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ABSTRACT
Andrew C. D. Cleary, M.S.

Department of Geography, 2017
Universityof Kansas

Federal reservoirs in Kansas are presently undergoing infill at varying rates and represent
a growing concern, as these features are I
dredging required to restore capacities are substakbalsas exhibits a unique hydrography by
having some of the highest densities of small impoundments in the United States. Previous
studies have highlighted the potential of impoundments to act as significant sinks for sediment.
However, their significanceithin Kansas reservoir drainages and potential service in mitigating
downstream reservoir sediment yields is not well understood. This thesis seeks to improve
understanding of small impoundments distributions and significance in relation to reservoir
sedment yield through two stages.

Chapter 2 applies elevatidrased methods of impoundment identification using newly
available LiDARderived Digital Elevation Models (DEM) in order to enhance Kansas reservoir
drainage inventories relative to relying solely the National Hydrography Dataset (NHD). The
two DEM-based methodologies resulted in the identification of features absent in the NHD, and
accuracy testing showed both DHMsed methodologies produce more accurate surface area
geometries. In turn, thewb approaches can be used to update and improve accuracy of
inventories relative to using the NHD exclusively.

Chapter 3 delineates small impoundment catchment areas within nine eastern Kansas

reservoir drainages and compares eresgated traits in th context of impoundment catchment
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and direct runoffThe majority of sediment presently infilling Kansas reservoirs has been noted
as originating from channdlank erosion sources, not overland sources. Since impoundments are
potentially positioned in th@ath of channebank eroded material, better understandiogh
their distribution andtheir potential sediment trapping is an important aspect of reservoir
drainage yield modeling and management. By investigating erosliated factors for reservoir
dranagesand addressing impoundment catchmeetveral possible trends were observed. For
example,contrastingimpoundment size distributisnwere observed in the highest and lowest
drainagesediment yield. Impoundments tend to be more abundanteaches ad grassland
areas, while they decrease in abundance closer to reservoirs and in croplantidaligasally,
average catchment aréar small impoundments in the region is much smaller than previous
estimateswhich may suggesmaller sediment loads @ang impoundments.

This thesis demonstrates new approaches to investigating potential trends relating to
reservoir sedimentation and suggests several avenues for further research. AsdeiDAR
DEMs become increasingly available, methods such as thes®nstrated in Chapter 2 are
particulaly valuable. Not only does thjgroject highlight potential inaccuracies of the NHD, but
it presents automated and easily repeatable methods to enhanebasetDinventories in other
regions. Chapter 3 considers tlsggnificance of small impoundments when investigating
potential sources of difference in Kansas reservoir drainage yields, which is a component often
absent in drainage scale erosion modeling. Given the abundance of small impoundments for the
region and he projected costs of reservoir restoration, this study provides insight into the
significance of small impoundments in connection to a growing concern. By better assessing the
factors responsible for differing rates of infill among reservoir drainagssyvar drainage

management may make more informed decisions. Additionally, this project also capitalizes on
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the growing abundance of LiDARerived DEMs, and demonstrates their value in delineating
small impoundment catchment to better understand the#r asl mitigators of downstream

sediment yield.
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Chapter 1

Introduction

Introduct ion

The decline of water resources is a global problem exacerbated by climate change and
unprecedented population growth. On a regional scale, water problems ardonabied
reflecting the land use history, physical environment, and policy decisidhs area. In Kansas,
federal reservoirs, which provide municipal, agricultural, flood control, and recreational services,
are experiencing capacity loss due to sedimentation. Projected costs of capacity restoration are
substantial, and research investiggtfactors that mitigatthe impacts osedimentation could
prove valuable in developing morefiefent management strategies. One such factor, small
impoundment distributionn Kansas reservoir drainagdsasbeen relatively understudied in

terms of redaing reservoir sediment yield.

Newly available higkresolution digital elevation models (DEMs)wering most of the
state allowapplication of automated approaches to identifying small impoundraedta means
to improving & importantand popularwaterbody datasetThis enhancedlevation datsethas
been produced oveéhe past six years and therefaneludes impounded features constructed
since thecompletionof the National Hydrology Dataset (NHID) 2007 Derivingwaterb o di e s 6
geometries and positis in the context ofrecent highresolution elevation datanot only
identifies featuresabsent in theNHD, but it also provides compatible pour points for

subcatchment delineatiamsing the same elevation data turn, a more current and accurate



waterbody dataset can be developed for Kansas reservoir drainages, offering a new resource to

study the relationship between impoundment distribution and reservoir sediment yield.

Furthermoretraits fundamentato erosion andunoff modeling can be quantified thin
impoundment catchments areaad compared wittdownstreamreservoir fill rates.While
landscape and climatieaits have been characterized feservoir drainage areas in Kansas,
distinguishing the influence of these factors according to subcatctaremtversus unimpeded
reservoir catchment area majuminate a landscape factor worthy of consideration when

addressing current reservoir sedimentation concerns and future management strategies.

Abundance of Impoundments and Impoundment CharacterizatiorKansas

Historically, environmental analysis of lensgstemsor still water featurexn a global
l evel has been hindered by fragmentarynddata o
impoundments. Howeveadvancements in remote sensimgl @atellite imagery resolutionfef
more accurate tools foestimdion. In a study by Downing et a{2006), enhanced spatial
resolution coupl ed wi t h novel analytical af
impoundments to exceed 304 million. Lakesl aeservoirs cover 4.2 million square kilometers
and are comprised of millions of lakes covering less than 1 sq. kilometer. In terms of farm ponds,
the estimated aggregated area exceeds 77,000 square kilometers globally, with betiveen 0.1
6.0% of total agdultural land area covered by small impoundment surface area (Downing et al.,

2006).

In the conterminous United States, the majority of the water surface area is attributed to

artificial water bodies with distribution and functionality differing logal climate andand use
2



traits. When excludingthe Great kkes, unaltered natural lakes account for only a small
percentage of water area across tonterminous U.S. (Smith et al., 2D0@f this total surface

area occupied bwrtificial water bodiesimpourdmentsless thard haor roughly less than 10
acres account for 20% ¢éntic water surface areg@mith et al., 2002). Nationallyhé number

of waterbodies covering less than 10 acres exceeds the number of larger bodiesshiynated
factor of 70,andthe trend for these smaller waterbodies is one of overall increase, with numbers
estimated to grow -B% annully across the U.S. (Smith et al., 200ZT'he number of
impoundments is much higher east of the continental divide, thhetHowest density but t&n

larger average surface areas occurring in arid regions of the southwest é6raith2002).
Agricultural portions of the Midwesénd tohavethe highest densities of impoundments and the
smallest mean surface areas (Snathal.,2002). Specifically the eastern portioaf the Great
Plains exhibits the greatesbundance of impoundmerSmith et al.,2002)due to agricultural
water supplyneeds Oklahoma for example, has double the average density of waterbodlies
Minnesota,which are primarilycomprised of natwal lakes.Furthermoremany of Okl ahon
impoundments emerged in the past century (Smith et al., 2002). Not surprisimgjiygs by
Smithet al.(2002) demonstratechaast to west decreasiggadation of impoundments between
9571 103°W due to rain shadow effeats the Rockiesand increasing precipitation moving east.

Kansas falls within this longitudinal range asdepresentative dhis gradient

Kansas exemplifies the othtowadsconstnetngsnalli ndust
impoundments and a dependence on reservoir water selaresas alone boasts over 200,000
impoundmentaunder 40 hectaresvhich combined cover approximately 288 square miles and
store an estimated 1,299,000 acre/feet of wéiD, 2016; Callhan, 203). The density

gradient forsmallimpoundments as estimated by Snethal.(2002) ranges from less than 0.03

3



impoundments per kfrin western portions of the state to an average ®fvaterbodies per krh

in the eastern third. Regarding largservoirs Kansas has over 208servoirsvith surface areas

exceeding 20 hectaramostly state or federally ownddeNoyelles & Kastens, 2016). Eighty of
these provide primary or backup drinking wat e
flood controlse vi ces, which was the primary purpose |
reservoirs. While these larger reservoirs provide municipal, flood control, and recreational
services, smaller impoundmeraiso provide a variety of services including livesk watering,

irrigation, domestic water, and recreation (deNoyelles & Kastens, 2016). For a region with
natural lentic systems limited to ephemeral plagasdominately in western Kansasd

relatively few oxbow and iskhole lakes statewidéMartinko et &, 2014), this extensive

landscape modification has substantially altered hgdichl and physical processes.

Kansas Reservoir Fill Concerns and Factors Influencing Downstream Sediment Yield

Water resources loss is a global issue, and like otherngerlresources, population
growth and climate change have been identified and studied as factors influencing projected
water resources loss. A paper by Vorosmattsl.(2000) modeled the loss of water resources on
a global scale in relation to climateastge and population growth rates. Using census and
climate data from 198% 2000, researchers predicted climate change and population growth
leading up to 2025. Statistical analysis found population growth to be more influential on water
resources stres$idn climate change. While it is difficult to accurately model and quantify
change in gl obal stress on water resources,

(Vorosmarty et al., 2000). Kansas has experienced a population increase of 164,060 peop



between 2000 and 20X0.S. Census Bureau, 201%hich represents an increased demand of
nearly 1.8 Mm? of drinking water per year (Rahmaeit al., 201}. In addition topopulation
growth and climate change consequences, an arguably more immediatpotandally

financially taxing water resources problenpresentlygarnering concerim Kansas

Many reservoirs of eastern Kansas are approaching the end of their usable life as
sediment fill approaches 50%. By 2030, the first three federal reseivdiensasTuttle Ceek,
Toronto, and John Redmorid will reach 50% infiling and require dredging to maintain
functionality (deNoyelles & Kastens, 2016). If current fill rates remain constant, another 8 of the
s t a R4deatleral reservoirs wilhe half infilled by 2105, and 44% of the total storage will be
lost for the combined 24 (deNoyelles & Kastens, 2016). As reservoirs lose storage capacity to
sedimentation, shallow zones expand, and the relatively young and unstable biotic communities
can shift towalls excess cyanobacteria growth, which can be detrimental to water quality
(deNoyelles & Jakubauskus, 2008; deNoyelles & Kastens, 2016). In addition, capacity loss
i mpairs a reservoiros f unctcomsiderspassforadredgipood de
action to recover reservoir capacity, projected costs are staggering. At a jssaust of
roughly $6 for removal of one cubic yard of sediment, restoring the 24 federal reservoirs to their
original volume by the end of the century would cost $13l&i (deNoyelles & Kastens,
2016). Furthermore, 1.4 million acres of one foot deep sediment would have to be disposed of,

and costs and methods of disposal are difficult to ascertain (deNoyelles & Kastens, 2016).

Reservoir sediment yield is dependentsawveral landscape factors, whicaturally are
related tosediment load in reservoir tributaries. Streamflow is the main source of sediment for
reservoirs, and higher rates of sedimentation correlate with drainage areas experiencing higher

precipitation ates (Langbein & Schumm, 1958). Increased runoff results in greater discharge and
5



sediment carrying capacity. In turn, pdieh runoff and sediment load amependent on

drainage area, watershed slope, soil type and permeability, and land use (Bedigr20413;
deNoyelles & Jakubauskus, 2008). Drainage area determines the volume of water generated by a
precipitation event (ERdient et al., 2013the impacts of which are as follow&/atershed slope

reflects the change in elevation with distance in arland flow area and influences overland

flow velocity. Soil type determines infiltration rate and wdtelding capacity of the landscape.

Finally, land use and land cover have significant effects on watershed response by influencing
overland flow velodi vy , infiltration, and susceptibility
common in hydrological modeling, land cover types ranking from least to greatest runoff
potential are as follows: woodland or forest, meadow or grassland, pasture or range land,

cultivated land, and urban areas with increasing percent imperviousness (Bedient et al., 2013).

The presentlay Kansadandscapeas the producbf a history of intensive land use and
modified fluvial systemswhich has resultedn higher than presettlemat sediment loads and
lentic body sedimentation rates exceeding those of most natural lakes. Prior 4&nirmoan
settlement, Kansas watersheds were dominated by native grasslands, and riparian vegetation
effectively stabilized soil and slowed runoff (deyelles & Kastens, 2016). However, current
federal reservoir watersheds can be characterized by nutrient rich and erodible soilsnwhich
many case$iave experienced row crop production for the last 1250 yearddeNoyelles &
Kastens, 2016)Infill rates for natural lakes of comparable size are not as high as rates for
Kansasodos feder al reser voi r stobasimarep mtrottypicdllok t o
Kansas reservoir@leNoyelles & Kastens, 2018yurthermore, drainage modifications héezn
implemented in the form of straightened stream channels and constructed banklieeeek &

Zeigler, 2007) While the purpose for these modificatons based m channel position

6



stabilization and local flooding mitigation, the changes have resulte n A hi gh water
reduced residence time, increasedannel erosion, and increased sediment carrying capacity
comparedto prlEur opean settl ement conditionso (deNoy
highlighting the source of sediment infillingrf Perry Lake, Juracek and Zeigler (2007) used
chemical tracers to measure sediment origins from channel banks and surface soils. Results
indicated that the majority of sediment infilling the reservoir originated from chdoamé

sources (Juracek & Zeigle2007).

In catchment areas with similar precipitatjpaitterns landscape factordearlyinfluence
specific sedimentation yielll However, an additional factor, one relatively understudied on
reservoir catchment scale and plasedas to intercepthanrel-bank eroded material, may be
mitigating Kansas reservoir sedimentation. Given the abundance of small impoundments in the
state, it is likely that they play significant role in trapping sedimenthat would otherwise
contribute to downstream reservoird herefore, better characterization tfeir function as

sediment sinksnay augment reservoir watershed management knowledge.

Studies haveshown that small impoundmentsact as sediment sinks on a scale
comparable tanajor lakes and reservoildams havelen descri bed as fisigni
every river and wat er s h ewhile dhe effects eofsedimentiaodn 6 ( G
particulate trappingn rivers is well documented (Trimble and Bube, 1990; Meade, 1990), the
effects of upstream sediment tpapg by small impoundments has often been overlooked
(Mulholland & Elwood, 1982; Stallard, 1998; Smith et al., 200%) estimated two thirds of
annual erosion in the United States, or 600 Ekmar! (Smith et al., 2001), is deposited in lentic
systemsHowever, this accumulation is thought to be split fairly evenly betharge and small

(<4 hg waterbodies (Smith et al2002) A 2005 study by Renwiclet al. examining small
7



impoundments in the conterminous United States estimated total catchneemanhdreediment
load trapped by sniampoundments. Estimates from the stuebtimated tha25% of totalsheet

and rill erosion settlen small impoundments, which capture 21% of the total watershed areas for
the subcontinental United States. Furthermorgngithree separate models to compare small
impoundment sediment load to that of reservoirs, total sediment rates in U.S. ponds ranged from
0.43 71 1.78 x 10m’yr!, which potentially matches or exceeds estimated total reservoir
accumulation of 1.67 20°mPyr! and supportshe conclusions oSmith et al. (Renwick et al.,
2005).This wide range ofprojectedsmall impoundment sediment yieddeflects the difficulty of
measuringcumulative small impoundmeatcumulatiorwith precision This may be due in part

to the shear abundance of small wédttedies, limited high resolution data and methods, and the
multitude of factors involved in hydrological and sediment modeM&yerthelessit is accepted

that small impoundments are signifntasinks and reducersf downstream sediment load,
although their value inmoderating downstream reservoir sediment yieldstié not well

understood.

Given that sediment is itself a sink for nutrientepoundments also serve as nutrient
sinks, reducig riverine nutrient transport. A spatial modeling study (Bosch, 2008) of two
Michigan watersheds investigated impoundment size and positioning in relation to total
phosphorous (TP) and total nitrogen transport (TN). Results showed TP and TN transport
doulding after impoundments were removed from the model. As expected, impoundments were
most effective at reducing TP and TN transport when positioned near the mouth of the river or in
nitrogen and phosphorous source areas (Bosch, 2008)e Midwest, Smitket al. (2002) has
attributed the tendency of small impoundments to trap disproportionate amounts of nutrients to

their proneness to occur in proximity to agricultural sources of nutrient lodeimajly, Bosch
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(2008) found thatmultiple smaller impoundmés caused a greater cumulative reduction in
transport than a single large reservoir. Given the high density of small impoundments in Kansas
and the current issues surrounding reservoir filling and eutrophication occurrences, the results
from Bosch evoke #hquestionTo what extenare small impoundments reducing the likelihood

of eutrophication in downstream reservoirs by serving as nutrient sinks? If farm ponds are in fact
catchments for high nitrogen and phosphorous source areas (i.e., fertilized raipp the
reduction in nutrient transport could provide a significant service in managing downstream

reservoir water quality.

An additional service often overlooked in small impoundment valuation is the burial of
organic carbon (OC). This process may basidered more significant in reducing atmospheric
carbon dioxide levels than regulating downstream water quBldwning et al.(2008) assessed
OC burial in 40 impoundments in an intensively farmed region of lowa. Results indicated that
impoundments bued a higher concentration of OC than natural lakes due to heavier
sedimentation and sediment aggregate transport, and OC burial proportions were significantly
higher in small impoundments (Downing et al., 2008j\s in the case of nitrogen and
phosphorusthis effect can be attributed tbe tendency forapid vertical accretioty small

impoundments.

Because small impoundments are sinks for sediment, nutrients, and organic carbon, they
provide a service in reducing downstream accumulation, including anaged reservoirs.
However, it should be noted thdtke reservoirs, impoundments eventually fill. There is
relatively little research on how and when a small impoundment may turn from sink to source,
but it could be assumed that impoundmentsexygeriering similar specific yielddo nearby

reservoirs due to similarity in landscape fact&isould the shift occur, the-release of contents
9



into a stream system would likely disturb the lotic reach and contribute an abundance of
sediment, nutrients, ancibon to the downstream lentic body. This deleterious effect on water
quality and increased sediment and nutrient transport would reflect a reverse in the
aforementioned sink services of small impoundmetitsvever, @erating under the assumption

that smal impoundments retain their sink functionality, effectively identifying their occurrence
and characterizing their catchments may provide insight into their influence on downstream

reservoir sedimentation.

Methods of Impoundment Identification

Historically, GIS water feature datasets have been created through manual geoprocessing
with source data including topographic maps, land use raster data, and aerial imagery. The
process of identification and digitization has often been hindered by spatial resdiotegrand
resources available for manual geoprocessing. The National Hydrology Dataset (NHD) was
developed using topographic quadrangle digitization coupled with visual identifiazgiog
orthoimagery. Since the onset of its production, higher spaslution aerial imagery has
become more common, and more recently, LIDAR has offered unprecedented digital elevation
data resolution for select regions. LiDARrived DEMs combined with GIS tools and
programming languagesow offer novel approaches to mdy small water features in the
landscape, automating the geoprocessing and reducing inconsistencies resulting from human

error.

Following the advent of GIS, features of topographic maps could be digitized for
cataloguing and analysis purposes, and kenagery aiedin the validation of digitized water
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features. As described abovaetNHD is the product of digitized water features drawn from
topographic maps supplemented with aerial imagery. NHD source topographic maps range from
thel95G to presenand geometry validation during digit
restricted bythe temporal and spatial resoluti@i orthoimageryavailable at the time (USGS,

2009). In addition to dated source maps and imagery, another limitation of NHD gccamaoe

attributed to manual photointerpretation methods, which are subject to human error and
inconsistencies (Carpenter et al.,, 2011). While the NHD includes much of thdetamg
impoundments exceeding 100 square feet in relative geometric accuraGS,(UHD9),
introducing new methodologieend more recent data may allowt only the identification of

more recently constructed watavdies butprodiwce updated, improved geometries as well.

A study by Smith and researchers further emphasizes potspa#hl resolution and
manual geoprocessing limitations of manual water feature identification and dataset generation.
Smith et al. (2002) first used the United States Geological Survey (USGS) Land Cover Dataset to
vectorize 30m pixels representative @faterbodies to estimate impoundment abundance in the
conterminous United States. This dataset resulted in an estimate of 2.@atdbodies with a
lower surface area limit of 10002n§Smith et al., 2002). When using higher resolution data
offered by he USGS Digital Line Graph dataset and a feature resolution limit of 25 m
researchers turned to extrapolatrather than the massiveanual geoprocessing resourtest
would have been require@he resulting number for total wateodies in the contenmous U.S.
was estimated at 9 x 9@Smith et al., 2002). While nnanced raster resolution offered
identification of finer water features, the geoprocestiag)would have beerquired by manual
geoprocessing forced researchers to extrapolate regiomihds and potentially compromise

accuracy.
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Using LiDAR-derived elevation data, researchers have been able to automatically
distinguish watermodies in largely consistent, efficient, and easily duplicated approaches. A
popular approach demonstrated by haa et al. (2012), uses neighborhood analysis to
distinguish depressions. The study incorporated 2 meter LIDAR elevation data into custom relief
models to identify localized concavity and potential wetland locations. Each raster cell value was
divided bythe mean of the adjacent cell values. Should the ratio be < 1.0, concavity is indicated.
Results showed an 85.1% accuracy rate in the automated wetland identification after field
validation. Wu et al. (2014) further demonstrated advantages of depressilysisamusing
LiDAR -derived DEMs and developed an approach to identify vernal pools more accurately and
efficiently than previous photointerpretation methods. Wu and colleagues developed a semi
automated approach to extract surface depressions from aet rasblution DEM, which
alleviated inconsistencies and repeatability issues inherent in manual geoprocessing (Wu et al.,
2014). Furthermore, boundaries of vernal pools identified using DEMs can be extracted as
polygon features, automating characterizatbryeometric properties (Wu et al., 2014). While
photointerpretation and manual feature tracing have historically been popular approaches to the
identification of minor lentic bodies, these recent studies demonstrate the possible improvements
in consisteny and efficiency associated with automated geoprocessing using LideARed

DEMs.

In a regional study occurring in western Kansas, photointerpretation usmgn 2m
imagery led to the successful identification of new ephemeral \baidy features tative to
previous catalogs. By combining the hig#solution aerial imagery, raster graphics, soils data,
and manual feature delineation, Bowen et al. (2010) conducted playa identification to augment

previous datasets for 46 counties in western Kansas.r@ulting dataset included P25
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playas, more than doubling that of previous inventories, with a field validation accuracy
assessment of 98% (Bowen et al., 2010). Bowen attdbilte success in identifying new
features and the failure of past invengsrio the enhanced spatial resolution of the imagery data.
Sincethisstdy 6s publ i c a-tesolotion eleeation datalhgbeeh madé available

for the study area as well as much of the rest of the state. With this-newiRAR-derived
elevation data, an alternative approach to playa identification has successfully demonstrated

automatic feature identification and reduced

Kastenset al.(2016) identified playas by extracting sinks meeting deptstiold criteria
from LiDAR-derived DEMs, naming the model the Topographic Wetland Identification Process
(TWIP). Researchers fountdatDEM preparation prior to running TWIP, including applying a
median focal filter and burning interpolated elevationugal into buffered road and railroad
areas, resulted ifewer false positives in the model results. The TWIP works by first creating a
sink depth map by subtracting prepared DEM from a filled DEM and selecting sink depth pixels
with a value less than or egjuto a given depth threshold. These pixels are vectorized into
polygons representing wateodies, the elevation values insidethe | ygons HfApunchedo
DEM, and the process repeated with new features appended to the dataset until no new features
are identified. After establishing suitable DEM preparation and applying various depth
thresholds, researchers identified 37.3% of features present in the Playa Lakes Joint Venture
(PLJV) dataset (Kastens et al., 2016). Given the broad study area, ephastenalof playas,
extensive number of features not intersecting with the PLJV tlandurpose ofthe funding,
exact determination of which additional features identified were undocumented playas and which
were false positives was not carried ddowever,the study demonstrateml novel automated

approach to identifying subtle water lentic features over a broad area of Kansas, and the steps
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involved havebeen scripted in Python and packaged as an ArcGIS tool for easy duplication and
application to other stly areas. Furthermore, researchers were able to delineate playa catchment
areas by making use of the ArcGIS toolset and 2 meter DEMs, a task previously impossible to

complete accurately for the smallest playas due to absence aelkigtion DEMs.

Sine the compilation of the NHD for the area covering Kansas, new imagery and
elevaion data havdéeen developed. Recent studies have demonstrated success in water feature
identification via automated depression or sink analysis usimgahd 2m DEMs (Leonad et
al., 2012; Wu et al., 2014; Kastens et al., 2016). With LibdgRved DEMs now available for
the majority of Kansas, there is an opportunity to apply similar geoprocessing methods focused
on water featre identification and recognition oécently costructed watebodies absent in the
NHD as well as update preexisting feature geometries. Furthermore, an automated geoprocessing
approach may offer a more efficient, consistent, and easily duplicated alternative to previous

photointerpretation and topoguaic map digitization.

Problem Summary and Research Objectives

The dense distribution of smal | i mpoundme
dependence on the various services provided by impoundments and reflects major anthropogenic
alteration of ntural processes\ consequence of this alteration is the infilling of artificial water
bodies. With growing concern surroundingeservoir infilling, research tied to limiters of
downstream sediment yietwuld offervaluable insight into reservamanagemet on a drainage
scale To better understand the ralepoundmentsnay play as sinks within a reservoir drainage,
therefirst is a need to update and impedhe accuracy of available watéody distribution data
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Automated geoprocessing techniguwesnbinal with newly available highesolution elevation
data provide alternative means of identifying waiedies andbffer improved efficiency and
consistency when compared to previous manual approadhashermore, delineating
impoundment subcatchmentasing newly available elevation dataand characterizing
subcatchment traits related to erosion potential may idestiligatchmentrends connected to

reservoir sediment yield.

In order to bettercharacterize the distribution o$mall impoundments and their
significance as sources of subcatchment within Kansas reservoir drainages, this research has
threecentral objectives: 1) Conduct two automated watatufe identification approachéshe
TWIP approach taken from Kastens et al. (2016) and the Zero Sldpediieand gauge their
efficiencies using aerial imagery, the NHD, and an accuracy assessment index, 2) Update the
water body data of the NHD for select drainage regions by incorporating newly identified
features and amending less accurate geometries.el®ete subcatchment areas for select
reservoirs, analyze landscape traits which influence erodibility, and compare impoundment

distributions and subcatchment traits among reservoir drainages.

The first and second objectives are addressed in Chapter Usung LiDAR-derived
DEMs generated from 2010 2016, two automated methods are applied in efforts to identify
recently impounded watdsodies and update NHD feature geometries. The first method, the
Topographic Wetland Identification Process (TWIP), uses&k mapping with a sink depth
threshold to identify elevation patchpstentially representative of watdyodies. The second
method, the Zero Slope approach (ZS), identifies hfldttened patchespotentially
representative of watérodies. The resultsf these methodologies are validated in the context of

aerial imagery, and an accuracy assessment index quantifies geometry accuracy of the TWIP,
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ZS, and NHD. Features from each dataset are merged into a single new dataset by order of

highest accuracy index

Chapter 3 addresses the final objective by delineating impoundment drainage areas,
summarizing land use, soil, and slope traits for cumulative subcatchment areas, and
characterizing the watebody and subcatchment distribution for ten reservoir drasage
eastern Kansas. The resulting waberdy dataset from Chapter 2 serves as pour points for
identifying subcatchment areas, which are then merged to measure total subcatchment for each
reservoir drainage. Land use raster data from the 2005 Kansas baedRatterns dataset, soil
data from gridded Soil Survey Geographic Data shapefiles (gSSURGO), and slope rasters are
then clipped according to subcatchment and unimpeded area masks and analyzed to identify
landscape trends in the context of subcatchmedtpmssible relation to downstream reservoir

sediment yield.

Significance

Automated geoprocessing methods paired wébent LIDAR -derived elevation data
offer an opportunity to augment data taken frdm NHD and advance ouunderstanding of
water body distributionwithin Kansas reservoir drainageghe &curacy of thecurrentNHD is
limited by dated topographic souraeaterial (with the earliest beginning in the 13§0and
orthoimagery available at the time of digitizatiomhich began in the 198QNHD Feature
Catalog, 200p With impoundment numbsilincreasing yearly, the use of more current data
sourcedn identifying waterbodieswill likely show new impoundments and altered geometries
relative to the NHD Several sudies havanvestigatedmpoundmat distribution on a national

16



scale (Smith et al., 2002; Renwick et &005), but have had teacrificeregionaldetail and
accuracyin favor of broadercharacterizationEfforts have also been made to characterize
impoundmehabundance for Kansa€dllahan, 2013), but methottigiesand conclusions have
been limited to available datasetsthe time of the studigse., NHD and National Elevation
Dataset). However, witltecent LIDAR-derived elevation data collected from 20002015
coveringmost ofthe date and withKastenset al. (2016) demonstratingheir utility in water
body identification, therenow is an opportunity to gpy relatively novel methodologie®
enhanceand modernizavaterbody inventories for the region. By developing arencurrentaind
precise water impoundmemlataset for reservoir drainagese influences of impoundment

distribution on reservoir sedimentation may be more rigorously explored.

Subcatchment delineation and trait characterization may provide further insight into the
connection between the impoundment distribution of a reservoir drainage and reservoir sediment
yield. Combining the NHD with the results the geoprocessing approaclegplored in Chapter
2 will offer a more complete and potentially compatible pour pdataset for subcatchment
delineation.The anticipationis that since the watdodies are delineated from elevation data, the
features maype moresuitedfor raster processinguch as watershed delineatitiman rasterized
features drawn from topographmtaps or aerial imageryAdditionally, nost of the reservoirs of
eastern Kansas have not had impoundment subcatchments delineated teandhese, soil, or
slope characterizednd comparedor subcatchments and unimpeded contributing arBgs
doing so,trends may be recognized related to subcatchment landscape factors and downstream

sediment yield, a little studied dynamic related to reservoir infill for the region.

Finally, as LiDARderived elevatiorata becomenore common, this studyill provide

amethodologythat can be easilsepeated and applied to other regions. The autonaeeecof
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much of the geoprocessimgay reducesources of human erras well as time and costslated

to manual watebody identification and geoprocessimguch of themethodology is scripted and
packaged as ArcGIS tools, which will be openly available to other researtheisverarching

goal of this projectis to demonstrate novel and easily duplicated methods in water body
inventorying and subcatchment character@ati which may besuitable for adoptionin

investigating and managine various effects of impoundments.

References

Bedient, P. B., Huber, W. C., & Vieux, B. E. (2013). Chapter 2: Hydrologic anaHgisology
and Floodplain Analysis'SEdition, 88-169.

Bosch, N. S. (2008). The influence of impoundmentswarine nutrient transport: An
evaluation using the Soil aMilater Assessment Toalournal of Hydrology8551), 131
147.

Bowen, M. W., Johnson, W. C., Egbert, S. L., & Kloptens, S. T. (2010)A GIS-based
approach to identify and maghaya wetlands on the High Plains, Kansas, UB&tlands
30(4), 675684.

Callihan, R. A. (2013). Distribution, proliferation and significance of smgloundments in
Kansas(M.S.), University of Kansas, LawreacKsS.

Carpenter, L., Stone, J., & Griffin, C. (2011) Accuracyefial photography for locating
seasonal (vernafools in massachusetidetlands 31573 581.

deNoyelles, F. & Jakubauskus, M. (2008). Current state, trendpaid! variability of séiment
in Kansas reservoirSedimentation in Our Reservoirs: Causes and Solyt®as.

deNoyelles, F. & Kastens, J. H. (2016) Reservoirrmedtation challenges in Kansas.
Transactions of the Kans@sademy of Science, 119(6p-81.

Downing, J.A., Pairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., $lri&®. G., McDowell,
W. H., Kortelainen, P., Caraco, N.F., Melack, J. &Middelburg, J. J. (2006). The
global abundance and size distribution of lakes, pondspgmelindmentsLimnology
andOceanography51(5), 23882397.

18



Downing, J. A., Cole, J. J., Middleburg, J. J., Striegl, RD@arte, C. M., Kortelainen, P.,
Prairie, Y. T., & Laube, K. A(2008). Sediment organcarbon burial in agriculturally
eutrophic impoundments over the lashtury Global Biogeochemical Cycle&(1).

Graf, W.L. (1999) Dam nation: a geographic census of American damdstheir largescale
hydrologic impactsWater Resource35, 1305 1311.

Juracek, K. E. & Zeigler, A. C. (2007). Estimation of sedinsenircesising selected chemical
tracers in the Perry Lalkand Lake Wabaunsee Basins, northeast KatkaG8S Scientific
Investigations Report 2065020

Kastens, JH., Baker,D. S.,PetersonD. L. & Huggins, D. G. (2016\Vetland Program
Development Grant (WPDGJFY 2013i Playa Mapping and AssessmeBS Report
186.

Langbein W.B. & Schumm, S. (1958). Yield of sediment in relation to mean abdbial
precipitation TransactionsAmerican Geophysical Union 320761084.

Leonard, P. B., Baldwin, R. F., Homyacdk,A., & Wigley, T.B. (2012). Remote detection of
small wetlands in the Atlanticoastal plain of Noht America: Local relief models,
ground validation, and higthroughput computing-orest Ecology and Management
284, 107115.

Martinko, E., deNoyelles;., Bosnak, K., Jakubauskas, M., HuggiD., Kastens, JShreders,
A., Baker, D., Blackwood, ACampbell, S., & Rogers, C. (2014tlas of Kansas Lakes:
A resource for communities, policy makers atahners.

Meade R.H., Yuzyk T.R., & Day T.J. (1990. Movement and storage of sediment in rivers of the
United States and Canad&urface Water Hydrologyseology of North Amezra,
Boulder, Colorado. 199®55 280.

Mulholland, P.J. &lwood, J.W(1982).The role of lake and reservoir sediments as simkise
perturbed global carbon cycléellus(34), 490-499.

NHD. (2016). USGS National Hydrography Dataset. URLp[inhd.usgs.gov/index. html].
Date accessed [June 2016].

Rahmani, V., Kastens, J., deNoyelles, F., Jakubauskus, M., Martinko, E., Higgiésau, C.,
Liechti, P., Campbell, S., Callihan, R., Blackwood, A. (2017). Examining storage loss
and sedimentation rate of large reservoirs in the U. S. Great Plains. Unpublished article.

Renwick, W. H., Smith, S. V., Bartley, J. D., & Buddeier, R.W. (2005). The role of

impoundments in the sedimemnidget othe conterminous United States.
Geomorphology 1(1), 99111.

19



Smith SV., Renwick WH., Buddemeier RV., & Crossland J. (2001)Budgets of soil erosion
and deposition for sediments and seditagnorganic carbon across the conterminous
United StatesGlobal Biogeochemical Cycld$(3), 697 707.

Smith, S. V., Renwick, W. H., Bartley, J. D., & Buddemeier, R. W. (2002) Distribution and
significance of small, artificial water bodies across theadhStates landscagecience
of the Total Environment 29D): 21-36.

Stallard, R.F. (1998) Terrestrial sedimentation and the carnyde: coupling weathering and
erosion to carbon buriaGlobal Biochemical Cycles 1231 257.

Trimble SW. & Bube KP.(1990)Improved reservoir trap efficiency predictid@éNVIRON.
PROFESS.,12(3255 272.

USGS, (2009)National Hydrology Dataset Feature Catalo&L [http://nhd.usgs.gov/]. Data
accessed [October 2016]

U.S. Census Bureau. (201BPopulation Estimate®opulation and Housing Unit
Estimates 2013JRL [https://www.census.gov/popest/]

Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R@O0). Global water resources:
vulnerability from climatechange and population growtBcienc&895477), 284288.

Wu, Q., Lane, C., & Liu, H. (2014). An effective method for detecting potentatland vernal

pools using higlesolution LIDAR data and aerial imageRemote Sensiri(11);
1144411467.

20



Chapter I

Approaches in Identifying New WaterBodies and Improving
Geometries Relative to the NHD

Introduction

Small impoundments demonstrate significant anthropogenic alteration of landscape
systems and processes. The effects of these fluvial modifications range in nature, including
hydrological, geockmical, and ecological impacts. While there is abundant literature
investigating the various effects of impoundments, popular water datasets vary in the extent of
their spatial resolution and inclusion of water bodies, which is a central limitation inlveate
related research. For this study focused in eastern Kansas, novel high resolution data and
methodologies offer an opportunity to improve on the National Hydrography Dataset (NHD) by
means of adding recently constructed impoundments and revisingefegometries via high
resolution topographic data. The methodology demonstrated in this chapter and the resulting
datasets provide new tools in improving regional knowledge of viatgy distribution, which

can be applied to the continued study of imgbuant effects and watershed management.

Hydrological, Sedimentation, and Geochemical Effects of Impoundments
Hydrological effects of impoundments

While there are numerous hydrological consequences of impounding lentic systems,
certain effects may be kely felt in Kansas due to its high density of small impoundments and
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precipitation trends that are characterized by periods of drought, intermittent heavy rainfall, and
flash flooding. Chief among the impacts of impoundments are increased evaporation rates
altered groundwater recharge, and decreased downstream flow. The prolific impoundment
practices oftie agricultural Midwest refledbcal landowner attempts to counteract natural water
loss by storing water on the surface. While impoundments may reswater being more
readily available locally, the largacale cumulative effect is an increase in water loss due to
evaporation, which occurs more rapidly in a densely impounded landscape than one permitting
natural downstream flow and percolation (Snethal., 2002). Furthermore, shallow systems,
such as smaller impoundments, experience higher summer heating, resulting in greater
evaporation than large water bodies (Harbeck, 1962; Smith et al., 2002). An additional
consequence of impoundments is altemecharge incidence. The retention of water in upland
areas by impoundments increases residence time and local groundwater recharge. In turn,
downstream areas experience less discharge, percolation, and groundwater recharge (Smith et al.,
2002). Additionaly, stream flow becomes more homogenized with a reduction in peak flows and
greater occurrence of low flow periods (Moore, 1969; Gordon et al., 1992). Abatement of peak
flow events reduces flushing of accumulated sediments and organic matter in streams, and
turn accumulated sediments covering coarse substrates may reduce seepage ancesildsurfa
(Mammoliti, 2002). To investigatehese various impacts on a regional scale, individual
impoundment effects can be aggregated, and accurately assessindféotsenay benefit from

a complete and geometrically accurate water body dataset.

Sedimentation effects of impoundments

Smal | i mpoundment sé cumul ative effects on

national scale (Smith et al., 2002; Renwick et2005; Downing et al., 2008), but on a regional
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scale, more precise size and spatial distribution data is needed to address trap efficiency, or the
percentage of sediment retained by a water body relative to the inflowing sediment load, and
cumulative yiell. Two thirds of annual total erosion in the conterminous United States is
estimatedto be deposited in lentic systems (Smith et al., 2002). Of this portion, the amount
estimated to settle into AcomEnédotal ofwlHargerlakeb odi es
and reservoirs (Smith et al., 2002). Renwick et al. (2005) used three separate models to estimate
small impoundment sediment yield for the continental United States, and resulting total sediment
rates ranged from 0.431.78 x 10mPyr?, which potentially matches or exceeds estimated total
reservoir accumulation of 1.67 x *hyr! and supports the conclusions of Smith and
collaborators. However, there is a wide sediment yield range in this study, which reflects the
difficulty of accurately estimating cumulative small impoundment yield on a large scale with
coarse data. In turn, reducing the scale and extrapolating these findings to a specific region, such
as the Midwest, would likely be impractical. Additionally, these landmauklies in small
impoundment sedimentation omit any consideration of trap efficiency in their models, a result of
scale thesheer number of water features, and lack of data on various parameters involved in trap

efficiency prediction.

Trap efficiency may & dependent on a variety of parameters, but all models require
either surface area or volume as indicators of capacity, which is fundamental to yield trapping
estimations. Two other factors, capacity and residence time, are partially dependent on water
body geometry (Verstraeten & Poesen, 2000). Thus, attempts at assessing trap efficiencies on a
regional scale benefit from datasets with accurate feature geometries. In addition to individual
water body geometries, distribution of impoundments plays a patintulative and individual

sediment collection. Local high impoundment density typically results in high local yields
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(Smith et al., 2002). However, sediment originating from an upstream impoundment will be
finer, and the downstream impoundment will haveower trap efficiency should other
parameters hold constant (Churchill, 1948). In Kansas, discharge and velocity may be high
during the flood events characteristic of the region. These events may result in greater scouring,
higher sediment loads, and reed discharge residence times. In these cases, it may take
multiple impoundments within a lotic system to effectively slow velocity and induce deposition.

If efforts are to be made to account for small impoundment trap efficiencies on a regional scale,
sud as a Kansas reservoir drainage, geometric accuracy of water bodies is necessary. Trap
efficiency modeling would benefit from comprehensive impoundment inventories with precise

geometries to assess densities, connectivity, and capacities.

Geochemical eff#s of impoundments

Given that sediment is itself a sink for nutrients, impoundments also serve as nutrient
sinks, reducing riverine nutrient transport. A spatial modeling study (Bosch, 2008) of two
Michigan watersheds investigated impoundment size arsitiggung in relation to total
phosphorous (TP) and total nitrogen transport (TN). Results showed TP and TN transport
doubling when impoundments were removed from the model. As expected, impoundments were
most effective at reducing TP and TN transport nvpesitioned near the mouth of the river or in
nitrogen and phosphorous source areas (Bosch, 2008). Finally, multiple smaller impoundments
caused a greater cumulative reduction in transport than a single large reservoir (Bosch, 2008).
The trend of small ipoundments trapping more combined nutrients can be credited to faster
vertical accretion and the tendency of smaller impoundments to occur adjacent to agricultural
and human sources of nutrient loading (Smith et al. 2002). Given the high density of small

impoundments in Kansas and the current issues surrounding reservoir filling and eutrophication
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occurrences, the results from Bosch raise the question: How are small impoundments reducing
the likelihood of eutrophication in downstream reservoirs by sensnguéient sinks? If farm

ponds are in fact catchments for high nitrogen and phosphorous source areas (i.e., fertilized crop
land), the reduction in nutrient transport could provide a significant service in managing

downstream reservoir water quality.

An additional service often overlooked in small impoundment valuation is the burial of
organic carbon (OC). This process may be considered more significant in reducing atmospheric
carbon dioxide levels than regulating downstream water quality. Downing dedgres (2008)
assessed OC hburial in 40 impoundments in an intensively farmed region of lowa. Results
indicated that impoundments buried a higher concentration of OC than natural lakes due to
heavier sedimentation and sediment aggregate transport, anthu@&l proportions were
significantly higher in small impoundments (Downing et al., 2008). As in the case of nitrogen
and phosphorus, this effect can be attributed to the tendency for rapid vertical accretion by small
impoundments. Additionally, rapid a&tion in farm ponds can result in altered decomposition
rates than larger water bodies. Optimal microbial activity occurs at or near the maximum amount
of water a soil can hold against gravity, and as soil becomes waterlogged, decomposition slows
(Rice, 202). Artificial ponds create a permanently saturated environment for rapidly
accumulating organic carbon. This results in altered redox rates which may be further hindered
by suboxic or anoxic conditions following eutrophication. These nutrient and gemethe
effects of impoundments can be tied with sediment transport and trapping, which suggests that
improving the quality of water body data available to model sediment catchment may offer new

opportunities to study other impoundment sink effects on amagscale.
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It should be noted that impoundments are watlusively sinks or reducers of
downstream sediment and nutrients yields. There is relatively little research on how and when a
small impoundment turns from a sediment sink to a sediment soutcan lwmgument could be
made that impoundments are infilling at similar rates to nearby reservoirs due to similarities in
landscape factors. Conversely, the typically low capacity to catchment area ratio of small
impoundments (Verstraeten & Poesen, 200Qpsats that their life as sinks is much shorter than
for large reservoirs. Should a shift from sediment sink to source occur;ttblease of contents
into a stream system would likely disturb the lotic reach and contribute an abundance of
sediment, nutents, and organic matter to the downstream lentic body. This deleterious effect on
water quality and increased sediment transport would reflect a reverse in the sediment sink
services of small impoundments. Additionally, impoundments can indirectly serea
downstream erosion and sediment yield through flow alteration. Dams reduce out of bank flows
but extend bankull flows (Wetter, 1980). Protracted periods of bduok flows can accelerate
bed and bank erosion, and the resulting additional sediment theay be deposited in

downstream lentic systems.

Ecological Effects of Impoundments

The abundance of artificial water bodies found in Kansas reflects a dramatic
anthropogenic shift in ecological impacts. Regional consequences dependent on impoundment
distribution include providing corridors for invasion, species assemblage gradation, and habitat
fragmentation. Research resulting in improved and current impoundment distribution data may

prove beneficial in research and management surrounding these effects.
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Dispersal sources and corridors for aquatic invasives

Constructing a network of impoundments in MielwesternUnited States has resulted in
corridors for migration for many species associated with lentic systems. The classic case is
migratory waterfod T hese species use I mpoundments as
migrations, and in effect, this service provided by impoundments is valued by hunters and nature
enthusiasts alike. However, impoundments also create new ecosystems, which lackeresilienc
and favor generalists. In turn, impoundment networks facilitate invasion and act as corridors for

exotic species.

An argument could be made that natural lentic systems, such as lakes or pools, could
seemingly facilitate invasion in a similar mannerrmpoundments. In a study conducted in the
Great Lakes region of the United States, Johnson and collaborators (2008) sought to investigate
this notion by investigating how impoundments and natural lakes enable the establishment of
five aquatic invaders ofiffering taxa. For each invader, impoundments were found7 85
times more likely to be invaded than natural lakes, and impoundments more often housed
multiple invaders (Johnson et al.,, 2008). In addition, these proportions are likely an
underestimate, asaccessible natural lakes, which are far less affected by human activity, were
omitted from the study. Reasons for successful establishment of invasive species in
impoundments stem primarily from the young age of impoundments. The oldest impoundment
included in the study was 161 years old, while the oldest glacial lake was approximately 10,000
years old (Johnson et al., 2008). The young age of impounded systems results in increased niche
availability, a simplified trophic structure, and lower biotic resise. A high disturbance regime

with fluctuations in water levels, temperature, fish stocking, and nutrient content could also
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increase invasiblility (Johnson et al., 2008). Furthermore, invasive species may have adapted to

impoundments in their previouanges, which could increase their establishment success.

In terms of small impoundments such as those characteristic of Kansas, change in water
quality is likely an additional facilitator of invasive species success and native species loss.
Shallow waterbodies experience greater summer heating (Smith et al., 2002), which results in
reduced dissolved oxygen (DO) concentration. Reduction of peak flow due to upstream
damming can reduce streambed flushing (DeCoursey, 1975; Zale et al., 1989), which may
increase stream turbidity. Additionally, nutrient enrichment, algal blooms, and eutrophication in
farm ponds decreases DO concentration and increases stream turbidity (KDHE, 1981). These
changes in water qualityy small impounded features may favor hardy gelss and limit

success of sensitive endemics and sigatlers (Mammoliti, 2004).

Following impoundment of a lotic system in Kansas, it is standard practice to introduce
sport fish, such as the largemouth bags;ropterus salmoidegMammoliti, 2002). As an
introduced piscivorous population grows, there is an increase in the number of individuals
dispersing upstream or being washed downstream. This increases predation pressures on obligate
stream species. Predation by game species, subh aalmoides has been documented as a
significant influence on the reduction or extirpation of native stream species in Kansas such as
cyprinids (Mammoliti, 2002). Although native stream species of Kansas have historically
occurred withother piscivorous fishesLepanis cyanellus, Ameiurus melaand Micropterus
punctulatuy, most are considered facultative piscivores and rely less on fishes in their diet
(Mammoliti, 2002). In effect, impoundments in Kansas serve as sources for exotic obligate

piscivores, which incres predation pressure and alternative fish assemblages.
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Assemblage gradients caused by impoundments

Common traits of impoundments support the conception that impoundments are a form of
disturbance. Altered flow is chief among these traits. While mangstial disturbance studies
rely on a temporal scale in recovery assessment, a few studies have focused on impoundments as
agents of disturbance in aquatic systems use a spatial scale to assess recovery. Findings indicate

proximity both downstream and upsam of the disturbance to influence the degree of recovery.

A study conducted on the Cahaba and Tallapoosa Rivers of the Alabama River Basin
assessed fish assemblage recovery on a flow regulation gradient. Results showed obligate fluvial
species increasl in richness and abundance in a gradient moving downstream and away from a
hydroelectric dam (Kinsolving & Bain, 1993). Contrarily, microhabitat generalists demonstrated
no significant assemblage gradient in the dammed or control rivers, reflectinhehaka were
relatively unaffected by flow fluctuations (Kinsolving & Bain, 1993). Obligate stream natives are

thus more affected by the disturbance of altered flow regimes than generalists.

In addition to fishes, other taxa assemblages exhibit a sigrgaient to disturbance by
impoundment. In the Little River of Oklahoma, Vaughn and Taylor (1999) observed an
extinction gradient in mussels. Moving downstream from an impoundment, mussels showed
greater richness and abundance, with relatively rare spéaithest from the impoundments.
However, upon reaching the confluence (inflow from a second reservoir), the same trends were
observed, although weaker (Vaughn & Taylor, 1999). In conclusion, considerable lengths of
streams unaffected by neighboring impdments are necessary to overcome the effects of an

impoundment on species assemblages.
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Assemblage gradient trends due to impoundments have also been noted in Kansas.
Faulke and Gido (2006) assessed fish assemblages moving upstream from 19 Kansas.reservoi
The authors found significant results indicating a decrease in reservoir species occurrence and an
increase in assemblage variability and native species occurrence moving further upstream
(Faulke & Gido, 2006). In effect, areas upstream of impoundnoamslso exhibit assemblage

gradients.

Altering the flow regime and native assemblages results in a gradient of homogenization
centered on impoundment proximity. As shown by Vaughn and Taylor (1999), this gradient
resets once resubmitted to the effectsanother impoundment. Given the high density of
impoundments in Kansas, there are likely systems unable to escape the gradient cycling and
eventually settle @ a more homogenized steastate. Identifying the thresholds for
impoundment disturbance re@y could be useful in mitigating this homogenization and
improving conservation management. Additionally, current impoundment distribution data
noting recently constructed impoundments could be valuable to gradient modeling focused on

recent disturbance.

Habitat fragmentation, homogenization, and loss

Harsh environmental conditions that select for high colonization rates make prairie
stream fishes particularly vulnerable to the effects of fragmentation (Hudman & Gido, 2013),
and it has long been estabkshthat impoundments serve as barriers for migration of aquatic
species (Deacon, 1961). Given the ephemeral nature of many headwaters in prairies and the
proliferation of impoundments in Kansas, impoundments preventing recolonization following

local extirmtion is a common occurrence. Furthermore, research has shown reduced migration
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resulting from impoundments to erode genetic diversity and reduce population fitness. Finally,
retention of water in upland areas can cause desiccation and loss of natuwafingavetland

systems downstream.

In the Midwest, there is a clear link between impoundments and native cyprinid
extirpation. In the Cottonwood Creek of Oklahoma, Stearman and Lynch (2013) established a
negative relationship between a fragmentation imdtased on impoundment density and
cyprinid abundance and richness. The authors concluded that fragmentation associated with
impoundments cabe especially harmful to smdlbdied, mobile minnow species (Stearman and
Lynch, 2013). In a similar study in eéhFlint Hills of Kansas (Schrank et al., 2002), various
landscape and ecologic factors were incorporated in a stepwise regression to establish indicators
of Topeka Shiner Notropis topeks extirpation. The regression found the most significant
indicator of whether the threatened species occurred within watershed subsections to be
impoundment density. Impoundment density alone correctly classified 83% of extant sites and
85% of extirpated sites (Schrank et al., 2002). There are many potentially deletéfeotss of
impoundments, but increased fragmentation and recolonization prevention from high

impoundment density is particularly harmful for headwater species.

Recent literature on population fragmentation from impoundments has illuminated
genetic consagences to population isolation. Hudman and Gido (2013) investigated
impoundment effects on genetic structure of a native cypr8aedhotilusatromaculatusjn the
Kansas River basin. Results showed a high degree of spatial genetic structure, suggesting tha
catchments house sets of isolated genetic units, and sites within catchments are further
subdivided into groups divided by intervening lentic habitat (Hudman & Gido, 2013). These

barriers for dispersal among tributaries may reduce the opportunity fatigeescue of
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populations in tributaries draining into impoundments. However, their findings also indicated
that reservoirs may be less genetically deleterious if a tributary houses a large enough population
(Hudman & Gido, 2013). The historic environmantonditions and life histories of native
cyprinids reflect a pattern of local extirpation, recolonization, migration and associated gene

transfer that has been significantly disrupted by lsgme habitat fragmentation.

In addition to acting as baeris for stream species migration, impoundments reduce and
homogenize stream flow and habitat. Should water levels within impoundments drop due to
drought, an upstream impoundment may prevent flow downstream, causing the next
impoundment to receive a reddcmput and to lose volume. This domino effect can cause lotic
stretches connecting impoundments to experience low flow, fed only by the sliver of watershed
below the upstream impoundment. By reducing peak flow in streams, scouring is less intense,
and thee is a decline of structurally diverse pools and an increase in predation success by
invasive generalists such as largemouth bass (Mammoliti, 2002). Studies have shown structurally
complex environments to be favorable for native species by providingrefoge and reducing
predator forage efficiencies of invasive generalists (Menge & Sutherland, 1976; Power et al,

1985).

While impoundments directly affect adjacent stream habitat, collective upland water
retention by impoundments may cause lowland wdtlhabitat loss. Wetland loss in the
conterminous United States exceeds 500,00¢ Kwtitsch & Gosselink, 1993). While a
connection between upstream impoundment and wetland loss has been suggested (Tiner, 1989;
Smith, 2002; Callihan, 2013), the water retentimpacts and ecological ramifications have been
difficult to assess. Should there be substantial loss of wetlands via constructed water bodies, a

decline in wetland endemics or their migration to potentially less favorable impounded habitats
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seems likely Efficient water feature identification and surface area measurement that can be
applied on a drainage scale could be a useful tool in modeling water displacement and

investigating wetland displacement.

Significance of water body data

The various ecologal consequences of constructed water bodies reflect a major
anthropogenic alteration of ecosystems. While the list of ecological effects of impoundments
exceeds those discussed, invasion facilitation, species assemblage gradation, and habitat
alteration a all concerns recognized in Kansas and should be studied and managed in a spatial
context. Water feature size, proximity, connectivity, and density all influence the discussed
ecological effects. If these effects are to be studied on a regional scalereat, accurate

characterization of water body distribution would be of great value.

Current water body inventories

Historically, digital water feature inventories have been created through manual
digitizing from source data including topographic mdasd use raster data, and aerial imagery.
The process and efficiency of digitization has often been dependent on data resolution and the
resources required for manual geoprocessing. National water body inventories vary in purpose
and source data, and asesault, differ widely in feature inclusion and representation, particularly
in the case of small water bodies. The National Hydrography Dataset (NHD) was developed
using topographic quadrangle digitization coupled with visual identification using orthenynag
and since its upgrade in 2007, it can be considered the most comprehensive national water body

dataset for the United States (McDonald et al., 2@alihan, 2013). Studies using previous
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datasets, including the NHD, show Eastern Kansas as havirepse dlistribution of small
impounded features due in part to its degree of agricultural land use and absence of abundant
natural lentic bodies. However, the full extent of impoundments and the associated effects in the
region are not fully understood, andath the number of impoundments continuing to increase in
Kansas, automated identification techniques using recent high quality data may help in keeping

inventories current.
Limitations of popular water body datasets and inventory approaches

Following theadvent of GlSand related digital image processing softwdeatures on
aerial imagery and topographic maps could be digitized for cataloguing and analysis purposes
However,spatial resolution and resources availablenianual geoprocessing lintite quality of
the inventory. In effect, inclusion and accuracy of small water body features has higtbgeal
difficult in large areanventoryefforts A study by Smith et al. (2002) illustrated the differences
in lentic feature inclusion among populatioaal inventories and general underestimation when
compared to estimations derived from higher resatutiata sources. Smith et gR002)
compared water body data from the National At
National Inventory oDams (NID) to water feature data derived from the National Land Cover
Dataset (NLCD) and the United States Geological Survey (USGS) Digital Line Graph (DLG).
Smith et al. (2002) first used the NLCD to vectorizen3@ixels representative of watkodies
to estimate impoundment abundance in the conterminous United States. This dataset resulted in
an estimate of 2.6 x $Qvaterbodies with a lower surface area limit of 1008 @@mith et al.,
2002). When using higher resolution data offered by the USGS Dlgita Graph (DLG)
dataset and a feature resolution limit of 25 the researchers chose to sample and extrapolate

due to the time and effort required to manually extract water features from the DLG. The
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resulting number for total watéodies in the coerminous U.S. was estimated at 9 X (@mith

et al., 2002). While enhanced spatial resolution (i.e., USGS DLG) improved identification of
finer water features, the resources required by manual geoprocessing forced researchers to
extrapolate regional findgs, resulting in reduced accuracy. The results of both approaches led
researchers to conclude that small water bodies (<10,69Gn@ overwhelmingly dominant
across the U.S., and favailable dataseals diff
2002). The more conservative estimate of water bodies taken from the NLCD data estimated 35,
60, and 500 times as many water bodies as the TIGER, NID, and National Atlas databases,
respectively (Smith, et al., 2002). The trend among the nationahtones is fairly accurate
coverage for water bodies over 100,000 and an absence of the majority of features under
10,000 M, which can be attributed to limited data resolution at time of cataloguing, limited or
inadequate geoprocessing resources, mripzation of large water bodies in water resources

management.

To date, the most comprehensive water body dataset fddrilted States may be the
NHD, but there are inherent limitations to this inventory. The NHD is the product of digitized
water featires drawn from topographic maps and aerial imagery. Original NHD source
topographic maps range from the 1950s to present, and validatiater body geometrguring
digitization (beginning in the 1990s) has been limited to the temporal and spatiatiogsof
the orthoimagery available at the time (USGS, 2009). In 2007, the NHD upgraded its inventory
of lentic features using 1:12,000 USGS Digital Line Graphs (DLGs) supplemented by Digital
Orthophoto Quarter Quadrangles (USGS, 2007). The result wasaregechin scale from
1:100,000 to 1:24,d or 1:12,000 in certain areaand an increased inclusion of smaller water

features. Despite a marked improvementhia small water body inventaryhe upgrade still
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relied on imagery dating as far back as the0s9tr Kansas (Callihan, 2013), and relied on
manual photointerpretation methods, which are subject to human error and inconsistencies
(Carpenter et al., 2011). Additionally, the boundary geometries of impoundments are dynamic,
whether due to sedimentaryogesses or landowner management, and impoundments appear to

be continually increasing across the U.S. (Smith et al., 2002; Renwick et al., 2005). While the
updated NHD includes many of the letegm impoundmentthatar e 0 a't | east 100
shortestd i me n JSGS) 209), introducing new methodologiemd more recent data may

allow the identification of more recently constructed wabedies and update previous

geometries.
Water body characterization and recent inventories in Kansas

Kansas exemdlii e s the agricultural i ndustryos t
impoundments and a dependence on reservoir water services. Kansas alone boasts over 240,000
impoundments of under 40 hectares, which combined cover approximately 288 square miles and
store an estimated 1,299,000 acre/feet of water (Callihan, 2013). The density gradient for small
impoundments as estimated by Smith et al. (2002) ranges from less than 0.03 impoundments per
km? in western portions of the state to an average-8fwlaterbodiesper knt in the eastern
third. Regarding large reservoirs, Kansas has over 200 reservoirs, mostly state or federally
owned, with surface areas exceeding 20 hectares (deNoyelles & Kastens, 2016). Eighty of these
provide primary or backup drinking water f6rO0 % of t he st ateds popul at
control services, which was the primary purg
reservoirs. While these larger reservoirs provide municipal, flood control, and recreational
services, smaller impodments provide a variety of services including livestock watering,

irrigation, domestic water, and recreation (deNoyelles & Kastens, 2016). For a region with
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natural lentic systems limited to ephemeral playas predominately in western Kansas and
relatively few oxbow and sinkhole lakes statewide (Martinko et al., 2014), this extensive

landscape modification has substantially altered hydrological and physical processes.

Studies of small water body inventories in Kansas have advanced awareness of source
data retrictions and variations in perceived regional abundance. In 2004, Buddemeier assessed
the accuracy of the Kansas Surface Water Database and the Surface Water Information System
in regards to small water bodies. The results showed the KSWD and SWIMBduated 26
and 3% of water bodies less than 40 ha, respectively, and features derived from coarser
resolution imagery resulted in exaggerated surface areas due to larger pixels and the inclusion of
mixed water and land pixels at the boundaries of watdufes (Buddemeier, 2004). In effect,
lower resolution imagery or raster source data results in misrepresentation of surface areas as
well as fewer features identified. Following the increase in NHD resolution and feature
incorporation, Callihan (2013) usehe new dataset in conjunctienth the National Wetlands
Inventory and the 2005 Kansas Land Cover Patterns dataset to evaluate small water body
abundance in Kansas. Merging datasets and including only impounded features under 40 ha
resulted in 241,295sall impoundments with a combined surface area exceeding that of all state
and federal reservoirs in Kansas (Callihan, 2013). To date, this is the most thorough inventory
for the state. However, its results rely on the accuracy of the NHD, which hasré@sahtioned
limitations. An approach using newer higésolution elevation data would offer an alternative to
the NHDOGs more traditional feature inventory

accuracy and completeness.
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Water body identificattn associated with LiDARlerived data

LIDAR (light detection and ranging) datasets have produced unprecedented spatial
resolution for elevation data for many regions of the U.S. In recent years, studies have used 1 and
2-m LiDAR-derived elevation data tidentify water features through automated geoprocessing
approaches. In doing so, resource limitations, consistency issues, and efficiency restrictions
associated with manual water body digitization have been avoidedLiDAR-derived digital
elevation modls (DEMs) are now available for the entirety of Kansas, which for the first time
allows elevatorh ased automated identification of the
based water feature identification methods prove successful for Kansas,apde mdopted in
other regions as the USGS and partners work to produce high resolution elevation data for the

entire United States.

Overview of LIDAR and DEM generation

The USGS is currently facilitating nationwide higdsolution elevation mapping via
LiDAR data collection, and USGS specifications require a level of hijdtiening to all bare
ground DE Ms . I n 2009, a $14.3 mi |l i on all o
Reinvest ment Acto marked the wunder teadwion)g of
LiDAR data and DEM production for the conterminous United States (Heidemann, 2014).
LiDAR-based elevation data are collected via laser pulses digpénem LiDAR-equipped
aircraft As the reflected pulses return to their source, the datacreleel as a raw point cloud
composed of multiple pulses per square meter of land surface with the minimum required pulse
number dependent on Quality Level, and elevation is calculated based on return time and data

recorded in unison with a GPS sensor. Ppbat cloud often contains voids in data due to light
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refraction and absorption, and a common source of void occurrence is the absorption, refraction,

or both by water. The USGS specified treatment of significantveatet r i but ed -voi ds

flatteningg ( Hei de mann, 2014) . As mandated by the
than 8000 rh are to be converted to a flat surface of equal elevation values at or below the
surrounding terrain, and all rivers with a width of 30 meters or greater dre flattened in
segments with elevation values interpolated from riparian values (Heidemann, 2014). In turn,
high-resolution, hydreflattened elevation data offer a new level of precision in hydrological

modeling and unique representation of water features
Water body research associated with LIDAR

Using LiDAR-derived elevation data, researchers have been able to automatically
distinguish watermodies in largely consistent, efficient, and easily duplicated approaches. A
popular approach was demonstrabgd_eonard et al. (2012), which used neighborhood analysis
to distinguish depressions. The study incorporated 2 meter LIDAR elevation data into custom
relief models to identify localized concavity and potential wetland locations. Each raster cell
value waddivided by the mean of the adjacent cell values. Should the ratio be < 1.0, concavity
was indicated. Results showed an 85.1% accuracy rate in the automated wetland identification,
after field validation. Wu et al. (2014) further demonstrated the advantafgéopographic
depression analysis using LiDABased DEMs in identifying vernal pools. Wu et al. (2014)
developed a senautomated approach to extract surface depressions from a 1 meter resolution
DEM. A major benefit of the approach was that boundasiesernal pools identified using
DEMs can be extracted as polygon features, automating characterization of geometric properties

and alleviating inconsistencies inherent in previous manual inventory attempts (Wu et al., 2014).
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In western Kansas, Kastensdaresearchers (2016) identified playas by extracting sinks
meeting depth threshold criteria from LiDAd®rived DEMs, naming the model the Topographic
Wetland Identification Process (TWIP). Researchers found that DEM preparation prior to
running TWIP, inaliding applying a median focal filter and burning interpolated elevation values
into buffered road and railroad areas, resulted in fewer false positives and general noise in the
model results. The TWIP first creates a sink depth map by subtracting a dr&tgvefrom a
filled DEM and selects sink depth pixels with a value less than or equal to a given depth
threshold. These pixels are vectorized into polygons representing beates, the elevation
values inside the pol ygons précpse is cepeatddowithf mew m t h
features appended to the dataset until no new features are identified. After suitable DEM
preparation and applying various depth thresholds, researchers identified 37.3% of features
present in the Playa Lakes Joint Venture {PLdataset (Kastens et al., 2016). Given the broad
study area, the ephemeral nature of playas, the extensive number of features not intersecting with
the PLJV dataset, and purpose of the funding, exact determination of which additional features
identified were undocumented playas and which were false positives was not carried out.
However, the study demonstrated an automated approach to identifying subtle water features
over a broad area of Kansas, and the steps involved have been scripted in Pythokaagetl pac
as an ArcGIS tool for easy and consistent execution. Furthermore, researchers were able to
delineate playa catchment areas via 2 meter DEMs, a task previously impossible to complete

accurately for the smallest playas due to absence ofrbggiiutionDEMs.

LiDAR data for the state of Kansas

The LIDAR Implementation Plan beginning in 2011 led to production of 2 meter LiDAR

derived DEM mosaics collectively covering the entirety of Kansas (completed in 2016). While
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adhering to much of the USGS standaodi LIDAR collection, processing, and DEM generation,

the plan added an additional requirement that exceeded the standard for accuracy of water feature
processing established by the USGS. The plan required vendors teflayidmo all water bodies
Agreatkean 1IJ of an acre and streams wider than
In effect, all water features greater than % of an acre should be identifiable through

geoprocessing designed to delineate hfthtbened features.

Project Summary

There is a range of consequences stemming from damimingluding hydrological,
geochemical, and ecologidaland collectively they represent a major anthropogenic disturbance
of natural processes. While the effects can be observed anywhere impoundroent&acsas
offers a unique opportunity to investigate their effects due to its lack of natural lentic bodies and
density of agricultural ponds. Many of the aforementioned consequences of impoundments can
be seen as aggregative in effect or dependent sinbdition. In turn, regional research and
management related to impoundment effects will benefit from a precise dataset of impoundment
attributes and distribution. However, national inventories and attempts specific to Kansas have
historically been resttted by available data, which may be dated, inconsistent, or too coarse in
resolution. A general characteristic of past inventories has been the bias of data sources towards
identifying large water bodies and neglect of small water bodies. However, withpttate of
the NHD, recent inventories have shown a greater number of small impoundments in Kansas
than previously known. Still, the NHD is imperfect since it originates from manual digitization

and mixeddate source materials. As new impoundments arstiearied and higheesolution
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el evation data become avail abl e, the questior

NHD through a novel and efficient elevatibna s ed appr oach?20

Since the compilation of the NHD for the area covering Kansas, newgery and
elevation data have been developed. Recent studies have demonstrated success in water feature
identification via automated depression or sink analysis usimgahd 2m DEMs (Leonard et
al., 2012; Wu et al., 2014; Kastens et al., 2016). WithAR=derived DEMs now available for
the majority of Kansas, there is an opportunity to apply similar geoprocessing methods focused
on water feature identification and to recognize recently constructed baatiers absent in the
NHD as well as to update prasting feature geometries. Furthermore, an automated
geoprocessing approach may offer a more efficient, consistent, and easily duplicated alternative
to previous methods relying on photointerpretation and topographic map digitization. With
LiDAR -derived etvation data emerging for new regions of the United States, efficient and easily
duplicated elevatiotvased methods for creating water feature inventories may be applied in

other regions to improve understanding of water body distribution and significance.

This research uses recent higisolution elevation data to test automated water body
identification in a region characterized by substantial impoundment abundance and significant
anthropogenic disturbance. The primary objectives are: 1) Conduct twoaatbwater feature
identification approaches, the TWIP taken from Kastens et al. (2016) and the Zero Slope
approach, and gauge their efficiencies using aerial imagery, the NHD, and an accuracy
assessment index, 2) Update the watmty data of the NHD foseleced drainage regions by
incorporating newly identified features and amending less accurate geometries. In doing so, the

following questions are addressed: 1) Is there an efficient eleMadioed alternative to manual
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lentic body delineation? 2) Caglevationbased water feature identification and geometry

characterization improve the accuracy of the NHD water bodies dataset?

Methods

Study Area & Data Sources

Reservoir drainages of eastern Kansas were chosen as study areas for the following
reasonsl) It seems unlikelyhatwater features would straddle drainage boundaries, so complete
geometries are assumed to be contained within processing extents, 2) lentic features identified
can be assumed to be impoiments since playa abundancenigimal ineastern Kansas, 3) and
the results of this chapter serae a foundation fothe next chapter, which focuses on reservoir
drainage characterization in eastern Kansas. Reservoir drainages selected for this study include
Perry, Clinton, Pomona, Council Grqwdelvern, John Redmond, Marion, El Dorado, Toronto,
and Fall River (Figure 1). Drainages were delineated usingé&@r resolution DEMs, and
drainage boundaries ended belthe dam(s) of any upstream reservoir(s) (e.g., Figure 2). This
delineation procede was based on the estimated 90% trap efficiency held by the upstream
reservoirs (deNoyelles & Jakubauskus, 2008) and rdstliemonstrated by Rahmani et al.

(2017.

Reservoir catchments cover portions of the following 20 counties: Atchison, Butler,
Brown, Chase, Coffey, Douglass, Elk, Greenwood, Harvey, Jackson, Jefferson, Lyon, Marion,
McPherson, Morris, Nemaha, Osage, Shawnee, Wabaunsee, and Woodson. Perry and Clinton
reside in the Lower Republican basin; Pomona & Melvern in the Marias Des Cygnesn,Mario

John Redmond, and Council Grove in the Neosho; Fall River and Toronto in the Verdigris; and
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El Dorado in the Walnut. Catchment area ranges from 535 sqg. km (Marion) to 6645 sg. km (John
Redmond) with a mean of 1736.4 sgq. km (Table 1). With the excepfigortions of the
Toronto and Melvern catchments, all catchments have annual precipitation rates18f0850

mm (Rahmanet al., 2017.

Vector datasets were downloaded from the Kansas Data Access & Support Center
(DASC) including: National Hydrography Dats e t bwdteso shapefile pr
USGS, 2002 KDOT nostate road system shapefile produced by Kansas Department of
Transportation, TIGER 2014 cent@re roads shapefile produced by the U.S. Census Bureau,
and TIGER 2010 railroads shapefile guged by the U.S. Census Bureau. Additionally, 30
meter DEM tiles from the USGS National Elevation Dataset (NED) wétainedthrough
DASC. LiDAR-derived 2meter DEMs were provided by faculty at the Kansas Biological
Survey, a research center affiliatedittv the University of Kansas. DEM tiles were produced
from 20101 2016 by separate vendors under the 2011 LIDAR ImplementationTflaArcGIS
World Imagery Basemap provided &:ter resolution aerial imagery collected in July of 2015.
Geoprocessing wasonducted using ESRI ArcGIS, scripting and todation were carried out
in Python, and spreadsheet and statistical analysis was conducted in Microsoft Excel following

importation of water feature attribute data from ArcMap.

Preliminary Processing

An overview of geoprocessingrocedureds displayed in Figure 3, anithe steps for
elevation data extraction are shown in Figure 4. Ten reservoir polygons of interest were retrieved
from the NHD wateibody dataset to provide pour points for catchment detetimma80meter
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DEMs taken from the NED provided the surface data for watershed geoprocessing. Resulting
drainage areas of 10 representative watersheds were converted to polygons and merged to
provide a mask for extractingreter elevation data. Given timequirements and previously
demonstrated reservoir drainage delineation methodology (i.e., Rahmani, 2016), usiateB0
resolution DEMs for drainage delineation was deemed more practical than directly extracting
reservoir catchments withi2eter elevaon data. Individual mxd files in ArcMap were created

for specific reservoir drainage analyses, and reservoir drainage polygons derived -fmeeteB80
elevation data provided extents to extract drainage speeifiet2r DEMs. Mosaicking-theter

DEM tiles pror to drainage area DEM extraction was necessary since tile boundaries did not
adhere to drainage area geometries, and several drainages required elevation data pulled from

multiple tiles.

NHD waterbodies were extracted using reservoir drainage arelasn@asnventory NHD
features for each drainage. After applying a 100 meter buffer to the focus reservoir, NHD
features intersecting the reservoir or buffer were checked with aerial imagery for clear
disconnectedness. The reservoir and any possibly codneetterbodies were removed from
each drainage dataset (Figure 5). For proceeding sections, any reference to NHD data for a
drainage refers to the NHD data following exclusion of the reservoir and reseovoiected

features.

Following procedure by Kashs and others (2016), a 3x3 focal median filter was applied
to the 2meter DEM for each reservoir catchment to remove minor sinks and peaks, followed by
road and railroad removal. Since the focal statistics tool in ArcGIS does not permit a median
operatian on a floatyperaster, the procedure was coded in Pytls@e Appendix As shown in

previous studies (Leonard et al., 2012; Kastens et al., 2016), roads and railroads can be sources
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of fal se 0da-lbased watebodyeidemtificatim iif anthe&ed. The pocedure to
remove roads and railroad followed that of Kastens et al. (2016) (FiguRn&)l. and railroad

data wereacquired through KDOT nestate roads, TIGER roads, and TIGER railroads
shapefiles. While Leonard and others (2012) appliedra€itgr buffer, both Kastens et al. (2016)

and my preliminary results favored a 30 meter buffer to smooth roads, railroads, and adjacent

ditches from DEMs and eliminate false dams.

Topographic Wetland Identification Process model (TWIP) and Zero Slope (48)hod

The Topographic Wetland Identification Process model (TWIP) developed by Kastens
and others (2016) employs a sink depth map and depth threshold to identify potential water
bodies §ee Appendix). Initially, sinks are filled and a sink depth maadaulated by subtracting
the original DEM from the filled DEM. Using a mask composed of resulting sinks, a zonal
maximum depth raster is generated for sink patches. Sinks with zonal maximums meeting or
exceeding the designated depth threshold are theactedrto create a raster layer representing
potential water bodies (Figure 7). After testing various depth thresholds, a depth of 0.3 meters
was found to be best for maximizing feature identification without excessive false positives. The
resulting rasteis then converted to polygons and appended to a water body shapefile. Should the
converted raster result in an empty shapefile, the process terminates, and the water body
shapefile contains the total TWIP results. If not, an inverted sink depth rasteaisdcwith
appended water body patches removed. The process then iterates using the inverted sink depth

raster as the DEM.
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As specified in the LIDAR Implementation Plan (2011), streams with wieltceeding
50 meters and lentic bodies exceeding % ofcaa aecessitate hyditattening. The Zero Slope
tool (ZS) exploits hydrdlattened patches by identifying cells with a slope value of zero and
converting those patches to polygons representafiweater bodies (see Appenddy. First, a
raster of cell slpe values is calculated from therizter DEM. Cell values equal to zero are
extracted from the sl ope raster and converted
of the greatest difference in elevation between the focal cell and adjadsntileelperimeter
cells of the hydrdlattened area have a slope value greater than zero. This results in
underestimation of the hydfol at t ened p admpdnsatsfor this, e abuffer Tvith

distance equal to the cell size (2 meters) was applidtigolggons (Figure 8).

Noise and false positive removal required manual processing and validation using aerial
imagery. All resulting TWIP and ZS features with areas less than 25@enme selected and
deleted from respective datasets. This removed roideany potential water bodies under 1/16
acre, which would be difficult to disseminate given the resolution of aerial imagery. As with
NHD preparation, a 100 meter buffer was created around the reservoir to avoid designating
connected segments as distinetterbodies. Any polygons intersecting with the reservoir or the
100 meter buffer were examined in the context of aerial imagery, and any water bodies not
clearly disconnected from the reservoir were removed from the dataset. Remaining TWIP and ZS
polygans were intersected with NHD data, and those not intersecting were checked with aerial
imagery and identified as true water bodies or false positives. Any TWIP or ZS features
intersecting with the NHD were assumidbetrue water bodies. In turn, false gitives were

removed leaving only features intersecting with the NHD or verified with aerial imagery.
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Accuracy Assessment

In order to quantify the geometric accuracy of the NHD, TWIP, and ZS features, fifty
water bodies from each dataset were compareith wiaterbodies manually traced from aerial
imagery (Figure 9). Ten samples were taken from five reservoir drainage areas: Marion,
Melvern, ElI Dorado, Council Grove, and Pomona. These reservoirs were selected due to
successful execution of the TWIP tamithin their watershedand considered representative of
the entire datasefhe five population groups consisted only of features identified in the NHD,
TWIP, and ZS and were identified by intersection. Ten features were sampled randomly from
each TWIP draiage populationsgee Appendixl), and the corresponding NHD and ZS water

bodies were identified via intersection.

Polygons were manually drawn for the fifty water bodies using 201&nB@esolution
imagery at a 1:1000 1:2000 scale and appended to a fiesature claspamedi Ver i f i ed. 0
polygons forthree categorie$ Verified and NHD overlap, Verified and TWIP overlap, and
Verified and Zero Slope overlap were calculated for all sample features. An equation was
implemented to assign an accuracy indakie ranging from 0 1.00 to all samples for the three
datasets (Figure 9). After determining indices for the 50 sanfipétdres, summary statistics for

mean, standard deviation, minimum, and maximum were calculated (Table 6).

Combined Dataset

Featues from TWIP results, ZS results, and the NHD were merged into a final dataset
namedii C o mb i Baged Onaccuracy assessment results, the merging prioritizates as

follows: 1) the TWIP features form the foundation of the final dataset, 2) all ZSdesahat do
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not intersect with the TWIP features, 3) and all NHD features that do not intersect with the

merged TWIP and ZS features (Figure 10).

Results
NHD Results

NHD water feature count, cumulative surface area, and percentage unidentified by the
TWIP or ZS approaches are shown in Table 1. Calculations exclude the reisgelifand any
connected features. Naturaltiie number of NHD water bodies tends to increase with increasing
drainage area with the exceptions of Melvern Reservoir and Fall Reservoir. Water body
densities, or average wot per square kilometer, rangm 1.09 Ct/kmd (Marion) to 2.97
Ct/knm? (Clinton), with a mean count per Knof 2.04. The percentage of NHD features
unidentified by either of TWIP or ZS procedures ranges #dn78 % (El Dorado) to 88.31 %,

(Toronto) with a mean of 69.68%.
TWIP Results

Results of the TWIP approach are summarized in Table 2. The approach encountered
scaling issues and was most successful in identifying greater numbers of NHD features in
smalle drainages. Significant processing issues occurred for targe drainages, Clinton,

Perry, and John Redmond, and these drainagebexeforeomitted from Table 2. Partial results
were obtained for Clinton Reservoir, with the script only identifyiegtdres in the southwest
portion of the drainage. While these results are omitted from the TWIP summary table (Table 2),

they were incorporated in generating the Combined dataset and are recognized in later tables.
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The script failed to execute for Perry deevoir, the second largest drainage area, and that
drainage is excluded from the TWIP results. The required road and railroad removal procedure
could not be completed for the largest drainage, John Redmond, as the number of points
resulting from the buffied roads lad railroads caused the extraetiuesto-points tool of
ArcGIS to fail. In turn, that drainagdsois excluded from the TWIP results. The approach was
most successful in identifying NHD features for the three smallest drainage areas: Marion
32.71%; El Doradd 55.87%; and Council Grovie 35.64%. The approach identified over 90%

of all ZS features in Council Grove, El Dorado, Fall River, and Marion drainages. In all
drainages where execution was successful, features absent in the NHD wlataseentified

with an averagef new features comprising 1.75% of the NHD count on average. The scaling
issues may reside in file sizes, feature numberspapdocessing limitations of ArcGIS tools
included in the script. However, based on successtution in smaller drainages and lack of a
clear remedy, the current results wdeemedsufficient to draw conclusions for the purposes of

this study.

ZS Results

Results of the Zero Slope approach are summarized in Table 3. Failure of TWIP
execution fo Perry and John Redmond drainages prevented comparison of ZS and TWIP for
those drainages. Percentage of NHD features identified through ZS ranged from 11.69%
(Toronto) to 58.22% (ElI Dorado) with a mean of 30.31%. Features absent in the NHD were
identified in all drainagesranging from 12 (Fall River & Toronto) to 246 (John Redmond).
Identification of new features relative to the NHD resulted in an average increase of 2.09% in
impoundment number across all drainages. The Zero Slope approach succelssftiflgd 99%

or greater of all TWIP features for all drainages.
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Combined Data

The Combined datasets are summarized in Table 4. Merging the TWIP, ZS, and NHD
data resulted in an increase in water features relative to the NHD data for all drainagehareas. T
percentage increase relative to NHD count ranged from 0.28% (Toio818Y% (Marion) with
a mean of 2.10%. El Dorado is the only drainage where the NHD does not provide the majority
of geometries for the final datet (41.03%). NHD data compriiee ighest percentages of the
final dataset features for Toronto (88%) and Fall River (85.13% percentage of TWIP
features in final datasets ranges from 0% for Perry and John Redmond to 55.28% for El Dorado
with a mean of 19.57%. Since TWIP feature geoieetwere favored over ZS geometries in
appending order, ZS features comprise a mean of 11.98% of features included in final datasets.
ZS features make up the highest percentages for datasets where TWIP processing was
unsuccessful: Perry (30.03%), John Read (36.23%), and Clinton (25.74%). Since TWIP and
ZS geometries supplanted intersecting NHD geometries, certain water bodies represented as
fragmented or continuous by the NHD were replaced by contiguous or divided geometries (e.g.,
Figure 11). The sumndechange in NHD count is noted in the NHD Div/Join column, with
positive values indicating an overall increase attributed to division of features, and a negative

value indicating an overall decrease in NHD count due to joining.

Surface Area Difference

Tale 5 contains the cumulative NHD and Combined water body surface areas for each
drainage. Eight of the reservoir drainages experienced an increase in cumulative drainage area
due to additional features and altered geometries of the Combined data rel#teéNHD. Fall

River and Toronto were the exceptions, showing a decrease in cumulative feature surface area of
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16.28% and 14.50%, respectively. The maximum increase in water feature surface area was
48.41% (Marion) and the mean 8.37%. Change in densigount per krf relative to the NHD

was marginal across all drainages aas thereforemitted.
Accuracy Assessment

Summary statistics are provided for the geometric accuracy indices in Table 6. NHD
accuracy indices exhibit the greatest range and dewiafi the three datasets, with a minimum
of 0.3064, a maximum of 0.9677, and a standard deviation of 0.1544. The mean NHD index,
79.22, is the lowest of the three datasets. The TWIP and ZS accuracy results are closely similar
on all summary statistics, ekliting mean index values of 0.9119 (TWIP) and 0.9111 (ZS) with
minimal standard deviation (0.0437TWIP; 0.4591 ZS). Disregarding overlap and positional
accuracy, percentage of total Verified surface area (% Verified SA) was calculated from
summing suidice areas for each dataset. NHD features totaled to 82%rifiled surface area

and TWIP and ZS features totaled to 94.90% and 94.14%, respectively.

Discussion
TWIP accuracy and limitations

TWIP-derived features held the greatest geometric and pogdiionaracy as determined
by a mean index value of 0.9119 (Table 6). Additionally, it demonstrated the greatest
consistency, with an index standard deviation of 0.0437, when compared to the NHD (0.1544)
and ZS (0.0459). These results supported prioritinatib TWIP-derived water features when

merging the three datasets.
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Noise removal was largely achieved through removal of all features less thart, 284 m
manual validation of features not intersecting NHD data was required. Overall, the manual
geoprocesnag required to remove false positives was minimal. However, required execution
time far exceedethat forthe ZS tool. For example, the smallest drainage, Marion (53%, km
took approximately 2 hours for the TWIP tool to finish, while the ZS tool contpletter
feature identification in under 3 minutes. The largest drainage area successfully completed,
Toronto (1855 krf), required over 10 hours to execute the TWIP tool. The substantial time
required for execution is likely attributed to the iteration ailtiple map algebra operations and
sink filling, which can be particularly timeonsuming with high resolution elevation data and a

large processing extent.

The approach was most effective in smaller drainages. For drainage areas that the tool
executed gccessfully, percentage of NHD features identified ranged from 10.37% for Toronto to
55.87% for El Dorado (Table 2). The greatest percentages of NHD features identified occurred in
the smallest drainage areas: Marion (32.71%), El Dorado (5%,8@%@ Cound Grove
(35.64%). The ercentage of ZS features identified through the TWIP exceeded 90% for the
three smallest drainages as well as Fall River. In all drainage #raa$WIP completed,
features absent in the NHD were identified. As drainage area sectglae TWIP feature count
did not increase. In fact, feature number ranged from 391 to 440 for reservoirs exceeding the size
of the three smallest without correlation to drainage size. This tendency to identify a limited
number of features may be due limitations of feature number or file size for certain

geoprocessing steps in the TWIP process.

Running TWIP on the Clinton drainage area resulted in a unique outcome. Features were

only identified for the southwest portion of the drainage area. WhileTiW#P tool ran
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successfully for some larger drainage areas (i.e., Fall River and Toronto), Clinton has the highest
density of water bodies of all areas analyzed (Table 1). Halting of TWIP identification may have
been related to inherent ArcGIS tool limitats when processing such large files or feature
number s. This may al so have been prodessingorause o0
Perry. While the precise cause of error in the procedure is unknown, the issue in DEM
preparati on f s draindge laraa isRceear.nWhateripting to use the extract
valuesto-points tool of the spatial analyst toolbox, the tool compl@iedtessindgut assigned

elevation values of zero to 29% of the points. The tool was assigned to extract elevation values
to 8.9 million points, which provedandofterexceed
undocumentedimitations to ArcGIS tools, which may be unknown to the user and seldom
encountered. However, processing high resolution elevation idataLiDAR -derived DEMS)

over a substantial area may illuminate these limitations, and drawing attention to specific cases
such as this can help others to avoid these problems and encourage programmers to develop
remedies. A simple solution to these issues Wdddividing up drainage areas and performing

TWIP water feature identificatiofor the subdivided areablowever, determiningnappropriate

parcel area to maximize efficiency of TWIP would be necessary, and time constraints, the

objectives of this studyand ZS tool success discouraged further investigation.

Zero slope effectiveness and efficiency

Accuracy assessment results showed ZS geometric and positional accuracy to be
comparablealthough slightlyless favorable, to TWIP accuracy. The ZS approashlted in a
mean accuracy index of 0.9111, representing higher accuracy than NHD features (mean index =
0.7922) , and coming close to TWIP6s mean inde

buffer incorporated intdve ZS process, surface ar@sreconsistently smaller for ZS compared
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to TWIP results. This is likely due to heterogeneous alignment on stretches offlaytereed

patch perimeter cells, particularly around inlet areas (e.g., Figure 8), and a resulting greater loss
of pixels througtselection of O slope values than pixel gain from a uniform buffer. In turn, 49 of

the 50 features sampled showed a greater TWIP surface area than ZS surface area, and TWIP
features averaged a 1.38% increase in surfacecaraparedo corresponding ZS féares. In

terms of index variance, ZS samplead a standard deviation of 0.0459, reflecting greater
consistency than the NHD (0.1544) and slightly less than the TWIP (0.0437). Accuracy

assessment results favored ZS features over NHD but not TWIP wheingréeydatasets.

Smaller false positives were removed through deletfoany features less than 268,
as was done with the raw TWIP data. Hydledgtened rivers produced the majority of larger false
positives and were manually removed. While interegahe ZS features with NHD stream data
to identify hydreflattened stream segments was considered, this could lead to removing
impoundments intersecting streamlines, and the clustering tendencies oflaiidreed stream
polygons allowed efficient maal removal. Due to the required manual removal of hydro
flattened lotic features, manual geoprocessing took slightly more time than with the TWIP
dataset. However, execution of the tool was markedly quicker than the, Takiiiy at most two
hours for the drgest drainage (John Redmond), which the TWIP tool was unable to process
successfully. The more tirrefficient character of the ZS tool is attributed to its single iteration
process and absence of sink filling and multiple map algebra operations. Generatiope
raster is lhe most timeconsuming aspectafh e scri pt , but i1t requires
sink fill. Furthermore, removal of roads and railroads is unnecessary for the ZS approach, as it is
not subject tdhe false damgreated by thosteatures In summary the ZS approach is far less

time-consuming in terms of prgrocessing and execution than the TWIP method.
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In all reservoir drainages analyzed, ZS identified more features than the TWIP and a
greater percentage of NHD features. ZStded 99% ormoreof all features identified through
the TWIP method. ZS identifiedl169% (Toronto) t®8.22% (El Dorado) of NHD water bodies,
with a mean of 30.31% (Table 3). Theam percentage of increase in water bodies due to ZS
results relative ttNHD data was 2.09%. In contrast to TWIP results, there was a general increase
in numbers of features identified with increasing drainage, angta the exceptions of Council
Grove, Fall River, and Toronto, which all produdewer features than some sn&lldrainage
areas. Also in contrast to the TWIP approach, the ZS tool was successfully applied to the largest
drainage areas, Perry and John Redmond, identifying 28.22% and 34.48% of NHD features,

respectively.

Summary and Significance of Combined Dataset

Based on results of the accuracy assessment, TWIP aideii®d features exhibit
superior surfacareaaccuracy to NHD data. While TWIP results were not collected for John
Redmond and Perry, ZS accuracy was comparable to TaMtPthe successful exeartiof the
ZS method in those drainagesl to thér inclusion in the Combined datasets despite having only
NHD data and ZS results to draw from. Since the geometries of TWIP and ZS results have been
shown to be more valid than NHD featurasd new water les were identified for all
drainages merged datasets may be considered more accaratecompletecompared to

inventory approacheaeglying solely on the NHD.

As a consequence of new geometries, many previously segmented or continuous NHD
waterbodieswere joined or divided based on TWIP and ZS depist{ery., Figure 11). In turn,

the count of Combined bodies may be different from the sum of the NHD and the
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nonintersecting TWIP and ZS features. The overall change in NHD feature count due to division
oo joining is shown in Table 4 (ADiv/Joino).
count due to conjoining of features (negative values) and half experienced an increase in feature
count due to fragmenting (positive values) with a mean incieak8 features. In turn, no trend

of NHD representing exclusive features as fragmented or fragmented features as joined was
observed. TWIP results occasionally joined fragmented ZS features into singular features,
resulting in new feature counts of ther@lmwneddatasebeing less than new feature counts of the

ZS for Toronto, El Dorado, Pomona, and Melvern drainages (Figure 12). Additionally, the TWIP
method identified two water bodies absent in the NHD and ZS results, one in El Dorado and one
in Melvern. Conversely, ZS identified all other TWIP features absent in the NHD as well as 5
additional water bodies for Melvern, 10 for Pomona, 1 for Toronto, 176 for Perry, and 246 for

John Redmond.

Findings indicate the NHD underestimates cumulative water bodgceuarea due to
missing features and imprecise geometries. Comparison of the Combined surface areas and NHD
surface areas shows a mean increase of 8.37% in total surface area relative to the NHD (Table 5).
Additionally, surface area increase would likbly greater for Clinton, John Redmond, and Perry
if the TWIP tool had executed properly since TWIP features tend to have slightly greater surface
areas than ZS features. Omitting surface area supplied by features absent in the NHD and
positional accuracytotal surface area of NHD features used in the accuracy assessment only
summed to 82% of the total&ckrified feature surface area. Even without the addition of new
features to the NHD, the NHD should be regarded as an underrepresentation of regional stand

water.
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Two drainage areas stand out due to low percentages of NHD features identified through
ZS and reduced surface areas resulting from the Combined dataset. Fall River and Toronto have
drainage areas of 1,434 kmnd 1,855 krf) respectively. Accaling to the NHD, Fall River has
2,828 water bodies and Toronto has 3,943, yet ZS analysis only identified 415 features for Fall
River (intersecting 14.41% of NHD water bodies) and 479 features for Toronto (intersecting
11.69% of NHD water bodies). TWIP tdts werefewer still, and interestingly, replacing this
percentage of NHD geometries with TWIP or ZS results and appending additional water bodies
resulted in substantial decreases in cumulative surface areas for both drainages (Table 5). Fall
River and Dronto are adjacent drainages with the majority of their drainage areas in Greenwood
County, Kansas. Elevation data used in this study was mosaicked from elevation tiles developed
by different vendors from 2010 2 0 1 6 . Whil e it i S lepmag kaveb | et |
experienced less thorough hydtattening compared to tiles created by other vendors, the time
the LIDAR data was collected may offer another explanation. While the DEM for the
Greenwood County and other southeast counties was produced int2®%8urce LIDAR data
was collected in the winter of 2012, towards the end of a severe two year drought. Water levels
may have been low, and there may have been a disproportiomélerof desiccated ponds the
year of data collection. In turn, there weilely greater returns antewer voids in the point
cloud. This would result in the reduction the numberof hydroflattened features, smaller
geometries for hydrflattened features, and underestimation of surface areas by elevased
water body i@éntification. However, precise collection date and conditions are needed to verify

this possibility.
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Conclusions

ZS and TWIP approaches improved NHD geometries overall and identified features
absent in the NHD using automated geoprocessing and -Agttemed 2m elevation data.
TWIP and ZS demonstrated greater accuracy and consistency when features were recognized
compared to the NHD. However, the NHD includes substantially more lentic features than the
ZS or TWIP produced, and the approaches shouldbadtreated as staradone methods of
inventorying. While both approaches required some manualppostssing and false positive
removal, the TWIP requires substantially greatergroeessing and execution time than the ZS.
The TWIP approach produced thwst favorable geometries but identified few features missed
by the ZS. Overall, the ZS identified more features included and absent in the NHD than the

TWIP.

The ZS approach proved more reliable in large drainages relative to the TWIP. ArcGIS
tools incluakd in the TWIP script likely have inherent limitations regarding file size or feature
number, preventingdentification ofincreasing numberof features delineated with increasing
drainage area and successful script execution altogether in certain esailmagffect, the ZS
should be favored in large extent processi8gbdividing large processing extents is one
possibility to improve TWIP performance. LIDAR data collected during periods of drought may
result in substantiallffewer and smaller voids, whbh results infewer and smaller hydro

flattened patches

The NHD underestimates water feature surface area in the study region. While this may
be attributed in part to the absence of water bodies constructeNigbstthe geometries of the

NHD dataset tentlbb underestimate actual water sedaareas. Therefgrénventories using the
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NHD, such aghose ofMcDonald (2012) and Callihan (2013) may be conservative in estimates

of cumulative surface area.

The methods applied in this study are aimed at improaaugiracy of current water body
inventories through efficient automated approaches. The hydrological, geochemical, and
ecological ramifications of impoundments are significant anthropogenic alterations of natural
processes, and constitute sufficigmstification for surveying, research, and management for
water resources and conservation purposes. With new impoundments continuing to be
constructed, efficient methods of updating water body distribution data have value in
impoundment research and managemdime methods demonstrated and resulting datasets

provide a novel example in updating and improving water body inventories for eastern Kansas.
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Figures

Figure 1: Reservoir Drainage Aeas
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Figure 2: John RedmondReservoir Drainage Boundary

CouncilGrove
Reservoir

I

"'Marion
Reservoir

Boundaries of John Redmondds drainage end at the dams
Marion Reservoir. Thiglelineationis guided bythe methodology of Rahmani et al. (2017).
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Figure 3: Overview of Frocessing Steps detailed imdditionalfigures are marked (*Parts A and B are
shown below, and Part C along with a key are shown on the following page.

A) Drainage DEM preparation and drainage NHD data extraction.Reservoir polygons were extracted from the
NHD andused as pour points for drainage delineation usingi36solution elevation data (NED). Resulting
drainage polygons were used to clip NHD water body data anevation data for each drainage. To conclude
preliminary DEM processing,-&1 drainage DEMsvere subjected to a median filter and road and railroad removal
in accordance to methodologies of Kastens et al. (2016).

Drainage NHD * Drainage

Polygon Drainage Data NHD Data
Extraction

Drainage * Road & *
DEM —»| Median Filter |—» Railroad ‘
Extraction Renoval

B) TWIP and ZS processing prior to comparison with drainage NHD dataTWIP and ZS methodologies were
carried outandresulting features under 25C mere removedReservoirs and their potenfiaconnected features

were removed by identifying features intersecting the reservoir or its buffer, and aerial imagery was used to identify
any of the interseatg features actually connecting to the reservoir.
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250 mo ZS Bodies
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C) Validation of remaining features andmerging into Combined dataset.Remaining featurewerevalidatedvia
intersection with the NHD anehanual reviewof nonintersecting featuresing aerialmagery. Finally, TWIP, ZS,
and NHD results were compiled into the final dataset.
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Figure 4: Drainage DBEM Extraction
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Figure 5: Extraction of NHD Data for Individual Reservoir Drainages
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Figure 6: Road and Railroad RemovalTIGER roads, TIGER railroads, andBOT Nonstate roads

were first clipped, dissolved, and merged to create a single feature for removal from drainage DEMs. After various
lengths were tested, a buffer radius of 3@erewas found sufficient for eliminating false dams caused by roads and
railroads. A raster of the roads and railroads buffer was created for later application in raster calculator. The buffered
feature was densified, and vertices converted to pointsytih elevation values were extracted using the filtered

2-m DEM. Any points without elevation value®9999) were removed, and a TIN was created from the remaining
points. The TIN was then rasterized for use in raster calculator. With the raster oalaalaies from the rasterized

TIN were burned into the buffered road and railroad extent of the filtered DEM to produce the final drainage DEMs.
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Figure 7: TWIP

A) Aerial imagery of an
impoundment from Pomona
drainage.

B) Sink depth map taken from
subtracting the filled DEM from the
original DEM.

C) TWIP feature radting from a
0.3 meter depth threshold.
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S Low: 3.051766-005

e
e

70



Figure 8: Effect of Zero Slope Buffer
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