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Abstract 

Spinifex littoreus (Brum. f.) Merr. is a halophytic grass that is distributed on coastal 

sand dunes in Taiwan (and throughout Southeast Asia). This study is the first report of leaf 

succulence in a grass, with 64 % of the leaf cross-sectional area occupied by water-storage 

parenchyma (hydrenchyma). Leaf water content, saturated water content and mesophyll 

succulence indices were also similar to other reported succulent plants. In addition to the 

previous report of C4 photosynthesis, the current study found diel acid fluctuation and 

nocturnal stomatal closure, which indicates CAM photosynthesis (in a CAM-cycling form), 

thus indicating that S. littoreus is a grass with C4/CAM-cycling photosynthesis. This 

finding is the first report of any grass with CAM photosynthesis of any kind. The presence 

of CAM acid fluctuation was found to be associated with exposed areas and at the edges 

of plant colonies. Also, the presence of CAM acid fluctuation in some populations was not 

consistent across years, and was not correlated with temperature or precipitation 

differences. Photosynthetic rates among populations varied, which might either be the 

result of different environmental conditions, or genotypic variability among populations 

throughout Taiwan. This study comprises the first report of a succulent grass, and the first 

report of C4/CAM-cycling photosynthetic pathway in monocots. This plant may have an 

important prospect as a model organism for studying the regulation and evolutionary 

history of C4 and CAM photosynthesis, as well as the potential value for experimental 

breeding programs, improving drought and salt tolerance in cereal crops. 
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Chapter 1. General Introduction 

 

Photosynthetic pathways 

Plants can be categorized into three major groups, C3, C4, and Crassulacean acid 

metabolism (CAM), based on their photosynthetic pathways. These different pathways allow 

plants to adapt to diverse environments (Larcher 2001; Taiz and Zeiger 2002). Most C4 plants 

(except single-cell C4 plants; Voznesenskaya et al. 2001) have Kranz anatomy composed of bundle 

sheath cells (BSC) with chloroplasts that surround their vascular tissues. CO2 is first fixed by PEP 

carboxylase to the 4-carbon OAA in the mesophyll cells (MC), then OAA is transported to BSC, 

broken down and CO2 is then fixed into photosynthetic carbon reduction (PCR) cycle by Rubisco 

(Larcher 2001; Taiz and Zeiger 2002). Because PEP carboxylase has a high affinity to CO2 and no 

affinity to O2 in bundle sheath cells, this spatial distribution allows CO2 to accumulate in high 

concentrations thus reducing photorespiration. The C4 pathway reportedly evolved in the middle 

Oligocene to early Miocene when ambient CO2 concentration decreased dramatically (Tipple and 

Pagani 2007). In modern times, this spatial CO2 concentrating mechanism (CCM) reduces 

photorespiration. Such CCM is considered to be an adaptation to high light and high temperature 

(Taiz and Zeiger 2002). Another photosynthetic pathway, CAM, also uses PEP carboxylase to fix 

CO2. CAM plants open stomata at night, fix CO2 to malic acid, which is then stored in vacuoles. 

During the day, this malic acid is released and fixed into PCR cycle by Rubisco. Stomatal opening 

during the night reduces water loss, thus comprises an adaptation to drought environments 

(Larcher 2001; Taiz and Zeiger 2002). CAM pathway is often found in epiphytes and desert plants 

that frequently face drought stress (Larcher 2001).  
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Spinifex littoreus 

Spinifex littoreus (Brum. f.) Merr. (syn. S. squarrosus; Poaceae, subfamily Panicoideae; 

tribe Paniceae) is a perennial halophytic grass that is distributed in coastal regions throughout 

southeastern Asia such as Japan, China, Taiwan, Indonesia, and India. This grass grows on sand 

dunes, which are often considered as a highly stressful environment (Bermúdez and Retuerto 2014). 

Both water and nitrogen are important limiting factors for vegetation in this ecosystem, as well as 

high temperature, high light, salt spray and soil salinity (Hesp 1991; Larcher 2001; Maun 2009; 

Bermúdez and Retuerto 2014). Rama Das and Raghavendra (1977) have reported S. littoreus as a 

NADP-ME type of C4 grass by the presence of Kranz anatomy and biochemical activities. Carbon 

stable isotope values of S. littoreus were reported as -12.2 ‰ (Brown 1977), which is also 

consistent with C4 photosynthesis.  

 

Aim of the study 

S. littoreus has been studied since the 1970s; however, the thickness and succulence of the 

leaf has never been reported. Tissue succulence is often correlated with CAM, and recent data have 

supported a causal relationship between succulence and CAM (Ripley et al. 2013). Although both 

C4 and CAM pathways use the same enzyme PEP carboxylase, their enzyme regulations are 

different. Portulaca is the only genus that has been reported to contain C4 and CAM pathways in 

different tissues of a species (Guralnick et al. 2002; Kraybill and Martin 1996; Koch and Kennedy 

1980; Sage 2002; Winter and Holtum 2014). Because of the causal relationship between 

succulence and CAM photosynthesis, S. littoreus might have the ability to undergo CAM 

photosynthesis. The aim of this study is to determine the degree of succulence in S. littoreus, its 

photosynthetic pathway(s), and how these results compare among different populations in Taiwan. 
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Chapter descriptions 

Chapter 2 addresses the definition of succulence, different methods in quantifying the 

degree of succulence, and how the results of S. littoreus are compared to other species. Chapter 3 

discusses the photosynthetic pathway(s) of S. littoreus using gas exchange, acidity and carbon 

stable isotope values. Chapter 4 compares the amount of diel acid fluctuations, gas-exchange rates, 

and microhabitats among six populations from northern to southern coastal regions in Taiwan. 

Chapter 5 summarizes all the results and provides a future perspective of S. littoreus. 
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Chapter 2. First Report of Leaf Succulence in a Grass: Spinifex littoreus  

(Poaceae) on Coastal Sand Dunes in Taiwan 

 

Introduction 

One common limitation for most terrestrial plants is the retention and/or acquisition of 

water, especially in arid lands or during periods without precipitation. Growing under long-term 

desiccation may impair physiological processes and ultimately result in death of the plant. A wide 

variety of adaptive features, both morph-anatomical and physiological (Turner and Kramer 1980; 

Levitt 1980; Larcher 2001), allow plant survival during drought stress, and one such morphological 

adaptation comprises the storage of large amounts of water inside the leaf. Such stored water may 

serve as a supplemental supply of water to the photosynthetic tissue, allowing plants to maintain 

their physiological activity even under drought conditions (Nowak and Martin 1997; Herrera et al. 

2000; Chiang et al. 2013). Tissue water storage is often termed “succulence”, and there are 

different approaches to define the degree of succulence of a leaf, including leaf thickness (Teeri et 

al. 1981; Winter et al. 1983; Gibson and Nobel 1986), amount of water storage parenchyma 

(hydrenchyma; Chiang et al. 2013), fresh mass per leaf area (Borland et al. 1998), and the ratio of 

water mass (fresh mass minus dry mass) to tissue fresh mass (von Willert et al. 1992). In an attempt 

to relate succulence to photosynthetic pathways, Kluge and Ting (1978) defined succulence as the 

ratio of water mass to chlorophyll mass (g/mg), which they termed “mesophyll succulence” (or 

Sm), and which they claimed correlates well with the CAM photosynthetic pathway. Furthermore, 

Ogburn and Edwards (2012) suggested that saturated water content (SWC), the difference between 

leaf mass after full hydration and dry mass divided by leaf dry mass, is a meaningful way to 
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quantify succulence because it relates to tissue capacitance, and it is also highly correlated with 

leaf thickness and water storage cell size, both of which are also indicators for succulence. 

 Succulent plants have been found in many families; however, no succulent plants have 

been reported in the Poaceae, one of the largest angiosperm families in the world and which 

includes many species growing in arid and saline regions. The current study comprises the first 

report of leaf succulence in the grass, Spinifex littoreus, a halophyte with thick, stiff leaves found 

on coastal sand dunes in Southeast Asia. The goal of this study was to examine the degree of 

succulence in leaves of S. littoreus using different indices of leaf succulence and to compare these 

results with other succulent plants. 

 

Materials and Methods 

Plant collection 

Unshaded leaves of Spinifex littoreus (Brum. f.) Merr. were collected from coastal sand 

dunes in Taiwan at six localities: Baishawan beach (New Taipei City; 25.284°N, 121.519°E), 

Fulong Beach (New Taipei City; 25.020°N, 121.943°E), Haishan Fishing Port (Hsinchu; 24.765°N, 

120.906°E), Chingshui Beach (Yilan; 24.685°N, 121.836°E), Rouzongjiao beach (Lukang; 

24.075°N, 120.25°E) and Tainan Gold Coast (Tainan; 22.938°N, 120.175°E). Spinifex littoreus 

usually grows alone or with Ipomoea pes-caprae, Bidens pilosa L. var. radiata, and Vitax 

rotundifolia. Because S. littoreus mainly grows by spreading rhizomes, individuals were collected 

at least 5 m apart or at different sand dunes. 

For laboratory work in Taiwan, one leaf from each of five individuals was collected at each 

population in July 2015 for leaf anatomy; and two leaves (one at 7-8 am; one at 4-5 pm) were 

collected from each plant (n = 22-30 plants in June or July 2015; n = 8-10 plants in July 2016 [it 
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was not possible to collect leaves in Haishan Fish Port 2016 due to bad weather]) at each location 

for determination of water content. One leaf was collected from one of six individuals at Tainan 

Gold Coast in July 2016 for the saturated water content experiment. All plant materials were 

immediately placed in zipper plastic bags on ice after excision and transported to the laboratory in 

Taipei. Leaves for anatomy were prepared immediately, and other leaves were stored in the freezer 

and analyzed no more than two weeks after collection. 

For laboratory work at the University of Kansas, plants of S. littoreus were collected in 

February 2015 from Rouzongjiao beach (n = 5) and Baishawan beach (n = 3), transported to 

Kansas and were grown in a growth chamber until mesophyll succulence measurements in May 

2016. Plants were watered three times a week and the day/night temperature (photo- and thermo-

period of 12-hours) was ca. 30/20 �. PPFD was ca. 100-150 µmol m-2 s-1 and the day/night RH 

was 10-50%.  

 

Proportion of water storage tissue 

Thin sections (ca. 200-300 µm) were cut from the middle of each leaf. For each section, 

one photograph was taken with a stereo microscope (Olympus SZX10, Tokyo, Japan), and ImageJ 

(NIH, Baltimore MD, U.S.A.) was used for calculating the fraction of achlorophyllous water 

storage parenchyma area of the total cross-sectional area. 

 

Water content 

Whole leaves were used for determination of water content, which was calculated as:  

!"#$	&#'"(	)*+'"+' = -(".ℎ	0#.. − 2(3	0#..
-(".ℎ	0#..  
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where DM = oven (65 �) for at least 7 days until the difference of the dry mass was less than 

0.001 g. 

 

Saturated Water Content (SWC) 

Leaves fresh mass was weighed, and saturated mass was weighed after soaking in distilled 

water for 48 hours and gently wiped with Kimwipes before weighing. Dry mass was then weighed 

until constant weight (at least 7 days) at 65 �. SWC was calculated as: 

4#'5(#'"6	&#'"(	)*+'"+' = !eaf	0#..	#'	$5::	ℎ36(#';*+ − 2(3	0#..
2(3	0#..  

 

Mesophyll succulence (Sm) 

One leaf per individual was excised, weighed and sliced into 1 mm-thick strips into a 

scintillation vial containing 10 mL of Dimethylformamide for 3 days, until all the tissues became 

transparent, and chlorophyll concentration was determined spectrophotometrically according to 

Moran (1982). Mesophyll succulence was calculated as: 

Sm	(g 0@) =
-(".ℎ	0#.. − 2(3	0#..

Bℎ:*(*Cℎ3::	0#..  

 

Statistical analysis 

Mean proportions of hydrenchyma and mean water contents among populations were 

compared with a One-Way Analysis of Variance (One-Way ANOVA) or Kruskal-Wallis One-

Way Analysis of Variance on Ranks if data were not normally distributed. All statistical tests were 

performed using SigmaStat (SystStat, Chicago, IL, USA), and differences among means were 

considered significant when P ≤ 0.05. 
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Results 

Leaves of S. littoreus are 1 - 1.5 mm thick (middle of the leaf), with chlorenchyma cells 

and vascular bundles only on the abaxial side of the leaf (Figure 1). Hydrenchyma, defined as 

achlorophyllous tissue with large cells, occupied more than 60% of the cross-sectional leaf area in 

all populations examined (Table 1), and this proportion did not differ among populations (P > 

0.05). Leaf water contents of all populations exceeded 0.8 and were significantly different among 

populations. Water contents were the lowest in the two northernmost populations (Baishawan 

beach and Fulong Beach) in 2016. In addition, water content varied at different times of the day. 

Water contents in AM (at the end of the night) leaves were significantly higher than PM (at the 

end of the day) leaves in all populations in both years (P < 0.05, statistical data not shown) except 

Chingshui Beach and Tainan Gold Coast in 2015 (Table 2). Saturated water content (SWC) of S. 

littoreus in Tainan Gold Coast was 6.92 ± 0.26 (mean ± SE), while mesophyll succulence (Sm) 

was 1.03 ± 0.08 (mean ± SE) at Rouzongjiao beach and 0.84 ± 0.04 (mean ± SE) at Baishawan 

beach. 

 

Discussion 

Spinifex littoreus is distributed on coastal sand dunes throughout Southeast Asia, including 

Japan, China, Taiwan, Indonesia and India (Global Biodiversity Information Facility, GBIF; Rama 

Das and Raghavendra 1977). The leaves of this grass are clearly succulent based on general 

morphology, cross-sectional anatomy, and different succulent indices. Sixty four percent of the 

leaf area was occupied by hydrenchyma, which is similar to or higher than found in other succulent 

plants, such as Pyrrosia lanceolata (Chiang et al. 2013), Peperomia magnoliaefolia (Schmidt and 
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Kaiser 1987), Tillandsia ionantha (Nowak and Martin 1997), and Peperomia carnevalii (Herrera 

et al. 2000). In the latter studies, the hydrenchyma shrank under drought stress, and there is 

evidence that the water from the hydrenchyma moved into the chlorenchyma following a gradient 

in osmotic potential, thus maintaining photosynthetic function of the chlorenchyma and, hence, 

the leaf. 

The water content of leaves of S. littoreus was more than 0.8, which is similar to or higher 

than values for other succulent plants (von Willert et al. 1990). Higher leaf water contents in the 

morning relative to the late afternoon might be the result of daytime stomata opening (and water 

loss) and nighttime stomata closure (Table 3 in Chapter 3). Water content in Tainan 2015 was 

much lower than that in 2016, which might be the result of different amounts of precipitation 

during the month of collection between the two years (23.0 mm in Jun. 2015 and 352.5 mm in Jul. 

2016; Table 9 in Chapter 4). Although the leaf anatomy (e.g., 64 % hydrenchyma) and water 

contents indicate that the leaves of S. littoreus are clearly succulent, values of saturated water 

content of the leaves were lower than many of other succulents (Ogburn and Edwards 2012). 

Kluge and Ting (1978) measured mesophyll succulence (Sm) for a number of non-CAM 

and CAM plants. Generally, the Sm of C3 plants are less than 1 while those of CAM plants ranged 

from 1 to 10 (Ting et al. 1983). It has also been reported, however, that the Sm of some CAM 

plants such as Cissus gongylodes and Senecio petasitis are much less than 1 (Virzo de Santo et al. 

1983; Fioretto and Alfani 1988). Sm of S. littoreus in two populations were intermediate between 

C3 and CAM plants. It has been proposed that tissue succulence is highly correlated, or even 

causing CAM photosynthesis (Ripley et al. 2013). Chapter 3 also provides evidence of 

photosynthetic pathway intermediacy in S. littoreus.  



 12 

von Willert et al. (1990) suggested that “utilizable water” can either be stored in mesophyll 

cells or in specialized hydrenchyma cells in the leaves; the latter being the case for S. littoreus. 

Hydrenchyma tissue in succulent leaves provides a source of water for the photosynthetic tissue, 

maintaining plant function, especially photosynthesis, under drought stress, as mentioned above. 

Leaves of S. littoreus had clearly defined hydrenchyma tissue, and the proportion of which did not 

vary among populations reflecting the consistency of this trait. In this regard, it is surprising that 

Rama Das and Raghavendra (1977) did not illustrate or mention the presence of hydrenchyma in 

their anatomical study of S. littoreus (= S. squarrosus) growing in India. Although succulence 

appears beneficial by providing leaves with an internal supply of water, it has also been considered 

maladaptive, as a result of increasing the distance of water and sugar transportation to the vascular 

tissues of the leaf, thus potentially reducing photosynthetic rates. This concern was refuted by 

Ogburn and Edwards (2013) who found a strong correlation between leaf succulence and 3-

dimensional venation, which provides an efficient water transport system in leaves. Despite this 

correlation, 3-dimensional venation was not found in S. littoreus, which has vascular bundles only 

on the abaxial side of the leaf. This inconsistency might be a result of Kranz anatomy, the anatomy 

that has been reported (Rama Das and Raghavendra 1977), as constraint. 

Because S. littoreus is a halophyte, leaf succulence may constitute an adaptation to soil 

salinity. Many halophytes have succulent leaves, and this type of succulence is considered to be 

an adaptation that dilutes the concentration of toxic Na+ and Cl- ions (Levitt 1980, Repp 1958). 

In conclusion, based on different measurements, the leaves of S. littoreus are clearly 

succulent, which is the first report of succulence in the grass family Poaceae. Leaf succulence in 

this coastal dune species may play a role in drought tolerance and/or protection from salt toxicity. 
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Furthermore, leaf succulence in S. littoreus may relate to the photosynthetic pathway(s) of this 

grass. 
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Table 1. Mean (± SE, n=5) of the proportion of hydrenchyma for S. littoreus in six populations in Taiwan. BSW. 

Baishawan beach. FL. Fulong Beach. HS. Haishan Fishing Port. CS. Chingshui Beach. RZJ. Rouzongjiao beach. TN. 

Tainan Gold Coast. The populations are arranged in order from north (BSW) to south (TN) on the island. Proportions 

of hydrenchyma are not significantly different among populations (P > 0.05).  

 

Population Proportion of hydrenchyma (%) 

BSW 65.5 ± 0.7 

FL 66.0 ± 0.9 

HS 63.5 ± 0.8 

CS 62.3 ± 1.1 

RZJ 64.8 ± 0.8 

TN 63.0 ± 1.2 

Mean 64.2 ± 0.4 
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Table 2. Mean ± SE of water content of S. littoreus among populations in June or July 2015 and July 2016. See Table 

1 for population abbreviations. Data did not pass normality test, so data were analyzed by Kruskal-Wallis One Way 

Analysis of Variance on Ranks (n=22-30 in 2015; n=8-10 in 2016). Means among populations are significantly 

different at P < 0.05, and letters denote the differences among populations. 

 

�  2015 �  2016 �  

Population WC (AM) WC (PM) WC (AM) WC (PM) 

BSW 0.842 ± 0.003ab 0.832 ± 0.005b 0.822 ± 0.005b 0.802 ± 0.006bc 

FL 0.833 ± 0.004b 0.825 ± 0.004b 0.807 ± 0.004b 0.789 ± 0.005c 

HS 0.844 ± 0.004ab 0.834 ± 0.003ab N.D. N.D. 

CS 0.836 ± 0.004b 0.835 ± 0.003ab 0.837 ± 0.002ab 0.823 ± 0.003ab 

LK 0.861 ± 0.004a 0.850 ± 0.004a 0.852 ± 0.003a 0.833 ± 0.004a 

TN 0.826 ± 0.004b 0.805 ± 0.015b 0.857 ± 0.007a 0.839 ± 0.007a 

Mean 0.841 ± 0.0017 0.831 ± 0.00274 0.835 ± 0.00347 0.817 ± 0.004 

 

N.D. Not determined 
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Figure 1. Leaf cross-section of S. littoreus. H. hydrenchyma V. vascular bundle C. chlorenchyma Bar = 500 µm. 
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Chapter 3. Photosynthetic Pathway(s) of Spinifex littoreus,  

a Leaf Succulent Grass in Taiwan 

 

Introduction 

Among the three major photosynthetic pathways, C4 and CAM photosynthesis are 

considered to be specialized adaptations to high light, high temperature, and more arid 

environments (Taiz and Zeiger 2002). C4 and CAM photosynthesis evolved multiple times in 

different lineages and use the same initial CO2 fixation enzyme, PEP carboxylase. However, it is 

more common to find C3/CAM or C3/C4 photosynthetic pathways in the same species. Although 

C4 and CAM plants share similar enzymes and are distributed in similar environments with 

drought/high light stress (Edwards and Walker 1983; Taiz and Zeiger 2002), there is only one 

genus Portulaca that has been found to have C4/CAM photosynthetic pathways occurring together. 

Sage (2002) proposed several possibilities of C4/CAM incompatible at the cell level. Even though 

C4 and CAM photosynthesis both use PEP carboxylase, the enzyme activated time is different. In 

addition, Kranz anatomy has been proposed to be required for C4 photosynthesis, while tissue 

succulence is a common feature in CAM plants. However, the anatomical requirements for both 

pathways have been questioned. Single-cell C4 and non-succulent CAM plants have been reported 

(Voznesenskaya et al. 2001, Martin et al. 2009), which were exceptions for these features. The 

low percentage of intercellular space due to highly packed cells and large vacuole in CAM plants 

is also not found in C4 plants. Last but not least, the selective pressures for these two pathways 

might be different. It has been proposed that photorespiration caused by low ambient CO2 may be 

the selective force of CO2-concentrating mechanism in C4 plants, whereas nighttime CO2 uptake 

evolved in CAM plants reduces water loss during the day, and also is beneficial for some aquatic 
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plants to take up CO2 at night when the concentration is higher due to low temperature. There is 

only one genus, Portulaca, that has been found to perform both C4 and CAM photosynthesis in 

some species (Guralnick et al. 2002; Kraybill and Martin 1996; Koch and Kennedy 1980; Sage 

2002). A study of Portulaca grandiflora showed that C4 photosynthesis occurred in Kranz cells 

periphery of the leaf, whereas CAM photosynthesis performed in water storage cells interior of the 

leaf (Guralnick et al. 2002).  

Although C4 and CAM evolved independently across linages, and despite the fact that they 

grow in similar habitats and share similar biochemical pathways, it has never been reported to have 

CAM photosynthesis in Poaceae, one of the biggest families in angiosperms, mainly contributes 

to the leaf morphology: thin and not succulent. However, Spinifex littoreus, a grass that has been 

reported as C4 photosynthesis (Rama Das and Raghavendra 1977), grows on coastal sand dunes in 

Southeast Asia, and the degrees of leaf succulence were measured and quantified by different 

indices in 2015 and 2016 (Chapter 2). Although tissue succulence does not always correlate with 

CAM photosynthesis (Martin et al. 2009), it has been proposed to be a prerequisite for evolving 

CAM photosynthesis (Ripley et al. 2013). It is possible that leaf-succulent S. littoreus has the 

ability to accumulate CAM acid. The aim of this study was to determine whether CAM 

photosynthesis occurs in S. littoreus.  

 

Materials and Methods 

Sample collection 

Leaf tissues of Spinifex littoreus (Brum. f.) Merr. (syn. S. squarrosus; Poaceae, subfamily 

Panicoideae; tribe Paniceae) were collected from six populations in Taiwan along a latitudinal 

gradient: Baishawan beach (New Taipei City; 25.284°N, 121.519°E), Fulong Beach (New Taipei 
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City; 25.020°N, 121.943°E), Haishan Fishing Port (Hsinchu; 24.765°N, 120.906°E), Chingshui 

Beach (Yilan; 24.685°N, 121.836°E), Rouzongjiao beach (Lukang; 24.075°N, 120.25°E) and 

Tainan Gold Coast (Tainan; 22.938°N, 120.175°E). Because S. littoreus mainly grows by 

spreading rhizomes, individuals were determined at least 5 m apart or at different sand dunes. All 

plant materials (except in situ gas exchange experiment) were immediately placed in zipper plastic 

bags on ice after excision and transported to the laboratory in Taipei. Leaf samples were stored in 

the freezer (except samples for stomatal density were stored in 4 � refrigerator) and analyzed no 

more than two weeks after collection. 

For acidity titration in June and July 2015, samples were the same as for water content 

experiment in Chapter 2. In July 2016, two unshaded leaves from each of 8-10 individuals in five 

populations were used for gas-exchange experiments. After the gas-exchange measurements, three 

leaves at each time (7-8 am; 4-5 pm) were collected for acidity titration (samples were also the 

same as for water content experiment in Chapter 2). Because data from 2015 showed high variation 

within population, three leaves were used in 2016 in order to decrease the possible variation. 

In January 2017, one unshaded leaf from each of ten individuals was collected for stomatal 

density (and osmotic potential in Chapter 4) measurement.  

 

Leaf D13C Measurement 

Leaf mid-section was excised from 5 individuals per population and were dried a week at 

70�, ground into a fine powder with a mortar and pestle, then transported to the Keck 

Paleoenvironmental and Environmental Stable Isotope Laboratory at University of Kansas for 

stable carbon isotope analysis. For each sample, the powder was randomly subsampled, and the 

resultant material was combusted for determination of the 13C/12C ratio of the resultant CO2 using 
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a ThermoFinnigan (Bremen, Germany) MAT 253 IRMS Mass Spectrometer. The D13C value of 

each sample is expressed relative to that of the calibrated standard Vienna Pee Dee Belemnite. The 

C isotope determination error was 0.10 ‰.  

 

Acidity titration 

Leaf samples were weighed, cut into 1-2 mm strips, ground with deionized water by mortar 

and pestle into a homogeneous slurry. Samples were titrated with 0.01N NaOH until pH = 7. After 

titration, ground tissue was dried at 65 � for at least 7 days until the differences of dry mass was 

less than 0.001 g. 

 

Gas exchange analysis 

Net gas exchange of two middle of leaves of each individual in situ in the field was 

measured with a LI-COR (Lincoln, NE, USA) LI-6400 Portable Photosynthesis System and a 2 

by 3 cuvette at 10 am to 2 pm (mid-day) and 10 pm to 2 am (mid-night) on sunny days in July 

2016. Also, because leaves were succulent and concave, leaf cuvette was sealed by gas-tight putty 

(Chu Lun Stationery Co., LTD, Taiwan). Before measurements, cuvette was tested until the CO2 

did not leak. Cuvette block temperature was 40/30 � day/night which was similar to ambient 

temperature, and CO2 was 400 ppm. Vpd (vapor pressure deficit) was ca. 2.5-3.5 kPa at mid-day 

and 1.1-1.4 kPa at mid-night. Flow rate was 300 µmol s-1. PPFD during the daytime measurement 

was 2000 µmol m-2 s-1 (similar to the ambient at noon). Each individual at each time was measured 

five times (except population in Chingshui Beach was measured three times) and average was used 

to represent the value of each individual. Each measurement was taken after pressed “match” to 

the reference and sample analyzers in LI-6400.  
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Stomatal density 

Nail polish was used on both sides of the mid-leaf and affixed to slides by transparent tape. 

The number of stomata average from six images per side of a sample was calculated using 

Olympus Optical Company Model BHC (Tokyo, Japan). Stomatal density on adaxial and abaxial 

side were added as total stomatal density. 

 

Statistical analysis 

Mean values of PM and AM acidity was compared with a paired t-test in different 

populations and years. Mean values of CAM acid fluctuation, daytime and nighttime net gas 

exchange rate, stomatal conductance, intercellular CO2 concentration, transpiration rates, water-

use efficiency, and vpd among populations were compared by a One-Way Analysis of Variance. 

If data were not normally distributed, the Wilcoxon’s Signed-Rank Test or Kruskal-Wallis Test 

were used. All statistical tests were performed using SigmaStat (SystStat, Chicago, IL, USA), and 

differences among means were considered significant when P ≤ 0.05. 

 

Results 

Leaf D13C Measurement 

Mean leaf D13C value of S. littoreus was -14.247 ± 0.158 ‰, and values were not different 

among populations (P > 0.05; Table 1).  

 

Diurnal acidity fluctuation 
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On a dry mass basis, acidity of AM leaves in 2015 and 2016 were significantly higher than 

PM leaves except Tainan in 2015 and Baishawan beach in 2016 (Table 2, Figure 1, Figure 2). In 

addition, of those populations that showed diurnal acid fluctuation, the amount of accumulated 

acid was not different among populations in both years (P > 0.05 in 2016). Moreover, the acidity 

differences in 2016 were significantly higher than 2015 (P < 0.05) except for Baishawan 

population (P > 0.05; Table 2, Figure 3).  

 

Gas exchange analysis 

Gas exchange analysis of S. littoreus indicated daytime CO2 uptake and daytime stomatal 

opening in five populations in July 2016 (Table 3, Figure 4). In addition, daytime net CO2 

exchange rates, nighttime respiration rates, daytime stomatal conductance, and daytime 

transpiration rates all differed significantly among populations with a trend of increasing from 

northern to southern Taiwan (Table 3). Nighttime stomatal conductance and transpiration were 

significantly higher in Chingshui population (Table 3). 

 

Stomatal density 

 Stomata of S. littoreus were dumbbell-shape, mainly distributed on the abaxial side of a 

leaf (where chlorenchyma cells distributed), and were occasionally found at the edge of a leaf on 

the adaxial side. Stomatal density was not different among populations (P < 0.05; Table 4). 

 

Discussion 

Kranz anatomy and PEPC activity in Spinifex littoreus has been reported by Rama Das and 

Raghavendra (1977), and these results, combined with the leaf D13C values (Table 1), showed C4 
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photosynthesis in S. littoreus. Photosynthetic rate of S. littoreus has also been reported for 63.2 mg 

CO2 dm-2 hr-1 (39.9 µmol m-2 s-1; Rama Das and Rachavendra 1977), which was similar to some 

of the populations in Taiwan (Table 3). This photosynthetic rate is in the average range of C4 

photosynthesis (30-60 µmol m-2 s-1) that have been reported under optimal condition for each 

species (Larcher 2001), and is much higher than other coexisting species (Morrison and Reekie 

1995, Santiago et al. 2000, Ramani et al. 2006). In addition, stomatal conductance of S. littoreus 

was also similar to other grasses (0.25-0.45 mol m-2 s-1), although the stomatal density was higher 

than average range of other grasses (50-100 per mm2, Larcher 2001). Water use efficiency of S. 

littoreus is similar to other C4 plants (ca. 4. Taiz and Zeiger 2002). 

Diel acidity fluctuation in most of the populations of S. littoreus (Figure 1, Figure 2) with 

daytime net CO2 uptake (Table 3) indicated that S. littoreus exhibits CAM-cycling photosynthesis 

at night. CAM-cycling plants recycle nocturnal respiratory CO2, is different from obligate CAM 

plants that open stomata and fix ambient CO2 at night. This type of CAM photosynthesis is also 

found in Portulaca, a genus in dicot family Portulacaceae that has ever been reported for C4/CAM 

intermediacy. Other two genera, Anacampseros and Grahamia, in the same clade Anacampseroid 

has been investigated, but no C4 photosynthesis ability was found (Guranlnick 2008). Although it 

has been proposed that CAM-cycling in water storage tissue may play a role in water conservation 

and water supply to C4 cells under drought stress (Guralnick et al. 2002), the adaptive significance 

of such small acidity accumulations is still unclear (Martin 1996; Winter et al. 2015). 

In populations of Baishawan beach and Tainan Gold Coast, there was no consistency of 

acid fluctuation across years. Moreover, the nighttime acid accumulation in different populations 

was much higher in 2016 (Figure 3). These may be associated with environmental factors, as it has 

been reported in Portulaca that CAM-cycling photosynthesis occurs under environmental (usually 
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drought) stress (Guralnick et al. 2002; Kraybill and Martin 1996; Koch and Kennedy 1980; Sage 

2002). In addition, daytime net CO2 assimilation rates, transpiration rates, as well as stomatal 

conductance values increased from northern to southern Taiwan (except Tainan population) in 

2016 (Table 3), might also be the result of environmental variation. The microhabitat comparisons 

of S. littoreus in different populations will be addressed in Chapter 4.  

  In conclusion, based on carbon stable isotope, acidity titration and gas-exchange 

experiments, S. littoreus exhibits C4/CAM-cycling photosynthetic pathway in different 

populations in Taiwan. This is the first report of C4/CAM-cycling apart from Portulaca, and also 

the first report of this photosynthetic intermediacy in the monocot family Poaceae. Inconsistency 

of nocturnal acid accumulation showed that biotic and/or abiotic microhabitat conditions might be 

associated with CAM-cycling ability. 
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Table 1. Mean (± SE; n = 5) of leaf carbon stable isotope values of S. littoreus in six populations. See Table 1 for 

population abbreviations. Means are not significantly different among populations in Taiwan (P > 0.05). 

 

Population�  Leaf D13C (‰) 

BSW -13.55 ± 0.13 

FL -14.27 ± 0.26 

HS -14.46 ± 0.36 

RZJ -14.19 ± 0.39 

TN -14.77 ± 0.42 

Mean -14.25 ± 0.16 
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Table 2. Mean (± SE; n = 25-40 in 2015 and n = 8-10 in 2016) values of leaf PM/AM acidity (µmol H+ g-1 DM), and 

diurnal acidity fluctuations (delta acidity, AM value minus PM value) in 2015 and 2016 on a dry mass basis. See Table 

1 for population abbreviations. Significant level for means between AM and PM acidity: P < 0.05 (*), P < 0.01 (**), 

P < 0.001 (***) or non-significant (ns; P > 0.05). Diurnal acidity fluctuations did not differ among populations that 

showed CAM acid increase in both years (P > 0.05). 

 

�  Year 2015 Year 2016 

Population PM  AM AM-PM PM AM AM-PM 

BSW 60.19 ± 4.08 68.05 ± 4.47  7.86 ± 4.32 * 71.01 ± 7.88 93.87 ± 5.99 22.86 ± 11.32 (ns) 

FL 79.34 ± 5.24 92.06 ± 5.45 12.72 ± 3.39 *** 64.89 ± 12.98 101.18 ± 12.87 36.29 ± 5.04 *** 

HS 81.26 ± 4.92 96.07 ± 4.76 14.81 ± 3.80 *** N.D. N.D. N.D. 

CS 52.37 ± 3.61 65.87 ± 4.08 13.50 ± 4.41 *** 61.68 ± 7.53 93.45 ± 5.80 31.77 ± 3.39 *** 

RZJ 72.20 ± 5.01 88.65 ± 5.25 16.45 ± 5.11 ** 38.79 ± 2.67 75.80 ± 3.28 37.01 ± 3.59 *** 

TN 53.54 ± 4.19 53.22 ± 3.26 -0.32 ± 3.19 (ns) 95.44 ± 12.28 125.76 ± 14.88 30.31 ± 6.31 *** 

 

N.D. Not determined 
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Table 4. Mean (± SE; n = 10) of total stomatal density (no. mm-2) of S. littoreus in six populations in Taiwan. See 

Table 1 for population abbreviations. Total stomatal density values were not different among populations (P > 0.05). 

 

 

 

 

 

 

 

  

Population Stomatal density 

BSW 186.2 ± 16.3 

FL 166.1 ± 10.8 

HS 171.2 ± 7.0 

CS 173.4 ± 3.9 

RZJ 169.4 ± 10.4 

TN 152.8 ± 7.7 
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Figure 1. Mean (± SE; n = 25-40) of morning (AM) and late afternoon (PM) leaf acidities of S. littoreus in six 

populations in 2015. Data are expressed on a dry mass basis. See Table 1 for population abbreviations. Significant 

level: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05).  
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Figure 2. Mean (± SE; n = 8–10) of morning (AM, grey bars) and late afternoon (PM, black bars) leaf acidities of S. 

littoreus in six populations in 2016. Data are expressed on a dry mass basis. See Table 1 for population abbreviations. 

Significant level: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ns *** *** *** *** 



 38 

Figure 3. Mean (± SE; n = 25-40 in 2015 and n = 8-10 in 2016) of diurnal acidity fluctuations (delta acidity, AM value 

minus PM value) in 2015 and 2016 on a dry mass basis. See Table 1 for population abbreviations. Black bars denote 

values in 2015 whereas grey bars denote values in 2016. Significant level: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***) 

or non-significant (ns; P > 0.05). 
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Figure 4. Mean (± SE; n= 8 - 10) of mid-day photosynthetic rates (A), mid-day transpiration rates (E), mid-day 

stomatal conductance (gs), and mid-day intercellular CO2 concentration (Ci) of S. littoreus in six populations in 2016. 

See Table 1 for population abbreviations. Means among populations are significantly different at P < 0.001, and letters 

denote the differences among populations. 
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Chapter 4. Ecophysiological Variability in Spinifex littoreus, a C4/CAM-Cycling Grass, 

among Six Populations in Coastal Regions of Taiwan 

 

Introduction 

Coastal sand dunes are considered as one of the most stressful environments for plants, 

which often face excess light, drought stress, toxic ion concentrations, strong winds, and low 

nutrient availability (Hesp 1991; Larcher 2001; Maun 2009; Bermúdez and Retuerto 2014). In 

coastal sand dunes, basic elements are not leached out by rainfall, thus soil is more alkaline and 

contains fewer nutrients (Larcher 2001). 

Spinifex littoreus is a perennial halophytic grass that is distributed in the coastal regions 

throughout Southeast Asia. Based on carbon stable isotope values (Table 1 in Chapter 3), diurnal 

acidity fluctuation (Table 2, Figure 1, Figure 2 in Chapter 3) and daytime CO2 uptake (Table 3, 

Figure 4 in Chapter 3), S. littoreus is a C4/CAM-cycling grass. However, the degree of acidity 

accumulation and photosynthetic parameters differed among years and populations. Diel CAM 

fluctuation was not shown in Tainan Gold Cost (year 2015) and Baishawan beach (year 2016), two 

populations of S. littoreus in Taiwan, but was found in different years (Figure 1, Figure 2 in 

Chapter 3). It has been reported that the ability of CAM-cycling photosynthesis is associated with 

different environmental conditions, especially drought stress, in some Portulaca spp. such as 

Portulaca grandiflora, P. oleracea, P. mundla, (Guralnick et al. 2002; Kraybill and Martin 1996, 

Koch and Kennedy 1980; Sage 2002). S. littoreus is widely distributed along coastal regions in 

Taiwan, the microhabitat including abiotic and biotic factors may also be associated with the 

nocturnal acid fluctuations. In addition, photosynthetic rates of S. littoreus were higher in southern 
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populations than northern populations. This difference might also be the phenotypic plasticity 

under different microhabitats.  

The aim of this study was to determine whether the CAM-cycling ability in S. littoreus is 

associated with certain ecological factors, and to determine the possible reason causing population 

differences in their physiological performance.  

 

Materials and Methods 

Sample collection 

In 2016, four to five soil samples around different individual’s roots of S. littoreus (Brum. 

f.) Merr. (syn. S. squarrosus; Poaceae, subfamily Panicoideae; tribe Paniceae) at each location 

were collected for soil pH measurement. In January 2017, one unshaded leaf from each of ten 

individuals at each location was collected for osmotic potential measurement (same as the 

individuals for stomatal density measurement in Chapter 3). Soil samples and leaf samples were 

immediately placed in zipper plastic bags on ice after collection and transported to the laboratory 

in Taipei. Soil samples were dried at room temperature whereas leaf samples were stored in the 

freezer and analyzed no more than two weeks after collection. 

 

Microhabitat information 

CAM acid fluctuation (AM-PM) data were compared with different environmental factors 

in 2015. Sun/shade was determined whether S. littoreus was shaded by any object above the plant. 

Distance to the sea was roughly estimated by foot-steps. Vegetative/flowering stage was 

determined whether any of the ramets in the colony was flowering, and gender, if the plant was 

flowering, was determined by different morphology of male/female inflorescences because S. 
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littoreus is a dioecious plant. Presence/absence of interspecific competition was determined 

whether the co-exist plants were within 1 m of S. littoreus. The location of the plants on a sand 

dune (at top/side/bottom, or growing on flat regions) and the location of plants in a colony 

(edge/center) were also recorded. In addition, mean temperature, accumulated precipitation (when 

the experiments were done) at each location was downloaded from Data Bank for Atmospheric 

and Hydrologic Research. 

 

Soil pH 

Soil was immediately placed in zipper plastic bags, transported back to the lab, and dried 

under room temperature for 48 hours. Ten grams of soil and 50 mL of distilled water were placed 

in a 50 mL plastic tube and shaken for one hour. After soil particle sediment, pH values were 

measured by a pH meter.  

 

Osmotic potential 

Liquid from each leaf was removed by pestle of microtube in a 2 mL plastic tube. Ten 

microliters of liquid was absorbed into a paper disc and analyzed by WESCOR vapor pressure 

osmometer VAPRO 5520 (ELITech, Logan, UT, USA). Osmolality standards WESCOR OA-010, 

OA-029 and OA-100 (ELITech, Logan, UT, USA) were used for instrument calibrations, and 

samples remained in the measurement chamber until water vapor equilibrium (1 min). 

 

Statistical analysis 

Mean values of diel acidity fluctuations at each of the environmental factors (except the 

distance to the sea) in each population, soil pH, osmotic potential were compared by a One-Way 
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Analysis of Variance, or Kruskal-Wallis Test if the data were not normally distributed. The 

relationship between CAM acidity fluctuation and the distance to the sea was tested by linear 

regression. All statistical tests were performed using SigmaStat (SystStat, Chicago, IL, USA), and 

differences among means were considered significant when P ≤ 0.05. 

 

Results 

In 2015, diel acid fluctuation was shown in plants that were located in exposed area and/or 

at the edge of a colony in five out of six populations (except Tainan Gold Coast). The acid 

fluctuation was also found in vegetative stage and/or flowering stage in four out of six populations. 

Plants located at the top of the hill, the center of a colony, and presence/absence of interspecific 

competition in three out of six populations was also associated with nocturnal acid accumulation 

(Table 1-6). 

Soil pH values were ca. 8.0 - 8.5, and that of the population in Tainan Golden Coast was 

significantly higher than Fulong Beach (Table 7). Osmotic potential of leaves was lower in 

Rouzongjiao population than Fulong and Chingshui populations (Table 8). 

 

Discussion 

Although monthly mean temperature (when the experiments were done) from Data Bank 

for Atmospheric and Hydrologic Research was ca. 28-30 � for each population, the temperature 

at the time of in situ measurement of gas exchange around the plants was ca. 40-45 � and was 

similar among populations (personal observation). Soil pH was significantly different among 

populations (Table 7), but the effect on plants is not known and requires further investigation. In 

all populations, the distance to the sea did not correlate with the amount of CAM acid accumulation. 
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Distance to the sea was assumed to represent a salt gradient of the soil, thus affecting the water 

potential and ion toxicity. This result indicates either soil water status was similar in all the sample 

sites at each population, or CAM acid accumulation was not affected by soil water potential. 

In addition to tissue succulence as an adaptive trait in the coastal ecosystem, accumulation 

of solutes is another common phenomenon in coastal halophytes. It has been proposed that plants 

growing in coastal ecosystem accumulate solutes, such as NaCl, proline, or other amino acids, thus 

reducing the water potential in the plant tissue, which allows the absorption of water from saline 

soil (McNaughton 1991; Larcher 2001). Even though the osmotic potential of S. littoreus was not 

as low as sea water (-25 bars; Larcher 2001), it was much more negative than the co-occuring 

halophyte Ipomoea pes-caprae (ca. -10 bars, Sucre and Suárez 2011), although this might be the 

result of different soil water potentials.  

In 2015, different factors contributed to the significant acidity fluctuations of S. littoreus 

at each population. In the populations except Tainan Gold Coast in 2015, CAM acid fluctuation 

was found when the plants were growing in exposed area, or at peripheral of the colony. Although 

the acid fluctuation was also observed under different conditions in some populations, these two 

might be more important factors. Exposed areas on sand dunes often contain with excess light, 

drought stress and higher temperature conditions, which have been associated with CAM-cycling 

photosynthesis. In addition, growing in peripheral of a colony may indicate the edge of resources 

allowing plants to grow, which may also affect the acid accumulation.  

In 2016, photosynthetic rates and other parameters were significantly different among 

populations (Table 3, Figure 4 in Chapter 3). As a result of the low relative humidity at noon in 

the field, water vapor in the air was not controlled by LI-COR 6400. More specifically, vapor 

pressure deficit (vpd) was different among populations, and might cause the difference in stomatal 
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conductance and thus affected photosynthetic rates. In addition, highest leaf water content (Table 

2 in Chapter 2) with lowest osmotic potential (Table 8) at Rouzongjiao beach may be the cause of 

highest photosynthetic rate among populations. By accumulating solutes in the leaf, S. littoreus 

display salt succulence that allows plants absorbing water from the saline soil. Plants at 

Rouzongjiao beach might face less drought stress, and thus exhibited higher stomatal conductance 

and higher photosynthetic rates. 

 In conclusion, based on osmotic potential and microhabitat information, S. littoreus 

exhibits solute accumulation, and CAM-cycling photosynthesis occurs mainly in the exposed area 

and at the edge of the colony in six different population in Taiwan. The difference in 

photosynthetic rate might be related to other environmental conditions that were not measured in 

this study (e.g., soil water potential or wind), or genotypic variability (the ability of accumulating 

solutes) among populations throughout Taiwan.  
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Table 1. Mean (± SE, total n = 29) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Baishawan beach in June 2015. Significant level: P < 0.05 (*), P < 

0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 24 58.53 ± 4.87 69.30 ± 5.228 10.77 ± 4.89 ** 

Shade 5 68.17 ± 1.41 62.06 ± 6.788 -6.11 ± 6.37 ns 

Uphill 8 62.20 ± 6.18 74.69 ± 12.250 12.49 ± 8.81 ns 

Slope 21 59.43 ± 5.20 65.52 ± 4.179 6.10 ± 5.02 * 

Vegetative 22 56.91 ± 3.40 71.09 ± 4.768 14.18 ± 3.34 *** 

Flowering 7 70.51 ± 13.10 58.51 ± 10.783 -12.01 ± 12.34 ns 

Center 1 41.73 81.490 39.77 - 

Edge 28 60.85 ± 4.17 67.57 ± 4.606 6.72 ± 4.32 * 

Male 28 59.32 ± 4.13 66.29 ± 4.256 6.97 ± 4.39 * 

Female 1 84.63 117.49 32.87 - 

Competition 20 61.48 ± 5.36 65.39 ± 4.813 3.92 ± 5.73 ns 

No competition 9 57.34 ± 5.89 73.96 ± 9.837 16.62 ± 4.84 ** 

Distance to the sea 29    ns 
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Table 2. Mean (± SE, total n = 39) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Fulong Beach in July 2015. Significant level: P < 0.05 (*), P < 0.01 

(**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 29 69.50 ± 4.43 81.53 ± 5.05 12.03 ± 4.09 ** 

Shade 10 107.88 ± 12.40 122.60 ± 10.95 14.72 ± 6.18 * 

Uphill 39 79.34 ± 5.24 92.06 ± 5.45 12.72 ± 3.39 *** 

Vegetative 30 80.89 ± 5.29 91.90 ± 5.54 11.00 ± 3.85 ** 

Flowering 9 74.17 ± 14.94 92.59 ± 15.55 18.43 ± 7.24 * 

Center 12 87.04 ± 9.77 93.64 ± 10.10 6.60 ± 7.82 ns 

Edge 27 75.92 ± 6.21 91.35 ± 6.60 15.43 ± 3.44 *** 

Male 5 60.96 ± 13.67 85.78 ± 11.99 24.82 ± 4.48 ns 

Female 3 98.00 ± 40.28 97.31 ± 48.03 0.70 ± 15.39 ns 

Competition 30 82.87 ± 6.48 96.85 ± 6.38 13.98 ± 3.34 *** 

No competition 9 67.57 ± 5.98 76.07 ± 8.84 8.50 ± 9.94 ns 

Distance to the sea 39    ns 
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Table 3. Mean (± SE, total n = 40) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Haishan Fishing Port in June 2015. Significant level: P < 0.05 (*), P < 

0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 30 79.27 ± 6.09 93.70 ± 5.35 14.43 ± 3.03 *** 

Shade 10 87.23 ± 7.49 103.17 ± 10.40 15.94 ± 12.70 ns 

Uphill 20 79.98 ± 6.87 96.15 ± 7.15 16.17 ± 6.56 * 

Slope 8 103.28 ± 11.41 115.45 ± 8.57 12.17 ± 3.82 * 

Downhill 12 68.72 ± 7.15 83.02 ± 7.16 14.29 ± 6.31 ns 

Vegetative 20 75.24 ± 6.50 95.07 ± 7.31 19.83 ± 6.27 *** 

Flowering 20 87.29 ± 7.30 97.07 ± 6.28 9.78 ± 4.15 * 

Center 24 77.34 ± 6.29 91.32 ± 5.52 13.98 ± 3.60 *** 

Edge 16 87.14 ± 7.90 103.19 ± 8.45 16.05 ± 7.99 * 

Male 10 74.50 ± 9.45 86.51 ± 8.05 12.01 ± 6.03 ns 

Female 10 100.07 ± 9.98 107.63 ± 8.76 7.56 ± 5.94 ns 

Competition 30 76.69 ± 5.14 93.07 ± 5.36 16.38 ± 4.65 *** 

No competition 10 94.99 ± 11.67 105.06 ± 10.13 10.07 ± 6.16 ns 

Distance to the sea 40    ns 
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Table 4. Mean (± SE, total n = 40) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Chingshui beach in June 2015. Significant level: P < 0.05 (*), P < 0.01 

(**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 30 53.69 ± 4.36 63.51 ± 4.53 9.82 ± 4.39 *** 

Shade 10 48.41 ± 6.32 72.96 ± 9.10 24.55 ± 8.90 * 

Uphill 19 46.83 ± 3.44 65.40 ± 5.67 18.57 ± 5.18 *** 

Slope 5 70.16 ± 18.98 55.65 ± 8.74 -14.51 ± 21.87 ns 

Downhill 16 53.40 ± 5.37 69.63 ± 7.26 16.23 ± 3.08 *** 

Vegetative 18 58.43 ± 6.85 72.18 ± 8.01 13.75 ± 8.09 ** 

Flowering 22 47.42 ± 3.22 60.71 ± 3.29 13.29 ± 3.46 *** 

Center 8 46.03 ± 3.83 66.03 ± 6.74 20.00 ± 4.80 ** 

Edge 27 54.65 ± 5.11 66.97 ± 5.58 12.32 ± 5.73 ** 

Only one 5 50.23 ± 6.05 59.72 ± 8.07 9.49 ± 6.19 ns 

Male 8 42.44 ± 3.07 51.48 ± 3.49 9.04 ± 4.94 ns 

Female 14 50.26 ± 4.65 65.99 ± 4.21 15.73 ± 4.65 ** 

Competition 30 49.51 ± 4.08 62.76 ± 3.98 13.25 ± 5.18 *** 

No competition 10 60.97 ± 7.37 75.22 ± 11.06 14.25 ± 4.92 * 

Distance to the sea 40    ns 
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Table 5. Mean (± SE, total n = 25) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Rouzongjiao Beach in July 2015. Significant level: P < 0.05 (*), P < 

0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 25 72.20 ± 5.01 88.65 ± 5.25 16.45 ± 5.11 ** 

Uphill 6 78.73 ± 10.24 98.99 ± 8.62 20.26 ± 11.59 ns 

Slope 5 60.39 ± 17.81 86.94 ± 18.57 26.56 ± 12.67 ns 

Flat 14 73.62 ± 5.02 84.82 ± 5.99 11.20 ± 6.39 ns 

Vegetative 5 84.77 ± 11.29 111.06 ± 10.68 26.29 ± 15.61 ns 

Flowering 20 69.06 ± 5.51 83.04 ± 5.40 13.98 ± 5.17 * 

Center 12 66.64 ± 5.79 84.46 ± 8.08 17.82 ± 7.84 * 

Edge 13 77.33 ± 7.97 92.51 ± 6.94 15.17 ± 6.92 * 

Male 6 72.32 ± 5.86 74.88 ± 6.56 2.56 ± 5.57 ns 

Female 14 67.66 ± 7.56 86.54 ± 7.12 18.88 ± 6.68 * 

Competition 9 80.66 ± 7.87 87.17 ± 10.84 6.51 ± 8.34 ns 

No competition 16 67.44 ± 6.32 89.48 ± 5.79 22.03 ± 6.21 ** 

Distance to the sea 25    ns 
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Table 6. Mean (± SE, total n = 26) of morning (AM), late afternoon (PM) leaf acidities and diurnal acidity differences 

(AM-PM) under different ecological factors at Tainan Gold Coast in June 2015. Significant level: P < 0.05 (*), P < 

0.01 (**), P < 0.001 (***) or non-significant (ns; P > 0.05). 

 

 n PM AM AM-PM P 

Sun 22 50.46 ± 4.57 52.63 ± 3.65 2.17 ± 3.03 ns 

Shade 4 70.51 ± 5.80 56.50 ± 7.59 -14.01 ± 11.23 ns 

Uphill 2 51.26 ± 1.09 62.58 ± 4.99 11.31 ± 6.09 ns 

Slope 8 40.15 ± 6.84 40.18 ± 3.09 0.03 ± 5.46 ns 

Downhill 2 35.95 ± 5.09 49.47 ± 0.20 13.51 ± 5.29 ns 

Flat 14 64.04 ± 5.31 59.88 ± 4.76 4.16 ± 4.67 ns 

Vegetative 17 52.34 ± 5.83 53.37 ± 4.63 1.04 ± 3.31 ns 

Flowering 9 55.83 ± 5.42 52.94 ± 3.87 -2.89 ± 7.03 ns 

Center 17 53.68 ± 4.52 53.10 ± 4.38 -0.57 ± 3.77 ns 

Edge 7 53.16 ± 10.69 54.15 ± 6.31 0.99 ± 6.56 ns 

Only one 2 53.80 ± 22.93 51.01 ± 1.34 -2.78 ± 21.59 ns 

Male 6 60.55 ± 6.62 56.97 ± 4.94 -3.58 ± 10.56 ns 

Female 1 51.68 43.82 -7.86 - 

Competition 18 59.40 ± 5.37 56.46 ± 4.08 -2.94 ± 4.11 ns 

No competition 8 40.37 ± 3.29 45.94 ± 4.61 5.57 ± 4.34 ns 

Distance to the sea 26    ns 
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Table 7. Mean (± SE, n = 4 - 5) of soil pH values of S. littoreus in five locations in 2016. See Table 1 for population 

abbreviations. Means among populations are significantly different at P < 0.05, and letters denote the differences 

among populations. 

 

Population Soil pH 

BSW 8.32 ± 0.20ab 

FL 8.07 ± 0.04b 

CS 8.28 ± 0.10ab 

RZJ 8.24 ± 0.10ab 

TN 8.68 ± 0.02a 
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Table 8. Mean (± SE, n = 10) of osmotic potential values (Ψπ) of S. littoreus in six populations in Taiwan. See Table 

1 for population abbreviations. Means among populations are significantly different at P < 0.01, and letters denote the 

differences among populations. 

 

Population Ψπ (bars) 

BSW -19.08 ± 0.66ab 

FL -18.16 ± 0.74a 

HS -18.67 ± 0.57a 

CS -19.44 ± 0.54ab 

RZJ -23.59 ± 1.68b 

TN -20.39 ± 1.03ab 
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Table 9. Mean temperature and accumulated precipitation in six locations in 2015 and 2016. Climate data were 

collected at the month when samples and in situ measurements were taken (BSW, HC, YL, TN in June and FL, LK in 

July 2015, July 2016 for all populations). See Table 1 for population abbreviations.  

 

�  2015  2016  

Population T � Precipitation (mm) T � Precipitation (mm) 

BSW 28.70 30.5 29.20 99.0 

FL 28.08 189.0 28.76 96.5 

HS 28.88 86.5 29.42 7.0 

CS 29.22 39.5 29.68 194.5 

RZJ 29.21 79.5 29.62 90.0 

TN 29.99 23.0 30.24 352.5 
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Chapter 5. Conclusions 

 

This study comprises the first report of leaf succulence in the halophytic grass, Spinifex 

littoreus, growing on coastal sand dunes of Taiwan. More than 60 % of the cross-sectional area of 

the leaf was water-storage parenchyma (hydrenchyma), as well as high water content, high relative 

water content, and mesophyll succulence confirmed a degree of succulence that compared with 

other known succulent plants. Tissue succulence is considered as an adaptation to drought stress 

and to saline environments by diluting tissue salt concentrations, although no halophytic grass has 

previously been reported with succulent leaves. The osmotic potential of S. littoreus also indicated 

solute accumulation in leaves, which is also a common feature for halophytic plants. 

In addition to leaf succulence, this study also is the firstly report of C4/CAM-cycling 

photosynthesis in a grass. Carbon isotope values, Kranz anatomy and previous biochemical studies 

indicated that S. littoreus is a C4 plant, whereas nighttime stomatal closure and diel acid 

fluctuations indicated CAM-cycling photosynthesis in S. littoreus. Although nocturnal acid 

increases were exhibited in S. littoreus, the ecological significance of this “CAM-cycling” is 

unclear.  

CAM acid fluctuation was not observed in populations of S. littoreus at Tainan Gold Coast 

(year 2015) and Baishawan beach (year 2016). In an attempt to determine which ecological factors 

might possibly be associated with CAM-cycling in S. littoreus, CAM-cycling was frequently found 

in plants that in unshaded areas and/or at the edge of the colony (except the population at Tainan 

Gold Coast). In addition, the amount of CAM acid fluctuation did not differ among populations, 

but varied across the two years of the study. Temperature was similar across years while 

precipitation varied and was not correlated with the amount of nocturnal acidity increase. The 
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differences in CAM acidity fluctuations across years may be the result of other environmental 

factors. Photosynthetic rates were higher in southern populations in Taiwan, which may be the 

result of other microhabitat differences (e.g., vpd or soil water potential), or genetic variability 

among the populations.  

C4/CAM-cycling photosynthesis has only been reported in one family and one genus, 

Portulaca (Portulacaceae) previously. As a result of the current study, the family Poaceae and the 

genus Spinifex can be added to plants with this exceedingly rare form of photosynthetic pathway 

intermediacy. Zygochloa and Pseudochaetochloa are sister groups of Spinifex (Morrone et al. 

2012), and have been found mainly distributed in arid regions in Australia (RBG Kew GrassBase 

2017). Whether tissue succulence, or even the ability of CAM photosynthesis in these taxa or in 

other species of Spinifex was exhibited in these genus remains unclear and is certainly worthy of 

investigation. Although PEP carboxylase and other enzymes are both used in C4 and CAM 

pathways for CO2 fixation and other parts of the C4 cycle, the different timing of enzyme regulation 

has been proposed to hinder the intermediacy, and thus requires recruitment of unique genes 

(Christin et al. 2014). A potential evolutionary history of Portulaca has been proposed, in which 

a C4-specific PEP carboxylase gene was recruited into a CAM plant (Christin et al. 2014). Because 

there are no CAM plants in the Poaceae, this scenario is clearly not possible for the evolution of 

photosynthetic pathway intermediacy in Spinifex. This fascinating difference from Portulaca 

requires further investigation. 

 P. oleracea is viewed as a model organism for understanding regulatory controls between 

the C4 and CAM pathways and for studies of the evolution of photosynthetic pathways. Now, S. 

littoreus may offers a new and radically different model for such studies. Furthermore, because of 

the benefits for leaf succulence and CAM-cycling, as some authors claim, this grass may be 
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potentially useful for experimental breeding programs to improve drought and salt tolerance in 

cereal crops (e.g. von Caemmerer et al. 2012).  
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