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Abstract 

 Following the break up of the Pangaea, landmasses were aggregated into two 

super-continents, Laurasia in the northern hemisphere and Gondwanaland in the southern 

hemisphere. Both have been considered ancestral areas where many of today’s taxonomic 

groups originated. However, during the Devonian, Gondwanaland began to fragment 

with micro-continental blocks breaking and rafting northwestwards across the Tethys 

Sea. These micro-continents eventually collided into Laurasia transforming into what 

today is Southeast Asia and parts of Wallacea. These micro-continental blocks carried 

Gondwanan lineages that evolved in isolation as they rafted across the Tethys Sea and 

subsequently dispersed into Laurasia.  This geologic scenario has been used to explain 

why there are Asian lineages of lizards, birds, fish, and land snails that are more closely 

related to Australian and Papuan taxa than they are to other Asian lineages.  One well-

documented case of this biogeographic hypothesis is with Dragon Lizards. There have 

been two previous comprehensive studies on Dragon Lizard relationships, one based on 

discrete morphological characters and one using molecular data, and both predicted 

Gondwanan origins for all Dragon Lizards commensurate with the geologic scenario 

outlined above. Both studies, however, were based on limited sampling and reported 

problematic relationships that hindered their ability to unequivocally explain the 

geographic and evolutionary origins of this lizard family. 

 In this dissertation, I use phylogenomic data to resolve long-standing contentious 

Dragon Lizard relationships in order to revisit hypotheses of their Gondwanan origins 

and Tethys Sea migrations. I first use this phylogeny to test the hypothesis of an Indian 

(Gondwanan) origin for Southeast Asian Dragon Lizards and reevaluate the colonization 
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of the Indian and the Indo-Himalaya regions. Once these problematic relationships and 

biogeographic origins were resolved, it enabled me to use unprecedented taxonomic 

sampling to provide the first estimate of a Dragon Lizard tree of life in order to test 

previous published hypotheses of Gondwanan origins and the morphological evolution 

within Dragon Lizards. Lastly, I use a dataset of 122 discrete morphological characters 

from a previous study and sum the number of unambiguous synapomorphies in the 

cranial and post-cranial skeletal characters associated with cephalic and axial body 

modifications in lineages that have morphological specializations in these regions. Lastly, 

I use the Dragon Lizard Tree of Life and these synapomorphies to perform a phylogenetic 

logistic regression analysis to show that the evolution of the higher number of relative 

synapomorphies associated with cephalic and axial body modifications are 

phylogenetically independent of one another. This study contributes to our knowledge of 

Gondwanan and Laurasian biogeography as well as how shared environmental pressures 

affect the external and internal morphology of unrelated species within Dragon lizards. 
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Chapter 1 

The Eurasian invasion: phylogenomic data reveal multiple 

Southeast Asian origins for Indian Dragon lizards 

 

Jesse L. Grismer, James A. Schulte II, Alana Alexander, Philipp Wagner, Scott L. 

Travers, Matt D. Buehler, Luke J. Welton and Rafe M. Brown 

Abstract 

The Indian Tectonic Plate split from Gondwanaland approximately 120 MYA and 

set the Indian subcontinent on a ~ 100 million year collision course with Eurasia. Many 

phylogenetic studies have demonstrated the Indian subcontinent brought with it an array 

of endemic faunas that evolved in situ during its journey, suggesting this isolated 

subcontinent served as a source of biodiversity subsequent to its collision with Eurasia. 

However, recent molecular studies suggest that Eurasia may have served as the faunal 

source for some of India’s biodiversity, colonizing the subcontinent through land bridges 

between India and Eurasia during the early to middle Eocene (~35–40 MYA). In this 

study we investigate whether the Draconinae subfamily of the lizard family Agamidae is 

of Eurasian or Indian origin, using a multi locus Sanger dataset and a novel dataset of 

4,536 ultraconserved nuclear element loci. Results from our phylogenetic and 

biogeographic analyses revealed support for two independent colonizations of India from 

Eurasian ancestors during the early to late Eocene prior to the subcontinent’s hard 

collision with Eurasia. These results are consistent with other faunal groups and new 

geologic models that suggest ephemeral Eocene land bridges may have allowed for 
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dispersal and exchange of floras and faunas between India and Eurasia during the 

Eocene. 

Introduction 

The collision of the Indian subcontinent (ISC) into Eurasia caused the formation 

of some of the world’s most iconic deserts and mountain ranges, dramatically changing 

Asian climates, while simultaneously sculpting its biodiversity. Much interest has 

centered on investigating the evolutionary and geological processes that have influenced 

the origins and diversification of the ISC’s unique biotas ([Karanth 2006; and references 

therein). Phylogenetic studies of birds, dipterocarp trees, terrestrial gastropods, crabs, 

freshwater fish, and certain groups of amphibians, suggests these lineages originated on 

the ISC and were a source of biodiversity for regions of Asia and areas as far west as 

Africa after the Indian Plate split off from Gondwanaland [Dayanandan et al. 1999; 

Bossuyt and Milinkovitch 2001; Gower eta l. 2002; Sparks 2003; Dutta et al. 2004; Klaus 

et al. 2010). However, a suite of phylogenetic studies across a variety of other taxa 

suggest an alternative biogeographic hypothesis postulating Eurasia as the ancestral 

source of diversity for the ISC. In these groups Asian lineages dispersed to, and 

successfully colonized, the subcontinent before its hard collision with Eurasia 25–30 

MYA [Raxworthy et al. 2002; Renner 2004; Köhler and Glaubrecht 2007; van der 

Meijden; Macey et al. 2008].  

The previous lack of geologic models describing the fine scale events of the final 

50 million years of the ISC’s collision, left researchers with no mechanistic explanation 

for the striking differences between these two “ISC faunal origin” hypotheses. 

Fortunately, newer models are available that take into account continental connections 
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between the approaching ISC and areas of mainland Asia prior to the ISC’s collision with 

Eurasia [Acton 1999; Aitchison et al. (2007); Ali and Aitchison 2008]. Acton (1999) and 

Ali and Aitchison (2008) hypothesized that between 34–55 MYA (middle Eocene-late 

Eocene), India was connected to Eurasia via land-bridges with Sumatra, and then along 

what is now the Thai-Malay Peninsula and Burma (which would have been one land 

mass during this time). Two recent studies have recovered phylogenetic support for these 

Eocene land bridges and hypothesized that these pre-collision continental connections 

would have allowed for faunal exchanges between the ISC and Eurasia as the ISC 

continued northward [Klaus et al. 2010; Li et al. 2013]. We present data from a diverse 

radiation of Indian and Southeast Asian lizards that provide an additional model system, 

with larger amounts of generic diversity of Indian lineages and Asian lineages, to test for 

phylogenetic support for these Eocene land bridges, which we refer to as the Eocene 

Exchange Hypothesis (EEH).  

 The Draconinae is a subfamily within the lizard family Agamidae that contains 

27 genera and 199 species [Manthey 2008] comprising approximately 50% of total 

Agamid diversity. Members of the Draconinae collectively range throughout mainland 

Asia (Indochina), Sundaland, India, and Sri Lanka (Fig. 1.1). Draconinae lizards are 

diurnal omnivores exhibiting a range of arboreal and terrestrial life styles and are some of 

the dominant members of diurnal lizard communities throughout South and Southeast 

Asia [Manthey and Grossmann 1997; Malkmus et al. 2002].  To date, only two studies 

have investigated the phylogenetic relationships within the Draconinae. However, both 

were part of broader systematic studies on the entire Agamidae family [Moody 1980; 

Macey et al. 2000]. Moody’s (1980) dissertation included 60 extant taxa, was based on 
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122 morphological characters, and included data from 18 fossils. This work was the first 

study to hypothesize a Eurasian origin for the Indian draconine lineages. Macey et al. 

(2000) was the first study to provide a molecular phylogeny for the Agamidae (including 

Draconinae), and included an analysis of 72 taxa and one mitochondrial gene. This 

analysis demonstrated that mainland Asian agamids were paraphyletic with respect to 

Indian and Sri Lankan lineages. However, multiple deeper nodes within the Draconinae 

were characterized by poor support, resulting in ambiguous relationships [Macey et al. 

2000]. The authors then used a series of parsimony methods to suggest that these 

problematic areas of the draconine phylogeny, along with a lack of biogeographic signal, 

were likely due to an Indian-Asian faunal exchange just after the hard collision, 20–25 

MYA. Subsequent reviews of Indian-Eurasian collision regarded the biogeographical 

interpretations of Macey et al. [Macey et al. 2000] with skepticism due to the poorly 

supported relationships within the Draconinae [Datta-Roy and Karanth (2009); and 

references therein].  

Since Moody(1980) and Macey et al. (2000), new Draconinae genera have been 

discovered, and previously unsampled rare genera have been collected, providing 

additional genetic material for reanalysis of draconine relationships. The lower per-base 

cost of next-generation sequencing has also led to the development of genomic methods 

extending the number of genetic markers that have limited the phylogenetic resolution in 

previous studies. Here, we generate a genomic data set of 4,536 nuclear loci derived from 

ultraconserved elements (UCEs), along with traditional Sanger sequencing data, to 

resolve the problematic relationships within the Draconinae reported by Macey et al. 

(2002). With the addition of new taxa, and genomic sequence-capture data, analyzed in 
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combination with newly developed geological models, we are poised to reinterpret the 

biogeographic origins of Indian and Southeast Asian draconine lineages. Specifically, we 

tested (1) Moody’s (1980) pre-collision hypothesis versus Macey et al. (2002) post-

collision hypothesis for the origins of Indian lineages; and (2) suggest that a conclusion in 

favor of Moody’s (1980) pre-collision hypothesis would show phylogenetic support for 

the Eocene land bridge connections proposed by Acton (1999) and Atchison et al. (2007). 

We term this the Eocene Exchange Hypothesis (EEH). 

 

Methods 

DNA Extraction, Sanger Mitochondrial and Nuclear DNA Sequence Data Collection 

Genomic DNA was extracted from muscle or liver tissue samples on loan form La 

Sierra University, Villanova University, the California Academy of Sciences, the 

Zoologisches Forschungsmuseum Alexander Koenig, and the Chicago Field Museum.  

Extractions were preformed using a DNeasy tissue kit (Qiagen, Inc.) and sequenced for 

the mitochondrial and nuclear genes, ND2 (primers from Macey et al (2000) and RAG-1 

(primers from [Melvile et al. 2009]), respectively, using standard PCR and Sanger 

sequencing protocols. We edited the sequences and aligned them within Geneious Pro 

5.0.4 (http://www.geneious.com, [Kearse et al. 2012]) and these new sequence data were 

combined with existing data from [Macey et al. 2000] and [Melvile et al. 2009] 

(Appendix 1). In total, the dataset included 17 of the 26 draconine genera, including all 

but two of the Indian genera (Psammophilus and Coryphophylax). Hyrdosaurus and 

Physignathus were not included as their phylogenetic affinities are with other agamid 

lineages outside of the Draconinae [Macey et al. 2000]. At least three species (or 
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individuals if the genus was monotypic) per genus were sampled, for a total of 44 

individuals. ND2 and RAG-1 were selected as they are the most frequently sequenced 

markers across acrodont lizards and therefore provide maximum taxonomic coverage. 

We used these markers to preliminarily place new genera in a phylogenetic context, and 

as a guide tree in our selection of genera for UCE development to resolve problematic 

relationships. 

Ultraconserved elements (UCE) data collection 

To resolve the problematic areas in the phylogeny from the Sanger data (pink 

nodes: Fig 1.2A), we selected 24 individuals representing 12 genera (underlined taxon 

names in Fig. 1.2) from across four species groups (brown nodes: Fig. 1.2A) for 

ultaconserved element (UCE) enrichment. Sequence-capture data collection followed a 

modification of the approach outlined by Faircloth et al. (2012). Briefly, we fragmented 

genomic DNA with a Covaris S220 ultrasonicator (Covaris, Inc.), and prepared Illumina 

libraries using KAPA library preparation kits (Kapa Biosystems) and custom sequence 

tags unique to each sample [Faircloth and Glenn 2012]. Libraries were pooled into groups 

of 8 taxa and enriched for 5,060 UCE loci (5,472 probes). We amplified enriched pools 

with a limited-cycle PCR (18 cycles) and sequenced final libraries on a partial Ilumina 

HiSeq 2000 lane. Reads were quality filtered using the Illumiprocessor [Faircloth et al. 

2013] wrapper for Trimmomatric [Bolger et al. 2013], and assembled into contigs using 

Trinity [Grabherr et al. 2011]. Where alternate alleles differing by less than 5% sequence 

divergence (or two nucleotide positions, whatever was greater) were present in a sample 

for any given UCE locus, Trinity retained the allele supported by the largest number of 

reads. We used PHYLUCE v. 1.4 (Faircloth et al. 2012; (Faircloth et al. 2014] to match 
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contigs to UCE loci and generated two alignments in MAFFT [Katoh et al. 2009]: one 

containing no missing loci across all individuals (complete) and another containing data 

for at least 75% of taxa per locus (75% complete), which returned alignments of 1114 

loci and 4,536 loci, respectively. 

Phylogenetic and Biogeographic Analyses 

We first used Bayesian analyses with MrBayes 3.2.2 [Ronquist et al. 2012] of the 

ND2 and RAG-1 datasets independently in the context of the entire Agamidae to ensure 

that Draconinae was monophyletic. Once monophyly and lack of conflict between loci 

was established, we concatenated the two gene partitions for subsequent analyses. We 

used uniform priors in MrBayes 3.2.2 and partitioned the dataset by locus and codon 

within each locus for just the members Draconinae sub-family. We then assigned the 

GTR+ Γ substitution model for each partition and used three chains (two hot and one 

cold), and carried out 100 million generations, sampled every 10,000 generations. Due to 

the risk of substitution saturation, we performed analyses including and excluding the 

third codon position for the ND2 alignment. Convergence between chains, likelihood 

scores, and estimate sample size (ESS) values were evaluated using Tracer 1.6 [Rambaut 

et al. 2014] In order to obtain a reliable root age for divergence-time estimates within 

Draconinae, we expanded our ND2 and RAG-1 datasets to include data from all acrodont 

lineages. We analyzed this expanded dataset using eight acrodont fossils (Appendix 2) 

within a Bayesian framework in BEAST 2.3 [Bouckaert et al. 2014] using the fossilized-

birth-death model [Stadler 2010; Heath et al. 2014]. The fossilized-birth-death process 

provides a model for the distribution of speciation times, tree topology, and distribution 

of lineages sampled before the present, and treats the fossil observations as part of the 
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prior on node time estimates. We used the root age for the Draconinae resulting from this 

analysis (85 MYA) as a minimum-age calibration for the root of the Draconinae for 

subsequent time of divergence estimates within the Draconinae clade.  

We then performed likelihood analyses in RAxML v.8.1.20 [Stamatakis 2014] on 

concatenated datasets for the incomplete (4,536 loci) and complete (1,114 loci) matrices, 

using the GTR+ Γ substitution model, and ran 100 fast bootstrap replicates. In addition to 

the concatenated analysis, maximum likelihood gene trees were constructed for each of 

the UCE loci included in the complete matrix using Phyluce with RAxML v.8.1.20 

[Stamatakis 2014], under default settings. Phyluce and RAxML were also used to 

generate gene trees for 500 multi-locus bootstraps [Seo 2008]. Custom R-scripts (R 

v3.2.0; R Core Team 2015) and the R library Phybase [Liu and Yu 2010] were then used 

to infer the STEAC [Li et al. 2009] summary species tree for the original and 

bootstrapped data. 

Using 85 MYA as a minimum age limit for the ancestor of the Draconinae, 

divergence dates for subclades were estimated in BEAST 2.3 using the ND2 and RAG-1 

datasets with linked clock and tree models. We applied Birth-Death tree priors and 

constrained the relationships to match the results from the analyses of the UCE loci (blue 

nodes: Fig. 1.2B) and let the relationships within each species group be estimated by the 

BEAST analyses. We used a relaxed uncorrelated lognormal clock model and an 

exponential prior for the mean rate of each partition. Default values were used for all 

other priors, and the analysis was run for 150 million generations sampling every 12,000 

generations, with chain stationarity, and ESS values were evaluated in Tracer 1.6. The 

first 25% of trees were discarded as burn-in and the maximum clade credibility tree with 
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median node heights was summarized using TreeAnnotator 2.3 Bouckaert et al. 2014]. 

We converted our alignments to fasta format using seqmagick 

(http://seqmagick.readthedocs.org/en/latest/). Then, with the estimate for divergence 

between Mantheyus and other draconine species of 85MYA, we estimated the TMRCA 

of subclades based on pairwise Hamming distances [Hamming 1950] between UCE loci 

(with a sequence saturation correction of 0.95) calculated through fastphylo [Khan et al. 

2013], assuming a naïve strict clock. We carried out the calculations using a custom R-

script [Alexander 2015]. Any loci where subgroup divergence times exceeded those of 

the calibration time were discarded due to the likelihood of incomplete lineage sorting 

and/or excessive rate variation. Using the same methods, we then estimated the time to 

most recent common ancestor (TMRCA) of the Draco+Ptyctolaemus and species group 

1-4 clades using the estimated age of the Non-Mantheyus clade. The estimate of the 

TMRCA of species group 1-4 was then used to age the split between Acanthosaura and 

Pseudocalates (species group 1), and the ancestor of species groups 2/3/4. The species 

group 2/3/4 TMRCA estimate was then used to age the split between Salea and Calotes 

(species group 2 and 3), and the ancestor of species group 4. Finally, the estimate for the 

TMRCA of species group 4 was used to obtain an estimate of the TMRCA of 

Certaophora/Lyriocephalus/Cophotis. 

Ancestral area reconstructions were performed using likelihood and Bayesian 

methods in LAGRANGE within the program RASP 3.0 [Yu et al. 2014], and in 

RevBayes 10.10 [Hohna et al. 2014] respectively. Taxa were assigned to their 

biogeographic zone (Fig 1) based on their modern day distributions and RevBayes 

reconstructions were visualized using the online resource Phylowood [Landis and 
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Bedford 2014]. Traditionally, the Philippines is not classified as part of Sundaland 

however, we included taxa from this archipelago in the Sundaland biogeographic area 

because the entire Philippine agamid fauna is Sundaic in origin.  

Results 

Sanger Mitochondrial and Nuclear Data Phylogenetic Analyses 

The Bayesian analyses of the combined Sanger dataset recovered new 

relationships that have not been reported in any previous study (Fig. 1.2A). Mantheyus 

was recovered as sister to the remaining Draconinae. The next lineage to diverge was a 

well-supported clade containing Draco, and Ptyctolaemus (Fig. 1.2A). Lastly, there were 

four well-supported species groups (brown nodes: Fig. 1.2A). The relationships within 

each of these species groups were well supported. However, the relationships between the 

species groups were poorly resolved and characterized by short branches (pink nodes: 

Fig. 1.2A). As the resolution of the relationships between the species groups is vital for 

testing hypotheses of Indian or Eurasian origins, representatives of the taxa from each of 

these species groups were included in a phylogenetic reconstruction from analyses of 

UCE data. 

Sequence-capture data phylogenetic analyses 

There were 4,536 loci with data for at least 75% of the n=23 individuals included 

in this study. These loci had an average length of 644.7 bp (S.D. = 249.7 bp), of which an 

average of 10.5% of sites (S.D. = 20.0%) were parsimony informative. The average 

amount of missing data per locus was 23.6% (S.D. = 19.4%), including both missing 

individuals (up to 25% of individuals at each locus) and shorter sequence lengths for 

individuals that were present (Table. S3). All analyses of the sequence-capture data were 
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successful in resolving the problematic relationships recovered from the Sanger data 

(blue nodes; Fig. 1.2B) and recovered each of the four species groups within the 

Draconinae, with high support (brown nodes; Fig.2B), consistent with the results from 

the Sanger datasets.  

Biogeographic analyses, divergence dating, and ancestral areas 

Both of the methods employed to estimate ancestral ranges (LAGRANGE and 

RevBayes analyses) returned comparable estimates of ancestral areas, however, the 

RevBayes reconstructions were more conservative. Given the short branch lengths 

leading to some of the deeper nodes in our phylogeny, the RevBayes reconstructions are 

a better reflection of geology at the times of these nodes. Therefore only the RevBayes 

reconstructions are discussed. The grafted BEAST time-tree (Fig. 1.3A) was concordant 

with the phylogenies derived from the Sequence capture data and Sanger data (Fig. 1.2). 

The BEAST time-tree (Fig. 1.3) indicated the most recent common ancestor (MRCA) for 

the Draconinae originated approximately 92 MYA in mainland Asia ~30 million years 

after the ISC broke off Gondwanaland. The MRCA for Draco and its relatives most 

likely originated in mainland Asia 53 MYA and diverged from the other mainland Asian 

and Sundaic lineages around 69 MYA from a mainland Asian ancestor. The three 

remaining species groups appear to have diversified from one another rapidly between 

51–59 MYA, most likely from a mainland Asia ancestor that existed approximately 59 

MYA. The Indian endemic Salea (Species group 2) represents the first invasion of India 

(D#1: Fig. 1.3A), having diverged from a mainland Asian ancestor it shared with Calotes 

(Species group 3) approximately 56 MYA (Fig. 1.3A). The MRCA for Acanthosaura and 

Psuedocalotes (species group 1) was estimated at 56 MYA with a high probability that 
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this ancestor originated in either mainland Asia or Sundaland (where both genera 

presently occur). Within this species group, we recovered support for a second invasion 

of India and Sri Lanka, with the ancestor of Sitana and Otocryptis originating from a 

predominantly Sundaic ancestor between 51–27 MYA (D#2: Fig. 1.3A). Lastly, the 

MRCA for the Sri Lankan and Sundaland radiations (species group 4) originated around 

51 MYA in Sundaland or Sri Lanka (Fig. 1.3A). Within species Group 4, Aphaniotis, 

Bronchocela, and Gonocephalus appear to have diverged from one another 42 MYA and 

form the sister lineage to the Sri Lankan genera Lyriocephalus, Cophotis, and 

Ceratophora (Fig. 1.3A). The Sri Lankan lineages diverged from one another 28 MYA. 

We obtained these timing estimates for key divergences and dispersal events using 

Sanger data (as they were available for a broader taxonomic sample, including key fossils 

in comparison with the UCE data) in BEAST, with the topology constrained by the 

results from UCE data. We then crosschecked these estimates using the minimum 

divergence time for Draconinae of 85 MYA, and sequence divergence among UCE loci 

between clades of interest. This method is somewhat cruder than the BEAST estimates 

because it cannot account for among lineage rate variation. However, the estimates 

obtained using this approach were broadly comparable with results or our Bayesian 

analysis performed in BEAST (Fig. 1.4), offering support for our timing of key draconine 

dispersal events in Southeast Asia. 

Discussion 

In this study, we utilized unprecedented sampling of the Draconinae, both in 

taxonomic diversity and genetic markers, to give fresh biogeographic insight into the 

origins of the Indian and Southeast Asian Draconinae lineages. In particular, the 
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thousands of loci generated using sequence-capture and next-generation sequencing were 

successful in resolving previously problematic relationships within the Draconinae 

(brown nodes: Fig. 1.2). Using the fully resolved UCE phylogeny to constrain the 

topology of our Sanger dataset, we generated a grafted Bayesian time tree (Fig. 1.3A), 

which supported the hypothesis that there were at least two independent colonization 

events of India by Southeast Asian lineages during the Eocene. These results favor 

Moody’s (1980) pre-collision hypothesis with the estimated times of the Eurasian 

invasions in accordance with the Eocene land bridges proposed by Acton, (2007) and Ali 

and Aitchison (2008). These hypothesized land bridges would have connected areas of 

Eurasia (now Sundaland and the Thai-Malay peninsula) and the ISC before its collision, 

and are the likely conduits for terrestrial faunal exchange and range expansion in the 

lineages leading to today’s Indian subcontinent endemics Salea, Sitana, and Otocryptis.  

 

The Eocene Exchange Hypothesis 

The first Draconinae invasion into India consisted of a lineage represented today 

by the endemic genus Salea, which descended from a mainland Asian ancestor that also 

gave rise to the Indochinese genus Calotes. This colonization event most likely resulted 

from an early Eocene land-bridge connection or an over-water dispersal event just prior 

to the ISC’s connection with Sundaland (Eurasia) 50–55 MYA (Fig. 1.3B). Given the 

sedentary and arboreal natural histories of extant draconine species, we feel the former 

hypothesis is more likely than the latter, although we acknowledge the possibility of both. 

We expect a broader sampling within this clade of Southeast Asian, and especially 

Indian, species will provide a better estimate of the ancestral area at this node (Salea + 



	   14	  

Calotes: Fig. 1.3A). The second dispersal event into India occurred with the divergence 

of the Indian and Sri Lankan endemics Sitana and Otocryptis from an ancestor most 

likely found in Sundaland during the middle Eocene. This colonization of the Indian 

subcontinent most likely was facilitated via a land bridge that connected the ISC with 

Sumatra and the Thai-Malay peninsula at 48 MYA. Additionally, the lineage sister to 

Sitana and Otocryptis, Japalura, and Pseudocalotes, is Phoxophrys (Fig. 1.3A). This 

genus is endemic to the lowland forests of Borneo and Sumatra—further supporting an 

India-Sundaland (Eurasia) connection via Sumatra and the southern portion of the Thai-

Malay Peninsula during the middle Eocene. These independent colonization events not 

only support Moody’s (1980) pre-collision biogeographic hypothesis, but also give 

additional phylogenetic support for Eocene land bridges postulated by Acton, (1999) and 

Ali and Aitchison (2008). Our results contribute to a growing body of literature 

demonstrating the possibility of floral and faunal exchange between India and Eurasia 

during the Eocene, before the ISC’s hard collision 20–25 MYA (e.g. freshwater crabs: 

[Klaus et al. 2010]; rhacophorid tree frogs: Li et al. [2013]). Given the ecology of these 

organisms, and of the draconine species sampled here, we feel that it is less likely Eocene 

faunal exchanges occurred as the result of over water dispersal events. It is unclear 

whether the Eocene land bridges were two separate spatial/temporal features, versus 

possibly the same entity, just changing position as the ISC progressed northward. In 

either case, their existence may have provided continental connections between Southeast 

Asia and India during the Eocene, which could have allowed for terrestrial exchanges 

between these areas. These results collectively represent a broad-scale pattern of faunal 

exchange between the ISC and areas of Eurasia before its collision with Asia, at least 
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partially facilitated by land bridges, which we term the “Eocene Exchange Hypothesis.” 

Furthermore, we believe the reoccurring and somewhat subjective disagreement between 

the Indian vs. Asian origins hypotheses [Dayanandan et al. 1999; Bossuyt and 

Milinkovitch 2001; Gower eta l. 2002; Sparks 2003; Dutta et al. 2004; Klaus et al. 2010; 

Raxworthy et al. 2002; Renner 2004; Köhler and Glaubrecht 2007; van der Meijden; 

Macey et al. 1998; Li et al. 2013], have simply identified opposing perspectives of a 

broad geographic and temporal conduit of opportunity for faunal exchange between India 

and Eurasia. Future studies would benefit from an attempt to empirically focus on the 

timing and direction of faunal exchange between these biogeographic regions, rather than 

a prevalence of one scenario over the other.  

Revision of the age of Draconinae 

Our estimate for the age of Draconinae is significantly older than those previously 

published in broad scale squamate phylogenetic studies (most recently [Reeder et al. 

2015]). Our older estimates are largely due to our consideration of the acrodont fossils, 

Mimeosaurus and Priscagama, as leiolepids rather than stem agamids, following Estes et 

al. 1988. These fossils have had a rather turbulent history of classification, with various 

studies suggesting Mimeosaurus was allied with the Chameleonidae [Gilmore 1943]; then 

hypothesized to be located along the branch leading to Leiolepis and Uromystax [Moody 

1980]; and lastly united with Priscagama in an extinct subfamily, Priscagaminae 

[Borsuk-Bialynicka and Moody 1984], considered to be a stem lineage of Leiolepis and 

Uromystax [Gao and Norell 2000]. 

This confusion has persisted because when Mimeosaurus and Priscagama were 

first described, the contemporary genera Leiolepis and Uromystax were still included 
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within the family Agamidae and demonstrated to be the sister group to the remaining 

agamids [Moody 1980] (this relationship has been further confirmed with molecular data 

[Macey et al. 2000; Melvile et al. 2009; Townsend et al. 2004; Grismer and Grismer 

2010]. However, Estes et al. (1988) removed Leiolepis and Uromystax from the 

Agamidae and placed them in their own family (the Leiolepidae), and this taxonomy has 

not been followed by subsequent studies. Thus, the acrodont fossils of Priscagama and 

Mimeosaurus have been consistently considered as stem fossils for all agamids and not 

their sister group, Leiolepis and Uromystax. We followed the taxonomy of Estes et al. 

(1988) and considered Mimeosaurus and Priscagama as stem leiolepids and not stem 

agamids. It was this placement that lead to our older estimates of Draconinae origins (85–

92 MYA). However, this estimate is consistent with the ages of new amber agamid 

fossils being described out of Indochina and previous studies on Iguanian lizards 

([Schulte and Moreno-Roark 2010]; Bauer et al., unpublished data; personal 

communication with JLG and PW). We recommend that researchers continue to follow 

the taxonomy of [Estes et al. 1988] with the recognition of the Leiolepidae as a distinct 

family and the placement of priscagamine fossils as stem to Leiolepis and Uromystax, as 

suggested in the original descriptions of these fossils [Moody 1980; Borsuk-Bialynicka 

and Moody 1984; Gao and Norell 2000]. 

Conclusions 

The use of additional taxa, sequence-capture data, and newer geological models—

all data not available to previous studies on Draconinae—resulted in novel and well-

resolved relationships, leading to new biogeographic insights in this unique subfamily of 

lizards. Using these biogeographic insights and a broad comparison with previous 
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biogeographic literature, we propose the Eocene Exchange Hypothesis, and the simple 

but well supported assumption that land bridges may have facilitated a broad-scale 

pattern of faunal exchange between the ISC and areas of Eurasia before its collision with 

Asia during the Eocene. We expect that with additional sampling of Indian and mainland 

Asian species, some factors that may have biased our biogeographic interpretations 

within the Draconinae to (i.e., Indian extinction events), can be evaluated. In addition, 

sampling of additional draconine species will allow us to test more fine-scaled 

hypotheses concerning dispersal and diversification within this group. Our phylogenomic 

analysis add to a growing body of knowledge addressing the effects of the ISC’s collision 

on biogeography and offers new ideas to be tested by future studies. 

 

 

 

 



	   18	  

Figure 1.1– Map showing the distribution of Draconinae and the four biogeographic area 

(differently-colored borders) used in ancestral range reconstructions. 
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Figure 1.2 – (A). Bayesian analysis (in MrBayes) of ND2 and RAG-1 data, with black 

dots denoting nodes with posterior probabilities above 0.95. Brown nodes indicate four 

well-supported species groups (1–4; see text for details) and pink nodes identify poorly 

supported relationships among these species groups. Underlined taxon names are genera 

selected for UCE enrichment. (B). Multi-species coalescent (“species tree”) from the 

species tree estimation using average coalescence times STEAC analysis, using the 

complete matrix of 1,114 UCE loci. Black dots denote nodes with 100 bootstrap support. 

Brown nodes indicate the four species groups (Group 2=brown circle; see text for 

discussion). Blue nodes identify problematic nodes recovered in Likelihood analysis of 

the Sanger dataset, resolved with sequence-capture data. 
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Figure 1.3 – (A). Time-calibrated Bayesian analysis of ND2 and RAG-1 data, with black 

dots denoting nodes with posterior probabilities above 0.95, followed by the estimated 

divergence time for each node in MYA. Pink circles identify nodes where topology was 

constrained based on Likelihood and species tree analyses of UCE data (Fig. 1.2B). 
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Brown circles indicate the four species groups. Biogeographic distributions of 

contemporary samples follow area coding depicted in Figure 1, with probability of areas 

at ancestral nodes from our Bayesian analysis in RevBayes.  Inferred dispersal events into 

India are labeled D#1 and D#2, resulting in Indian or Indian/Sri Lankan Salea, Sitana, 

and Otocryptis. (B). Hypothesized position of the ISC and an early Eocene land bridge 

allowing for the first inferred dispersal event (D#1 in Fig. 1.3A) from Eurasia into India, 

50–55 MYA. (C). Hypothesized position of the ISC and a middle-late Eocene land bridge 

allowing for the second first inferred dispersal event (D#2 in Fig. 1.3A) from Eurasia into 

India between 35–50 MYA (paleomaps modified from Klaus et al. 2010). 
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Figure 1.4 – Box-and-whisker plots, showing results of our analysis using our 

UCE_divergence_timing R script (minimum, 25% quartile, 75% quartile, maximum) 

with a minimum estimate for the age of Draconinae of 85 MYA used to calibrate the ages 

of the Non-Mantheyus clade. For subsequent subgroups, the estimated age of the clades 

were contained within this calibration point. For each group’s divergence timing 

estimate, only loci that appeared “clock-like” (ingroup age estimate did not exceed the 

calibration age) were used. Percentages of loci that were “clock-like” versus non-“clock-

like” (likely affected by rate variation or incomplete lineage sorting), and loci with 

missing data for outgroups (sister species of the groups of interest) are shown in pies 
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above box-and-whisker plots (see key). Clades with red arrows show slow-downs relative 

to their outgroups i.e. average cumulative branch lengths leading to ingroup taxa from the 

ingroup/outgroup node are shorter than those leading to the outgroups (this appears to be 

correlated with underestimates of divergence times using the naïve strict clock method), 

clades with green arrows show rate speed-ups relative to their outgroups i.e. average 

cumulative branch lengths leading to ingroup taxa are longer than those leading to the 

outgroups. Bayesian estimates of divergences times performed in BEAST are shown as 

small blue diamonds, for comparison.  
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Chapter 2 

Ghosts of islands past: in situ insular origins of the Indo-

Himalayan Dragon lizards 

Jesse L. Grismer, James A. Schulte, Philipp Wagner, and Rafe M. Brown 

Abstract 

Aim (1) Evaluate the origins of the endemic Indo-Himalayan Dragon lizards using new 

multilocus DNA sequence geological data derived from recent studies of the formation of 

the Himalaya and the Irrawaddy Mountain ranges. To understand the absence of 

widespread tropical lineages on the Indian subcontinent, we (2) assess the possible 

extinction of Indian Dragon lizards associated with the Holocene aridification of India 

following the uplift of the Himalayas.  

Location Indo-Himalaya of South and Southeast Asia 

Methods We estimated time calibrated phylogenies and ancestral range reconstructions 

to investigate the origins of Indo-Himalayan Dragon lizards. We evaluated divergence 

times and ancestral areas estimates in the context of two competing geological models 

that differ by the timing and nature of the collision of India with Eurasia. Finally, we 

estimated branch-specific rate shifts using a Bayesian analysis of diversification in order 

to test for statistically significant shifts, and declines, in lineage-specific speciation rates 

leading to specifically Indian and Sri Lankan Dragon lizard groups. 
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Results   The Indo-Himalayan lineage diversified from each other approximately 53 

MYA, with the Indo-Himalayan taxa appearing to have originated around 47.2 MYA, 

well before the India’s Soft Collision with Eurasia at 30–40 MYA. Moreover, the three 

major lineages within the remainder of the Dragon lizard phylogeny appear to have 

rapidly diversified between 50.8–59.1 MYA. Lastly, we recovered the endemic Sri 

Lankan genera as monophyletic, initially diversifying during the Oligocene at 

approximately 28.1 MYA, and well supported as sister to a clade of endemic Sundaland 

genera. 

Main conclusions The results suggest that the Indo-Himalayan lineages may have 

evolved on a hypothesized paleo-island arc before the Hard Collision of India with 

Eurasia. This island arc was eventually compressed into the various mountain ranges of 

the Himalayas and Irrawaddy Mountains with the uplift of Indo-Himalaya, and these 

Dragon lizards have maintained these historical archipelago-like, (“sky island”) 

fragmented distributions into their modern day locations. We did not find statistical 

support for the Himalayas associated with the extinction of tropical Indian species. 

However, we provide strong circumstantial evidence of extinction as an explanation for 

unexpected phylogenetic relationships and the conspicuous absence of Dragon lizards in 

India. 

Introduction 

Biogeographic and macro-evolutionary hypotheses are commonly tested with 

phylogenetic analyses that focus on taxa distributed across a particular geographic area, 

geological feature, or ecological gradient (Ronquist and Sanmartin, 2011). A standard 
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working null hypothesis for empirical studies is that evolutionary patterns and 

phylogenetic relationships mirror the geologic and climatic processes of a given area (Fig. 

2.1A: Waters et al. 2001; Donoghue et al. 2001; Page and Charleston 1998; McDowall 

1978; MacArthur 1973). This initial geographic principle is often exemplified by 

concepts such as “species pumps” (Haffer 2008) hypothesized to have generated diversity 

in well studied “sky islands” systems (Knowles 2001; Antonelli et al. 2009; Manthey & 

Moyle 2015; Papadopoulou & Knowles, 2015), or diversification “conveyor belts” such 

as the Hawaiian archipelago where phylogenetic relationships of organisms track the 

formation of the island chain (Funk & Wagner 1995; Baldwin 2007; Baldwin et al. 2011; 

Roderick et al. 2015).  

When studies recover anomalous or topological relationships (Fig. 2.1B) that do 

not follow the historical geologic processes and/or climatic patterns of a given area, 

potential explanations can include historical events, species interactions, asymmetrical 

dispersal rates, or systematic error like sampling biases (Urquhart et al. 2009; Bilton et 

al. 2001; Samuel et al. 1998). In contrast, extinction is less frequently postulated 

(Sanmaritan and Ronquist 2004), but is commonly evoked when these anomalous 

relationships are inferred in taxa with widely disjunct modern distributions, such as 

Chinese and American Alligators, American Hellbenders and Japanese Giant Salamander, 

Australian and American Marsupials, and Baobab Tress in Africa, Madagascar, and 

Australia (Vitt and Caldwell 2013; Meredith et al. 2007; Sanmartin and Ronquist 2004; 

Baum et al. 1998;). Nevertheless, limited evidence suggests that it may be possible for 

extinction to produce non-intuitive topological relationships and faunal disjunctions 

across smaller geographic areas with complex geologic and climatic histories (Boutler et 
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al. 1988; Sanmartin and Ronquist 2004). We postulate that one such region is the iconic 

Indian subcontinent, the island of Sri Lanka, and dramatic montane topography of the 

Indo-Himalayas. 

 The Himalaya and the Irrawaddy Mountains of Indo-Himalaya are the result of an 

ongoing collision between the Indian and the Eurasian tectonic plates (Aitchison et al. 

2007). High levels of floral and faunal endemism have rendered the Himalayas of 

particular interest to researchers focused on testing evolutionary hypotheses related to 

their diversification associated with the uplift of the Indo-Himalayan Mountain ranges 

(Friesen et al. 2000; Bhattarai et al. 2004; Agarwal et al. 2014; Fumin et al. 2014). With 

advanced geological and climatological methodologies a resurgence of recent studies has 

reawakened biogeographers’ former attention to the timing and nature of the 

India/Eurasia collision (Acharya et al. 2007; Aitchison et al. 2007; Ali and Aitchison, 

2008; van Hinsbergen et al. 2011; van Hinsbergen et al. 2012; Ponton et al. 2012; 

Bouilhol et al. 2013).  

From these studies two well-supported geologic models depicting the timing and 

formation of the Himalaya and the Irrawaddy Mountain ranges have generated clear, 

exclusive, and testable predictions for biogeographers. The One Collision Model (and our 

related One Collision Hypothesis: OCH) suggests that there were ephemeral land bridge 

connections with India 50–55 MYA, and a single continental collision in the early 

Oligocene 34 MYA resulting in the uplift of the Indo-Himalaya mountain ranges (Acton 

1999; Aitchison et al. 2007; Ali and Aitchison 2008). In contrast, the more recent Two 

Collision Model (and our associated Two Collision Hypothesis: TCH) postulates that an 

offshore paleo-island archipelago (often referred to as the Tibetan micro-continent; 
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(Valdiya 2015) formed off the west coast of the Thai-Malay Peninsula, between Eurasia 

and the approaching Indian subcontinent (van Hinsbergen et al. 2012). Under the TCH, 

this paleo-island arc along with various marine sediments first collided with Eurasia in a 

‘soft collision’ spanning 30–40 MYA (Bouilhol et al. 2013), followed by the ‘hard 

collision’ (the final continental connection) of the Indian subcontinent and Eurasia 

between 20–25 MYA (Fig. 2.3). Additionally, proponents of the Two Collision Model 

have inferred that the Tibetan micro-continent along with various geologic deposits 

(Acharya et al. 2007; Bouilhol et al. 2013; van Hinsbergen et al. 2012) was eventually 

folded and uplifted, into the various mountain arcs of the modern Himalaya and 

Irrawaddy Mountains (Fig. 2.3D). A commonly cited demonstration of this extreme case 

of vertical paleotransport is the observation that the peak of Mount Everest is composed 

of marine sediments (McPhee 1981).  

Under either the OCH or TCH, recent work has demonstrated that the during the 

uplift of these mountain ranges, the Himalayas in particular, may have increasingly 

become a rain-shadow for the rest of the Indian subcontinent (Fleitmann et al. 2003; 

Fleitmann et al. 2007; Ponton et al. 2012) shifting monsoonal patterns and tropical 

habitat, causing an aridification during the Holocene. During this drying event associated 

with the continued uplift of the Himalayas, it has been hypothesized that India may have 

experienced a loss of tropical diversity (Ponton et al. 2012). This is a testable hypothesis, 

given a suitably distributed empirical study system and a robust phylogenetic estimate of 

species relationships.  

Here we evaluate the major predictions of the OCH versus the TCH with regard to 

the formation of the Himalaya and Irrawaddy Mountains. We use new data bearing on the 
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phylogeny of the South and Southeast Asian Dragon Lizard radiation, in an attempt to 

investigate the role of the paleogeographic template in generating high elevation Dragon 

Lizard endemism in Indo-Himalaya. We also evaluate predictions derived from the 

expectation that a subsequent aridification of India may have played a role in the 

conspicuous absence of some—and diversification of other—tropical Indian lineages.  

Empirical study system 

 Dragon lizards from South and Southeast Asia represent an array of genera with 

geographically circumscribed radiations in Indo-Himalaya, Sri Lanka, India, Indochina, 

and Sundaland (Fig. 2.2). Their members exhibit a range of ecomorphological and habitat 

preferences (arid and tropical), making them an ideal system to test biogeographic 

hypotheses derived from predictions of the major geological reconstructions of the 

formation of the Himalayas and the Irrawaddy Mountains, and the subsequent 

aridification of India. Previous phylogenetic analyses of the Dragon lizards have not 

focused on lineages from Indo-Himalaya and no hypothesis has been put forth as to 

where and when these species originated. Earlier work on Dragon lizards has focused 

primarily on the origins of Indian and Mainland Asian Dragon Lizard lineages, and has 

demonstrated the genera from these areas to be paraphyletic (Macey et al. 2000; Schulet 

et al. 2004; Grismer et al. 2016). These authors attributed these relationships to the rapid 

exchange of Indian and Eurasian faunas through land bridges during the mid-to-late 

Eocene. Interestingly, these studies found support for reciprocal Sri Lankan and 

Sundaland monophyly, with divergences between these two clades estimated at 

approximately 50 MYA (Grismer et al. 2016). This split is of particular interest because 

at 50–55 MYA the Indian subcontinent has been postulated to been connected to Eurasia 
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via a land bridge (Ali and Atichison 2008), which would have included Sri Lanka as it 

was still part of today’s Western Ghats of India (Fig. 2.3), and did not separate from India 

until 25–20 MYA. Under this reconstruction and the assumption of faunal exchange over 

available land connectivity, one might expect to observe a clade of Indian taxa sister to a 

Sundaland or Sri Lankan clade (Fig. 2.4B), coincident with the geologic break up of these 

areas.  

Seemingly at odds with this pure-vicariance expectation, Indian taxa have been 

demonstrated to have phylogenetic affinities with Mainland Asian and Sundaic genera 

(Grismer et al. 2016). Grismer et al. (2016) concluded that additional taxa would be 

needed to test hypotheses related to the origins of Indo-Himalayan and Sri Lankan genera 

with respect to the Sundaland genera. Here we test predictions regarding the origins of 

endemic Indo-Himalayan Dragon lizards with taxonomic sampling expanded beyond 

previous studies (Macey et al. 2000; Schulte et al. 2004; Zug et al. 2006; Grismer et al. 

2016) and focusing on missing Indo-Himalayan, Sri Lankan, and Sundaland lineages. 

Our expanded data set includes sequence data from museum specimens of Sundaland 

endemic genera (Dendrogama, Lophocalotes, and Harpesaurus) that have not been 

collected or sampled for genetic material since their original 19th Century descriptions.  

With this dataset we investigate the origins of the Indo-Himalayan Dragon lizards 

by comparing our recovered phylogenetic relationships to the expected topologies that 

could be generated under:  (1) the traditional OCH (Fig. 2.5B) of a vicariant origin via the 

uplift of the Himalaya and Irrawaddy Mountains during the hard collision 34 MYA 

(Moody, 1980; Acton 1999; Macey et al. 2000; Schleich and Kastle, 2002; Aitchison et 

al. 2007; Ali and Aitchison 2008) and (2) a Tibetan micro-continent origin consistent 
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with the TCH (Fig. 2.5B) as predicted from recent geologic studies (Acharya et al. 2007; 

Bouilhol et al. 2013; van Hinsbergen et al. 2012).  

In addition, given the previously reported anomalous relationships between the 

Sundaland and Sri Lankan genera (Fig. 2.4A), and in absence of other well-supported 

explanations, we find the Indian Holocene aridification scenario to be the most plausible 

explanation for the Indian subcontinent’s “missing” tropical Dragon lizards. In this study 

we undertook a test of this hypothesis by examining rate shifts in diversification along 

branches leading to Sri Lankan and Indian taxa for the signature of decreased speciation 

(i.e. extinction). We present a new empirical study system demonstrating how continental 

collision and tectonic, orogeny generated climatic shifts may have been responsible not 

only for generating and maintaining high levels of endemic land vertebrate diversity, but 

which also may have contributed to extinction of related and codistrubuted tropical taxa. 

Finally, with the most taxonomically comprehensive Dragon lizard clade (The 

Draconinae) phylogenetic dataset to date (Moody, 1980; Macey et al. 2000; Melville et 

al. 2009; Schulte et al. 2004; Zug et al. 2006), we summarize and synthesize our 

cumulative understanding of the biogeography and evolution of the entire Draconinae 

and emphasize the clade’s rich potential for a wealth of future studies of evolutionary 

biology of lizards. 

Materials and Methods 

Genetic and taxonomic sampling 

We compiled a new dataset composed of DNA sequences from all available 

previously sampled Dragon Lizard taxa (species, genera), augmented with new data from 



	   32	  

our own collections and those of our collaborators (Macey et al. 2000; Schulte et al. 

2004; Zug et al. 2006; Melvile et al. 2009; Grismer et al. 2016). In total, the dataset 

included 21 of the 25 Dragon Lizard genera representing 53 individuals (Appendix 3), 

including all but one of the Indo-Himalayan genera (Oriocalotes), and three genera from 

Sundaland (Complictus, Hypsocalotes, and Pseudocophotis). This data set includes novel 

taxon sampling in the form of new sequence data, collected from genetic tissue samples 

corresponding to museum specimens of Sundaland endemic genera, notably Dendragama 

boulengeri (ZFMK 50532), Lophocalotes ludekingi (ZFMK 46706), and Harpesaurus 

beccarii (ZFMK 48896). We included genera from the remaining Dragon Lizard 

subfamilies, Physignathus and Laudakia as outgroups. Genomic DNA was extracted 

from muscle or liver tissue samples using a DNeasy tissue kit (Qiagen, Inc.) and 

sequenced for the mitochondrial and nuclear genes, ND2 (primers from Macy et al. 2000) 

and RAG-1 (primers from Melville et al. 2009), respectively, using standard PCR and 

Sanger sequencing protocols as described in Grismer et al. (2016). We edited the 

sequences and aligned them within Geneious Pro 5.0.4 (http://www.geneious.com, 

Kearse et al. 2012) and these new sequence data were combined with existing data from 

Grismer et al. (2016). We selected ND2 and RAG-1 because they are the most frequently 

sequenced markers across acrodont lizards and therefore provide maximum taxonomic 

coverage keeping our datasets consistent with previous studies (Macey et al. 2000; 

Schulte et al. 2004; Zug et al. 2006; Melville et al. 2009; Grismer et al. 2016). 

Phylogenetic, biogeographic, and speciation rate analyses 

Using 85 MYA as a minimum age limit for the ancestor of the Draconinae 

(Grismer et al. 2016), divergence dates for subclades were estimated with Bayesian 
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analyses in the program BEAST 2.3(Bouckaert et al. 2014) using the ND2 and RAG-1 

datasets with linked clock and tree models. Substitution models and partitions for each 

dataset were estimated using jModelTest 2.0 (Guindon and Gascuel 2003; Darriba et al. 

2012) and separate nucleotide substitution models were used for each gene, and due to 

the risk of substitution saturation, we performed analyses including and excluding the 

third codon position for the ND2 alignment but not for the RAG-1 data. We applied 

Birth-Death tree priors and constrained three nodes (pink circles: Fig. 2.6) to match the 

relationships resolved using with a novel dataset of 4747 nuclear loci in Grismer et al. 

(2016), and estimated the remaining relationships. We used a relaxed uncorrelated 

lognormal clock model and an exponential prior for the mean rate of each partition. 

Default values were used for all other priors, and the analyses were ran for 150 million 

generations sampling every 12,000 generations, with stationarity assessed in Tracer 1.6 

(Rambaut et al. 2014). The first 25% of trees were discarded as burn-in and the 

maximum clade credibility tree with median node heights was summarized using 

TreeAnnotator 2.3 (Bouckaert et al. 2014).  

We performed Bayesian ancestral-area estimations across the phylogeny of 

Dragon lizards using the R package ‘BioGeoBears’ (Matzke, 2013a). BioGeoBears 

calculates maximum-likelihood estimates of the ancestral states at internal nodes by 

modeling transitions between geographical ranges along phylogenetic branches as a 

function of time. Because different ancestral-area reconstructions are based on different 

assumptions and can produce conflicting results (Matzke, 2013a, 2013b), we compared 

the dispersal–extinction–cladogenesis model (DEC), a likelihood implementation of 

dispersal–vicariance analysis (DIVALIKE), and the range-evolution model of the 
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Bayesian binary (BAYAREALIKE) models. We also included a comparison of all 

models with and without the founder-event speciation parameter (+J), which can be 

added to any of these previously described models (Matzke, 2013b; and references 

therein) as a parameter to model descendant lineages colonizing a new area not inhabited 

by ancestral, parental types. We used the Akaike information criterion (AIC) to compare 

model fit (Matzke, 2013a; 2013b).  

We estimated branch-specific rates of speciation using a Bayesian analysis of 

rates of diversification using the R package ‘BAMM’ 2.3.0 (Rabosky et al. 2014) to test 

for rate shifts leading to Indian and Sri Lankan lineages in our Dragon Lizard phylogeny. 

The general model assumes that phylogenetic trees may have been shaped by a 

heterogeneous mixture of distinct evolutionary regimes of speciation and extinction and 

BAMM enables reconstruction of marginal posterior distributions of speciation and 

extinction rates on individual branches of a reconstructed phylogenetic tree (Rabosky 

2014). We accounted for incomplete taxon sampling directly in the BAMM model itself 

and used ‘BAMMtools’ for estimating priors, to perform the analysis, and to visualize 

results (Rabosky 2014; Rabosky et al. 2014). To ensure that the estimates of rate shifts at 

shallower areas of the tree were not being influenced by older more divergent lineages, 

we preformed one analysis including the outgroup and a highly divergent draconinae 

stem lineage (Mantheyus), and another excluding this genus and the outgroups.	  

Results 

The results from our phylogenetic analyses placed the Indochinese endemic 

Mantheyus as the sister lineage to all the remaining agamid lineages in the phylogeny. 
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The next lineage to diverge was a clade containing Draco, sister to the monophyletic 

Indo-Himalayan lineages. Draco and the Indo-Himalayan lineages split from one another 

approximately 53.0 ± 8 MYA and are sister to the remaining members of the subfamily 

(Fig. 2.6). The Indo-Himalayan clade appears to have originated at 47.2 ± 4 MYA, well 

before the beginning of the soft collision temporal framework (Fig. 2.6). The three major 

lineages within the remainder of the subfamily appear to have rapidly diversified between 

50.8–59.1 MYA (Fig. 2.6), which encompasses the historically problematic section of the 

Dragon Lizard phylogeny (pink circles: Fig. 2.6), that were just recently resolved through 

the use of 4536 nuclear loci derived from ultraconserved elements (Grismer et al. 2016).  

In contrast to Grismer et al. (2016), we recovered a polyphyletic Japalura with J. 

planidorsata sister to Calotes, J. variegata as sister to Oriotaris, and the Indochinese 

Japalura species sister to Pseudocalotes; all with high support. The three rare Sumatran 

endemics from Sundaland (Dendragama, Lophocalotes, and Harpesaurus), genetically 

sampled here for the first time, were found to be composed of a monophyletic group that 

diverged from a clade comprised of Aphaniotis, Bronchocela, and Gonocephalus 46.2 ± 4 

MYA. This clade of Sundaland species formed the lineage sister to a Sri Lankan clade 

comprised of Lyriocephalus, Cophotis, and Ceratophora. The two aforementioned major 

clades diverged from on another approximately 50.8 ± 7 MYA (clade A: 6). Lastly, we 

recovered the endemic Sri Lankan genera as monophyletic, initially diversifying during 

the Oligocene at 28.1 ± 3 MYA. 

For the ancestral-area estimations BAYAREALIKE + J was selected as the best-

fit model. Along with the relationships and divergence times from the BEAST analysis, 

our biogeoraphic reconstructions were consistent with the findings of Grismer et al. 



	   36	  

(2016). The BioGeoBears and BEAST analyses both indicated that Dragon Lizard 

lineages originated from a mainland Asian ancestor 92 ± 10 MYA (Fig. 2.6). A 

continental Asian ancestor was the most likely state for all major clades with the 

exception of Clade A (Fig. 2.6). The ancestor of the combined Sundaland/Sri Lanka clade 

(Clade A: Fig. 2.6) was either of Sundaic or Sri Lankan in origin. Lastly, our analysis 

inferred that all Indian lineages descended from mainland Asian ancestors during the 

Eocene (Fig. 2.6) consistent with the findings of Grismer et al. (2016). The results from 

our BAMM analyses returned similar estimates rates of speciation shifts across our 

Dragon Lizard phylogeny (Appendix 4). Both the full analysis and analysis of excluded 

lineages identified three topological regions of rate-shifts, one of which was statistically 

significant. The only rate shift of marginal significance was an initial increase in 

speciation (74% probability) along the branch leading to all lineages in our phylogeny, 

excluding Mantheyus (Appendix 4).  

Discussion 

Origins of the Indo-Himalayan lineages 

Our results allow us to reject a vicariant hard collision origin for the Indo-

Himalayan Dragon lizards under the One Collision Hypothesis (OCH). Rejecting the 

predictions of the OCH in favor of the Two Collision Hypothesis (TCH), strongly implies 

that Dragon Lizard lineages may have originated on a paleo-island archipelago 47.2–53 

MYA before the Soft and Hard Collisions of Indian with Eurasia 20–40 MYA. Ali and 

Aitchison, (2008), postulated India was first connected to Eurasia via land bridges 

between 50–55 MYA (Fig. 2.3A), and we hypothesize that during this time the position 
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of this paleo-island arc and the resulting reduction of distance from the continental shelf 

caused by the advancing India subcontinent, may have allowed for overwater 

colonization (or through an ephemeral land bridge) by continental Asian lineages (Figs. 

3, 6). The paleo-island arc origin hypothesis for the Indo-Himalayan lineages is supported 

by several additional lines of evidence. First, the current, fragmented distribution of these 

lineages across the various mountain arcs in Indo-Himalaya, is consistent with an 

interpretation of an in situ island radiation—and it mirrors the order and scale (relative 

size of paleo-island landmasses), inferred from geological formations (Fig. 2.3A–D, 5A); 

Bouilhol et al. 2013; van Hinsbergen et al. 2012). Maintaining paleo-island distributions 

in Dragon lizards also is seen in species of the Flying Dragon, genus Draco on the island 

of Sulawesi in Indonesia (McGuire et al. 2007), where endemic species of Draco are 

confined to areas that used to be isolated islands when sea levels were lower. Lastly, 

support of this biogeographic scenario is our inference of the systematic position of 

Japalura variegata: more closely related to the other Indo-Himalayan (non-Japalura) 

lineages to the exclusion of other traditionally recognized species of Japalura. This 

finding reinforces our confidence in the interpretation that all Indo-Himalayan lineages 

share a single origin, and that these lineages may have all originated on Tibetan micro-

continent paleo-island arc.  Finally, support for the paleo-island origin scenario is derived 

from comparisons of biogeographic patterns with unrelated taxa, which may have 

diversified with similar patterns as a result of their being subject to the same geological 

mechanisms. The timing of the TCH also is supported by the estimated age of the 

ancestor for Indo-Himalayan endemic Bent-toed geckos (genus Cyrtodactylus), at 

approximately 51 MYA, well before the Soft Collision with Eurasia at 30–40 MYA 
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(Agarwal et al. 2014). This clade of Himalayan Gecko is sister to the remaining clades of 

South and Southeast Asian species, mirroring the pattern of relationships inferred here for 

Indo-Himalayan Dragon lizards. Although Agarwal et al. (2014) did not invoke a paleo-

island origin for Indo-Himalayan Bent-toed geckos, they did not evaluate their findings in 

context of the geological models discussed here. Nevertheless, their findings corroborate 

ours in support for a new biogeographic scenario, which is most consistent with the TCH 

proposed by (Bouilhol et al. 2013; see also van Hinsbergen et al. 2012; Acharaya et al. 

2007). This scenario should be more intensively evaluated with renewed attention to the 

phylogenetic relationships, explicit predictions derived from them, and timing of 

diversification in additional, unrelated, Indo-Himalayan endemic flora and fauna. 

The origin of the Flying Dragons, genus Draco, presents an interesting 

biogeographic question. Draco is the sister group to all the Indo-Himalayan lineages (Fig. 

2.6) and has extensive radiations in Indochina, Sundaland, the Philippines, and Wallacea 

(Manthey and Grossmann, 1997; McGuire and Alcala, 2000; McGuire et al. 2007; 

Manthey, 2008). However, only three species have been documented in India (one of 

which is endemic), but an unidentified specimen from the Jorpokhari and Pachthar 

districts in Nepal has been reported (Schleich and Kastle, 2009). Given Draco’s modern-

day distribution, its phylogenetic position evokes the additional question of whether the 

clade originated in Asia, India, or on the paleo-island arc with Indo-Himalayan lineages. 

Our results are most consistent with a southern Indochina origin (25.7 ± 3 MYA), 

followed by subsequent range expansion throughout Southeast Asia through southern 

Indochina and Sundaland following the invasion of dipterocarp forests from India during 

its initial connections with Eurasia and during the Hard Collision (Dayanandan et al. 
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1999). In our biogeographic analyses we did not code Draco as a primarily Indian or 

Indo-Himalayan lineage because; (1) D. maculatus and D. norvilli have limited 

distributions in the Assam area of northeastern India (a geological transition area between 

Indochina and Indo-Himalaya); and (2) D. dussumieri, a taxon sister to Sundaland 

species, is clearly the result of a minor, single-leaf colonization from mainland Asia 

(Honda et al. 1999). McGuire et al. (2001) demonstrated that D. maculatus is member of 

an Indochinese/Sundaland radiation, presumably having colonized the Assam region 

(N.E. India) from the east. However, inclusion of Indian species and resolving the Indo-

Himalayan Draco records, and properly coding their distributions in future studies, will 

be vital into an eventual, refined, understanding the evolutionary origins of flying lizards 

and possibly the Indo-Himalayan lineages. 

Although several phylogenetic studies of Indian and Southeast Asia taxa have 

focused on the traditional OCH interpretation, these studies were focused mostly on the 

origins of India taxa with respect to Southeast Asian species (Dayanandan et al. 1999; 

Bossuyt and Milinkovitch 2001; Gower et al. 2002). Although these studies demonstrated 

that many Indian groups originated well before, or during the time of the hard collision 

(25–35 MYA), many studies thus far have lacked the relevant sampling of Indo-

Himalayan taxa for testing predictions of the TCH scenario (van der Meijden et al. 2007; 

Macey et al. 2008; Klaus et al. 2010). Identifying Indo-Himalayan clades that include 

endemic species, and targeting these for phylogeny-based biogeographic inference, is a 

priority for future studies aimed at refining our understanding of the evolutionary 

response of the region’s biota to its complex geological history. 

India’s missing agamid lizards 
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Biogeographers assume that extinction has both episodically and continuously 

affected the outcome of diversification while, simultaneously impacting the distributions 

of extant lineages (Brown and Kodric-Brown 1977; Boutler et al. 1988; Pimm and Raven 

2000). In many celebrated examples, the explanation for today’s presence and even 

dominance of particular taxa on a particular landmass (e.g., marsupials of Australia) can 

clearly be attributed to historical events, contingency, absence or presence of competitors 

and/or predators, or formidable periods of isolation (Raup 1991). However, how do we 

explain the absence of a group in an area, or from a landmass, where all empirical 

evidence and theoretical considerations would predict it should be present? Asking why a 

group may be absent from a particular biogeographic region (e.g., the absence of 

caecilian amphibians on Madagascar) can be just as conceptual, thought provoking, and 

occasionally informative, as investigating the evolutionary and geographical possibilities 

underlying a lineage’s presence on a particular landmass (Lomolino et al. 2010; Mcarthy 

2011). However, negative data are seldom conducive to statistical tests of 

biogeographical hypotheses (Darlington 1965; Stevens 1989; Rohde 1992; de Queiroz 

2014). As such, with the field’s increasing expectation of a rigorous, hypothesis testing 

framework for biogeographical inference, the curious absence of particular taxa, where 

we might expect them to be present, seems to be often overlooked. 

The conspicuous near-absence of co-distributed Dragon lizards with distributions 

spanning India and Sri Lanka (notable exceptions include Sitana and Otocryptis), and the 

anomalous absences of clades with India+Sri Lanka sister relationships begs for a causal 

explanation. In this case, the observation points to one possible explanation that might 

involve extinction of tropical Indian species which might have been a result of the 
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aridification of India (Fleitmann et al. 2003; Fleitmann et al. 2007; Ponton et al. 2012). 

To better illustrate this possible explanation for a conspicuous absence of expected 

Dragon Lizard lineages, we will first discuss an example involving the endemic Indian 

and Sir Lankan genera, Sitana and Otocryptis (Node B: Fig. 2.6), which illustrates the 

expected relationship (Fig. 2.4B) following climatic shifts and the geologic break up 

these areas (Ali and Aitchison, 2008; van Hinsbergen et al. 2011; van Hinsbergen et al. 

2012). In our phylogeny Sitana and Otocryptis are sister to the Mainland Asian genera, 

Japalura and Pseudocalotes and most likely originated in Mainland Asia at 

approximately 48 ± 3 MYA (Node B: Fig. 2.6), when India and Sri Lanka were 

connected to Eurasia by the Eocene land bridges (Aitchison et al. 2007; Ali and 

Aitchison, 2008; Grismer et al. 2016). The genus Otocryptis currently is restricted to 

tropical Sri Lanka (with the exception of one tropical Indian species) and Sitana is 

restricted to arid sub-tropics of Peninsular India and Sri Lanka. A divergence of 27 ± 4 

MYA between Sitana and Otocryptis is consentient with the timing of and Oligocene 

break up of India and Sri Lanka, and this sister relationship of arid-adapted and tropical 

lineages would be expected with India’s Holocene aridifcation (Fleitmann et al. 2003; 

Fleitmann et al. 2007; Ponton et al. 2012). The inferred sister relationships, temporal 

framework, and today’s distributions of these genera are consistent with the known 

geology of the region (Fig. 2.4B).  

However, the split of the other Sri Lankan genera form the Sundalaic linages at 

approximately 50.8 ± 7 MYA (Node A: Fig. 2.6) is inconsistent with the geology of the 

region because Sri Lanka was continuous with the Western Ghats until the early 

Oligocene (Valdiya 2015). Additionally, the inferred ancestor at Node B (Fig. 2.6) 
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suggests during this time the tropical Indian subcontinent was independently colonized 

by the ancestors of Salea, Sitana, and Otocryptis (Fig. 2.6). Given this finding, the 

absence of Indian Dragon Lizard clade (tropical or arid) sister to the Sri Lankan genera 

(Node B: Fig. 2.6) the possibility of regional extinction of tropical Indian lineages may be 

plausible. Despite no statistical support for a decrease in speciation rates along branches 

leading to Indian and Sri Lankan genera (Appendix 4), our analyses support the 

interpretation of increased speciation rates during the Eocene floral and faunal Exchange 

between the Indian subcontinent and Eurasia (Grismer et al. 2016). Although the 

speciation + extinction analyses are uninformative with regard to our extinction 

hypothesis, the geological, phylogenetic, and biogeographical data indicate that suitable 

tropical habitat was “available” for Dragon Lizard lineages to exploit in India 45–55 

MYA. The conspicuous absence of contemporary Indian species (especially the absence 

of tropical species) currently lacks an alternative explanation and, as such, aridification-

associated extinction remains a reasonable working hypothesis 

Our study demonstrates how anomalous empirical phylogenetic patterns 

associated with major geologic rearrangements and climatic shifts, can be fertile grounds 

for generating alternative, plausible working biogeographic hypotheses. Future studies 

could benefit from the inclusion of extinction as a possible causal mechanism, even in the 

absence of strong statistical support, or in the case of smaller scale phylogenetic 

problems, not amenable to macroevolutionary hypothesis testing. 

Broader patterns in dragon lizard biogeography 
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We present the most comprehensive phylogenetic study of the South and 

Southeast Dragon lizards to date. The results of our phylogenetic and rate shift analyses 

characterize a general pattern of diversification in which deeper divergences are 

associated with the India–Eurasia land-bridge connections (Node A–D), and more recent 

diversifications could be associated with the hard collision 20–25 MYA (Fig. 2.6). 

Today, mainland Asian lineages are represented by two clades (The Acanthosaura and 

Calotes groups: Fig. 2.6; Nodes C, D). Our ancestral area estimates infer that all 

contained genera (except Japalura planidorsata) descended from mainland Asian 

ancestors 34.3–56.4 MYA, before or at the start of both soft and hard collisions (30 MYA 

and 20 MYA, respectively). Within the Acanthosaura group (Node D: Fig. 2.6), three 

genera (Acanthosaura, Japalura, and Pseudocalotes) contain most of the species 

diversity, and all may have diversified concomitantly with soft and hard collisions (18.4–

37.4 MYA; Fig. 2.6). A similar pattern is observed in the Calotes Group (Node C: Fig. 

2.6), in which diversification began at approximately 34.3 ± 4 MYA, involving a split 

between Sri Lankan and the mainland Asian lineages at during the Miocene (17.1–20.6 

MYA).  

Our inclusion of previously unsampled Sundaland genera, Harpesaurus, 

Dendragama, and Lophocalotes are consistent with findings from Macey et al. (2000) 

and Grismer et al. (2016) in that the Sundaland endemic genera are monophyletic (with 

the exception of Phoxophrys), representing a single colonization of Sundaland 

approximately 46.2 ± 4 MYA (Node E: Fig. 2.6). The genera Harpesaurus, Dendragama, 

and Lophocalotes form a monophyletic group (Fig. 2.6), endemic to Sumatra and sister to 

the remaining endemic Sundaland lineages. Divergences between Sundaland genera (~7–



	   44	  

12, at million year intervals) appear to correspond to the episodic sea level fluctuations in 

Sundaland (Voris et al. 2000; Woodruff et al. 2010), which were associated with 

ephemeral land connections in Southeast Asia over the last 30 million years. Because 

Sundaland genera all contain endemic Sumatran lineages, it is possible that Sumatra 

served as a center of origin, allowing for the seeding of adjacent landmasses with 

fluctuating sea level fluctuations. Studies of patterns of diversification within Sundalaic 

genera Gonocephalus and Bronchocela may be informative with respect to this 

biogeographic possibility.  

In this study we found support for the timing and formation of Indo-Himalayan 

mountain ranges, under the TCH for the origin ancient resident Dragon lizards lineages. 

We discuss one scenario for a role of extinction in the anomalous distribution of lineages 

in South and Southeast Asia. We anticipate that as data from other Indo-Himalayan 

groups become available, paleo-island arc origins (prior to the India–Eurasia collision) 

explanations, will be more readily considered in unrelated, codistributed groups (e.g., 

Agarwal et al. 2014). The combined approach of evaluating densely sampled empirical 

phylogenies in the context of greatly refined geological models provides compelling 

opportunities for biogeographic hypothesis testing in the celebrated but understudied 

Himalayan landscape.  
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Figure 2.1– The top panel depicts a hypothetical island archipelago that was formed 

following a rise in sea level, and the distribution of species A–E across the resulting 

islands. (A) An expected topology for the relationships of species A–E, given their 

modern day distributions and the geologic history of the archipelago. (B) An anaomolous 

phylogeny, given their modern day distributions and the geologic history of the 

archipelago. 
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Figure 2.2– Map showing the distribution of South and Southeast Asian Dragon Lizards 

and their biogeographic areas. The Indo-Himalaya region includes both the Himalaya and 

Irrawaddy mountain ranges. 
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Figure 2.3– Panels depicting the TCH. A–C depict the relative position of the Indian 

subcontinent (including Sri Lanka) and the paleo-island arc at various time periods, with 

B representing the Soft Collision. (D) An enlargement of the Himalayas from panel C, 

showing how the amalgamation of geologic deposits India accumulated as it advanced 

northward was eventually folded into the various mountain arcs of the Himalayas, 

including oceanic crustal deposits shown in green that compose the top of Mount Everest 

(modified from Dèzes, 1999). 
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Figure 2.4– Map detailing the positions of India, Sri Lanka, the paleo-island arc, and the 

Eocene land bridges at 50 MYA. (A) A topology that is the unexpected relationships 

recovered by previous studies, which may be a result of extinction of Indian lineages. (B) 

A topology that represents expected relationships that follow the break up of these areas 

after this time period  (Sri Lanka + India broke off from Eurasia then India and Sri Lanka 

separated ~25 MYA) and do not follow the pattern of climate-related Indian extinction.  
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Figure 2.5– (A) A distribution map of Indo-Himalayan lineages. (B) The top panel 

details the estimated divergence times and topology we would expect to recover under 
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the OCH and the bottom panel is the estimated divergence times and relationships we 

would expect to recover under the TCH. 
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Figure 2.6– Time-calibrated phylogeny of ND2 and RAG-1 data, with black dots 

representing posterior probabilities higher than 0.95 followed by the estimated 

divergence time for that node in MYA. Colored nodes represent the ancestral ranges 

corresponding to Figure 2, and the pink circles represent nodes where topology was 

constrained based on the results of Grismer et al. (2016). 
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Chapter 3 

Estimating the Dragon Lizard Tree of Life: Reevaluation of Trans-

Tethys Migrations with a Fossil-Calibrated Phylogeny of the Acrodonta 

Jesse L. Grismer, Philipp Wagner, Krister Smith, James Schulte II, Jane Melville, Adam Leaché, 

Scott M. Moody, Rafe M. Brown. 

Abstract 

From the Devonian until the Cretaceous, a series of island micro-continents and 

other geologic landmasses rifted off of Gondwanaland and rafted across the Tethys Sea. 

These landmasses eventually collided in succession with Laurasia forming the geologic 

basis for modern-day Indochina and Sundaland. Previous studies on Asian and Australian 

insects, fish, reptiles, birds, and mammals species have hypothesized a vicariant 

Gondwanan origin that for these groups, and that they would have rafted across the 

Tethys Sea on these micro-continental blocks. In this study we re-evaluate these 

Gondwana vicariant origins and Tethys Sea migrations in all lineages of Dragon Lizards. 

We used the most taxonomic comprehensive sampling for any study to date on Dragon 

Lizards using 307 species and 48 genera for two mitochondrial and nuclear loci 

representing the first estimate of and Agamidae Tree of Life. Additionally, we used 13 

acrodont fossils with published calibration points to estimate divergence times across the 

Dragon Lizard lineages. We used the resulting phylogenies to estimate ancestral areas for 

all nodes in our phylogenies to test the null hypothesis of a Gondwana origin for Dragon 

Lizards from previous studies. Lastly, we used Maximum Likelihood and Bayesian 

analyses to reconstruct the ancestral condition for environmental preference and 
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statistically defined morphological groups from a previous study to investigate additional 

support from the natural histories of the species involved in this study. Our results reject a 

hypothesis of a Gondwanan origin for all Dragon Lizards and are consistent with an 

origin in Laurasia. Furthermore, this study indicates that there were three independent 

dispersal events out of Laurasia into Gondwanaland represented by Hydrosaurus, Draco, 

and accounts for the split between Physignathus and the Australian/Wallacean lineages. 

Given the results of the ancestral reconstructions of natural histories, we hypothesize that 

the dispersal events of the ancestors Hydrosaurus and Physignathus were made by a large 

bodied, tropical, semi-aquatic, riparian specialist that may have used these micro-

continental blocks migrating across the Tethys Sea, as stepping stones to disperse into 

Gondwana. We believe that previously held biogeographic hypotheses tend to get 

perpetuated rather than re-evaluated and as datasets are expanded through taxonomic and 

genetic sampling, and reanalyzed with modern model based analyses, we may start to see 

new hypotheses that invigorate new discussions on older biogeographic questions.  

Introduction 

 Modern day East and Southeast Asia formed from a series of complex 

amalgamations of island micro-continental blocks, volcanic arcs, and ophiolites. From 

the Devonian until the Cretaceous, these landmasses rifted off Gondwanaland and were 

plaeotransported across the Tethys Sea (Metcalf 1988, 1996, 1999, 2011; Hall 1996; 

Richter and Fuller 1996), eventually colliding in succession with Laurasia (Metcalf 

2013). A number of recent studies have postulated the Tethys Sea has been separated 

over the past 400 MYA, into three distinct intervening smaller Tethyan Sea basins 

(Palaeo-Tethys, Meso-Tethys, and Ceno-Tethys) by these micro-continental blocks 
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(Metcalf 1999, 2011). Such movements of continental fragments may have created an 

effective “conveyor belt” of micro-continents carrying subsets of southern hemisphere 

faunas from Gondwana northward to Laurasia (Macey et al. 2000 and references therein). 

Phylogenetic studies involving insects, fish, reptiles, birds, and mammals have 

hypothesized phylogenetic that the division of biotas on either sides of Wallace’s Line, 

are possibly due to this early fragmentation of Gondwana with subsequent vicariant 

speciation (DeBoer and Duffels 1996; Macey et al. 1997; Keogh 1998; Metcalf et al. 

2001), reinforced by the deep oceanic trench separating their modern-day distributions 

(Barker et al. 2002; Schulte et al. 2003).  

Large-scale molecular studies on acrodont and varaniod lizards were the first to 

statistically address this hypothesized mechanism of primary divergence using parsimony 

based biogeographic methods and time-calibrated phylogenies (Macey et al. 1997, 2000; 

Schulte et al. 2003); these studies attempted to assess whether divergence between 

lineages on either side of Wallace’s Line corresponded to geologic timing of micro-

continents fragmentation (Macey et al. 1997, 2000; Schulte et al. 2003). With apparent 

similarities to previous studies involving a multitude of taxa, the authors concluded 

widespread faunistic vicariant origins in Gondwana across the Tethys Sea (Macey et al. 

2000; Schulte et al 2003). Macey et al. (2000) reasoned that because all acrodont lizard 

families (Chamaeleonidae, Leiolepidae, and Agamidae) are located today on landmasses 

of Gondwana origin, and are separated by deep genetic divergences from their Laurasian 

relatives, all necessarily had phylogenetic origins rooted in Gondwanan vicariance. 

However, Macey et al. (2000) did not exclude the possibility of colonization from 

Laurasia and added that additional work was needed to fully resolve this issue, in 
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particular, with regards to the unresolved root of the Agamidae. This would include 

focusing on the placement of systematically contentious and enigmatic agamid taxa (e.g. 

Sail Fin Lizards of the genus Hydrosaurus). As highlighted by Macey et al. (2000), 

acrodont lizards are an ideal group to revisit hypotheses concerning putative Gondwanan 

vicariant origins as taxonomic sampling, and gene sampling improved—and novel, 

model-based methods of phylogenetic analysis and biogeographic inference have become 

available.  

Acrodont lizards are composed of Chameleons (Chamaeleonidae), Butterfly 

Lizards (Leiolepidae), and Dragon lizards (Agamidae; Moody 1980) that have specific 

radiations in Africa, Madagascar, Southwestern Asia, Central Asia, Southeast Asia, 

Wallacea, and Australia (Fig. 3.1). Acrodont lizards exhibit a wide range of ecological 

lifestyles, across a variety of habitats in tropical, temperate, and arid environments.  

Approximately 90% of Acrodont ecological and taxonomic diversity is contained within 

the Agamidae, which consists of approximately 53 genera and ~440 species. Despite this 

range of diversity, comprehensive studies of phylogenetic relationships within Agamidae 

has only been attempted twice (Moody 1980; Macey et al. 2000) and both studies 

presented results that supported the hypothesis of Gondwanan vicariance, leading to the 

origin of Acrodonta and including all its families. The study of Macey et al. (2000) 

included the first phylogenetic study of molecular data and provided deep insights into 

this diverse assemblage of species. Macey et al. (2000) used parsimony based 

biogeographic analyses to support a conclusion of a Gondwanan origin, via the process of 

vicariance, as hypothesized by Moody (1980). In support of their conclusions Moody 
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(1980) and Macey et al. (2000) cited the fact that the species used in their study occur on 

modern landmasses that have Gondwanan geologic origins.  

Macey et al. (2000) also presented data that suggested the modern-day 

distribution of Dragon Lizards on Laurasian landmasses (Central Asia, Indochina, South 

Asia, and Southeast Asia) are due to dispersal from East and Southeast Asia through 

island micro-continental accumulations of Gondwanan origins. The authors hypothesized 

that taxa possibly rafted on these micro-continents, and may have had vicariant origins, 

and have deep genetic divergences separating them from closely related sister-group taxa 

in adjacent regions of Asia (Fig 2A). However, in a more recent study using genomic 

data Girsmer et al. (2016) investigated a subset of Macey et al. (2000)’s prediction of 

Gondwanan origins for all Dragon Lizards and reevaluated the hypothesis of an Indian 

(Gondwanan) origin.  This study concluded that the Draconinae may not have had the 

Gondwanan origin as inferred by Macey et al. (2000) but instead may have originated in 

Laurasia, invading India through land bridges, prior to its hard collision with Laurasia.  

This study (Girsmer et al. 2016) demonstrated how expansion of taxon sampling, together 

with novel genetic data can provide new insights into classic, long-held biogeographical 

interpretations associated with diversification in a particularly diverse modern-day 

lineage. 

 In this study, we begin our reconsideration of Dragon Lizard biogeography by 

concurring with Macey et al. (2000)’s basic assumption that taxa with a vicariant 

Gondwanan origins should be deeply diverged from closely related groups in Asia. 

However, depart from their reasoning with Macey et al.’s (2000) assertion that a sister 

relationship between Asian groups and groups that originated on Gondwanan landmasses 
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can be taken as support for a invasion from Gondwana to Laurasia (Fig. 3.2B). This is 

because we cannot systematically determine the polarity of dispersal from these 

relationships and the ancestral area of two reciprocal clades. To do so would require 

statistical evaluation within the context of the entire Agamidae and the encompassing 

Acrodonta. If the node in question were estimated to be historically Laurasian, then such 

an inference would contradict the previously held vicariant Gondwanan origins 

hypothesis (Macey et al. 2000; Schulte et al. 2003) and would introduce the possibility of 

a Laurasian origin for Dragon Lizards (Fig. 3.2C; Grismer et al. 2016).  

Here we make an effort to build upon the work of previous studies with a 

collaborative assembly of a novel dataset, containing 48 of 53 known genera, and 307 of 

~440 known species of Dragon Lizards (Agamidae) and Butterfly Lizards (Leiolepidae). 

We use four genes regions (two mitochondrial fragments and two nuclear loci) and 13 

acrodont fossils, to estimate the first time-calibrated agamid Tree of Life. Using our new 

dataset and the Gondwanan vicariant origin predictions of previous studies (Moody 1980; 

Macey et al. 1997, 2000; Schulte et al. 2003) as an initial null hypothesis, we sought to 

consider the possibility of an alternative biogeographic inference, namely Laurasian 

origin and dispersal into Gondwana for acrodonts, primarily Dragon Lizards of the family 

Agamidae. To explore the general alignment of natural history and biogeography in this 

clade, we used a fossil-calibrated phylogeny and ancestral state reconstructions analyses 

to reconstruct ancestral environments for acrodont ancestral lineages and the seven 

morphological groups statistically defined by Moody (1980). With the most 

comprehensive study on Dragon Lizard phylogeny to date, we use these initial analyses 

to reconsider long-held biogeographic expectations, and relate our findings to the diverse 
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natural histories of agamid subfamilies.  

Materials and Methods 

Taxonomic Coverage and Fossil Calibrations 

We compiled a Sanger dataset from previously published studies, for 307 species, 

representing all but five Dragon Lizard genera (Psammophilus, Oriocalotes, 

Hypsicalotes, Cryptagama, and Psuedocophotis), for two mitochondrial gene partitions 

(ND2 and 16S) and two nuclear loci (BDNF and RAG-1). We included the iguanid lizard 

genera Oplurus, Anolis, and Basiliscus as outgroups. We edited (as needed), aligned 

sequences, and constructed nexus files within Geneious Pro 5.0.4 

(http://www.geneious.com, [Kearse et al. 2012]) for each individual locus. After 

reviewing the literature 23 described acrodont fossils, we narrowed our fossil calibration 

set down to the 13 most reliable identifiable calibration points (Table. 3.1).  

Phylogenetic and Biogeographic Analyses: 

Model fitting was performed on each locus using jModelTest 2.0 (Guindon and 

Gascuel 2003; Posada 2008); this procedure selected six-rate models of sequence 

evolution for the mitochondrial partitions and two-rate models for the nuclear loci (Table. 

3.2). The selected models were implemented in preliminary Maximum Likelihood 

analyses using RAxML (Stamatakis 2014), with separate exploratory analyses performed 

on each locus to establish a lack of topological conflict. Once the once the lack of conflict 

among loci was established, we estimated phylogenetic relationships and divergence 

timescales for all families and subclades using Bayesian analyses in BEAST 2.3 
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(Bouckaert et al. 2014) with a four-partition dataset (ND2, 16S, BDNF, and RAG-1). Due 

to high amounts of missing data in the mitochondrial 16S region, we ran separate 

analyses with a reduced dataset of ND2, BDNF, and RAG-1. All Bayesian analyses were 

implemented with linked clock and tree models with Birth-Death and Fossilized Birth-

Death (FBD) tree priors (Stadler 2010; Heath et al. 2014). The FBD prior allows for the 

placement of the fossils used for calibration as a tip in the phylogeny (Stadler 2010; 

Heath et al. 2014). The GTR+Γmodel was applied to the mitochondrial loci and 

HKY+Γto the nuclear loci and a relaxed uncorrelated lognormal clock model with an 

exponential prior for the mean rate of each partition was employed for all loci. Default 

values were used for all other priors and the analyses were run for 350 million 

generations sampling every 20,000 generations with chain stationarity and ESS values 

evaluated in Tracer 1.6 (Rambaut et al. 2014). The first 20% of trees were discarded as 

burn-in and a maximum clade credibility tree with median node heights was summarized 

using TreeAnnotator 2.3 (Bouckaert et al. 2014).  

We assigned acrodont lineages to the following seven distinct biogeographic 

zones based on their present day distribution: Africa/Madagascar, Southwestern Asia, 

Central Asia, Mainland Asia (which includes Indo-Himalaya and Indochina), Sundaland, 

Wallacea, and Australia (Fig. 3.1). We then performed Bayesian ancestral-area 

estimations across the phylogeny using the R package BioGeoBears (Matzke, 2013a). 

BioGeoBears calculates maximum-likelihood estimates of the ancestral states at internal 

nodes by modeling transitions between geographical ranges along phylogenetic branches 

as a function of time. Because different ancestral-area reconstructions are based on 

different assumptions and can produce conflicting results (Matzke, 2013a, 2013b), we 
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compared the dispersal–extinction–cladogenesis model (DEC), a likelihood 

implementation of dispersal–vicariance analysis (DIVALIKE), and the range-evolution 

model of the Bayesian binary (BAYAREALIKE) models. We also included a comparison 

of all models with and without the founder-event speciation parameter (+J), which can be 

added to any of these previously described models (Matzke, 2013b; and references 

therein) as a parameter to model descendant lineages colonizing a new area not inhabited 

by ancestral, parental types. We used the Akaike information criterion (AIC) to compare 

model fit (Matzke, 2013a; 2013b).  

Ancestral State Reconstructions: 

 Moody (1980) assigned agamid and leiolepid genera to seven morphological and 

ecological groups, based on statistical analyses of 122 morphological characters; (1) 

terrestrial, (2) advanced terrestrial, (3) riparian semi-aquatic (including large bodied 

taxa), (4) general arboreal, (5) arboreal specialist (e.g. twig and canopy eco-

morphologies), (6) ant-eater, and (7) generalist climber. In order to ascertain if there were 

secondary lines of evidence from the natural histories of Dragon Lizards that would 

distinguish between hypotheses, we coded all acrodont genera for their respective 

morphological group defined by Moody (1980) and reconstructed the ancestral 

morphological condition along with environmental preferences (tropical, arid, and 

temperate). R-scripts (R v3.2.0; R Core Team 2015) and the R libraries Ape (Paradis et 

al. 2004), Phytools (Revell 2012), and Geiger (Harmon et al. 2008) were used to first fit 

three continuous time Markov models of discrete trait evolution (single rate, equal rates, 

and all rates different) for the environmental preference and morphological group data.  

We then used Akaike information criterion to select the best-fit model of evolution for 



	   61	  

each dataset (Table. 3.3) and used selected models to perform ancestral reconstructions 

using Maximum Likelihood and Bayesian criteria on each of the trees from four- and 

three-gene datasets independently (Table. 3.3). We also executed additional 

reconstructions under the remaining models to explore the variation in the ancestral states 

and branch specific shifts between states. Maximum Likelihood estimations and Bayesian 

stochastic mapping (Nielsen 2002; Hulsenbeck 2003; Bollback 2006) were employed to 

infer the most likely state for each observed ancestor, and to observe shifts between states 

along individual branches, In our stochastic mapping analyses, we used default priors for 

the transition rate matrix (estimated form the data) and use the best-fit model of 

morphological evolution (discussed above) to simulated ancestral states over 10,000 

trees.  

Results 

 Our results compare with those of Macey et al. (2000), however within the 

Leiolepididae and the agamid subfamilies, our analyses recovered novel relationships not 

reported by previous studies (Figs. 3.3&3.4). The time-calibrated Bayesian analyses of 

the four gene and three gene multi-locus Sanger datasets returned phylogenies with the 

same higher-level relationships (Figs. 3.3&3.4), however minor differences within 

Agaminae and Draconinae were observed. Members of the Chamaeleonidae were 

recovered as sister to the Leiolepididae and the Agamidae (Figs. 3.3&3.4). The next 

lineage to diverge was a monophyletic Leiolepididae with a deep genetic divergence 

between the only two genera in the family, Leiolepis and Uromystax (Figs. 3.3&3.4). 

Agamidae was recovered as monophyletic, with Amphibolurinae sister to remaining 

radiations. Lastly, Hydrosaurus was placed as sister to the Agaminae and Draconinae 
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(Figs. 3.3&3.4) in all of the phylogeneies. As mentioned, we observed consistent 

differences in the relationships derived form these respective datasets, within the 

Agaminae and Draconinae. In all four-gene analyses, we recovered a polyphyletic 

Laudakia in the Agaminae and Malayodracon was placed as sister to the Acanthosaura 

group (node A: Figs. 3.3&3.5). In the three-gene analyses Laudakia was recovered as 

monophyletic and Malayodracon was placed as sister to the Calotes group and the 

Acanthosaura group (node A: Figs. 3.4&3.6). Additionally, the genus Coryophlax is only 

represented by the 16S locus, so its placement could only be inferred in the four-gene 

analyses.  

Minor discrepancies in the placement of certain fossils were evident in our results 

of the four- versus three-gene calibration analyses (Figs. 3.3&3.4). The extinct subfamily 

Priscagamidae, represented by Priscagama, Memiosaurus, Phrynosomimus were placed 

as sister to Uromystax in the four-gene analyses and Leiolepis in the three-gene dataset 

(Figs. 3.3&3.4). Lastly, in the four-gene dataset Protodraco was placed as a stem lineage 

for all the members of the Draconinae with the exclusion of the extant genus Mantheyus 

(Fig. 3.3). However, in the analysis of the three-gene dataset Protodraco was recovered 

as the stem lineage to all members of the Draconinae (Fig. 3.4). 

 All BioGeoBears and BEAST 2.3 analyses resulted in similar estimations of 

ancestral areas and divergence times, with only minor conflicts in each of the subclades 

within the Leiolepididae and Agamidae (Figs. 3.3&3.4). For all ancestral-area analyses 

BAYAREALIKE + J was selected as the best-fit model (Table. 3.4), however the 

reconstructions under this model and the BAYAREALIKE model were not biologically 

justifiable (e.g. single areas estimated for all nodes in certain clades). Very similar 
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likelihood scores were recovered for the next best class of models (DEC) and we used 

DEC+J in our ancestral area reconstructions.  

Below, we will discuss timing of divergence for both our four- (Fig. 3.3), and 

three-gene datasets (Fig. 3.4). The BioGeoBears and BEAST 2.3 analyses indicate that 

acrodont lizards originated in Gondwana 168.0/166.6 MYA (four-gene divergence 

times/three-gene divergence times) on what is now Africa and Madagascar (Fig. 3.3), 

with a slight additional probability in mainland Asia (Fig. 3.4). The ancestor for the 

Agamidae and the Leiolepididae most likely originated in either Gondwana or Laurasia 

138.8/156.6 MYA, being that they are distributed across what is now southwestern Asia, 

central Asia, and mainland Asia (Figs. 3.3&3.4). In this same area, the most recent 

common ancestor (MCRA) for the Leiolepididae may have also originated 128.0/150.6 

MYA (Figs. 3.3&3.4). The ancestor of the Agamidae however, most likely originated 

exclusively in Laurasia across what we have defined as mainland Asia 130.7/148.4 MYA 

(Figs. 3.3&3.4). The ancestor for the Amphibolurinae is also estimated to be in mainland 

Asia and the shift to a Australian and Wallacean (Gondwanan) ancestor (node 1: Figs. 

3.3&3.4) represents a dispersal from Laurasia to Gondwana. Hydrosaurus diverged from 

the Agaminae and the Draconinae in mainland Asia 130.0/146.0 MYA and is estimated 

to have originated 10.1/17.0 MYA in Wallacea, representing a second Laurasian dispersal 

into Gondwana (node 2: Figs. 3.3&3.4). The ancestor of the Agaminae and Draconinae 

diverged in mainland Asia 127.1/126.6 MYA and the Agaminae may have originated in 

Gondwana or Laurasia in what is now central Asia and mainland Asia 91.4/88.3 MYA 

(Figs. 3.3&3.4). Lastly, the Draconinae appears to have had origins in mainland Asia 
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118.1/92.4 MYA, and within the genus Draco, there is a third possible dispersal (node 3: 

Figs. 3.3&3.4) from Laurasia (Sundaland) into Gondwana (Wallacea). 

For the Maximum Likelihood and Bayesian stochastic mapping of Moody’s 

(1980) ancestral morphological/ecological, the most complex, all-rates different model 

was chosen as the most appropriate fit to the data. However, both the likelihood and AIC 

scores are only marginally superior (Table 3.3) therefore, we used the less parameter rich, 

two-rates model in all of our ancestral state analyses. Both analyses resulted in the same 

estimates of ancestral states for all ancestors in our phylogenies with minor conflict in the 

subclades (Figs. 3.3–3.6). Both criteria estimated that the ancestral condition for all 

acrodonts was a tropical, arboreal specialist (Figs. 3.3–3.6). We observed three 

independent shifts from tropical to arid environments within the Leiolepididae, 

Agaminae, and Amphibolurinae (Figs. 3.3–3.6). Within the Agamidae two shifts form 

this ancestral arboreal specialist to a riparian specialist (which could be considered a 

subcategory of an arboreal specialist being that the species of these genera live on trees 

exclusively at the water’s edge) are inferred along the branches leading to Physignathus 

and the rest of the Amphibolurinae, and along the branch leading to Hydrosaurus (Figs. 

3.3–3.6). The MCRA of the Amphibolurinae is estimated to be tropical and riparian but a 

shift to arid and temperate environments and an “advanced” terrestrial morphology is 

inferred at the ancestor of Ctenophorus, Chlamydosaurus, Lophognathus, Amphibolurus, 

Gowidon, Rankinia, Diporiphora, Pogona, and Tympanocrptis (Figs. 3.3–3.6). The 

MCRA for the Agaminae was most likely arid adapted and had a generalist climber 

morphology, whereas the ancestor of its sister lineage the Draconinae, was most likely 

tropical and an arboreal specialist (Figs. 3.3–3.6). 
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Discussion 

Gondwanan and Laurasian Acrodont Biogeography 

Our results allow us to accept a Gondwanan vicariant origin hypothesis for 

acrodont lizards consentient with Moody (1980) and Macey et al. (2000), and also allow 

us to reject a Gondwanan vicariant origin for the Dragon Lizards (Macey et al. 2000).  

Rejecting this hypothesis suggests that Dragon Lizards originated in Laurasia and 

subsequently dispersed across the Tethys Sea into Gondwana multiple times over the last 

100 million years. During this time, the Tethys Sea was a mosaic of micro-continental 

blocks, smaller island archipelagos, and ophiolites that rifted from Gondwana during the 

Cretaceous and late Jurassic, towards Laurasia (Metcalf 2013 and reference therein). For 

some taxa, these landmasses may have served as refugia as they migrated across the 

Tethys Sea, and before colliding with Laurasia (DeBoer and Duffels 1996; Macey et al. 

1997; Keogh 1998; Metcalf et al. 2001; Barker et al. 2002; Schulte et al. 2003). However, 

our data form multiple lines of evidence suggest that these landmasses may also have 

acted as stepping-stones, allowing for dispersal form Laurasia into Gondwana. First, 

within the Amphibolurinae, the Indochinese Water Dragon Physignathus, is sister to all 

Wallacean and Australian genera with an inferred ancestor in mainland Asia.  Our results 

indicate that the ancestor of its sister taxon (all the Australian and Wallacean lineages) 

may have dispersed into Wallacea and Australia (node 1: Figs. 3.3&3.4). This is in 

opposition to previous interpretations, which suggested that Physignathus may have had a 

Gondwanan, vicariant origin and that its modern day distribution in Southeast Asia could 

have resulted from the collision of micro-continental blocks with Laurasia (Macey et al. 

1997; Macey et al. 2000; Schulte et al. 2003).  
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Alternatively, we propose that Australian and Wallacean genera may be derived 

from “stepping stones” dispersal event into Gondwana across archipelagos of micro-

continental blocks as they moved across Tethys Sea from Gondwana towards Laurasia 

during the mid Cretaceous. Second, the ancestor Asian Sail Fin Water Lizard genus 

Hydrosaurus, is estimated to have originated in Wallacea 10.1/17.0 MYA and diverged 

from a mainland Asian (Laurasian) ancestor 130/146.6 MYA (node 2: Figs. 3.3&3.4). 

These relationships and divergence times are consentient with a scenario of a Laurasian 

origins and subsequent dispersal into Gondwana across preexisting landmasses that 

dislodged from Gondwana in the late Jurassic 208 MYA (Metcalf 2011; Metcalf 2013). 

Lastly, within the Draconinae, the genus Draco has a monophyletic radiation on the 

island of Sulawesi in Wallacea (Gondwanan origin) whose ancestor diverged from a 

Sundaic or Wallacean lineage 52.8/47.0 MYA (Figs. 3.3&3.4); suggesting a possible 

third dispersal into Gondwana, across Wallace’s line. Support for two of these three 

independent dispersals across the Tethys Sea (and Wallace’s line) is provided by our 

ancestral state reconstructions of Moody’s (1980) morphological/ecological groups. Our 

analyses provide evidence that two of these dispersal events we made by ancestors that 

were large-bodied, riparian, semi-aquatic species (nodes 1 & 2: Figs. 3.3–3.6). If these 

ancestors were morphologically and ecologically similar to their modern day descendants 

(riparian Physignathus and mangrove-specialist Hydrosaurus; both with a semiaquatic 

lifestyles), they may possibly have been pre-adapted for overwater dispersal (or rafting 

on mats of vegetation) across the Tethys Sea. The third dispersal event within Draco is a 

less straightforward. It is possible that the basal split within Draco is do a to a vicariant 

event across Wallace’s Line, however it is conceivable that arboreal, canopy dwelling 
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ecomorphologies may have been prone to distributing body weight while rafting on mats 

of vegetation. Thus, our inferred ancestral areas, natural histories, and divergence times 

are all are consentient with novel hypotheses of overwater “stepping stone” dispersal into 

Gondwana via micro-continental block archipelagos from the Cretaceous into the 

Miocene. This scenario should be more intensively evaluated with renewed attention to 

the direction of dispersal and explicit predictions derived from model based analyses, 

timing of diversification, and careful attention to the natural histories of the organism in 

question. 

With the most taxonomically complete phylogeny of agamid lizards to date, a few 

novel relationships and biogeographic scenarios are worthy of discussion. The 

Amphibolurinae have been, and continued to be, very thoroughly studied (Cogger 2014 

and references there in) and our analyses did not recover any new relationships within 

this clade. However, within the less well studied Draconinae and Agaminae, our analyses 

provided resolution of the systematic position of key taxa, and reveal new relationships 

bearing on long-contentious evolutionary and biogeographical hypotheses. Ours is the 

second study to recover a reciprocal monophyly between Laudakia and Phrynocephalus 

(Figs. 4&6) (Schulte and Moriano 2010). Although this relationship was only recovered 

in our analyses using the three-gene dataset (Figs. 4&6), we assume this to be an artifact 

relating to missing data mainly stemming from the 16S locus. Despite recovering all the 

Agaminae genera as monophyletic (three-gene dataset only), we did not recover strong 

support for many intrageneric relationships. This may relate to insufficient data, but could 

also conceivably be related to rapid radiation following a shift from tropical to arid 

environments (Figs. 5&6) and a quick filling of specialized climbing and terrestrial 
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niches. It is worth noting that the genus Phrynocephalus, which are arid-adapted and 

exhibit the ant-eating morphology, are also excellent at partitioning terrestrial micro-

habitats (e.g. sand vs. gravel: [Anderson 1999; Szczerbak 2003; Barabanov and Anajeva 

2007; Sindaco & Jeremcenko 2008]), with unique radiations resulting from the formation 

each major plateau in Asia (Iranian, Pamir, and Tibetan) (Figs. 3.3&3.4).  

The relationships and ancestral area reconstructions in the Draconinae are 

consentient with previous studies (Grismer et al. 2016), yet the addition of new Indian 

and Southeast Asian taxa brings new insight regarding previously tested hypotheses 

concerning Indian origins for agamid lizards. Calotes minor being nested within 

mainland Asian species of Calotes and the placement of Coryophylax as sister to the 

Sundaic endemic Aphaniotis, both provide additional evidence for faunal exchanges well 

after the hard collision of India and not just along the land bridges reported by Grismer et 

al. (2016). Additionally, the inclusion of the more Indochinese species of Japalura 

indicated that this genus is polyphyletic with two independent Indochinese radiations, one 

sister to the Acanthosaura group and the other sister to Psuedocalotes, and a single 

species sister, J. planidorsata, related to the Indian endemic Salea (Figs. 3&5). This 

suggests that the morphological characters having been used to group new agamid 

species into certain genera in Southeast Asia are misleading in some cases, suggesting 

that phylogeny-based taxonomic arrangements and use of multiple data types will have 

the highest probability of resulting in stable taxonomies. The placement of the Southeast 

Asian endemic Malayodracon robinsonii as monotypic genus and a historically 

contentious species of Gonocephalus (Denzer et al. 2015) exemplifies this point, and our 

analysis is the first study to place it phylogenetically and provide strong support from 
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molecular data for its recognition as a distinct genus. The analyses of our four- and three-

gene datasets produced conflicting placements of Malayodracon (node A: Fig. 3.3–3.6), 

both with low support. Our placement of Malayodracon indicate that it is an old lineage 

and may have been one of the first lineages to originate during the rapid radiation 

following India’s initial contact with Sundaland (Grismer et al. 2016) and Grismer et al. 

(Chapter Two). However, to confirm this hypothesis and the accurate placement of 

Malayodracon should be approached with sequence capture data, such as those derived 

form ultra-conserved elements (Grismer et al. 2016). 

Contentious Acrodont Fossil Calibrations: A Review 

 If used correctly, insights from the fossil record should broadly inform our 

knowledge of distribution patterns and improve the accuracy of modern day 

biogeographic hypothesis testing (Parham et al. 2012). Acrodont lizards have a rich fossil 

record composed of no fewer than 23 species (Gilmore 1943; Moody 1980; Averianov 

and Danilov 1996; Gao and Norell 2000; Wing et al. 2000; Smith et al. 2011; Gradstein 

et al. 2012; Head et al. 2013; Smith and Gauthier 2013). Although most are represented 

only by jaw fragments making modern-day genus and species comparisons difficult to 

impossible (Smith et al. 2009). Furthermore, given that having acrodont dentition is the 

main character used to identify and classify these fossils, confusion can result from the 

fact that not all lizards with this type of dentition are members of the clade Acrodonta 

(Moody 1980; Smith et al. 2011). For example, the fossils Euposaurus and 

Homoeosaurus were long considered stem acrodonts but after a comparison to a large 

series of squamate and other reptile fossils, it was determined they were 

rynchocephalians (Moody 1980). Additionally, the first acrodont fossil from the New 
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World was described from Brazil, potentially representing a key fossil calibration point 

for future analyses of acrodont evolution (Simoes et al. 2015). However, this fossil is 

only represented by jaw fragments and was diagnosed and placed phylogenetically on 12 

dental characters. Determining whether this new fossil really is an acrodont, a 

rynchocephalian, or a new group of ancestral lizards with acrodont dentition will be a 

challenge for future studies. In this study, we avoided these pitfalls by elimination of any 

ambiguously identified fossils; however a full review of contentious acrodont fossils and 

reliable calibration points (Table. 3.1) for the acrodont families Leiolepididae and the 

Agamidae would be advisable.  

 The Leiolepididae has several reliable calibration points along the stem branch 

leading to the ancestor of Leiolepis and Uromystax as well as fossils that are excellent 

calibration points for the ancestors of each genus respectively (Figs. 3.3&3.4; Table. 3.1). 

However, the taxa Phrynosomimus, Priscagama, and Mimeosaurus all form the extinct 

subfamily the Priscagaminae (Figs. 3.3&3.4) and have been hypothesized to be the stem 

lineage to either Leiolepis or Uromystax (Gradstein et al. 2012). In our time calibrated 

analyses of the four and three-gene datasets, this subfamily was allowed to group along 

either of these branches depending on the dataset  (Figs. 3.3&3.4). Given that fossil 

placement as a tip along a calibrated branch estimated from the sequence data (Stadler 

2010; Heath et al. 2014) and by allowing this flexibility in the calibration point, the 

Priscagaminae was recovered as Uromystax in the four-gene dataset (Fig. 3.3) and stem 

to Leiolepis in the three-gene dataset (Fig. 3.4). I hypothesize the combination of the deep 

divergences separating the long branches leading to Leiolepis and Uromystax, 

conservative values used for the FBD priors, and the searching vagaries of the MCMC 
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during the analysis, as contributing factors behind the inconsistent placement of this 

subfamily. Furthermore, despite living in different environments Leiolepis (tropical) and 

Uromystax (arid) have a similar terrestrial lifestyle resulting similar skeletal morphology 

(Peters 1971; Moody 1980; Smith et al. 2010). Therefore, we believe the original 

placement of this fossil subfamily based on the morphological examination by Borsuk-

Bialynicka and Moody (1984) as stem to the entire Leiolepidiae and not to either genus is 

the most accurate and conservative placement of these fossils, and will need to be 

enforced in future analyses using these fossils. Additionally, it is likely that these same 

problems were complications in the placement of the stem Uromystax, Uromastycinae, 

Paleochameleo, Barbatus (Fig. 3.3&3.4: fossils 6, 7, and 8). Although these fossils were 

placed as stem to all Uromystax a priori, they were recovered along deeply divergent 

branches leading to both sister clades within Uromystax (Fig. 3.3&3.4: fossils 6, 7, and 

8). If future analyses are to uses these three stem Uromystax fossils then precautions will 

need to be taken when setting the FBD priors and making the taxon sets for calibration 

points to ensure they are stem to both of these sister clades.  

 The amber fossil Protodraco was recently described from deposits in 

northwestern Myanmar and was shown to have foot morphology unique to the 

Indochinese endemic Mantheyus (Daza et al. 2016). Daza et al. (2016) hypothesized that 

Protodraco may represent a stem fossil of Mantheyus or to the entire Draconinae. Given 

the deep genetic divergence between Mantheyus and the remaining lineages, and that 

Protodraco and Mantheyus both were described from Indochina, either placement is 

justifiable as a calibration point for this fossil, however given the fossil currently is 

represented by very little material we recommend a conservative placement of 
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Protodraco as stem to the Draconinae.   

 Lastly, the fossil taxa Vastanagama, Tinosaurus, Pleurodontagama, 

Bharatagama, and Geiseltaliellus all have a combination of pleurodont dentition (similar 

to the Iguanidae) and Acrodont dentition. As a result, there has been confusion 

concerning the placement of these fossils and inconsistencies in their usage as calibration 

points (Smith et al. 2009; Reeder et al. 2015). These fossils all tend to have similar body 

plans and are distributed across Mongolia, North America, and Europe. Based on the fact 

that they are the only squamates that share this combination of dentition types; it is 

conceivable that they may be members of the same extinct radiation of lizards that had 

both pleurodont and acrodont dentition. The phylogenetic placement of these taxa with 

respect to extant linages should become more tractable once comparative osteological 

material from fossil and extant iguanids and acrodonts becomes available (Smith et al. 

2009, Smith et al. 2010).  

In this study we found support for a novel biogeographic interpretation, possibly 

overturning nearly half a century of agamid lizard biogeography, with its reliance on a 

Gondwanan vicariance as the only conceivable explanation (Brown, 2016) and the causal 

factor promoting diversification in this ancient clade of lizards. We provide new 

phylogeny-based evidence for multiple stepping-stone overwater dispersals from 

Laurasia back into Gondwana. These new hypotheses provide new insight into the 

complex and enigmatic biogeographic patterns inferred for this large diverse clade, and 

demonstrated how new data, the consideration of diverse data types and fossils, plus 

model based analyses, re-evaluation of previously considered intractable biogeographic 

hypotheses are possible. We also demonstrate how comparative analyses can enable 
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researchers to address biogeographic hypotheses by incorporating natural history 

information via a statistical framework. We anticipate that future studies will 

involve/require the distinguishing among a plurality of methods, including using trait-

based methods of biogeographic hypothesis testing (Vos et al. 2012). 

	  

 

Figure 3.1– Map showing the distribution of Acrodont Lizard areas of endemism and the 

biogeographic areas use in our biogeographic analyses. The stars represent the locations 

of the fossils used as calibration point in this study. 1– Acroiguana; 2–Phrynosomimus; 

3–Priscagama; 4–Memiosaurus; 5–Leiolepidie; 6–Uromastxicae; 7– Barbatus; 8–

Paleochameleo; 9–Physignathus; 10–Chlamydosaurus; 11–Phyrnocephalus; 12–

Protodraco 
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Figure 3.2– (A) The two expected topologies that would support a Gondwanan Origin 

for Laurasia species, proposed by Moody (1980) and Macey et al. (2000). (B) A 

hypothetical sister relationship between Gondwanan and Laurasia species, that we 

proposed that these relationships would not support a Gondwana origin dude to equal 

probability of each state at the ancestor. (C) A hypothetical sister relationship between 

Gondwanan and Laurasia species, where the ancestral distribution has been estimated 

within a broader taxonomic context and two inferred ancestral states needed to support a 

Laurasia or Gondwanan origin 
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Figure 3.3– The tip based time-calibrated phylogeny of the four-gene dataset, with 

estimated divergence times for that node in MYA followed by the ancestral condition for 

environment, morphological group, and distribution. Colored circles represent the 

inferred ancestral condition for environment and morphological group, and the letters 

denote the ancestral distribution at each node. An asterisk indicates a relationship of low 

support. Fossils are: 1– Acroiguana, 2–Phrynosomimus, 3–Priscagama, 4–Memiosaurus, 

5–Leiolepidie, 6–Uromastxicae, 7– Barbatus, 8–Paleochameleo, 9–Physignathus, 10–

Chlamydosaurus, 11–Phyrnocephalus, 12–Protodraco. 
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Figure 3.4– The tip based time-calibrated phylogeny of the three-gene dataset, with 

estimated divergence times for that node in MYA followed by the ancestral condition for 

environment, morphological group, and distribution. Colored circles represent the 

inferred ancestral condition for environment and morphological group, and the letters 

denote the ancestral distribution at each node. An asterisk indicates a relationship of low 

support. Fossils are: 1– Acroiguana, 2–Phrynosomimus, 3–Priscagama, 4–Memiosaurus, 

5–Leiolepidie, 6–Uromastxicae, 7– Barbatus, 8–Paleochameleo, 9–Physignathus, 10–

Chlamydosaurus, 11–Phyrnocephalus, 12–Protodraco. 
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Figure 3.5– The results of the Bayesian stochastic mapping of the environmental data 

(right) and the morphological groups defined by Moody (1980) (left) on phylogeny of the 

tip based calibration analyses of the four-gene dataset. 
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Figure 3.6– The results of the Bayesian stochastic mapping of the environmental data 

(right) and the morphological groups defined by Moody (1980) (left) on phylogeny of the 

tip based calibration analyses of the three-gene dataset. 
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Acrodont Fossil Age Placement and Citation 
Fossil chameleonid with 

morphological similarities 
to Rhampholeon 

 
18 MYA 

Stem to Rhampholeon 
(Rieppel et al. 1992). 

Mimeosaurus, 
Phrynosomimus, and 

Pricagama (Priscagamidae) 

 
72–80 MYA 

Sister to Lieolepidae 
(Gilmore 1943; Moody 

1980; Gao, K., and M. A. 
Norell. 2000; Gradstein et 

al. 2012). 
 

Leiolepidinae 
 

53 MYA 
Earliest stem for Leiolepis 
(Wing et al. 2000; Smith 
2011; Smith and Gauthier 

2013). 
 

Uromastycinae 
 

48 MYA 
Earliest stem for Uromastyx 

(Averianov and Danilov 
1996; Gradstein et al. 

2012). 
 

Paleochameleo 
 

39 MYA 
Reevaluated to be a stem 

lineage for Uromastyx 
(Moody 1980). 

Barbatus 37 MYA Stem for Uromastyx (Head 
et al. 2013) 

Physignathus  
19 MYA 

Earliest possible stem for 
the genus (Covacevich et al. 

(1990) 
Chlamydosaurus 18 MYA Lydekker (1888) 

 
Phrynocephalus 

 
5 MYA 

Earliest possible stem for 
the genus (Zerova and 
Chkhikvadze, 1984). 

Protodraco 99 MYA Daza et al. (2016) 
Table 3.1 – A list of the Acrodont fossils used in this study along with their calibration 
points and ages. 
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Table 3.2 – Loci and their associated estimated substitution models used in our 
phylogenetic analyses. 

 

 

Dataset Gene Model,Selected Model,Used,in,BEAST

Four%Gene)Dataset ND2 GTR+Γ GTR+Γ
16S GTR+Γ GTR+Γ
BDNF K80 HKY+Γ
RAG%1 HKY+Γ HKY+Γ

Three%Gene)Dataset ND2 GTR+Γ GTR+Γ
BDNF K80 HKY+Γ
RAG%1 HKY+Γ HKY+Γ
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Table 3.3– Model fitting of three different continuous-time Markov models of discrete 

trait evolution used in our ancestral state estimations. 

Dataset Category Model Log/likelihood

Four%Gene)Dataset Environment One)Rate %128.18
Two)Rates %112.59

All)Rates)different %108.21

Morphological)Group One)Rate %61.22
Two)Rates %51.92

All)Rates)different %45.14

Three%Gene)Dataset Environment One)Rate %120.64
Two)Rates %107.3

All)Rates)different %102.63

Morphological)Group One)Rate %62.03
Two)Rates %51.65

All)Rates)different %41.7
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Table 3.4– The results of BioGeoBEARS estimation of ancestral ranges, using a model 

selection approach to identify the appropriate biogeographical model for inference of 

range evolution across Acrodont Lizards.  

Dataset Model Log,likelihood Number,of,Parameters

Four%Gene)Dataset DIVALIKE %411.18 2
DIVALIKE+j %399.46 3
BAYAREALIKE %386.63 2
BAYAREALIKE+j %343.42 3
DEC %387.04 2
DEC+J %376.62 3

Three%Gene)Dataset DIVALIKE %352.34 2
DIVALIKE+j %346.67 3
BAYAREALIKE %350.01 2
BAYAREALIKE+j %313.08 3
DEC %338.24 2
DEC+J %329.95 3
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Appendix 1 – List of all the species and their associated localities used in this study. 

 

Sample Locality ND2 Rag-1

Mantheyus phuwanensis Laos AY555836 FJ356735
Mantheyus phuwanensis Laos FMNH255495
Mantheyus phuwanensis Laos FMNH262580
Draco blanfordii Vietnam AF288242 JF806194
Draco blanfordii Malaysia LSUHC9427
Draco maculatus Malaysia AF288248
Draco maculatus China KUFS320 CAS210160 
Draco spilopterus Philippines KU-ELR1338
Ptyctolaemus collicristatus Myanmar AY555837 CAS219979
Ptyctolaemus collicristatus Myanmar CAS220561
Ptyctolaemus gularis Myanmar AY555838
Ptyctolaemus gularis Myanmar CAS221296
Acanthosaura armata Malaysia LSUHC9351
Acanthosaura lepidogaster China KU-CWL818 JF806187
Acanthosaura capra Vietnam AF128498
Acanthosaura lepidogaster Vietnam AF128499 CAS206626 
Phoxophrys nigrilabris Malaysia LSUHC4044
Sitana ponticeriana Sri Lanka This study
Otocryptis wiegmanni Sri Lanka AF128480
Japalura flaviceps China AF128500
Japalura splendida China AF128501 CAS214906
Pseudocalotes brevipes Vietnam AF128502 FMNH258703
Pseudocalotes larutensis Malaysia AF128503
Pseudocalotes larutensis Malaysia LSUHC10285
Pseudocalotes kingdonwardi China CAS242579
Pseudocalotes microlepis China FMNH258710 FMNH258710
Salea horsfeldii India AF128490 AMB5739 
Calotes chincollium Myanmar DQ289458
Calotes emma Thailand DSM1256
Calotes emma Vietnam AF128487 CAS215057 
Calotes mystaceus Thailand DSM869
Calotes mystaceus Vietnam AF128487 CAS207487
Calotes jerdoni Myanmar     GQ502783 CAS219992    
Calotes htunwini Myanmar DQ289463
Calotes calotes Myanmar AF128482 AY662584
Calotes irawadi Myanmar DQ289468
Calotes versicolor Malaysia LSUHC10327
Calotes versicolor Myanmar AF128489
Calotes ceylonensis Sri Lanka AF128483
Calotes liocephalus Sri Lanka AF128484
Calotes nigrilabris Sri Lanka AF128486
Ceratophora aspera Sri Lanka AF128491
Ceratophora stoddartii Sri Lanka AF128492 This study
Ceratophora tennentii Sri Lanka AF128521
Lyriocephalus sculatus Sri Lanka AF128494 This study
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Appendix 1 continued – List of all the species and their associated localities used in this 

study. 

 

Cophotis ceylanica Sri Lanka AF128493 This study
Cophotis dumbara Sri Lanka GQ502785
Aphaniotis fusca Malaysia AF128497
Aphaniotis ornata Indonesia This study
Bronchocela cristatella Philippines KU-BC1610
Bronchocela cristatella Philippines ACD1547
Bronchocela cristatella Malaysia AF128495
Bronchocela marmoratus Philippines JAM981 
Bronchocela smaragdina Cambodia FMNH64815 HKV64815
Gonocephalus borneensis Malaysia ZFMK85275 
Gonocephalus grandis Malaysia AF128496
Gonocephalus doriae Malaysia FM230175 F230175 
Gonocephalus kuhli Indonesia ZFMK85969 
Gonocephalus interuptus Philippines RMB9384
Gonocephalus sophae Philippines RMB8061
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Acrodont Fossil Age Placement and Citation 

   
Fossil chameleonid with 
morphological similarities to 
Rhampholeon 

 
   18 
MYA 

 
Stem to Rhampholeon (Rieppel et al. 1992). 

 
Mimeosaurus and Pricagama 
(Priscagamidae) 

 
72–80 
MYA 

Stem to Leiolepis and Uromastyx (Gilmore 
1943; Moody 1980; Gao, K., and M. A. 
Norell. 2000; Gradstein et al. 2012). 

 
Leiolepidinae 

   53 
MYA 

Earliest stem for Leiolepis (Wing et al. 2000; 
Smith 2011; Smith and Gauthier 2013). 

 
Uromastycinae 

  48 
MYA 

Earliest stem for Uromastyx (Averianov and 
Danilov 1996; Gradstein et al. 2012). 

 
Paleochameleo 

 39 
MYA 

Reevaluated to be a stem lineage for 
Uromastyx (Moody 1980). 

 
Barbatus 

 37 
MYA 

 
Stem for Uromastyx (Head et al. 2013) 

 
Physignathus 

 19 
MYA 

Earliest possible stem for the genus 
(Covacevich et al. (1990) 

 
Phrynocephalus 

5 MYA Earliest possible stem for the genus (Zerova 
and Chkhikvadze, 1984). 

 

Appendix 2 – List of all the fossil calibrations, their ages, and their associated references, 

used in this study. 
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Appendix 3 Sample list for Chapter 2. 

 

 

Sample Locality ND2 Rag-1

Mantheyus phuwanensis Laos AY555836 FJ356735
Draco blanfordii Vietnam AF288242 JF806194
Draco maculatus China KUFS320 CAS210160 
Oriotari tricarinata China AF128478 This study
Ptyctolaemus collicristatus Myanmar AY555837 CAS219979
Ptyctolaemus gularis Myanmar CAS221296
Acanthosaura armata Malaysia LSUHC9351 This study
Acanthosaura lepidogaster China KU-CWL818 JF806187
Acanthosaura bingtanensis Malayasia This study This study
Phoxophrys nigrilabris Malaysia Grismer et al 2016
Sitana ponticeriana Sri Lanka This study
Otocryptis wiegmanni Sri Lanka AF128480
Japalura flaviceps China AF128500
Japalura splendida China AF128501 CAS214906
Japalura variegata Nepal AF128479
Pseudocalotes brevipes Vietnam AF128502 FMNH258703
Pseudocalotes larutensis Malaysia AF128503
Pseudocalotes floweri Cambodia Grismer et al 2016
Pseudocalotes kakhiensis China Grismer et al 2016
Pseudocalotes kingdonwardi China CAS242579
Pseudocalotes microlepis China FMNH258710 FMNH258710
Salea horsfeldii India AF128490 AMB5739 
Calotes chincollium Myanmar DQ289458
Calotes emma Vietnam AF128487 CAS215057 
Calotes mystaceus Vietnam AF128487 CAS207487
Calotes jerdoni Myanmar     GQ502783 CAS219992    
Calotes htunwini Myanmar DQ289463
Calotes calotes Myanmar AF128482 AY662584
Calotes irawadi Myanmar DQ289468
Calotes versicolor Myanmar AF128489 This study
Calotes ceylonensis Sri Lanka AF128483
Calotes liocephalus Sri Lanka AF128484
Calotes nigrilabris Sri Lanka AF128486
Ceratophora aspera Sri Lanka AF128491
Ceratophora stoddartii Sri Lanka AF128492 Grismer et al 2016
Ceratophora tennentii Sri Lanka AF128521
Lyriocephalus sculatus Sri Lanka AF128494 Grismer et al 2016
Cophotis ceylanica Sri Lanka AF128493 Grismer et al 2016
Cophotis dumbara Sri Lanka GQ502785
Aphaniotis fusca Malaysia AF128497
Aphaniotis ornata Indonesia Grismer et al 2016
Bronchocela cristatella Malaysia AF128495
Bronchocela marmoratus Philippines JAM981 
Bronchocela smaragdina Cambodia FMNH64815 HKV64815
Gonocephalus borneensis Malaysia ZFMK85275 
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Appendix 3 continued Sample list for Chapter 2. 

 

Gonocephalus grandis Malaysia AF128496
Gonocephalus doriae Malaysia FM230175 F230175 
Gonocephalus kuhli Indonesia ZFMK85969 
Harpesaurus beccarii Sumarta ZFMK 48896
Dendragama boulengeri Sumarta ZFMK 50532
Lophocalotes ludekingi Sumarta ZFMK 46706
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Appendix S2  BAMM results. 

 

	  

 

 

 

Outgroups

Mantheyus
Ptyctolaemus
Oriotaris
J. variegata
Draco
Salea*
J. planidorsata

Calotes

Lyriocephalus*
Cophotis*

Cerataphora*
Harpesurus
Dendragama
Lophocalotes

Gonocephalus

Bronchodela
Aphaniotis
Phoxophrys
Sitana*
Otocryptis*

Psuedocalotes

Japalura
Acanthsaura

74%

20%

5%

* = Indian or 

   Sri Lanakan


