps _ t i m e = msg_gps_imu−>t ime ;

157 h e l p e r s . gps_week = msg_gps_imu−>week ;

158

159 }

160

161 void g p s _ p o s i t i o n _ c a l l b a c k ( c o n s t senso r_msgs : : NavSatF ix : : C o n s t P t r & m s g _ g p s _ p o s i t i o n )

162 {

163 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g g p s _ p o s i t i o n " ) ;

164 c o n t r o l l e r _ i n −>GPSPos i t ionmeas . L a t i t u d e = m s g _ g p s _ p o s i t i o n−> l a t i t u d e ;

165 c o n t r o l l e r _ i n −>GPSPos i t ionmeas . L o n g i t u d e = m s g _ g p s _ p o s i t i o n−> l o n g i t u d e ;

166 c o n t r o l l e r _ i n −>GPSPos i t ionmeas . A l t i t u d e = m s g _ g p s _ p o s i t i o n−> a l t i t u d e ;

167 # i f HIL_TEST

168 c a l l _ c o n t r o l l e r ( ) ;

169 # e n d i f

170 }

171

172 void g p s _ v e l o c i t y _ c a l l b a c k ( c o n s t geometry_msgs : : Twis t : : C o n s t P t r & m s g _ g p s _ v e l o c i t y )

173 {

174 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g g p s _ v e l o c i t y " ) ;

175 c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_nor th = m s g _ g p s _ v e l o c i t y−> l i n e a r . x ;

176 c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_eas t = m s g _ g p s _ v e l o c i t y−> l i n e a r . y ;

177 c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_down = m s g _ g p s _ v e l o c i t y−> l i n e a r . z ;

178 }

179

180 void i m u _ P Q R _ a c c e l e r a t i o n _ c a l l b a c k ( c o n s t senso r_msgs : : Imu : : C o n s t P t r & msg_imu_PQR_acce le ra t ion )

181 {

182 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g i m u _ P Q R _ a c c e l e r a t i o n " ) ;

183 c o n t r o l l e r _ i n −>BodyRatesmeas . P = msg_imu_PQR_acce le ra t ion−> a n g u l a r _ v e l o c i t y . x ;

184 c o n t r o l l e r _ i n −>BodyRatesmeas .Q = msg_imu_PQR_acce le ra t ion−> a n g u l a r _ v e l o c i t y . y ;

185 c o n t r o l l e r _ i n −>BodyRatesmeas . R = msg_imu_PQR_acce le ra t ion−> a n g u l a r _ v e l o c i t y . z ;

186 c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Axb = msg_imu_PQR_acce le ra t ion−> l i n e a r _ a c c e l e r a t i o n . x ;

187 c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Ayb = msg_imu_PQR_acce le ra t ion−> l i n e a r _ a c c e l e r a t i o n . y ;

188 c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Azb = msg_imu_PQR_acce le ra t ion−> l i n e a r _ a c c e l e r a t i o n . z ;

189 }

190

191 void i m u _ a t t i t u d e _ c a l l b a c k ( c o n s t geometry_msgs : : P o i n t : : C o n s t P t r & m s g _ i m u _ a t t i t u d e )
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192 {

193 ROS_INFO_STREAM( " f i n i s h e d r e a d i n g i m u _ a t t i t u d e " ) ;

194 c o n t r o l l e r _ i n −>Eule rAng le smeas . p h i = m s g _ i m u _ a t t i t u d e−>x ;

195 c o n t r o l l e r _ i n −>Eule rAng le smeas . t h e t a = m s g _ i m u _ a t t i t u d e−>y ;

196 c o n t r o l l e r _ i n −>Eule rAng le smeas . p s i = m s g _ i m u _ a t t i t u d e−>z ;

197 }

198

199 void s e n d _ h i l _ o u t p u t ( )

200 {

201 d r o n e _ r o s : : h i l _ d a t a m s g _ t o _ h i l ;

202 m s g _ t o _ h i l . c o n t r o l l e r _ t h r o t t l e _ o u t p u t = c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . t h r o t t l e _ c m d ;

203 m s g _ t o _ h i l . c o n t r o l l e r _ e l e v a t o r _ o u t p u t = c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . e l e v a t o r _ c m d ;

204 m s g _ t o _ h i l . c o n t r o l l e r _ a i l e r o n _ o u t p u t = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . a i l e r o n _ c m d ;

205 m s g _ t o _ h i l . c o n t r o l l e r _ r u d d e r _ o u t p u t = c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . rudder_cmd ;

206 m s g _ t o _ h i l . d i s t _ 2 _ w a y p o i n t = c o n t r o l l e r _ o u t −>D i s t a n c e t o W a y p o i n t ;

207 m s g _ t o _ h i l . w a y p o i n t _ i n d e x = c o n t r o l l e r _ o u t −>Waypoin t Index ;

208 m s g _ t o _ h i l . guidance_VT = c o n t r o l l e r _ o u t −>CommandedStates . VT_cmd ;

209 m s g _ t o _ h i l . g u i d a n c e _ p h i = c o n t r o l l e r _ o u t −>CommandedStates . phi_cmd ;

210 m s g _ t o _ h i l . g u i d a n c e _ t h e t a = c o n t r o l l e r _ o u t −>CommandedStates . t he t a_cmd ;

211 m s g _ t o _ h i l . e t a _ L a t = c o n t r o l l e r _ o u t −>TrackAngles . e t a L a t ;

212 m s g _ t o _ h i l . e t a_Lon = c o n t r o l l e r _ o u t −>TrackAngles . e t aLon ;

213 m s g _ t o _ h i l . n_op = c o n t r o l l e r _ o u t −>n_mov_pt [ 0 ] ;

214 m s g _ t o _ h i l . e_op = c o n t r o l l e r _ o u t −>e_mov_pt [ 0 ] ;

215 m s g _ t o _ h i l . h_op = c o n t r o l l e r _ o u t −>h_mov_pt [ 0 ] ;

216 g _ p u b _ d a t a _ h i l . p u b l i s h ( m s g _ t o _ h i l ) ;

217 }

218 /∗∗

219 ∗ up da t e a message t o be s e n t t o t h e micro hd ROS node

220 ∗ /

221 void s e t _ g r o u n d _ d a t a ( d r o n e _ r o s : : d a t a ∗ msg_data )

222 {

223 msg_data−>h e a d e r . f r a m e _ i d = g _ c o n t r o l l e r _ f r a m e _ i d ;

224 msg_data−>a n g l e . x = c o n t r o l l e r _ i n −>Eule rAng le smeas . p h i ;

225 msg_data−>a n g l e . y = c o n t r o l l e r _ i n −>Eule rAng le smeas . t h e t a ;

226 msg_data−>a n g l e . z = c o n t r o l l e r _ i n −>Eule rAng le smeas . p s i ;

227 msg_data−> l l a . x = c o n t r o l l e r _ i n −>GPSPos i t ionmeas . L a t i t u d e ;

228 msg_data−> l l a . y = c o n t r o l l e r _ i n −>GPSPos i t ionmeas . L o n g i t u d e ;

229 msg_data−> l l a . z = c o n t r o l l e r _ i n −>GPSPos i t ionmeas . A l t i t u d e ;

230 msg_data−> v e l o c i t y . x = c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_nor th ;

231 msg_data−> v e l o c i t y . y = c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_eas t ;

232 msg_data−> v e l o c i t y . z = c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_down ;

233 msg_data−>a n g r a t e . x = c o n t r o l l e r _ i n −>BodyRatesmeas . P ;

234 msg_data−>a n g r a t e . y = c o n t r o l l e r _ i n −>BodyRatesmeas .Q;

235 msg_data−>a n g r a t e . z = c o n t r o l l e r _ i n −>BodyRatesmeas . R ;

236 msg_data−>PICCIC = c o n t r o l l e r _ i n −>PICCIC ;

237 msg_data−>HomeCmd = c o n t r o l l e r _ i n −>HomeCmd ;

238 msg_data−> T h r o t t l e = c o n t r o l l e r _ i n −>RC . t h r o t t l e _ c m d ;

239 msg_data−>E l e v a t o r = c o n t r o l l e r _ i n −>RC . e l e v a t o r _ c m d /DEG2RAD;

240 msg_data−>Rudder = c o n t r o l l e r _ i n −>RC . rudder_cmd /DEG2RAD;

241 msg_data−>A i l e r o n = c o n t r o l l e r _ i n −>RC . a i l e r o n _ c m d /DEG2RAD;

242 msg_data−> a c c e l e r a t i o n . x = c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Axb ;

243 msg_data−> a c c e l e r a t i o n . y = c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Ayb ;

244 msg_data−> a c c e l e r a t i o n . z = c o n t r o l l e r _ i n −>A cc e l e r om e t e r me as . Azb ;

245 msg_data−> p r e s s u r e = h e l p e r s . p r e s s u r e ;

246 msg_data−>v o l t a g e = h e l p e r s . v o l t a g e ;

247 msg_data−> a i r _ v e l o c i t y = c o n t r o l l e r _ i n −>VTalphabetameas . VT;

55



248 msg_data−> a l p h a e s t = c o n t r o l l e r _ o u t −> v t a l p h a b e t a _ e s t . a l p h a ;

249 msg_data−> b e t a e s t = c o n t r o l l e r _ o u t −> v t a l p h a b e t a _ e s t . b e t a ;

250

251 msg_data−>t ime = h e l p e r s . g p s_ t i m e ;

252 msg_data−>week = h e l p e r s . gps_week ;

253 / / f o r ( i n t y =0;y <4; y++)

254 msg_data−> a u t o t h r o t t l e =

255 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . t h r o t t l e _ c m d ;

256 msg_data−> a u t o e l e v a t o r =

257 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . e l e v a t o r _ c m d /

258 DEG2RAD;

259 msg_data−> a u t o a i l e r o n =

260 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . a i l e r o n _ c m d /

261 DEG2RAD;

262 msg_data−>a u t o r u d d e r =

263 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . rudder_cmd / DEG2RAD;

264 msg_data−>d2b = c o n t r o l l e r _ o u t −>D i s t a n c e t o W a y p o i n t ;

265 msg_data−> a _ u s b s t a t u s = u s b _ s t a t u s . u s b _ a r d u i n o ;

266 msg_data−> v _ u s b s t a t u s = u s b _ s t a t u s . u s b _ v e c t o r n a v ;

267 msg_data−>guidance_VT = c o n t r o l l e r _ o u t −>CommandedStates . VT_cmd ;

268

269 msg_data−>g u i d a n c e _ t h e t a = c o n t r o l l e r _ o u t −>CommandedStates . t he t a_cmd ;

270 msg_data−>g u i d a n c e _ p h i = c o n t r o l l e r _ o u t −>CommandedStates . phi_cmd ;

271 msg_data−>g u i d a n c e _ b e t a = c o n t r o l l e r _ o u t −>CommandedStates . beta_cmd ;

272 msg_data−> t r a c k a n g l e s _ e t a L a t = c o n t r o l l e r _ o u t −>TrackAngles . e t a L a t ;

273 msg_data−>t r a c k a n g l e s _ e t a L o n = c o n t r o l l e r _ o u t −>TrackAngles . e t aLon ;

274 msg_data−>a u t o _ s w i t c h = c o n t r o l l e r _ i n −>PICCIC ;

275 msg_data−> a n g l e s _ e s t [ 0 ] = c o n t r o l l e r _ o u t −> a n g l e s _ e s t . p h i ;

276 msg_data−> a n g l e s _ e s t [ 1 ] = c o n t r o l l e r _ o u t −> a n g l e s _ e s t . t h e t a ;

277 msg_data−> a n g l e s _ e s t [ 2 ] = c o n t r o l l e r _ o u t −> a n g l e s _ e s t . p s i ;

278

279 msg_data−> b r a t e s _ e s t [ 0 ] = c o n t r o l l e r _ o u t −> b r a t e s _ e s t . P ;

280 msg_data−> b r a t e s _ e s t [ 1 ] = c o n t r o l l e r _ o u t −> b r a t e s _ e s t .Q;

281 msg_data−> b r a t e s _ e s t [ 2 ] = c o n t r o l l e r _ o u t −> b r a t e s _ e s t . R ;

282

283 msg_data−> a c c e l _ e s t [ 0 ] = c o n t r o l l e r _ o u t −> a c c e l e r o m e t e r _ e s t . Axb ;

284 msg_data−> a c c e l _ e s t [ 1 ] = c o n t r o l l e r _ o u t −> a c c e l e r o m e t e r _ e s t . Ayb ;

285 msg_data−> a c c e l _ e s t [ 2 ] = c o n t r o l l e r _ o u t −> a c c e l e r o m e t e r _ e s t . Azb ;

286

287 msg_data−>p o s _ e s t [ 0 ] = c o n t r o l l e r _ o u t −>g p s p o s _ e s t . L a t i t u d e ;

288 msg_data−>p o s _ e s t [ 1 ] = c o n t r o l l e r _ o u t −>g p s p o s _ e s t . L o n g i t u d e ;

289 msg_data−>p o s _ e s t [ 2 ] = c o n t r o l l e r _ o u t −>g p s p o s _ e s t . A l t i t u d e ;

290

291 msg_data−> v e l _ e s t [ 0 ] = c o n t r o l l e r _ o u t −> g p s v e l _ e s t . V_nor th ;

292 msg_data−> v e l _ e s t [ 1 ] = c o n t r o l l e r _ o u t −> g p s v e l _ e s t . V_eas t ;

293 msg_data−> v e l _ e s t [ 2 ] = c o n t r o l l e r _ o u t −> g p s v e l _ e s t . V_down ;

294

295 msg_data−>w i n d _ e s t [ 0 ] = c o n t r o l l e r _ o u t −> i n e r t i a l w i n d _ e s t .VwN;

296 msg_data−>w i n d _ e s t [ 1 ] = c o n t r o l l e r _ o u t −> i n e r t i a l w i n d _ e s t .VwE;

297 msg_data−>w i n d _ e s t [ 2 ] = c o n t r o l l e r _ o u t −> i n e r t i a l w i n d _ e s t .VwH;

298

299 msg_data−> t h r o t t l e t r i m = c o n t r o l l e r _ i n −> t h r o t t l e t r i m ;

300 msg_data−> e l e v a t o r t r i m = c o n t r o l l e r _ i n −> e l e v a t o r t r i m ;

301 msg_data−> a i l e r o n t r i m = c o n t r o l l e r _ i n −> a i l e r o n t r i m ;

302 msg_data−>r u d d e r t r i m = c o n t r o l l e r _ i n −>r u d d e r t r i m ;

303
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304 msg_data−>SAS_switch = c o n t r o l l e r _ i n −>SASswitch ;

305 msg_data−> d e l t a _ p s i = c o n t r o l l e r _ o u t −> d e l t a _ p s i ;

306

307 f o r ( i n t i =0 ; i <6 ; i ++) {

308 msg_data−>mw_height [ i ] = c o n t r o l l e r _ o u t −>Modi f ied_wpt . h [ i ] ;

309 msg_data−>mw_north [ i ] = c o n t r o l l e r _ o u t −>Modi f ied_wpt . n [ i ] ;

310 msg_data−>mw_east [ i ] = c o n t r o l l e r _ o u t −>Modi f ied_wpt . e [ i ] ;

311 msg_data−>mw_veloc i ty [ i ] = c o n t r o l l e r _ o u t −>Modi f ied_wpt . v [ i ] ;

312 }

313 msg_data−>n_op = c o n t r o l l e r _ o u t −>n_mov_pt [ 0 ] ;

314 msg_data−>e_op = c o n t r o l l e r _ o u t −>e_mov_pt [ 0 ] ;

315 msg_data−>h_op = c o n t r o l l e r _ o u t −>h_mov_pt [ 0 ] ;

316 msg_data−>w a y p o i n t _ i n d e x = c o n t r o l l e r _ o u t −>Waypoin t Index ;

317 }

318

319 / / c a l l t h e c o n t r o l l e r s f o r HiL t e s t i n g

320 void c a l l _ c o n t r o l l e r ( )

321 {

322 # i f HIL_TEST

323 DG808_GNC_mov_step ( ) ;

324 send_pwm ( ) ;

325 s e n d _ h i l _ o u t p u t ( ) ;

326 d r o n e _ r o s : : d a t a msg_data ;

327 s e t _ g r o u n d _ d a t a (& msg_data ) ;

328 g_pub_da t a_gs . p u b l i s h ( msg_data ) ;

329 # e n d i f

330 }

331

332 void ass ign_se rvo_commands ( )

333 {

334 c o n t r o l l e r _ i n −>ServoCommands . t h r o t t l e _ c m d = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . t h r o t t l e _ c m d ;

335 c o n t r o l l e r _ i n −>ServoCommands . e l e v a t o r _ c m d = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . e l e v a t o r _ c m d ;

336 c o n t r o l l e r _ i n −>ServoCommands . a i l e r o n _ c m d = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . a i l e r o n _ c m d ;

337 c o n t r o l l e r _ i n −>ServoCommands . rudder_cmd = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . rudder_cmd ;

338 }

339

340 void a s s i g n _ s e r v o _ d f e f l e c t i o n s ( )

341 {

342 c o n t r o l l e r _ i n −> S e r v o d e f l e c t i o n [ 0 ] = c o n t r o l l e r _ o u t −>Cont ro lSur faceCommands . t h r o t t l e _ c m d ;

343 c o n t r o l l e r _ i n −> S e r v o d e f l e c t i o n [ 1 ] = c o n t r o l l e r _ o u t −>Cont ro lSur faceCommands . e l e v a t o r _ c m d ;

344 c o n t r o l l e r _ i n −> S e r v o d e f l e c t i o n [ 2 ] = c o n t r o l l e r _ o u t −>Cont ro lSur faceCommands . a i l e r o n _ c m d ;

345 c o n t r o l l e r _ i n −> S e r v o d e f l e c t i o n [ 3 ] = c o n t r o l l e r _ o u t −>Cont ro lSur faceCommands . rudder_cmd ;

346 }

347

348

349

350 void send_pwm ( )

351 {

352 d r o n e _ r o s : : pwm msg_servo ;

353 msg_servo . T h r o t t l e = c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . t h r o t t l e _ c m d ;

354 msg_servo . E l e v a t o r = c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . e l e v a t o r _ c m d ;

355 msg_servo . A i l e r o n = c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . a i l e r o n _ c m d ;

356 msg_servo . Rudder = c o n t r o l l e r _ o u t −>Cont ro lSur faceCommands . rudder_cmd ;

357 g _ p u b _ d a t a _ a r d u i n o . p u b l i s h ( msg_servo ) ;

358 }

359
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360 void s e l f t e s t ( f l o a t t h r o t t l e , f l o a t e l e v a t o r , f l o a t a i l e r o n , f l o a t r u d d e r )

361 {

362 c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . t h r o t t l e _ c m d = t h r o t t l e ;

363 c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . e l e v a t o r _ c m d = e l e v a t o r ;

364 c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . a i l e r o n _ c m d = a i l e r o n ;

365 c o n t r o l l e r _ o u t −>Contro lSurfaceCommands . rudder_cmd = r u d d e r ;

366 send_pwm ( ) ;

367 }

368

369 i n t a u t o _ t e s t ( i n t t i m e c h e c k )

370 {

371 PDEBUG( " \ n The t ime i n a u t o p i l o t r o u t i n e i s %d " , t i m e c h e c k ) ;

372 f l o a t u p _ l i m i t = 10 ∗ DEG2RAD;

373 f l o a t d o w n _ l i m i t = −10 ∗ DEG2RAD;

374 i f ( ( t i m e c h e c k >= 0) && ( t i m e c h e c k < 1) ) / / t i m e r > 0 and < 1 s e c

375 {

376 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

377 }

378 i f ( ( t i m e c h e c k > 1) && ( t i m e c h e c k < 4) ) / / t i m e r > 1 and < 4 s e c

379 s e l f t e s t ( 0 , 0 , u p _ l i m i t , 0 ) ; / / p o s i t i v e a i l e r o n

380 i f ( ( t i m e c h e c k > 4) && ( t i m e c h e c k < 5) ) / / t i m e r > 4 and < 5 s e c

381 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

382 i f ( ( t i m e c h e c k > 5) && ( t i m e c h e c k < 8) ) / / t i m e r > 5 and < 8 s e c

383 s e l f t e s t ( 0 , 0 , down_l imi t , 0 ) ; / / n e g a t i v e a i l e r o n

384 i f ( ( t i m e c h e c k > 8) && ( t i m e c h e c k < 9) ) / / t i m e r > 8 and < 9 s e c

385 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

386 i f ( ( t i m e c h e c k > 9) && ( t i m e c h e c k < 12) ) / / t i m e r > 9 and < 12 s e c

387 s e l f t e s t ( 0 , u p _ l i m i t , 0 , 0 ) ; / / p o s i t i v e e l e v a t o r

388 i f ( ( t i m e c h e c k > 12) && ( t i m e c h e c k < 13) ) / / t i m e r > 12 and < 13 s e c

389 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

390 i f ( ( t i m e c h e c k > 13) && ( t i m e c h e c k < 16) ) / / t i m e r > 13 and < 16 s e c

391 s e l f t e s t ( 0 , down_l imi t , 0 , 0 ) ; / / n e g a t i v e e l e v a t o r

392 i f ( ( t i m e c h e c k > 16) && ( t i m e c h e c k < 17) ) / / t i m e r > 16 and < 17 s e c

393 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

394 i f ( ( t i m e c h e c k > 17) && ( t i m e c h e c k < 20) ) / / t i m e r > 17 and < 20 s e c

395 s e l f t e s t ( 0 , 0 , 0 , u p _ l i m i t ) ; / / p o s i t i v e ru dd er

396 i f ( ( t i m e c h e c k > 20) && ( t i m e c h e c k < 21) ) / / t i m e r > 20 and < 21 s e c

397 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

398 i f ( ( t i m e c h e c k > 21) && ( t i m e c h e c k < 24) ) / / t i m e r > 21 and < 24 s e c

399 s e l f t e s t ( 0 , 0 , 0 , d o w n _ l i m i t ) ; / / n e g a t i v e ru dd er

400 i f ( ( t i m e c h e c k > 24) && ( t i m e c h e c k < 26) ) / / t i m e r > 24 and < 25 s e c

401 s e l f t e s t ( 0 . 1 , 0 , 0 , 0 ) ;

402 i f ( ( t i m e c h e c k > 26) && ( t i m e c h e c k < 28) ) / / t i m e r > 25 and < 26 s e c

403 s e l f t e s t ( 0 . 1 , 0 , 0 , 0 ) ; / / 2% o f t h r o t t l e

404 i f ( ( t i m e c h e c k > 28) && ( t i m e c h e c k < 30) ) / / t i m e r > 26 and < 27 s e c

405 s e l f t e s t ( 0 . 2 , 0 , 0 , 0 ) ; / / 4% o f t h r o t t l e

406 i f ( ( t i m e c h e c k > 30) && ( t i m e c h e c k < 32) ) / / t i m e r > 27 and < 28 s e c

407 s e l f t e s t ( 0 . 2 , 0 , 0 , 0 ) ; / / 6% o f t h r o t t l e

408 i f ( ( t i m e c h e c k > 32) && ( t i m e c h e c k < 34) ) / / t i m e r > 28 and < 29 s e c

409 s e l f t e s t ( 0 . 3 , 0 , 0 , 0 ) ; / / 8% o f t h r o t t l e

410 i f ( ( t i m e c h e c k > 34) && ( t i m e c h e c k < 36) ) / / t i m e r > 29 and < 30 s e c

411 s e l f t e s t ( 0 . 3 , 0 , 0 , 0 ) ; / / 10% o f t h r o t t l e

412 i f ( ( t i m e c h e c k > 37) && ( t i m e c h e c k < 38) )

413 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

414 i f ( t i m e c h e c k > 38) {

415 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;
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416 re turn 0 ;

417 }

418 re turn 1 ;

419 }

420

421

422 i n t a u t o p i l o t _ t e s t m o d e ( )

423 {

424 r o s : : Ra te l o o p _ r a t e ( 2 0 ) ;

425 i n t auto_commit =0;

426 whi le ( r o s : : ok ( ) ) {

427 / / I n au to s t a r t up r o u t i n e

428 i n t t i m e c h e c k ;

429 s t r u c t t i m e s p e c t e s t s , t e s t e ;

430 r o s : : sp inOnce ( ) ;

431 i f ( au to_commit == 0)

432 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t e s t s ) ;

433 / / I n a u t o p i l o t s t a r t u p

434 auto_commit = 1 ;

435 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t e s t e ) ;

436 t i m e c h e c k = t e s t e . t v _ s e c − t e s t s . t v _ s e c ;

437

438 i f ( ! ( a u t o _ t e s t ( t i m e c h e c k ) ) ) {

439 / / A u t p i l o t s t a r t u p i s c o m p l e t e d

440 PDEBUG( " end of s t a r t u p \ n " , 0 ) ;

441 re turn 1 ;

442 }

443 i f ( c o n t r o l l e r _ i n −>PICCIC == 0) {

444 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

445 auto_commit = 0 ;

446 re turn 1 ;

447 }

448 l o o p _ r a t e . s l e e p ( ) ;

449 }

450 }

451

452

453

454 void r e a d _ p a r a m e t e r ( )

455 {

456

457 r o s : : NodeHandle nh ;

458

459 /∗ −−−−− a lpha and b e t a −−−− ∗ /

460 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / a l p h a " , c o n t r o l l e r _ i n −>VTalphabetameas . a l p h a ) ;

461 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / b e t a " , c o n t r o l l e r _ i n −>VTalphabetameas . b e t a ) ;

462

463 /∗ −−−−− e n a b l e −−−− ∗ /

464 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / e n a b l e " , ( i n t &) c o n t r o l l e r _ i n −>E n a b l e D i s a b l e ) ;

465

466 /∗ −−−−− home command −−−− ∗ /

467 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / hmcmd" , ( i n t &) c o n t r o l l e r _ i n −>HomeCmd) ;

468

469 /∗ −−−−− c o n t r o l l e r s e l e c t i o n −−−− ∗ /

470 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / c o n t r o l l e r _ s e l e c t i o n " , c o n t r o l l e r _ i n −> C o n t r o l l e r s e l e c t i o n ) ;

471
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472 /∗ −−−−− gamma f l a g −−−− ∗ /

473 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / gamma_flag " , c o n t r o l l e r _ i n −>gamma_flag ) ;

474

475 /∗ −−−−− LQR s e l e c t i o n −−−− ∗ /

476 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / L Q R s e l e c t i o n " , c o n t r o l l e r _ i n −>L Q R s e l e c t i o n ) ;

477

478 /∗ −−−−− smoo th ing s w i t c h g u i d a n c e −−−− ∗ /

479 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / s m o o t h i n g _ s w i t c h i n g _ g u i d a n c e " , c o n t r o l l e r _ i n −>S m o o t h i n g s w i t c h g u i d a n c e ) ;

480

481 /∗ −−−−− smoo th ing s w i t c h s e r v o −−−− ∗ /

482 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / s m o o t h i n g _ s w i t c h i n g _ s e r v o " , c o n t r o l l e r _ i n −>S m o o t h i n g s w i t c h s e r v o ) ;

483

484 /∗ −−−−− t ime_window_servo −−−− ∗ /

485 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / t ime_window_servo " , c o n t r o l l e r _ i n −>t ime_window_servo ) ;

486

487 /∗ −−−−− t ime_window_gu idance −−−− ∗ /

488 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / t ime_window_guidance " , c o n t r o l l e r _ i n −>t ime_window_guidance ) ;

489

490 /∗ −−−−− KpLon ga in i n g u i d a n c e −−−− ∗ /

491 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / KpLon" , c o n t r o l l e r _ i n −>KpLon ) ;

492

493

494

495 /∗ −−−−− KiLon ga in i n g u i d a n c e −−−− ∗ /

496 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / KiLon " , c o n t r o l l e r _ i n −>KiLon ) ;

497

498

499 /∗ −−−−− L Lat −−−− ∗ /

500 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / L_Lat " , c o n t r o l l e r _ i n −>L_Lat ) ;

501

502 /∗ −−−−− L Lon −−−− ∗ /

503 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / L_Lon " , c o n t r o l l e r _ i n −>L_Lon ) ;

504

505 /∗ −−−−− KaLon ga in i n g u i d a n c e −−−− ∗ /

506 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / Ka_Lon " , c o n t r o l l e r _ i n −>Ka_Lon ) ;

507

508 /∗ −−−−− d2b ( d i s t a n c e t o b ) f o r g u i d a n c e −−−− ∗ /

509 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / d i s t 2 b " , c o n t r o l l e r _ i n −> d i s t 2 b ) ;

510

511 /∗ −−−−− KpLat ga in f o r g u i d a n c e −−−− ∗ /

512 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / KpLat " , c o n t r o l l e r _ i n −>KpLat ) ;

513

514 /∗ −−−−− SAS s w i t c h 0− o f f 1−on f o r o n l y a u t o p i l o t 2−on f o r RC −−−− ∗ /

515 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / SAS_switch " , h e l p e r s . SAS_flag ) ;

516 i f ( h e l p e r s . SAS_flag == 2)

517 c o n t r o l l e r _ i n −>SASswitch = 1 ;

518 e l s e

519 c o n t r o l l e r _ i n −>SASswitch = h e l p e r s . SAS_flag ;

520

521 /∗ −−−−− SAS g a i n s −−−− ∗ /

522 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / k _ d t h e t a _ d e l e v a t o r " , c o n t r o l l e r _ i n −>K_SAS_theta_de ) ;

523 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / k _ d Q _ d e l e v a t o r " , c o n t r o l l e r _ i n −>K_SAS_q_de ) ;

524 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / k _ d P _ d a i l e r o n " , c o n t r o l l e r _ i n −>K_SAS_P_da ) ;

525 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / k_dR_drudder " , c o n t r o l l e r _ i n −>K_SAS_R_dr ) ;

526 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / K_phi_de " , c o n t r o l l e r _ i n −>K_phi_de ) ;

527
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528 /∗−−−−− c o r r e c t i o n s w i t c h −−−∗ /

529 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / c o r r e c t i o n _ s w i t c h " , ( i n t &) c o n t r o l l e r _ i n −> c o r r e c t i o n _ s w i t c h ) ;

530

531 /∗−−−−− S a t u r a t i o n s w i t c h −−−∗ /

532 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / S a t u r a t i o n _ s w i t c h " , ( i n t &) c o n t r o l l e r _ i n −> S a t u r a t i o n _ s w i t c h ) ;

533

534 /∗−−−−− p h i _ c m d _ s w i t c h −−−∗ /

535 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / ph i_cmd_swi tch " , ( i n t &) c o n t r o l l e r _ i n −>ph i_cmd_swi tch ) ;

536

537 /∗−−−−− V c o r r e c t i o n _ s w i t c h −−−∗ /

538 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / V c o r r e c t i o n _ s w i t c h " , ( i n t &) c o n t r o l l e r _ i n −>V c o r r e c t i o n _ s w i t c h ) ;

539

540 /∗−−−−− K_speed −−−∗ /

541 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / K_speed " , c o n t r o l l e r _ i n −>K_speed ) ;

542

543 /∗−−−−− V s t a l l −−−∗ /

544 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / V s t a l l " , c o n t r o l l e r _ i n −> V s t a l l ) ;

545

546 /∗−−−−− K_acc_guidance −−−∗ /

547 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / K_acc_gu idance " , c o n t r o l l e r _ i n −>K_acc_guidance ) ;

548

549 /∗−−−−−Acc_feedback_on−−−∗ /

550 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / Acc_feedback_on " , ( i n t &) c o n t r o l l e r _ i n −>Acc_feedback_on ) ;

551

552 /∗−−−− t h r o t t l e t r im−−−∗ /

553 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / t h r o t t l e _ t r i m " , c o n t r o l l e r _ i n −> t h r o t t l e t r i m ) ;

554

555 /∗−−−−e l e v a t o r t r im−−−∗ /

556 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / e l e v a t o r _ t r i m " , c o n t r o l l e r _ i n −> e l e v a t o r t r i m ) ;

557

558 /∗−−−−a i l e r o n t r im−−−∗ /

559 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / a i l e r o n _ t r i m " , c o n t r o l l e r _ i n −> a i l e r o n t r i m ) ;

560

561 /∗−−−−ru dd er t r im−−−∗ /

562 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / r u d d e r _ t r i m " , c o n t r o l l e r _ i n −>r u d d e r t r i m ) ;

563

564 /∗−−−−mpf r a d i u s−−−∗ /

565 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / m p f _ r a d i u s " , c o n t r o l l e r _ i n −>m p f r a d i u s ) ;

566

567 /∗−−−−mpf s w i t c h−−−∗ /

568 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / mpf_swi tch " , ( i n t &) c o n t r o l l e r _ i n −>mpfswi tch ) ;

569

570 /∗−−−−pa th s e l e c t −−−∗ /

571 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / p a t h _ s e l e c t " , c o n t r o l l e r _ i n −> p a t h _ s e l e c t ) ;

572

573 /∗−−−−Q weigh t−−−∗ /

574 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / Q_weight " , c o n t r o l l e r _ i n −>Q_weight ) ;

575

576 /∗−−−−max a l l o w e r r o r−−−∗ /

577 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / m a x _ a l l o w _ e r r o r " , c o n t r o l l e r _ i n −>max_a l low_er r_d ) ;

578

579 /∗−−−−VT tr im−−−∗ /

580 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / VTtrim " , c o n t r o l l e r _ i n −>VTtrim ) ;

581

582 /∗−−−−g u i d a n c e s e l e c t i o n −−−∗ /

583 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / g u i d a n c e _ s e l e c t i o n " , c o n t r o l l e r _ i n −>G u i d a n c e s e l e c t i o n ) ;
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584

585 /∗−−−−dt−−−∗ /

586 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / d t " , c o n t r o l l e r _ i n −>d t ) ;

587 # i f HIL_TEST

588 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / gps_vn " , c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_nor th ) ;

589 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / gps_ve " , c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_eas t ) ;

590 nh . ge tParam ( " / c o n t r o l l e r _ p a r a m / gps_vd " , c o n t r o l l e r _ i n −>GPSVeloci tymeas . V_down ) ;

591 # e n d i f

592 }

593

594

595 i n t main ( i n t argc , char ∗a rgv [ ] )

596 {

597 long i t e r , r e p e a t = 0 ;

598 double i n t e r v a l _ s e c = ( double ) 1 / 2 0 ;

599 boo l auto_commit ; / / 0 − n o t i n i n i t i a l a u t o p i l o t

600 / / 1 − i n i n t i a l a u t o p i l o t

601 i n t s w i t c h _ c o u n t = 1 ; / / t o c o u n t number o f t i m e s p i c _ c i c i s t u r n e d on

602 s t r u c t t i m e s p e c s t a r t , end ;

603 r o s : : i n i t ( a rgc , argv , " c o n t r o l l e r _ D G 8 0 8 " ) ;

604 r o s : : NodeHandle n1 ;

605

606 r o s : : Time s t a r t _ r o s _ t i m e r , e n d _ r o s _ t i m e r ;

607

608 r o s : : S u b s c r i b e r s u b _ h i l = n1 . s u b s c r i b e ( " /pwm" , 1000 , pwm_cal lback ) ;

609 r o s : : S u b s c r i b e r s u b _ g p s _ i m u _ h i l =

610 n1 . s u b s c r i b e ( " / i n s " , 1000 , g p s _ c a l l b a c k ) ;

611 r o s : : S u b s c r i b e r s u b _ w a y p o i n t s = n1 . s u b s c r i b e ( " / way " , 1000 , w a y _ c a l l b a c k ) ;

612 r o s : : S u b s c r i b e r sub_gps_pos = n1 . s u b s c r i b e ( " / g p s _ p o s i t i o n " , 1000 , g p s _ p o s i t i o n _ c a l l b a c k ) ;

613 r o s : : S u b s c r i b e r s u b _ g p s _ v e l o c i t y = n1 . s u b s c r i b e ( " / g p s _ v e l o c i t y " , 1000 , g p s _ v e l o c i t y _ c a l l b a c k ) ;

614 r o s : : S u b s c r i b e r s u b _ i m u _ P Q R _ a c c e l e r a t i o n = n1 . s u b s c r i b e ( " / i m u _ P Q R _ a c c e l e r a t i o n " , 1000 , i m u _ P Q R _ a c c e l e r a t i o n _ c a l l b a c k ) ;

615 r o s : : S u b s c r i b e r s u b _ i m u _ a t t i t u d e = n1 . s u b s c r i b e ( " / a t t i t u d e " , 1000 , i m u _ a t t i t u d e _ c a l l b a c k ) ;

616

617 r o s : : S u b s c r i b e r sub_DAQ_pressure = n1 . s u b s c r i b e ( " / p r e s s u r e " , 1000 , D A Q _ p re s s u r e _ c a l l ba c k ) ;

618

619 r o s : : S u b s c r i b e r sub_DAQ_voltage = n1 . s u b s c r i b e ( " / b a t t e r y _ s t a t e " , 1000 , DAQ_vo l t age_ca l lback ) ;

620

621

622 g_pub_da t a_gs = n1 . a d v e r t i s e < d r o n e _ r o s : : d a t a > ( " d a t a " , 1000) ;

623 g _ p u b _ d a t a _ a r d u i n o = n1 . a d v e r t i s e < d r o n e _ r o s : : pwm > ( " s e r v o _ o p " , 1000) ;

624 g _ p u b _ d a t a _ h i l = n1 . a d v e r t i s e < d r o n e _ r o s : : h i l _ d a t a > ( " t o _ h i l " , 1000) ;

625

626 r o s : : Ra te l o o p _ r a t e ( 2 0 ) ;

627 s t a t i c i n t seq = 0 ;

628 seq ++;

629 r o s : : Time t imes t amp = r o s : : Time : : now ( ) ;

630

631 / / −−−−− To i n i t i a l i z e t h e mat lab g e n e r a t e d s t r u c t u r e s −−−−−//

632 DG808_GNC_mov_ini t ia l ize ( ) ;

633

634 / / −−−−− A s s i g n i n g ROS p a r a m e t e r s from la un ch f i l e −−−−−− / /

635 r e a d _ p a r a m e t e r ( ) ;

636

637 c l o c k _ g e t t i m e (CLOCK_REALTIME, &s t a r t ) ;

638 i t e r = 0 ;

639 s t a r t _ r o s _ t i m e r = r o s : : Time : : now ( ) ;
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640 whi le ( r o s : : ok ( ) ) {

641 double r ema in_us ;

642 u i n t 6 4 _ t t m p d i f f ;

643 d r o n e _ r o s : : d a t a msg_data ;

644

645 r o s : : sp inOnce ( ) ;

646

647 # i f FLIGHT_TEST

648 /∗ i f ( ( c o n t r o l l e r _ i n −>GPSPosi t ionmeas . L a t i t u d e != 0) &&

649 ( c o n t r o l l e r _ i n −>GPSPosi t ionmeas . L o n g i t u d e != 0) &&

650 ( c o n t r o l l e r _ i n −>GPSPosi t ionmeas . A l t i t u d e != 0) ) ∗ /

651 DG808_GNC_mov_step ( ) ;

652 PDEBUG( " In F l i g h t t e s t mode " , 0 ) ;

653 i f ( c o n t r o l l e r _ i n −>PICCIC == 1)

654 {

655 sw i t ch ( s w i t c h _ c o u n t ) {

656 case 1 : s w i t c h _ c o u n t = s w i t c h _ c o u n t + a u t o p i l o t _ t e s t m o d e ( ) ; / / i n i n i t i a l a u t o p i l o t check

don ’ t need t o send t h e pwm

657 PDEBUG( " \ n s w i t c h c o u n t i s %d " , s w i t c h _ c o u n t ) ;

658 whi le ( c o n t r o l l e r _ i n −>PICCIC ) {

659 r o s : : sp inOnce ( ) ;

660 s e l f t e s t ( 0 , 0 , 0 , 0 ) ;

661 i f ( ! c o n t r o l l e r _ i n −>PICCIC )

662 c o n t i nu e ;

663 l o o p _ r a t e . s l e e p ( ) ;

664 }

665 break ;

666 d e f a u l t :

667 send_pwm ( ) ;

668 }

669 }

670

671 /∗ Outpu t t o t h e motor c o n t r o l l e r ∗ /

672 PDEBUG

673 ( " Out : t h r o t t l e =%f e l e v a t o r=%f a i l e r o n=%f r u d d e r=%f \ n \ n " ,

674 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . t h r o t t l e _ c m d ,

675 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . e l e va to r_ cm d ,

676 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . a i l e ron_cmd ,

677 c o n t r o l l e r _ o u t −>Cont ro lSurfaceCommands . rudder_cmd ) ;

678 c l o c k _ g e t t i m e (CLOCK_REALTIME, &end ) ;

679 i t e r ++;

680 t m p d i f f = g e t _ e l a p s e d (& s t a r t , &end ) ;

681 PDEBUG( " i t e r %l d took %" PRIu64 " us \ n " , i t e r , t m p d i f f / 1000) ;

682 s e t _ g r o u n d _ d a t a (& msg_data ) ;

683 e n d _ r o s _ t i m e r = r o s : : Time : : now ( ) ;

684 msg_data . d u r a t i o n = ( e n d _ r o s _ t i m e r − s t a r t _ r o s _ t i m e r ) . toNSec ( ) ∗ 1e−9;

685 g_pub_da t a_gs . p u b l i s h ( msg_data ) ;

686 p r i n t f ( " \ n \ n The t ime d i f f i s %f " , ( e n d _ r o s _ t i m e r − s t a r t _ r o s _ t i m e r ) . toNSec ( ) ∗ 1e−9) ;

687 / / t o run o n l y a t 20Hz

688 l o o p _ r a t e . s l e e p ( ) ;

689 # e n d i f

690 / / a s s i g n s e r v o commands and s e r v o d e f l e c t i o n v a l u e s

691 ass ign_se rvo_commands ( ) ;

692 a s s i g n _ s e r v o _ d f e f l e c t i o n s ( ) ;

693 c l o c k _ g e t t i m e (CLOCK_REALTIME, &s t a r t ) ;

694 }
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695 DG808_GNC_mov_terminate ( ) ;

696 re turn 0 ;

697 }

D.2 Sensor Data Acquisition Code

This section lists the code to read all sensor data and output the servo commands to the motors.

D.2.1 RC, Air Velocity and Battery Voltage

This sub section contains the code to read RC, air velocity and battery voltage from our custom

built avionics board. This also contains code to send values to the actuator.
1 i n t main ( i n t argc , char ∗a rgv [ ] )

2 {

3 r o s : : i n i t ( a rgc , argv , " a r d u i n o " ) ;

4 r o s : : NodeHandle n ;

5

6 / / −−−−− A s s i g n i n g ROS p a r a m e t e r s from la un ch f i l e −−−−−− / /

7 r e a d _ p a r a m e t e r ( ) ;

8

9 # i f FLIGHT_TEST

10 r o s : : P u b l i s h e r pub_pwm ;

11 pub_pwm = n . a d v e r t i s e < d r o n e _ r o s : : pwm > ( "pwm" , 1000) ;

12

13 r o s : : P u b l i s h e r p u b _ t e m p e r a t u r e ;

14 p u b _ t e m p e r a t u r e = n . a d v e r t i s e < senso r_msgs : : Tempera tu r e > ( " t e m p e r a t u r e " , 1000) ;

15

16 r o s : : P u b l i s h e r p u b _ p r e s s u r e ;

17 p u b _ p r e s s u r e = n . a d v e r t i s e < senso r_msgs : : F l u i d P r e s s u r e > ( " p r e s s u r e " , 1000) ;

18

19 r o s : : P u b l i s h e r p u b _ b a t t e r y _ s t a t e ;

20 p u b _ b a t t e r y _ s t a t e = n . a d v e r t i s e < senso r_msgs : : B a t t e r y S t a t e > ( " b a t t e r y _ s t a t e " , 1000) ;

21 # e n d i f

22

23 r o s : : S u b s c r i b e r sub = n . s u b s c r i b e ( " / s e r v o _ o p " , 1000 , s e r v o r e c e p t i o n ) ;

24

25 r o s : : Ra te l o o p _ r a t e ( 2 0 ) ;

26

27 r o s : : Time t imes t amp = r o s : : Time : : now ( ) ;

28 i n t t t y _ f d = e s t a b l i s h _ s e r i a l ( ) ;

29 char buf [ 1 0 2 4 ] ;

30

31 u s b s t a t u s . u s b _ a r d u i n o = 1 ;

32 whi le ( r o s : : ok ( ) ) {

33

34 r o s : : sp inOnce ( ) ;

35

36 # i f FLIGHT_TEST
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37

38 d r o n e _ r o s : : pwm msg_pwm ;

39 senso r_msgs : : Tempera tu r e m s g _ t e m p e r a t r u r e ;

40 senso r_msgs : : F l u i d P r e s s u r e m s g _ p r e s s u r e ;

41 senso r_msgs : : B a t t e r y S t a t e m s g _ b a t t e r y _ s t a t e ;

42

43 g e t r c ( t t y _ f d ) ; / / g e t s t h e rc i n p u t s

44 g e t p r e s s u r e ( t t y _ f d ) ; / / g e t s t h e p r e s s u r e i n p u t s

45 g e t t a c h ( t t y _ f d ) ; / / g e t s t h e t a c h

46 g e t c u r r e n t ( t t y _ f d ) ; / / g e t s t h e c u r r e n t

47

48

49 msg_pwm . h e a d e r . s tamp = t imes t amp ;

50

51 msg_pwm . PICCIC = h e l p e r s . a u t o _ s w i t c h ;

52 msg_pwm . T h r o t t l e = h e l p e r s . t h _ p e r c e n t ;

53 msg_pwm . E l e v a t o r = h e l p e r s . e l _ d e g ;

54 msg_pwm . A i l e r o n = h e l p e r s . a i _ d e g ;

55 msg_pwm . Rudder = h e l p e r s . ru_deg ;

56

57

58 m s g _ p r e s s u r e . f l u i d _ p r e s s u r e = h e l p e r s . p r e s s u r e ;

59

60 msg_pwm . v e l o c i t y = h e l p e r s . a i r _ v e l o c i t y ;

61

62 m s g _ t e m p e r a t r u r e . t e m p e r a t u r e = h e l p e r s . t e m p e r a t u r e ;

63

64 m s g _ b a t t e r y _ s t a t e . v o l t a g e = h e l p e r s . v o l t a g e ;

65

66 msg_pwm . t a c h = h e l p e r s . rpm ;

67

68 m s g _ b a t t e r y _ s t a t e . c u r r e n t = h e l p e r s . c u r r e n t [ 0 ] ;

69

70 msg_pwm . u s b s t a t u s = u s b s t a t u s . u s b _ a r d u i n o ;

71

72 pub_pwm . p u b l i s h ( msg_pwm ) ;

73 p u b _ t e m p e r a t u r e . p u b l i s h ( m s g _ t e m p e r a t r u r e ) ;

74 p u b _ p r e s s u r e . p u b l i s h ( m s g _ p r e s s u r e ) ;

75 p u b _ b a t t e r y _ s t a t e . p u b l i s h ( m s g _ b a t t e r y _ s t a t e ) ;

76

77 # e n d i f

78

79 / / send o u t p u t

80 s p r i n t f ( buf , "%d %d %d %d \ n " , ( i n t ) t h r o t t l e , ( i n t ) e l e v a t o r ,

81 ( i n t ) a i l e r o n , ( i n t ) r u d d e r ) ;

82

83 s e n d o u t p u t ( t t y _ f d , buf ) ;

84

85 l o o p _ r a t e . s l e e p ( ) ;

86 }

87 }
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D.2.2 GPS and IMU

We have used Vector Nav VN 200 [8] for measuring position and attitude. The following code is

to read from VN200 sensor.
1 i n t main ( i n t argc , char ∗a rgv [ ] )

2 {

3 r o s : : i n i t ( a rgc , argv , " v e c t o r n a v " ) ;

4 r o s : : NodeHandle n ;

5

6

7 s t d : : s t r i n g p o r t ;

8 i n t baud ;

9 i n t c h e c k _ t i m e = 0 ;

10 char fname [ 1 2 8 ] ;

11 s t a t i c i n t seq = 0 ;

12 # i f FLIGHT_TEST

13

14 r o s : : P u b l i s h e r p u b _ i n s ;

15 p u b _ i n s = n . a d v e r t i s e < d r o n e _ r o s : : i n s > ( " i n s " , 1000) ;

16

17 / / add p u b l i s h e r h a n d l e r f o r sensor_msgs / NavSat t h a t c o n t a i n s GPS p o s i t i o n

18 r o s : : P u b l i s h e r p u b _ n a v _ s a t _ f i x ;

19 p u b _ n a v _ s a t _ f i x = n . a d v e r t i s e < senso r_msgs : : NavSatF ix > ( " g p s _ p o s i t i o n " , 1000) ;

20

21 / / add p u b l i s h e r h a n d l e r f o r geometry_msgs / T w i s t t h a t c o n t a i n s GPS v e l o c i t y

22 r o s : : P u b l i s h e r pub_Twis t_GPS_ve loc i t y ;

23 pub_Twis t_GPS_ve loc i t y = n . a d v e r t i s e < geometry_msgs : : Twis t > ( " g p s _ v e l o c i t y " , 1000) ;

24

25 / / add p u b l i s h e r h a n d l e r f o r sensor_msgs / Imu t h a t c o n t a i n s P , Q, R and l i n e a r a c c e l e r a t i o n

26 r o s : : P u b l i s h e r pub_Imu_PQR_Accelera t ion ;

27 pub_Imu_PQR_Accelera t ion = n . a d v e r t i s e < senso r_msgs : : Imu > ( " i m u _ P Q R _ a c c e l e r a t i o n " , 1000) ;

28

29 / / add p u b l i s h e r h a n d l e r f o r geometry_msgs / P o i n t t h a t c o n t a i n s Phi , The ta and P s i

30 r o s : : P u b l i s h e r p u b _ a t t i t u d e ;

31 p u b _ a t t i t u d e = n . a d v e r t i s e < geometry_msgs : : P o i n t > ( " a t t i t u d e " , 1000) ;

32

33

34 r o s : : Time t imes t amp = r o s : : Time : : now ( ) ;

35 n . param < s t d : : s t r i n g > ( " s e r i a l _ p o r t " , p o r t , " / dev / gps " ) ;

36 n . param < i n t >( " s e r i a l _ b a u d " , baud , 115200) ;

37 n . param < s t d : : s t r i n g > ( " imu / f r a m e _ i d " , imu_frame_id , "LLA" ) ;

38 r o s : : Ra te l o o p _ r a t e ( 2 0 ) ;

39

40 VN_ERROR_CODE v n _ r e t v a l ;

41

42 ROS_INFO ( " I n i t i a l i z i n g vn200 . P o r t :% s Baud:%d \ n " , p o r t . c _ s t r ( ) , baud ) ;

43

44 v n _ r e t v a l = vn200_connec t (&vn200 , p o r t . c _ s t r ( ) , baud ) ;

45 i f ( v n _ r e t v a l != VNERR_NO_ERROR) {

46 char vn_e r ro r_msg [ 1 0 0 ] ;

47 ROS_FATAL

48 ( " Could n o t c o n e n c t t o vn200 on p o r t :% s @ Baud:%d ; E r r o r %d \ n "

49 " Did you add your u s e r t o t h e ’ d i a l o u t ’ group i n / e t c / group ? " ,
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50 p o r t . c _ s t r ( ) , baud , v n _ r e t v a l ) ;

51 e x i t ( EXIT_FAILURE ) ;

52 }

53

54 unsigned s h o r t s t a t u s ;

55 i n t check = 0 ;

56 VnVector3 ypr , l a t i t u d e L o g n i t u d e A l t i t u d e , V e l o c i t y , a c c e l , a n g u l a r R a t e ,

57 p o s i t i o n A c c u r a c y ;

58 double g p s t i m e ;

59 unsigned s h o r t week ;

60 unsigned char f i x , nos ;

61 f l o a t speed_acc , t i m e _ a c c ;

62 c l o c k _ g e t t i m e (CLOCK_REALTIME, &s t a r t ) ;

63 c l o c k _ g e t t i m e (CLOCK_REALTIME, &c a l c ) ;

64

65 whi le ( r o s : : ok ( ) ) {

66

67 double r ema in_us ;

68 u i n t 6 4 _ t t m p d i f f ;

69 / / c r e a t i n g message h a n d l e r f o r t o i c s

70 d r o n e _ r o s : : i n s msg_ins ;

71 senso r_msgs : : NavSatF ix m s g _ g p s _ p o s i t i o n ;

72 geometry_msgs : : Twis t m s g _ g p s _ v e l o c i t y ;

73 senso r_msgs : : Imu msg_imu_PQR_acce le ra t ion ;

74 geometry_msgs : : P o i n t m s g _ a t t i t u d e ;

75

76 i f ( check <= 0)

77 v n 2 0 0 _ g e t G p s S o l u t i o n (&vn200 ,

78 &gps t ime ,

79 &week ,

80 &f i x ,

81 &nos ,

82 &l a t i t u d e L o g n i t u d e A l t i t u d e ,

83 &V e l o c i t y ,

84 &p o s i t i o n A c c u r a c y ,

85 &speed_acc , &t i m e _ a c c ) ;

86

87 i f ( ( g p s t i m e > 0) && ( week > 0) ) {

88 check ++;

89 p r i n t f ( " \ n \ n t h e t ime i s %l f " , g p s t i m e ) ;

90 }

91 v n _ r e t v a l = v n 2 0 0 _ g e t I n s S t a t e L l a (&vn200 ,

92 &ypr ,

93 &l a t i t u d e L o g n i t u d e A l t i t u d e ,

94 &V e l o c i t y , &a c c e l ,

95 &a n g u l a r R a t e ) ;

96 i f ( v n _ r e t v a l != VNERR_NO_ERROR) {

97 char vn_e r ro r_msg [ 1 0 0 ] ;

98 msg_ins . h e a d e r . seq = seq ;

99 msg_ins . h e a d e r . s tamp = t imes t amp ;

100 msg_ins . h e a d e r . f r a m e _ i d = imu_f rame_id ;

101 msg_ins . u s b s t a t u s = 0 ;

102 } e l s e {

103 msg_ins . h e a d e r . seq = seq ;

104 msg_ins . h e a d e r . s tamp = t imes t amp ;

105 msg_ins . h e a d e r . f r a m e _ i d = imu_f rame_id ;
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106 m s g _ a t t i t u d e . x = ypr . c2 ∗ 0 . 0 1 7 4 5 3 2 9 2 5 ; / / p h i / / I n t e n t i o n a l re−o r d e r i n g

107 m s g _ a t t i t u d e . y = ypr . c1 ∗ 0 . 0 1 7 4 5 3 2 9 2 5 ; / / t h e t a

108 m s g _ a t t i t u d e . z = ypr . c0 ∗ 0 . 0 1 7 4 5 3 2 9 2 5 ; / / p s i

109

110 msg_ins . t ime = g p s t i m e ;

111 msg_ins . week = week ;

112 / / msg_nos = nos ;

113

114 m s g _ g p s _ p o s i t i o n . l a t i t u d e = l a t i t u d e L o g n i t u d e A l t i t u d e . c0 ;

115 m s g _ g p s _ p o s i t i o n . l o n g i t u d e = l a t i t u d e L o g n i t u d e A l t i t u d e . c1 ;

116 m s g _ g p s _ p o s i t i o n . a l t i t u d e = l a t i t u d e L o g n i t u d e A l t i t u d e . c2 ;

117

118 m s g _ g p s _ v e l o c i t y . l i n e a r . x = V e l o c i t y . c0 ;

119 m s g _ g p s _ v e l o c i t y . l i n e a r . y = V e l o c i t y . c1 ;

120 m s g _ g p s _ v e l o c i t y . l i n e a r . z = V e l o c i t y . c2 ;

121

122 msg_imu_PQR_acce le ra t ion . l i n e a r _ a c c e l e r a t i o n . x = a c c e l . c0 / GRAVITY;

123 msg_imu_PQR_acce le ra t ion . l i n e a r _ a c c e l e r a t i o n . y = a c c e l . c1 / GRAVITY;

124 msg_imu_PQR_acce le ra t ion . l i n e a r _ a c c e l e r a t i o n . z = a c c e l . c2 / GRAVITY;

125

126 msg_imu_PQR_acce le ra t ion . a n g u l a r _ v e l o c i t y . x = a n g u l a r R a t e . c0 ;

127 msg_imu_PQR_acce le ra t ion . a n g u l a r _ v e l o c i t y . y = a n g u l a r R a t e . c1 ;

128 msg_imu_PQR_acce le ra t ion . a n g u l a r _ v e l o c i t y . z = a n g u l a r R a t e . c2 ;

129 msg_ins . u s b s t a t u s = 1 ;

130 }

131 / / P u b l i s h i n g t h e t o p i c s

132 p u b _ i n s . p u b l i s h ( msg_ins ) ;

133 p u b _ n a v _ s a t _ f i x . p u b l i s h ( m s g _ g p s _ p o s i t i o n ) ;

134 pub_Twis t_GPS_ve loc i t y . p u b l i s h ( m s g _ g p s _ v e l o c i t y ) ;

135 pub_Imu_PQR_Accelera t ion . p u b l i s h ( msg_imu_PQR_acce le ra t ion ) ;

136 p u b _ a t t i t u d e . p u b l i s h ( m s g _ a t t i t u d e ) ;

137

138 ROS_INFO ( " \ nData : \ n "

139 " YPR . Yaw : %f \ n "

140 " YPR . P i t c h : %f \ n "

141 " YPR . R o l l : %f \ n " ,

142 ypr . c2 , ypr . c1 , ypr . c0 ) ;

143 l o o p _ r a t e . s l e e p ( ) ;

144 c l o c k _ g e t t i m e (CLOCK_REALTIME, &end ) ;

145 t m p d i f f = g e t _ e l a p s e d (& s t a r t , &end ) ;

146 rema in_us = ( i n t e r v a l _ s e c ∗ 1000000 − t m p d i f f / 1000) ;

147 p r i n t f ( " \ n \ n took %l l u " , t m p d i f f / 1000) ;

148 c l o c k _ g e t t i m e (CLOCK_REALTIME, &s t a r t ) ;

149 c l o c k _ g e t t i m e (CLOCK_REALTIME, &c a l c 1 ) ;

150 double t ime_ms = g e t _ t i m e (& c a l c , &c a l c 1 ) ;

151

152 }

153 v n 2 0 0 _ d i s c o n n e c t (&vn200 ) ;

154 # e n d i f

155 re turn 0 ;

156 }
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