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Abstract

In this work, we will be investigating a specific Hamiltonian system, namely, the Kepler prob-

lem with a correction term δ

r3 added to the potential energy. Our objective is to show that the

system is stable in the sense of the KAM theorem. In the first sections, we introduce essen-

tial concepts and tools that will be used in the process of understanding and showing how the

KAM theorem works with our system. These concepts and tools are: Hamiltonian formalism,

canonical transformations, the Hamilton-Jacobi equation and Action-Angle variables. In the

last section, we state the KAM theorem and, based on the results we obtain from previous sec-

tions, we can conclude that the system is in fact stable in the sense of the KAM theorem. An

informal statement of the KAM theorem is that if the unperturbed Hamiltonian system H0, ex-

pressed in the action variable J, is non-degenerate, then under sufficiently small perturbation

εH1 we have that

H(J,Φ) = H0(J)+ εH1(J,Φ)

for ε << 1, most of the quasiperiodic orbits persist under the small perturbation εH1. The

system under which the perturbation will be acting is the following

H0(r,θ ,φ , pr, pθ , pφ ) =
1

2m
(p2

r +
1
r2 p2

θ +
1

r2 sin2
θ

p2
φ )−

γ

r
± δ

r3 ,

for γ > 0.
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Chapter 1

Introduction

Celestial mechanics is one of the centuries-old subjects that people have been trying to understand

[1]. Philosophers, historians, and even religious scholars were always curious to discover the sky. Later,

Johannes Kepler (1571-1630) devised three magnificent laws known as Kepler’s laws.

• All planets move about the Sun in elliptical orbits, having the Sun as one of the foci.

• A radius vector joining any planet to the Sun sweeps out equal areas in equal periods of time.

• The squares of the sidereal periods (of revolution) of the planets are directly proportional to the cubes

of their mean distances from the Sun.

However, Kepler did not explain or prove why the motion of planets obeys these laws. In 1687, New-

ton stated his laws in Philosophiae naturalis Principia Mathematica ("Mathematical Principles of Natural

Philosophy"). These laws are known as Newton’s laws.

• An object will remain at rest or in uniform motion in a straight line unless acted upon by an external

force.

• The vector sum of the forces F on an object is equal to the mass m of that object multiplied by the

acceleration a of the object: F = ma.

• For every external force that acts on an object there is a force of equal magnitude but opposite direction

which acts back on the object which exerted that external force.

Newton’s laws lasted for a long time until 1905 when Albert Einstein presented his theory of relativity.

Unlike what Newton discovered, Einstein considered mass, time, and space as quantities that are dependent

on the observer. In other words, two observers within two different frames of reference have different ob-

servations. However, Newton’s laws still work within a single frame of reference and define the trajectories
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of the motion in a good manner [2], good enough to take us to the moon and back.

About fifty years later, Andrey Kolmogorov, a Russian mathematician, announced a theorem regarding

the stability of dynamical systems. Mathematicians realized that this theorem, if true, can be applied to plan-

etary motion to prove the stability of our solar system. Although Kolmogorov did not spell out a rigorous

proof of his theory, he outlined the proof-techniques in 1954. Several years later, Jurgen Moser, a German-

American mathematician was able to prove a low dimensional version of Kolmogorov theorem. In 1963,

Kolmogorov’s student, Vladimir Arnold, provided a proof of a valid version of the theorem in all dimen-

sions. Since then, this astonishing result was known as Kolmogorov-Arnold-Moser theory (KAM theory)[3].

In this work, we will study in detail the two-body problem subject to the inverse-square force with a

quartic correction term. Namely, we will study the motion of the system , define and construct the action-

angle variables of the system with this correction term, and see how the KAM theorem can be applied by

testing the assumptions of the theorem. To do that, we need to introduce, briefly, some concepts of calculus

of variations, classical mechanics, and Hamiltonian formalism.

Formally, the Hamiltonian of the system we are looking at can be written in the following form

H0(r,θ ,φ , pr, pθ , pφ ) =
1

2m
(p2

r +
1
r2 p2

θ +
1

r2 sin2
θ

p2
φ )−

γ

r
± δ

r3 .

For γ > 0.We show that if the unperturbed Hamiltonian system H0, expressed in the action variable J, is

non-degenerate, then under sufficiently small perturbation such that

H(J,Φ) = H0(J)+ εH1(J,Φ)

for ε << 1, most of the quasiperiodic orbits persist under the small perturbation.
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Chapter 2

Motivation

The definition of Schwardschild metric is written in the following form

c2dτ
2 = c2(1− 2µ

r
)dt2− (1− 2µ

r
)−1dr2− r2(dθ

2 + sin2
θdφ

2). (2.0.1)

Where

τ is the proper time

2µ =
2GM

c2 is Schwardschild radius, where c is the speed of light.

(r,θ ,φ)spherical coordinates.

Associated with the equations of motion of a test particle in the Schwardschild space-time are two constants

of motion

(1− 2µ

r
)

dt
dτ

=
E

mc2

r2 dθ

dτ
= h.

Where E and h are the total energy and the specific angular momentum, respectively. Using these two

constant of motion quantities to eliminate the dependence of the equations of motion on the two variables t

and θ leads to the following equation

ṙ2 +
h2

r2 (1−
2µ

r
)− 2µc2

r
=

E2

m2c2 − c2. (2.0.2)
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We see in the last equation that it is written in the form of a kinetic and potential energy, multiplied by 2, of

a particle moving in a central field influenced by the following gravitational effective potential energy

U(r) =
h2

2r2 −
µh2

r3 −
µc2

r
(2.0.3)

This cubic term, as we will see, will not appear in the equivalent Newtonian mechanics. Therefore, we will

investigate the affect that this extra term will have on the system when considering it.

Another way one could encounter such a form is by considering the gravitational potential energy of a

not spherically symmetric mass distribution ρ , say with unit mass, traveling around a massive star with mass

M.

U(~R) =
∫

D

ρ(~r′)
|~R−~r′|

d~r′ (2.0.4)

Where ρ is the mass distribution function and ~R is the separation vector from the position of M. Here ~r′ is

taken to be small relative to ~R. We can write

|~R−~r′|=
√
|R2−2~R~r′+ r′2|

= R

√
|1−2

~̂R ·~r′
R

+(
r′

R
)2|

= R
√
|1+S|

Where S = ( r′
R )

2− 2~̂R·~r′
R and ~̂R =

~R
R .

1√
|1+S|

= 1− 1
2

S+
3
8

S2 +O(s3)

= 1+
~̂R ·~r′

R
− 1

2
r′2

R2 +
3
2
(~̂R ·~r′)2

R2 +O(
r′

R
)3

= 1+
~̂R ·~r′

R
− 1

2R2 (r
′2−3(~̂R ·~r′)2)+O(

r′

R
)3

Hence,

U(R)≈
∫

D

ρ(~r
′
)

R
+

(~̂R ·~r′)ρ(~r′)
R2 − ρ(~r

′
)(r′2−3(~̂R ·~r′)2)

2R3 d~r
′

(2.0.5)

These three terms are called Monopole, Dipole, and Quadrupole, respectively. Note that the dipole term, in

4



the case of gravitational potential, vanishes.
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Chapter 3

Variational Principles and Euler-Lagrange Equation

3.1 Lagrange Function

Lagrange function or Lagrangian L = L(t,q(t), q̇(t)) is a function that describes the dynamics of the

system, where q(t) is the position of the particle and q̇(t) is the velocity v(t). We define the Lagrangian of a

system as follows:

L = T −U ,

where T = mv2

2 and U =U(q) are kinetic energy and potential energy, respectively. Associated with such

a system is the action integral

I(q) =
∫ t1

t0
L(t, q̇(t),q(t))dt (3.1.1)

with boundary conditions q(t0) = q0 and q(t1) = q1. Moreover, the motion of the system is described by a

stationary point of the above functional.

Definition 3.1. For the functional (3.1.1), the equation

∂L
∂q
− d

dt
∂L
∂ q̇

= 0 (3.1.2)

is called the Euler-Lagrange equation.

Definition 3.2. A function q(t) is a stationary point of the functional (3.1.1) if the first derivative of (3.1.1)

vanishes at q(t).

Theorem 3.1. Let I : C2[t0, t1] → R be a functional defined as (3.1.1) where L has continuous partial

derivatives of second order with respect to the variables it depends on. Let G = {q ∈ C2[t0, t1] : q(t0) =

q0 andq(t1) = q1}, where q0 and q1 are fixed real numbers. Then I is stationary at q ∈ G if and only if the

Euler-Lagrange equation is satisfied along q.[4]
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3.1. LAGRANGE FUNCTION

Proof. Assume I is stationary at function q(t). Define q̂ = q+εη such that η(t)∈ {γ(t)∈C2[t0, t1] : γ(t0) =

γ(t1) = 0}. Now, consider

I(q̂) =
∫ t1

t0
L(t, q̂, ˆ̇q)dt

as a function of ε and apply ∂

∂ε
. By the definition of a stationary point, we have that I′(ε)

∣∣
ε=0 = 0.

I′(ε) =
∫ t1

t0
[
∂L(t, q̂, ˆ̇q)

∂q
η +

∂L(t, q̂, ˆ̇q)
∂ q̇

η̇
]
dt.

At ε = 0, we have:

I′(0) =
∫ t1

t0
[
∂L(t,q, q̇)

∂q
η +

∂L(t,q, q̇)
∂ q̇

η̇
]
dt = 0. (3.1.3)

Using integration by parts for the second term in (3.1.3), we obtain:

∫ t1

t0
η
[∂L

∂q
− d

dt
∂L
∂ q̇

]
dt = 0.

Since the last equation holds for all η such that η(t) = {η(t) ∈ C2[t0, t1] : η(t0) = η(t1) = 0}, then we

conclude that
∂L
∂q
− d

dt
∂L
∂ q̇

= 0. (3.1.4)

Equation (3.1.4) is what is so called Eluer-Lagrange equation.

Conversely, the functional I is stationary at q means that the derivative of I vanishes at q, that is we want

to show that,

I′(ε)
∣∣
ε=0 = 0

I′(0) =
∫ t1

t0
[
∂L(t,q, q̇)

∂q
η +

∂L(t,q, q̇)
∂ q̇

η̇
]
dt

=
∫ t1

t0
[

d
dt

∂L(t,q, q̇)
∂ q̇

η +
∂L(t,q, q̇)

∂ q̇
η̇
]
dt.

Using, by assumption, the Euler-Lagrange equation. Again, using integration by parts in the first term, we

7



3.2. HAMILTON FUNCTION

get

I′(0) =
∫ t1

t0
[−∂L(t,q, q̇)

∂ q̇
η̇ +

∂L(t,q, q̇)
∂ q̇

η̇
]
dt = 0.

This completes the proof.

Theorem 3.2. Newton’s equation of dynamics coincide with stationary points of the functional I.[5]

Proof. Consider an n-dimensional system. Newton’s equations of dynamics read

mkq̈k +
∂U
∂qk

= 0, (3.1.5)

for 1 ≤ k ≤ n. In Theorem 3.1 we showed that a stationary point of any functional must satisfy the Euler-

Lagrange equations

d
dt

∂L
∂ q̇k
− ∂L

∂qk
= 0,

where L = ∑
n
k=1

mk q̇2
k

2 −U(qk). Obviously, applying the Euler-Lagrange equation to L leads to (3.1.5).

3.2 Hamilton Function

Consider a mechanical system that has n degrees of freedom. As we know, we can write the Lagrangian

function of this system as the following:

L = T −U ,

where T = ∑
n
k=1

mkv2
k

2 , U =U(q) and q = (q1,q2,q3, ...qn).

Now, we introduce a very useful mathematical tool that provides the link between Lagrange function and

Hamilton function. For simplicity, consider a function f with one degree of freedom such that f :R→R and

f ′′ > 0. Now, for some fixed number p such that max{px− f (x)} exists, define a new function G(p) = px

8



3.2. HAMILTON FUNCTION

as shown in figure (3.1). We map p to the point x0 that solves the following equation

max{px− f (x)}= 0.

In other words,

d
dx

[
px− f (x)

]
x=x0

= 0⇒ p = f ′(x0).

Now, we can define a new function

g(p) = px0(p)− f (x0(p))

which is a transformation from ( f (x),x) to (g(p), p). We call this transformation Legendre transformation.

Figure 3.1: Legendre transformation [5]

Using Legendre transformation to transform the Lagrangian L = L(q,v) to some function H = H(q,p)

we write
n

∑
k=1

pkvk−L(t,q,v) = H(t,q,p), (3.2.1)

where pk =
∂L
∂vk

= mkvk is the momentum.

9



3.2. HAMILTON FUNCTION

Now we want to write an explicit formula for H(t,q,p),

H(q,p) =
n

∑
k=1

pkvk−
mkv2

k
2

+U(q)

=
mkv2

k
2

+U(q)

=
p2

k
2mk

+U(q).

The above equation is called Hamilton Function or Hamiltonian. Notice that the Hamiltonian H(q,p) is

the total energy of the system. Since we showed that Hamilton function can be obtained from the Lagrangian

system, we should be able to get the corresponding equations to Euler-Lagrange equations. We start with

the total derivative of the Lagrangian:

dL(t,qk, q̇k)

dt
=

n

∑
k=1

∂L
∂qk

q̇k +
∂L
∂ q̇k

q̈k +
∂L
∂ t

=
n

∑
k=1

∂L
∂qk

q̇k + pkq̈k +
∂L
∂ t

=
n

∑
k=1

∂L
∂qk

q̇k +
d
dt
(pkq̇k)− ṗkq̇k +

∂L
∂ t

,

so we have

d
dt
(pkq̇k−L) = ṗkq̇k−

∂L
∂qk

q̇k−
∂L
∂ t

.

Using Legendre transformation (3.2.1) we obtain:

dH
dt

= ṗq̇− ∂L
∂q

q̇− ∂L
∂ t

. (3.2.2)

However, since H = H(t,qk, pk),

d
dt

H =
∂H
∂qk

q̇k +
∂H
∂ pk

ṗk +
∂H
∂ t

. (3.2.3)

Comparing (3.2.2) with (3.2.3) leads to:

∂H
∂ pk

= q̇k (3.2.4)

∂H
∂qk

=− ∂L
∂qk

=−ṗk (3.2.5)

∂H
∂ t

=−∂L
∂ t

. (3.2.6)

10



3.2. HAMILTON FUNCTION

Using the Euler-Lagrange equation in (3.2.5). Equations (3.2.4) and (3.2.5) are the equations corresponding

to Euler-Lagrange (3.1.4).

So far, we showed that by means of Legendre transformation, one can convert a Lagrangian system of

n second-order differential equations (3.1.4) to a system of 2n first-order differential equations (3.2.4) and

(3.2.5). The 2n equations corresponding to the Euler-Lagrange equations are called Hamilton’s Equations.

According the above work, we should mention that the equations of motion (Hamilton’s equations) of a

Hamiltonian system that depends on 2n coordinates, say, x = (q1,q2, . . . ,qn, p1, p2, . . . , pn) can be written in

the following form

ẋ = I ·∇H(x) (3.2.7)

where ∇ = (∂q1, . . . ,∂qn,∂ p1, . . . ,∂ pn), I =

 0 In×n

−In×n 0

, and I is the identity matrix.

11



Chapter 4

Canonical Transformations

4.1 Equations of Canonical Transformation

The main purpose of finding a transformation is to obtain a simpler form of the system we are working

on. Then, we can solve the simple one and use the transformation equation to get a solution to our original

problem or system. In this section, we will find a sufficient condition of what is called a canonical transfor-

mation.

Consider a Hamiltonian H(q, p). A canonical transformation is a function, say, φ that maps (q, p) into

(Q,P) and gives a new Hamiltonian K = K(Q,P) such that the structure of the Hamilton’s equations is

preserved, that is,

∂K
∂P

= Q̇ (4.1.1)

∂K
∂Q

=−Ṗ. (4.1.2)

Considering P=P(q, p) and Q=Q(q, p) functions of q and p gives the total time derivative as the following:

Ṗ(q, p) =
∂P
∂ p

ṗ+
∂P
∂q

q̇

Q̇(q, p) =
∂Q
∂ p

ṗ+
∂Q
∂q

q̇.

So we can write this system of two equations as follows

Ṗ

Q̇

=


∂P
∂ p

∂P
∂q

∂Q
∂ p

∂Q
∂q




ṗ

q̇

=


∂P
∂ p

∂P
∂q

∂Q
∂ p

∂Q
∂q




0 −I

I 0




∂H
∂ p

∂H
∂q

 ,

12



4.1. EQUATIONS OF CANONICAL TRANSFORMATION

where I is the identity matrix.

Let K = H ◦φ−1 be the transformed Hamiltonian.

∂H
∂ p

=
∂K
∂P

∂P
∂ p

+
∂K
∂Q

∂Q
∂ p

∂H
∂q

=
∂K
∂P

∂P
∂q

+
∂K
∂Q

∂Q
∂q

Which read 
∂H
∂ p

∂H
∂q

=


∂P
∂ p

∂Q
∂ p

∂P
∂q

∂Q
∂q




∂K
∂P

∂K
∂Q

 .

Therefore, we have

Ṗ

Q̇

=


∂P
∂ p

∂P
∂q

∂Q
∂ p

∂Q
∂q




0 −I

I 0




∂H
∂ p

∂H
∂q

=

[
∂P
∂ p

∂P
∂q

∂Q
∂ p

∂Q
∂q




0 −I

I 0




∂P
∂ p

∂Q
∂ p

∂P
∂q

∂Q
∂q


]

∂K
∂P

∂K
∂Q

 .

On the other hand (4.1.1) and (4.1.2) read as follows

Ṗ

Q̇

=


0 −I

I 0




∂K
∂P

∂K
∂Q

 .

Therefore, the change of coordinates function φ is canonical if and only if the Jacobian matrix of φ is

symplectic.

Definition 4.1. A 2n×2n matrix J is symplectic if

J

 0 I

−I 0

JT =

 0 I

−I 0


Where I is the n×n identity matrix.
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4.2. GENERATING FUNCTIONS

To conclude, the sufficient condition to have a canonical transformation is having a symplectic Jacobian

matrix of the transformation mapping from the old coordinates, say (q, p) phase space, to the new ones,

say (Q,P) phase space [7]. In other words, a canonical transformation is a transformation, say, φ such that

φ : R2n→R2n defined by φ(q, p) = (Q,P) with the property that Hamilton’s equations structure is invariant.

Remark 4.1. Let the Jacobian matrix of φ be denoted as ∂φ . Then we say that in order to have a canonical

transformation this matrix must be symplectic. that is,

∂φ

 0 I

−I 0

∂φ
T =

 0 I

−I 0


Moreover, one can use some properties for determinants to find that the determinant of ∂φ .

det
[
∂φ

 0 I

−I 0

∂φ
T ]= det

 0 I

−I 0


det[∂φ ]det[

 0 I

−I 0

]det[∂φ
T ] = 1

[det∂φ ]2 = 1⇒ det∂φ =±1.

Of course, the fact that the determinant of ∂φ does not vanish is crucial because we need to solve for our

original variables q and p. Therefore, having det∂φ 6= 0 means that it is a non-singular matrix which means

we can locally find (q, p) using (q, p) = φ−1(Q,P).

Remark 4.2. From remark 4.1 we showed that the determinant of the Jacobian matrix of a canonical trans-

formation is ±1. This property, actually, can be used to show that a canonical transformation that maps

(q, p) to (Q,P) preserves the volume in phase space. This is what Liouville’s theorem basically says. [9]

4.2 Generating Functions

Now that we discussed what is so called a canonical transformation and how we can obtain a simpler

Hamiltonian without loosing some important features of the original Hamiltonian such as the structure of

14



4.2. GENERATING FUNCTIONS

Hamilton’s equations and the volume in phase space, it is time to introduce an important method by which

we can find a canonical transformation.

Considering change in the action I from a path to another, as we have seen in chapter (1), gives the

Euler-Lagrange equation. However, the action can be written in this form

I =
∫ t1

t0

n

∑
k=1

pkq̇k−H(t,q,p)dt (4.2.1)

and we can obtain Hamilton’s equations by the same technique we used to obtain the Euler-Lagrange equa-

tion in Chapter (1). Now assume we have new variables (Q,P) that satisfy Hamilton’s equations

Q̇k =
∂K
∂Pk

(4.2.2)

Ṗk =−
∂K
∂Qk

, (4.2.3)

for some Hamiltonian K(Q,P). Since the new variables satisfy Hamilton’s equations, then the following

holds

δ Î = δ

∫ t1

t0

n

∑
k=1

PkQ̇k−K(t,Q,P)dt = 0 (4.2.4)

δ I = δ

∫ t1

t0

n

∑
k=1

pkq̇k−H(t,q,p)dt = 0, (4.2.5)

where δ I is the independent variation of the q’s and the p’s and we can write it as

δ

∫ t1

t0

n

∑
k=1

pkq̇k−H(t,q,p)dt =
∫ t1

t0
δ pkdqk + pkdδqk−

∂H
∂qk

δqkdt− ∂H
∂ pk

δ pkdt. (4.2.6)

Integrating the second term by parts

∫ t1

t0
pkdδqk = pkδqk|t1t0−

∫ t1

t0
δqkd pk, (4.2.7)

we obtain

δ

∫ t1

t0

n

∑
k=1

pkq̇k−H(t,q,p)dt =
∫ t1

t0
δ pk[dqk−

∂H
∂ pk

dt]+ pkδqk|t1t0−
∫ t1

t0
δqk[d pk−

∂H
∂qk

dt]. (4.2.8)
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4.2. GENERATING FUNCTIONS

As we did before, we require that the variation of qk at the end points vanishes, so we have the variation of

the paths starting and ending from fixed points at t0 and t1. Finally, by the independent variation of the q’s

and the p’s, we conclude that the only way to obtain δ I = 0 is to make the two integrals vanish, and hence

we have Hamilton’s equations. Similarly, the equations of motion of the Hamiltonian expressed in terms of

(Q,P) can be derived.

The two actions are variationally equivalent if there exists a function ψ such that

n

∑
k=1

pkq̇k−H(t,q,p) =
n

∑
k=1

PkQ̇k−K(t,Q,P)+
d
dt

ψ(t,q,p). (4.2.9)

Since

∫ t1

t0

d
dt

ψ(t,q,p)dt = ψ(t1,q(t1),p(t1))−ψ(t0,q(t0),p(t0))

is a constant, then the variation of the actions I(q,p) and Î(Q,P) is not affected 1. Rewriting (4.2.9), by

means of Qk = Qk(t,q,p), we can write ψ(t,q,p) = ψ1(t,q,Q) and

d
dt

ψ1(t,q,Q) =
n

∑
k=1

pkq̇k−
n

∑
k=1

PkQ̇k +K(t,Q,P)−H(t,q,p). (4.2.10)

Also, we can write

d
dt

ψ1(t,q,Q) =
n

∑
k=1

[∂ψ1

∂qk
q̇k +

∂ψ1

∂Qk
Q̇k
]
+

∂ψ1

∂ t
. (4.2.11)

Comparing (4.2.10) with (4.2.11)

n

∑
k=1

pkq̇k−
n

∑
k=1

PkQ̇k +K(t,Q,P)−H(t,q,p) =
n

∑
k=1

[∂ψ1

∂qk
q̇k +

∂ψ1

∂Qk
Q̇k
]
+

∂ψ1

∂ t
,

which implies the following set of equations

pk =
∂ψ1

∂qk
(4.2.12)

1Think of it as adding a constant to a function that has a stationary point, this point is invariant under the addition of a constant.
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4.2. GENERATING FUNCTIONS

Pk =−
∂ψ1

∂Qk
(4.2.13)

H(t,q,p)+
∂ψ1

∂ t
= K(t,Q,P). (4.2.14)

The function ψ1 is called the Generating Function of the canonical transformation. The associated

transformation with ψ1 is (Qk,Pk) = (Qk(t,q,p),− ∂ψ1
∂Qk

(t,q,Q)) and from (4.2.12) we can write Qk =

Qk(t,q,p) given that | ∂ 2ψ1
∂qn∂Qn

| 6= 0.

Observe that we can use the transformations

Qk = Qk(t,q,p)

Pk = Pk(t,q,p)

to construct four types of generating functions that give different canonical mappings [4]. For example, one

can write

ψ(t,q,p) = ψ(t,q,p(t,q,P)) =−PkQk +ψ2(t,q,P), (4.2.15)

where Qk = Qk(t,q,p(t,q,P) = Qk(t,q,P). Plugging (4.2.15) into (4.2.9) gives,

−
n

∑
k=1

ṖkQk−
n

∑
k=1

PkQ̇k +
n

∑
k=1

[∂ψ2

∂qk
q̇k +

∂ψ2

∂Pk
Ṗk
]
+

∂ψ2

∂ t
=

n

∑
k=1

pkq̇k−
n

∑
k=1

PkQ̇k +K(t,Q,P)−H(t,q,p).

Last equation implies the following,

pk =
∂ψ2

∂qk
(4.2.16)

Qk =
∂ψ2

∂Pk
(4.2.17)

H(t,q,p)+
∂ψ2

∂ t
= K(t,Q,P). (4.2.18)

The associated canonical transformation to the generating function ψ2(t,q,P) is (Qk,Pk)= (∂ψ2
∂Pk

(t,q,P),Pk(t,q,p)).

Similarly, we can choose

ψ = qk pk +ψ3(t,Q,p),

17



4.2. GENERATING FUNCTIONS

which leads to

Pk =−
∂ψ3

∂Qk

qk =−
∂ψ3

∂ pk

H(t,q,p)+
∂ψ3

∂ t
= K(t,Q,P).

Finally, we can write

ψ4 = qk pk−QkPk +ψ4(t,p,P).

We end up with the following equations

qk =
∂ψ4

∂ pk

Qk =−
∂ψ4

∂Pk

H(t,q,p)+
∂ψ4

∂ t
= K(t,Q,P).
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Chapter 5

Hamilton-Jacobi equation and Action-Angle Variables

5.1 Deriving Hamilton-Jacobi equation From Hamilton’s Principle

In Chapter (1), we defined the action (1) as

I(q) =
∫ t1

t0
L(t,q, q̇)dt,

such that q(t0) = q0, q(t1) = q1. In fact, the minimizing function q of (1) is the actual motion or path.

Let q = q(t) be the actual motion. In other words, functional I has its minimum value at q(t). Let q̂(t) =

q(t)+ εη(t), where η(t) is an arbitrary function of t. The change in I as we replace q by q̂ is

I(q̂)− I(q) =
∫ t1

t0
L(t, q̂, ˙̂q)dt−

∫ t1

t0
L(t,q, q̇)dt.

Using Taylor’s theorem to expand L(t, q̂, ˙̂q), we get,

L(t, q̂, ˙̂q) = L(t,q, q̇)+(η
∂L
∂q

+ η̇
∂L
∂ q̇

)ε +o(ε2).

We can write the difference as,

I(q̂)− I(q) =
∫ t1

t0
(η

∂L
∂q

+ η̇
∂L
∂ q̇

)ε dt +0(ε2)

= εδ I(q,η)+o(ε2),

where the term δ I(q,η) is called the first variation of I. By the assumption that q is the actual motion, we

get

δ I(q,η) =
∫ t1

t0
(η

∂L
∂q

+ η̇
∂L
∂ q̇

),dt = 0.
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5.1. DERIVING HAMILTON-JACOBI EQUATION FROM HAMILTON’S PRINCIPLE

Integrate the second term by parts leads to

∂L
∂ q̇

η
∣∣t1
t0
−
∫ t1

t0

d
dt

∂L
∂ q̇

η dt +
∫ t1

t0

∂L
∂q

δqdt = 0

∂L
∂ q̇

η
∣∣t1
t0
+
∫ t1

t0

[∂L
∂q
− d

dt
∂L
∂ q̇

]
η dt = 0.

Recall that if we assume that q̂(t) = q(t)+ εη(t) be such that η(t0) = η(t1) = 0, we obtain Euler-Lagrange

equation.

Instead of considering paths starting and ending at common points as we have done in Chapter (1), consider

paths with common starting point q(t0) = q0 but different ending points at fixed time t1,i.e., q(t1) 6= q̂(t1)

which means η(t1) 6= 0. From the first variation formula above, we have

δ I =
∂L
∂ q̇

η(t1)+
∫ t1

t0

[∂L
∂q
− d

dt
∂L
∂ q̇

]
η dt.

Since the actual motion satisfies E-L equation, then

δ I =
∂L
∂ q̇

η = pη . (5.1.1)

Since we started with an arbitrary function η , we can take it to be a function which is small everywhere in

the interval (t0, t1) and hence it is considered to be a variation of q. We write η = δq and from (5.1.1) we

get

∂ I
∂q

= p. (5.1.2)

Similarly, we can consider paths starting from t0 such that q(t0) = q̂(t0) (η(t0) = 0) and ending at fixed q1

with various t1 = t. Then, from (1) we know dI
dt = L. However, the action, in this way of considering it, is a

function of q and t. Hence,

dI
dt

=
∂ I
∂ t

+
∂ I
∂q

q̇ =
∂ I
∂ t

+ pq̇.

20



5.2. HAMILTON-JACOBI EQUATION

Compare,

∂ I(q, t)
∂ t

+ pq̇ = L

∂ I(q, t)
∂ t

+H(q,
∂ I(q, t)

∂q
) = 0,

using Legendre transformation and (5.1.2) in the last step.

5.2 Hamilton-Jacobi Equation

From the previous chapter, we showed how one can have a canonical transformation by constructing a

generating function that gives a map from our old phase space to the new one. However, it can be naturally

asked that how we can derive such a generating function. In this section we will discuss this problem and

try to find a way by which we will be able at least to reduce the difficulties in solving the Hamiltonian. Of

course, this is the primary objective of transferring our system from a phase space to another. In Section

4, we have proven that generating functions of first type ψ1(t,q,Q) give (4.2.14). Now we want to get the

simplest possible transformed Hamiltonian K(t,Q,P) which is K = 0. Therefore, we will try to solve for ψ1

in the following equation

H(t,q,p)+
∂ψ1(t,q,Q)

∂ t
= 0, (5.2.1)

so that the equations of motion of the transformed Hamiltonian K are

Q̇ =
∂K
∂Pi

= 0 (5.2.2)

Ṗ =− ∂K
∂Qi

= 0, (5.2.3)

which means, Qi = αi, Pi = βi Where αi and βi are constants for all i = 1,2...n. Using (4.2.12) we can write

(5.2.1) as

H(t,q1,q2, ...,qn,
∂ψ1(t,q)

∂q1
,
∂ψ1(t,q)

∂q2
, ...,

∂ψ1(t,q)
∂qn

)+
∂ψ1(t,q)

∂ t
= 0. (5.2.4)

The first order partial differential equation (5.2.4) with n+1 variables is called the Hamilton-Jacobi Equa-

tion. Now, instead of solving a system of 2n ordinary differential equations, we try to find a complete

solution of the partial differential equation (5.2.4).

21



5.2. HAMILTON-JACOBI EQUATION

Definition 5.1. A solution ψ = ψ(t,q,α), where α = (α1,α2, ...,αn) are constants, is called a complete

solution or complete integral if ψ has continuous second derivatives with respect to the coordinates qi, αi,

and t, and the matrix
[

∂ 2ψ

∂q∂α1
, ∂ 2ψ

∂q∂α2
, ..., ∂ 2ψ

∂q∂αn

]
is nonsingular.

The idea of using Hamilton-Jacobi equation is that we find its complete solution which is a function

ψ = ψ(t,q1, . . . ,qn,α1, . . . ,αn). Then, we use ψ1 as a generating function depending on the old coordinates

and the new coordinates (α1,α2, ...,αn), from section 4.2,

− ∂ψ

∂αi
= βi,

where β1, . . . ,βn) are the new momenta. Now we have n algebraic equations from which we can solve for

every qi to get qi = qi(t,α1, . . . ,αn,β1, . . . ,βn). Then, using

∂ψ

∂qi
= pi

we can write pi = pi(t,α1, . . . ,αn,β1, . . . ,βn). Then, we have found the coordinates qi and momenta pi as

functions of time and constants αi, βi.

Before we end this section, we should discuss a special but important case. Suppose we have a Hamilto-

nian that is independent explicitly of time. We can immediately notice that a complete solution of Hamilton-

Jacobi equation has the form

ψ(t,q,α) =W (q,α)− f (α)t,

where ψ is a generating function of type 1 defined as ψ = ψ2(t,q,α) and α = (α1, . . . ,αn). The Hamilton-

Jacobi equation can be written as

H(q1, . . . ,qn,
∂W
∂q1

, . . . ,
∂W
∂qn

) = f (α).

Now, we seek to find a function W (q1, . . . ,qn,α1, . . . ,αn) such that, using transformation equations

∂ψ

∂qi
=

∂W
∂qi

= pi

22



5.3. ANALYSIS OF KEPLER PROBLEM

−∂W
∂αi

= βi

H is transformed into a function f (α1, . . . ,αn). Now, equations of motion for f are

− ∂ f
∂αi

= β̇i

∂ f
∂βi

= 0 = α̇i.

Integrating,

αi = constant

βi =−
∂ f
∂αi

t + ci = ωit + ci,

where ωi = ωi(α1, . . . ,αn) and ci are constants for all i = 1,2 . . . ,n

5.3 Analysis of Kepler Problem

In this section, we will look in detail to the motion in a central field. More specifically, let us consider a

central field with potential energy U(r) = −γ

r whrer γ > 0. Next remark shows an important result regarding

the motion of any system in a central field.

Remark 5.1. In any central field, angular momentum is conserved (constant of motion).

Proof. First, angular momentum A is defined as A =~r×~̇r. We want to show that dA
dt = 0.

dA
dt

=~̇r×~̇r+~r×~̈r.

Clearly, first term vanishes and then we are left with the second term. Using Newton’s second law

~̈r =−∇U(r),

where U(r) is the potential energy and it depends only on the distance between the particles. Now we have

dA
dt

=~r×−∇U(r)
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which vanishes according to Newton’s third law.

This, in fact, shows that the direction of the angular momentum is constant which implies that the motion

lies on the perpendicular plane (r,φ) to A. Moreover, remark 5.1 can be generalized to every system which

is not effected by external forces.

Remark 5.2. In a central field, the total energy of a system that is explicitly independent of time is conserved.

Proof. Starting with the kinetic energy of the system T = 1
2 ṙ2,

Ṫ = ṙ · r̈ = ṙ ·−∇U(r) =−U̇(r)

which implies that T +U = E = constant.

We now can write the Lagrangian as

L =
1
2

m(ṙ2 + r2
φ̇

2)+
γ

r
.

Using consistency of the angular momentum gives

A = (r,0,0)× (mṙ,mrφ̇ ,0) = (0,0,mr2
φ̇) ∈ R3. (5.3.1)

We can also write the total energy as follows

E =
1
2

m(ṙ2 +
A2

m2r2 )−
γ

r
. (5.3.2)

Therefore, we have reduced the problem to a one degree of freedom system by using the fact that the angular

moment is constant of motion. Now, from equation (5.3.2) we can see that total energy E is not exactly the

sum of the kinetic and potential energy, we have an extra term which produces a new potential called the

effective potential energy. We denote it by Ue(r).

Ue(r) =−
γ

r
+

A2

2mr2 .
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Solving (5.3.2) for ṙ, we obtain

ṙ =
dr
dt

=

√
2
m
(E +

γ

r
)− A2

m2r2 , (5.3.3)

which can be expressed as

t =
∫ r

r0

ds√
2
m(E + γ

s )−
A2

m2s2

. (5.3.4)

The constant angular momentum A gives a relation between dφ and dt that can be used to replace dt in the

last equation. We, as a result, obtain dt = mr2

A dφ , then

dφ =
A

mr2
√

2
m(E + γ

r )−
A2

m2r2

dr

φ(r) =
∫ r

r0

A

ms2
√

2
m(E + γ

s )−
A2

m2s2

ds. (5.3.5)

Equations (5.3.4) and (5.3.5) give relations between r with t and r with φ , respectively. These two equations

provide a complete solution of the problem. The first one gives r as an implicit function of time and the

second one gives the equation of the path.

As shown in figure (5.1), having a negative total energy gives a bounded or finite radial motion. There-

fore, we can rewrite (5.3.5) as

∆φ(r) = 2(φ(r+)−φ(r−)) = 2
∫ r+

r−

A

mr2
√

2
m(E + γ

r )−
A2

m2r2

dr, (5.3.6)

where r+ and r− are the maximum and minimum values of r, respectively. In other words, the path of the

particle is bounded by the two circles r = r− and r = r+. By evaluating integral (5.3.6) and checking that

∆φ = 2π , using complex integration (appendix .1), we conclude that after one complete period, the radius

makes one complete revolution and returns back to the starting point. In fact, we can generalize that for any

potential energy, that is, when ∆φ = 2π
m
n , for some integers m and n, then the path is closed.
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Figure 5.1: Effective potential [9]

Before we end this section we will find an explicit formula for r− and r+ in terms of some geometric

parameters. This gives some nice relations between the physical quantities and the geometry of the orbit.

We first start with the ordinary differential equation (5.3.3),

ṙ =
dr
dt

=

√
2
m
(E +

γ

r
)− A2

m2r2 .

Since r− and r+ are the minimum and the maximum of r, respectively, we can conclude that the right hand

side of the above equation is zero at r = r− and r = r+. Notice that this does not mean that there is no motion.

It just means that r attains its minimum and maximum at these points. We can say that the minimum and the

maximum solve the following equation

2
m
(E +

γ

r
)− A2

m2r2 = 0. (5.3.7)

From which this follows

r2 +
γ

E
r− A2

2mE
= 0. (5.3.8)
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Quadratic formula leads to the following form

r =− γ

2E

(
1±

√
1+

2A2E
mγ2

)
. (5.3.9)

According to Landau and Lifshitz [9], we have

e =

√
1+

2A2E
mγ2 , (5.3.10)

F =
A2

mγ
, (5.3.11)

where e and F are the eccentricity and the semi-latus rectum, respectively. Now, using (5.3.10) to rewrite

(5.3.9)

r =− γ

2E
(1± e). (5.3.12)

We can immediately see that having the eccentricity 0 < e < 1 implies

r− =− γ

2E
(1− e),

r+ =− γ

2E
(1+ e).

Notice that the above two equations for the minimum and the maximum have some physical quantities and

a geometric parameter. In order to turn them into pure geometric expressions, we should notice that

r−+ r+ = 2a,

where a is semi-major axis of the ellipse. Therefore, we obtain the following

r− = a(1− e)

r+ = a(1+ e).
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Now, with the help of the well-known solution of the integral (5.3.5)

φ(r) = cos−1
A2−mγr

rA√
2mE + m2γ2

A2

,

we can use (5.3.10) and (5.3.11) to rewrite the above equation in the following form

r(φ) =
F

1+ ecosφ
. (5.3.13)

5.4 Action-Angle Variables

In physics, systems with periodic motion and autonomous Hamiltonian are of special importance. First,

we would like to explain what we mean by periodic motion. We have two types of periodic motions that

depend on whether the velocity changes sign over the complete period of the motion or not. Libration mo-

tion occurs when the velocity q̇ changes sign and rotation motion is when velocity always keeps the same

sign. Note that, in phase space, when motion is described by circle, ellipse, or any closed curve, then the

motion is a libration and if the motion is described as a periodic function of coordinates q then the motion

is rotation.

In Section (5.2), we discussed the case where H = H(q, p) and we showed how one can construct a generat-

ing function that produces a canonical transformation such that the transformed Hamiltonian depends only

on the new momenta. Now, for the same kind of Hamiltonian H = H(q, p) we introduce a new variable J

defined as

Ji =
1

2π

∮
pi dqi (5.4.1)

Where the integration is taken over a complete period of each qi.

The idea of action-angle variables, for one degree of freedom, is that for a closed bounded motion one

can see that the phase space trajectories are closed curves. This means that the motion is periodic. Hamilton-

Jacobi equation, as we have already seen, can be written as

H(q,
∂W (q, I)

∂q
) = β = Ĥ(I). (5.4.2)
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Here, we take the constant of motion to be the transformed Hamiltonian. Where W is a generating function

of type 2, W =W (q, I), compare with (4.2.15).

∂W (q, I)
∂q

= p,

∂W (q, I)
∂ I

= Φ.

Now, for a fixed β , we look for (qi, pi) such that (5.4.2) holds. From the previous second transformation

equation,

dΦ

dq
=

∂

∂ I
∂W
∂q

=
∂

∂ I
p.

We require that Φ changes form 0 to 2π in one cycle around the curve, say ξ , that satisfies H(qi, pi) = β .

Consequently,

dΦ =
∂

∂ I
pdq.

Which implies,

2π =
∮

ξ

dΦ =
∂

∂ I

∮
ξ

pdq.

Hence, the previous equation is satisfied if

I =
1

2π

∮
ξ

pdq

and this is the definition of the action variable.

In fact, we can not always construct such a canonical variable. There are some conditions that a Hamil-

tonian system has to satisfy. Therefore, we will introduce a special kind of dynamical systems called com-

pletely integrable systems. A system in n dimensions is called completely integrable if one could find n

first integrals (constants of motion) which are functionally independent and in involution with each other.
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Functions F1,F2, . . . ,Fn are said to be functionally independent if the gradient vectors of F ′i s are linearly

independent; i,e., ∑
n
i=0 ci(∇Fi) 6= 0 unless ci = 0 for all i. Two functions are in involution with each other if

and only if their Poisson bracket vanishes. Formally, let Fi be n first integrals such that Fi = Fi(q(t), p(t))

for all 1≤ i≤ n. Their Poisson bracket is,

{Fi,Fj}=
∂Fi

∂q
∂Fj

∂ p
− ∂Fi

∂ p
∂Fj

∂q
(5.4.3)

Where 1≤ i, j ≤ n. Clearly, when i = j, then Poisson bracket always vanishes.

Observe that a Poisson bracket can be used to test a physical quantity whether it is a first integral or not

by computing Poisson bracket of this quantity with the Hamiltonian. Formally, a quantity F is conserved if

{F,H}= 0. In fact, this is obvious when we use the definition (5.4.3).

{F,H}= ∂F
∂q

∂H
∂ p
− ∂F

∂ p
∂H
∂q

.

Using Hamilton’s equations (3.2.4) and (3.2.5), we end up with

{F,H}= ∂F
∂q

q̇+
∂F
∂ p

ṗ =
dF
dt

.

Therefore, vanishing Poisson bracket of a dynamical variable with the Hamiltonian and constancy are two

equivalent concepts.

According to Liouville-Arnold theorem, if a system in a 2n-dimensional phase space has n first integrals

which are independent of each other and in involution then there exists locally a canonical transformation

from (q,p) phase space to (Φ,J) phase space such that the transformed Hamiltonian depends only on half of

the variables, say, J. As a result, the equations of motion of the new Hamiltonian K leads to the following:

∂K(J)
∂θi

= 0 =−J̇i
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which implies that Ji are constants of motion. Also,

∂K(J)
∂Ji

= constant = Φ̇i

which implies that Φi are linearly dependent functions of t. This new set of variables are usually denoted by

(Φ,J) and called Action-Angle Variables.

It turns out that in the action-angle variables’ space, the bounded trajectory of a system with n degrees

of freedom lies on n-dimensional tori T n := S1× S1× ·· ·× S1 such that each Ii identifies a specific torus

and Φi identify where at this torus the trajectory is. In other words, think of the rectangular plane of θ , say

for simplicity Φ = (Φ1,Φ2) such that 0≤Φ1,Φ2 ≤ K. This plane, topologically, is equivalent to a 2-torus,

S1× S1 = T 2 and we can determine every point on the torus using (Φ1,Φ2), where Φ1 is the angle in the

horizontal direction and Φ2 is the angle in the vertical direction.

5.5 Action-Angle variables For The Two-Body Problem (The Kepler Problem)

Starting with the Lagrangian of a two-body system with two masses m and M in Cartesian coordinates

(x,y,z),

L = T −U =
1
2

m(ẋ2 + ẏ2 + ż2)+
γ√

x2 + y2 + z2

Where U is the potential energy with γ = GmM = constant.

Now, applying the transformation function from Cartesian coordinates to spherical coordinates defined by

(x,y,z)= (r sinθ cosφ ,r sinθ sinφ ,r cosθ) We can write the new Lagrangian in terms of the new coordinates

(r,θ ,φ) as the following:

L(r,θ ,φ , ṙ, θ̇ , φ̇) =
1
2

m(ṙ2 + r2
θ̇

2 + r2 sin2
θφ̇

2)+
γ

r
(5.5.1)

We have,
∂L
∂ ṙ

= pr = mṙ (5.5.2)

∂L
∂ θ̇

= pθ = mr2
θ̇ (5.5.3)
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∂L
∂ φ̇

= pφ = mr2 sin2
θφ̇ (5.5.4)

Since there is no explicit dependence on φ in L, we claim that pφ is constant of motion. This can be easily

seen from Euler-Lagrange equation
d
dt
(

∂L
∂ φ̇

) =
∂L
∂φ

= 0 (5.5.5)

The above equation shows that ∂L
∂ φ̇

= pφ = αφ = constant.

Now that we found the formula of the three components of the momentum (pr, pθ , pφ ), we can easily

write the Hamiltonian of the system.

H(r,θ ,φ , pr, pθ , pφ ) =
1

2m
(p2

r +
1
r2 p2

θ +
1

r2 sin2
θ

p2
φ )−

γ

r
(5.5.6)

It is clear that the Hamiltonian does not depend explicitly on time which means that the total energy of this

system is conserved. In other words, H = −|E| = constant. By applying Hamilton-Jacobi equation to our

Hamilton function we obtain the following equation for some function S = S(r,θ ,φ , t) such that ∂S
∂ r = pr,

∂S
∂θ

= pθ , ∂S
∂φ

= pφ

1
2m

[(
∂S
∂ r

)2 +
1
r2 (

∂S
∂θ

)2 +
1

r2 sin2
θ
(

∂S
∂φ

)2]− γ

r
+

∂S
∂ t

= 0. (5.5.7)

Observe that because of the independence of the time in the total energy, which is the Hamiltonian, we can

write S as a function of two separate terms,

S =W (r,θ ,φ ,E)+ |E|t. (5.5.8)

Therefore, from (5.5.7) and (5.5.8) we get

H =
1

2m
[(

∂W
∂ r

)2 +
1
r2 (

∂W
∂θ

)2 +
1

r2 sin2
θ
(
∂W
∂φ

)2]− γ

r
=−|E|. (5.5.9)

Now, we try to find W (r,θ ,φ ,E) =Wr(r,E)+Wθ (θ ,E)+Wφ (φ ,E) such that W satisfies (5.5.9).

1
2m

[(
dWr

dr
)2 +

1
r2 (

dWθ

dθ
)2 +

1
r2 sin2

θ
(
dWφ

dφ
)2]− (

γ

r
−|E|) = 0 (5.5.10)
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−r2

2m
(
dWr

dr
)2)+(γr− r2|E|) = 1

2m
(
dWθ

dθ
)2 +

1
2msin2θ

(
dWφ

dφ
)2

Since the left hand side equals the right hand side with independent variables, then there exists a constant C

so that L.H.S = R.H.S = C2

2m

dWr

dr
=

√
−2m

r2 (−γr+ r2|E|)−C2

r2 =

√
2m(

γ

r
−|E|)−C2

r2 , (5.5.11)

dWθ

dθ
=

√
C2−

p2
φ

sin2
θ
. (5.5.12)

Remember, we showed in (5.5.5) that pφ = αφ is constant. Here we make an observation.

Remark 5.3. The constant C is the magnitude value of the angular momentum.

Proof. Let the angular momentum be ξ

ξ = (r,0,0)× (mṙ,mrθ̇ ,mr sinθφ̇)

= (0,−mr2 sinθφ̇ ,mr2
θ̇)

= (0,
−pφ

sinθ
, pθ ),

and the square of the magnitude value |ξ |2 = p2
φ

sin2
θ
+ p2

θ
. Therefore, from (5.5.12) we have C2 = p2

θ
+

p2
φ

sin2
θ
=

|ξ |2 which means C is the magnitude of the angular momentum. We denote it A.

From the definition of action variable (5.4.1)

Jr =
1

2π

∮
r

pr dr =
1

2π

∮
r

√
2m(

γ

r
−|E|)− A2

r2 dr, (5.5.13)

Jθ =
1

2π

∮
θ

pθ dθ =
1

2π

∮
θ

√
A2−

α2
φ

sin2
θ

dθ , (5.5.14)

Jφ =
1

2π

∮
φ

αφ dφ . (5.5.15)

Using the method of complex integration to compute the Integrals (5.5.13) and (5.5.14), we obtain, (ap-
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pendix .2),

Jr =−A+
mγ√
2m|E|

(5.5.16)

Jθ = A−αφ . (5.5.17)

Now, we write |E| as a function of the action variables Jr and Jθ ,

Jr + Jθ =
mγ√
2m|E|

−αφ .

We know that |E|=−H. Therefore,

H =− mγ2

2(Jr + Jθ +αφ )2 .

Now, we have the Hamiltonian depends only on the action variables. The equations of motion can be used

at this moment to obtain the frequencies.

∂H
∂Jr

=
mγ2

(Jr + Jθ +αφ )3 = ωr. (5.5.18)

Note that ωr = ωθ which means that the system is degenerate.

Definition 5.2. A system is said to be non-degenerate if the frequencies of it are functionally independent,

that is if detN 6= 0, for

N =



∂ω1
∂J1

∂ω2
∂J1

. . . ∂ωn
∂J1

∂ω1
∂J2

∂ω2
∂J2

. . . ∂ωn
∂J2

...

∂ω1
∂Jn

∂ω2
∂Jn

. . . ∂ωn
∂Jn


.

At the end of the next chapter we will investigate in detail the meaning and the importance of having a

nondegenerate system. In the previous problem, we have seen that the frequencies are equal so the system

is actually strongly degenerate.
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Chapter 6

The Two-Body Problem Given By The Kepler Potential Perturbed By

∆U(r) = δ

r3

In this section, we will study the system in the case where the potential energy is the sum of Kepler’s

potential and a perturbation term δ

r3 , for δ small enough. We, also, will study the motion of the particles

with this potential and compare it with the previous case when we had U(r) = −γ

r . Moreover, we will find

the formula of the action variables.

6.1 Analysis of The Motion of The system with Potential Energy U(r) =− γ

r ±
δ

r3

Starting with U(r) =− γ

r ±
δ

r3 , leads to the following Lagrangian:

L =
1
2

m(ṙ2 + r2
φ̇

2)+
γ

r
± δ

r3 .

From remark 5.1, we can conclude that the angular momentum for the system is conserved and it can be

computed the same way

A = mr2
φ̇ . (6.1.1)

Therefore, the total energy can be written in terms of r and ṙ as

E =
1
2

m(ṙ2 +
A2

m2r2 )−
γ

r
± δ

r3 .

As we did in section 5.3, it is straightforward to obtain the following

ṙ =
dr
dt

=

√
2
m
(E1 +

γ

r
+

δ

r3 )−
A2

1
m2r2 . (6.1.2)
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Again, with the same procedure we followed in section 5.3, we end up with the following expression

∆φ(r) = 2(φ(r+)−φ(r−)) = 2
∫ r+

r−

A1

mr2
√

2
m(E + γ

r +
ε

r3 )−
A2

1
m2r2

dr. (6.1.3)

With the help of some approximation formulas, we can find an approximated solution for this integral,

(appendix .3). Unfortunately, this is not sufficient to conclude that the path is open. However, according

to Landau and Lifshitz [9], there are only two cases where the bounded motion in a central field is closed.

These two cases are when the potential energy is in the form of 1
r or r2. based on that, we say that the motion

with our new potential is open (figure 6.1).

Figure 6.1: Open path of a particle[9]

6.2 Action-Angle Variables For the Perturbed Hamiltonian

The Hamiltonian with our new potential can be written in the following form,

H(r,θ ,φ , pr, pθ , pφ ) =
1

2m
(p2

r +
1
r2 p2

θ +
1

r2 sin2
θ

p2
φ )−

γ

r
− δ

r3 . (6.2.1)
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Notice that the system’s total energy is still conserved. For this reason, we write H =−|E|. The reason we

take H < 0 is that it gives a bounded state for the system. It can be clearly seen from figures 5.1 and 6.1 in

section 5.3.

At this point, we see that our perturbation term, U1(r), has nothing to do with pθ and pφ and that is there

is no impact on the action variables Jθ and Jφ . Since the perturbation term depends only on the distance r,

we then expect that we will have some changes in Jr. By applying Hamilton-Jacobi equation to our system,

analogous to (5.5.7) and (5.5.9), we end up with

1
2m

[(
dWr

dr
)2 +

1
r2 (

dWθ

dθ
)2 +

1
r2 sin2

θ
(
dWφ

dφ
)2]− (

γ

r
+

δ

r3 −|E|) = 0. (6.2.2)

Separation of variables leads to the following two ordinary differential equations:

dWr

dr
=

√
−2m

r2 (−γr− δ

r
+ r2|E|)− A2

r2 =

√
2m(

γ

r
+

δ

r3 −|E|)−
A2

r2 (6.2.3)

dWθ

dθ
=

√
A2−

α2
φ

sin2
θ
. (6.2.4)

Compare (6.2.3) and (6.2.4) to (5.5.11) and (5.5.12), respectively. Now we formulate the actions of the

system using the definition of action variable (5.4.1)

Jr =
1

2π

∮
r

√
2m(

γ

r
+

δ

r3 −|E|)−
A2

r2 dr. (6.2.5)

Jθ =
1

2π

∮
θ

√
A2−

α2
φ

sin2
θ

dθ . (6.2.6)

As expected, the perturbation does not effect the action about θ . However, we need to treat the action Jr to

see what impact the perturbation has on the system. An approximated value of Jr is computed in appendix

D 1, for a sufficiently small δ , can be used here to express the transformed Hamiltonian H = H(Jr,Jθ ). We

1This integral can be computed using contour integration over a Riemann surface but it was not needed here.
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have

Jr ≈−A1 +
mγ√
2m|E|

+
mδ

A1F
(6.2.7)

which leads to the following:

H(Jr,Jθ )≈
−mγ2

2(Jr + Jθ +αφ − mδ

A1F )
2
. (6.2.8)

6.3 Non-degeneracy of The Frequency Map

In this section we look into the non-degeneracy of the frequency map of the system. Our goal is to find

some r− and r+ such that our system is non-degenerate in the sense of 5.2 and then, by analyticity of detN

as a function of r− and r+, we conclude that detN 6= 0 on an open dense set. Before we start looking for the

non-degeneracy, we first see what the frequency map is. As we have seen, the second Hamilton’s equation

for the Hamiltonian expressed in action variables is as follows,

∂H(J)
∂Ji

∣∣
J=J0

= ωi(J0). (6.3.1)

This equation in fact defines a map J 7→ω . Therefore, we study this map to determine the degeneracy of the

system. In order to make this job hopeful, we study the case where r̄ = r−, figure (6.2).

Figure 6.2: r̄ = r−
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Here, we have the action about r expressed as the following2

Jr =

√
2m|E(r−,r+)|

2π

∮
r
(r− r−)

√
(r+− r)

r3 dr (6.3.2)

=
√

2mE(−(2r−+ r+)π
2

−3
√

(r+− r−)r−− (2r−+ r+)arctan
√

r−
r+− r−

). (6.3.3)

Since r− and r+ are both real numbers, we write r+ in the following form r+ = kr− for k > 1. According

to Vieta’s theorem, total energy and total angular momentum can be written in terms of the zeros of pr.

2r−+ r+ =
γ

|E|
, (6.3.4)

r2
−+2r−r+ =

A2

2m|E|
. (6.3.5)

Solving for E and A gives the following:

|E|= γ

(2+ k)r−
, (6.3.6)

A2 =
2mγ(1+2k)r−

2+ k
. (6.3.7)

With the help of the last equation, we rewrite the action.

Jr =
√

2m|E|(−π

2
(2+ k)r−−3

√
(k−1)r−−a(2+ k)r−)

= ξ A2
√

2m|E|, (6.3.8)

where, for shortness, ξ = 2+k
(2mγ)(1+2k)(−

π

2 (2+ k)− 3
√
(k−1)− a(2+ k)) and a = arctan

√
1

k−1 . Solving

(6.3.8) for |E|,

H =−|E|=− Jr
2

2mξ 2A4 =− Jr
2

2mξ 2(Jθ +αφ )4 (6.3.9)

Now that we have the Hamiltonian expressed in terms of the actions, it is straightforward to test the non-

2The integral was computed with the help of Mathematica.
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degeneracy of the frequencies. First, let’s write the precise formula for the frequencies.

ωr =
∂H
∂Jr

=− Jr

mξ 2(Jθ +αφ )4 (6.3.10)

ωθ =
∂H
∂Jθ

=
2Jr

2

mξ 2(Jθ +αφ )5 (6.3.11)

Recall (5.2) and apply the definition to these frequencies.

detM =
−6Jr

(mξ )2(Jθ +αφ )10 . (6.3.12)

Alternatively, define α :R2→R2 such that (A,E)→ (Jr(A,E),Jθ (A,E)). Now, we look at the derivative.

Dα−1 =


∂A
∂Jr

∂A
∂Jθ

∂E
∂Jr

∂E
∂Jθ

 (6.3.13)

Using inverse function theorem, we can write

Dα−1 = (Dα)
−1 =


∂Jr
∂A

∂Jr
∂E

∂Jθ

∂A
∂Jθ

∂E


−1

=
1

∂Jr
∂A

∂Jθ

∂E −
∂Jr
∂E

∂Jθ

∂A


∂Jθ

∂E − ∂Jr
∂E

− ∂Jθ

∂A
∂Jr
∂A

 (6.3.14)

Equating the right hand side of the previous two equations leads to the following equations.

ωr =
∂E
∂Jr

=
−∂Jθ

∂A
∂Jr
∂A

∂Jθ

∂E −
∂Jr
∂E

∂Jθ

∂A

(6.3.15)

ωθ =
∂E
∂Jθ

=
∂Jr
∂A

∂Jr
∂A

∂Jθ

∂E −
∂Jr
∂E

∂Jθ

∂A

(6.3.16)

Now, we express the actions as functions of r− and r+ [13]. The reason we want to write the actions in terms

of the minimum and the maximum values of r is that it gives some useful relations for the second derivatives
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in the non-degeneracy condition (5.2) as we will see.

ωr = ωr(Jr(r−,J+),Jθ (r−,r+))

ωθ = ωθ (Jr(r−,J+),Jθ (r−,r+))
(6.3.17)

Taking the derivatives of the frequencies with respect to r− and r+ and write the four resulting equations in

the matrix form. 
∂ωr
∂ r−

∂ωr
∂ r+

∂ωθ

∂ r−
∂ωθ

∂ r+


︸ ︷︷ ︸

N

=


∂ωr
∂Jr

∂ωr
∂Jθ

∂ωθ

∂Jr

∂ωθ

∂Jθ


︸ ︷︷ ︸

M


∂Jr
∂ r−

∂Jr
∂ r+

∂Jθ

∂ r−
∂Jθ

∂ r+

 (6.3.18)

M = N
1

∂Jr
∂ r−

∂Jθ

∂ r+
− ∂Jr

∂ r+
∂Jθ

∂ r−


∂Jθ

∂ r+
− ∂Jr

∂ r+

− ∂Jθ

∂ r−
∂Jr
∂ r−

 . (6.3.19)

From (6.3.19), we conclude that

det(M) =
det(N)

∂Jr
∂ r−

∂Jθ

∂ r+
− ∂Jr

∂ r+
∂Jθ

∂ r−

(6.3.20)

From (6.3.15) and (6.3.16), we have

ωr =
−1
D

(6.3.21)

ωθ =
C
D
. (6.3.22)

Where

D =
∂Jr

∂A
∂Jθ

∂E
− ∂Jr

∂E
∂Jθ

∂A
=−∂Jr

∂E
=

m
π
√
−2mE

∫ r+

r−

√
r3√

(r− r̄)(r− r−)(r+− r)
dr (6.3.23)

C =
∂Jr

∂A
=− A

π
√
−2mE

∫ r+

r−

1√
r(r− r̄)(r− r−)(r+− r)

dr (6.3.24)

Having shown that detM is proportional to detN, it is sufficient to study the determinant of the matrix
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N.

det(N) =
1

D4

∣∣∣∣∣∣∣
∂r−D ∂r+D

∂r−(∂AJr)D− (∂AJr)∂r−D ∂r+(∂AJr)D− (∂AJr)∂r+D

∣∣∣∣∣∣∣ (6.3.25)

=
1

D3

(
∂r+(∂AJr)∂r−D−∂r−(∂AJr)∂r+D

)
(6.3.26)

Here, we want to show that the determinant does not vanish for some r− and r+.

First, we rewrite (6.3.25)

det(N) =
−1
D3

(
∂A(∂r+Jr)∂E(∂r−Jr)−∂A(∂r−Jr)∂E(∂r+Jr)

)
. (6.3.27)

Recall,

Jr =

√
2m|E|
2π

∮
r
(r− r−)

√
(r+− r)

r3 dr (6.3.28)

detM =
−6Jr

(mξ )2(Jθ +αφ )10 . (6.3.29)

It should be noted here that (6.3.21) and (6.3.22) lead to the same formulas as (7.0.1) and (7.0.2). Moreover,

According to the work shown above, the determinant expressed in terms of the the actions is related to the

determinant expressed in terms of the turning points r− and r+ by (6.3.20).

To conclude, for the case r̄ = r− we have detM = 0 if and only if ξ = 0. Now we want to show that

ξ 6= 0 for all r− and r+ such that r+ = kr− for k > 1 and, as a result, we are guaranteed that the frequency

map is non-degenerate.

We set ξ = 0 and see for which values of k this equation holds.

ξ =
2+ k

(2m)(1+2k)
(−π

2
(2+ k)−3

√
(k−1)−a(2+ k)) = 0,

where a = arctan
√

1
k−1 . This implies

a =−π

2
−3

√
(k−1)
2+ k

<−π

2
.

But 0 < a < π

2 for k > 1. Hence, ξ 6= 0. Consequently, Jr 6= 0.
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Chapter 7

KAM Theorem

Now that we have discussed in detail our system and were able to write it in terms of the action variables

for a specific case, we are prepared to, at least, state and say something about the celebrated theorem, that

was named after Kolomgrov, Arnold, and Moser, KAM theorem.

In our system, we have ω = (ωr,ωθ ). First we notice that the angle variables (Φr,Φθ ) are linear in time.

This can be immediately seen from the equations of motion of the system

Φ̇r = ωr =
∂H
∂Jr

=− Jr

mξ 2(Jθ +αφ )4 (7.0.1)

Φ̇θ = ωθ =
∂H
∂Jθ

=
2Jr

2

mξ 2(Jθ +αφ )5 . (7.0.2)

Also, we can see that the motion will be closed if

ωr

ωθ

=
κ1

κ2
(7.0.3)

for κ1 and κ2 integers. In the case when the ratio of the frequencies is irrational, the motion is called

quasiperiodic and (Φr,Φθ ) plane will be densely filled with lines.

The non-resonant trajectories are those with rationally independent frequencies; i.e.,

〈n,ω〉 6= 0 (7.0.4)

∀n ∈ Z2 \{0} and 〈., .〉 is the dot product.

Theorem 7.1. If the unperturbed Hamiltonian system H0 is non-degenerate, then under sufficiently small
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perturbation such that

H(J,Φ) = H0(J)+ εH1(J,Φ) (7.0.5)

for ε << 1, most of the non-resonant invariant tori do not disappear but only slightly deformed. In other

words, the invariant tori are still there filled with phase curves winding around them conditionally periodi-

cally.

Now let’s look at our new system (7.0.5). First, we write the equations of motion

∂H
∂Φ

=−ε
∂H1

∂Φ
,

∂H
∂J

= ω0 + ε
∂H
∂J

. (7.0.6)

Clearly, (J,Φ) are not considered to be action-angle variables for the system, neither J are constants nor

Φ linear in time. Therefore, with the same type of generating function we used to construct (J,Φ), we

again use the same type, namely, F = F(I,Φ), where I are the new actions. The associated transformation

equations with F are

∂F(I,Φ)

∂ I
= Ψ ,

∂F(I,Φ)

∂Φ
= J (7.0.7)

The goal now is to find a generating function F such that the system H can be written as a function of the I′s.

Expand F as a power series of ε:

F = F0 + εF1 + ε
2F2 + . . . , (7.0.8)

where F0 = ΦI the identity transformation. As we did before, we use Hamilton-Jacobi equation.

H0
(∂F

∂Φ

)
+ εH1

(∂F
∂Φ

,Φ
)
= K(I). (7.0.9)

Again, we expand K:

K(I) = K0(I)+ εK1(I)+ ε
2K2(I)+ . . . (7.0.10)
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Using (7.0.9) and (7.0.10) and equating powers of ε

o(1) : H0(I) = K0(I) (7.0.11)

o(ε) : ω0(I)
∂F1

∂Φ
+H1(I,Φ) = K1(I) (7.0.12)

As we have seen, F1 is periodic in Φ. We require also that its derivative with respect to Φ is also periodic.

As a result, averaging (7.0.12) over Φ gives:

K̄1(I) = K1(I) = H̄1(I,Φ) (7.0.13)

Where ḡ = 1
2π

∫ 2π

0 gdΦ.

Back to (7.0.12),
∂

∂Φ
F1(I,Φ) =− 1

ω0(I)
H̃1(I,Φ) (7.0.14)

Where H̃1 = H1−K1. We can think of it as the periodic part of H1; i.e.,

¯̃H1 = H̄1− K̄1 = K1−K1 = 0

which means H̃1 is periodic in Φ. Hence, we have (7.0.14) periodic in Φ. Writing F1 and H̃1 as Fourier

series in variables Φ,

F1(I,Φ) =
∞

∑
k∈Z2\{(0,0)}

N1,k(I)ei〈k·Φ〉 (7.0.15)

H̃1(I,Φ) =
∞

∑
k∈Z2\{(0,0)}

M1,k(I)ei〈k·Φ〉 (7.0.16)

using (7.0.15) and (7.0.16) to write the derivative of F1 and equating with (7.0.14),

∂F1

∂Φ
= ∑

k
ikN1,k(I)ei〈k·Φ〉 =

−1
ω0(I)

∑
k

M1,k(I)ei〈k·Φ〉 (7.0.17)

We obtain

Nk(I) =
i

〈k ·ω0(I)〉
M1,k(I). (7.0.18)
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Consequently, F1 is

F1(I,Φ) = ∑
k

iM1,k(I)
〈k ·ω0(I)〉

ei〈k·Φ〉, (7.0.19)

where M1,k(I) is supposed to be known; that is,

M1,k(I) =
1

2π

∫ 2π

0
H̃1ei〈k·Φ〉 dΦ. (7.0.20)

From the definition of H̃1 and the fact that K1 is independent of the angle variables, we write Mk(I) as

M1,k(I) =
1

2π

∫ 2π

0
H1(I,Φ)ei〈k·Φ〉 dΦ. (7.0.21)

Our goal to finding the generating function that we need to write the new system in terms of the I′s is

achieved. In fact we were able to find the ε order.

F(I,Φ) = IΦ+ ε ∑
k

iM1,k(I)
〈k ·ω0(I)〉

ei〈k·Φ〉+o(ε2). (7.0.22)

Of course, we can carry out the same procedure to find higher orders of ε . However, it is worth mentioning

that the formula of F1 has a problem regarding vanishing denominators. Remember that For the original

system H0, we have two different kinds of motion. Namely, the resonant and the non-resonant trajectories.

In the resonant case, we see that the denominator in (7.0.19) vanishes for some k. Not only this but also for

the non-resonant case the denominator could be arbitrary close to zero for some k. This problem is known

as existence of small divisors.

In order to overcome this problem, we need to find frequencies ω = (ωr,ωθ ) such that the smallness of

the denominator in (7.0.22) is controlled. This kind of frequency is called the Diophantine frequency.

Definition 7.1. A vector u = (u1,u2) is called Diophantine if there exist constants λ > 0 and τ > 0 such that

|〈u, l〉| ≥ λ

|l|τ
, (7.0.23)

∀ l ∈ Z2 \{0} where |l|= |l1|+ |l2|.

Of course, this can be generalized to n dimensions. Now, we want to investigate the size of the set that
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contains the Diophantine frequencies. Let

χ
τ
c = {ω ∈ R2 : |〈l,ω〉| ≥ c

|l|τ
,∀l ∈ Z2 \{(0,0)}}, (7.0.24)

for fixed c and τ . This is the complement set of Γτ
c = ∪l 6=(0,0)Γ

τ
c,l = Γτ

c where

Γ
τ
c,l = {ω ∈ R2 : |〈l,ω〉|< c

|l|τ
, for some l ∈ Z2 \{(0,0)}}. (7.0.25)

Now, we see that for any bounded Ω ⊂ R2 there exist constants d,c′ such that the Lebesgue measure esti-

mation

m(Γτ
c,l ∩Ω)≤ dc

|l|τ+1 (7.0.26)

for all c < c′. In other words, for 0 < c << 1 there exists d > 0 such that (7.0.26) holds. Thus,

m(Γτ
c,l ∩Ω) = O(

c
|l|τ+1 ). (7.0.27)

By countable subadditivity,

m(Γτ
c ∩Ω)≤∑

l
m(Γτ

c,l ∩Ω) = O(c), (7.0.28)

since τ +1 > 1. For fixed τ , define Γτ = ∩c>0Γτ
c . This is the set of all ω ∈ R2 satisfying (7.0.25) for some

c > 0 and fixed τ . This set has measure zero and the complement χτ = ∪c>0χτ
c is of full measure.

Hence, the set of the frequencies that satisfy Diophantine condition exists and, in fact, almost every

vector ω ∈ R2 lies in χτ . This guarantees the existence of the Fourier series and give, at least, a hope that

the series converges, and consequently, the averaging technique can be applied. In our system we were able

to show the existence of such frequencies and in fact they are relatively easy to construct. Notice that this

condition is actually stronger than the non-resonance condition, it does not only require independence of

frequencies but also sufficiently rational independence. In other words, it guarantees that the smallness of

the denominator is controlled.

To conclude, on the surface of the torus the trajectories with Diophantine frequencies are, in fact, those

which will not be destroyed by a sufficiently small perturbation. It can be shown that in our case the distance
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between r− and r+ plays an important role in determining the frequencies. The trajectories that are given

by values of k such that the frequencies are not rationally independent will be destroyed once we turn on

the perturbation. On the other hand, the frequencies that satisfy Diophantine condition will persist and stay

on the torus but will be only slightly deformed. Now the word "most" in the theorem is meaningful. The

trajectories on the torus with rationally independent frequencies are dense and have full measure, exactly

like measure of rationals and irrationals in the real line. Moreover, we see that not all the non-resonant tori

will persist but only a subset of the set of non-resonant tori will do. Formally,

χ
τ
c = {ω : |〈l,ω〉|> c

|l|τ
,∀l ∈ Z2 \{(0,0)}} ⊆ {〈l,ω〉| 6= 0∀l ∈ Z2 \{(0,0)}}. (7.0.29)

It is, however, worth mentioning that although almost all frequencies are Diophantine, it is important to

know that not almost all tori will persist for a given perturbation εH1. In fact, given a perturbation εH1 only

a subset χc with c�
√

ε will persist [11]. Meaning, the perturbation limits the size of c or one might say as

the perturbation gets bigger the number of Diophantine frequencies gets smaller, which makes sense.

Now we are ready for a more precise statement of the theorem.

Theorem 7.2. Suppose the integrable hamiltonian H0 is non-degenerate and H = H0+εH1 is real analytic.

Then there exists a constant δ > 0 such that for

|ε|< δc2 (7.0.30)

all tori of the unperturbed system with frequencies ω ∈ χ
τ,ε
c persist with a slight deformation.

The set χ
τ,ε
c is a subset of frequencies satisfying (7.0.29). Namely, the set of frequencies satisfying

(7.0.29) and c >>
√

ε simultaneously.
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Appendices
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.1. PROOF OF CLOSENESS OF THE PATH IN A CENTRAL FIELD WITH POTENTIAL U(R) =− |γ|R

Complex integration is widely used in physics and it is usually the most convenient method. Many of

the integrals we have done in this paper were computed using complex integration. More specifically, using

residue theorem.

.1 Proof of Closeness of The Path In A Central Field With Potential U(r) =− |γ|r

Here, we want to show that the path of a particle in a system with a potential U(r) = − γ

r , γ > 0, is

closed. This can be done by showing that ∆φ(r) = m
n 2π for m,n integers.

∆φ(r) = 2
∫ r+

r−

A

mr2
√

2
m(E + γ

r )−
A2

m2r2

dr

= 2
∫ r+

r−

A

r
√

2mEr2 +2mγr−A2
dr.

Let Γ(z) = A
z
√

2mEz2+2mγz−A2
. Now, we investigate the singularities of Γ(z). Clearly, z = 0 is a singular point

of Γ(r). Therefore, the residue of Γ at z = 0 is

lim
z→0

(z−0)
A

z
√

2mEz2 +2mγz−A2
= lim

z→0

A√
2mEz2 +2mγz−A2

=
1
i
.

Hence, the residue, R(0), of Γ at z = 0 is 1
i . Therefore, applying residue theorem,

∆φ = 2πi
1
i
= 2π.

Which can be interpreted, as mentioned in section 5.3, as when φ completes one period, the radius r takes

one complete revolution. Note that the whole revolution of r here is taken to be from r− to r+ and back to

r−.

.2 Explicit Formula For Action Variables Jr and Jθ

Again, using complex integration, we can compute the two integrals (5.5.13) and (5.5.14) in section 5.5.

Jr =
1

2π

∮
r

√
2m(

γ

r
−|E|)− A2

r2 dr

=
1

2π

∮
r

1
r

√
2mγr−2mEr2−A2 dr
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.2. EXPLICIT FORMULA FOR ACTION VARIABLES JR AND Jθ

Let ψ(z) = 1
z

√
2mγz−2mEz2−A2. It can be easily seen that z = 0 is a singular point. Residue, R(0), of

ψ(z) at z = 0 is

lim
z→0

(z−0)
1
z

√
2mγz−2mEz2−A2 = Ai

Therefore, we have that R(0) = Ai.

Now, let’s check if ψ has a singularity at z = ∞. Introduce the new variable ρ = 1
r so that when ρ

approaches 0 ρ approaches ∞. After applying this change of variables, we have the following integral

Jρ =− 1
2π

∮
ρ

1
ρ2

√
2mγρ−2mE−Aρ2 dρ.

According to residue theorem, when a function ψ(z) has a singular point z0 of order n > 1, we multiply ψ(z)

by (z− z0)
n, differentiate the result n−1 times, divide by (n−1)! and then compute the limit at z = z0. In

our case here, residue, R(∞), of ψ(z) at z = ∞ is

d
dρ

[(ρ−o)2 1
ρ2

√
2mγρ−2mE−Aρ2] =

mγ−Aρ√
2mγρ−2mE−Aρ2

.

At ρ = 0, we have that

R(∞) =
mγ√
−2mE

=
mγ

i
√

2mE
.

Hence,

Jr =
1

2π
2πi(Ai+

mγ

i
√

2mE
) =−A+

mγ√
2mE

Now we look at integral (5.5.14),

Jθ =
1

2π

∮
θ

√
A2−

α2
φ

sin2
θ

dθ .
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.3. PATH IN A CENTRAL FIELD WITH POTENTIAL U1(R) =− γ

R −
ε

R3

With the help of the following substitutions:

z = sinθ and dθ =
dz√

1− z2
,

we can rewrite the integral as follows,

Jz =
A

2π

∮ 1
z

√√√√z2− α2
φ

A2

1− z2 dz. (.2.1)

Since zero is a singular point of the integrand, then we have

Res(0) = lim
z→0

(z−0)
1
z

√
z2−a2

1− z2 ,

where a =
α2

φ

A2 . As a result, we obtain Res(0) = i αφ

A . Now, we need to check if the integrand in (.2.1) has

singularity at z = ∞. Let f (z) = 1
z

√
z2A2−αφ

2

1−z2 . Now, define a new function G such that G(x) = f (1
x ). This

new function gives the following expression for Jx:

Jx =−
A

2π

∮ 1
x

√
A2− x2α2

φ

A2(x2−1)
dx. (.2.2)

From (.2.2), one can easily see that as x tends to zero, the integrand tends to ∞. Since G has singularity

at zero, then f has singularity at ∞ and Res( f (x),∞) = Res(G(x),0) = −i. Hence, according to residue

theorem,

Jθ =
A

2π
2πi(i

αφ

A
− i) = A−αφ .

.3 Path In A Central Field With Potential U1(r) =− γ

r −
ε

r3

For the integral (6.1.3),

∆φ(r) = 2
∫ r+

r−

A1

mr2
√

2
m(E1 +

γ

r +
ε

r3 )−
A2

1
m2r2

dr,
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.3. PATH IN A CENTRAL FIELD WITH POTENTIAL U1(R) =− γ

R −
ε

R3

we will use some basic tricks rather than complex integration. Unfortunately, the solution of this integral

will be approximated. First, we rewrite the integral to be as follows:

∆φ(r) = 2
∫ r+

r−

A1

r2
√

2m(E1 +
γ

r +
ε

r3 )−
A2

1
r2

dr

= 2
∫ r+

r−

A1

r2
√

2m(E1 +
γ

r )−
A2

1
r2 +2m ε

r3

dr

Observe that the integrand is actually the partial derivative with respect to A1 of the following expression:

√
2m(E1 +

γ

r
)−

A2
1

r2 +2m
ε

r3 .

Therefore, we can write the integral as

∆φ =−2
∂

∂A1

∫ r+

r−

√
2m(E1 +

γ

r
)−

A2
1

r2 +2m
ε

r3 .

Now, let us denote 2m(E1 +
γ

r )−
A2

1
r2 = χ , so we have

∆φ =−2
∂

∂A1

∫ r+

r−

√
χ +2m

ε

r3 dr.

=−2
∂

∂A1

∫ r+

r−

√
χ

√
1+

2m
χ

ε

r3 dr.

Call 2mε

r3χ
= µ, then for 2mε < r3χ , we can use Taylor expansion to obtain

√
1+µ = 1+

1
2

µ− 1
8

µ
2 + · · · ≈ 1+

1
2

µ.

Plugging this into our original integral gives

∆φ ≈−2
∂

∂A1

∫ r+

r−

√
χ dr+2

∂

∂A1

∫ r+

r−

mε

r3√χ
dr.
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.3. PATH IN A CENTRAL FIELD WITH POTENTIAL U1(R) =− γ

R −
ε

R3

Now, the first term after differentiating is integral (5.3.6) which we already have done in appendix .1. We

are left with the second term. With the help of (5.3.1) and (5.3.3) we get

dθ

dr
=

A1

mr2
√

2
m(E1 +

γ

r )−
A2

1
m2r2

=
A1

r2√χ
. (.3.1)

We also have the following relation:

F
r
= 1+ ecosθ . (.3.2)

Where F is what is so called the semilatus rectum of the orbit and e is the eccentricity. [6]

Using (.3.1) and (.3.2), we obtain the integral in the following form

2
∂

∂A1

∫
π

0

mε

A1

1+ ecosθ

F
dθ

which can be easily integrated. Finally, integral (6.1.3) is approximately

4π− 2πmε

FA2
1
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