Unfolding the Hsp90 Foldosome: Structure-Activity Relationship Studies on EGCG and Development of Isoform-Selective Inhibitors

By
Anuj Khandelwal

Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Brian S. J. Blagg, Ph.D.
Chairperson

Ryan A. Altman, Ph.D.

Apurba Dutta, Ph.D.

Paul R. Hanson, Ph.D.

Rick T. Dobrowsky, Ph.D.

Date Defended: June 9th, 2016
The Dissertation Committee for Anuj Khandelwal certifies that this is the approved version of the following dissertation:

Unfolding the Hsp90 Foldosome: Structure-Activity Relationship Studies on EGCG and Development of Isoform-Selective Inhibitors

Brian S. J. Blagg, Ph.D.
Chairperson

Date approved: June 13th, 2016
Abstract

The 90 kDa heat shock proteins (Hsp90) are critical for the maintenance of cellular homeostasis and mitigate the effects of cellular stress and therefore, play an important role in cell survival. Hsp90, as a molecular chaperone, folds nascent polypeptides and denatured proteins to their biologically relevant conformations. Many of the proteins dependent upon Hsp90 are essential to the growth and proliferation of cancer cells. In fact, proteins associated with all ten hallmarks of cancer are dependent upon the Hsp90 protein folding machinery. Consequently, inhibition of Hsp90 represents a combinatorial approach for the treatment of cancer. 17 small molecule inhibitors of Hsp90 have entered clinical trials, all of which bind Hsp90 N-terminus and exhibit pan-inhibitory activity against the four Hsp90 isoforms: Hsp90α, Hsp90β, Grp94, and Trap1. However, lack of isoform selectivity with current clinical candidates appears detrimental as more than 20 clinical trials have failed, citing hepatotoxicity, cardiotoxicity, and peripheral neuropathy amongst other side effects. Additionally, pan-inhibition of Hsp90 induces the pro-survival heat shock response, requiring the escalation of patient doses to overcome increased Hsp90 expression. Therefore, alternative approaches for Hsp90 modulation are highly sought after.

Isoform-selective inhibition of Hsp90 provides an opportunity to address the aforementioned detriments associated with pan-Hsp90 N-terminal inhibitors. Hydrolysis of ATP by the N-terminal nucleoside binding pocket is required for the maturation of client protein substrates, and all four Hsp90’s share >85% identity within this region. Consequently, the discovery of isoform-selective inhibitors has been challenging. Described herein is the rationale for development of isoform selective inhibitors and the identification of the first isoform selective inhibitors of Hsp90α and Hsp90β-isoforms.
Unlike the N-terminus, inhibition of the Hsp90 C-terminus does not induce the heat shock response and hence, C-terminal inhibitors manifest the desired cytotoxic affect against cancer cells. However, absence of a co-crystal structure and lack of lead compounds, have resulted in limited success towards the development of Hsp90 C-terminal inhibitors. Recently, EGCG, a green tea polyphenol, was shown to bind at the C-terminus of Hsp90. Structure activity relationships studies were conducted on EGCG for improved Hsp90 inhibition and are also presented.
Acknowledgments

I am extremely grateful to those who helped me throughout my graduate career. First, I would like to thank my advisor Dr. Brian S. J. Blagg for giving me the opportunity to work under his supervision. As a mentor, Brian allowed me to work independently but was always available to provide guidance, knowledge, motivation and inspiration when needed.

I would like to acknowledge my family for their undying motivation and encouragement. I am beyond grateful to my parents as they continuously believed in me and supported my decision to pursue a career in research. I would not be where I am today without their support. I am also grateful to my wife Anshul Khandelwal for supporting my passion for research and showing great understanding as I finished my graduate career.

I would also like to thank my fellow lab members Leah Forsberg, Vincent Crowley, Sanket Mishra, and Caitlin Kent, who were a great resource of scientific wisdom but also are great friends outside of laboratory, making my experience at KU enjoyable. Outside of the Blagg laboratory, I am thankful to other department faculty members and graduate students who greatly influenced my career. Specifically, Dr. Ryan Altman for mentoring and Brett Ambler for insightful scientific discussions.

I must thank the department of Medicinal Chemistry for the exemplary training I received during my graduate career. I would also like to thank Dr. Apurba Dutta, Dr. Paul Hanson, Dr. Ryan Altman, and Dr. Rick Dobrowsky for serving on my committee and providing thoughtful suggestions.

I dedicate this work to my uncle Subhash Khandelwal (1965-2010), who always inspired and motivated me to follow my dreams.
Table of Contents

Chapter I

Hsp90 and Its Natural Product-Based Inhibitors

I. 1. Introduction ...1

I.2. Hsp90 Structure and Function ...2

 I.2.1 Hsp90 Chaperone Cycle ..3

 I.2.2 Inhibition of Hsp90 Chaperone Cycle ...3

I.3. Hsp90 Inhibitors ...6

 I.3.1. N-Terminal inhibitors ...6

 I.3.1.1 Geldanamycin-Based Inhibitors ...6

 I.3.1.2. Radicicol-Based Inhibitors ..10

 I.3.1.3. Chimeric Inhibitors ...13

 I.3.1.4. Purine-based Inhibitors ...15

 I.3.1.5. Induction of Heat Shock Response ...17

 I.3.2. C-Terminal Inhibitors ..18

 I.3.2.1. Discovery of Hsp90 C-terminal Binding Site ..18

 I.3.2.2. Novobiocin ...19

 I.3.2.3. Silybin ..21

I.3.3. Disruptors of Hsp90 Interaction with Co-Chaperones and Client Proteins22

 I.3.3.1. Celastrol ...22

 I.3.3.2. Gedunin ..24

 I.3.3.3. Cruentaten A ...24

I. 4. Conclusions & Future Direction ...25

I. 5. References ...26
Chapter II
Synthesis and Structure–Activity Relationships of EGCG Analogues

II.1. Introduction to EGCG..39

II.1.1. Binding of EGCG to Hsp90...41

II.2. Proposed EGCG Analogues...42

II.3. Synthesis and Evaluation of Series I and Series II EGCG Analogues...44

II.3.1. Synthesis of Series I Analogues...44

II.3.2. Synthesis of Series II Analogues...46

II.3.3. Biological Evaluation of Series-I and Series-II Analogues...46

II.4. Synthesis and Evaluation of Series III Analogues...48

II.4.1. Syntheses of Series IIIa-c Analogues..49

II.4.2. Biological Evaluation of Series IIIa-c Analogues...50

II.4.3. Synthesis of Series III-d Analogues...52

II.4.4. Biological Evaluation of Series III-d Analogues...52

II.5. Optimization of Linker...54

II.5.1. Synthesis of Amide Linker Analogues..54

II.5.2. Biological Evaluation of Amide Linker Analogues...54

II.6. Western Blots Analyses...55

II.7. Conclusion and Future Directions...57

II.8. Methods and Experiments...58

II.9. References..153

Chapter III
The Development of Grp94-Selective Inhibitors

III.1. Introduction...160
III.2. Grp94...161

III.3. Ligand Occupation of Grp94 N-Terminal ATP-Binding Pocket......................164
 III.3.1 Binding of Geldanamycin to Grp94...164
 III.3.2 Binding of NECA to Grp94...165
 III.3.3. Binding of Radamide Grp94...168

III.4. Development of Grp94-Selective Inhibitors..168
 III.4.1 Development of Radamide Analogues as Grp94 Inhibitor....................169
 III.4.1.1. Synthesis of Radamide Analogues.......................................170
 III.4.1.2. Evaluation of Radamide Analogues.....................................171
 III.4.2. Development of BnIm Analogues as Grp94 Inhibitors.........................172
 III.4.2.1. Synthesis of BnIm Analogues...173
 III.4.2.2. Evaluation of BnIm Analogues...173
 III.4.3. Development of Resorcinol-Isoindoline Class of Grp94 Inhibitors..........176
 III.4.3.1 Syntheses of Resorcinol-Isoindoline Analogues........................177
 III.4.3.2. Evaluation of Resorcinol-Isoindoline Class of Grp94 Inhibitors.....178

III.5. Conclusions and Future Directions...181

III.6. Methods and Experiments..182

III.7. References..204

Chapter IV
Development of the First Hsp90β-Selective N-Terminal Inhibitor

IV.1. Introduction...211
 IV.1.1. Hsp90β...213

IV.2. Differences in N-Terminal ATP-Binding Pocket of Hsp90 Isoforms.................214

IV.3. Development of Resorcinol Analogues Modified at the 4-Position...............215
IV.3.1. Design of Resorcinol Analogues Modified at the 4-Position for Selective Hsp90β-Inhibition………………………………………………………………………………..215
IV.3.2. Synthesis of 4-Modified Resorcinol Analogues…………………………………………………………217
 IV.3.2.1. Synthesis of Compound 72……………………………………………………217
 IV.3.2.2 Syntheses of 73–82…………………………………………………………218
IV.3.3. Evaluation of 4-Modified Resorcinol Analogues……………………………………222
IV.4. Development of a 3-Modified Resorcinol Analogue……………………………………224
 IV.4.1. Design of a 3-Substituted Resorcinol Analogue for Selective Hsp90β-Inhibition…………………………………………………………………………………………………224
 IV.4.2. Synthesis of a 3-Substituted Resorcinol Analogue……………………………………226
 IV.4.3. Evaluation and Co-Crystallization of 102………………………………………………226
IV.5. Development of KUNB31…………………………………………………………227
 IV.5.1 Design of KUNB31………………………………………………………………227
 IV.5.2. Synthesis and Evaluation of KUNB31……………………………………………228
IV.6. Cellular Studies……………………………………………………………………228
 IV.6.1. Anti-Proliferation Activity………………………………………………………228
 IV.6.2. Western Blot Analyses…………………………………………………………229
IV.7. Conclusions and Future Directions…………………………………………………………230
IV.8. Methods and Experiments……………………………………………………………231
IV.9. References………………………………………………………………………………….253

Chapter V
The Development of Hsp90α-Selective Inhibitors

V.1. Introduction………………………………………………………………………………259
 V.1.1. Hsp90α Isoform……………………………………………………………………259
V.2. Identification of a Lead Compound for the Development of Hsp90α-Selective Inhibitors...261
V.2.1. Binding of Radicicol and PU3 with Hsp90α versus Hsp90β.................................261
V.2.2. Synthesis and Evaluation of 4-Amino 2-Phenol Analogues...............................263
V.2.3. Identification of the Monophenol-Isoindoline Scaffold for Selective Hsp90α-
Inhibition..265
V.3. Development of the Monophenol-Isoindoline Scaffold for Selective Hsp90α Inhibition…266
V.3.1. Syntheses of Series I and Series II Analogues...266
V.3.2. Evaluation of Series I and Series II Analogues...267
V.4. Modification to the Isoindoline Core of 126...268
V.4.1. Synthesis of Analogues with Modification to the Isoindoline Core......................269
V.4.2. Evaluation of Analogues with Modification to the Isoindoline Core......................269
V.5. Preliminary Studies to Probe the Inducible Binding Pocket.....................................270
V.6. Cellular Efficacy of Hsp90α-Selective Inhibitors...274
V.7. Western Blot Analyses of Compound 126...274
V.8. Evaluation of Compound 126 and KUNB31 in NCI-60 Cell Panel.............................276
V.9. Conclusions and Future Directions...276
V.10. Methods and Experiments...279
V.11. References..303
List of Figures:

Chapter I

Hsp90 and Its Natural Product-Based Inhibitors

Figure 1. The structure of Hsp90 ... 2

Figure 2. Hsp90 protein chaperone cycle ... 5

Figure 3. Representative Hsp90 inhibitors ... 7

Figure 4. GDA-Analogues for improved Hsp90 inhibition 8

Figure 5. Hydroquinone analogues of GDA ... 9

Figure 6. Resorcinol comprising natural products and binding mode of geldanamycin and radicicol ... 11

Figure 7. Resorcinol-derived Hsp90 inhibitors .. 13

Figure 8. Chimeric Hsp90 N-terminal inhibitors 15

Figure 9. Purine-based Hsp90 N-terminal inhibitors 16

Figure 10. Induction of heat-shock response ... 18

Figure 11. Novobiocin analogues for Hsp90 C-terminal inhibition 20

Figure 12. Summary of silybin SAR ... 22

Figure 13. Disruptors of Hsp90 interaction with co-chaperones and client proteins ... 23

Chapter II

Synthesis and Structure–Activity Relationships of EGCG Analogues

Figure 14. Structure of green tea catechins .. 39

Figure 15. Chemical instability of EGCG .. 43

Figure 16. Three different series of EGCG analogues 44

Figure 17. Proposed series-III analogues lacking the B-ring of EGCG 49

Figure 18. Western blot analyses to confirm Hsp90 inhibition 56

Figure 19. Summary of EGCG structure-activity relationship studies 58
Chapter III
The Development of Grp94-Selective Inhibitors

Figure 20. Differences between Hsp90α vs Grp94………………………………………………………165

Figure 21. Binding of Geldanamycin to Grp94 and Hsp90α...166

Figure 22. Binding of NECA to Grp94..167

Figure 23. Rationale for observed selectivity of NECA for Grp94...167

Figure 24. Binding of radamide to Grp94 versus Hsp90...168

Figure 25. Summary of prior studies on radamide- derived Grp94 inhibitor……………………………169

Figure 26. Structure of BnIm..169

Figure 27. Proposed radamide analogues for improved Grp94-inhibiton...170

Figure 28. Evaluation of radamide analogues..171

Figure 29. Binding of BnIm to Grp94..173

Figure 30. Evaluation of BnIm analogues...175

Figure 31. An overlay of co-crystal structure of BnIm bound to Hsp90α and Grp94…………………176

Figure 32. Development of resorcinol-isoindoline class of Grp94-selective inhibitors………………177

Figure 33. Binding modes of compound 61 and 65...180

Figure 34. Overlay of proposed binding modes of 71 in Hsp90α and Grp94 binding pocket…181

Chapter IV
Development of the First Hsp90β-Selective N-Terminal Inhibitor

Figure 35. Differences amongst Hsp90 Isoforms...215

Figure 36. Proposed Hsp90β-selective molecules..216

Figure 37. Co-crystallization of 4-modified resorcinol analogues..225

Figure 38. Proposed modification at the 3-position of resorcinol..226

Figure 39. Apparent Kd of analogue 102 (KUNB30)...227
Figure 40. Co-crystal structure of KUNB30 bound to Hsp90β..227

Figure 41. Western blot analyses of KUNB31 in NCI-H23 cell line..229

Chapter V
The Development of Hsp90α-Selective Inhibitors

Figure 42. Differences in binding of ligands between Hsp90α and Hsp90β..........................261

Figure 43. Additional studies towards selective Hsp90α-inhibition..................................265

Figure 44. Apparent K_d of monophenol analogues...265

Figure 45. Proposed modifications on monophenol-isoindoline scaffold...............................267

Figure 46. Proposed modification to isoindoline core..270

Figure 47. Binding modes of ligands in Hsp90α N-terminal binding pocket.........................273

Figure 48. Western Blot analyses of 126 in PC3-MM2 cell..276

Figure 49. Evaluation of compound 126 in NCI-60 cell panel..277

Figure 50. Evaluation of KUNB31 in NCI-60 cell panel...278
List of Tables:

Chapter I
Hsp90 and Its Natural Product-Based Inhibitors

Table 1. Hsp90 co-chaperones and their function’s..4
Table 2. Ten Hallmarks of Cancer and Associated Hsp90 Clients...6

Chapter II
Synthesis and Structure—Activity Relationships of EGCG Analogues

Table 3. Catechin concentrations in green tea...40
Table 4. Molecular Mechanisms of EGCG..41
Table 5. Anti-proliferative activities produced by A-, B- and the D-ring modified EGCG
analogues..48
Table 6. Anti-proliferative activities produced by 3,5-dihydroxychroman-3-ol esters..........51
Table 7. Biological evaluation of series III-d...53
Table 8. Anti-proliferative activity produced by analogues containing amide linkers...........55

Chapter III
The Development of Grp94-Selective Inhibitors

Table 9. Grp94 client proteins..163
Table 10. Apparent K_d of BnIm analogues...175
Table 11. Evaluation of resorcinol-isooindoline class of Grp94 inhibitors.........................179
Table 12. Apparent K_d values of des-linker analogues 70 and 71...............................181

Chapter IV
Development of the First Hsp90β-Selective N-Terminal Inhibitor

Table 13. The Evaluation of 4-resorcinol analogues..223
Table 14. Anti-proliferative activity of KUNB30 and KUNB31 against cancer cells..........229

Chapter V
The Development of Hsp90α-Selective Inhibitors
Table 15. Difference in Hsp90α, Hsp90β, and yeast Hsp90 (Hsc82) ATP binding pocket…….262

Table 16. Relative hydrophobicity of Hsp90 isoforms..263

Table 17. Evaluation of 4-amino-2-phenol analogues..265

Table 18. The evaluation of Series-I and Series-II analogues...269

Table 19. Evaluation of isoindoline analogues in FP assay..272

Table 20. Evaluation of Hsp90α-selective inhibitors in MTS assay..275
List of Schemes:

Chapter II
Synthesis and Structure–Activity Relationships of EGCG Analogues

Scheme 1. Synthesis of Series I analogues ... 45
Scheme 2. Synthesis of Series II analogues ... 47
Scheme 3. Synthesis of B-ring lacking Series IIIa-c analogues 50
Scheme 4. Syntheses of series III-d ... 53
Scheme 5. Synthesis of linker analogues ... 54

Chapter III
The Development of Grp94-Selective Inhibitors

Scheme 6. Synthesis of radamide analogues .. 170
Scheme 7. Synthesis of BnIm analogues .. 174
Scheme 8. Synthesis of resorcinol-isoindoline class of Grp94 inhibitors 178
Scheme 9. Syntheses of compounds 70 and 71 .. 181

Chapter IV
Development of the First Hsp90β-Selective N-Terminal Inhibitor

Scheme 10. Synthesis of compound 72 ... 217
Scheme 11. Proposed retro-syntheses of resorcinol analogues modified at the 4-position 218
Scheme 12. Syntheses of resorcinol analogues modified at the 4-position 219
Scheme 13. Modification of benzyl bromide analogue 80 220
Scheme 14. Synthesis of compound 78 and its derivatives 221
Scheme 15. Synthesis of 102 .. 226
Scheme 16. Synthesis, evaluation, and X-ray crystal structure of KUNB31 228

Chapter V
The Development of Hsp90α-Selective Inhibitors
Scheme 17. Syntheses of 4-amino-2-phenol analogues………………………………………..264

Scheme 18. Syntheses of series I and series II analogues for selective Hsp90α-inhibition……268

Scheme 19. Modifications to the isoindoline core……………………………………………...271

Scheme 20. Syntheses and evaluation of compounds 140 and 141…………………………….274
UNFOLDING THE HSP90 FOLDASOME: STRUCTURE-ACTIVITY RELATIONSHIP STUDIES ON EGCG AND DEVELOPMENT OF ISOFORM-SELECTIVE INHIBITORS
Chapter I

Hsp90 and Its Natural Product-Based Inhibitors

I. 1. Introduction

Molecular chaperones represent a class of proteins that are responsible for the conformational maturation of nascent polypeptides into their biologically active conformation, as well as the rematuration of denatured proteins. Molecular chaperones work together with co-chaperones and other partner proteins to facilitate the folding of protein substrates (foldasomes).\(^1\) Many of these chaperones are overexpressed in response to conditions that cause cellular stress, such as hypoxia, acidosis, and increased/decreased temperature. Heat shock proteins, a class of molecular chaperones, were originally identified after cellular exposure to elevated temperatures, which led to their overexpression, to refold proteins that were denatured/aggregated at such temperatures.\(^4\),\(^5\) The 90 kDa heat shock protein (Hsp90) is highly conserved in eukaryotes and represents 1-2% of the total cellular protein at ambient temperatures, but can be overexpressed to comprise 6% in stressed cells.\(^6\)-\(^8\) Hsp90 is responsible for the maturation of more than 200 client proteins, including several therapeutically sought after anticancer targets, such as Her2, Raf, ALK, Src, and Akt.\(^6\),\(^9\) Due to its central role in oncogenesis, Hsp90 has emerged as a promising target for the development of anti-cancer agents.\(^4\),\(^10\)-\(^14\)

Geldanamycin (GDA), an ansamycin class of antibiotic, is a classic example of natural product-based drug discovery in medicinal chemistry.\(^15\) Analysis of the biological activity manifested by GDA led to the discovery that its primary biological target is the 90 kDa heat shock protein, Hsp90.\(^16\) Many drug development campaigns with GDA have provided drug candidates that have entered clinical trials and yielded biological probes that have increased the understanding of Hsp90 biology.\(^17\),\(^18\) In the last two decades, other natural products have also been shown to bind
and modulate the Hsp90 chaperone machinery by various mechanisms. These natural products have served as a starting point for numerous drug development campaigns, which led to the discovery of highly efficacious Hsp90 inhibitors.

I.2. Hsp90 Structure and Function

In cells, Hsp90 exists as a homodimer and each monomer consists of an N-terminal ATP-binding domain, a middle domain connected to the N-terminus by a charged linker, and a C-terminal dimerization motif (Figure 1). ATP binds to the highly conserved N-terminus, and its hydrolysis provides the requisite energy to facilitate client protein maturation. The N-terminal ATP-binding site is conserved within the GHKL superfamily of proteins, such as Hsp90, histidine kinase, DNA gyrase B, and MutL. The GHKL superfamily is characterized by the presence of Bergerat ATP-binding fold, in which ATP binds in a unique, bent conformation that is in contrast to the typical extended conformation. The Bergerat motif consists of three α-helices in a helix-sheet-helix orientation and four interstranded β-sheets. The N-terminal ATP-binding site manifests interactions with residues in the loop region that connects to α-helices and β-sheets. The middle domain plays a crucial role in client protein recognition, as well as interactions with co-chaperones and other partner proteins. The C-terminus mediates dimerization and contains a second nucleotide binding site. There are four isoforms of Hsp90 in mammals: Hsp90α and Hsp90β are localized in the cytosol, Grp94 is found in the endoplasmic reticulum and Trap-1 resides in the mitochondria. The Hsp90β isoform is constitutively expressed whereas, the
Hsp90α isoform is inducible upon exposure to cellular stress40, 41. In the human genome, there are 17 genes that encode for Hsp90, however, only six of them encode the four functional isoforms42.

I.2.1 Hsp90 Chaperone Cycle

The Hsp90 chaperone cycle is complex, but advances in technology and small molecule probes have provided insights into the catalytic cycle. Several other proteins (co-chaperones and partner proteins) associate with Hsp90 during the chaperone cycle and mediate the protein folding process (Table 1).43-46 The Hsp90-mediated the protein folding process is catalytic and protein maturation is driven by ATP-hydrolysis (Figure 2).47 Succinctly, the Hsp90 chaperone cycle begins with the delivery of nascent polypeptides to the Hsp90 complex by a Hsp70-Hsp40 complex (Figure 2.3). This process is mediated by the Hsp70-Hsp90 organizing co-chaperone, HOP (Figure 2.2). Upon delivery of the nascent polypeptide, various co-chaperones, immunophilins, and partner proteins interact with Hsp90 to form a heteroprotein complex (Figure 2.4). ATP is recruited to the N-terminus (Figure 2.5) and is then hydrolyzed upon p23 association (Figure 2.7). Association of p23 increases both the rate of ATP hydrolysis and client protein maturation. Following maturation, the client protein is released through opening of the C-terminal dimer interface and the heteroprotein complex dissociates to regenerate the Hsp90 homodimer (Figure 2.1).

I.2.2 Inhibition of Hsp90 Chaperone Cycle

Inhibition of either the N- or C-terminus can disrupt the Hsp90 chaperone cycle. Upon disruption of the chaperone cycle by an inhibitor, the client protein is degraded through the ubiquitin-proteasome pathway (Figure 2.6).48 Because malignant cells undergo a constant rate of proliferation, increased rates of metabolism and protein synthesis are required for survival. This leads to an increased tumor dependency upon Hsp90. Therefore, Hsp90 exists primarily as the
heteroprotein complex (Figure 2.4) in malignant cells. Conversely, Hsp90 exists as the homodimer (Figure 2.1).

Table 1. Hsp90 co-chaperones and their function’s

<table>
<thead>
<tr>
<th>Co-chaperone/Partner proteins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aha1</td>
<td>Stimulates ATPase activity</td>
</tr>
<tr>
<td>Cdc37</td>
<td>Mediates activation of protein kinase substrates</td>
</tr>
<tr>
<td>CHIP</td>
<td>Involved in degradation of unfolded client proteins</td>
</tr>
<tr>
<td>Cyclophilin-40</td>
<td>Peptidyl propyl isomerase</td>
</tr>
<tr>
<td>FKBP51 and 52</td>
<td>Peptidyl propyl isomerases</td>
</tr>
<tr>
<td>HOP</td>
<td>Mediates interaction between Hsp90 and Hsp70</td>
</tr>
<tr>
<td>Hsp40</td>
<td>Stabilizes and delivers client proteins to Hsp90 complex</td>
</tr>
<tr>
<td>Hsp70</td>
<td>Stabilizes and delivers client proteins to Hsp90 complex</td>
</tr>
<tr>
<td>p23</td>
<td>Stabilizes closed, clamped substrate bound conformation</td>
</tr>
<tr>
<td>HIP</td>
<td>Inhibits ATPase activity of Hsp70</td>
</tr>
<tr>
<td>PP5</td>
<td>Protein phosphatase</td>
</tr>
<tr>
<td>Sgt1</td>
<td>Client adaptor, involved in client recruitment</td>
</tr>
<tr>
<td>Tom70</td>
<td>Translocation of pre-proteins into mitochondrial matrix</td>
</tr>
<tr>
<td>WISp39</td>
<td>Regulates p21 stability</td>
</tr>
</tbody>
</table>

in unstressed or normal cells. Interestingly, the heteroprotein complex possesses more than 200-fold greater affinity for ATP, when compared to the Hsp90 homodimer. Therefore, inhibitors that bind the ATP-binding pocket exhibit an inherent selectivity for the heteroprotein complex, resulting in differential selectivity of ~200-fold for cancer verses normal cells. Not surprisingly, Hsp90 inhibitors accumulate at higher concentrations in tumor tissues than in normal tissues. Hsp90 inhibition exhibits therapeutic potential for the treatment of many different diseases. Most notably, Hsp90 inhibitors are sought after as anti-cancer agents because many Hsp90-dependent client proteins are associated with oncogenic pathways that cause tumor initiation, tumor progression and metastasis. As shown in Table 2, Hsp90 client proteins are present in all 10 hallmarks of cancer, therefore, inhibition of Hsp90 provides a unique opportunity to
simultaneously disrupt multiple oncogenic pathways, and thus provides a multi-dimensional attack on cancer (a complete listing of Hsp90 clients can be found at http://www.picard.ch/downloads/Hsp90interactors.pdf). Hsp90 inhibitors manifest a single drug combination approach toward the treatment of cancer.49, 50 Stimulation of Hsp’s (Hsp70, Hsp40, Hsp27) by non-toxic molecules has potential therapeutic application in diseases caused by misfolded and aggregated proteins. Hence, Hsp90 modulation not only exhibits potential to treat cancer, but also several other unrelated disease states including Alzheimer’s, Parkinson’s, Amyotrophic lateral sclerosis, multiple sclerosis, Huntington’s, and spinal and bulbar muscular atrophy.51-53

\textbf{Figure 2.} Hsp90 protein chaperone cycle.
Table 2. Ten hallmarks of cancer and associated Hsp90 clients

<table>
<thead>
<tr>
<th>Hallmarks of Cancer</th>
<th>Hsp90 Client Protein(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Self-sufficiency in growth signals</td>
<td>Raf-1, AKT, Her2, MEK, Bcr-Abl</td>
</tr>
<tr>
<td>2. Insensitivity to anti-growth signals</td>
<td>Plk, Wee1, Myc1, CDK4, CDK6, Myt1</td>
</tr>
<tr>
<td>3. Evasion of apoptosis</td>
<td>RIP, AKT, p53, c-MET, Apaf-1, Survivin</td>
</tr>
<tr>
<td>4. Limitless replicative potential</td>
<td>Telomerase (h-Tert)</td>
</tr>
<tr>
<td>5. Sustained angiogenesis</td>
<td>FAK, AKT, Hif-1α, VEGFR, flt-3</td>
</tr>
<tr>
<td>6. Tissue invasion and Metastasis</td>
<td>C-MET</td>
</tr>
<tr>
<td>7. Deregulated cellular energetics</td>
<td>ARNT, HIF-1α, HMG1, SREBF1</td>
</tr>
<tr>
<td>8. Avoiding immune destruction</td>
<td>IRAK3</td>
</tr>
<tr>
<td>9. Tumor-promoting inflammation</td>
<td>IL-6, IL-8, IRAK1, IRAK2, IRAK3</td>
</tr>
<tr>
<td>10. Genome instability and mutation</td>
<td>FANCA, MAFG, NEK8, NEK9, NEK11</td>
</tr>
</tbody>
</table>

I.3. Hsp90 Inhibitors

The complexity of the Hsp90 chaperone cycle presents many opportunities to modulate Hsp90’s activity. Hsp90 inhibitors can be broadly divided into three classes on the basis of their binding to Hsp90: (1) Hsp90 N-terminal inhibitors; (2) Hsp90 C-terminal inhibitors; and (3) disrupters of co-chaperone interactions (Figure 3).4, 16, 19, 54-56 Natural products have played an essential role in the development of all three classes of inhibitors. At present, only N-terminal inhibitors have been evaluated in the clinic as anti-cancer agents. While N-terminal inhibition remains the most widely studied and sought after strategy, the latter two approaches are emerging as alternative strategies.22, 57-59

I.3.1. N-Terminal Inhibitors

I.3.1.1 Geldanamycin-Based Inhibitors
Geldanamycin (GDA) (Figure 3) was isolated from the *geldanus* variant of the filamentous soil bacterium, *Streptomyces hygroscopicus*, in 1970 and subsequently shown to manifest potent antibiotic and growth inhibitory activity against HeLa derived KB cancer cells. In subsequent years, GDA manifested potent anti-tumor activity against a variety of other cancer cell lines. However, Hsp90 was not identified as the biological target of GDA until 1994, when Whitesell

Figure 3. Representative Hsp90 inhibitors.
and co-workers demonstrated that GDA binds Hsp90 to induce the degradation of v-SRC, an oncogenic client protein of Hsp90.16 Although GDA manifests excellent potency, its hepatotoxicity, low chemical stability, and poor bioavailability prevented it from advancing to clinical trials.61 In order to produce new analogues with improved pharmacological properties, structure-activity relationship (SAR) studies on GDA have been pursued along with total synthesis, semi-synthesis, and genetic engineering of its biosynthetic pathway. These efforts have led to the development of derivatives that manifest superior pharmacokinetic and pharmacodynamic profiles.

![Figure 4. GDA-Analogues for improved Hsp90 inhibition. IC\textsubscript{50}a: Measured in p185 degradation assay (GDA: 70 nM); IC\textsubscript{50}b: measured in competitive binding assay in MCF-7 cell lysate (17-AAG: 20 nM); EC\textsubscript{50}c: measured Her2 degradation assay (GDA 5 nM).](image)

The most efficacious analogues of GDA were produced by semi-synthesis that modified the 17-position.17, 62-64 Due to the labile nature of the β-methoxy-α,β-unsaturated quinone, the 17-methoxy could be easily substituted with various nucleophiles to provide C-17 substituted analogues. Replacing the 17-methoxy with alkyl amines produced the greatest biological activities, which further stabilized the reactive quinone moiety. These efforts resulted in the development of 17-allylamino-GDA (17-AAG, Figure 4), which became the first Hsp90 inhibitor to enter in clinical trials.65, 66
Kosan Biosciences reported the synthesis of more than 60 analogues of the 17-position, as well as the C-7 carbamate during their pursuit of GDA analogues. Modifications to the carbamate decreased potency, as the carbamate provides key hydrogen bonding interactions with the N-terminal ATP-binding site of Hsp90. From these studies, 17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin (17-DMAG, Figure 4) was identified as a potent inhibitor of Hsp90 ($IC_{50} = 24 \text{nM}$) with excellent solubility. Subsequently 17-DMAG underwent clinical evaluation. 17-AAG undergoes cytochrome P450 3A4-mediated oxidation of the alpha methylene on the 17-amino substituent, resulting in subsequent hydrolysis of the C-N bond to produce the corresponding amine analogue (IPI-493, Figure 4). This metabolite manifests growth inhibitory activity against breast cancer cells (SKBr3) at 33 nM, which is similar to that of 17-AAG. Consequently, Infinity Pharmaceuticals developed another water soluble GDA analogue, IPI-504 (Figure 4). For IPI-504, the hydroquinone was more water-soluble than the corresponding quinone and upon subsequent preclinical studies, IPI-504 was found to exhibit excellent properties, which led to its clinical evaluation. In 2006, Porter and co-workers reported the hydroquinone analogues (Figure 5). These analogues exhibited increased binding affinity for Hsp90 compared to the corresponding quinone. These studies paralleled prior studies with radicicol and geldanamycin chimeras.

The biological evaluation of GDA and its derivatives have provided significant insights into Hsp90’s biological function, as well as established Hsp90 as a promising anti-cancer target. GDA has served as a starting point for several medicinal chemistry campaigns and as a result
several GDA analogues have advanced into clinical trials.71-75 The current focus of GDA research has centered on addressing the toxicities associated with the benzoquinone moiety, as well as the use of GDA analogues in combination with other therapies in the clinic.

I.3.1.2. Radicicol-Based Inhibitors

The resorcinol lactone, radicicol (RDC, Figure 6) was originally isolated from \textit{Monosporium bonorden} in 1953.76 RDC manifested antifungal properties and was later found to exhibit anti-tumor properties. Similar to GDA, RDC was believed to be an inhibitor of the v-Src and Ras-Raf-MAPK signaling pathways.24,77 RDC exhibited a similar biological profile as GDA, and in 1998, Schulte and co-workers demonstrated that RDC competes with GDA, for binding to Hsp90. Subsequent experiments showed that, like GDA, RDC binds the N-terminal ATP-binding site of Hsp90; however RDC binds in a different orientation.78,79

RDC manifests greater affinity for Hsp90 than GDA \textit{in vitro} (K_d in ATPase assay, 19 nM vs. 1.2 μM, respectively). However, the administration of RDC \textit{in vivo} does not produce anti-tumor activity, because RDC is rapidly metabolized to inactive metabolites due to its electrophilic nature (allylic epoxide and $\alpha,\beta,\gamma,\delta$-unsaturated ketone), which provides no \textit{in vivo} activity.80 Consequently, RDC was not considered a viable candidate for clinical evaluation.81 In addition to RDC, less electrophilic natural products (Figure 6) Monocillin I, Pochonins A, and Pochonins D, have also been identified as Hsp90 inhibitors, although they manifest inferior affinity.82-84

RDC attracted the attention of several synthetic groups beginning in the early 1990s, and the first total synthesis was reported in 1992.85,86 Subsequent routes toward the natural product were also developed by the Winssinger and Danishefsky laboratories.87-89 These total syntheses allowed for the preparation of the analogues with reduced electrophilicity and enhanced metabolic stability \textit{in vivo}. One strategy to reduce the metabolic susceptibility of RDC was to replace the
epoxide with a cyclopropyl ring. Danishefsky and co-workers reported analogues that incorporated the cyclopropyl ring (Figure 6), which resulted in a two-fold loss in cellular efficacy. Additionally, replacement of the epoxide with a difluorocyclopropane ring (Figure 6a) significantly decreased activity. A second strategy to increase the stability of RDC was to modify the 2’-ketone of RDC to the corresponding oxime. The oxime analogues provided the unsubstituted oxime analog, KF25706 (Figure 6a), which manifested comparable potency to RDC against various cancer cell lines. Metabolically stable KF25706 was evaluated in xenograft rodent models of cancer and reduced tumor growth over a 30-day period. Following this work, a series
of substituted oximes was prepared and evaluated for anti-cancer activity. A mixture of E and Z isomers complicated the development of oxime derivatives. However, it was determined that the E isomer possesses higher affinity for Hsp90. Metabolically stable RDC analogues represent a promising method to further develop these natural product inhibitors; however, the synthetic complexity associated with this scaffold renders this compound difficult for large scale production. Fortunately, the data obtained from RDC analogues presented a new pharmacophore that has been successfully utilized to design new Hsp90 inhibitors.

The resorcinol ring of RDC serves as a valuable pharmacophore for several highly efficacious Hsp90 inhibitors (Figure 7). Synta pharmaceutical developed the oxazolidinone containing, ganetespib (STA-9090, Figure 7), which is currently in 9 different clinical trial spanning phase I-II evaluation for the treatment of seven types of cancers. STA-9090 manifests greater efficacy than 17-AAG against various lung cancer cell lines (average IC$_{50}$ = 6.5 nM vs. 30.5 nM, respectively), and exhibits greater tumor penetration and an improved toxicity profile in preclinical models.

A medicinal chemistry campaign utilizing a structure-based approach led to the development of another clinical candidate, NYP-AUY922 (Figure 7), which is currently in phase II clinical trials for Her-2 positive and estrogen receptor positive metastatic breast cancers. AUY922 was also being evaluated in a phase II trial for non-small cell lung cancer (NSCLC) and produced a 20% response rate. AUY922 is also being evaluated for the treatment of patients with multiple myeloma in the presence and absence of the proteasome inhibitor, bortezomib. However, results have not been encouraging, as dose tolerance appears to be an issue when administered in combination with bortezomib. KW-2478 and AT13387 (Figure 7) are additional resorcinol-derived Hsp90 inhibitors that have advanced into clinical trials.
was developed by Kyowa Hakko Kirin Pharma in Japan through a unique lead optimization strategy that included the combination of microbial screening, structure-based drug design, cell-based screening, and in vivo models.106 This optimization strategy led to the identification of KW-2478, which manifests 3.8 nM affinity for Hsp90 and low nM anti-proliferative IC\textsubscript{50} values against various multiple myeloma cell lines. KW-2478 is currently being evaluated in patients with B-cell malignancies (phase I) and relapse or refractory multiple myeloma (phase I-II, in combination with bortezomib).98 Astex pharmaceuticals developed AT13387 from a fragment-based drug discovery approach. AT13387 manifests an IC\textsubscript{50} of 0.71 nM via fluorescence polarization and an anti-proliferative IC\textsubscript{50} of 48 nM against the HCT116 colon cancer cell line. AT13387 is currently in phase I trials for patients with metastatic solid tumors, as well as phase II trial for the treatment of gastrointestinal stromal solid tumors, with or without Imatinib.107

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{resorcinol-derived-Hsp90-inhibitors.png}
\caption{Resorcinol-derived Hsp90 inhibitors. IC\textsubscript{50} represents anti-proliferation activities.}
\end{figure}

\textbf{I.3.1.3. Chimeric Inhibitors}

One approach to develop new Hsp90 inhibitory scaffolds is to combine the key structural features found in both GDA and RDC. This approach offers the potential to retain key interactions from both natural products with Hsp90, while simultaneously reducing the structural complexity.
As a result, chimeric inhibitors would allow for identification of structure-activity relationships for each natural product.

The first chimeric inhibitor of Hsp90, radanamycin (Figure 8), focused on maintenance of the resorcinol-mediated hydrogen bonding network. The quinone moiety manifested a key hydrogen bonding network near the solvent-exposed region of the ATP-binding pocket and allowed for selective binding to the Hsp90 heteroprotein complex. Amino acids within this region were responsible for isomerization of the GDA amide bond, which dictated a high differential selectivity for the heteroprotein complex. 14, 93, 108

Radanamycin was further modified to generate more efficacious inhibitors using two different linkers to connect the quinone and resorcinol ring systems. The first approach connected the resorcinol ring to the quinone ring via a two carbon-linker containing an amide bond, which yielded radamide (Figure 8). Radamide inhibited Hsp90 ATPase activity at 5.9 μM compared to 2.5 μM for GDA and induced the degradation of Her2, an Hsp90-dependent client protein, in MCF-7 cells. The second approach connected the quinone to the ester linkage of RDC via a two carbon linker (Radester, Figure 8). Radester manifested an anti-proliferative IC50 of 13.9 μM against MCF-7 cell line. Hsp90 inhibition by radester was confirmed via degradation of Hsp90 client proteins, Raf and Her2. Importantly, the hydroquinone derivatives of radamide and radester manifested greater affinity for Hsp90 than the corresponding quinones. The hydroquinone derivative of radamide inhibited Hsp90’s inherent ATPase activity at 1.8 μM, and induced the degradation of Hsp90 client Her-2 levels in MCF-7 cells. Similarly, the radester-hydroquinone derivative manifested an anti-proliferative IC50 of 7.1 μM, and induced the degradation of Her2 and Raf levels. Additionally, the macrocyclic chimera, radanamycin manifested anti-proliferative activity against MCF-7 cells at 1.2 μM and induced the degradation of Hsp90 client proteins, Her2
and Akt. These studies proved important as Infinity Pharmaceuticals developed a hydroquinone derivative of GDA (IPI-504), which is currently undergoing clinical evaluation (see Figure 4).

Figure 8. Chimeric Hsp90 N-terminal inhibitors.

I.3.1.4. Purine-Based Inhibitors

In addition to the GDA and RDC, the natural substrate of Hsp90, ATP, has also been used as a starting point for the developing Hsp90 inhibitors. Chiosis and co-workers utilized the purine moiety of ATP as a template to develop small molecule inhibitors that bind the N-terminal ATP-binding site. Using a structure-based approach, the purine moiety was linked to an aryl ring, which mimicked the unique bent shape adopted by ATP within the N-terminal binding pocket. The first inhibitor of this class, PU3 (Figure 9), manifested low micromolar antiproliferative activity against various breast cancer cell lines. This early study identified a new class of purine based Hsp90 inhibitors and further structure-activity relationship studies resulted in a significant improvement in efficacy. Further optimization of PU3 led to the identification of a more potent compound, PU24FC1 (Figure 9). PU24FC1 manifested low micromolar antiproliferative effects against breast, lung, colon, and prostate cancer cell lines, and induced the degradation of Hsp90-dependent client proteins including Her2, Akt, Raf-1 and mutant p53. *In vivo* analysis PU24FC1 revealed tumor specific inhibition of Hsp90, as this compound accumulated
in tumor tissues, but rapidly cleared from normal tissue. Administration of PU24FCI decreased tumor volume upon dosing of 200mg/kg i.p. every other day for 30 days. Preliminary structure-activity relationship studies led to the development of more efficacious, second generation of purine analogues. This series of analogues included derivatives of the phenyl ring, and concluded that substituents at the 2-, 4- and 5-positions are important for Hsp90 inhibition (Figure 9).

Researchers at Conforma Therapeutics addressed the low bioavailability associated with the purine analogues and incorporated an amino group into the N-9 alkyl chain. Subsequently, phosphoric acid salts of these amines were evaluated in murine tumor xenograft models (Figure 9) and manifested high efficacy. Another important water soluble purine-derived inhibitor (PU-H71, Figure 9) was reported by Chiosis and co-workers, and contained a 3-
isopropylamino-propyl chain. This compound manifested a 16 nM binding affinity for Hsp90 and an IC\textsubscript{50} of 50 nM in Her2 degradation assays. This analogue manifested significant efficacy \textit{in vivo} and has advanced into clinical trials for the treatment of patients with low-grade non-Hodgkins lymphoma, as well as patients advanced malignancies. Later, Conforma Therapeutics reported analogues with an amine at the 2-position and a chlorine at the 6-position. The most efficacious analogue (BIIB021, Figure 9) also contained a pyridymethylene group at the 9-position. BIIB021 manifested 9 nM efficacy in Her2 degradation assays and exhibited 333-fold selectivity for tumor cells versus normal cells. After successful preclinical studies, this compound became the first rationally designed Hsp90 inhibitor to enter clinical trials and is currently being evaluated in Phase II trials for gastrointestinal stromal tumors. To increase drug exposure, researchers at Conforma therapeutics also reported the intravenously administered compound, BIIB028 (Figure 9), a phosphate ester prodrug of the homopropargylic alcohol, and it too, is currently under phase I clinical evaluation.

\textbf{I.3.1.5. Induction of Heat Shock Response}

An important consideration, which is often overlooked during development of N-terminal Hsp90 inhibitors, is the induction of the pro-survival heat-shock response. The heat shock response results in increased expression of various Hsp’s including, Hsp90, Hsp70, Hsp27, and Hsp42. An Hsp90 bound transcription factor, HSF-1 mediates this pro-survival response. In unstressed/normal cells, HSF-1 is bound to Hsp90 and is inactive. Under cellular stress, or the administration of an Hsp90 N-terminal inhibitor, heat shock factor-1 (HSF-1) dissociates from Hsp90. Once released, in the cytosol, HSF-1 is trimerized, hyperphosphorylated, and then translocated to nucleus, wherein it binds to heat shock element to initiate transcription of Hsp’s (Figure 10).
Induction of the heat-shock response is a concern as it negates the cytotoxic effect of Hsp90-inhibitors and results in cytostatic activity. Inhibition of the N-terminus by pan-Hsp90 inhibitors results in increased levels of Hsp90 and Hsp70. Clinical trials have demonstrated that induction of the heat-shock response results in both dosing and scheduling issues. In addition, the period of target inhibition remains insufficient to obtain necessary levels of oncogenic client protein degradation. Hence, alternative methods for Hsp90 inhibition are highly desirable.128, 129

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Induction of heat-shock response.}
\end{figure}

\textbf{I.3.2. C-Terminal Inhibitors}

\textbf{I.3.2.1. Discovery of Hsp90 C-Terminal Binding Site}

Unlike N-terminal inhibitors, Hsp90 C-terminal inhibitors do not induce the heat shock response at the same concentration they induce client protein degradation.130, 131 The second nucleotide binding site at the C-terminus of Hsp90 was not known until 2000.131, 132 Pioneering studies by Neckers and co-workers at NCI identified the C-terminal nucleotide binding pocket.130 Both Hsp90 and DNA gyrase are members of the GHKL superfamily of proteins, and share high similarity in their binding sites. In pursuit of new leads for Hsp90 inhibition, Neckers and co-workers hypothesized that inhibitors of DNA gyrase may also bind Hsp90.131 Hence, novobiocin was chosen as a probe to test whether it exhibits toxicity against cancer cells. Their hypothesis was confirmed by a concentration-dependent elution of Hsp90 with a novobiocin-sepharose column.
Furthermore, novobiocin eluted Hsp90 in a similar manner from GDA-sepharose column. However, GDA did not elute Hsp90 from a novobiocin-sepharose column, suggesting an alternative binding mode. In their binding studies with purified Hsp90 fragments, novobiocin did not bind the Hsp90 N-terminus of Hsp90. Unexpectedly, novobiocin bound to an Hsp90 fragment that contained the C-terminal amino acids, 580-728. Cellular Hsp90 inhibition by novobiocin was confirmed via western blot analysis of Hsp90 clients. Like N-terminal inhibitors, novobiocin induced the degradation of Raf-1, mutant p53, and her2, at high concentrations (~ 700 μM). Subsequently, via deletion/mutation studies Neckers and co-workers confirmed that novobiocin binds a region that overlaps with the C-terminal dimerization domain. Csermely and co-workers reported that occupancy of the N-terminal binding site is required for C-terminal occupation. In addition, this group determined via oxidative nucleotide cleavage studies, that the C-terminus binds both purine and pyrimidine nucleotides, while the N-terminus only binds the purine class of nucleotides. These studies established the existence of the second ATP-binding site within Hsp90 and suggested an alternative approach to modulate Hsp90.

I.3.2.2. Novobiocin

Novobiocin was identified as a lead compound for Hsp90 C-terminal inhibition and to the date, it is the most studied Hsp90 C-terminal inhibitor. Unlike N-terminal inhibitors, there is no co-crystal structure of an inhibitor bound to the Hsp90 C-terminus. Structure-activity relationship studies on novobiocin have provided analogues with improved efficacy, as well as selectivity, over DNA gyrase. A summary of these studies is provided in Figure 11. Removal of the 4-hydroxy group and 3’-carbamante resulted in DHN1 and DHN2 which manifested >300-fold improvement in anti-cancer activity. Importantly, these compounds were selective for Hsp90
Figure 11. Novobiocin analogues for Hsp90 C-terminal inhibition.
over DNA gyrase. Subsequent optimization of the coumarin core, noviose sugar, and benzamide side chain resulted in optimal replacements for these moieties.136, 147, 149, 153 Replacement of coumarin core with other aromatic/heteroaromatic cores (KU857, KU890) improved efficacy and suggested that the central coumarin core serve as a backbone to project the sugar and benzamide side chains within the C-terminal binding pocket.154-156 The complex noviose sugar was replaced with alkyl amines. Modification of the benzamides linker with a triazole and urea moiety resulted in improved anti-proliferation activities (KU675, KU1023).157, 158

I.3.2.3. Silybin

Silybin is the principal component of the flavonolignan extract isolated from the seed of milk thistle plants (Silybum marianum) (Figure 12).159 Silybin demonstrated hepato-protective and growth inhibitory activity against various cancer cells. Prior studies demonstrated that silybin induced depletion of CDK2, CDK4, and cyclin D1 proteins in colon cancer cells.160, 161 Cyclin D1, CDK2 and CDK4 are well-known Hsp90-dependent clients, which led to the assumption that silybin could be an Hsp90 inhibitor. Subsequently, using a luciferase refolding assay Zhao and co-workers demonstrated that Hsp90 is a biochemical target for Silybin.58, 162 Silybin induced a concentration-dependent degradation of the Hsp90-dependent client proteins Her2, Raf-1, and Akt, without affecting Hsp70 or Hsp90 levels. Further SAR studies in the Blagg laboratory showed that the C-3 and C-23 hydroxyl groups were not required for activity; however, at least one substitution (preferably 4-hydroxyl) on the E-ring was beneficial for activity. The A-ring phenol was not required and its removal led to the development of compounds (Figure 12), that manifested IC\textsubscript{50}’s of 13 µM and 16 µM against MCF-7 cell lines, respectively.58
I.3.3. Disruptors of Hsp90 Interaction with Co-Chaperones and Client Proteins

Currently, most Hsp90 inhibitors undergoing clinical evaluation are pan-Hsp90 N-terminal inhibitors. To overcome the detrimental side effects of these N-terminal inhibitors, there is growing interest to identify new Hsp90 modulators that exhibit alternative mechanisms of actions. Over the past decade, various natural products have emerged that disrupt interactions between Hsp90 and its co-chaperones.56, 57, 116 These compounds represent new chemotypes for the development of future Hsp90 inhibitors. Several natural products, such as celastrol, gedunin, and cruentaren A have been shown, amongst a plethora of other biochemical and biological effects, to disrupt interactions between Hsp90 and its partner proteins. Some of these natural products and their mechanisms of action are presented in Figure 13.

I.3.3.1. Celastrol

Celastrol is a pentacyclic quinone methide comprising triterpenoid natural product (Figure 13) is isolated from the root extract of Tripterygium wilfordii Hook F. (also known as Thunder of
Gedunin: a disruptor of Hsp90-p23 interaction

α,β-unsaturated ketone is important for activity

Gedunin
(MCF-7, IC\textsubscript{50} = 8.84 μM)

Optimization
(MCF-7, IC\textsubscript{50} = 54.3 μM)

Withaferin A, Gambogic Acid, Derrubone and Celestrol:
disruptors of Hsp90-CDC37 interaction

Essential for biological activity

Withaferin A
(Panc1, IC\textsubscript{50} = 1.24 μM)

Interacts with cysteine residue of Hsp90

Gambogic acid
(MCF-7, IC\textsubscript{50} = 2.0 μM)
(SKBr3, IC\textsubscript{50} = 0.8 μM)

Essential for biological activity

Contributes to inhibitory activity

Derrubone
(MCF-7, IC\textsubscript{50} = 11.9 μM)
(HCT116, IC\textsubscript{50} = 13.7 μM)

(MCF-7, IC\textsubscript{50} > 100 μM)
(HCT116, IC\textsubscript{50} > 100 μM)

Optimization

Celestrol
(Hep3B HCC, IC\textsubscript{50} = 0.30 μM)

Contributes to inhibitory activity

(MCF-7, IC\textsubscript{50} > 100 μM)

R = Me
(Hep3B HCC, IC\textsubscript{50} = 0.85 μM)

R = -NHCH\textsubscript{2}CH\textsubscript{2}Ph
(Hep3B HCC, IC\textsubscript{50} = 1.06 μM)

R = -OCH\textsubscript{2}CH\textsubscript{2}Ph
(Hep3B HCC, IC\textsubscript{50} = 2.77 μM)

Cruentaren A: a Hsp90/F1F0 ATP synthase disruptor

EC\textsubscript{50} of Cruentaren A

Cancer cell lines
MCF-7: 8 nM
A549: 0.19 nM

Normal human cell lines
HEK293 > 500 nM
MRC5 > 500 nM

Cruentaren A
(Hep3B HCC, IC\textsubscript{50} = 0.30 μM)

Figure 13. Disruptors of Hsp90 interaction with co-chaperones and client proteins.
God Vine) and has been used in oriental medicine to treat autoimmune disorders and inflammatory diseases.163, 164 Upon biological evaluation, celastrol exhibited anti-proliferative, anti-metastatic, and pro-apoptotic activities against various cancer cell lines.165 In 2006, Hieronymus and coworkers reported that celastrol disrupts Hsp90-related pathways, which contributes to its anti-cancer activity, and subsequently it was shown to disrupt association of Hsp90 with co-chaperone cdc37.30, 166 Celastrol has a high propensity to form covalent adducts with cysteine, which contributes to its promiscuity and limits its utility as an Hsp90 modulator. In addition to celastrol, derrubone, withaferin A and, gambogic acid also inhibit Hsp90’s interaction with co-chaperone cdc37.167-169

\subsection*{I.3.3.2. Gedunin}

Gedunin (Figure 13) is a tetranortriterpenoid isolated from the Indian neem tree (Azadirachta indica, Meliacae). Gedunin has been used for the treatment of infectious diseases in traditional Indian medicine. In addition, gedunin has been shown to exhibited anti-proliferative activity against various cancer cell lines including colon, prostate, and ovarian.170, 171 In 2006, gedunin was reported to modulate Hsp90’s function and shown to induce degradation of Hsp90 client proteins.166 Subsequently in 2013, Patwardhan and co-workers reported that gedunin binds to Hsp90 co-chaperone p23, and blocks its interaction with Hsp90 and inhibited Hsp90 chaperone cycle.172 Gedunin exhibited modest efficacy against cancer cell lines. In order to identify key structural features for cytotoxic activity, Brandt and co-workers prepared 19 semisynthetic derivatives.59 The α,β-unsaturated ketone was found to be important for anti-proliferative activity. However, a more active analog could not be identified.

\subsection*{I.3.3.3. Cruentaren A}

Cruentaren A (12, Figure 13) is a macrolide isolated from the myxobacterium Byssovora
and manifests low nM anti-proliferative activity against various cancer cell lines. The biological target of cruentaren A has been identified as F₁F₀-ATP synthase, the enzyme responsible for the mitochondrial production of ATP. In 2006, Papathanassiou and coworkers reported that F₁F₀-ATP synthase could act as an Hsp90 co-chaperone that provides the energy required for the maturation of client proteins. Recently, Hall and co-workers demonstrated that incubation of cruentaren A disrupted interactions between Hsp90α and F₁F₀-ATPase synthase. Interestingly, inhibition of F₁F₀-ATPase synthase via cruentaren A induced the degradation of select Hsp90 client proteins without induction of the heat-shock response. Cruentaren A thus represents a novel mechanism to modulate Hsp90 however, limited synthetic accessibility to cruentaren A represents an obstacle that has yet to be overcome.

I. 4. Conclusions & Future Directions

Inhibition of Hsp90’s function represents a multifaceted approach to treat cancer due to the fact that Hsp90-dependent client proteins are associated with all ten hallmarks of cancer. Consequently, Hsp90 has attracted the attention of researchers throughout the world. These efforts identified of key interactions within the N-terminal ATP binding pocket, and has led to discovery of new classes of Hsp90 inhibitors. Beginning with the discovery of natural product inhibitors of Hsp90 (GDA and RDC), many analogues have been designed to probe the biological function of Hsp90, 17 of which have advanced into clinical trials. While GDA never advanced into clinical trials, 17-substituted GDA-analogues have proven to be superior candidates, and advanced to the clinic. Likewise, RDC did not advance into clinical trials however, the resorcinol ring of RDC provided a key pharmacophore as several medicinal chemistry campaigns have used the resorcinol moiety as a starting point to produce candidates that are currently undergoing clinical evaluation. The natural substrate of Hsp90, ATP, has also been used to develop purine class of inhibitors that
have advanced into clinical trials. Even though Hsp90 inhibitors have shown promise in clinical trials, no compound has yet been approved by the FDA. These somewhat disappointing results highlight the need to comprehensively understand the biology of Hsp90 and its isoforms. Two major concerns associated with Hsp90 inhibitors are toxicities (ocular-, cardio-, hepato-toxicities), and induction of the heat shock response, as both obstacles resulted in the termination of some trials, suggesting new approaches to Hsp90 inhibition are needed.

One strategy that may prove useful to circumvent the known pitfalls from pan-Hsp90 inhibition is the development of isoform-selective inhibitors. By developing selective inhibitors of each isoform, toxicities associated with individual isoforms may be overcome. Furthermore, upon identification of client proteins that are dependent upon each isoform, perhaps more personalized treatments can be developed. An additional strategy involves developing Hsp90 C-terminal inhibitors that do not induce the heat shock response at concentrations needed for client protein degradation, and therefore should address the dosing and scheduling detriments associated with N-terminal inhibitors. Recently, co-chaperone disruptors have emerged as promising alternatives to modulate Hsp90. Hsp90 isoform-selective inhibitors, C-terminal inhibitors and, co-chaperone disruptors represent promising approaches to overcome limitations of current inhibitors.

I. 5. References

Chapter II

Synthesis and Structure–Activity Relationships of EGCG Analogues

II.1. Introduction to EGCG

Green tea is one of the most popular beverages consumed worldwide and its consumption has been associated with many health benefits.\(^1\)-\(^6\) Green tea is composed of alkaloids (caffeine, theophylline, and theobromine), amino acids, proteins, carbohydrates, volatile organic compounds, and polyphenols.\(^7\) The catechins (Figure 14), which are responsible for the some of the health benefits attributed to the consumption of green tea polyphenols, are part of the polyphenolic component of the green tea.\(^8\)-\(^10\) Epigallocatechin-3-gallate (EGCG) is the most abundant catechin found in the green tea (Table 3), and exhibits both antioxidant activity and anticancer activity \textit{in vitro} and \textit{in vivo}.\(^8\), \(^11\)-\(^14\) Additionally, EGCG exhibits beneficial effects in several diseases including diabetes, Parkinson’s, Alzheimer’s, and obesity.\(^15\)-\(^20\)

![Figure 14. Structure of green tea catechins.](image)

EGCG has been shown to be an efficacious agent in cancer chemoprevention against a broad range of carcinogens. EGCG acts on multiple signal transduction pathways associated with differentiation, apoptosis, inflammation, angiogenesis and metastasis.\(^1\), \(^6\), \(^7\), \(^16\) Recent studies have provided additional mechanistic insights and revealed that EGCG suppresses the levels of various cancer biomarkers.\(^20\)-\(^24\) As a result, EGCG is currently undergoing multiple clinical trials to evaluate its chemopreventive activity.\(^25\)-\(^32\) Results from these studies have been encouraging, as
daily consumption of EGCG delays the onset of cancer and lower the rate of recurrence in breast cancer patients.

Table 3. Catechin concentrations in green tea

<table>
<thead>
<tr>
<th>Catechin in green tea infusion</th>
<th>Catechin Concentration (mg/L)</th>
<th>Catechin Concentration (mg/8 fl oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCG</td>
<td>117-442</td>
<td>25-106</td>
</tr>
<tr>
<td>EGC</td>
<td>203-471</td>
<td>49-113</td>
</tr>
<tr>
<td>ECG</td>
<td>17-150</td>
<td>4-36</td>
</tr>
<tr>
<td>EC</td>
<td>25-81</td>
<td>6-19</td>
</tr>
</tbody>
</table>

EGCG also manifests anti-proliferative effects against various types of cancer including breast, colon, lung, blood, and skin cancers. EGCG inhibits tumor growth via multiple mechanisms of action (Table 4). In oral cancer cells, EGCG blocked cell division in the G1 phase and suppressed mitogenic signal transduction by prohibiting the binding of growth factors to their receptors. Similarly, EGCG also induced cell cycle arrest in the G0/G1 phase in MCF-7 cells at 30 μM. In human lymphoid leukemia cells, EGCG inhibited cell proliferation and induced apoptosis. Additionally, EGCG has been shown to modulate aberrant epigenetic alternations associated with tumor initiation and progression, including DNA methylation. EGCG blocked DNA methylation via inhibition of DNA methyltransferases (DNMT’s) in colon cancer (HT-29) cells, esophageal cancer (KYSE-150), and prostate cancer (PC3). EGCG exhibited efficacy in xenograft model of breast and pancreatic cancer, and manifested anti-cancer activity in a human prostate cancer progression model.

In recent years, an increasing number of studies have been conducted to evaluate EGCG as an adjuvant for cancer chemotherapy. For example, the co-administration of EGCG with traditional cancer chemotherapeutics have resulted in additive or synergistic effects; cisplatin,
tamoxifen, 5-flurouracil, temozolamide exhibited enhanced activity when given in combination with EGCG. These activities likely result from EGCG’s ability to act as a chemosensitizer and to modulate the pharmacokinetics of drugs by inhibition of the P-glycoprotein efflux pumps.

Table 4. Molecular Mechanisms of EGCG.

<table>
<thead>
<tr>
<th>Molecular Mechanism</th>
<th>Molecular Targets</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of cell cycle arrest</td>
<td>CyclinD, Cyclin E, CDK1, CDK2, CDK4, CDK6</td>
<td>45, 50-52</td>
</tr>
<tr>
<td>Induction of apoptosis</td>
<td>Survivin, c-IAP1, c-IAP2, Bcl-xl, Caspase-3, Caspase-9</td>
<td>13, 53-56</td>
</tr>
<tr>
<td>Inhibition of proliferation and Inflammation</td>
<td>PI3K, EGFR, COX-2, HIF-1a, AKT, ERK,</td>
<td>45, 57-60</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>HIF-1a, Erb2, VEGFR1 & 2</td>
<td>61-63</td>
</tr>
<tr>
<td>Metastasis</td>
<td>MMP2-9, MMP-2, laminin</td>
<td>64-66</td>
</tr>
<tr>
<td>Epigenetic modifier</td>
<td>DNMT’s, HAT</td>
<td>40, 42, 67</td>
</tr>
<tr>
<td>Proteosomal activity</td>
<td>20S/26S proteasome complex</td>
<td>68, 69</td>
</tr>
</tbody>
</table>

II.1.1. Binding of EGCG to Hsp90

While EGCG exerts anticancer effects for decades, its association with Hsp90 was not identified until recently. Studies on EGCG's chemoprevention effect led to the identification of Hsp90 as one of its biological target. In 2005, Palermo and co-workers showed that EGCG blocked (AhR)-mediated transcription induced by a potent carcinogen 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), by a mechanism that involves Hsp90.70 Aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor that mediates toxic effects of numerous toxins including polycyclic aryl hydrocarbons (PAH’s), which binds to the AhR. In cytosol, AhR exists in a protein complex with Hsp90, p23, and XAP2. Upon binding of PAH’s to AhR, XAP2 is dissociated from the complex and the Hsp90-AhR complex translocated to nucleus. Subsequent events lead to the
generation of DNA adducts that facilitate carcinogenesis. EGCG exhibited its chemo-preventive activity and inhibited the AhR-mediated carcinogenesis, however, it did not compete for binding to AhR. This study led to the discovery of an indirect mechanism of AhR modulation that involved the binding of EGCG to the Hsp90 C-terminus. Subsequent affinity purification studies demonstrated that EGCG binds to amino acids 538-728 within the Hsp90 C-terminus to inhibit AhR-mediated transcription. Additionally, EGCG induced the degradation of other Hsp90 clients as well, including Raf1, Her2, and Akt, while levels of Hsp90 and Hsp70 remained unchanged.\(^\text{71}\)

While EGCG manifests modest efficacy against various cancer cell lines, the poor bioavailability and lipophilicity of EGCG along with its metabolically labile functionalities make EGCG a poor lead compound for clinical development.\(^\text{72,73}\) At the time, only two natural products novobiocin and silybin were known to bind the Hsp90 C-terminus, and therefore EGCG was pursued as a probe to further investigate the mechanism by which C-terminal inhibitors modulate the Hsp90 protein folding machinery.

II.2. Proposed EGCG Analogues

EGCG exhibits antioxidant activity both *in vitro* and *in vivo*, which also leads to epimerization and/or dimerization (Figure 15) and contributes to its low efficacy and metabolic instability.\(^\text{74-77}\) Epimerization of the methine hydrogen leads to formation of the thermodynamically more stable anti product, GCG (Figure 15a), whose activity against Hsp90 has not been investigated. EGCG is prone to autoxidation and dimerizes to give theasinensin A, and P2 (Figure 15b). Studies by Suzuki and co-workers have shown that phenols on the B-ring facilitates epimerization at C-2, whereas O-methylated derivatives of the 4-phenols prevent epimerization.\(^\text{77}\) Therefore, the design of new EGCG analogues must take these prior studies into account in an effort to produce stable derivatives that are not prone to oxidation/epimerization.
To probe EGCG’s structure-activity relationships with Hsp90, three series of analogues (Figure 16) were pursued; (I) 3’,4’,5’-trimethoxy groups were incorporated into the B-ring, (II) compounds omitting substituents on the B-ring were prepared, and (III) compounds lacking the B-ring were also constructed. Furthermore, the phenols on the A-ring were converted to methyl ethers for biological evaluation and finally, the gallic acid moiety (D-ring) of EGCG was replaced with various aryl acids for elucidation of additional SAR trends. These aryl acids were chosen to probe the effect of substitution at the 3- and 4-position of the D-ring and to incorporate optimized novobiocin appendages to evaluate their potential for overlapping binding modes.78-81

\textbf{Figure 15.} Chemical instability of EGCG: (a) Mechanism of epimerization of EGCG; (b) antioxidation products of EGCG.
II.3. Synthesis and Evaluation of Series I and Series II EGCG Analogues

II.3.1 Synthesis of Series I Analogues

Syntheses of the A-, B- and D-ring modified compounds (7a–e and 8a–e) are described in Scheme 1. Prior work by Li and co-workers provided rapid access towards preparation of the flavon-3-ol core, enlisting the use of a silica/sulfuric acid catalyst to couple electron rich phenols (1a–b) with (E)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-ol, which worked surprisingly well and led to various substituted A-ring analogues (2a–b). Dihydroxylation of the resulting alkenes (2a–b) with catalytic osmium tetroxide and excess N-methylmorpholine-N-oxide gave the corresponding diol’s, 3a–b. Various methods have been reported for cyclization and construction of the benzopyran core; however, stereochemical control at the 2,3-ring junction depends upon substituents on the B-ring. Therefore, cyclization of diol’s 3a–b to furnish the 2,3-dihydrobenzopyran core in a stereoselective manner was pursued via two steps. Treatment of 3a–b with trimethylorthoacetate in the presence of catalytic pyridinium p-toluenesulfonate, formed

Figure 16. Three different series of EGCG analogues.
the corresponding orthoesters, which upon the addition of 10% boron trifluoride diethyl etherate produced the desired cyclic products. Without purification, the cyclized products were subjected to solvolysis conditions to furnish alcohols 4a–b in high yields and with the anti-configuration. The 2,3-syn products, 5a–b, were established by Dess-Martin oxidation of the secondary alcohols

![Scheme 1. Synthesis of Series I analogues.](image)

(4a–b) to the corresponding ketones, which underwent subsequent reduction with L-selectride to give syn products, 5a–b, respectively. These flavon-3-ol moieties (5a–b) served as late stage intermediates to incorporate additional substitutions onto the D-ring. Aryl acids 6a–e were chosen
as replacements for the metabolically labile, gallic ester moiety of EGCG and also represent optimized side chains identified from prior studies with the other Hsp90 C-terminal inhibitor, novobiocin. Acids 6a–c were purchased from commercial sources and 6d and 6e were synthesized following literature procedures. Coupling of the alcohols (5a–b) with aromatic acids 6a–e enlisting 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI) and 4-dimethylaminopyrine (DMAP) gave the corresponding esters, 7a–j. Hydrogenolysis of 7f–i with palladium/carbon and hydrogen gas gave 8a–d in high yield. Cleavage of benzyl ethers of 7j was accomplished using transfer hydrogenation using triethylsilane to give the desired 8e.86

II.3.2. Synthesis of Series II Analogues

Syntheses of compounds omitting substitution on the B-ring (13a–e and 14a–e) are described in Scheme 2. These compounds were synthesized similar to Series I compounds starting from commercially available cinnamyl alcohol and phenols 1a and 1b.

II.3.3. Biological Evaluation of Series I and Series II Analogues

Upon preparation of the A-, the D-ring modified B-ring substituted EGCG analogues (7a–e, 8a–e and, 13a–e, 14a–e), these compounds were evaluated against MCF-7 and SKBr3 breast cancer cell lines for determination of their anti-proliferative activities (Table 5). The SkBr3 (estrogen receptor negative, Her2 overexpressing) and the MCF-7 (estrogen receptor positive) cell lines were chosen due to the fact that both Her2 and the estrogen receptor are Hsp90-dependent client proteins. Four of the D-ring analogues that contain two methoxy groups on the A-ring and no substituents on the B-ring (13a–d) were inactive against both MCF-7 and SKBr3 cell lines. Only compound 13e manifested significant anti-proliferative activity with an IC$_{50}$ value of 25.35 ± 5.25 μM against MCF-7 and 36.1 ± 2.51 μM against SKBr3 cell lines. Similar trends were observed for compounds (7a–e) containing the 3,4,5-trimethoxy substituents on the B-ring, as only
7e was found to be potent with IC$_{50}$ values of 19.48 ± 2.5 μM and 24.87 ± 3.29 μM against MCF-7 and SKBr-3 cell lines, respectively. Analogues 14a–e containing phenols on the A-ring were more potent when compared to EGCG and analogues with methyl ethers (13a–e). Incorporation of a methoxy group at the meta- and the para-positions of the D-ring (14b and 14c) did not alter activity when compared to unsubstituted analogue, 14a. Compound 14e was found to be the most potent of this series and displayed an IC$_{50}$ value of 3.99 ± 1.4 μM against the MCF-7 cell line. In contrast, compounds with 3-,4-,5-trimethoxy groups on the B-ring (8a–e) were less active when compared to analogues without substitution on the B-ring (14a–e). This data suggests that substitutions on the B-ring are detrimental to activity, whereas replacement of the gallate ester moiety with prenyl benzoate enhances potency. In addition, the MCF-7 cell line was more sensitive than the SKBr3 cell line upon administration of these analogues.

Scheme 2. Synthesis of Series II analogues.

Reagents: (a) SiO$_2$/H$_2$SO$_4$; (b) OSO$_3$, NMO; (c) PPTS, trimethyl orthoacetate; (d) BF$_3$ OEt$_2$; (e) K$_2$CO$_3$, MeOH (f) Dess - Martin periodinane; (g) L-selectride, LiBr; (h) EDCl, DMAP, ArCOOH; (i) Pd/C, H$_2$ or Et$_3$SiH, Et$_3$N, Pd(OAc)$_2$.
Table 5. Anti-proliferative activities produced by A-, B- and the D-ring modified EGCG analogues

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R₁</th>
<th>Ar</th>
<th>MCF-7 (IC₅₀, μM)</th>
<th>SKBr3 (IC₅₀, μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>74.4 ± 2.19</td>
<td>100.16 ± 0.03</td>
</tr>
<tr>
<td>GDA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.05 ± 0.03</td>
<td>0.008 ± 0.02</td>
</tr>
<tr>
<td>13a</td>
<td>Me</td>
<td>H</td>
<td>a</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>13b</td>
<td>Me</td>
<td>H</td>
<td>b</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>13c</td>
<td>Me</td>
<td>H</td>
<td>c</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>13d</td>
<td>Me</td>
<td>H</td>
<td>d</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>13e</td>
<td>Me</td>
<td>H</td>
<td>e</td>
<td>25.35 ± 5.25</td>
<td>36.1 ± 2.51</td>
</tr>
<tr>
<td>7a</td>
<td>Me</td>
<td>OMe</td>
<td>a</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>7b</td>
<td>Me</td>
<td>OMe</td>
<td>b</td>
<td>91.18 ± 0.76</td>
<td>>100</td>
</tr>
<tr>
<td>7c</td>
<td>Me</td>
<td>OMe</td>
<td>c</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>7d</td>
<td>Me</td>
<td>OMe</td>
<td>d</td>
<td>88.7 ± 11.31</td>
<td>>100</td>
</tr>
<tr>
<td>7e</td>
<td>Me</td>
<td>OMe</td>
<td>e</td>
<td>19.48 ± 2.5</td>
<td>24.87 ± 3.29</td>
</tr>
<tr>
<td>14a</td>
<td>OH</td>
<td>H</td>
<td>a</td>
<td>15.26 ± 0.57</td>
<td>18.67 ± 0.82</td>
</tr>
<tr>
<td>14b</td>
<td>OH</td>
<td>H</td>
<td>b</td>
<td>13.10 ± 0.86</td>
<td>15.42 ± 1.04</td>
</tr>
<tr>
<td>14c</td>
<td>OH</td>
<td>H</td>
<td>c</td>
<td>13.12 ± 0.54</td>
<td>17.26 ± 2.27</td>
</tr>
<tr>
<td>14d</td>
<td>OH</td>
<td>H</td>
<td>d</td>
<td>14.14 ± 0.73</td>
<td>19.88 ± 3.22</td>
</tr>
<tr>
<td>14e</td>
<td>OH</td>
<td>H</td>
<td>e</td>
<td>3.99 ± 1.49</td>
<td>21.45 ± 4.75</td>
</tr>
<tr>
<td>8a</td>
<td>OH</td>
<td>OMe</td>
<td>a</td>
<td>65.88 ± 2.15</td>
<td>>100</td>
</tr>
<tr>
<td>8b</td>
<td>OH</td>
<td>OMe</td>
<td>b</td>
<td>45.72 ± 0.41</td>
<td>37.92 ± 4.08</td>
</tr>
<tr>
<td>8c</td>
<td>OH</td>
<td>OMe</td>
<td>c</td>
<td>42.80 ± 7.30</td>
<td>62.90 ± 0.70</td>
</tr>
<tr>
<td>8d</td>
<td>OH</td>
<td>OMe</td>
<td>d</td>
<td>47.31 ± 3.39</td>
<td>71.9 ± 2.76</td>
</tr>
<tr>
<td>8e</td>
<td>OH</td>
<td>OMe</td>
<td>e</td>
<td>42.08 ± 1.85</td>
<td>50.4 ± 1.39</td>
</tr>
</tbody>
</table>

II.4. Synthesis and Evaluation of Series III Analogues

Biological evolution of Series-I and Series-II analogues established that substituents on the B-ring of EGCG are not essential for efficacy. In addition, phenols on the A-ring were more efficacious that the corresponding methyl ethers. To probe the necessity of the B-ring, a new series of compounds was proposed (Series III) than lack the B-ring. As shown in Figure 17, the proposed
analogues would also probe the role of individual A-ring phenols. Aryl acids 6a–e were used as gallic acid replacements. Additionally, phenols were also incorporated on the D-ring for evaluation.

![Figure 17. Proposed series-III analogues lacking the B-ring of EGCG.](image)

II.4.1. Syntheses of Series IIIa-c Analogues

Syntheses of analogues that lack the B-ring and contain phenols on the A-ring were commenced by the treatment of 3,5-dibenzylxylophenol (1b, Scheme 3) with allyl bromide in the presence of potassium carbonate to give allyl ether 16a.\(^{87}\) 3,3-Sigmatropic rearrangement of the O-allylated product (16a) gave 17a in high yield. Upjohn dihydroxylation of the resulting olefin afforded diol 18a.\(^{88}\) Unfortunately, attempts to cyclize via the orthoester were unsuccessful as only the 5-membered benzofuran ring containing product was formed. Therefore, an alternative strategy for the cyclization of 19a was pursued. Treatment of the primary alcohol present in 19a with \(p\)-toluenesulfonyl chloride formed of the corresponding \(p\)-toluenesulfonic ester, which underwent intramolecular cyclization upon exposure to potassium carbonate to give a 1:1 mixture of 5- and 6-membered rings that were separated by silica gel chromatography. Subsequent coupling of 20a with various substituted benzoic acids produced the requisite esters, which underwent hydrogenolysis to afford 21a–i, respectively.
Upon construction of analogues that lack the B-ring, each phenol on the A-ring was systematically investigated. Therefore, derivatives 21i–s that contain only one phenol at either the 5- or the 7-positions were pursued similar to that described above. Allylation of the phenol (15) gave ally ether, 16b. 3,3-Rearrangement of the allyl ether (16b) gave a mixture of two regioisomers, 17b and 17c, which upon dihydroxylation and subsequent ring closure gave 20b and 20c, respectively.

II.4.2. Biological Evaluation of Series IIIa-c Analogues

Table 6. Anti-proliferative activities produced by 3,5-dihydroxychroman-3-ol esters.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>MCF-7 (IC₅₀, µM)</th>
<th>SKBr3 (IC₅₀, µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21a</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>98.24 ± 1.76</td>
<td>>100</td>
</tr>
<tr>
<td>21b</td>
<td>OH</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>57.75 ± 3.12</td>
<td>50</td>
</tr>
<tr>
<td>21c</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21d</td>
<td>OH</td>
<td>OH</td>
<td>OMe</td>
<td>OMe</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21e</td>
<td>OH</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>OMe</td>
<td>96.50 ± 3.51</td>
<td>>50</td>
</tr>
<tr>
<td>21f</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>61.94 ± 6.85</td>
<td>85.30 ± 5.36</td>
</tr>
<tr>
<td>21g</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21h</td>
<td>OH</td>
<td>OH</td>
<td>m-OMePh</td>
<td>OMe</td>
<td>H</td>
<td>21.93 ± 2.27</td>
<td>34.84 ± 16.29</td>
</tr>
<tr>
<td>21i</td>
<td>OH</td>
<td>OH</td>
<td>Prenyl</td>
<td>OAc</td>
<td>H</td>
<td>10.66 ± 1.09</td>
<td>23.15 ± 0.25</td>
</tr>
<tr>
<td>21j</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21k</td>
<td>OH</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21l</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21m</td>
<td>OH</td>
<td>H</td>
<td>m-OMePh</td>
<td>OMe</td>
<td>H</td>
<td>55.09 ± 5.53</td>
<td>57.73 ± 4.28</td>
</tr>
<tr>
<td>21n</td>
<td>OH</td>
<td>H</td>
<td>Prenyl</td>
<td>OAc</td>
<td>H</td>
<td>15.94 ± 1.86</td>
<td>25.25 ± 4.05</td>
</tr>
<tr>
<td>21o</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21p</td>
<td>H</td>
<td>OH</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21q</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>21r</td>
<td>H</td>
<td>OH</td>
<td>m-OMePh</td>
<td>OMe</td>
<td>H</td>
<td>21.6 ± 2.55</td>
<td>41.72 ± 0.34</td>
</tr>
<tr>
<td>21s</td>
<td>H</td>
<td>OH</td>
<td>Prenyl</td>
<td>OAc</td>
<td>H</td>
<td>60 ± 7.38</td>
<td>>100</td>
</tr>
</tbody>
</table>

Results from the anti-proliferative studies with compounds 21a–s are summarized in Table 6. In addition to previously investigated substituents, the effect of hydroxyl substitution on the D-ring was also explored. Many of the compounds were more potent than EGCG itself. This data suggests that methoxy substituents on the D-ring are more beneficial than the naturally occurring phenols, and corresponds to an overall pattern represented by O-alkyl substitutions at the 3’-position being more active than those at the 4’-position. Data also suggested that aryl and prenyl substitution on the D-ring enhanced efficacy, as 21h manifested an IC₅₀ value of 21.93 ± 2.27 µM against MCF-7 cells and 41.72 ± 0.34 µM against SKBr3 cells. Compounds containing only one
phenolic group at the 5-position on the A-ring showed decreased activity, except for 21s. Similarly, compounds with a 7-hydroxyl substitution on the A-ring showed decreased activity with the exception of 21n, which manifested enhanced activity and an IC$_{50}$ value of 55.09 ± 5.53 μM against the MCF-7 cell line. Similar to the most active analogue produced from the B-ring series, 14e, the most active analogue identified in this series was 21i (IC$_{50}$ ~ 10 μM in MCF-7 cell line), which also incorporated the prenylated benzoic ester side chain.

II.4.3. Synthesis of Series III-d Analogues

In an effort to further investigate the A-ring, the free phenols were replaced with methyl ethers. 5,7-Dimethoxychroman-3-ol (24) was synthesized in two steps using a gold(III)-mediated procedure as described by Zhangjie and co-workers (Scheme 4). Commencing with commercially available 3,5-dimethoxyphenol and enlistment of epichlorohydrin and sodium hydride, oxirane 23 was produced, which was treated with gold(III) chloride/silver trifluormethanesulfonate catalyst to yield 24. Upon construction of the chroman-3-ol core (24), subsequent coupling with various substituted aryl acids furnished the corresponding esters, 25a–m. Hydrogenolysis of 25i–m produced the final products 26a–e.

II.4.4. Biological Evaluation of Series III-d Analogues

Results from anti-proliferative studies for compounds lacking the B-ring are summarized in Table 7. The 3-methoxy substituted compound 26b was the most active compound against the MCF-7 and the SKBr3 cell lines, and manifested IC$_{50}$ values 0.78 ± 0.02 μM and 0.88 ± 0.06 μM, respectively. Increasing the length of the side chain decreased activity for compound 25h. The phenol was more beneficial at the 4’-position in lieu of the 3’-position. Unfortunately, the combination of 3-methoxy and 4-hydroxyl substitutions on the D-ring (26e) did not improve anti-proliferative activity. Once again, MCF-7 cells exhibited greater sensitivity to these compounds.
The IC\textsubscript{50} values for 25d and 25e correlated directly with prior studies using novobiocin, suggesting a beneficial effect for inclusion of an aryl or prenyl group on the D-ring.

Scheme 4. Syntheses of series III-d.

Table 7. Biological evaluation of series III-d.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R\textsubscript{1}</th>
<th>R\textsubscript{2}</th>
<th>R\textsubscript{3}</th>
<th>MCF-7 (μM)</th>
<th>SKBr\textsubscript{3} (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25a</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>14.02 ± 0.91</td>
<td>44.605 ± 5.40</td>
</tr>
<tr>
<td>25b</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>0.77 ± 0.02</td>
<td>0.88 ± 0.06</td>
</tr>
<tr>
<td>25c</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>32.89 ± 2.05</td>
<td>50.40 ± 1.39</td>
</tr>
<tr>
<td>25d</td>
<td>m-OMePh</td>
<td>OMe</td>
<td>H</td>
<td>31.20 ± 18.17</td>
<td>80.13 ± 9.67</td>
</tr>
<tr>
<td>25e</td>
<td>Prenyl</td>
<td>OAc</td>
<td>H</td>
<td>38.66 ± 7.71</td>
<td>47.90 ± 0.71</td>
</tr>
<tr>
<td>25f</td>
<td>OMe</td>
<td>OMe</td>
<td>H</td>
<td>10.89 ± 0.27</td>
<td>36.98 ± 5.24</td>
</tr>
<tr>
<td>25g</td>
<td>OMe</td>
<td>H</td>
<td>OMe</td>
<td>21.8 ± 3.08</td>
<td>29.5 ± 1.5</td>
</tr>
<tr>
<td>25h</td>
<td>OEt</td>
<td>H</td>
<td>OMe</td>
<td>8.19 ± 0.16</td>
<td>33.35 ± 4.81</td>
</tr>
<tr>
<td>26a</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>37.72 ± 6.75</td>
<td>64.11 ± 13.95</td>
</tr>
<tr>
<td>26b</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>17.51 ± 0.86</td>
<td>17.73 ± 5.97</td>
</tr>
<tr>
<td>26c</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>26d</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>22.12 ± 1.01</td>
<td>30.63 ± 11.89</td>
</tr>
<tr>
<td>26e</td>
<td>OMe</td>
<td>OH</td>
<td>H</td>
<td>51.29 ± 1.13</td>
<td>76.50 ± 1.10</td>
</tr>
</tbody>
</table>
II.5. Optimization of Linker

II.5.1. Synthesis of Amide Linker Analogues

In addition, investigation of the linker connecting the B- and D-rings was pursued. The ester linker was replaced with an amide. These amide-based analogues were prepared from previously synthesized alcohol 22, which was transformed into azide 27 via Mitsunobu conditions with diisopropyl azodicarboxylate, triphenylphosphine and diphenylphosphoryl azide. Azide formation was followed by Staudinger reduction with triphenylphosphine to afford amine 28 (Scheme-5). Subsequent coupling of amine 28 with the optimal aryl acids gave the corresponding amides, 29a–d. Furthermore, the anti-isomer of 13e was also synthesized from 12a.

Reagents: (a) DPPA, PPh3, DIAD; (b) PPh3, H2O; (c) EDCI.HCl, pyridine, ArCOOH or ArCOCl

Scheme 5. Synthesis of linker analogues. (a) amide linker analogues; (b) anti-stereochemistry containing analogues.

II.5.2. Biological Evaluation of Amide Linker Analogues

The results from biological evaluation of the linker are summarized in table 8. The linker between the B- and D-ring was also evaluated and replacement of the ester with an amide (29a–d) was found detrimental. The anti-isomer of 13e, 30 was also evaluated and found to be less active.
(IC$_{50}$ = 33.7 ± 1.8 against MCF-7 cell line), suggesting that syn-stereochemistry is important for inhibitory activity

Table 8. Anti-proliferative activity produced by analogues containing amide linkers.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R$_1$</th>
<th>R$_2$</th>
<th>MCF-7 (IC$_{50}$, µM)</th>
<th>SKBr3 (IC$_{50}$, µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29a</td>
<td>H</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>29b</td>
<td>OMe</td>
<td>H</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>29c</td>
<td>m-OMePh</td>
<td>OMe</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>29d</td>
<td>Prenyl</td>
<td>OAc</td>
<td>54.5 ± 0.6</td>
<td>55.2 ± 1.2</td>
</tr>
</tbody>
</table>

II.6. Western Blots Analyses

After determination of anti-proliferative activity for EGCG analogues, four representative compounds were chosen for subsequent western blot analyses to confirm Hsp90 inhibition, based on each class of scaffold investigated. Since Hsp90 inhibition induces client protein degradation via the ubiquitin-proteasome pathway, immunoblots were used to confirm Hsp90 inhibitory activity. As shown in Figure 18, 14e, 25e and 13e induced the degradation of Hsp90 client proteins Her2, Raf and p-Akt at concentrations that mirrored the concentration needed to exhibit anti-proliferative activity, thereby linking Hsp90 inhibition to cell viability. Analogue 25b failed to induce client protein degradation, demonstrating that this compound manifests anti-proliferative activity through a mechanism independent of Hsp90 inhibition. However, a related compound containing the prenylated benzoate side chain, 25e, did exhibit Hsp90 inhibitory activity. Further investigation of 14e at increasing concentrations demonstrated client protein degradation in a dose-dependent manner, while actin levels remained the same. Actin is not an Hsp90-dependent protein
and is therefore unaffected by Hsp90 inhibition. Similar to other Hsp90 C-terminal inhibitors, the levels of Hsp90 were unchanged.

Figure 18. Western blot analyses to confirm Hsp90 inhibition. “H” (high) represents a concentration 5 × IC₅₀ value, whereas and “L” (low) represents a concentration at one-half the IC₅₀ value as determined by anti-proliferative studies. Concentrations are represented in μM. Geldanamycin (GDA) was used as a positive control.
II.7. Conclusion and Future Directions

In summary, the first structure-activity relationships between EGCG and Hsp90 have been produced (Figure 19).\(^92\) The results obtained suggest that phenols on the A-ring are beneficial for Hsp90 inhibition, while phenols on the D-ring are detrimental. Similar to EGCG, novobiocin also binds Hsp90 within amino acids 538-578 and represents another naturally occurring C-terminal inhibitor. The inclusion of a novobiocin-derived prenylated benzoic ester was found to be a suitable replacement for the gallic acid moiety present on EGCG, and suggests that both novobiocin and the EGCG may bind similarly to the Hsp90 C-terminus. Results from these studies have led to the development of analogue 14e, which exhibits an 18-fold improvement over EGCG and can serve as a probe for further biological investigations.

The optimized analogue resulting from this work lacks the structural detriments associated with EGCG and can be further developed for increased Hsp90 inhibition and better understating of the C-terminal binding pocket. The central benzopyran core of EGCG allows for modifications that are inaccessible with the coumarin core of novobiocin. The most efficacious analogue (14e) can allow for modification at the 1-, 2-, and 4-positions of the chromane core, which corresponding are not amiable for modification with the coumarin ring. The chromane core can further be replaced with to 1,2,3,4-tetrahydroquinoline core to probe the binding pocket. Lead compound, 14e, represents a new scaffold to probe the Hsp90 C-terminal binding pocket and its further optimization is currently under investigation.
II.8. Methods and Experiments

All reactions were performed in oven-dried glassware under argon atmosphere unless otherwise stated. Dichloromethane (DCM), tetrahydrofuran (THF), and toluene were passed through a column of activated alumina prior to use. Anhydrous methanol, acetonitrile, N,N-dimethylformamide (DMF), and dimethoxyethane (DME) were purchased and used without further purification. (−)-EGCG was purchased from Sigma-Aldrich and used as obtained. Flash column chromatography was performed using silica gel (40−63 μm particle size). The 1H (500 and 400 MHz) and 13C NMR (125 and 100 MHz) spectra were recorded on 500 and 400 MHz spectrometer. Data are reported as p = pentet, q = quartet, t = triplet, d = doublet, s = singlet, br s = broad singlet, m = multiplet; coupling constant(s) in Hz. Infrared spectra were obtained using FT/IR spectrometer. High resolution mass spectral data were obtained on a time-of-flight mass spectrometer and analysis was performed using electrospray ionization.

Anti-proliferation Assay

MCF-7 and SKBr3 cells were maintained in advanced DMEM/F12 (Gibco) supplemented with l-glutamine (2 mM), streptomycin (500 μg/mL), penicillin (100 units/mL), and 10% FBS.
Cells were grown to confluence in a humidified atmosphere (37 °C, 5% CO₂) and seeded (2000/well, 100 μL) in 96-well plates, and allowed to attach for 24 h. Compounds or geldanamycin at 6 increasing concentrations in DMSO (1% DMSO final concentration) were added, and cells were returned to the incubator for 72 h. At 72 h, the cell growth was determined using an MTS/PMS cell proliferation kit (Promega) per the manufacturer’s instructions. Cells incubated in 1% DMSO were used as 100% proliferation, and values were adjusted accordingly. IC₅₀ values were calculated from minimum two separate experiments performed in triplicate using GraphPad Prism program.

Western Blot Analysis

MCF-7 cells were cultured as described previously and treated with various concentrations of the compound to be tested, geldanamycin in DMSO (1% DMSO final concentration), or vehicle (DMSO) for 24 h. Cells were harvested in cold PBS and lysed in M-PER lysis buffer (Sigma) containing protease and phosphatase inhibitors (Roche) on ice for 1 h. Lysates were clarified at 14000 g for 15 min at 4 °C. Protein concentrations were determined by using the Pierce BCA assay kit per the manufacturer’s instructions. Equal amounts of proteins were electrophoresed under reducing conditions, transferred to a PVDF membrane, and immunoblotted with the corresponding specific antibodies. Membranes were incubated with an appropriate horseradish peroxidase-labeled secondary antibody, developed with chemiluminescent substrate, and visualized.

Compound 1b, 22, 6d, and 6e were synthesized following reported procedures.⁸⁰, ⁸⁵, ⁸⁹
(E)-3,5-Dimethoxy-2-(3-(3,4,5-trimethoxyphenyl)allyl)phenol (2a): A solution of 3,5-dimethoxyphenol (2.06 g, 13.4 mmol) and (E)-3,4,5-trimethoxycinnamyl alcohol (3.0 g, 13.4 mmol) in a solvent mixture of dichloromethane (26 mL) and carbon disulfide (26 mL) was treated with 25% H\textsubscript{2}SO\textsubscript{4}/SiO\textsubscript{2} catalyst (2.2 g, 5.36 mmol) at rt. The resulting mixture was stirred for 4 h and then filtered through a plug of SiO\textsubscript{2}. Solvent was removed and the residue purified by flash chromatography (SiO\textsubscript{2}, 1:2 EtOAc/hexanes) to give 2a as an amorphous light yellow solid (1.66 g, 39.4%): 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 6.56 (s, 2H), 6.38 (dt, J = 15.8, 1.7 Hz, 1H), 6.23 (dt, J = 15.8, 6.2 Hz, 1H), 6.14 (d, J = 2.4 Hz, 1H), 6.10 (d, J = 2.3 Hz, 1H), 5.09 (s, 1H), 3.85 (s, 6H), 3.81 (s, 3H), 3.79 (s, 3H), 3.54 (dd, J = 6.2, 1.7 Hz, 2H); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 159.9, 159.0, 155.9, 153.4 (2), 137.6, 133.2, 130.4, 128.1, 106.1, 103.3 (2), 93.9, 91.7, 61.1, 56.2 (2), 56.0, 55.5, 26.2; IR (KBr) \nu\textsubscript{max} 3379, 3379, 2937, 1620, 1593, 1506, 1421, 1361, 1330, 1201, 1147, 1053, 817, 707 cm-1; HRMS (ESI+) \textit{m}/\textit{z} [M + H+] calcd for C\textsubscript{20}H\textsubscript{25}O\textsubscript{6}, 361.1651, found 361.1657.

\[
\text{BnO} \quad \text{OH} \quad \text{OMe} \\
\text{OBn} \quad \text{OMe} \quad \text{OMe}
\]

(E)-3,5-Bis(benzyloxy)-2-(3-(3,4,5-trimethoxyphenyl)allyl)phenol (2b): A solution 3,5-bis(benzyloxy)phenol (5.2 g, 6.97 mmol) and (E)-3,4,5 trimethoxycinnamyl alcohol (3.81 g, 16.97 mmol) in a solvent mixture of dichloromethane (33 mL) and carbon disulfide (33 mL) was treated with 25% H\textsubscript{2}SO\textsubscript{4}/SiO\textsubscript{2} catalyst (1.11 g, 2.8 mmol) at rt. The resulting mixture was stirred for 4 h and then filtered through a plug of SiO\textsubscript{2}. Solvent was removed and the residue purified by flash chromatography (SiO\textsubscript{2}, 1:3 EtOAc/hexanes) to give 2b (1.970 g, 22.6%) as an amorphous light yellow solid: 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.47–7.28 (m, 10H), 6.54 (s, 2H), 6.39 (dt, J = 15.8,
1.7 Hz, 1H), 6.30 (d, J = 2.3 Hz, 1H), 6.24 (dt, J = 15.8, 6.3 Hz, 1H), 6.19 (d, J = 2.3 Hz, 1H), 5.05 (s, 2H), 5.03 (s, 1H), 5.02 (s, 2H), 3.90–3.80 (m, 9H), 3.65–3.56 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 159.1, 158.2, 155.9, 153.5 (2), 137.6, 137.3, 137.1, 133.3, 130.7, 128.9 (2), 128.8 (2), 128.7, 128.3 (2), 128.1 (2), 127.8 (2), 127.5, 107.0, 103.4, 95.3, 93.9, 70.6, 70.4, 61.2, 56.3 (2), 26.6; IR (KBr) \(\nu_{\text{max}}\) 3400, 2937, 1614, 1585, 1454, 1328, 1238, 1126, 1001, 736, 696 cm\(^{-1}\); HRMS (ESI+) \(m/z\) [M + Na\(^{+}\)] calcd for C\(_{32}\)H\(_{32}\)NaO\(_6\), 535.2097, found 535.2100.

3-(2-Hydroxy-4,6-dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)propane-1,2-diol (3a): \(N\)-Methylmorpholine \(N\)-oxide (702 mg, 6 mmol) was added to a solution of 2a (1.350 g, 3.75 mmol) in a solvent mixture of tetrahydrofuran (12 mL) and H\(_2\)O (8 mL). The resulting solution was stirred for 15 min at rt before the addition osmium tetraoxide (0.04 mmol, 4% solution in water). The mixture was stirred for 14 h at rt before quenching with 20% of sodium metabisulfite (12 mL). The aqueous layer was extracted with EtOAc (3 × 25 mL), and the combined organic layers were washed with saturated sodium chloride solution (50 mL), dried over anhydrous Na\(_2\)SO\(_4\), filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:10 acetone/dichloromethane) to afford 3a (1.33 g, 90.4%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 8.08 (s, 1H), 6.54 (s, 2H), 6.14 (d, \(J = 2.4\) Hz, 1H), 6.03 (d, \(J = 2.4\) Hz, 1H), 4.47 (d, \(J = 6.0\) Hz, 1H), 3.98 (ddd, \(J = 8.0, 6.1, 3.8\) Hz, 1H), 3.84 (s, 6H), 3.82 (s, 3H), 3.75 (s, 3H), 3.62 (s, 3H), 3.44 (br s, 1 H), 3.10–2.92 (m, 1H), 2.85 (dd, \(J = 14.7, 3.8\) Hz, 1H), 2.73 (dd, \(J = 14.7, 7.8\) Hz, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 160.1, 159.0, 157.3, 153.4 (2), 137.6, 136.5, 105.6, 103.9 (2), 94.6, 91.4, 76.9, 76.7, 61.0, 56.3 (2), 55.7, 55.5, 26.5; IR (KBr) \(\nu_{\text{max}}\) 3405, 2932, 1620,
1591, 1498, 1439, 1379, 1218, 1146, 1029, 817 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₀H₂₇O₈, 395.1706, found 395.1719.

![Chemical structure](image)

3-(2,4-Bis(benzyloxy)-6-hydroxyphenyl)-1-(3,4,5-trimethoxyphenyl)propane-1,2-diol (3b): N-Methylmorpholine N-oxide (444 mg, 3.79 mmol) was added to a solution of 2b (1.0 g, 2.36 mmol) in a solvent mixture of tetrahydrofuran (7.5 mL) and H₂O (5 mL). The resulting solution was stirred for 15 min at rt before the addition of osmium tetroxide (0.02 mmol, 4% solution in water). The mixture was stirred for 14 h at rt before quenching with 20% of sodium metabisulfite (10 mL). The aqueous layer was extracted with ethyl acetate (3 × 20 mL), and the combined organic layers were washed with saturated sodium chloride solution (40 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:10 acetone/dichloromethane) to afford 3b (595 g, 56.7%) as an amorphous light yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 8.00 (br s, 1 H), 7.47–7.28 (m, 10H), 6.54 (s, 2H), 6.28 (d, J = 2.3 Hz, 1H), 6.22 (d, J = 2.3 Hz, 1H), 5.06–4.95 (m, 4H), 4.91 (d, J = 3.0 Hz, 1H), 4.52 (d, J = 6.0 Hz, 1H), 3.77 (d, J = 10.2 Hz, 9H), 3.25 (br s, 1 H), 3.01–2.95 (m, 1H), 2.83 (dd, J = 14.6, 8.3 Hz, 1H), 2.74 (br s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 158.1, 157.6, 153.5 (2), 137.1, 137.0, 136.4, 129.0, 128.8, 128.7, 128.5, 128.4, 128.3 (2), 128.1, 127.8, 127.5, 127.4, 127.3, 126.9, 106.3, 103.8 (2), 96.2, 93.7, 70.3 (2), 61.0, 56.3, 56.3, 27.0; IR (KBr) νmax 3446, 2935, 2837, 1591, 1498, 1456, 1328, 1232, 1126, 1004, 736 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₂H₃₅O₈, 547.2332, found 547.2347.
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-ol (4a): Trimethyl orthoacetate (1.92 mmol, 250 μL) and pyridinium p-toluenesulfonate (10 mg, 0.032 mmol) were added to a solution of 3a (620 mg, 1.6 mmol) in dichloromethane (32 mL) at rt. The resulting mixture was stirred for 30 min at rt and then cooled to 0 °C before the dropwise addition of boron trifluoride diethyl etherate (20 μL, 0.16 mmol). The reaction mixture was warmed to rt and stirred for another 15 min before quenching with aqueous acetone (4 mL). Solvent was removed and the residue dissolved in methanol (32 mL). Potassium carbonate (240 mg, 1.76 mmol) was added and the mixture stirred for 6 h at rt. Methanol was removed, water (25 mL) was added, and the products were extracted with ethyl acetate (2 × 30 mL). The combined organic layers were washed with saturated sodium chloride solution (50 mL). The organic phase was dried over anhydrous Na₂SO₄ and filtered. Solvent was removed and the residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to yield compound 4a (460 mg, 77.8) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 6.68 (s, 2H), 6.15 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 4.63 (d, J = 8.5 Hz, 1H), 4.07 (ddd, J = 9.3, 8.5, 5.8 Hz, 1H), 3.87 (s, 6H), 3.85 (s, 3H), 3.82 (s, 3H), 3.76 (s, 3H), 3.11 (dd, J = 16.3, 5.8 Hz, 1H), 2.60 (dd, J = 16.3, 9.3 Hz, 1H), 1.95 (br s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 158.9, 155.4, 153.7 (2), 138.2, 133.6, 104.3 (2), 101.9, 93.2, 92.2, 82.4, 68.5, 61.0, 56.3 (2), 55.7, 55.6, 28.0; IR (KBr) νmax 3438, 3001, 2916, 2848, 1622, 1593, 1496, 1622, 2593, 1456, 1361, 1215, 1145, 1120, 810, 667 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₀H₂₄NaO₇, 399.1420, found 399.1414.
5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-ol (4b): Trimethyl orthoacetate (0.94 mmol, 120 μL) and pyridinium p-toluene sulfonate (4 mg, 0.016 mmol) were added to a solution of 3b (425 mg, 0.78 mmol) in dichloromethane (16 mL) at rt. The resulting mixture was stirred for 30 min at rt and then cooled to 0 °C before the dropwise addition of borontrifluoride diethyletherate (11 μL, 0.08 mmol) dropwise. The reaction mixture was warmed to rt and stirred for another 15 min before quenching with aqueous acetone (3 mL). Solvent was removed and the residue dissolved in methanol (16 mL). Potassium carbonate (118 mg, 0.85 mmol) was added and mixture stirred for 6 h at rt. Methanol was removed, water (20 mL) was added, and the products were extracted with ethyl acetate (2 × 25 mL). The combined organic layers were washed with saturated sodium chloride solution (30 mL). The organic phase was dried over anhydrous Na₂SO₄ and filtered. Solvent was removed, and the residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to afford 4b (265 mg, 63.3%) as a pale yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 7.49–7.37 (m, 8H), 7.37–7.30 (m, 2H), 6.69 (s, 2H), 6.30 (d, J = 2.3 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 5.11–4.96 (m, 4H), 4.65 (d, J = 8.5 Hz, 1H), 4.10 (td, J = 8.9, 5.8 Hz, 1H), 3.88 (s, 6H), 3.86 (s, 3H), 3.22 (dd, J = 16.3, 5.8 Hz, 1H), 2.69 (dd, J = 16.4, 9.3 Hz, 1H), 1.82 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 157.9, 155.4, 153.7 (2), 137.1, 137.0 (2), 133.5, 128.8 (2), 128.7 (2), 128.2, 128.1, 127.7, 127.3 (3), 104.3 (2), 102.6, 94.5, 94.1, 82.4, 70.3, 70.1, 68.5, 61.0, 56.3 (2), 28.2; IR (KBr) νmax 3481, 2935, 1618, 1593, 1498, 1460, 1421, 1346, 1145, 1128, 1022, 829, 752, 734 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₂H₃₃O₇, 529.2226, found 529.2234.
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-ol (5a): Dess-Martin periodinane 687 mg, 1.62 mmol, 1.5 eq.) was added to a solution of 4a (421 mg, 1.08 mmol, 1.0 eq.) in dichloromethane (10 mL). The resulting mixture was stirred for 2 h before quenching with 15 % aqueous solution of sodium thiosulfate (3 mL) and saturated sodium bicarbonate (3 mL). The aqueous layer was extracted with dichloromethane (3 × 5 mL) and the combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to yield the corresponding ketone which was used further as obtained. A solution of the ketone in tetrahydrofuran (2 mL) was added dropwise to a solution of lithium bromide (487 mg, 5.61 mmol, 5.2 eq.) and L-selectride (1 M solution) (1.41 mL, 1.41 mmol, 1.3 eq.) in tetrahydrofuran (8 mL) at -78 °C. The resulting mixture was stirred for 6 h at -78 °C, warmed to rt, and quenched with 2.5 M sodium hydroxide solution (5.0 mL), followed by the addition of ethanol (3.9 mL) and 35% aqueous hydrogen peroxide solution (1.3 mL). The resulting mixture was stirred for 14 h before the addition of ethyl acetate (15 mL). The aqueous layer was extracted with ethyl acetate (2 × 10 mL) and the combined organic layers washed with saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified via flash chromatography (SiO₂, 1:2 EtOAc/hexanes) to yield compound 5a as a colorless oil (175 mg, 43%). \[^1\]H NMR (500 MHz, CDCl₃) δ 6.75 (s, 2H), 6.21 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.4 Hz, 1H), 4.93 (s, 1H), 4.44–4.23 (m, 1H), 3.89 (s, 6H), 3.85 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.00–2.93 (m, 1H), 2.89 (dd, J = 17.3, 4.4 Hz, 1H), 1.88 (br s, 1 H); \[^1\]C NMR (125
MHz, CDCl$_3$) δ 159.8, 159.4, 155.2, 153.6 (2), 137.5, 134.2, 103.4 (2), 100.4, 93.5, 92.4, 78.8, 66.6, 61.0, 56.3 (2), 55.6, 55.5, 28.2; IR (KBr) v_{max} 3460, 2997, 2939, 2839, 1620, 1593, 1498, 1456, 1419, 1357, 1330, 1317, 1236, 1197, 1145, 1120, 1081, 939, 815, 729 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{20}$H$_{25}$O$_7$, 377.1600, found 377.1593.

![Chemical Structure](image)

5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-ol (5b): Dess-Martin periodinane 127 mg, 0.30 mmol, 1.5 eq.) was added to a solution of 4b (106 mg, 0.20 mmol, 1.0 eq.) in dichloromethane (2 mL). The resulting mixture was stirred for 2 h before quenching with 15% aqueous solution of sodium thiosulfate (1 mL) and saturated sodium bicarbonate (1 mL). The aqueous layer was extracted with dichloromethane (3×2 mL) and the combined organic layers were washed with saturated sodium chloride solution (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO$_2$, 1:3 EtOAc/hexanes) to yield the corresponding ketone which was used further as obtained. A solution of the ketone in tetrahydrofuran (0.5 mL) was added dropwise to a solution of lithium bromide (90 mg, 1.04 mmol, 5.2 eq.) and L-selectride (1 M solution) (0.26 mL, 0.26 mmol, 1.3 eq.) in tetrahydrofuran (1.5 mL) at -78 °C. The resulting mixture was stirred for 6 h at -78 °C, warmed to rt, and quenched with 2.5 M sodium hydroxide solution (1.0 mL), followed by the addition of ethanol (1.35 mL) and 35% aqueous hydrogen peroxide solution (0.45 mL). The resulting mixture was stirred for 14 h before the addition of ethyl acetate (4 mL). The aqueous layer was extracted with ethyl acetate (2×5 mL) and the combined organic layers washed with saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The
Residue purified via flash chromatography (SiO$_2$, 1:2 EtOAc/hexanes) to yield compound 5b. Obtained as an amorphous pale yellow solid (72 mg, 68%): 1H NMR (500 MHz, CDCl$_3$) δ 7.44–7.34 (m, 10H), 6.75 (s, 2H), 6.32 (d, $J = 2.3$ Hz, 1H), 6.30 (d, $J = 2.3$ Hz, 1H), 5.06–5.00 (m, 4H), 4.97 (s, 1H), 4.30 (d, $J = 4.3$ Hz, 1H), 3.91 (s, 6H), 3.87 (s, 3H), 3.07 (dd, $J = 17.4$, 2.5 Hz, 1H), 2.98 (dd, $J = 17.3$, 4.5 Hz, 1H), 1.78 (br s, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 159.0, 158.5, 155.3, 153.7 (2), 137.2 (2), 137.1, 134.1, 128.8 (2), 128.7 (2), 128.2, 128.1, 127.8 (2), 127.4 (2), 103.4 (2), 101.1, 94.9, 94.4, 78.9, 70.4, 70.2, 66.8, 61.1, 56.4 (2), 28.5; IR (KBr) ν_{max} 3461, 2925, 2834, 1593, 1458, 1375, 1236, 1145, 1126, 1078, 1010, 813, 738, 696 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{32}$H$_{33}$O$_7$, 529.2226, found 529.2234.

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl Benzoate (7a): Benzoyl chloride (14 μL, 0.12 mmol) in dichloromethane (0.5 mL) was added to a solution of 5a (15 mg, 0.04 mmol) and 4-dimethylaminopyridine (24 mg, 0.2 mmol) in dichloromethane 1 (mL) at 0 °C and stirred for 6 h at rt. The solvent was removed and the residue purified via flash chromatography (SiO$_2$, 1:4 EtOAc/hexanes) to give the desired ester 7a (17 mg, 89.4%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 8.02–7.89 (m, 2H), 7.59–7.47 (m, 1H), 7.42–7.33 (m, 2H), 6.72 (s, 2H), 6.27 (d, $J = 2.3$ Hz, 1H), 6.14 (d, $J = 2.3$ Hz, 1H), 5.69 (td, $J = 3.5$, 1.3 Hz, 1H), 5.09 (t, $J = 1.0$ Hz, 1H), 3.82 (s, 3H), 3.80 (d, $J = 1.7$ Hz, 6H), 3.71 (s, 6H), 3.10–3.05 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.5, 159.6, 158.9, 155.5, 153.1 (2), 137.7, 133.3, 133.1, 130.0, 129.7 (3), 128.3 (2), 103.8 (2), 100.2, 93.4, 92.0, 78.0, 68.5, 60.8, 55.9, 55.4 (2), 26.1; IR (KBr) ν_{max} 2910, 2848, 1718,
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3-Methoxybenzoate (7b): A solution of 5a (12 mg, 0.03 mmol) in dichloromethane (0.5 mL) was added to a solution of 3-methoxybenzoic acid (10 mg, 0.06 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (13 mg, 0.06 mmol), and 4-dimethylaminopyridine (8 mg, 0.06 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed with saturated sodium bicarbonate (2 × 4 mL) solution. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO$_2$, 1:3 EtOAc/hexanes) to give the desired ester product 7b as a colorless oil (13 mg, 80.4%): 1H NMR (500 MHz, CDCl$_3$) δ 7.56 (dt, $J = 7.7$, 1.2 Hz, 1H), 7.48 (dd, $J = 2.7$, 1.5 Hz, 1H), 7.30–7.26 (m, 1H) 7.05 (ddd, $J = 8.3$, 2.7, 1.0 Hz, 1H), 6.72 (s, 2H), 6.26 (d, $J = 2.3$ Hz, 1H), 6.13 (d, $J = 2.4$ Hz, 1H), 5.67 (td, $J = 3.6$, 1.3 Hz, 1H), 5.08 (s, 1H), 3.81 (s, 3H), 3.81–3.78 (m, 9H), 3.73 (s, 6H), 3.07 (d, $J = 3.5$ Hz, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.4, 159.6, 158.9, 155.5, 153.1 (2), 137.7, 133.3, 131.3, 129.3 (2), 122.0, 119.1, 114.7, 103.8 (2), 100.1, 93.4, 92.0, 78.0, 68.6, 60.8, 55.9 (2), 55.4 (3), 26.0; IR (KBr) ν_{max} 2937, 1718, 1622, 1593, 1498, 1456, 1274, 1218, 1124, 1047, 754 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{28}$H$_{31}$O$_9$, 511.1968, found 511.1977.
5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Methoxybenzoate (7c): 4-Methoxybenzoyl chloride (10 μL, 0.07 mmol) in dichloromethane (0.5 mL) was added to a solution of 5a (13 mg, 0.035 mmol) and 4-dimethylaminopyridine (13 mg, 0.1 mmol) in dichloromethane 0.7 (mL)–pyridine (0.3 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, solvent was removed, and the residue was purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give the desired ester 7c (15 mg, 87.4%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.77–7.55 (m, 2H), 6.66–6.53 (m, 2H), 6.46 (s, 2H), 6.01 (d, J = 2.3 Hz, 1H), 5.88 (d, J = 2.3 Hz, 1H), 5.41 (td, J = 3.5, 1.3 Hz, 1H), 4.82 (s, 1H), 3.58 (s, 3H), 3.57 (s, 3H), 3.55 (s, 3H), 3.54 (s, 3H), 3.48 (s, 6H), 2.80 (d, J = 3.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 163.4, 159.6, 158.9, 155.5, 153.1 (2), 133.4, 131.8 (2), 122.4, 113.5 (2), 103.9 (2), 100.3, 93.4, 91.9, 78.1, 68.0, 60.8, 55.9 (2), 55.4 (4), 26.1; IR (KBr) νmax 2927, 1731, 1604, 1591, 1508, 1458, 1458, 1419, 1373, 1326, 1255, 1234, 1126, 1099, 846, 763 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₈H₃₁O₉, 511.1968, found 511.1961.

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3’6-dimethoxy-[1,1’-biphenyl]-3-carboxylate (7d): A solution of 5a (15 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added
to a solution of 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylic acid (21 mg, 0.08 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (16 mg, 0.08 mmol), and 4-dimethylaminopyridine (9.6 mg, 0.08 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL), and washed saturated sodium bicarbonate (2 × 4 mL) solution. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified via flash chromatography (SiO$_2$, 1:3 EtOAc/hexanes) to give the desired ester 7d (15 mg, 62.5%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.95 (dd, $J = 8.6, 2.3$ Hz, 1H), 7.92 (d, $J = 2.2$ Hz, 1H), 7.32 (t, $J = 7.9$ Hz, 1H), 7.02 (dd, $J = 7.6, 1.6, 1.0$ Hz, 1H), 6.99 (dd, $J = 2.6, 1.6$ Hz, 1H), 6.93 (d, $J = 8.7$ Hz, 1H), 6.90 (ddd, $J = 8.3, 2.6, 1.0$ Hz, 1H), 6.75 (s, 2H), 6.25 (d, $J = 2.3$ Hz, 1H), 6.13 (d, $J = 2.3$ Hz, 1H), 5.65 (ddd, $J = 4.2, 2.9, 1.3$ Hz, 1H), 5.16–5.02 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.69 (s, 6H), 3.07 (t, $J = 3.3$ Hz, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.3, 160.3, 159.6, 159.3, 158.9, 155.5, 153.1 (2), 138.7, 133.4, 132.4, 131.0, 130.4 (2), 129.1, 122.5, 121.9, 115.1, 113.0, 110.5, 103.8 (2), 100.3, 93.4, 92.0, 78.0, 68.4, 60.8, 55.9 (2), 55.8, 55.4 (2), 55.3, 26.1; IR (KBr) $\nu$$_{max}$ 2927,2848, 1716, 1593, 1496, 1456, 1361, 1238, 1126, 771 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{35}$H$_{37}$O$_{10}$, 617.2387, found 617.2382.

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (7e): A solution of 5a (24 mg, 0.064 mmol) in dichloromethane (0.5 mL) was added to a solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (32 mg, 0.13 mmol), N-(3-
dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride (26 mg, 0.13 mmol), and 4-dimethylaminopyridine (15 mg, 0.13 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed saturated sodium bicarbonate solution (2 × 4 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to give the desired ester 7e (28 mg, 72.5%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 2.1 Hz, 1H), 7.81 (dd, J = 8.3, 2.2 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 6.69 (s, 2H), 6.26 (d, J = 2.3 Hz, 1H), 6.13 (d, J = 2.4 Hz, 1H), 5.67 (td, J = 3.4, 1.2 Hz, 1H), 5.14 (dddd, J = 7.3, 5.8, 2.9, 1.4 Hz, 1H), 5.08 (br s, 1 H), 3.81 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.71 (s, 6H), 3.21 (d, J = 7.2 Hz, 2H), 3.05 (d, J = 3.3 Hz, 2H), 2.30 (s, 3H), 1.72 (s, 3H), 1.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 164.9, 159.6, 158.9, 155.4, 153.1 (2), 152.7, 137.8, 134.0, 133.9, 133.3, 131.8, 128.6, 127.8, 122.4, 120.7, 103.8 (2), 100.0, 93.3, 92.0, 77.9, 68.4, 60.8, 56.0, 55.4 (3), 28.6, 25.7 (2), 20.9, 17.8; IR (KBr) νmax 2921, 2850, 1716, 1593, 1458, 1282, 1201, 1142, 1010, 948, 813 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₄H₃₉O₁₀, 607.2543, found 607.2541.

5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-yl Benzoate (7f): Benzoyl chloride (8 µL, 0.064 mmol) in dichloromethane (0.5 mL) was added to a solution of 5b (17 mg, 0.032 mmol) and 4-dimethylaminopyridine (12 mg, 0.092 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL) at 0 °C. The solvent was removed and the residue purified via flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to give the desired ester, 7f (16 mg, 83.5%), as an
amorphous white solid: 1H NMR (500 MHz, CDCl$_3$) δ 8.01–7.96 (m, 2H), 7.63 (d, $J = 1.7$ Hz, 1H), 7.53–7.34 (m, 12H), 6.72 (s, 2H), 6.38 (d, $J = 2.3$ Hz, 1H), 6.32 (d, $J = 2.3$ Hz, 1H), 5.71 (ddd, $J = 4.1$, 3.0, 1.3 Hz, 1H), 5.10 (d, $J = 3.8$ Hz, 1H), 5.08–5.01 (m, 4H), 3.80 (s, 3H), 3.71 (s, 6H), 3.18–3.10 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 172.0, 165.5, 158.8, 158.0, 155.6, 153.1, 137.7, 136.9, 136.8, 133.8, 133.3, 133.2, 130.2, 130.0, 129.8 (2), 129.3, 128.6 (2), 128.6, 128.5, 128.3 (2), 128.0, 127.9 (2), 127.6, 127.2, 100.9, 94.8, 94.0, 78.1, 70.2, 70.0, 68.5, 60.8, 55.9 (2), 26.3; IR (KBr) ν_{max} 2929, 2839, 1716, 1616, 1591, 1506, 1456, 1361, 1226, 1149, 1126, 1041, 811, 754 cm$^{-1}$; HRMS (ESI+) m/z [M + Na$^+$] calcd for C$_{39}$H$_{36}$NaO$_8$, 655.2308, found 655.2307.

5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3-Methoxybenzoate (7g): 3-Methoxybenzoyl chloride (9 μL, 0.064 mmol) in dichloromethane (0.5 mL) was added to a solution of 5b (17 mg, 0.032 mmol) and 4-dimethylaminopyridine (12 mg, 0.092 mmol) in dichloromethane 0.7 (mL) with pyridine (0.3 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt. The resulting mixture was stirred for 6 h at rt. The solvent was removed and the residue purified via flash chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to give the desired ester 7g (16 mg, 85.1%) as an amorphous white solid: 1H NMR (500 MHz, CDCl$_3$) δ 7.58 (dt, $J = 7.7$, 1.2 Hz, 1H), 7.50–7.30 (m, 12H), 7.07 (ddd, $J = 8.2$, 2.7, 1.0 Hz, 1H), 6.72 (s, 2H), 6.37 (d, $J = 2.3$ Hz, 1H), 6.31 (d, $J = 2.3$ Hz, 1H), 5.68 (ddd, $J = 4.2$, 3.0, 1.3 Hz, 1H), 5.17–5.03 (m, 4H), 5.03 (s, 1H), 3.80 (s, 6H), 3.73 (s, 6H), 3.17–3.11 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.4, 159.5, 158.8, 158.0, 155.6, 153.1 (2), 137.7, 136.9, 136.8, 133.3, 131.3, 129.3, 128.6 (3), 128.5, 128.0, 127.9
(3), 127.6, 127.2 (2), 122.1, 119.1, 114.7, 103.8 (2), 100.8, 94.8, 94.0, 78.0, 70.2, 70.0, 68.6, 60.8, 55.9, 55.4, 26.2; IR (KBr) ν_{max} 2931, 2664, 1716, 1593, 1506, 1456, 1361, 1269, 1217, 1126, 1070. 1008 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₄₀H₃₈NaO₉, 685.2414, found 685.2401.

5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Methoxybenzoate (7h): 4-Methoxybenzoyl chloride (9 μL, 0.064 mmol) in dichloromethane (0.7 mL) was added to a solution of 5b (17 mg, 0.032 mmol) and 4-dimethylaminopyridine (12 mg, 0.092 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt. The solvent was removed and the residue purified via flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to give the desired ester product 7h (17 mg, 87.4%) as an amorphous white solid: ^1H NMR (500 MHz, CDCl₃) δ 7.98–7.89 (m, 2H), 7.49–7.44 (m, 2H), 7.44–7.31 (m, 8H), 6.88–6.84 (m, 2H), 6.71 (s, 2H), 6.37 (d, J = 2.3 Hz, 1H), 6.31 (d, J = 2.3 Hz, 1H), 5.68 (tt, J = 3.1, 1.2 Hz, 1H), 5.08 (s, 1H), 5.08–5.01 (m, 4H), 3.84 (s, 3H), 3.80 (s, 3H), 3.72 (s, 6H), 3.12 (t, J = 3.0 Hz, 2H); ^13C NMR (125 MHz, CDCl₃) δ 165.2, 163.5, 158.7, 158.0, 155.6, 153.1, 137.7, 136.9, 136.8, 133.3 (2), 131.8, 128.6 (2), 128.5 (2), 128.0 (2), 127.9 (2), 127.6 (2), 127.2, 122.4, 113.5 (2), 103.9 (2), 101.0, 94.8, 93.9, 78.1, 70.2, 70.0, 68.0, 60.8, 60.0, 55.9, 55.5, 26.4; IR (KBr) ν_{max} 3348, 2952, 2927, 1716, 1506, 1417, 1257, 1168, 1126, 1035, 821 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₄₀H₃₉O₉, 663.2594, found 663.2608.
5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (7i): A solution of 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylic acid (35 mg, 0.135 mmol) in THF (5 mL) was treated with thionyl chloride (20 μL, 0.27 mmol). The resulting solution was heated at reflux for 3 h, cooled to rt before the solvent was removed. The crude was dissolved in dichloromethane (0.5 mL) and added to a solution of 5b (18 mg, 0.045 mmol) and 4-dimethylaminopyridine (22 mg, 0.18 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, the solvent was removed, and the residue was purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give the desired ester, 7i (28 mg, 83%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl₃) δ 7.97 (dd, \(J = 8.6, 2.2 \text{ Hz}, 1\text{H})), 7.93 (d, \(J = 2.2 \text{ Hz}, 1\text{H})), 7.44 (d, \(J = 1.3 \text{ Hz}, 1\text{H})), 7.43–7.29 (m, 10\text{H}), 7.03 (dt, \(J = 7.7, 1.2 \text{ Hz}, 1\text{H})), 7.00 (dd, \(J = 2.6, 1.5 \text{ Hz}, 1\text{H})), 6.94 (d, \(J = 8.7 \text{ Hz}, 1\text{H})), 6.91 (ddd, \(J = 8.3, 2.6, 1.0 \text{ Hz}, 1\text{H})), 6.71 (s, 2\text{H}), 6.37 (d, \(J = 2.3 \text{ Hz}, 1\text{H})), 6.30 (d, \(J = 2.3 \text{ Hz}, 1\text{H})), 5.67 (td, \(J = 3.6, 1.4 \text{ Hz}, 1\text{H})), 5.10 (s, 1\text{H}), 5.07–5.01 (m, 4\text{H}), 3.86–3.79 (m, 9\text{H}), 3.69 (s, 6\text{H}), 3.15 (d, \(J = 3.6 \text{ Hz}, 2\text{H})); \(^1\)C NMR (125 MHz, CDCl₃) δ 165.6, 160.6, 159.5, 159.0, 158.2, 155.8, 153.3 (2), 138.9, 137.1, 137.1, 133.6, 132.6, 131.3, 130.7, 129.3, 128.9, 128.8 (2), 128.3 (2), 128.2 (2), 127.8 (2), 127.4 (2), 122.7, 122.1, 115.4, 113.2, 110.7, 104.0 (2), 101.3, 95.0, 94.2, 78.3, 70.4, 70.2, 68.6, 61.1, 56.2, 56.1 (2), 55.5, 26.5; IR (KBr) \(\nu_{\text{max}}\) 3434, 2929, 1712, 1616, 1593, 1500, 1456, 2440, 2303, 1238, 1149, 1126, 1027, 821, 736,698 cm\(^{-1}\); HRMS (ESI+) \(m/z\) [M + Na\(^+\)] calcd for C\(_{47}\)H\(_{44}\)NaO\(_{10}\), 791.2832, found 791.2766.
5,7-Bis(benzyloxy)-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (7j): A solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (33.5 mg, 0.135 mmol) in THF (5 mL) was treated with thionyl chloride (20 μL, 0.27 mmol). The resulting solution was heated at 70 °C for 3 h and cooled to rt and concentrated. The residue was dissolved in dichloromethane (0.5 mL) and added to a solution of 5b (18 mg, 0.045 mmol) and 4-dimethylaminopyridine (22 mg, 0.18 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt. The solvent was removed and the residue purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give the desired ester, 7j (26.6 mg, 78%), as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 2.1 Hz, 1H), 7.74 (dd, J = 8.4, 2.2 Hz, 1H), 7.52–7.46 (m, 2H), 7.44–7.36 (m, 2H), 7.39–7.28 (m, 6H), 7.01 (d, J = 8.4 Hz, 1H), 6.79 (s, 2H), 6.29–6.37 (m, 2H), 5.76 (ddd, J = 4.3, 2.9, 1.4 Hz, 1H), 5.22 (m, 1H), 5.15 (m, 3H), 5.00 (s, 2H), 3.81 (s, 3H), 3.77 (s, 6H), 3.20 (d, J = 7.4 Hz, 2H), 3.19–3.06 (m, 2H), 2.31 (s, 3H), 1.71 (d, 1.6 Hz, 3H), 1.66 (d, J = 1.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 165.1, 156.7, 155.1, 153.3, 152.9 (2), 152.1, 137.7, 136.9, 136.6, 134.3, 134.1, 133.0, 132.0, 128.9, 128.8 (2), 128.3 (2), 128.2 (2), 127.8 (1), 127.4 (2), 127.3 (2), 122.6, 120.8, 103.5 (2), 102.6, 93.0, 92.9, 78.2, 71.5, 70.5, 68.0, 61.0, 56.2 (2), 28.8, 26.5, 25.9, 21.0, 18.0; IR (KBr) νmax 2960, 2925, 1714, 1604, 1456, 1353, 1261, 1236, 1174, 1126, 1012, 819 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₄₆H₄₇O₁₀, 759.3169, found 759.3195.
5,7-Dihydroxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl benzoate (8a): Compound 7f (15 mg, 0.023 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, acetone/dichloromethane 1:8) to give the desired product 8a (9.5 mg, 88.5%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.99–7.86 (m, 2H), 7.53 (ddt, J = 8.7, 7.2, 1.3 Hz, 1H), 7.45–7.33 (m, 2H), 6.70 (s, 2H), 6.19 (d, J = 2.3 Hz, 1H), 5.98 (d, J = 2.3 Hz, 1H), 5.70 (ddd, J = 4.3, 2.8, 1.3 Hz, 1H), 5.09 (br s, 1H), 3.80 (s, 3H), 3.70 (s, 6H), 3.15–3.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 156.1, 155.3 (2), 155.1 (2), 153.1, 137.7, 133.3, 129.8(2), 129.7 (3), 128.4, 103.8 (2), 98.9, 96.5, 96.1, 77.9, 68.3, 60.9, 55.9 (2), 25.8 cm⁻¹; IR (KBr) vₘₐₓ 3421, 2931, 2850, 1717, 1596, 1465, 1276, 1126, 756 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₂₅H₂₃O₈, 451.1393, found 451.1412.

5,7-Dihydroxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3-Methoxybenzoate (8b): Compound 7g (14 mg, 0.021 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was
filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, acetone/dichloromethane 1:8) to afford 8b (9 mg, 89%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.55 (dt, J = 7.7, 1.2 Hz, 1H), 7.45 (dd, J = 2.7, 1.5 Hz, 1H), 7.30–7.26 (m, 1H), 7.06 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 6.70 (s, 2H), 6.18 (d, J = 2.3 Hz, 1H), 5.94 (d, J = 2.3 Hz, 1H), 5.68 (ddd, J = 4.2, 2.8, 1.3 Hz, 1H), 5.43 (s, 1H), 5.29 (s, 1H), 5.13–5.06 (m, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.70 (s, 6H), 3.20–3.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.5, 156.0, 155.4, 155.2, 153.1 (2), 137.6, 133.4, 131.1, 129.4, 122.0, 119.4, 114.6, 103.8 (2), 98.8, 96.3, 96.1, 77.9, 68.6, 60.8, 55.9, 55.4 (2), 25.7; IR (KBr) νmax 3419, 3404, 3010, 2927, 2852, 1716, 1596, 1463, 1274, 1128, 1105, 754 cm⁻¹; HRMS (ESI+) m/z [M – H⁺] calcd for C₂₆H₂₅O₉, 481.1499, found 481.1509.

5,7-Dihydroxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Methoxybenzoate (8c): 7h (14 mg, 0.021 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, acetone/dichloromethane 1:8) to give 8c (9 mg, 89%) as a colorless oil: ¹H NMR (500 MHz, CD₃OD) δ 7.93–7.76 (m, 2H), 6.98–6.90 (m, 2H), 6.79 (s, 2H), 6.00 (q, J = 2.3 Hz, 2H), 5.63 (ddd, J = 4.7, 2.3, 1.2 Hz, 1H), 5.14 (s, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.67 (s, 6H), 3.07 (dd, J = 17.4, 4.6 Hz, 1H), 2.95–2.86 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 163.8, 156.3, 156.2, 155.5, 155.3, 153.3, 137.3, 133.5, 132.0 (3), 122.4, 113.8 (2), 104.0 (2), 99.2, 96.6, 96.2, 78.2, 68.1, 63.0,
56.1, 55.7 (2), 26.0; IR (KBr) ν\textsubscript{max} 3419, 2931, 2842, 1701, 1604, 1458, 1361, 1257, 1166, 1126, 1101, 1018 cm-1; HRMS (ESI-) \textit{m/z} [M – H+] calcd for C\textsubscript{26}H\textsubscript{25}O\textsubscript{9}, 481.1499, found 481.1518.

5,7-Dihydroxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (8d): Compound 7i (25 mg, 0.032 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO\textsubscript{2}, acetone/dichloromethane 1:8) to give 8d (17.4 mg, 91%) as a colorless oil: 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.00–7.85 (m, 2H), 7.32 (t, \textit{J} = 7.9 Hz, 1H), 7.07–6.96 (m, 2H), 6.96–6.85 (m, 2H), 6.69 (s, 2H), 6.16 (d, \textit{J} = 2.3 Hz, 1H), 5.96 (d, \textit{J} = 2.3 Hz, 1H), 5.71–5.62 (m, 2H), 5.52 (s, 1H), 5.09 (s, 1H), 3.83 (d, \textit{J} = 3.7 Hz, 6H), 3.79 (d, \textit{J} = 0.6 Hz, 3H), 3.67 (s, 6H), 3.09 (d, \textit{J} = 3.4 Hz, 2H); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 165.7, 160.6, 159.4, 156.2, 155.6, 155.4, 153.3 (2), 138.8, 133.6, 132.6, 131.2, 130.6, 129.3 (2), 122.5, 122.1, 115.3, 113.2, 110.7, 103.9 (2), 99.2, 96.6, 96.3, 78.1, 68.5, 61.0, 56.1, 56.0, 55.5, 53.6, 29; IR (KBr) ν\textsubscript{max} 3429, 2931, 2851, 1699, 1604, 1508, 1476, 1248, 1166, 1145, 1098, cm-1; HRMS (ESI+) \textit{m/z} [M + H+] calcd for C\textsubscript{33}H\textsubscript{33}O\textsubscript{10}, 589.2074 found 589.2057
5,7-Dihydroxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (8e): A solution of palladium acetate (1 mg, 0.004 mmol), trimethylamine (7 μL, 0.047 mmol), triethylsilane (34 μL, 0.208 in dichloromethane (0.5 mL) was stirred for 15 min before the addition of 7j (20 mg, 0.026 mmol) in dichloromethane (0.4 mL). The resulting mixture was stirred for 15 h, quenched with saturated ammonium chloride (2 mL), and extracted with diethyl ether (3 × 4 mL). The combined organic layers were washed with saturated sodium chloride solution and dried over anhydrous Na₂SO₄. Solvent was removed, and the residue was purified via flash chromatography (SiO₂, 5:95 MeOH/DCM) to give 8e (4 mg, 18.9%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, J = 6.4, 2.4 Hz, 2H), 6.67 (s, 3H), 6.43 (d, J = 2.2 Hz, 1H), 6.23 (d, J = 2.2 Hz, 1H), 5.74 (s, 1H), 5.66–5.59 (m, 1H), 5.36 (br s, 1 H), 5.22 (dddt, J = 7.3, 5.8, 2.9, 1.5 Hz, 1H), 4.97 (s, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 3.32 (d, J = 7.4 Hz, 2H), 3.07–2.99 (m, 2H), 2.30 (d, J = 5.3 Hz, 3H), 1.80–1.64 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 165.6, 159.2, 156.0, 155.0, 153.3 (2), 150.0, 137.9, 136.0, 133.2, 132.2, 130.0, 127.1 (2), 122.2, 121.0, 115.7, 104.8, 103.9 (2), 103.1, 102.1, 78.2, 67.7, 61.0, 56.2, 29.7, 26.0 (2), 21.4, 18.1; IR (KBr) νₘₐₓ 3412, 2937, 2843, 1715, 1693, 1562, 1473, 1126 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₃₂H₃₃O₁₀, 577.2074, found 577.2079.
2-Cinnamyl-3,5-dimethoxyphenol (9a): A solution of 3,5-dimethoxy phenol (1a) (2.3 g, 14.91 mmol) and cinnamyl alcohol (2.0 g, 14.91 mmol) in a solvent mixture of dichloromethane (30 mL) and carbon disulfide (30 mL) was treated with 25% H₂SO₄/SiO₂ catalyst (2.4 g, 5.96 mmol) at rt. The resulting mixture was stirred for 4 h and then filtered through a plug of SiO₂. Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:9 EtOAc/hexanes) to give 9a (1.735 g, 43.15%) as an amorphous light yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.26 (m, 2H), 7.30 (dd, J = 7.2, 1.7 Hz, 2H), 7.23–7.17 (m, 1H), 6.48 (dt, J = 16.0, 1.7 Hz, 1H), 6.34 (dt, J = 15.9, 6.3 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 6.11 (d, J = 2.3 Hz, 1H), 5.06 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.56 (d, J = 1.6 Hz, 1H), 3.55 (d, J = 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 159.0, 155.9, 137.4, 130.6, 128.6 (2), 128.6, 128.5, 127.3, 126.3, 106.1, 93.9, 91.8, 56.0, 55.5, 26.4; IR (KBr) νₘₐₓ 3367, 1614, 1596, 1454, 1423, 1201, 1147, 1097, 1053, 811, 736, 692 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₁₇H₁₉O₃, 271.1334, found 271.1336.

3,5-bis(benzyloxy)-2-cinnamylphenol (9b): A solution of 3,5-bis(benzyloxy)phenol (1b) (3.3 g, 9.98 mmol) and cinnamyl alcohol (1.34 g, 9.98 mmol) in a solvent mixture of dichloromethane (20 mL) and carbon disulfide (20 mL) was treated with 25% H₂SO₄/SiO₂ catalyst (1.59 g, 3.99 mmol) at rt. The resulting mixture was stirred for 4 h and then filtered through a plug of SiO₂. Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to give 9b (1.425 g, 33.7%) as an amorphous light yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.29 (m, 15H), 6.53–6.44 (m, 1H), 6.39–6.30 (m, 1H), 6.29 (d, J = 2.2 Hz, 1H), 6.18 (d, J = 2.3 Hz, 1H), 5.03 (m, 5H), 3.60 (dd, J = 6.5, 1.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0,
158.1, 155.9, 137.5, 137.2, 137.0 (2), 128.8 (2), 128.7 (2), 128.6 (3), 128.5, 128.2, 128.0, 127.8, 127.5 (2), 127.3, 126.3 (2), 107.0, 95.3, 93.9, 70.5, 70.3, 26.7; IR (KBr) \(\nu_{\text{max}} \) 3419, 3028, 2925, 1618, 1596, 1452, 1436, 1375, 1147, 1091, 734, 696 cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + H\(^+\)] calcd for C\(_{29}\)H\(_{27}\)O\(_3\), 423.1960, found 423.1966.IR (KBr) \(\nu_{\text{max}} \) cm\(^{-1}\).

3-(2-Hydroxy-4,6-dimethoxyphenyl)-1-phenylpropane-1,2-diol (10a): N-Methylmorpholine N-oxide (1.26g, 10.76 mmol) was added to a solution of 9a (1.7g, 6.33 mmol) in a solvent mixture of tetrahydrofuran (18 mL) and H\(_2\)O (12 mL). The resulting solution was stirred for 15 min at rt before the addition osmium tetraoxide (0.1 mmol, 4% solution in water). The mixture was stirred for 14 h at rt before quenching with 20% of sodium metabisulfite (15 mL). The aqueous layer was extracted with ethyl acetate (3 × 25 mL) and the combined organic layers were washed with saturated sodium chloride solution (50 mL), dried over anhydrous Na\(_2\)SO\(_4\), filtered and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:2 EtOAc/hexanes) to afford 10a (1.55 g, 81%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.98 (br s, 1 H), 7.43–7.37 (m, 2H), 7.37–7.32 (m, 3H), 6.17 (d, \(J = 2.4 \) Hz, 1H), 6.03 (d, \(J = 2.4 \) Hz, 1H), 4.55 (d, \(J = 6.6 \) Hz, 1H), 4.04 (dd, \(J = 7.4, 6.5, 3.8 \) Hz, 1H), 3.77 (s, 3H), 3.59 (s, 3H), 3.23 (br s, 1 H), 2.84 (dd, \(J = 14.8, 3.8 \) Hz, 1H), 2.74 (dd, \(J = 14.8, 7.4 \) Hz, 1H), 2.46 (br s, 1 H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 160.2, 158.9, 157.5, 140.6, 128.7 (2), 128.5 (2), 127.2, 105.5, 76.9, 76.5, 94.6, 91.5, 55.5 (2), 26.2; IR (KBr) \(\nu_{\text{max}} \) 3348, 2837, 1622, 1593, 1496, 1456, 1338, 1199, 1147, 1105, cm\(^{-1}\); HRMS (ESI-) \(m/z \) [M – H\(^-\)] calcd for C\(_{17}\)H\(_{19}\)O\(_5\), 303.1233, found 303.1227.
3-(2,4-Bis(benzyloxy)-6-hydroxyphenyl)-1-phenylpropane-1,2-diol (10b): N-Methylmorpholine N-oxide (393 mg, 3.36 mmol) was added to a solution of 9b (0.9g, 2.1 mmol) in a solvent mixture of tetrahydrofuran (9 mL) and H₂O (6 mL). The resulting solution was stirred for 15 min at rt before the addition osmium tetraoxide (0.02 mmol, 4% solution in water). The mixture was stirred for 14 h at rt before quenching with 20% of sodium metabisulfite (10 mL). The aqueous layer was extracted with ethyl acetate (3 × 20 mL) and the combined organic layers were washed with saturated sodium chloride solution (40 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to afford 10b (0.78g, 80.1%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.46–7.36 (m, 5H), 7.36–7.29 (m, 6H), 7.27–7.25 (m, 2H), 7.19–7.06 (m, 2H), 6.29 (d, J = 2.3 Hz, 1H), 6.21 (d, J = 2.4 Hz, 1H), 5.01 (s, 2H), 4.90–4.82 (m, 2H), 4.56 (d, J = 6.8 Hz, 1H), 4.04 (ddd, J = 8.5, 6.7, 3.5 Hz, 1H), 3.32 (s, 1H), 2.93 (dd, J = 14.7, 3.5 Hz, 1H), 2.75 (dd, J = 14.6, 8.4 Hz, 1H), 2.46 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.3, 158.0, 157.7, 140.4, 137.1, 137.0, 128.8 (5), 128.7 (2), 128.6, 128.2, 127.8 (4), 127.2 (2), 127.0 (2), 106.3, 96.1, 93.6, 70.3 (2), 26.6; IR (KBr) νmax 3363, 3330 3087, 3031, 1701, 1620, 1598, 1452, 1375, 1147, 1099, 815, 698 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₉H₂₉O₅, 457.2015, found 457.2028.

5,7-Dimethoxy-2-phenylchroman-3-ol (11a): Trimethyl orthoacetate (2.50 mmol, 300 μL) and pyridinium p-toluenesulfonate (9 mg, 0.036 mmol) were added to a solution of 10a (600 mg, 1.92
mmol) in dichloromethane (36 mL) at rt. The resulting mixture was stirred for 30 min at rt and then cooled to 0 °C before the dropwise addition of boron trifluoride diethyl etherate (25 μL, 0.192 mmol). The reaction mixture was warmed to rt and stirred for another 15 min before quenching with aqueous acetone (4 mL). Solvent was removed and the residue was dissolved in methanol (32 mL). Potassium carbonate (225 mg, 1.84 mmol) was added and the mixture stirred for 6 h at rt. Methanol was removed, water (25 mL) was added, and the products were extracted with ethyl acetate (2 × 30 mL). The organic layers were combined and washed with saturated sodium chloride solution (60 mL). The organic phase was dried over anhydrous Na₂SO₄ and filtered. Solvent was removed, and the residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to yield compound 11a (422 mg, 77.7%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.34 (m, 5H), 6.16 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 4.79 (d, J = 7.8 Hz, 1H), 4.11 (td, J = 8.1, 5.5 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.00 (dd, J = 16.4, 5.5 Hz, 1H), 2.63 (dd, J = 16.4, 8.4 Hz, 1H), 1.71 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 158.8, 155.1, 138.1, 128.8 (2), 128.6 (2), 127.1, 101.4, 93.0, 91.9, 81.7, 68.2, 55.5, 55.4, 27.2; IR (KBr) ν max 3446, 2937, 2839, 1618, 1593, 1496, 1213, 1143, 1120, 1051, 1022, 813, 761, 689 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₁₇H₁₉O₄, 287.1283, found 287.1270.

5,7-Bis(benzyloxy)-2-phenylchroman-3-ol (11b): Trimethyl orthoacetate (1.48 mmol, 188 μL) and pyridinium p-toluenesulfonate (6 mg, 0.012 mmol) were added to a solution of 10b (560 mg, 1.22 mmol) in dichloromethane (24 mL) at rt. The resulting mixture was stirred for 30 min and cooled to 0 °C before the addition of borontrifluoride diethyletherate (18 μL, 0.24 mmol) dropwise. The reaction mixture was warmed to rt and stirred for another 15 min before quenching with
aqueous acetone (4 mL). Solvent was removed, and the residue was dissolved in methanol (18 mL). Potassium carbonate (185 mg, 1.34 mmol) was added and mixture stirred for 6 h at rt. Methanol was removed, water (20 mL) was added and the products extracted with ethyl acetate (2 × 25 mL). The combined organic layers were washed with saturated sodium chloride solution (60 mL). The organic phase was dried over anhydrous Na₂SO₄ and filtered. Solvent was removed and the residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to yield compound 11b (420 mg, 78.2%) as a pale yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.23 (m, 15H), 6.28–6.09 (m, 2H), 5.09–4.76 (m, 4H), 4.73 (d, J = 7.9 Hz, 1H), 4.07 (td, J = 8.4, 5.6 Hz, 1H), 3.05 (dd, J = 16.5, 5.5 Hz, 1H), 2.65 (dd, J = 16.4, 8.6 Hz, 1H); IR (KBr) νmax 3460, 2912, 1617, 1592, 1375, 1145, 1126, 1076, 973, 813, 696 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₉H₂₇O₄, 439.1909, found 439.1897.

5,7-Dimethoxy-2-phenylchroman-3-ol (12a): Dess-Martin periodinane (937 mg, 2.20 mmol, 1.5 eq.) was added to a solution of 11a (421 mg, 1.47 mmol, 1.0 eq.) in dichloromethane (15 mL). The resulting mixture was stirred for 2 h before quenching with 15 % aqueous solution of sodium thiosulfate (5 mL) and saturated sodium bicarbonate (5 mL). The aqueous layer was extracted with dichloromethane (3 × 10 mL) and the combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to yield the corresponding ketone which was used further as obtained. A solution of the ketone in tetrahydrofuran (3 mL) was added dropwise to a solution of lithium bromide (663 mg, 7.64 mmol, 5.2 eq.) and L-selectride (1 M solution) (1.91 mL, 1.91 mmol, 1.3 eq.) in tetrahydrofuran at -78
°C. The resulting mixture was stirred for 6 h at -78 °C, warmed to rt, and quenched with 2.5 M sodium hydroxide solution (6.86 mL), followed by the addition of ethanol (5.10 mL) and 35% aqueous hydrogen peroxide solution (1.70 mL). The resulting mixture was stirred for 14 h before the addition of ethyl acetate (20 mL). The aqueous layer was extracted with ethyl acetate (2 × 15 mL) and the combined organic layers washed with saturated sodium chloride solution (30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified via flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to yield compound 12a as a colorless oil (232 mg, 55%):

\[^1H \text{NMR (400 MHz, CDCl}_3 \] δ 7.58–7.52 (m, 2H), 7.45 (dd, \(J = 8.4, 6.7 \text{ Hz}, 2H \)), 7.43–7.33 (m, 1H), 6.23 (d, \(J = 2.3 \text{ Hz}, 1H \)), 6.15 (d, \(J = 2.3 \text{ Hz}, 1H \)), 5.05 (s, 1H), 4.34 (s, 1H), 3.82 (s, 3H), 3.04–2.82 (m, 2H), 1.73 (br s, 1 H);

\[^13C \text{NMR (125 MHz, CDCl}_3 \] δ 159.9, 159.5, 155.4, 138.4, 129.0, 128.8, 128.3, 126.5, 126.4, 100.4, 93.5, 92.4, 78.8, 66.6, 55.7, 55.6, 28.3; IR (KBr) \(\nu_{\text{max}} \) 3451, 1952, 2923, 2854, 1618, 1593, 1203, 1145, 1118, 1058, 968, 811, 746, 700 cm\(^{-1}\); HRMS (ESI+) \(m/z [M + H^+] \) C\(_{17}\)H\(_{19}\)O\(_4\), 287.1283, found 287.1277.

5,7-Bis(benzyloxy)-2-phenylchroman-3-ol (12b): Dess-Martin periodinane (609 mg, 1.44 mmol, 1.5 eq.) was added to a solution of 11b (421 mg, 0.96 mmol, 1.0 eq.) in dichloromethane (10 mL). The resulting mixture was stirred for 2 h before quenching with 15 % aqueous solution of sodium thiosulfate (3 mL) and saturated sodium bicarbonate (3 mL). The aqueous layer was extracted with dichloromethane (3 × 10 mL) and the combined organic layers were washed with saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to yield the corresponding ketone which was used further as obtained. A solution of the ketone in
tetrahydrofuran (2 mL) was added dropwise to a solution of lithium bromide (429 mg, 4.99 mmol, 5.2 eq.) and L-selectride (1 M solution) (1.24 mL, 1.24 mmol, 1.3 eq.) in tetrahydrofuran at -78 °C. The resulting mixture was stirred for 6 h at -78 °C, warmed to rt, and quenched with 2.5 M sodium hydroxide solution (4.45 mL), followed by the addition of ethanol (3.30 mL) and 35% aqueous hydrogen peroxide solution (1.10 mL). The resulting mixture was stirred for 14 h before the addition of ethyl acetate (14 mL). The aqueous layer was extracted with ethyl acetate (2 × 10 mL) and the combined organic layers washed with saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to yield compound 11b as a pale yellow oil (198 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.65–7.31 (m, 15H), 6.23 (d, J = 2.3 Hz, 1H), 6.16 (d, J = 2.3 Hz, 1H), 5.62 (dt, J = 7.6, 4.9 Hz, 1H), 5.13 (d, J = 5.3 Hz, 1H), 4.99 (d, J = 1.9 Hz, 4H), 3.25 (dd, J = 14.6, 4.9 Hz, 1H), 2.89 (dd, J = 14.6, 8.0 Hz, 1H), 1.75 (br s, 1H); IR (KBr) νmax 3449, 2954, 2842, 1618, 1593, 1498, 1458, 1198, 1145, 1120, 1080, 729 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₉H₂₆NaO₄, 461.1729, found 461.1724.

5,7-Dimethoxy-2-phenylchroman-3-yl benzoate (13a): Benzoyl chloride (8 μL, 0.07 mmol) in dichloromethane (0.5 mL) was added to a solution of 12a (10 mg, 0.035 mmol) and 4-dimethylaminopyridine (11 mg, 0.08 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt. Solvent was removed and the residue purified via flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to give the desired ester 13a as an amorphous white solid: (11 mg, 88.8%): ¹H NMR (500 MHz, CDCl₃) δ 7.95–7.87 (m, 2H), 7.56–7.47 (m, 3H), 7.41–
7.28 (m, 5H), 6.27 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 5.69 (ddd, J = 4.1, 3.2, 1.4 Hz, 1H), 5.21 (m, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.15–3.02 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.9, 159.9, 159.1, 155.7, 138.0, 133.1, 130.2, 129.9 (2), 128.5 (4), 128.3 (2), 126.7, 100.4, 93.5, 92.1, 78.0, 68.8, 55.6 (2), 26.1; IR (KBr) ν_{max} 2956, 1935, 2839, 1714, 1593, 1458, 1419, 1361, 1257, 1147, 1124, 1101, 1029, 1006, 846, 813, 769 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{24}$H$_{23}$O$_5$, 391.1545, found 391.1538.

![Structure Image]

5,7-Dimethoxy-2-phenylchroman-3-yl 3-Methoxybenzoate (13b): A solution of 12a (8 mg, 0.027 mmol) in dichloromethane (0.5 mL) was added to a solution of 3-methoxybenzoic acid (8 mg, 0.05 mmol), N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride (9.5 mg, 0.05 mmol), and 4-dimethylaminopyridine (6 mg, 0.05 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt and then diluted with dichloromethane (5 mL). The organic phase was washed with saturated sodium bicarbonate solution (2 × 4 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and solvent removed. The residue was purified via flash chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to give the desired ester 13b (9 mg, 76.9%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.56–7.46 (m, 3H), 7.42 (dd, J = 2.7, 1.5 Hz, 1H), 7.38–7.30 (m, 2H), 7.29 (t, J = 2.6 Hz, 1H), 7.27–7.21 (m, 1H), 7.04 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 5.67 (ddd, J = 4.1, 3.2, 1.4 Hz, 1H), 5.21 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.10–3.04 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.8, 159.9, 159.6, 159.1, 155.7, 138.0, 131.5, 129.5 (2), 128.5 (2), 128.3, 126.7, 122.3, 119.6, 114.4, 100.3, 93.5, 92.1, 77.9, 69.0, 55.6 (3), 26.0; IR (KBr) ν_{max} 2925, 2837, 1718, 1618,
5,7-Dimethoxy-2-phenylchroman-3-yl 4-methoxybenzoate (13c): A solution of 12a (10 mg, 0.035 mmol) in dichloromethane (0.5 mL) was added to a solution 4-methoxybenzoic acid (18 mg, 0.07 mmol), N-(3-Dimethylamino-propyl)-N′-ethylcarbodiimide hydrochloride (13.5 mg, 0.07 mmol), and 4-dimethylaminopyridine (9 mg, 0.07 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt and then diluted with dichloromethane (5 mL). The organic phase was washed with saturated sodium bicarbonate solution (2 × 4 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent removed. The residue was purified via flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to give the desired ester 13c as a colorless oil (9.5 mg, 81.1%): "H NMR (500 MHz, CDCl₃) δ 7.93–7.83 (m, 2H), 7.57–7.49 (m, 2H), 7.36–7.30 (m, 2H), 7.28 (d, J = 7.0 Hz, 1H), 6.87–6.82 (m, 2H), 6.26 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 5.66 (td, J = 3.7, 1.5 Hz, 1H), 5.20 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 3.08–3.04 (m, 2H); "C NMR (125 MHz, CDCl₃) δ 165.6, 163.5, 159.8, 159.1, 155.7, 138.1, 131.9 (2), 128.5 (2), 128.2 (2), 126.7, 122.6, 113.7 (2), 100.5, 93.5, 92.1, 78.0, 68.4, 55.6 (3), 26.1; IR (KBr) νmax 2958, 2935, 2839, 1716, 1618, 1255, 1203, 1147, 1101, 1029, 906, 846, 700 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₅H₂₅O₆, 421.1651, found 421.1644.
(5,7-Dimethoxy-2-phenylchroman-3-yl 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxylate (13d):
A solution of 12a (10 mg, 0.035 mmol) in dichloromethane (0.5 mL) was added to a solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxylic acid (18 mg, 0.07 mmol), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (13.5 mg, 0.07 mmol), and 4-dimethylaminopyridine (9 mg, 0.07 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt and then diluted with dichloromethane (5 mL). The organic phase was washed with saturated sodium bicarbonate solution (2 × 4 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified via flash chromatography (SiO2, 1:7 EtOAc/hexanes) to give the desired ester 13d (14 mg, 76%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.94–7.84 (m, 2H), 7.58–7.48 (m, 2H), 7.38–7.31 (m, 3H), 7.31–7.28 (m, 1H), 7.05 (ddd, J = 7.6, 1.6, 1.0 Hz, 1H), 7.01 (dd, J = 2.6, 1.6 Hz, 1H), 6.96–6.87 (m, 2H), 6.24 (d, J = 2.3 Hz, 1H), 6.11 (d, J = 2.3 Hz, 1H), 5.65 (td, J = 3.7, 1.5 Hz, 1H), 5.21 (s, 1H), 3.84 (d, J = 0.7 Hz, 6H), 3.80 (s, 3H), 3.78 (s, 3H), 3.11–3.04 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 165.5, 160.2, 159.6, 159.3, 158.9, 155.5, 138.8, 137.9, 132.5, 131.0, 130.2, 129.0 (2), 128.3, 128.1 (2), 126.5, 122.5, 122.0, 115.2, 112.9, 110.5, 100.2, 93.3, 91.9, 77.8, 68.5, 55.8, 55.4 (2), 55.3, 25.8; IR (KBr) νmax 2933, 1716, 1616, 1595, 1298, 1245, 1205, 1147, 1108, 1027, 918, 813, 696, 649 cm⁻¹; HRMS (ESI+) m/z [M + Na+] calcd for C₃₂H₃₀NaO₇, 549.1889, found 549.1863.
5,7-Dimethoxy-2-phenylchroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (13e): A solution of 12a (20 mg, 0.07 mmol) in dichloromethane (0.5 mL) was added to a solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (35 mg, 0.14 mmol), N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride (27 mg, 0.14 mmol) and 4-dimethylaminopyridine (25 mg, 0.21 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed saturated sodium bicarbonate solution (2 × 4 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent removed. The residue was purified via flash chromatography (SiO₂, 1:7 EtOAc/hexanes) to give the desired ester 13e (20 mg, 55.5%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 2.1 Hz, 1H), 7.76 (dd, J = 8.4, 2.1 Hz, 1H), 7.50 (dd, J = 7.9, 1.4 Hz, 2H), 7.34 (m, 3H), 7.01 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 2.3 Hz, 1H), 6.11 (d, J = 2.3 Hz, 1H), 5.68–5.57 (m, 1H), 5.22–5.15 (m, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 3.21 (d, J = 7.3 Hz, 2H), 3.05 (d, J = 3.5 Hz, 2H), 2.31 (s, 3H), 1.75 (d, J = 1.5 Hz, 3H), 1.71–1.62 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.10, 155.48, 154.11, 151.35, (2), 136.7 (2), 128.4 (5), 128.3(5), 126.14, 111.2 (2), 104.6, 102.9, 78.23, 66.5, 60.7, 60.4 (2), 31.0, 29.7, 26.8, 20.7; IR (KBr) νmax 2925, 1760, 1716, 1593, 1369, 1201, 1147, 1108, 813 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₁H₃₃O₇, 517.2226, found 517.2215.

![Structure of 13e](image)

5,7-Bis(benzyloxy)-2-phenylchroman-3-yl benzoate (13f): A solution of 12b (20 mg, 0.046 mmol) in dichloromethane (0.5 mL) was added to a solution of benzoic acid (11 mg, 0.09 mmol), N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride (18 mg, 0.09 mmol) and 4-dimethylaminopyridine (12 mg, 0.09 mmol) in dichloromethane (1 mL) at 0 °C. The resulting
mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed with saturated sodium bicarbonate (2 × 4 mL) solution. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified via flash chromatography (SiO₂, 1:7 EtOAc/hexanes) to give the desired ester 13f (23 mg, 93%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.97–7.91 (m, 2H), 7.55–7.51 (m, 3H), 7.50–7.44 (m, 2H), 7.42–7.30 (m, 13H), 6.38 (d, J = 2.3 Hz, 1H), 6.31 (d, J = 2.3 Hz, 1H), 5.72 (ddd, J = 4.4, 2.9, 1.4 Hz, 1H), 5.22 (s, 1H), 5.06 (d, J = 4.9 Hz, 2H), 5.02 (d, J = 2.6 Hz, 2H), 3.21–3.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 158.8, 158.0, 155.6, 137.7, 136.9, 136.8, 133.0, 129.9 (2), 129.7 (2), 128.6 (2), 128.5 (2), 128.3 (4), 128.1, 128.0, 127.9, 127.6 (2), 127.2 (2), 126.5, 100.9, 94.7, 93.9, 77.8, 70.2, 70.0, 68.6, 26.1; IR (KBr) νmax 2952, 2923, 2852, 1716, 1616, 1269, 1147, 1107, 1027, 1002, 906, 811, 739 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₃₆H₃₀NaO₅, 565.1991, found 565.1998.

![Chemical structure](image)

5,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3-Methoxybenzoate (13g): A solution of 12b (12 mg, 0.03 mmol) in dichloromethane (0.5 mL) was added to a solution of 3-methoxybenzoic acid (10 mg, 0.06 mmol), N-(3-dimethylaminopropyl)-N' -ethylcarbodiimide hydrochloride (13 mg, 0.06 mmol), and 4-dimethylaminopyridine (8 mg, 0.06 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed with saturated sodium bicarbonate (2 × 4 mL) solution. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give the desired ester product 13g as a colorless oil (13 mg, 80.4%): ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dt, J = 7.7, 1.2 Hz, 1H),
7.48 (dd, \(J = 2.7, 1.5 \) Hz, 1H), 7.30–7.26 (m, 1H) 7.05 (ddd, \(J = 8.3, 2.7, 1.0 \) Hz, 1H), 6.72 (s, 2H), 6.26 (d, \(J = 2.3 \) Hz, 1H), 6.13 (d, \(J = 2.4 \) Hz, 1H), 5.67 (td, \(J = 3.6, 1.3 \) Hz, 1H), 5.08 (s, 1H), 3.81 (s, 3H), 3.81–3.78 (m, 9H), 3.73 (s, 6H), 3.07 (d, \(J = 3.5 \) Hz, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 165.4, 159.6, 158.9, 155.5, 153.1 (2), 137.7, 133.3, 131.3, 129.3 (2), 122.0, 119.1, 114.7, 103.8 (2), 100.1, 93.4, 92.0, 78.0, 68.6, 60.8, 55.9 (2), 55.4 (3), 26.0; IR (KBr) \(\nu_{\text{max}} \) 2937, 1718, 1622, 1593, 1498, 1456, 1274, 1218, 1124, 1047, 754 cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + H\(^+\)] calcd for C\(_{28}\)H\(_{31}\)O\(_9\), 511.1968, found 511.1977.

5,7-Bis(benzyloxy)-2-phenylchroman-3-yl 4-Methoxybenzoate (13h): A solution of 12b (20 mg, 0.046 mmol) in dichloromethane (0.5 mL) was added to a solution of 4-methoxybenzoic acid (14 mg, 0.09 mmol), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (18 mg, 0.09 mmol), and 4-dimethylaminopyridine (12 mg, 0.09 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt and then diluted with dichloromethane (5 mL). The organic phase was washed with saturated sodium bicarbonate solution (2 \(\times \) 4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO\(_2\), 1:7 EtOAc/hexanes) to give the desired ester 13h (22 mg, 85%) as a colorless oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.89 (d, \(J = 2.0 \) Hz, 1H), 7.89–7.85 (m, 1H), 7.53–7.49 (m, 2H), 7.49–7.44 (m, 2H), 7.44–7.30 (m, 11H), 6.86 (d, \(J = 2.0 \) Hz, 1H), 6.85 (d, \(J = 2.1 \) Hz, 1H), 6.37 (d, \(J = 2.3 \) Hz, 1H), 6.30 (d, \(J = 2.3 \) Hz, 1H), 5.69 (ddd, \(J = 4.5, 2.9, 1.5 \) Hz, 1H), 5.21 (br s, 1 H), 5.06 (d, \(J = 4.8 \) Hz, 2H), 5.04–5.00 (m, 2H), 3.83 (s, 3H), 3.19–3.05 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 165.4, 163.4, 158.8, 158.0, 155.6, 137.8, 136.9, 136.8, 131.8, 128.6,
128.5 (3), 128.3 (3), 128.1 (2), 128.0, 127.9 (2), 127.6 (2), 127.2, 126.5, 122.4, 113.5 (2), 101.0, 94.7, 93.8, 77.9, 70.2, 69.9, 68.2, 55.4, 26.1; IR (KBr) \(\nu_{\text{max}} \) 2925, 2852, 1716, 1147, 1095, 1026, 798, cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + Na\(^+\)] calcd for C\(_{37}\)H\(_{32}\)NaO\(_6\), 595.2097, found 595.2109.

\[\text{5,7-Bis(benzyloxy)-2-phenylchroman-3-yl 3',6-Dimethoxy-[1,1'-biphenyl]-3-carboxylate (13i)} \]

A solution of 12b (20 mg, 0.045 mmol) in dichloromethane (0.5 mL) was added to a solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxylic acid (25 mg, 0.09 mmol), \(N \)-((3-dimethylaminopropyl)-\(N \)’-ethylcarbodiimide hydrochloride (18 mg, 0.09 mmol), and 4-dimethylaminopyridine (11 mg, 0.09 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt and the diluted with dichloromethane (5 mL). The organic phase was washed with saturated sodium bicarbonate solution. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (SiO\(_2\), 1:4 EtOAc/hexanes) to give the desired ester 13i (27 mg, 90%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.94–7.89 (m, 2H), 7.55–7.52 (m, 2H), 7.48–7.44 (m, 2H), 7.42–7.29 (m, 12H), 7.09–7.04 (m, 1H), 7.03 (dd, \(J = 2.6, 1.5 \text{ Hz, 1H} \)), 6.96–6.89 (m, 2H), 6.36 (d, \(J = 2.3 \text{ Hz, 1H} \)), 6.30 (d, \(J = 2.3 \text{ Hz, 1H} \)), 5.68 (ddd, \(J = 4.3, 3.1, 1.5 \text{ Hz, 1H} \)), 5.22 (br s, 1 H), 5.04 (d, \(J = 3.5 \text{ Hz, 2H} \)), 5.02 (d, \(J = 2.2 \text{ Hz, 2H} \)), 3.85 (s, 3H), 3.84 (s, 3H), 3.20–3.11 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 165.5, 160.2, 159.2, 158.7, 157.9, 155.6, 138.8, 137.9, 136.9, 136.8, 132.5, 131.0, 130.2, 129.0, 128.6 (3), 128.5 (2), 128.3, 128.1, 128.0, 127.9 (2), 127.6 (2), 127.2, 126.5, 122.4, 122.0, 115.2 (2), 112.9, 110.5, 101.0, 94.7, 93.8, 77.8, 70.2, 69.9, 68.5, 55.8,
5.7-Bis(benzyloxy)-2-phenylchroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (13j): A solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (34 mg, 0.138 mmol) in THF (5 mL) was treated with thionyl chloride (20 μL, 0.276 mmol). The resulting solution was heated at 70 °C for 3 h, cooled to rt, and concentrated. The residue was dissolved in dichloromethane (0.5 mL) and added to a solution of 12b (20 mg, 0.046 mmol) and 4-dimethylaminopyridine (22 mg, 0.184 mmol) in dichloromethane (1 mL) 0 °C. The resulting mixture was stirred for 6 h at rt. The solvent was removed, and the residue was purified via flash chromatography (SiO₂, 1:7 EtOAc/hexanes) to give the ester 13j (22.5 mg, 83.5%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 2.2 Hz, 1H), 7.69 (dd, J = 8.4, 2.2 Hz, 1H), 7.46–7.35 (m, 5H), 7.34–7.22 (m, 10H), 6.94 (d, J = 8.4 Hz, 1H), 6.28 (d, J = 2.3 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.58 (ddd, J = 4.3, 3.1, 1.5 Hz, 1H), 5.17–5.06 (m, 2H), 5.00–4.89 (m, 4H), 3.13 (d, J = 7.5 Hz, 2H), 3.04 (t, J = 2.6 Hz, 2H), 2.23 (s, 3H), 1.67 (q, J = 1.3 Hz, 3H), 1.60 (d, J = 1.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 165.1, 158.1, 158.0, 155.5, 152.5, 137.8, 136.9, 136.8, 134.0, 133.7, 131.9, 128.7, 128.6 (2), 128.5 (2), 128.4 (2), 128.1, 128.0, 127.9 (2), 127.8 (2), 127.6 (2), 127.2, 126.4, 122.3, 120.8, 100.8, 94.6, 93.8, 77.7, 70.2, 70.0, 68.7, 29.7, 28.5, 26.1, 20.9, 17.84; IR (KBr) ν_max 2921, 2852, 1760, 1716, 1616, 1373, 1257, 1201, 1149, 1114, 1027, 736 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₄₃H₄₀NaO₇, 691.2672, found 691.2682.
5,7-Dihydroxy-2-phenylchroman-3-yl Benzoate (14a): Compound 13f (20 mg, 0.036 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, Acetone/dichloromethane 1:12) to give 14a (12 mg, 90%) as a colorless oil: 1H NMR (500 MHz, CD$_3$OD) δ 7.87–7.79 (m, 2H), 7.56–7.47 (m, 3H), 7.43–7.34 (m, 2H), 7.31–7.19 (m, 3H), 6.01 (d, $J = 2.3$ Hz, 1H), 5.98 (d, $J = 2.3$ Hz, 1H), 5.66 (ddd, $J = 4.6$, 2.4, 1.3 Hz, 1H), 5.23 (s, 1H), 3.08 (dd, $J = 17.5$, 4.6 Hz, 1H), 2.93 (ddd, $J = 17.6$, 2.5, 0.9 Hz, 1H); 13C NMR (125 MHz, CD$_3$OD) δ 167.1, 158.0, 157.9, 157.1, 139.9, 134.2, 131.2, 130.5, 129.5 (2), 129.1 (2), 128.8 (2), 127.5 (2), 99.1, 96.7, 95.8, 78.6, 70.6, 26.7; IR (KBr) ν_{max} 3427, 2921, 2848, 1701, 1560, 1473, 1271, 1097 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{22}$H$_{19}$O$_5$, 363.1232, found 363.1241.

5,7-Dihydroxy-2-phenylchroman-3-yl 3-Methoxybenzoate (14b): Compound 13g (20 mg, 0.034 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, acetone/dichloromethane 1:10) to give 14b (20 mg, 89%) as a colorless oil: 1H NMR (500 MHz,
CDCl$_3$ δ 7.50 (dt, $J = 7.7$, 1.2 Hz, 3H), 7.41 (dd, $J = 2.7$, 1.5 Hz, 1H), 7.38–7.30 (m, 2H), 7.31–7.27 (m, 2H), 7.05 (ddd, $J = 8.3$, 2.7, 1.0 Hz, 1H), 6.17 (d, $J = 2.4$ Hz, 1H), 5.99 (d, $J = 2.4$ Hz, 1H), 5.67 (ddd, $J = 4.4$, 2.9, 1.5 Hz, 1H), 5.21 (br s, 1 H), 5.18 (br s, 1 H), 5.05 (br s, 1 H), 3.79 (s, 3H), 3.22–3.00 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 159.6, 156.2, 155.5, 155.3, 137.8, 131.3, 129.6, 128.5, 128.4 (2), 126.6 (2), 122.3, 119.7, 114.4, 99.1, 96.5, 96.2, 77.8, 68.9, 55.6, 25.7; IR (KBr) ν_{max} 3359, 2923, 2852, 1714, 1631, 1461, 1274, 1103, 754 cm$^{-1}$; HRMS (ESI-) m/z [M – H$^+$] calcd for C$_{23}$H$_{19}$O$_6$, 391.1182, found 391.1181.

5,7-Dihydroxy-2-phenylchroman-3-yl 4-Methoxybenzoate (14c): Compound 13h (16 mg, 0.027 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of Celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, acetone/dichloromethane 1:10) to afford 14c (10 mg, 91%) as a colorless oil: 1H NMR (500 MHz, CD$_3$CO) δ 8.20 (d, $J = 1.3$ Hz, 1H), 8.00 (d, $J = 1.2$ Hz, 1H), 7.72–7.67 (m, 2H), 7.51–7.41 (m, 2H), 7.25–7.16 (m, 2H), 7.16–7.08 (m, 1H), 6.84–6.79 (m, 2H), 5.95 (s, 2H), 5.53 (ddd, $J = 4.7$, 2.4, 1.4 Hz, 1H), 5.21 (s, 1H), 3.71 (s, 3H), 2.99 (dd, $J = 17.7$, 4.4 Hz, 1H), 2.87 (ddd, $J = 17.4$, 2.4, 0.9 Hz, 1H); 13C NMR (125 MHz, CD$_3$CO) δ 165.7, 164.6, 158.0, 157.6, 156.9, 139.9, 132.3 (2), 129.0 (2), 128.6 (2), 127.5, 123.4, 114.7 (2), 98.9, 96.7, 95.9, 78.2, 69.6, 56.0, 26.6; IR (KBr) ν_{max} 3369, 2925, 2852, 1714, 1604, 1512, 1456, 1257, 1168, 1101, 1029, 667 cm$^{-1}$; HRMS (ESI-) m/z [M – H$^+$] calcd for C$_{23}$H$_{19}$O$_6$, 391.1182, found 391.1175.
5,7-Dihydroxy-2-phenylchroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (14d): Compound 13i (20 mg, 0.029 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under hydrogen atmosphere. The suspension was filtered through a small pad of Celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, acetone/dichloromethane 1:9) to give 14d (13 mg, 89%) as a colorless oil: (500 MHz, CDCl₃) H NMR δ 7.83–7.78 (m, 2H), 7.45–7.39 (m, 2H), 7.31–7.22 (m, 3H), 7.23–7.20 (m, 1H), 6.98 (ddd, J = 7.6, 1.6, 1.0 Hz, 1H), 6.93 (dd, J = 2.6, 1.6 Hz, 1H), 6.88–6.80 (m, 2H), 6.08 (d, J = 2.2 Hz, 1H), 5.91 (d, J = 2.4 Hz, 1H), 5.57 (tt, J = 3.3, 1.5 Hz, 1H), 5.13 (s, 1H), 5.01 (s, 1H), 4.91 (s, 1H), 3.76 (d, J = 1.4 Hz, 6H), 3.08–2.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 160.5, 159.4, 156.2, 155.5, 155.3, 138.9, 137.9, 132.7, 131.2, 130.5, 129.2, 128.5 (2), 128.3 (2), 126.7, 122.5, 122.2, 115.5, 113.1, 110.7, 99.2, 96.6, 96.2, 77.9, 68.6, 56.0, 55.5, 25.7; IR (KBr) νmax 3374, 2952, 2852, 1714, 1558, 1456, 1271, 1101, 1026 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₀H₂₇O₇, 499.1757, found 499.1744.

5,7-Dihydroxy-2-phenylchroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (14e): A solution of palladium acetate (2 mg, 0.008 mmol), trimethylamine (13 μL, 0.09 mmol), and triethylsilane (64 μL, 0.405) in dichloromethane (0.8 mL) was stirred for 15 min before the
addition of 13j (30 mg, 0.045 mmol) in dichloromethane (0.4 mL). The resulting mixture was stirred for 15 h, quenched with saturated ammonium chloride (2 mL), and extracted with diethyl ether (3 × 4 mL). The combined organic layers were washed with saturated sodium chloride solution and dried over anhydrous Na₂SO₄. The solvent was removed and residue purified via flash chromatography (SiO₂, 5:95 MeOH/DCM) to give 14e (4 mg, 18.9%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.63 (m, 2H), 7.51–7.45 (m, 2H), 7.33–7.25 (m, 3H), 6.69 (d, J = 8.2 Hz, 1H), 6.42 (d, J = 2.2 Hz, 1H), 6.22 (d, J = 2.2 Hz, 1H), 5.68–5.56 (m, 2H), 5.26 (m, 2H), 5.13 (d, J = 1.2 Hz, 1H), 3.32 (d, J = 7.2 Hz, 2H), 3.06 (t, J = 3.2 Hz, 2H), 2.30 (s, 3H), 1.81–1.72 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 165.8, 158.9, 156.0, 154.9, 150.0, 137.7, 135.9, 132.2, 130.0 (2), 128.5 (2), 128.3 (2), 126.9, 126.6, 122.2, 121.1, 115.7, 104.7, 103.0, 101.9, 78.0, 67.9, 29.6, 26.1 (2), 21.4, 18.1; IR (KBr) ν max 3432, 2922, 1701, 1562, 1471, 1101, 1271, 1093 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₂₉H₂₇O₇, 487.1757, found 487.1755.

3-(Benzyloxy)phenol (15): A solution of resorcinol (4g, 36.3 mmol), potassium carbonate (12.5 g, 90.7 mmol), and benzyl bromide (4.75 mL, 40 mmol) in acetonitrile (130 mL) heated as reflux for 12 h. Solvent was removed, water (100 mL) was added, and the mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with saturated sodium chloride solution (200 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 EtOAc/Hexaes) to afford 17 as colorless oil (3.5 g, 21.7%): ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.31 (m, 5H), 7.15 (t, J = 8.2 Hz, 1H), 6.58 (ddd, J = 8.3, 2.4, 0.9 Hz, 1H), 6.50 (t, J = 2.3 Hz, 1H), 6.45 (ddd, J = 8.0, 2.4, 0.9 Hz, 1H), 5.05 (s, 2H), 4.71 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.37, 156.83, 137.06, 130.39, 128.81, 128.20 (2),
127.69 (2), 108.21, 107.56, 102.63, 70.22; IR (KBr) νmax 3309, 2925, 2869, 1595, 1488, 1456, 1380, 1284, 1215, 1147, 1026, 837, 763, 736 cm–1; HRMS (ESI+) m/z [M + H+] calcd for C13H13O2, 201.0916; found 201.0916.

(((5-(Allyloxy)-1,3-phenylene)bis(oxy))bis(methylene))dibenzene (16a): A solution of 1b (1.2 g, 3.9 mmol), potassium carbonate (2.17 g, 15.7 mmol), and allyl bromide (0.44 mL, 5.1 mmol) in dimethylformamide (40 mL) was heated at 90 °C for 12 h. The reaction mixture was cooled to rt, diluted with ethyl acetate (200 mL), and washed with water (3 × 100 mL) and then saturated sodium chloride solution (100 mL). The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO2 1:9 EtOAc/hexanes) to give 16a (1.62 g, 89%) as a light yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.51–7.29 (m, 10H), 6.27 (t, J = 2.2 Hz, 1H), 6.21 (d, J = 2.1 Hz, 2H), 6.04 (ddt, J = 17.2, 10.6, 5.4 Hz, 1H), 5.40 (dq, J = 17.3, 1.6 Hz, 1H), 5.29 (dq, J = 10.5, 1.4 Hz, 1H), 5.01 (s, 4H), 4.49 (dt, J = 5.4, 1.5 Hz, 2 H); 13C NMR (125 MHz, CDCl3) δ 160.8 (2), 160.6, 137.0 (2), 133.3, 128.8 (4), 128.2 (2), 127.8 (4), 118.0, 95.0, 94.9 (2), 70.3 (2), 69.1; IR (KBr) νmax 3390, 2975, 2908, 2864, 1622, 1591, 1506, 1434, 1213, 1159, 1110, 1066, 1043, 933, 810, 703 cm–1; HRMS (ESI+) m/z [M + H+] calcd for C23H23O3, 347.1647, found 347.1647.

1-(Allyloxy)-3-(benzyloxy)benzene (16b): A solution of 15 (2.45 g, 12.3 mmol), potassium carbonate (6.62 g, 49.2 mmol), allyl bromide (1.34 mL, 16 mmol), and dimethylformamide (60
mL) was stirred for 12 h at 90 °C. The reaction mixture was cooled to rt, diluted with EtOAc (200 mL), and washed with water (3 × 100 mL times) and saturated sodium chloride solution (100 mL). The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:9 EtOAc/hexanes) to give 16b (2.8g, 95.2%) as light yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.43 (m, 2H), 7.42–7.38 (m, 2H), 7.37–7.32 (m, 1H), 7.19 (t, J = 8.1 Hz, 1H), 6.63–6.57 (m, 2H), 6.55 (ddd, J = 8.2, 2.3, 0.9 Hz, 1H), 6.06 (ddt, J = 17.2, 10.6, 5.3 Hz, 1H), 5.42 (dq, J = 17.2, 1.6 Hz, 1H), 5.29 (dq, J = 10.5, 1.4 Hz, 1H), 5.06 (s, 2H), 4.53 (dt, J = 5.3, 1.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 160.2, 160.0, 137.3, 133.4, 130.1, 128.8 (2), 128.2 (2), 127.7, 117.9, 107.5, 107.4, 102.3, 70.2, 69.0; IR (KBr) νmax 3031, 2866, 1591, 1490, 1454, 1379, 1261, 1178, 1149, 1039, 1027, 927, 835, 734, 696 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₁₆H₁₆NaO₂, 263.1048, found 263.1053.

2-Allyl-3,5-bis(benzyloxy)phenol (17a): Compound 16a (1.62 g, 4.66 mmol) was dissolved in N,N-diethylaniline (23 mL) and heated at 210 °C for 12 h. The reaction mixture was cooled to rt, diluted with ethyl acetate (200 mL), and washed with 1 N HCl (3 × 100 mL) and then saturated sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to afford 17a (1.215g, 75%) as a pale yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.32 (m, 10H), 6.27 (d, J = 2.3 Hz, 1H), 6.19 (d, J = 2.3 Hz, 1H), 5.98 (ddt, J = 16.3, 10.0, 6.1 Hz, 1H), 5.18 (q, J = 1.8 Hz, 1H), 5.13 (dq, J = 5.0, 1.7 Hz, 1H), 5.07 (s, 1H), 5.02 (s, 2H), 5.01 (s, 2H), 3.46 (dt, J = 6.2, 1.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 160.5, 158.3, 137.0 (2), 136.9, 128.8 (4), 128.2 (2), 127.8 (4), 116.0, 106.3, 95.0, 92.9, 70.3, 69.1, 26.3; IR (KBr) νmax 2925, 2867, 1596,
1456, 1375, 1213, 1058, 927, 817, 736 cm⁻¹; HRMS (ESI-) m/z [M − H⁺] calcd for C₂₃H₂₁O₃, 345.1491, found 345.1503.

3-(2,4-Bis(benzyloxy)-6-hydroxyphenyl)propane-1,2-diol (18a): A solution of 17a (1.062g, 3.1 mmol), osmium tetraoxide (0.03 mmol, 4% aqueous solution), and N-methylmorphline N-oxide (575 mg, 4.9 mmol) in tetrahydrofuran-water (13 mL-9 mL) was stirred for 12 h before quenching with 10% aqueous sodium metabisulfite. The aqueous layer was extracted with ethyl acetate (3 × 50 mL), and the combined organic layers were washed with saturated sodium chloride solution (100 mL). The solvent was removed and the residue purified by flash chromatography (SiO₂, 2:5 EtOAc/hexanes) to afford 18a (744 mg, 64%) as a colorless oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.77 (s, 1H), 7.50 (dd, J = 8.1, 1.4 Hz, 2H), 7.48–7.44 (m, 2H), 7.39 (td, J = 7.9, 7.5, 1.5 Hz, 4H), 7.36–7.30 (m, 2H), 6.32 (d, J = 2.3 Hz, 1H), 6.20 (d, J = 2.3 Hz, 1H), 5.10 (s, 2H), 5.05 (s, 2H), 4.65 (d, J = 5.2 Hz, 1H), 3.91 (br s, 1 H), 3.81 (d, J = 6.1 Hz, 1H), 3.53 (br s, 1 H), 3.41 (dd, J = 11.3, 6.4 Hz, 1H), 2.96 (dd, J = 14.1, 5.0 Hz, 1H), 2.79 (dd, J = 14.1, 6.8 Hz, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 159.9, 159.1 (2), 138.7 (2), 129.4 (2), 129.3 (2), 128.9, 128.7, 128.6, 128.5, 128.2, 107.6, 96.8, 96.8, 93.6, 74.1, 70.9, 70.5, 66.6, 27.8; IR (KBr) νₘₐₓ 3298, 1616, 1598, 1452, 1436, 1375, 1217, 1147, 1105, 1045, 1027, 908, 813, 736, 696, 649 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₃H₂₅O₅, 381.1702, found 381.1709.

3-(4-(Benzyloxy)-2-hydroxyphenyl)propane-1,2-diol (18b): Compound 16b (2.7g, 11.23 mmol) was dissolved in N,N-diethylaniline (70 mL) and heated at 210 °C for 12 h. The reaction mixture
was cooled to rt, diluted with ethyl acetate (200 mL), and washed with 1 N HCl (3 × 100 mL) and then with saturated sodium chloride solution. The organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to give a mixture of 17b and 17c. A solution of the mixture of 17b and 17c (2.02 g, 8.41 mmol), osmium tetroxide (0.168 mmol, 4% aqueous solution), and N-methylmorpholine N-oxide (1.67 g, 14.29 mmol) in tetrahydrofuran–water (18 mL–12 mL) was stirred for 12 h before quenching with 10% aqueous sodium metabisulfite. The aqueous phase was extracted with ethyl acetate (3 × 200 mL), the combined organic layers were washed with saturated sodium chloride solution, and solvent was removed. The residue was purified by flash chromatography (1:5 acetone–DCM) to afford 18b (1.24 g) as a colorless oil: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 7.49–7.43 (m, 2H), 7.42–7.27 (m, 1H), 6.99 (d, J = 8.3 Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 6.45 (dd, J = 8.2, 2.5 Hz, 1H), 5.06 (s, 2H), 3.90 (tt, J = 6.9, 4.4 Hz, 1H), 3.54–3.49 (m, 1H), 3.47–3.40 (m, 1H), 2.83–2.75 (m, 1H), 2.74–2.66 (m, 1H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 159.6, 157.7, 138.6, 132.6, 129.2, 129.1, 128.4 (2), 128.2, 118.8, 106.7, 103.8, 74.2, 70.2, 66.2, 35.3; IR (KBr) $\nu$$_{max}$ 3311, 2931, 1618, 1585, 1506, 1454, 1279, 1286, 1166, 1108, 1024, 842, 736, 696 cm$^{-1}$; HRMS (ESI-) m/z [M – H$^+$] calcd for C$_{16}$H$_{17}$O$_4$, 273.1127, found 273.1129.

![Image](image.png)

3-(2-(Benzyloxy)-6-hydroxyphenyl)propane-1,2-diol (18c): A solution of the mixture of 17b and 17c (2.02 g, 8.41 mmol), osmium tetroxide (0.168 mmol, 4% aqueous solution), and N-methylmorpholine N-oxide (1.67 g, 14.29 mmol) in tetrahydrofuran–water (18 mL–12 mL) was stirred 12 h before quenching with 10% aqueous sodium metabisulfite. The aqueous phase was extracted with ethyl acetate (3 × 200 mL), and the combined organic layers were washed with
saturated sodium chloride solution. The solvent was removed and the residue purified by flash chromatography (1:5 acetone–DCM) to afford \(18c\) (0.8 g) as a colorless oil which was used as is in the next step: \(^1\)H NMR (500 MHz, \((CD_3)_2CO) \delta 8.70 (s, 1H), 7.53–7.48 (m, 2H), 7.42–7.35 (m, 2H), 7.35–7.29 (m, 1H), 7.02 (t, \(J = 8.2\) Hz, 1H), 6.59 (dd, \(J = 8.3, 1.0\) Hz, 1H), 6.52 (dd, \(J = 8.1, 1.0\) Hz, 1H), 5.10 (s, 2H), 4.86–4.48 (m, 1H), 3.97 (tdd, \(J = 6.7, 5.3, 4.0\) Hz, 1H), 3.83 (br s, 1 H), 3.55 (dd, \(J = 11.2, 4.0\) Hz, 1H), 3.43 (dd, \(J = 11.2, 6.6\) Hz, 1H), 3.04 (dd, \(J = 13.8, 5.3\) Hz, 1H), 2.89 (dd, \(J = 13.8, 6.7\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \delta 157.47, 156.58, 136.82, 128.69 (2), 128.10 (2), 127.40 (2), 112.99, 110.56, 104.13, 72.83, 70.54, 65.24, 26.59; IR (KBr) \(\nu_{max}\) 3334, 2929, 1618, 1583, 1506, 1454, 1279, 1286, 1217, 1166, 1045, 1025, 849 cm\(^{-1}\); HRMS (ESI–) \(m/z\) [M – H\(^+\)] calcd for C\(_{16}\)H\(_{17}\)O\(_4\), 273.1127, found 273.1127.

3-(2,4-Bis(benzyloxy)-6-hydroxyphenyl)-2-hydroxypropyl 4-Methylbenzenesulfonate (19a):

Pyridine (0.46 mL, 5.8 mmol) was added to a solution of \(18a\) (500 mg, 1.37 mmol) and \(p\)-toluenesulfonyl chloride (282 mg, 1.5 mmol) in dichloromethane (14 mL) at 0 °C. The resulting mixture was stirred for 12 h at rt before quenching with 2 N HCl (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na\(_2\)SO\(_4\), filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 2:5 EtOAc/hexanes) to give \(19a\) (427 mg, 58%) as a pale yellow oil: \(^1\)H NMR (500 MHz, \((CD_3)_2CO) \delta 8.51 (s, 1H), 7.72–7.67 (m, 2H), 7.50–7.44 (m, 4H), 7.43–7.37 (m, 6H), 7.37–7.30 (m, 2H), 6.31 (d, \(J = 2.4\) Hz, 1H), 6.19 (d, \(J = 2.3\) Hz, 1H), 5.07 (s, 2H), 5.04 (s, 2H), 4.84 (d, \(J = 4.5\) Hz, 1H), 4.11–3.94 (m, 2H), 3.95–3.70 (m, 1H), 2.42 (s, 3H); \(^{13}\)C NMR (125 MHz, \((CD_3)_2CO) \delta 160.0, 159.1, 158.0, 145.7, 138.4 (2), 130.8
3-(4-(Benzyloxy)-2-hydroxyphenyl)-2-hydroxypropyl 4-Methylbenzenesulfonate (19b):

Pyridine (0.46 mL, 5.8 mmol) was added to a solution of 18b (500 mg, 1.37 mmol) and p-toluenesulfonyl chloride (282 mg, 1.5 mmol) in dichloromethane (14 mL) at 0 °C. The resulting mixture was stirred for 12 h at rt before quenching with 2 N HCl (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic layers were washed with saturated sodium chloride solution (40 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 2:5 EtOAc/hexanes) to give 19b (0.97 g, 58.6%) as a pale yellow oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.50 (br s, 1 H), 7.82–7.74 (m, 2 H), 7.50–7.43 (m, 4 H), 7.43–7.2 (m, 3 H), 6.92 (d, J = 8.2 Hz, 1 H), 6.48 (d, J = 2.5 Hz, 1 H), 6.42 (dd, J = 8.3, 2.5 Hz, 1 H), 5.03 (s, 2 H), 4.17–3.97 (m, 3 H), 3.89 (dd, J = 9.9, 6.7 Hz, 1 H), 2.76–2.67 (m, 2 H), 2.45 (s, 3 H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 159.8 (2), 145.8, 138.6, 134.1, 132.8, 130.9, 130.8, 129.3 (2), 128.8, 128.7, 128.6 (2), 117.56, 128.4, 106.8, 103.5, 74.3, 70.4, 70.3, 34.9, 21.5; IR (KBr) ν max 3348, 2928, 1627, 1361, 1174, 1108, 1096 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₃H₂₅O₆S, 429.1372, found 429.1383.
3-(2-(Benzyloxy)-6-hydroxyphenyl)-2-hydroxypropyl 4-Methylbenzenesulfonate (19c): Pyridine (0.47 mL, 15.4 mmol) was added to a solution of 28c (410 mg, 1.5 mmol) and p-toluenesulfonyl chloride (310 mg, 1.7 mmol) in dichloromethane (14 mL) at 0 °C. The resulting mixture was stirred for 12 h at rt before quenching with 2 N HCl (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic layers were washed with saturated sodium chloride solution (40 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 2:5 EtOAc/hexanes) to give 19c (367 mg, 57%) as a pale yellow oil and was used as is in the next step.

5,7-Bis(benzyloxy)chroman-3-ol (20a): Potassium carbonate (115 mg, 0.83 mmol) was added to a solution of 19a (277 mg, 0.58 mmol) in methanol (2.6 mL), and the resulting mixture was stirred for 6 h at rt. Methanol was removed, and the residue was partitioned between water (5 mL) and dichloromethane (5 mL). The aqueous layer was extracted with dichloromethane (2 × 5 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:5 EtOAc/hexanes) to give 20a (86 mg, 46%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.37 (m, 8H), 7.34 (ddt, J = 7.4, 4.0, 1.7 Hz, 2H), 6.26 (d, J = 2.3 Hz, 1H), 6.18 (d, J = 2.3 Hz, 1H), 5.02 (s, 2H), 5.01 (s, 2H), 4.33–4.15 (m, 1H), 4.15–3.97 (m, 2H), 2.93 (dd, J = 17.0, 5.0 Hz, 1H), 2.75 (dd, J = 17.0, 4.5 Hz, 1H), 1.89 (br s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 158.4, 155.2, 137.1, 137.1, 128.8 (2), 128.7, 128.7, 128.2, 128.1, 127.8, 127.7, 127.4 (2), 101.6, 94.8, 94.0, 70.3, 70.1, 69.8, 63.2, 28.4; IR (KBr) νmax 3392, 2925, 2871, 1616, 1591, 1496,
1456, 1145, 1122, 1062, 1027, 811, 696 cm\(^{-1}\); HRMS (ESI+) \(m/z\) [M + H\(^+\)] calcd for C\(_{23}\)H\(_{23}\)O\(_4\), 363.1596, found 363.1596.

7-(Benzyloxy)chroman-3-ol (20b): Potassium carbonate (440 mg, 3.18 mmol) was added to a solution of 19b (830 mg, 1.98 mmol) in methanol (5 mL), and the resulting solution was stirred for 6 h at rt. Methanol was removed, and the residue was partitioned between water (10 mL) and dichloromethane (10 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:5 EtOAc/hexanes) to give the desired product 20b (200 mg, 40%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.51–7.30 (m, 5H), 7.04 (d, \(J = 8.0\) Hz, 1H), 6.52–6.45 (m, 2H), 5.03 (s, 2H), 4.98–4.80 (m, 1H), 3.84 (dd, \(J = 12.0, 3.3\) Hz, 1H), 3.74 (dd, \(J = 12.0, 6.4\) Hz, 1H), 3.19 (dd, \(J = 15.1, 9.4\) Hz, 1H), 2.94 (ddd, \(J = 15.1, 7.2, 1.2\) Hz, 1H), 2.07 (br s, 1 H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 161.4, 159.7, 137.2, 128.1 (2), 128.1 (2), 127.6, 125.2, 118.9, 107.3, 97.5, 84.3, 70.5, 65.2, 30.8; IR (KBr) \(\nu_{\text{max}}\) 3382, 2927, 1614, 1494, 1145, 1029 cm\(^{-1}\); HRMS (ESI+) \(m/z\) [M + Na\(^+\)] calcd for C\(_{16}\)H\(_{16}\)NaO\(_3\), 279.0097, found 279.1002.

5-(Benzyloxy)chroman-3-ol (20c): Potassium carbonate (262 mg, 0.61 mmol) was added to a solution of 19c (135 mg, 0.98 mmol) in methanol (2 mL), and the resulting solution was stirred for 6 h at rt. Methanol was removed, the residue was partitioned between water (5 mL) and
dichloromethane (5 mL) The aqueous layer was extracted with dichloromethane (2 × 5 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:5 EtOAc/hexanes) to give the desired product 20c (70 mg, 45%) as a colorless oil: 1H NMR (500 MHz, CD$_3$OD) δ 7.49–7.43 (m, 2H), 7.37 (ddd, J = 7.7, 6.4, 1.2 Hz, 2H), 7.30 (td, J = 7.1, 1.4 Hz, 1H), 7.01 (t, J = 8.2 Hz, 1H), 6.55 (dd, J = 8.3, 1.1 Hz, 1H), 6.43 (dd, J = 8.1, 1.1 Hz, 1H), 5.07 (s, 2H), 4.15 (qd, J = 5.8, 2.6 Hz, 1H), 4.08 (ddd, J = 10.8, 2.7, 1.5 Hz, 1H), 3.88 (ddd, J = 10.7, 6.4, 1.5 Hz, 1H), 2.99 (ddd, J = 17.3, 5.3, 1.6 Hz, 1H), 2.66 (dd, J = 17.1, 5.9 Hz, 1H); 13C NMR (125 MHz, CD$_3$OD) δ 158.8, 156.3, 139.0, 129.5, 128.8, 128.3, 128.1 (2), 110.5, 110.3, 104.8 (2), 71.0, 70.3, 63.7, 29.3; IR (KBr) ν_{max} 3388, 2928, 1616, 1591, 1496, 1146, 1061, 1027 cm$^{-1}$; HRMS (ESI+) m/z [M + Na$^+$] calcd for C$_{16}$H$_{16}$NaO$_3$, 279.0997, found 279.0993.

5,7-Dihydroxychroman-3-yl Benzoate (21a): A solution of 20a (14 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of benzoic acid (10 mg, 0.08 mmol), N,N'-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl benzoate (16.2 mg, 90%) as a colorless
oil, which was used as is for hydrogenolysis: 1H NMR (500 MHz, CDCl$_3$) δ 8.10–7.99 (m, 2H), 7.65–7.48 (m, 1H), 7.47–7.29 (m, 11H), 6.28 (d, $J = 2.3$ Hz, 1H), 6.22 (d, $J = 2.3$ Hz, 1H), 5.54 (d, $J = 6.6$ Hz, 1H), 4.32 (ddd, $J = 11.4$, 4.9, 1.8 Hz, 1H), 4.26–4.17 (m, 1H), 3.10 (ddd, $J = 17.5$, 5.4, 1.2 Hz, 1H), 3.00–2.90 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.2, 158.9, 158.1, 155.4, 137.1 (2), 133.3, 130.0, 128.8, 128.8 (2), 128.5 (3), 128.2, 128.1, 127.8 (3), 127.4 (2), 101.4, 94.8, 93.9, 70.4, 70.2, 67.0, 66.1, 25.3. 5,7-Bis(benzyloxy)chroman-3-yl benzoate (16.2 mg, 0.034 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give 21a (8 mg, 81.6%) as a colorless oil: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 8.32 (s, 1H), 8.05 (s, 1H), 8.02–7.91 (m, 2H), 7.71–7.59 (m, 1H), 7.57–7.44 (m, 2H), 6.05 (d, $J = 2.3$ Hz, 1H), 5.91 (d, $J = 2.3$ Hz, 1H), 5.60–5.41 (m, 1H), 4.34–4.31 (m, 1H), 4.23–4.20 (m, 1H), 3.02 (ddd, $J = 17.1$, 5.3, 1.2 Hz, 1H), 2.90–2.83 (m, 1H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 166.4, 157.9, 157.5, 156.5, 134.1, 131.3 (2), 130.3 (2), 129.5, 99.2, 96.5, 95.8, 67.4, 67.3, 25.6; IR (KBr) ν_{\max} 3385, 2933, 2840, 1716, 1622, 1593, 1496, 1452, 1272, 1201, 1145, 1056, 813, 711 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{16}$H$_{14}$O$_5$, 287.0919, found 287.0912.

5,7-Dihydroxychroman-3-yl 3-Methoxybenzoate (21b): A solution of 20a (14 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3-methoxybenzoic acid (12 mg, 0.08 mmol), N,N'-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h
at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 3-methoxybenzoate (18 mg, 89%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dt, J = 7.7, 1.2 Hz, 1H), 7.51 (dd, J = 2.7, 1.5 Hz, 1H), 7.43–7.25 (m, 11H), 7.06 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 6.23 (d, J = 2.3 Hz, 1H), 6.17 (d, J = 2.2 Hz, 1H), 5.48 (ddq, J = 6.6, 5.1, 2.2 Hz, 1H), 4.98 (s, 4H), 4.30–4.22 (m, 1H), 4.21–4.14 (m, 1H), 3.80 (s, 3H), 3.11–3.01 (m, 1H), 2.94–2.84 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 159.9, 159.2, 158.3, 155.6, 137.3 (2), 131.8, 129.8, 129.1, 129.0 (2), 128.5, 128.4, 128.1 (2), 127.7 (2), 122.7, 119.9, 114.8, 101.7, 95.0, 94.1, 70.6, 70.4, 67.3, 66.5, 55.9, 25.6. 5,7-Bis(benzyloxy)chroman-3-yl 3-methoxybenzoate (18 mg, 0.036 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 21b (11 mg, 96%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.60 (ddd, J = 7.7, 1.5, 1.0 Hz, 1H), 7.53 (dd, J = 2.7, 1.5 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.09 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 6.03 (d, J = 2.3 Hz, 1H), 5.99 (d, J = 2.4 Hz, 1H), 5.54–5.45 (m, 1H), 5.43–5.33 (m, 1H), 5.24 (s, 1H), 4.29 (ddd, J = 11.4, 5.0, 1.8 Hz, 1H), 4.20 (ddd, J = 11.4, 2.3, 1.0 Hz, 1H), 3.83 (s, 3H), 3.04 (ddd, J = 16.9, 5.4, 1.2 Hz, 1H), 2.88 (ddd, J = 16.9, 4.5, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 159.7, 155.7, 155.4, 155.3, 131.3, 129.7, 122.4, 119.8, 114.6, 99.5, 96.3, 96.1, 66.9, 66.2, 55.7, 24.9; IR (KBr) νmax 3404, 2960, 1716, 1596, 1469, 1278,
1224, 1099, 933, 752 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₁₇H₁₅O₆, 315.0869, found 315.0830.

5,7-Dihydroxychroman-3-yl 4-Methoxybenzoate (21c): A solution of 20a (13 mg, 0.036 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid (11 mg, 0.072 mmol), N,N'-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy) chroman-3-yl 4-methoxybenzoate (16.7 mg, 93.8%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 8.01–7.96 (m, 2H), 7.52–7.29 (m, 10H), 6.94–6.85 (m, 2H), 6.27 (d, J = 2.3 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.57–5.46 (m, 1H), 5.02 (s, 4H), 4.30 (ddd, J = 11.4, 5.0, 1.8 Hz, 1H), 4.24–4.17 (m, 1H), 3.86 (s, 3H), 3.08 (ddd, J = 17.4, 5.5, 1.2 Hz, 1H), 2.98–2.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 163.7, 158.9, 158.1, 155.4, 137.1 (2), 132.7, 131.4, 130.6, 129.3, 128.8, 128.8, 128.2, 128.1, 127.8 (2), 127.4 (2), 122.6, 113.7 (2), 101.5, 94.7, 93.8, 76.9, 70.3, 67.1, 65.9, 55.5, 25.4. 5,7-Bis(benzyloxy) chroman-3-yl 4-methoxybenzoate (16.2 mg, 0.033 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The
eluent was concentrated and the residue purified by flash chromatography (SiO\(_2\), 1:1 EtOAc/hexanes) to give **21c** (10 mg, 98%) as a colorless oil: \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta\) 8.30 (s, 1H), 8.04 (s, 1H), 7.99–7.88 (m, 2H), 7.03–6.94 (m, 2H), 6.05 (d, \(J = 2.3\) Hz, 1H), 5.90 (d, \(J = 2.3\) Hz, 1H), 5.42 (ddt, \(J = 5.4, 4.5, 2.2\) Hz, 1H), 4.24 (ddd, \(J = 11.4, 4.7, 1.9\) Hz, 1H), 4.19 (ddt, \(J = 11.5, 1.9, 0.9\) Hz, 1H), 3.86 (s, 3H), 3.00 (ddd, \(J = 17.2, 5.3, 1.2\) Hz, 1H), 2.83 (ddd, \(J = 17.2, 4.4, 1.9\) Hz, 1H); \(^{13}\)C NMR (125 MHz, (CD\(_3\))\(_2\)CO) \(\delta\) 166.1 (2), 164.6, 157.8, 157.5, 156.5, 132.4 (2), 123.5, 114.7, 99.2, 96.5, 95.7, 67.3, 66.9, 56.0, 25.6; IR (KBr) \(\nu_{\text{max}}\) 3404, 2958, 1716, 1596, 14266, 1284 1224, 1098 cm\(^{-1}\); HRMS (ESI+) \(m/z\) [M + H\(^+\)] calcd for C\(_{17}\)H\(_{17}\)O\(_6\), 317.1025, found 317.1029.

![Chemical Structure](image)

5,7-Dihydroxycroman-3-yl 3,4-Dimethoxybenzoate (21d): A solution of **20a** (12 mg, 0.033 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid 3,4-methoxybenzoic acid (14 mg, 0.066 mmol), \(N,N'\)-dicyclohexylcarbodiimide (14 mg, 0.066 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 \(\times\) 4 mL) and then with saturated sodium bicarbonate (2 \(\times\) 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and the solvent was removed. The residue was purified by flash chromatography (SiO\(_2\), 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 3,4-methoxybenzoate (17 mg, 95%) as a colorless oil which was used as for hydrogenolysis: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.66 (dd, \(J = 8.5, 2.0\) Hz, 1H), 7.52 (d,
$J = 2.0$ Hz, 1H), 7.50–7.29 (m, 10H), 6.85 (d, $J = 8.4$ Hz, 1H), 6.27 (d, $J = 2.3$ Hz, 1H), 6.21 (d, $J = 2.3$ Hz, 1H), 5.51 (qd, $J = 5.1$, 2.4 Hz, 1H), 5.02 (d, $J = 2.1$ Hz, 4H), 4.29 (ddd, $J = 11.3$, 5.2, 1.7 Hz, 1H), 4.24 (s, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 3.10 (ddd, $J = 17.3$, 5.6, 1.1 Hz, 1H), 2.93 (ddd, $J = 17.3$, 4.6, 1.6 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.1, 158.9, 158.1, 155.4, 153.4, 148.8, 137.1 (2), 128.9 (2), 128.8, 128.3 (2), 128.2 (2), 127.8, 127.5 (2), 124.2, 122.7, 112.3, 110.4, 101.6, 94.8, 93.9, 70.4, 70.2, 67.2, 66.0, 56.3 (2), 25.4. 5,7-Bis(benzyloxy)chroman-3-yl 3,4-methoxybenzoate (17 mg, 0.032 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give 21d (9.5 mg, 86%) as colorless oil: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 8.30 (s, 1H), 8.04 (s, 1H), 7.58 (dd, $J = 8.5$, 2.0 Hz, 1H), 7.50 (d, $J = 2.0$ Hz, 1H), 7.02 (d, $J = 8.5$ Hz, 1H), 6.05 (d, $J = 2.3$ Hz, 1H), 5.90 (d, $J = 2.3$ Hz, 1H), 5.41 (qd, $J = 4.7$, 2.5 Hz, 1H), 4.21 (td, $J = 4.2$, 3.5, 1.4 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.01 (ddd, $J = 17.1$, 5.3, 1.1 Hz, 1H), 2.88–2.73 (m, 1H); 13C NMR (125 MHz (CD$_3$)$_2$CO) δ 166.2, 157.9, 157.5, 156.6, 154.7, 150.0, 124.4, 123.5, 113.2, 111.8, 99.3, 96.5, 95.7, 78.1, 67.1, 56.3, 56.2, 25.7; IR (KBr) ν_{max} 3404, 2921, 1699, 1515, 1271, 1145, 1022, 761, 667 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$$]$ calcd for C$_{18}$H$_{19}$O$_7$, 347.1131, found 347.1128.

![Structure of 5,7-Dihydroxychroman-3-yl 3,5-Dimethoxybenzoate](image.png)

5,7-Dihydroxychroman-3-yl 3,5-Dimethoxybenzoate (21e): A solution of 20a (13 mg, 0.036 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid 3,5-dimethoxybenzoic acid (13 mg, 0.072 mmol), N,N$'$-dicyclohexylcarbodiimide (17 mg, 0.08
mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL), and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 3,5-dimethoxybenzoate (17.8 mg, 94.6%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.32 (m, 10H), 7.17 (d, J = 2.4 Hz, 2H), 6.64 (t, J = 2.4 Hz, 1H), 6.27 (d, J = 2.3 Hz, 1H), 6.20 (d, J = 2.2 Hz, 1H), 5.50 (qd, J = 5.1, 2.3 Hz, 1H), 5.02 (d, J = 2.4 Hz, 4H), 4.28 (ddd, J = 11.3, 5.3, 1.7 Hz, 1H), 4.25–4.18 (m, 1H), 3.81 (s, 6H), 3.16–3.04 (m, 1H), 2.92 (ddd, J = 17.3, 4.6, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 160.8 (2), 158.9, 158.1, 155.4, 137.1 (2), 132.1, 128.6 (2), 128.3, 128.2 (2), 127.8 (2), 127.5, 107.7 (2), 105.8, 101.4, 94.8, 93.9, 70.4, 70.2, 67.0, 66.4, 55.8 (2), 5.7-Bis(benzyloxy)chroman-3-yl 3,5-dimethoxybenzoate (17 mg, 0.032 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 21e (9.5 mg, 86%) as a colorless oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.31 (s, 1H), 8.04 (s, 1H), 7.10 (d, J = 2.4 Hz, 2H), 6.72 (t, J = 2.4 Hz, 1H), 6.05 (d, J = 2.3 Hz, 1H), 5.90 (d, J = 2.3 Hz, 1H), 5.53–5.35 (m, 1H), 4.32–4.16 (m, 2H), 3.81 (s, 6H), 3.15–2.95 (m, 1H), 2.86–2.82 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 166.1, 161.8 (2), 157.8, 157.4, 156.4, 133.2, 108.1 (2), 105.6, 99.1, 96.4, 95.6, 77.1, 67.5, 67.2, 55.9, 25.5; IR (KBr) νmax 1916, 2848, 1702, 1683, 1558, 1145, 1103, cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₁₈H₁₈NaO₇, 369.0950, found 369.0962.
5,7-Dihydroxycroman-3-yl 3-Hydroxybenzoate (21f): A solution of 20a (14 mg, 0.039 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-(benzyloxy)benzoic acid (13 mg, 0.072 mmol), N,N′-dicyclohexylcarbodiimide (16 mg, 0.077 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 3-(benzyloxy)benzoate (19 mg, 86.3%), which was used further as obtained: ¹H NMR (500 MHz, CDCl₃) δ 7.63 (ddd, J = 5.7, 2.5, 1.2 Hz, 2H), 7.46–7.30 (m, 16H), 7.16 (ddd, J = 8.3, 2.6, 1.1 Hz, 1H), 6.28 (d, J = 2.3 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.69–5.44 (m, 1H), 5.09 (s, 2H), 5.02 (d, J = 5.2 Hz, 4H), 4.30 (ddd, J = 11.5, 5.0, 1.8 Hz, 1H), 4.25–4.13 (m, 1H), 3.09 (ddd, J = 17.5, 5.6, 1.2 Hz, 1H), 2.93 (ddd, J = 17.5, 4.4, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 158.9, 158.8, 158.1, 155.4, 137.0 (2), 136.7, 131.5, 129.6 (2), 128.8 (3), 128.7, 128.3, 128.2, 128.1 (2), 127.9 (2), 127.8 (2), 127.4 (2), 122.7, 120.4, 115.6, 101.4, 94.8, 93.9, 70.4 (2), 70.2, 67.0, 66.3, 25.3. 5,7-Bis(benzyloxy)chroman-3-yl 3-(benzyloxy)benzoate (18 mg, 0.031 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:9 acetone/dichloromethane) to give 21f (8.6 mg, 92.6%) as a colorless oil: ¹H NMR (500 MHz, MeOD) δ 7.83 (d, J = 8.8 Hz, 2H), 6.79 (d, J
= 8.8 Hz, 2H), 5.94 (d, J = 2.3 Hz, 1H), 5.84 (d, J = 2.3 Hz, 1H), 5.37 (ddd, J = 5.3, 4.5, 2.7 Hz, 1H), 4.19 (ddd, J = 11.4, 4.9, 1.8 Hz, 1H), 4.14 (dd, J = 11.4, 2.1 Hz, 1H), 2.95 (ddd, J = 17.1, 5.4, 1.1 Hz, 1H), 2.77 (ddd, J = 17.1, 4.5, 1.7 Hz, 1H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 166.2, 158.3, 157.7, 157.4, 156.4, 132.6, 130.5, 121.5, 121.0, 116.7, 99.1, 96.3, 95.6, 67.6, 67.2, 25.5; IR (KBr) ν_{max} 3384, 2910, 1848, 1699, 1436, 1290, 1145 cm$^{-1}$; HRMS (ESI-) m/z [M – H$^-$] calcd for C$_{16}$H$_{13}$O$_6$, 301.0712, found 301.0717.

5,7-Bis(benzyloxy)chroman-3-yl 4-hydroxybenzoate (21g): A solution of 20a (14 mg, 0.039 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-(benzyloxy)benzoic acid (13 mg, 0.072 mmol), N,N'-dicyclohexylcarbodiimide (16 mg, 0.077 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) at 0 °C. The resulting solution was stirred for 6 h at rt and filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:4 EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 4-(benzyloxy)benzoate (20 mg, 90.4%) as a colorless oil, which was used as is for hydrogenolysis: 1H NMR (500 MHz, CDCl$_3$) δ 8.06–7.90 (m, 2H), 7.50–7.30 (m, 15H), 7.02–6.91 (m, 2H), 6.27 (d, J = 2.3 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.50 (dp, J = 7.0, 2.4 Hz, 1H), 5.12 (s, 2H), 5.02 (s, 4H), 4.30 (ddd, J = 11.4, 5.0, 1.8 Hz, 1H), 4.20 (dd, J = 11.2, 2.4 Hz, 1H), 3.08 (ddd, J = 17.5, 5.5, 1.1 Hz, 1H), 2.92 (ddd, J = 17.5, 4.4, 1.7 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 165.9, 162.8,
Bis(benzyloxy)chroman-3-yl 4-(benzyloxy)benzoate (18 mg, 0.031 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give **21g** (9.8 mg, 97%) as a colorless oil: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 9.15 (s, 1H), 8.29 (s, 1H), 8.03 (s, 1H), 7.85 (d, $J = 8.7$ Hz, 2H), 6.97–6.83 (m, 2H), 6.05 (d, $J = 2.3$ Hz, 1H), 5.90 (d, $J = 2.3$ Hz, 1H), 5.57–5.28 (m, 1H), 4.23 (ddd, $J = 11.4$, 4.7, 1.8 Hz, 1H), 4.18 (ddt, $J = 11.4$, 2.1, 0.9 Hz, 1H), 2.99 (ddd, $J = 17.0$, 5.4, 1.1 Hz, 1H), 2.82 (dd, $J = 17.0$, 4.4, 1.7 Hz, 1H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 166.2, 160.7, 159.8, 159.4, 156.1, 133.1, 108.7, 108.1, 101.1, 94.2, 92.2, 67.3, 66.8, 55.8, 55.5, 25.3; IR (KBr) ν_{max} 3363, 2962, 2927, 1683, 1608, 1355, 1272, 1166, 1143, 1099, 1014, 769 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{16}$H$_{15}$O$_6$, 303.0869, found 303.0878.

5,7-Dihydroxychroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (21h): A solution of **20a** (11 mg, 0.03 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylic acid (16 mg, 0.06 mmol), N,N′-dicyclohexylcarbodiimide (13 mg, 0.06 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) in dichloromethane (1 mL) 0 °C. The resulting solution was stirred for 6 h at rt and filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium bicarbonate (2 × 4 mL) solution.
chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, EtOAc/hexanes) to afford 5,7-bis(benzyloxy)chroman-3-yl 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylate (17.5 mg, 96.1%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 8.14–7.87 (m, 2H), 7.49–7.29 (m, 11H), 7.09 (dt, J = 7.7, 1.3 Hz, 1H), 7.04 (dd, J = 2.6, 1.5 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.91 (dd, J = 8.3, 2.6, 1.0 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 6.20 (d, J = 2.3 Hz, 1H), 5.51 (dd, J = 5.2, 2.3 Hz, 1H), 5.01 (d, J = 4.2 Hz, 4H), 4.34–4.25 (m, 1H), 4.24–4.19 (m, 1H), 3.71 (s, 3H), 3.79 (s, 3H), 3.10 (dd, J = 17.3, 5.7, 1.2 Hz, 1H), 2.92 (ddd, J = 17.3, 4.7, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 160.5, 159.4, 158.9, 158.1, 155.4, 139.0, 137.1 (2), 132.7, 131.4, 130.6, 129.3 (2), 128.8 (3), 128.2, 128.1 (3), 127.8, 127.4, 122.6, 122.2, 115.4, 113.1, 110.7, 101.6, 94.7, 93.8, 77.0, 70.4, 67.1, 65.9, 56.0, 55.5, 25.4. 5,7-Bis(benzyloxy)chroman-3-yl 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylate (17 mg, 0.028 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 21h (11.1 mg, 93.2%) as a colorless oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.3 (br s, 1 H), 8.03 (br s, 1 H), 7.97 (dd, J = 8.7, 2.2 Hz, 1H), 7.92 (d, J = 2.2 Hz, 1H), 7.37–7.29 (m, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.10–7.00 (m, 2H), 6.91 (dd, J = 8.3, 2.6, 1.1 Hz, 1H), 6.04 (d, J = 2.3 Hz, 1H), 5.89 (d, J = 2.3 Hz, 1H), 5.50–5.35 (m, 1H), 4.33–4.23 (m, 1H), 4.22–4.18 (m, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 3.01 (dd, J = 17.1, 5.3, 1.2 Hz, 1H), 2.92–2.80 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 166.0, 161.4, 160.4, 157.8, 157.4, 156.5, 139.9, 132.7, 131.7, 131.3, 129.9, 123.5, 122.5, 116.0, 113.6, 112.1, 99.2, 96.4, 95.7, 67.3, 67.0, 55.5 (2), 25.6; IR (KBr) νmax 3355, 2923,
5,7-Dihydroxychroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (21i): 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (34 mg, 0.137 mmol) and thionyl chloride (33 μL, 0.27 mmol) in tetrahydrofuran (5 mL) were heated at reflux for 3 h, cooled to rt and concentrated. The residue was dissolved in dichloromethane (0.5 mL) and added to a stirred solution of 20a (25 mg, 0.069 mmol) in dichloromethane (0.7 mL) with trimethylamine (0.3 mL) under at 0 °C. The resulting mixture was stirred for 6 h and concentrated, and the residue was purified by flash chromatography (SiO₂, 1:4 EtOAc/hexanes) to give 5,7-bis(benzyloxy)chroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (34 mg, 85%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 2.1 Hz, 1H), 7.87 (dd, J = 8.4, 2.2 Hz, 1H), 7.47–7.31 (m, 10H), 7.07 (d, J = 8.4 Hz, 1H), 6.27 (d, J = 2.3 Hz, 1H), 6.20 (d, J = 2.3 Hz, 1H), 5.51 (dp, J = 7.2, 2.5 Hz, 1H), 5.19 (tdt, J = 5.9, 2.9, 1.4 Hz, 1H), 5.02 (s, 4H), 4.30 (ddd, J = 11.4, 5.0, 1.8 Hz, 1H), 4.20 (dd, J = 11.3, 2.1 Hz, 1H), 3.25 (d, J = 2.3 Hz, 1H), 3.07 (ddd, J = 17.6, 5.4, 1.2 Hz, 1H), 2.93 (ddd, J = 17.3, 4.4, 1.7 Hz, 1H), 2.32 (s, 3H), 1.72 (d, J = 1.6 Hz, 3H), 1.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 165.6, 158.9, 158.1, 155.3, 152.9, 137.1, 137.0, 134.1, 134.0, 132.2, 129.0, 128.8, 128.7, 128.2 (2), 128.1 (2), 127.8 (4), 127.4 (2), 122.6, 121.1, 101.4, 94.7, 93.8, 70.4, 70.2, 67.0, 66.1, 29.9, 28.9, 25.9, 21.1, 18.1. A solution of palladium acetate (5 mg, 0.023 mg), trimethylamine (15 μL, 0.108 mmol), triethylsilane (82 μL, 0.108) in dichloromethane (0.8 mL) was stirred for 15 min before the slow addition of a solution of 5,7-
bis(benzyloxy)chroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (34 mg, 0.057 mmol) in dichloromethane (0.4 mL). The resulting mixture was stirred for 15 h, quenched with saturated ammonium chloride (2 mL) and extracted with ether (3 × 4 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (silica, 5:95 MeOH/DCM) to afford 21i (15.2 mg, 54.8%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.92 (dd, \(J = 13.7, 2.2 \) Hz, 1H), 7.86 (dd, \(J = 8.4, 2.2 \) Hz, 1H), 7.06 (d, \(J = 8.4 \) Hz, 1H), 6.03–5.99 (m, 1H), 5.96 (d, \(J = 2.4 \) Hz, 1H), 5.50 (ddt, \(J = 7.2, 4.8, 2.4 \) Hz, 1H), 5.18 (ddddd, \(J = 7.3, 5.8, 2.9, 1.5 \) Hz, 1H), 4.29 (ddd, \(J = 11.5, 4.9, 1.9 \) Hz, 1H), 4.24–4.14 (m, 1H), 3.25 (d, \(J = 7.2 \) Hz, 2H), 3.07–2.98 (m, 1H), 2.87 (ddd, \(J = 16.9, 4.4, 1.8 \) Hz, 1H), 2.32 (s, 3H), 1.72 (q, \(J = 1.3 \) Hz, 3H), 1.68 (d, \(J = 1.4 \) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 169.1, 165.7, 155.4, 155.3 (2), 152.9, 134.2, 134.1, 132.2, 129.0, 127.9, 122.6, 121.0, 99.4, 96.3, 96.0, 66.9, 65.9, 28.9, 25.9, 24.9, 21.1, 18.1; IR (KBr) \(\nu_{\text{max}} \) 3363, 2921, 1703, 1606, 1252, 1146 cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + H\(^+\)] calcd for C\(_{23}\)H\(_{25}\)O\(_7\), 413.1600, found 413.1617.

![Diagram](image)

7-Hydroxychroman-3-yl Benzoate (21j): A solution of 20b (15 mg, 0.06 mmol) in dichloromethane (0.5 mL) was added to a stirred solution benzoic acid (14 mg, 0.12 mmol), \(N,N'\)-dicyclohexylcarbodiimide (24 mg, 0.12 mmol), and 4-dimethylaminopyridine (7.2 mg, 0.06 mmol) at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with
saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to afford 7-(benzyloxy)chroman-3-yl benzoate as a colorless oil (21 mg, 90%), which was used as is for hydrogenolysis: 1H NMR (500 MHz, CDCl$_3$) δ 8.04–7.93 (m, 2H), 7.56 (ddt, J = 8.8, 7.2, 1.3 Hz, 1H), 7.47–7.37 (m, 6H), 7.37–7.31 (m, 1H), 6.98 (dt, J = 8.4, 1.0 Hz, 1H), 6.60 (dd, J = 8.4, 2.5 Hz, 1H), 6.54 (d, J = 2.5 Hz, 1H), 6.51 (qd, J = 4.8, 2.2 Hz, 1H), 5.04 (s, 2H), 4.34 (ddd, J = 11.5, 4.9, 1.9 Hz, 1H), 4.25 (ddd, J = 11.5, 2.1, 1.1 Hz, 1H), 3.22 (ddt, J = 16.6, 5.1, 1.2 Hz, 1H), 2.98 (ddd, J = 16.8, 4.5, 1.9 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.2, 158.7, 154.7, 137.2, 133.4, 130.7, 130.1, 130.0 (2), 128.8 (2), 128.6 (2), 128.2 (2), 127.7, 111.4, 108.9, 102.7, 70.3, 67.1, 66.4, 29.9. 7-(Benzyloxy)chroman-3-yl benzoate (14 mg, 0.04 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give 21j (11.1 mg, 90.4%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 8.04–7.93 (m, 2H), 7.54 (ddt, J = 8.7, 7.7, 1.3 Hz, 1H), 7.40 (ddt, J = 7.3, 6.3, 1.0 Hz, 2H), 6.92 (dt, J = 8.1, 0.9 Hz, 1H), 6.42 (dd, J = 8.2, 2.6 Hz, 1H), 6.38 (d, J = 2.5 Hz, 1H), 5.49 (qd, J = 4.8, 2.2 Hz, 1H), 4.71 (s, 1H), 4.32 (ddd, J = 11.5, 4.8, 1.9 Hz, 1H), 4.23 (dtd, J = 11.5, 1.5, 0.8 Hz, 1H), 3.18 (ddt, J = 16.6, 5.1, 1.1 Hz, 1H), 3.02–2.89 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.3, 155.3, 154.8, 133.4, 130.8 (2), 130.1, 130.0, 128.6 (2), 111.4, 108.9, 103.5, 67.1, 66.4, 29.8; IR (KBr) ν_{max} 3392, 2925, 1716, 1699, 1519, 1456, 1272, 1145, 1027, 1016, 821, 711 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{16}$H$_{15}$O$_4$, 271.0970, found 271.0966.
7-Hydroxychroman-3-yl 3-Methoxybenzoate (21k): A solution of **20b** (11 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution 3-methoxybenzoic acid (12 mg, 0.08 mmol), \(N,N'\)-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (5 mg, 0.04 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous Na\(_2\)SO\(_4\), filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:8 EtOAc/hexanes) to afford 7-(benzyloxy)chroman-3-yl 3-methoxybenzoate (15 mg, 89.5%) as a colorless oil, which was used as is for hydrogenolysis: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.59 (dt, \(J = 7.7, 1.2\) Hz, 1H), 7.53 (dd, \(J = 2.7, 1.5\) Hz, 1H), 7.48–7.43 (m, 2H), 7.42–7.30 (m, 2H), 7.37–7.30 (m, 2H), 7.10 (ddd, \(J = 8.3, 2.7, 1.0\) Hz, 1H), 6.98 (dt, \(J = 8.5, 0.9\) Hz, 1H), 6.59 (dd, \(J = 8.4, 2.5\) Hz, 1H), 6.53 (d, \(J = 2.5\) Hz, 1H), 5.50 (qd, \(J = 4.9, 2.3\) Hz, 1H), 5.04 (s, 2H), 4.33 (ddd, \(J = 11.5, 5.0, 1.8\) Hz, 1H), 4.25 (ddd, \(J = 11.3, 2.4, 1.2\) Hz, 1H), 3.87 (s, 3H), 3.21 (ddt, \(J = 16.6, 5.1, 1.1\) Hz, 1H), 3.02–2.90 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 166.1, 159.7, 158.7, 154.7, 137.2, 131.4, 130.6, 129.6, 128.8 (2), 128.2 (2), 127.7, 122.4, 119.7, 114.5, 111.4, 108.9, 102.7, 70.3, 67.1, 66.5, 55.6, 29.9.

(Benzylxoxy)chroman-3-yl 3-methoxybenzoate (11 mg, 0.028 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO\(_2\), 1:1 EtOAc/hexanes) to give **21k** (7.5 mg, 89.4%) as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.58 (dt, \(J = 7.7, 1.2\) Hz, 1H), 7.52 (dd, \(J = 2.7, 1.5\) Hz, 1H), 7.31 (t, \(J = 8.0\) Hz, 1H), 7.09 (ddd, \(J = 8.2, 2.7, 1.0\) Hz, 1H), 6.92 (dt, \(J = 8.2, 1.0\) Hz, 1H), 6.43 (dd, \(J = 8.2, 2.5\) Hz, 1H), 6.39 (d, \(J = 2.5\) Hz, 1H), 5.49 (qd, \(J = 4.9, 2.3\) Hz, 1H), 4.81
(brs, 1H), 4.32 (dd, \(J = 11.5, 4.9, 1.9 \) Hz, 1H), 4.24 (dd, \(J = 11.4, 1.8, 1.0 \) Hz, 1H), 3.84 (s, 3H), 3.19 (ddt, \(J = 16.7, 5.2, 1.2 \) Hz, 1H), 3.03–2.84 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.2, 159.7, 155.3, 154.8, 131.4, 130.9, 129.6, 122.4, 119.8, 114.5, 111.3, 108.9, 103.5, 67.1, 66.5, 55.7, 29.9; IR (KBr) \(\nu_{\text{max}} \) 3384, 2910, 2848, 1701, 1635, 1508, 1259, 1164, 1116, 667 cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + H\(^+\)] calcd for C\(_{17}\)H\(_{17}\)O\(_5\), 301.1076, found 301.1076.

7-Hydroxychroman-3-yl 4-Methoxybenzoate (21l): A solution of 20b (11 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid (12 mg, 0.08 mmol), \(N,N' \)-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:8 EtOAc/hexanes) to afford 7-(benzyloxy)chroman-3-yl 4-methoxybenzoate (15.5 mg, 79.2%) as a colorless oil, which was used as for hydrogenolysis: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.05–7.90 (m, 2H), 7.48–7.31 (m, 5H), 7.01–6.95 (m, 1H), 6.93–6.83 (m, 2H), 6.59 (dd, \(J = 8.4, 2.6 \) Hz, 1H), 6.53 (d, \(J = 2.6 \) Hz, 1H), 5.49 (qd, \(J = 4.8, 2.2 \) Hz, 1H), 5.04 (s, 2H), 4.32 (ddd, \(J = 11.4, 4.9, 1.9 \) Hz, 1H), 4.24 (ddd, \(J = 11.4, 2.3, 1.2 \) Hz, 1H), 3.85 (s, 3H), 3.20 (ddd, \(J = 16.7, 5.1, 1.1 \) Hz, 1H), 3.03–2.84 (m, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.0, 163.7, 158.6, 154.8, 137.2, 132.0, 130.7, 128.8 (2), 128.2, 127.7 (2), 122.5 (2), 113.8 (2), 111.6, 108.9, 102.7, 70.3, 67.2, 66.0, 55.6, 29.9.
7-(Benzyloxy)chroman-3-yl 4-methoxybenzoate (11 mg, 0.028 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give 21i (8 mg, 94.3%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 8.00–7.88 (m, 2H), 6.93 (dt, $J =$ 8.3, 0.9 Hz, 1H), 6.91–6.87 (m, 2H), 6.43 (dd, $J =$ 8.2, 2.5 Hz, 1H), 6.39 (d, $J =$ 2.5 Hz, 1H), 5.48 (qd, $J =$ 4.8, 2.2 Hz, 1H), 4.78 (br s, 1 H), 4.32 (ddd, $J =$ 11.5, 4.9, 1.9 Hz, 1H), 4.23 (dt, $J =$ 11.5, 1.5, 0.8 Hz, 1H), 3.85 (s, 3H), 3.18 (ddt, $J =$ 16.5, 5.0, 1.2 Hz, 1H), 2.95 (dt, $J =$ 16.7, 2.4, 1.3 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 163.7, 155.3, 154.8, 132.0, 130.9 (2), 122.5 (2), 113.8, 111.5, 108.8, 103.5, 67.2, 66.0, 55.7, 29.9; IR (KBr) ν_{max} 3392, 2918, 2848, 1701, 1606, 1510, 1458, 1259, 1164, 1108, 1022 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{17}$H$_{17}$O$_5$, 301.1076, found 301.1071.

7-Hydroxychroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (21m): A solution of 20b (10 mg, 0.039 mmol) in dichloromethane (0.5 mL) was added to a stirred solution 4-methoxybenzoic acid (12 mg, 0.08 mmol), N,N′-dicyclohexylcarbodiimide (17 mg, 0.08 mmol), and 4-dimethylaminopyridine (4.8 mg, 0.04 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash
chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to afford 7-(benzyl oxy)chroman-3-yl 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxylate (17 mg, 87.4%) as a colorless oil, which was used further as obtained for hydrogenolysis: 1H NMR (500 MHz, CDCl$_3$) δ 7.99 (d, $J = 8.4$ Hz, 2H), 7.48–7.42 (m, 2H), 7.42–7.36 (m, 2H), 7.37–7.31 (m, 2H), 7.08 (dt, $J = 7.7$, 1.2 Hz, 1H), 7.04 (dd, $J = 2.6$, 1.6 Hz, 1H), 6.99–6.95 (m, 2H), 6.91 (ddd, $J = 8.2$, 2.6, 0.9 Hz, 1H), 6.58 (dd, $J = 8.4$, 2.6 Hz, 1H), 6.53 (d, $J = 2.5$ Hz, 1H), 5.49 (qd, $J = 5.0$, 2.4 Hz, 1H), 5.03 (s, 2H), 4.31 (ddd, $J = 11.4$, 5.2, 1.7 Hz, 1H), 4.25 (ddd, $J = 11.4$, 2.5, 1.1 Hz, 1H), 3.21 (dd, $J = 16.6$, 5.1 Hz, 1H), 3.06–2.90 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 160.6, 159.5, 158.7, 154.8, 138.9, 137.2, 132.6, 131.3, 130.7, 130.6, 129.3, 128.8 (2), 128.2, 127.7 (2), 122.5, 122.2, 115.4, 113.1, 111.6, 110.7, 108.9, 102.7, 70.3, 67.2, 66.2, 56.0, 55.5, 30.0. 7-(Benzyl oxy)chroman-3-yl 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxylate (12 mg, 0.024 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give $21m$ (9 mg, 91.4%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 8.01–7.94 (m, 2H), 7.34 (t, $J = 7.9$ Hz, 1H), 7.10–7.05 (m, 1H), 7.03 (dd, $J = 2.6$, 1.6 Hz, 1H), 6.97 (d, $J = 8.6$ Hz, 1H), 6.95–6.88 (m, 2H), 6.42 (dd, $J = 8.2$, 2.6 Hz, 1H), 6.38 (d, $J = 2.5$ Hz, 1H), 5.48 (qd, $J = 5.0$, 2.4 Hz, 1H), 4.73 (br s, 1 H), 4.31 (ddd, $J = 11.4$, 5.1, 1.8 Hz, 1H), 4.24 (ddd, $J = 11.5$, 2.4, 1.1 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.19 (ddt, $J = 16.6$, 5.0, 1.2 Hz, 1H), 3.03–2.90 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 160.6, 159.5, 155.3, 154.8, 138.9, 132.7, 131.3, 130.9, 130.6, 129.3, 122.5, 122.2, 115.5, 113.1, 111.5, 110.8, 108.9, 103.5, 67.2, 66.2, 56.0, 55.5, 30.0; IR (KBr) v_{max} 3411, 2921, 1701, 1598, 1510, 1278, 1224, 1155, 1116, 1043, 754 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{24}$H$_{23}$O$_6$, 407.1495, found 407.1475.
7-Hydroxychroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (21n): 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (39 mg, 0.156 mmol) and thionyl chloride (38 μL, 0.312 mmol) in THF (5 mL) were heated at reflux for 3 h under argon, cooled to rt, and concentrated. The residue was dissolved in dichloromethane (0.5 mL) and added dropwise to a stirred solution of 20b (20 mg, 0.078) in dichloromethane (0.7 mL) with trimethylamine (0.3 mL) under argon at 0 °C. The resulting mixture was stirred for 6 h at rt before solvent was removed. The residue was purified by flash chromatography (SiO$_2$ 1:4 EtOAc/hexanes) to give 7-benzyloxychroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (26 mg, 84%) as a colorless oil, which was used as for hydrogenolysis: 1H NMR (400 MHz, CDCl$_3$) δ 7.90–7.82 (m, 2H), 7.48–7.37 (m, 4H), 7.37–7.31 (m, 1H), 7.06 (d, $J = 8.4$ Hz, 1H), 6.97 (dt, $J = 8.3$, 0.9 Hz, 1H), 6.59 (dd, $J = 8.4$, 2.6 Hz, 1H), 6.53 (d, $J = 2.5$ Hz, 1H), 5.49 (qd, $J = 4.7$, 2.2 Hz, 1H), 5.18 (dddd, $J = 7.3$, 5.8, 2.9, 1.5 Hz, 1H), 5.04 (s, 2H), 4.33 (ddd, $J = 11.6$, 4.8, 1.9 Hz, 1H), 4.28–4.16 (m, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.21 (m, 3H), 3.04–2.90 (m, 1H), 2.32 (s, 3H), 1.72 (q, $J = 1.3$ Hz, 3H), 1.70–1.64 (m, 3H). A solution of palladium acetate (1.3 mg, 0.006 mg), trimethylamine (4 μL, 0.03 mmol), triethylsilane (24 μL, 0.15) in dichloromethane (0.8 mL) was stirred for 15 min under argon before the addition of a solution of 7-benzyloxychroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (15 mg, 0.03 mmol) in dichloromethane (0.4 mL). The resulting mixture was stirred for 15 h, quenched with saturated ammonium chloride (2 mL) and extracted with ether (3 × 4 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:2
EtOAc/hexanes) to give 21n (14.8 mg, 53.4%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.88 (d, $J = 2.1$ Hz, 1H), 7.84 (dd, $J = 8.4, 2.2$ Hz, 1H), 7.06 (d, $J = 8.4$ Hz, 1H), 6.92 (dt, $J = 8.3, 0.9$ Hz, 1H), 6.46–6.40 (m, 1H), 6.38 (d, $J = 2.5$ Hz, 1H), 5.49 (qd, $J = 4.7, 2.2$ Hz, 1H), 5.17 (dddt, $J = 7.3, 5.9, 2.9, 1.4$ Hz, 1H), 4.63 (s, 1H), 4.32 (ddd, $J = 11.5, 4.8, 1.9$ Hz, 1H), 4.22 (dt, $J = 11.4, 1.6$ Hz, 1H), 3.24 (d, $J = 7.2$ Hz, 2H), 3.18 (ddt, $J = 16.7, 5.1, 1.2$ Hz, 1H), 2.94 (ddd, $J = 16.5, 4.7, 1.8$ Hz, 1H), 2.32 (s, 3H), 1.72 (q, $J = 1.3$ Hz, 3H), 1.67 (d, $J = 1.3$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 167.8, 164.4, 154.0, 153.6, 151.7, 132.9, 130.9, 129.6 (2), 127.7, 126.7, 121.4, 119.7, 110.1, 107.6, 102.2, 65.8, 65.1, 28.7, 27.7, 24.6, 19.8, 16.8; IR (KBr) ν_{max} 3419, 2823, 2854, 1716, 1596, 1456, 1286, 1201, 1163, 1054, 796 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{23}$H$_{25}$O$_6$, 397.1651, found 397.1642.

5-Hydroxychroman-3-yl Benzoate (21o): A solution of 20c (9 mg, 0.035 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of benzoic acid (8.6 mg, 0.07 mmol), N,N$'$-dicyclohexylcarbodiimide (23 mg, 0.11 mmol) and 4-dimethylaminopyridine (4.2 mg, 0.035 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 x 4 mL) and saturated sodium bicarbonate (2 x 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:9 EtOAc/hexanes) to give 5-(benzyloxy)chroman-3-yl benzoate (21 mg, 90%) as a colorless oil, which was used as is for hydrogenolysis: 1H NMR (500 MHz, CDCl$_3$) δ 8.08–7.97 (m, 2H), 7.66–7.50 (m, 1H), 7.49–
7.28 (m, 7H), 7.12 (tt, J = 8.3, 0.8 Hz, 1H), 6.57 (ddd, J = 14.2, 8.3, 1.0 Hz, 2H), 5.56 (ddt, J = 5.3, 4.4, 2.2 Hz, 1H), 5.08 (s, 2H), 4.34 (ddd, J = 11.4, 4.9, 1.9 Hz, 1H), 4.23 (ddd, J = 11.4, 2.2, 1.1 Hz, 1H), 3.17 (ddt, J = 18.0, 5.7, 1.0 Hz, 1H), 3.03 (ddd, J = 17.8, 4.3, 1.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 166.2, 157.5, 155.0, 137.2, 133.3, 130.2, 130.0 (2), 128.8, 128.5 (2), 128.1 (2), 127.5 (2), 127.4, 109.8, 108.9, 103.9, 70.2, 66.8, 66.0, 25.7.

5-(Benzyloxy)chroman-3-yl benzoate (5 mg, 0.014 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO2, 1:1 EtOAc/hexanes) to give 21o (3 mg, 93%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 8.10–7.92 (m, 2H), 7.62–7.47 (m, 1H), 7.47–7.35 (m, 2H), 7.01 (t, J = 8.1 Hz, 1H), 6.52 (dd, J = 8.2, 1.0 Hz, 1H), 6.38 (dd, J = 8.0, 1.0 Hz, 1H), 5.55 (tdd, J = 5.2, 4.4, 2.2 Hz, 1H), 4.84 (br s, 1 H), 4.33 (ddd, J = 11.4, 4.9, 1.9 Hz, 1H), 4.22 (dt, J = 11.6, 1.5 Hz, 1H), 3.12 (dd, J = 17.4, 5.5 Hz, 1H), 2.97 (ddd, J = 17.5, 4.3, 1.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 166.3, 155.3, 154.5, 133.4, 130.1, 130.0, 128.6 (2), 127.7 (2), 109.4, 107.4, 107.2, 66.8, 65.9, 25.3. IR (KBr) νmax 3374, 2921, 1703, 1681, 1476, 1098, 770 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C16H13O4, 269.0814, found 269.0804.

5-Hydroxychroman-3-yl 3-Methoxybenzoate (21p): A solution of 20c (14 mg, 0.055 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3-methoxybenzoic acid (17 mg, 0.11 mmol), N,N'-dicyclohexylcarbodiimide (23 mg, 0.11 mmol) and 4-dimethylaminopyridine (8 mg, 0.11 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered.
The eluent was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, and filtered and the solvent removed. The residue was purified by flash chromatography (SiO₂, 1:9 EtOAc/hexanes) to afford 5-(benzyloxy)chroman-3-yl 3-methoxybenzoate (19 mg, 90%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dt, J = 7.7, 1.3 Hz, 1H), 7.54 (dd, J = 2.7, 1.5 Hz, 1H), 7.47–7.29 (m, 6H), 7.15–7.05 (m, 2H), 6.57 (ddd, J = 10.7, 8.3, 1.0 Hz, 2H), 5.63–5.49 (m, 1H), 5.08 (s, 2H), 4.32 (ddd, J = 11.4, 5.1, 1.8 Hz, 1H), 4.26–4.18 (m, 1H), 3.83 (s, 3H), 3.17 (dd, J = 17.8, 5.5 Hz, 1H), 3.09–2.95 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 159.7, 157.5, 155.0, 137.2, 131.5, 129.6, 128.8 (2), 128.1, 127.6, 127.4 (2), 122.4, 119.7, 114.5, 109.8, 108.8, 103.9, 70.2, 66.7(2), 66.2, 55.7. 5-(Benzyloxy)chroman-3-yl 3-methoxybenzoate (18 mg, 0.044 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 21p (12.9 mg, 92.4%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dt, J = 7.7, 1.3 Hz, 1H), 7.46 (dd, J = 2.7, 1.5 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.02 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 6.93 (t, J = 8.1 Hz, 1H), 6.44 (dd, J = 8.3, 1.0 Hz, 1H), 6.31 (dd, J = 8.0, 1.0 Hz, 1H), 5.54–5.43 (m, 1H), 4.87 (s, 1H), 4.27–4.21 (m, 1H), 4.15 (dt, J = 11.4, 1.6 Hz, 1H), 3.75 (s, 3H), 3.06 (dd, J = 17.4, 5.5 Hz, 1H), 2.90 (ddd, J = 17.4, 4.6, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 159.7, 155.3, 154.5, 131.4, 129.6, 127.7, 122.4, 119.8, 114.5, 109.4, 107.4, 107.2, 66.8, 66.1, 55.7, 25.3. IR (KBr) v_max cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₁₇H₁₅O₅, 299.0920, found 299.0934.
5-Hydroxychroman-3-yl 4-Methoxybenzoate (21q): A solution of 20c (11 mg, 0.042 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid (13 mg, 0.09 mmol), N,N′-dicyclohexylcarbodiimide (18 mg, 0.085 mmol) and 4-dimethylaminopyridine (5 mg, 0.05 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:9 EtOAc/hexanes) to give 5-(benzyloxy)chroman-4-yl 3-methoxybenzoate (15 mg, 91.5%) as a colorless oil, which was used as is for hydrogenolysis: ¹H NMR (500 MHz, CDCl₃) δ 8.09–7.85 (m, 2H), 7.50–7.30 (m, 5H), 7.11 (t, J = 8.2 Hz, 1H), 6.97–6.83 (m, 2H), 6.60–6.56 (m, 1H), 6.57–6.52 (m, 1H), 5.63–5.48 (m, 1H), 5.06 (s, 2H), 4.31 (ddd, J = 11.4, 5.0, 1.9 Hz, 1H), 4.27–4.17 (m, 1H), 3.85 (s, 3H), 3.16 (dd, J = 17.8, 5.5 Hz, 1H), 3.01 (ddd, J = 17.8, 4.4, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 163.7, 157.5, 155.1, 137.3, 132.1, 128.8 (2), 128.1 (2), 127.5 (2), 127.4, 122.6, 113.8 (2), 109.8, 109.0, 103.8, 70.2, 66.9, 65.7, 55.6, 25.7. 5-(Benzyloxy)chroman-4-yl 3-methoxybenzoate (5 mg, 0.014 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 21q (3.5 mg, 93%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 8.10–7.92 (m, 2H), 7.64–7.49 (m, 1H), 7.49–7.38 (m, 2H), 7.02 (t, J = 8.1
Hz, 1H), 6.53 (dd, J = 8.2, 1.0 Hz, 1H), 6.40 (dd, J = 8.0, 1.0 Hz, 1H), 5.56 (td, J = 5.2, 4.4, 2.2 Hz, 1H), 4.86 (s, 1H), 4.35 (dd, J = 11.4, 4.9, 1.9 Hz, 1H), 4.23 (dt, J = 11.6, 1.6 Hz, 1H), 3.14 (dd, J = 17.4, 5.5 Hz, 1H), 2.99 (ddd, J = 17.5, 4.3, 1.8 Hz, 1H); ^13^C NMR (125 MHz, CDCl₃) δ 166.3, 155.3, 154.5 (2), 133.4 (2), 130.1, 130.0, 128.6, 127.7, 109.4 (2), 107.4, 107.2, 66.8, 65.9, 25.3; IR (KBr) ν_{max} 3384, 2921, 1701, 1683, 1606, 1471, 1259, 1168, 1099, 771 cm⁻¹; HRMS (ESI-) m/z [M – H⁺] calcd for C₁₇H₁₅O₅, 299.0920, found 299.0928.

5-Hydroxychroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (21r): A solution of 22c (11 mg, 0.042 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylic acid (22 mg, 0.085 mmol), N,N′-dicyclohexylcarbodiimide (18 mg, 0.085 mmol), and 4-dimethylaminopyridine (5 mg, 0.0042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:8 EtOAc/hexanes) to afford 7-(benzyloxy)chroman-3-yl 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylate (18 mg, 85%) as a colorless oil, which was used further as obtained: ^1^H NMR (400 MHz, CDCl₃) δ 8.07–7.92 (m, 2H), 7.49–7.28 (m, 6H), 7.19–7.05 (m, 2H), 7.04 (dd, J = 2.7, 1.6 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.91 (ddd, J = 8.4, 2.7, 1.0 Hz, 1H), 6.60–6.54 (m, 2H), 5.54 (qd, J = 5.1, 2.4 Hz, 1H), 5.08 (s, 2H), 4.30 (ddd, J = 11.3, 5.2, 1.7 Hz, 1H), 4.23 (dd, J = 11.6, 2.1 Hz, 1H), 3.87 (s, 3H), 3.84 (s,
3H), 3.18 (dd, $J = 17.7, 5.6$ Hz, 1H), 3.10–2.90 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 166.0, 160.5, 159.4, 157.5, 155.0, 138.9, 137.2, 132.6, 131.3, 130.6, 129.2, 128.7 (2), 128.1, 127.5 (2), 127.4, 122.6, 122.2, 115.4, 113.2, 110.7, 109.8, 109.0, 103.9, 70.2, 66.8, 65.9, 56.0, 55.5, 25.8. 7-

(Benzyloxy)chroman-3-yl 3′,6-dimethoxy-[1,1′-biphenyl]-3-carboxylate (18 mg, 0.036 mmol) and palladium/carbon (10%) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:1 EtOAc/hexanes) to give 21r (13 mg, 88.2%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.96–7.88 (m, 2H), 7.25 (t, $J = 7.9$ Hz, 1H), 7.00 (dt, $J = 7.6, 1.2$ Hz, 1H), 6.96 (dd, $J = 2.6, 1.5$ Hz, 1H), 6.94–6.87 (m, 2H), 6.83 (ddd, $J = 8.3, 2.6, 1.0$ Hz, 1H), 6.44 (dd, $J = 8.3, 1.0$ Hz, 1H), 6.31 (dd, $J = 8.0, 1.1$ Hz, 1H), 5.55–5.34 (m, 1H), 4.86 (br s, 1H), 4.22 (ddd, $J = 11.3, 5.2, 1.7$ Hz, 1H), 4.16 (ddd, $J = 11.4, 2.4, 1.2$ Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.06 (dd, $J = 17.3, 5.6$ Hz, 1H), 2.92–2.83 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 160.6, 159.4, 155.3, 154.5, 138.9, 132.7, 131.3, 130.7, 129.3, 127.6, 122.5, 122.2, 115.4, 113.2, 110.7, 109.4, 107.4, 107.3, 66.9, 65.7, 56.0, 55.5, 25.4; IR (KBr) $\nu$$_{\text{max}}$ 3396, 2933, 2837, 1712, 1598, 1469, 1440, 1249, 1031, 771, 711 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{24}$H$_{23}$O$_6$, 407.1495, found 407.1482.

5-Hydroxychroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (21s): A solution of 20c (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (20 mg, 0.08 mmol), N,N'-dicyclohexylcarbodiimide (16 mg, 0.08 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The
resulting solution was stirred for 6 h at rt and filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate filtered and solvent was removed. The residue was purified by flash chromatography (SiO$_2$, 1:8 EtOAc/hexanes) to give 5-(benzyloxy)chroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (13 mg, 72.2%) as a colorless oil, which was used as is in the next step: 1H NMR (500 MHz, CDCl$_3$) δ 7.94–7.83 (m, 2H), 7.45–7.29 (m, 5H), 7.10 (t, $J = 8.3$ Hz, 1H), 7.06 (d, $J = 8.4$ Hz, 1H), 6.62–6.55 (m, 2H), 5.67–5.48 (m, 1H), 5.18 (dddd, $J = 7.2$, 5.8, 2.9, 1.4 Hz, 1H), 5.07 (s, 2H), 4.31 (ddd, $J = 11.4$, 4.9, 1.9 Hz, 1H), 4.26–4.17 (m, 1H), 3.25 (d, $J = 7.1$ Hz, 2H), 3.14 (dd, $J = 17.8$, 5.4 Hz, 1H), 3.01 (ddd, $J = 17.8$, 4.4, 1.8 Hz, 1H), 2.32 (s, 3H), 1.71 (q, $J = 1.3$ Hz, 3H), 1.67 (d, $J = 1.3$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.0, 165.6, 157.5, 155.0, 152.9, 137.2, 134.1, 132.2, 129.0, 128.7 (2), 128.1, 128.0 (2), 127.5 (2), 127.4, 122.6, 121.0, 109.8, 108.8, 103.9, 70.2, 66.7, 66.0, 28.9, 25.9, 25.7, 21.1, 18.1. For benzyl group removal, a solution of palladium acetate (1 mg, 0.004 mmol), trimethylamine (4 μL, 0.025 mmol), and triethylsilane (19 μL, 0.0112) in DCM (0.8 mL) was stirred for 15 min under argon before the addition of a solution of 5-(benzyloxy)chroman-3-yl 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (12 mg, 0.025 mmol) in dichloromethane (0.2 mL) reaction was stirred for 15 h. The reaction mixture was quenched with saturated ammonium chloride (2 mL) and extracted with ether (3 × 4 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over Na$_2$SO$_4$, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:2 EtOAc/hexanes) to afford 21s as colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 8.02–7.67 (m, 2H), 7.05 (d, $J = 8.3$ Hz, 1H), 7.03–6.98 (m, 1H), 6.53 (dd, $J = 8.3$, 1.1 Hz, 1H), 6.43 (dd, $J = 8.1$, 1.0 Hz, 1H), 5.52 (tdd, $J = 5.1$, 4.2, 2.1 Hz, 1H), 5.17 (dddt, $J = 7.3$, 5.8, 2.9, 1.4 Hz, 1H), 4.31
(ddd, J = 11.5, 4.8, 2.0 Hz, 1H), 4.24–4.12 (m, 1H), 3.24 (d, J = 7.2 Hz, 2H), 3.05 (dd, J = 17.6, 5.3 Hz, 1H), 2.94 (ddd, J = 17.5, 4.4, 1.8 Hz, 1H), 2.32 (s, 3H), 1.71 (q, J = 1.3 Hz, 3H), 1.69–1.65 (m, 3H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 168.8, 165.4, 155.0, 154.6, 152.7, 133.9, 131.9, 128.8, 127.8 (2), 127.1, 122.4, 120.8, 110.8, 110.5, 109.5, 66.4, 66.0, 28.7, 25.8, 25.7, 20.9, 17.8; IR (KBr) \(\nu_{\text{max}} \) 3429, 2854, 1716, 1595, 1458, 1286, 1161, 1054 cm-1; HRMS (ESI+) \(m/z \) [M + H+] calcd for C\textsubscript{23}H\textsubscript{25}O\textsubscript{6}, 397.1651, found 397.1662.

5,7-Dimethoxychroman-3-yl Benzoate (25a): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of benzoic acid (12 mg, 0.1 mmol), N,N'-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\textsubscript{2}, 1:7 EtOAc/hexanes) to afford 25a (13 mg, 90%) as a colorless oil: ^1^H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.14–7.91 (m, 2H), 7.55 (ddt, J = 7.6, 6.8, 1.1 Hz, 1H), 7.47–7.37 (m, 2H), 6.11 (s, 2H), 5.52 (tdt, J = 5.5, 4.5, 1.9 Hz, 1H), 4.32 (ddddd, J = 11.4, 4.9, 1.9, 0.9 Hz, 1H), 4.21 (ddd, J = 11.5, 2.2, 1.2 Hz, 1H), 3.79 (dd, J = 2.9, 0.9 Hz, 6H), 3.09–2.94 (m, 1H), 2.88 (ddd, J = 17.4, 4.3, 1.8 Hz, 1H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 166.3, 159.8, 159.1, 155.3, 133.4, 130.3, 130.1 (2), 128.6 (2), 100.8, 93.4, 92.0, 67.1, 66.2, 55.7
55.6, 25.1; IR (KBr) ν_{max} 2931, 1716, 1620, 1591, 1499, 1456, 1145, 1045, 754 cm^{-1}; HRMS (ESI+) m/z [M + H^+] calcd for C_{18}H_{19}O_{5}, 315.1232, found 315.1239.

5,7-Dimethoxychroman-3-yl 3-Methoxybenzoate (25b): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3-methoxybenzoic acid (15 mg, 0.1 mmol), N,N'-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 EtOAc/hexanes) to afford 25b (13 mg, 80%) as a colorless oil: 1H NMR (500 MHz, CDCl₃) δ 7.61 (dt, J = 7.7, 1.2 Hz, 1H), 7.54 (dd, J = 2.7, 1.5 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.09 (ddd, J = 8.3, 2.7, 1.1 Hz, 1H), 6.10 (d, J = 1.2 Hz, 2H), 5.69–5.42 (m, 1H), 4.30 (ddd, J = 11.4, 5.1, 1.8 Hz, 1H), 4.24–4.16 (m, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 3.02 (ddd, J = 17.5, 5.6, 1.3 Hz, 1H), 2.86 (ddd, J = 17.4, 4.5, 1.7 Hz, 1H); 13C NMR (125 MHz, CDCl₃) δ 166.2, 159.8, 159.7, 159.0, 155.3, 131.5, 129.6, 122.4, 119.6, 114.5, 100.7, 93.4, 92.0, 67.0, 66.3, 55.7, 55.6, 55.6, 25.1; IR (KBr) ν_{max} 2935, 2839, 1716, 1622, 1593, 1498, 1456, 1276, 1145, 1045, 754 cm^{-1}; HRMS (ESI+) m/z [M + H^+] calcd for C_{19}H_{21}O_{6}, 345.1338, found 345.1347.
5,7-Dimethoxychroman-3-yl 4-Methoxybenzoate (25c): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 4-methoxybenzoic acid (15 mg, 0.1 mmol), N,N′-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 EtOAc/hexanes) to afford 25c (14 mg, 86%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.98 (ddd, J = 10.7, 5.1, 2.6 Hz, 2H), 7.27 (td, J = 4.5, 1.5 Hz, 1H), 6.89 (ddd, J = 8.5, 5.7, 2.6 Hz, 2H), 6.10 (m, 2H), 5.56–5.37 (m, 1H), 4.29 (m, 1H), 4.26–4.12 (m, 1H), 3.88–3.81 (s, 3H), 3.78 (s, 6H), 3.10–2.93 (m, 1H), 2.85 (dddd, J = 17.5, 5.7, 4.3, 2.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 163.7, 159.8, 159.0, 155.3, 132.1 (2), 122.7, 113.8 (2), 100.9, 93.3, 91.9, 67.1, 65.8, 55.6, 55.6 (2), 25.1; IR (KBr) vₘₐₓ 2935, 1716, 1620, 1593, 1499, 1456, 1145, 1043 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₁₉H₂₁O₆, 345.1338, found 345.1347.

5,7-Dimethoxychroman-3-yl 3′,6-Dimethoxy-[1,1′-biphenyl]-3-carboxylate (25d): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3′,6-
dimethoxy-[1,1′-biphenyl]-3-carboxylic acid (15 mg, 0.1 mmol), N,N′-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 EtOAc/hexanes) to afford 25d (18.4 mg, 82%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 8.06–7.97 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.08 (dt, J = 7.7, 1.2 Hz, 1H), 7.04 (dd, J = 2.6, 1.5 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.91 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.10 (s, 2H), 5.54–5.42 (m, 1H), 4.28 (ddd, J = 11.3, 5.2, 1.7 Hz, 1H), 4.21 (ddd, J = 11.2, 2.3, 1.1 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 3.02 (ddd, J = 17.4, 5.6, 1.2 Hz, 1H), 2.85 (ddd, J = 17.2, 4.6, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 160.5, 159.7, 159.4, 159.0, 155.3, 139.0, 132.6, 131.3, 130.6, 129.2, 122.7, 122.2, 115.4, 113.1, 110.7, 100.9, 93.3, 91.9, 67.1, 66.0, 56.0, 55.6, 55.6, 55.5, 25.2. IR (KBr) νmax 2954, 2931, 1712, 1595, 1498, 1456, 1436, 1247, 1215, 1052, 813, 756 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₆H₂₆NaO₇, 473.1576, found 473.1566.

5,7-Dimethoxychroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (25e): A solution of 24 (20 mg, 0.08 mmol) in dichloromethane (1 mL) was added to a stirred solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (48 mg, 0.19 mmol), N,N′-dicyclohexylcarbodiimide (40 mg, 0.19 mmol), and 4-dimethylaminopyridine (12 mg, 0.084 mmol) under argon at 0 °C. The
resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (10 mL) and washed with 0.5 N HCl (2 × 8 mL) and then with saturated sodium bicarbonate (2 × 8 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (8 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:7 EtOAc/hexanes) to afford 25e (17 mg, 53%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.90 (d, $J = 2.1$ Hz, 1H), 7.86 (dd, $J = 8.4$, 2.2 Hz, 1H), 7.06 (d, $J = 8.4$ Hz, 1H), 6.18 (s, 2H), 5.57–5.44 (m, 1H), 5.18 (dddd, $J = 7.2$, 5.8, 2.8, 1.4 Hz, 1H), 4.30 (ddd, $J = 11.4$, 4.9, 1.9 Hz, 1H), 4.25 – 4.02 (m, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.25 (d, $J = 7.2$ Hz, 2H), 2.99 (ddd, $J = 17.3$, 5.4, 1.2 Hz, 1H), 2.86 (ddd, $J = 17.4$, 4.4, 1.8 Hz, 1H), 2.32 (s, 3H), 1.72 (q, $J = 1.2$ Hz, 3H), 1.69–1.63 (m, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.1, 165.7, 159.8, 159.0, 155.2, 152.9, 134.1 (2), 132.1, 129.0, 128.1, 122.6, 121.1, 100.7, 93.3, 91.9, 66.9, 66.2, 55.6, 55.6, 28.9, 25.9, 25.1, 21.1, 18.1; IR (KBr) ν_{max} 2937, 2844, 1737, 1622, 2595, 1242, 1218, 1201, 1145, 1128, 1058, 811 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{25}$H$_{29}$O$_7$, 441.1913, found 441.1894.

5,7-Dimethoxychroman-3-yl 3,4-Dimethoxybenzoate (25f): A solution of 24 (5 mg, 0.025 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3,4-dimethoxybenzoic acid (9 mg, 0.05 mmol), N,N'-dicyclohexylcarbodiimide (10 mg, 0.05 mmol), and 4-dimethylaminopyridine (3 mg, 0.025 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The
combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:6 EtOAc/hexanes) to afford 25f (10 mg, 71.4%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.65 (dd, $J = 8.4, 2.0$ Hz, 1H), 7.52 (d, $J = 2.0$ Hz, 1H), 6.85 (d, $J = 8.5$ Hz, 1H), 6.10 (s, 2H), 5.57–5.41 (m, 1H), 4.28 (ddd, $J = 11.3, 5.1, 1.8$ Hz, 1H), 4.21 (ddd, $J = 11.3, 2.2, 1.1$ Hz, 1H), 3.92 (d, $J = 8.3$ Hz, 6H), 3.79 (d, $J = 4.1$ Hz, 6H), 3.02 (ddd, $J = 17.2, 5.5, 1.2$ Hz, 1H), 2.86 (ddd, $J = 17.3, 4.5, 1.6$ Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 159.9 (2), 159.5 (2), 155.4 (2), 138.5, 128.8, 128.3, 126.5, 100.5, 93.5, 92.4, 78.9, 66.6, 55.7 (2), 55.6 (2), 28.4; IR (KBr) ν_{max} 2931, 1701, 1558, 1458, 1419, 1271, 732 cm$^{-1}$; HRMS (ESI+) m/z [M + Na$^+$] calcd for C$_{20}$H$_{22}$NaO$_7$, 397.1263, found 397.1269.

![Structure](image)

5,7-Dimethoxychroman-3-yl 3,5-Dimethoxybenzoate (25g): A solution of 24 (5 mg, 0.025 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3,4-dimethoxybenzoic acid (9 mg, 0.05 mmol), N,N'-dicyclohexylcarbodiimide (10 mg, 0.05 mmol), and 4-dimethylaminopyridine (3 mg, 0.025 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:6 EtOAc/hexanes) to afford 25g (11.9 mg, 85%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.16 (d, $J = 2.4$ Hz, 2H), 6.64 (t, $J = 2.4$ Hz, 1H), 6.10 (s, 2H), 5.57–
5.43 (m, 1H), 4.28 (ddd, \(J = 11.3, 5.2, 1.7 \) Hz, 1H), 4.21 (ddd, \(J = 11.3, 2.4, 1.1 \) Hz, 1H), 3.85–3.73 (m, 12H), 3.02 (ddd, \(J = 17.3, 5.5, 1.2 \) Hz, 1H), 2.85 (ddd, \(J = 17.4, 4.7, 1.7 \) Hz, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 159.9 \) (2), 159.5 (2), 155.4 (2), 138.5, 128.8, 128.3, 126.5, 100.5 (2), 93.5, 92.4, 78.9, 66.6, 55.7, 55.6 (2), 28.4. IR (KBr) \(\nu_{\text{max}} \) 2931, 1701, 1558, 1458, 1419, 1271, 732 cm\(^{-1}\); HRMS (ESI+) \(m/z \) [M + Na\(^+\)] calcd for C\(_{20}\)H\(_{22}\)NaO\(_7\), 397.1263, found 397.1269.

5,7-Dimethoxychroman-3-yl 3-Ethoxybenzoate (25h): A solution of 24 (10 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 3-ethoxybenzoic acid, \(N,N' \)-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h and filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:6 EtOAc/hexanes) to afford 25h (14 mg, 82.3%) as a colorless oil: \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta 7.52 \) (ddd, \(J = 7.7, 1.5, 1.0 \) Hz, 1H), 7.46 (dd, \(J = 2.6, 1.5 \) Hz, 1H), 7.38 (t, \(J = 7.9 \) Hz, 1H), 7.16 (ddd, \(J = 8.2, 2.7, 1.0 \) Hz, 1H), 6.14 (d, \(J = 2.4 \) Hz, 1H), 6.06 (d, \(J = 2.4 \) Hz, 1H), 5.50–5.41 (m, 1H), 4.32 (ddd, \(J = 11.5, 4.5, 2.0 \) Hz, 1H), 4.22 (ddt, \(J = 11.5, 1.9, 0.9 \) Hz, 1H), 4.07 (q, \(J = 7.0 \) Hz, 2H), 3.79 (s, 3H), 3.76 (s, 3H), 2.99 (ddd, \(J = 17.3, 5.2, 1.1 \) Hz, 1H), 2.89–2.78 (m, 1H), 1.36 (t, \(J = 7.0 \) Hz, 3H); \(^{13}\)C NMR (125 MHz, (CD\(_3\))\(_2\)CO) \(\delta 166.2, 160.7, 160.0, 159.8, 156.1, 132.5, 130.5, 122.3, 120.1, 115.9, 101.1, 94.2, 92.2, 67.3, 67.1, 64.3, 55.8, 55.5, 25.4, 15.0; IR (KBr) \(\nu_{\text{max}} \) 2910, 1718, 1622,
5,7-Dimethoxychroman-3-yl 3-(Benzyloxy)benzoate (25i): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3-(benzyloxy)benzoic acid (23 mg, 0.1 mmol) (17 mg, 0.1 mmol), N,N′-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\textsubscript{2}, 1:5 EtOAc/hexanes) to afford 25i (18 mg, 90%) as a pale yellow amorphous solid: 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.62 (dd, \(J = 7.2, 1.5\) Hz, 2H), 7.48–7.36 (m, 4H), 7.37–7.27 (m, 2H), 7.19–7.12 (m, 1H), 6.11 (s, 2H), 5.50 (ddt, \(J = 5.3, 4.2, 2.5\) Hz, 1H), 5.09 (s, 2H), 4.31 (ddd, \(J = 11.3, 4.9, 1.9\) Hz, 1H), 4.20 (ddd, \(J = 11.4, 2.2, 1.2\) Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.02 (ddd, \(J = 17.4, 5.5, 1.2\) Hz, 1H), 2.87 (ddd, \(J = 17.4, 4.3, 1.8\) Hz, 1H); 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 166.1, 159.8, 159.0, 158.8, 155.3, 136.7, 131.6, 129.6 (2), 128.9 (2), 128.3, 127.8, 122.7, 120.4, 115.6, 100.7, 93.4, 92.0, 70.4, 67.0, 66.3, 55.6, 55.6, 25.1; IR (KBr) \(\nu_{\text{max}}\) 2918, 1701, 1683, 1558, 15036, 1458, 1203, 1145, cm-1; HRMS (ESI+) \(m/z\) [M + H+] calcd for C\textsubscript{25}H\textsubscript{25}O\textsubscript{6}, 421.1651, found 421.1637.
5,7-Dimethoxychroman-3-yl 4-(Benzyloxy)benzoate (25j): A solution of 24 (10 mg, 0.04 mmol) in dichloromethane (0.5 mL) was added to a stirred solution of 4-(benzyloxy)benzoic acid (23 mg, 0.1 mmol), N,N'-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\textsubscript{2}, 1:5 EtOAc/hexanes) to afford 25j (17 mg, 85%) as a colorless oil. 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.62 (dd, \(J = 7.2, 1.5 \text{ Hz}, 2\text{H})\), 7.46–7.37 (m, 4H), 7.36–7.29 (m, 2H), 7.21–7.04 (m, 1H), 6.11 (s, 2H), 5.50 (ddt, \(J = 5.3, 4.2, 2.5 \text{ Hz}, 1\text{H})\), 5.09 (s, 2H), 4.31 (ddd, \(J = 11.3, 4.9, 1.9 \text{ Hz}, 1\text{H})\), 4.20 (ddd, \(J = 11.4, 2.2, 1.2 \text{ Hz}, 1\text{H})\), 3.81–3.78 (m, 6H), 3.02 (ddd, \(J = 17.4, 5.5, 1.2 \text{ Hz}, 1\text{H})\), 2.87 (ddd, \(J = 17.4, 4.3, 1.8 \text{ Hz}, 1\text{H})\); 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 165.9, 162.8, 159.7, 159.0, 155.3, 136.4, 132.1 (2), 128.9 (2), 128.4, 127.7 (2), 122.9, 114.6 (2), 100.8, 93.3, 91.9, 70.3, 67.1, 65.8, 55.6, 55.6, 25.1. IR (KBr) \(\nu_{\text{max}}\) 2918, 2817, 1701, 1683, 1558, 1503, 1458, 1203, 1145, 729 cm-1; HRMS (ESI+) \(m/z\) [M + H+] calcd for C\textsubscript{25}H\textsubscript{25}O\textsubscript{6}, 421.1651, found 421.1666.
5,7-Dimethoxychroman-3-yl 3,5-Bis(benzyloxy)benzoate (25k): A solution of 24 (10 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3,5-bis(benzyloxy)benzoic acid (33.4 mg, 0.1 mmol), N,N'-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:5 EtOAc/hexanes) to afford 25k (22 mg, 88%) as an amorphous pale yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 7.51–7.27 (m, 12H), 6.79 (t, $J = 2.3$ Hz, 1H), 6.11 (s, 2H), 5.47 (qd, $J = 5.0, 2.2$ Hz, 1H), 5.04 (s, 4H), 4.29 (ddd, $J = 11.4, 5.0, 1.8$ Hz, 1H), 4.25–4.12 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.01 (ddd, $J = 17.4, 5.5, 1.1$ Hz, 1H), 2.85 (ddd, $J = 17.4, 4.5, 1.7$ Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 166.0, 159.9 (2), 159.8, 159.0, 155.3, 136.6 (2), 132.1, 128.9 (4), 128.4 (4), 127.9 (2), 108.8 (2), 107.3, 100.7, 93.4, 92.0, 70.5 (2), 66.9, 66.5, 55.6, 55.6, 25.1; IR (KBr) ν_{max} 2955, 2852, 1697, 1596, 1456, 1145, 1251, 1009, 769 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{32}$H$_{31}$O$_7$, 527.2070, found 527.2087.

![Structure of 5,7-Dimethoxychroman-3-yl 3,5-Bis(benzyloxy)benzoate](image)

5,7-Dimethoxychroman-3-yl 3,4-Bis(benzyloxy)benzoate (25l): A solution of 24 (9 mg, 0.04 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 3,4-bis(benzyloxy)benzoic acid (33.4 mg, 0.1 mmol), N,N'-dicyclohexylcarbodiimide (20.6 mg, 0.1 mmol), and 4-dimethylaminopyridine (5 mg, 0.042 mmol) under argon at 0 °C. The resulting solution was stirred
for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:5 EtOAc/hexanes) to afford 25l (20.8 mg, 92%) as an amorphous pale yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 7.61 (d, $J = 2.0$ Hz, 1H), 7.58 (dd, $J = 8.4$, 2.0 Hz, 1H), 7.48–7.40 (m, 4H), 7.40–7.29 (m, 6H), 6.88 (d, $J = 8.4$ Hz, 1H), 6.11 (s, 2H), 5.56–5.39 (m, 1H), 5.22 (s, 2H), 5.17 (s, 2H), 4.27 (dd, $J = 11.3$, 4.9, 1.8 Hz, 1H), 4.22–4.14 (m, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 2.98 (ddd, $J = 17.3$, 5.5, 1.2 Hz, 1H), 2.83 (ddd, $J = 17.4$, 4.3, 1.7 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 165.9, 159.8, 159.0, 155.3, 153.1, 148.4, 137.0, 136.7, 128.8 (3), 128.7, 128.2, 128.1, 127.7 (2), 127.3 (2), 124.4, 123.1, 115.8, 113.3, 100.8, 93.3, 91.9, 71.3, 71.0, 67.0, 65.9, 55.6, 55.6, 25.1. IR (KBr) ν_{\max} 2921, 2848, 1699, 1618, 1553, 1484, 1370, 1367, 1288 (3), 1287, 1282, 1281, 1277 (2), 1273 (2), 1244, 1231, 1158, 1133, 1008, 933, 919, 713, 710, 670, 659, 556, 556, 251. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{32}$H$_{31}$O$_7$, 527.2070, found 527.2081.

![5,7-Dimethoxychroman-3-yl 4-(Benzyloxy)-3-methoxybenzoate (25m):](image)

5,7-Dimethoxychroman-3-yl 4-(Benzyloxy)-3-methoxybenzoate (25m): A solution of 24 (20 mg, 0.1 mmol), in dichloromethane (0.5 mL) was added to a stirred solution of 4-(benzyloxy)-3-methoxybenzoic acid (49 mg, 0.19 mmol), N,N’-dicyclohexylcarbodiimide (39 mg, 0.19 mmol), and 4-dimethylaminopyridine (12 mg, 0.1 mmol) under argon at 0 °C. The resulting solution was stirred for 6 h at rt and then filtered. The filtrate was diluted with dichloromethane (5 mL) and washed with 0.5 N HCl (2 × 4 mL) and then with saturated sodium bicarbonate (2 × 4 mL) solution. The combined organic layers were washed with saturated sodium chloride solution (4 mL), dried
over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:5 EtOAc/hexanes) to afford 25m (34 mg, 81%) as an amorphous pale yellow solid: IR (KBr) νmax 2921, 2848, 1699, 1618, 1510, 1454, 1290, 1203, 1058 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₂₆H₂₇O₇, 451.1757, found 451.1668.

5,7-Dimethoxychroman-3-yl 3-Hydroxybenzoate (26a): Palladium/carbon (10%) and 25i (18 mg, 0.03 mmol) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small plug of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give 26a (8.8 mg, 92.6%) as a colorless oil: ¹H NMR (500 MHz, CD₃CN) δ 7.41 (ddd, J = 7.7, 1.6, 1.0 Hz, 1H), 7.33 (dd, J = 2.6, 1.6 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.24–7.16 (m, 1H), 7.03 (ddd, J = 8.1, 2.6, 1.1 Hz, 1H), 6.14 (d, J = 2.3 Hz, 1H), 6.07 (d, J = 2.3 Hz, 1H), 5.52–5.36 (m, 1H), 4.30 (ddd, J = 11.7, 4.2, 2.1 Hz, 1H), 4.15 (ddt, J = 11.6, 1.9, 1.0 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 2.92 (ddd, J = 17.4, 5.2, 1.1 Hz, 1H), 2.86–2.71 (m, 1H). ¹³C NMR (125 MHz, CD₃CN) δ 166.5, 160.7, 159.9, 157.9, 156.1, 132.6, 130.8, 122.5, 121.9, 118.3, 117.0, 94.2, 92.4, 67.4, 67.0, 56.2, 55.9, 25.1. IR (KBr) νmax 3335, 2918, 1701, 1683, 1558, 15036, 1458, 1203, 1145, cm⁻¹. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₈H₁₉O₆, 331.1182, found 331.1188.
5,7-Dimethoxychroman-3-y1 4-Hydroxybenzoate (26b): Palladium/carbon (10%) and 25j (12 mg, 0.028 mmol) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:3 EtOAc/hexanes) to give the 26b (9 mg, 90%) as a colorless oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 9.16 (s, 1H), 7.88–7.80 (m, 2H), 6.94–6.86 (m, 2H), 6.14 (d, J = 2.3 Hz, 1H), 6.05 (d, J = 2.3 Hz, 1H), 5.49–5.36 (m, 1H), 4.29 (ddd, J = 11.5, 4.6, 2.0 Hz, 1H), 4.24–4.14 (m, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.97 (ddd, J = 17.3, 5.3, 1.1 Hz, 1H), 2.80 (ddd, J = 17.3, 4.0, 1.9 Hz, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 166.1, 162.7, 160.7, 159.8, 156.1, 132.5 (2), 122.4, 116.0 (2), 101.2, 94.2, 92.2, 67.4, 66.4, 55.8, 55.5, 25.5. IR (KBr) νₘₐₓ 3365, 2956, 2852, 1701, 1596, 1456, 1214, 1145, 1051, 767 cm⁻¹; HRMS (ESI⁺) m/z [M + Na⁺] calcd for C₁₈H₁₈NaO₆, 353.1001, found 353.0991.

5,7-Dimethoxychroman-3-y1 3,5-Dihydroxybenzoate (26c): Palladium/carbon (10%) and 25k (12 mg, 0.028 mmol) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO₂, 1:1 EtOAc/hexanes) to give 26c (12 mg, 91%) as a colorless oil: ¹H NMR (500 MHz, (CD₃)₂CO) δ 8.58 (s, 2H), 6.96 (d, J = 2.3 Hz, 2H), 6.56 (t, J = 2.3 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 6.05 (d, J = 2.3 Hz, 1H), 5.43 (ddt, J = 5.5, 4.1, 1.9 Hz, 1H), 4.31 (ddd, J = 11.6, 4.3, 2.1 Hz, 1H), 4.19 (ddt, J = 11.7, 1.9, 1.0 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.97 (ddt, J = 17.6, 5.4, 1.2 Hz, 1H), 2.82–2.74 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ 166.2, 160.7, 159.8 (2), 159.4, 156.1, 133.1, 108.7, 108.1, 101.1, 94.2,
92.2, 67.3, 66.8, 55.8, 55.5 (2), 25.3. IR (KBr) ν_{max} 3365, 3330, 2956, 2850, 1697, 1596, 1456, 1361, 1145, 1054, 1004, 769, cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{18}$H$_{19}$O$_7$, 347.1131, found 347.1134.

5,7-Dimethoxychroman-3-yl 3,4-Dihydroxybenzoate (26d): Palladium/carbon (10%) and 25l (18 mg, 0.034 mmol) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h under a hydrogen atmosphere. The suspension was filtered through a small pad of celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:3 EtOAc/hexanes) to give the desired product 26d (11 mg, 92%) as a colorless oil: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 7.45 (d, $J = 2.1$ Hz, 1H), 7.41 (dd, $J = 8.3$, 2.0 Hz, 1H), 6.88 (d, $J = 8.3$ Hz, 1H), 6.15 (d, $J = 2.3$ Hz, 1H), 6.10–6.04 (m, 1H), 5.49–5.38 (m, 1H), 4.29 (ddd, $J = 11.5$, 4.4, 2.0 Hz, 1H), 4.22–4.14 (m, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 2.97 (ddd, $J = 17.4$, 5.5, 1.2 Hz, 1H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 159.9, 160.2 (2), 158.1 (2), 123.6 (2), 122.85, 117.21, 115.9, 101.3, 94.3, 92.3, 67.47, 66.4, 55.9, 55.6, 25.5; IR (KBr) ν_{max} 3381, 3321, 2924, 2839, 1698, 16120, 1510, 1456, 1203, 1056, 728 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{18}$H$_{19}$O$_7$, 347.1131, found 347.1125:

5,7-Dimethoxychroman-3-yl 4-Hydroxy-3-methoxybenzoate (26e): Palladium/carbon (10%) and 25m (24 mg, 0.053 mmol) were suspended in tetrahydrofuran (2 mL) and stirred for 18 h
under a hydrogen atmosphere. The suspension was filtered through a small pad of Celite. The eluent was concentrated and the residue purified by flash chromatography (SiO$_2$, 1:3 EtOAc/hexanes) to give the desired product 26e (17 mg, 91%) as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.60 (dd, $J = 8.4$, 1.9 Hz, 1H), 7.52 (d, $J = 1.9$ Hz, 1H), 6.90 (d, $J = 8.3$ Hz, 1H), 6.10 (s, 2H), 6.07 (s, 1H), 5.47 (dq, $J = 7.5$, 2.6 Hz, 1H), 4.28 (ddd, $J = 11.3$, 5.1, 1.8 Hz, 1H), 4.24–4.16 (m, 1H), 3.92 (s, 3H), 3.78 (d, $J = 3.5$ Hz, 6H), 3.01 (ddd, $J = 17.5$, 5.6, 1.2 Hz, 1H), 2.85 (ddd, $J = 17.3$, 4.6, 1.7 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 165.8, 159.6, 158.2, 155.2, 150.2, 146.1, 124.5, 122.1, 114, 111.8, 100.6, 93.1, 91.7, 66.9, 65.8, 56.1, 55.4, 55.3, 24.9; IR (KBr) ν_{max} 3385, 2939, 2841, 1699, 1612, 1508, 1214, 1145, 729 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{21}$O$_7$, 361.1287, found 361.1278.

3-Azido-5,7-dimethoxycroman (27): A solution of 24 (75, 0.36 mmol) and triphenylphosphine (161 mg, 0.61) in tetrahydrofuran (2.5 mL) at 0 °C was treated with diisopropyl azodicarboxylate (120 μL, 0.61 mmol) and diphenylphosphoryl azide (130 μL, 0.61 mmol). The resulting mixture was stirred for 15 h at 25 °C before the solvent was removed. The residue was purified by flash chromatography (SiO$_2$, 1:20 EtOAc/hexanes) to give 27 (75 mg, 83.9%) as a light yellow oil: 1H NMR (500 MHz, CDCl$_3$) δ 6.09 (d, $J = 2.4$ Hz, 1H), 6.06 (d, $J = 2.4$ Hz, 1H), 4.15 (ddd, $J = 10.8$, 2.6, 1.3 Hz, 1H), 4.02 (ddd, $J = 10.9$, 6.4, 1.5 Hz, 1H), 3.96 (qd, $J = 6.0$, 2.6 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 2.95 (ddd, $J = 16.7$, 5.5, 1.4 Hz, 1H), 2.71 (ddd, $J = 16.7$, 6.0, 1.5 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$) δ 159.0, 157.9, 154.1, 99.3, 92.3, 91.2, 66.3, 54.7, 54.6, 52.4, 23.8; IR (KBr) ν_{max} 2931, 2847, 2113, 1558, 1456, 1276,811 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{11}$H$_{14}$N$_3$O$_3$, 236.1035, found 236.1028.
5,7-Dimethoxychroman-3-amine (28): To a solution of 27 and triphenylphosphine in THF (3 mL) was added water (22 μL, 0.93 mmol) and the solution stirred for 30 h at rt. The solvent was removed and the residue purified via flash chromatography (silica gel 3:97 MeOH/CHCl₃) to give 28 (55 mg, 83%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 6.23–5.87 (m, 2H), 4.09 (ddd, J = 10.5, 2.8, 1.5 Hz, 1H), 3.84–3.79 (m, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.34 (tdd, J = 6.8, 5.5, 2.9 Hz, 1H), 2.88 (ddd, J = 16.5, 5.5, 1.5 Hz, 1H), 2.36 (ddd, J = 16.4, 6.6, 1.2 Hz, 1H), 2.04 (d, J = 5.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 159.1, 155.3, 101.7, 93.2, 91.8, 71.3, 55.6, 55.5, 44.0, 28.9; HRMS (ESI+) m/z [M + H⁺] calcd for C₁₁H₁₆NO₃, 210.1130, found 210.1133.

N-(5,7-Dimethoxychroman-3-yl)benzamide (29a): Benzoic acid (15 mg, 0.12 mmol) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (19 mg, 0.14 mmol) were added to a solution of alcohol 28 (12 mg, 0.057 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL). The resulting mixture was stirred for 16 h, and then the reaction mixture was diluted with dichloromethane (2 mL). The organic phase was washed with saturated sodium bicarbonate (2 × 2 mL) and saturated sodium chloride solution (3 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 Hexanes/EtOAc) to give 29a (12 mg, 81%) as a pale yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 7.78–7.66 (m, 2H), 7.54–7.46 (m, 1H), 7.41 (tt, J = 6.6, 1.4 Hz, 2H), 6.39 (d, J = 8.0 Hz, 1H), 6.17–5.90 (m, 2H), 4.70 (ddtd, J = 7.5, 5.5, 3.5, 1.8 Hz, 1H), 4.26 (ddd, J = 10.9, 3.8,
2.1 Hz, 1H), 4.15 (dd, J = 10.9, 1.8 Hz, 1H), 3.78 (d, J = 1.1 Hz, 6H), 2.91 (dd, J = 17.2, 5.7 Hz, 1H), 2.78 (ddd, J = 17.1, 3.2, 2.0 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 167.4, 159.9, 159.4, 155.3, 134.5, 131.8, 128.7 (2), 127.2 (2), 101.0, 93.5, 92.2, 68.3, 55.6, 55.6, 42.6, 25.6; IR (KBr) ν_{max} 3307, 2925, 2850, 1645, 1635, 1622, 1539, 1521, 1145, 1122, 813, 756 cm$^{-1}$; HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{18}$H$_{20}$NO$_4$, 314.1392, found 314.1391.

N-(5,7-Dimethoxychroman-3-yl)-3-methoxybenzamide (29b): 3-Methoxybenzoic acid (15 mg, 0.12 mmol) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (19 mg, 0.14 mmol) were added to a solution of alcohol 28 (12 mg, 0.057 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL). The resulting mixture was stirred for 16 h at rt, and then the reaction mixture was diluted with dichloromethane (2 mL). The organic phase was washed with saturated sodium bicarbonate (2 × 2 mL) and saturated sodium chloride solution (3 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:2 Hexanes/EtOAc) to give 29b (12 mg, 70%) as a pale yellow oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.26 (dd, J = 2.6, 1.6 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 7.14 (dt, J = 7.7, 1.3 Hz, 1H), 6.94 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 6.30 (d, J = 8.0 Hz, 1H), 6.02 (d, J = 2.4 Hz, 1H), 6.01 (d, J = 2.4 Hz, 1H), 4.60 (dt, J = 7.7, 3.8, 1.8 Hz, 1H), 4.17 (ddd, J = 10.9, 3.9, 2.1 Hz, 1H), 4.11–4.01 (m, 1H), 3.77 (s, 3H), 3.70 (s, 6H), 2.83 (dd, J = 17.1, 5.7 Hz, 1H), 2.69 (ddd, J = 17.2, 3.4, 2.1 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 167.3, 160.0, 159.9, 159.4, 155.3, 136.0, 129.7, 119.0, 117.9, 112.7, 100.9, 93.5, 92.2, 68.2, 55.7, 55.6 (2), 42.6, 25.5; IR (KBr) ν_{max} 3363,
2921, 2850, 1712, 1681, 1498, 1454, 1272, 1145, 771 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₁₉H₂₂NO₅, 344.1498, found 344.1498.

\[\text{N-(5,7-Dimethoxychroman-3-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (29c):} \]

3',6-Dimethoxy-[1,1'-biphenyl]-3-carboxylic acid (25 mg, 0.1 mmol) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (19 mg, 0.12 mmol) were added to a solution of alcohol 28 (10 mg, 0.048 mmol) in dichloromethane (0.7 mL) with pyridine (0.3 mL). The resulting mixture was stirred for 16 h, and then the reaction mixture was diluted with dichloromethane (2 mL) and organic phase was washed with saturated sodium bicarbonate (2 × 2 mL) and saturated sodium chloride solution (2 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 Hexanes/EtOAc) to give 29c (19.3 mg, 90%) as an amorphous light yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, \(J = 8.6, 2.4 \) Hz, 1H), 7.67 (d, \(J = 2.4 \) Hz, 1H), 7.39–7.30 (m, 1H), 7.08 (dt, \(J = 7.7, 1.1 \) Hz, 1H), 7.04 (dd, \(J = 2.6, 1.6 \) Hz, 1H), 6.98 (d, \(J = 8.6 \) Hz, 1H), 6.91 (dd, \(J = 8.3, 2.6, 1.0 \) Hz, 1H), 6.32 (d, \(J = 7.9 \) Hz, 1H), 6.09 (d, \(J = 2.4 \) Hz, 1H), 6.08 (d, \(J = 2.4 \) Hz, 1H), 4.68 (ddt, \(J = 7.8, 3.9, 1.9 \) Hz, 1H), 4.24 (ddd, \(J = 10.8, 4.0, 2.0 \) Hz, 1H), 4.15 (dd, \(J = 10.7, 1.9 \) Hz, 1H), 3.84 (s, 6H), 3.77 (s, 6H), 2.92 (dd, \(J = 17.1, 5.7 \) Hz, 1H), 2.76 (ddd, \(J = 17.2, 3.5, 1.9 \) Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 159.8, 159.5, 159.3 (2), 155.3, 139.1, 130.7, 129.8, 129.3, 128.4, 126.9, 122.2, 115.4, 113.1, 110.9, 101.1, 93.5, 92.2, 68.3, 56.0, 55.6, 55.6, 55.5, 42.6, 25.6; IR (KBr) \(\nu_{\text{max}} \) 3315, 2931 1620, 1596, 1531, 1498, 1249, 1201, 1249, 1215, 1145, 1051, 752 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₆H₂₇NaNO₆, 472.1736, found 472.1738.
4-((5,7-Dimethoxychroman-3-yl)carbamoyl)-2-(3-methylbut-2-en-1-yl)phenyl Acetate (29d):

4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (47 mg, 0.19 mmol) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (37 mg, 0.24 mmol) were added to a solution of alcohol 28 (20 mg, 0.096 mmol), in dichloromethane (1.4 mL) with pyridine (0.6 mL). The resulting mixture was stirred for 16 h and then the reaction mixture was diluted with dichloromethane (4 mL). The organic phase was washed with saturated NaHCO₃ (2 × 4 mL) and saturated sodium chloride solution (4 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 Hexanes/EtOAc) to give 29d (33 mg, 77%) as an amorphous light yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 2.2 Hz, 1H), 7.54 (dd, J = 8.3, 2.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 6.34 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 6.10 (d, J = 2.3 Hz, 1H), 5.20 (dddd, J = 7.2, 5.8, 2.9, 1.4 Hz, 1H), 4.68 (dt, J = 7.6, 3.6, 1.7 Hz, 1H), 4.26 (ddd, J = 10.9, 3.8, 2.1 Hz, 1H), 4.15 (dd, J = 10.8, 1.8 Hz, 1H), 3.80 (s, 6H), 3.27 (d, J = 7.2 Hz, 2H), 2.91 (dd, J = 17.1, 5.6 Hz, 1H), 2.86–2.71 (m, 1H), 2.33 (s, 3H), 1.74 (s, 3H), 1.72–1.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 166.9, 159.9, 159.4, 155.3, 151.5, 134.4, 134.0, 132.5, 129.6, 125.7, 122.6, 121.1, 100.9, 93.5, 92.2, 68.2, 55.6, 55.6, 42.6, 29.0, 25.9, 25.5, 21.1, 18.1; IR (KBr) νmax 3325, 2932 1623, 1602, 1596, 1531, 1496, 1249, 1201, 1251, 1145, 749 cm⁻¹; HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₅H₂₉NaNO₆, 462.1893, found 462.1872
5,7-Dimethoxy-2-phenylchroman-3-yl 4-Acetoxy-3-(3-methylbut-2-en-1-yl)benzoate (30): A solution of 11a (20 mg, 0.07 mmol) in dichloromethane (0.5 mL) was added to a solution of 4-acetoxy-3-(3-methylbut-2-en-1-yl)benzoic acid (36 mg, 0.14 mmol), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (27 mg, 0.14 mmol) and 4-dimethylaminopyridine (25 mg, 0.21 mmol) in dichloromethane (1 mL) at 0 °C. The resulting mixture was stirred for 6 h at rt, diluted with dichloromethane (5 mL) and washed saturated sodium bicarbonate solution (2 × 4 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent removed. The residue was purified via flash chromatography (SiO₂, 1:7 EtOAc/hexanes) to give the desired ester 30 (21 mg, 58.1 %) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 8.4, 2.2 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.28 (m, 1H), 7.04 (d, J = 8.4 Hz, 1H), 6.22 (d, J = 2.3 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 5.54 (td, J = 6.5, 5.2 Hz, 1H), 5.27 (d, J = 6.4 Hz, 1H), 5.19 (tdt, J = 7.3, 2.9, 1.5 Hz, 1H), 3.79 (m, 6H), 3.23 (d, J = 7.3 Hz, 2H), 3.00 (dd, J = 16.8, 5.2 Hz, 1H), 2.81 (ddd, J = 16.7, 6.5, 0.9 Hz, 1H), 2.32 (s, 3H), 1.75 (q, J = 1.3 Hz, 3H), 1.68 (d, J = 1.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 165.3, 160.0, 158.8, 155.0, 152.8, 138.2, 134.1, 134.0, 132.0, 128.9 (2), 128.8, 128.5, 128.0, 126.6 (2), 122.5, 121.0, 100.8, 93.2, 92.0, 78.7, 70.3, 55.6, 55.6, 28.8, 25.9, 24.0, 21.1, 18.0. IR (KBr) νmax 2929, 1762, 1713, 1593, 1369, 1201, 1118, 816 cm⁻¹; HRMS (ESI+) m/z [M + H⁺] calcd for C₃₁H₃₃O₇, 517.2226, found 517.2219.
II.9. References

57. Chandra, S.; De Mejia Gonzalez, E. Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J. Agric. Food. Chem. 2004, 52, 3583-3589.

60. Dong, Z.; Ma, W.; Huang, C.; Yang, C. S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997, 57, 4414-4419.

82. Li, L.; Chan, T. H. Enantioselective synthesis of epigallocatechin-3-gallate (EGCG), the active polyphenol component from green tea. *Org. Lett.* **2001**, *3*, 739-741.

Chapter III

The Development of Grp94-Selective Inhibitors

III.1. Introduction

Hsp90 is responsible for the conformational maturation of more than 200 substrates (client proteins).1, 2 Many of which are associated with cell signaling, making it a highly sought after target for the development of antitumor agents, as multiple signaling nodes can be disrupted simultaneously through Hsp90 inhibition.3, 4 There are four Hsp90 isoforms: Hsp90\alpha and Hsp90\beta are located in the cytosol, Grp94 resides in the endoplasmic reticulum, and Trap1 is localized to mitochondria.5, 6 Each of these isoforms forms a complex with various co-chaperones and partner proteins to fold individual substrate proteins.7-10 There are currently 17 molecules undergoing clinical trials that bind the Hsp90 N-terminal ATP-binding site. Unfortunately, all of these molecules are pan-inhibitors and target all four Hsp90 isoforms with similar affinity.11-13 Pan-inhibitory activity of current clinical candidates appears detrimental, as results from clinical trials have reported hepatotoxicity, cardiotoxicity, ocular toxicity, bone metastasis and peripheral neuropathy amongst other side effects.14-18

An additional problem associated with all pan-inhibitors of the Hsp90 N-terminal ATP-binding site is that they induce Hsp70 and Hsp90 expression (pro-survival heat shock response) at the same concentrations required for client protein degradation, making both scheduling and dosing of these drugs extremely difficult.12, 19-21 Induction of the pro-survival heat shock response by pan-inhibitors requires the administration of drugs at higher doses and with an increased frequency, which pushes the patient towards toward the maximum tolerated dose, resulting in toxicity.20 Consequently, alternative methods to inhibit the Hsp90 protein folding machinery are needed that do not induce this pro-survival heat shock response.22-24 Selective inhibition of
individual isoforms represents one approach to overcome the detriments associated with \textit{pan-}
-inhibition of all Hsp90’s.25-28

The expression of Hsp90 isoforms can vary among cancers, suggesting an inherent
dependence of cancer upon individual isoforms.29-38 In addition, Hsp90 isoforms exhibit specificity
for client proteins substrates via interactions with co-chaperones, which suggests that Hsp90
isoforms should be targeted individually.32, 39, 40 Some isoform-specific clients have been identified
and therefore, isoform-selective Hsp90 inhibitors are likely to provide a therapeutic opportunity
that minimizes on-target toxicity by limiting the number of clients affected via \textit{pan-}Hsp90
inhibition.28, 41-44 Therefore, selective-inhibitors of individual isoforms are highly sought after and
their development represents a new paradigm in Hsp90 research. This chapter focuses on the
development of Grp94-selective inhibitors.

\textbf{III.2. Grp94}

Glucose-regulated protein 94 (Grp94) is encoded by the HSP90B1 gene and is located in
the lumen of the endoplasmic reticulum. Grp94 is not expressed in unicellular organisms and is
ubiquitously expressed in human cells.6, 45, 46 Grp94 is responsible for the maturation and
degradation of a client proteins associated with cell-to-cell signaling and immunity (innate and
adaptive).47-50 In addition, Grp94 plays a key role in cellular adhesion and migration through
maintaining cell polarity and the intracellular-trafficking of integrins.50-52 Unlike the cytosolic
isoforms, Grp94 is not overexpressed via the heat shock response, it is upregulated following
induction of ER stress (calcium imbalance, hypoxia, redox stress).53 Grp94 is essential for
embryonic development and stem cell maintenance as observed by siRNA knockdown studies.54

Grp94 is responsible for maturation and trafficking of a restricted number of proteins as
shown in Table 1.47 These client proteins include, Toll-like receptors (1, 2, 4, and 9), IGF-I, IGF-
II, integrins, and Her2. Many of these client proteins are implicated in various diseases, including liver cancer, multiple myeloma, rheumatoid arthritis and glaucoma.55-58 In fact, small molecule inhibitors of Grp94 are therapeutically useful for the treatment of such diseases.27, 55, 56, 58 As stated earlier, Grp94 is only essential during embryonic development, and therefore, its inhibition represents a non-toxic therapeutic application.

Grp94 is overexpressed in some cancers and is generally associated with more aggressive tumor growth and poor prognosis.36, 59, 60 Recently, Hua and co-workers showed that Grp94 is required for the growth and survival of multiple myeloma cells.61 Inhibition of Grp94, by a Grp94-selective inhibitor, WS-13, resulted in decreased cell proliferation. This response is mediated by LRP6, a Grp94 client, which is a co-receptor for the Wnt receptor, frizzled. Grp94 inhibition limits the LRP6 expression at the cell surface which blocks the Wnt/\(\beta\)-catenin signaling pathway, and results in decreased cell proliferation. Hence, Grp94 inhibition decreases cell proliferation, and induces apoptosis. Another client of Grp94 is Her2, which is a receptor tyrosine kinase and an oncogenic protein. Recent studies by Patel and co-workers showed that siRNA knockdown of Grp94 in Her2 overexpressing SkBr3 cells resulted in decreased expression of Her2 at the cell surface.62 Additionally, Grp94 inhibitors successfully decreased the levels of Her2 in SkBr3 cell lysates.

Grp94’s clientele includes some integrins (\(\alpha_2\), \(\alpha_4\), \(\beta_7\), \(\alpha_L\), \(\beta_2\)), which play a key role in cell adhesion and migration.47 Grp94 is responsible for the maturation as well as intracellular trafficking of these proteins. Grp94 knockdown or pharmacological inhibition downregulates the expression of integrins, which results in decreased migration.27, 52 Hence, Grp94 inhibitors represent a non-toxic approach for the treatment of cancer metastasis.
Table 9. Grp94 client proteins. (IP: immunoprecipitation, KO: Knock-out)

<table>
<thead>
<tr>
<th>Grp94 Client Proteins</th>
<th>IP</th>
<th>Grp94KO/ RNAi</th>
<th>Grp94 Drug Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMTS9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Apolipoprotein B</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartilage</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>EGF-R</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Erb2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golgi apparatus casein Kinase</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ig chains</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12p80</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Insulin receptor IRS-1</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Integrins CD49d, α4, β7, αL, β2</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>MHC class II</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bile-salt dependent lipase</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thrombospondin</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyrogblobulin</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR1, TLR2, TLR4</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>TLR9</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>WFS1</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-1 antitrypsin</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein C</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV glycoprotein</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grp94 inhibitors have also demonstrated efficacy in *in vivo* models of glaucoma, a disease caused by increased intraocular pressure caused by mutant myocilln aggregates.27, 55, 56 Mutations
in myocilin cause it to accumulate in endoplasmic reticulum (ER) of trabecular meshwork cells leading to dysregulation of humor outflow, which results in elevated intraocular pressure and toxicity. Grp94 recognizes mutant myocilin aggregates as abnormal, but fails to promote their clearance via ERAD (Endoplasmic reticulum associated protein degradation). However, disruption of the Grp94-myocilin complex through knockdown or pharmacological inhibition results in the clearance of myocilin aggregates through autophagic mechanism. Grp94 inhibitors have been shown to downregulate the levels of various myocilin mutants that result in primary open angle glaucoma.27, 56

III.3. Ligand Occupation of Grp94 N-Terminal ATP-Binding Pocket

The N-terminal ATP binding site is highly identical amongst Hsp90 isoforms (Figure 20a).63, 64 However, one key difference that is present in Grp94 and not in other Hsp90 isoforms is the insertion of 5-amino acid sequence into the primary sequence (182–186, Figure 20, highlighted in red). While this sequence does not comprise the binding pocket, its effect on the tertiary structure of Grp94 is significant. Grp94 adopts different conformations upon ligand binding, these conformations result in additional sub-pockets within the N-terminus (vide infra), which can be exploited for the development of Grp94-selective inhibitors.65, 66

III.3.1 Binding of Geldanamycin to Grp94

Geldanamycin (GDA), a pan-Hsp90 inhibitor that binds to both Hsp90α and Grp94 in similar binding modes (Figure 21) manifests interactions that are conserved amongst both isoforms.66 The C-7 carbamate makes a hydrogen bond with Asp 149 (Asp93 in Hsp90α), while one oxygen of the quinone ring interacts with Asp110 (Asp54 in Hsp90α) and Lys 114 (Lys58 in Hsp90α). Additionally, GDA also provides favorable hydrophobic interactions with multiple residues including Met154, Leu163, Val197, and Phe199. The quinone binds in a cis-amide
conformation to both Grp94 and Hsp90α. The binding affinity of GDA for Grp94 (170 nM) is higher than for Hsp90α (~1 μM); this difference has not been rationalized.

III.3.2 Binding of NECA to Grp94

A broad spectrum adenosine A2 receptor agonist, 5’-Nethylcarboxamidoadenosine (NECA) was the first Grp94-selective inhibitor identified (Figure22). In order to understand NECA’s interactions with Grp94, Gewirth and co-workers solved the co-crystal structure of NECA bound to Grp94. As expected, the adenine moiety of NECA exhibited similar interactions with Grp94 as observed in the ATP/Grp94 complex. Overlay of this co-crystal structure with
Hsp90α provided an explanation for the observed selectivity over Hsp90α. As mentioned previously, the 5-amino acid insertion alters the tertiary structure of Grp94, which leads to repositioning of Ala167 and Lys168 within the binding pocket. These reorganizations induce a secondary binding pocket that is not present in Hsp90α. As shown in Figure 22b, the 5’-ethyl moiety of NECA projects into this region and make hydrophobic interactions with Val197 and
Tyr200. In Hsp90α, the 5’ ethyl of NECA orients towards Gly121 which prevents NECA from binding Hsp90α.

Figure 22. Binding of NECA to Grp94. (a) Structure of NECA; (b) NECA bound to Grp94 (PDB: 1QY5); putative position of Lys and Ala (represented as lines for Hsp90α) is labeled in black.

Figure 23. Rationale for observed selectivity of NECA for Grp94. (a) Co-crystal structure of NECA bound to Grp94 (PDB:1QY5); (b) NECA modeled in Hsp90α-binding pocket (PDB: 2FXS), steric interaction between Gly121 and ethyl group of NECA is circled.
III.3.3. Binding of Radamide Grp94

Co-crystallization of radamide with Hsp90 demonstrated radamide to exist in a trans-amide conformation within the binding pocket (Figure 24a). However, the co-crystal structure of radamide bound to Grp94 revealed the presence of two distinct conformations within the binding pocket (50% occupancy of each): the conformations contained a cis-amide or a trans-amide orientation (Figure 24b). The cis-amide conformation of radamide orients the quinone moiety directly towards the exclusive secondary binding pocket present in Grp94, and provides opportunity to develop Grp94-selective inhibitors.

III.4. Development of Grp94-Selective Inhibitors

Prior studies in the Blagg laboratory have established that the quinone moiety is dispensable for Grp94 inhibition, which led to the development of compound 33 (Grp94 \(K_d = 20 \mu M\)). Structure-activity relationship studies were conducted on the phenyl ring. A summary of these prior studies is provided in Figure 25. Chloride substituents at the 2- and the 3-position were advantageous, and a bromide at the 4-position proved most beneficial. The 4-bromophenyl amide
was the best compound resulting from this series, which manifested an apparent K_d of 1.5 μM against Grp94.

Simultaneous studies in the Blagg laboratory led to the development of the first rationally designed Grp94-selective inhibitor, BnIm.25 BnIm was developed by incorporation of a bioisosteric replacement (imidazole) of the cis-amide of radamide (Figure 25). Grp94-selective inhibition was determined in cells by a decrease in Grp94-mediated Toll-like receptor trafficking to the cell surface and the lack of cytosolic Hsp90 client protein degradation. BnIm manifested apparent K_d of 1.14 μM against Grp94. BnIm was co-crystallized with Grp94 and analysis of its co-crystal structure provided useful information about its binding interactions. Further development of BnIm analogues was pursued in parallel with radamide analogues.

III.4.1 Development of Radamide Analogue\`es as Grp94 Inhibitors

Based on prior studies, the development of radamide and BnIm analogues was pursued for selective Grp94 inhibition. Additionally, a resorcinol-isoindoline scaffold was also sought. In an
effort to further improve Grp94-selective binding, tertiary amides were proposed (Figure 27), which were expected to favor the cis-amide conformation by making the cis-conformation lower in energy, and therefore providing Grp94-selectivity. In a second series of analogues, heterocyclic anilines were introduced in lieu of the phenyl ring. Due to the π-rich nature of the secondary binding pocket, replacement of the phenyl ring with heterocycles was hypothesized to improve $\pi-\pi$ interactions and thereby improve affinity for Grp94. Additionally, electron withdrawing heterocycles were thought to enhance isomerization to the cis-amide conformation.

III.4.1.1. Synthesis of Radamide Analogues

The synthesis of proposed analogues started with previously reported 34. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI) mediated coupling of 34, with requisite anilines (Figure 27) gave the amide products, and subsequent removal of tert-butyldimethylsilyl ethers
utilizing tetra-n-butylammonium fluoride (TBAF) afforded the desired analogues, 35–50 (Scheme-6)

III.4.1.2. Evaluation of Radamide Analogues

Figure 28. Evaluation of radamide analogues.
Once prepared, compounds 35–50 were evaluated via a fluorescence polarization assay at 25 μM. This fluorescence polarization assay is a competitive binding assay that utilizes FITC-labeled geldenamycin as a tracer. The compounds of interest were evaluated for their ability to displace this tracer (FITC-GDA). The bound tracer is normalized to a DMSO control and is inversely proportional to the affinity of an inhibitor. For comparison, BnIm and compound 33 were used as positive controls. As shown in Figure 28, the tertiary amide containing compounds 35–37 did not exhibit selectivity. Introduction of 2-pyridine, 1,2-diazene, 1,6-diazene, 3,5-diazene, thiazole, 1,2,4-thiadiazole, and 1,3,4-thidiazole were beneficial, as these compounds exhibited improved binding affinity for Grp94 at 25 μM. The 2-pyridine containing analogue (38) was the best amongst this series and chosen for further development. As described earlier, halogen substitutions were beneficial on phenyl amide 33 and therefore, chloride and bromide substituents were incorporated onto the pyridine ring. Evaluation of compounds 45–50 provided 49, which manifested affinity similar to 38 and provided a substantial improvement in selectivity for Grp94 versus Hsp90α.

III.4.2. The Development of BnIm Analogues as Grp94 Inhibitors

The binding of BnIm to Grp94 induced a conformational change in Grp94 compared to radamide bound Grp94. As shown in Figure 29a, BnIm bound to Grp94 shifts the N-terminal “lid” to a partially closed conformation (green), which contrasts with the open conformation that is observed when radamide bound Grp94 (colored red). This closed “lid” orientation resulted in repositioning of key amino acid residues (Phe195, Val 197, Phe199, Tyr200, Trp223) (Figure 29b). As a result of this conformational change, the phenyl side chain of BnIm projected toward Trp223. Additionally, the resorcinol moiety of BnIm was oriented 180° compared to radamide. The phenyl ring of BnIm produced multiple hydrophobic contacts with Trp223, Phe197, Val197. When
evaluating the co-crystal structures, it was envisioned that substitution at the 4-position would be tolerated and would produce improved affinity. Additionally, replacement of the phenyl side chain with heterocycles could also enhance $\pi-\pi$ interactions between the ligand and the protein due to the π-rich nature of this binding region (Scheme 7).

The proposed compounds were synthesized by use of a multicomponent reaction. Aldehyde (51) was prepared following a reported procedure, which upon treatment with the requisite benzyl amines, ammonium bicarbonate, and glyoxal produced the corresponding imidazole. Cleavage of tert-butyldimethylsilyl ethers in presence of tetra-n-butylammonium fluoride gave the desired products, 52–60 (Scheme 7).

At first, compounds 52–60 were evaluated at a 25 μM concentration in a fluorescence polarization assay. As shown in Figure 30, incorporation of the 4-methyl substituent significantly increased selectivity for Grp94 and maintained affinity compared to BnIm. However, the inclusion
of extended alkyl chains were not tolerated and resulted in decreased affinity due to the steric clashes with the protein. Compound 52 was chosen from the 25 μM screening to determine its apparent K_d against Hsp90α and Grp94, which manifested an apparent K_d of 730 nM and 34-fold selectivity for Grp94. Replacement of the phenyl side chain with heterocycles was more beneficial. Compounds 57 and 58 improved affinities for Grp94 and maintained selectivity. Molecular modeling studies suggested that the selectivity of 57 could be improved by the inclusion of a methyl group onto the 5-position of a furan ring. The overlay of energy minimized structures, 52 and 57 indicated the 5-position of the furan to aligned similarly to the 4-position of phenyl ring.
within the Grp94-binding pocket. Evaluation of the 5-methylfuran analogue confirmed this hypothesis, as 60 manifested ~41-fold selectivity for Grp94.

Table 10. Apparent K_d of BnIm analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_d Grp94 (μM)</th>
<th>K_d Hsp90α (μM)</th>
<th>Fold-selectivity for Grp94</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnIm</td>
<td>1.14 ± 0.1</td>
<td>13.1 ± 1.1</td>
<td>12</td>
</tr>
<tr>
<td>52</td>
<td>0.73 ± 0.1</td>
<td>25.2 ± 2.1</td>
<td>34</td>
</tr>
<tr>
<td>56</td>
<td>1.5 ± 0.1</td>
<td>3.77 ± 0.4</td>
<td>3</td>
</tr>
<tr>
<td>57</td>
<td>0.55 ± 0.06</td>
<td>5.91 ± 0.88</td>
<td>11</td>
</tr>
<tr>
<td>58</td>
<td>0.47 ± 0.07</td>
<td>3.92 ± 0.51</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>2.14 ± 0.22</td>
<td>6.54 ± 0.86</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>0.65 ± 0.1</td>
<td>26.6 ± 2.3</td>
<td>41</td>
</tr>
</tbody>
</table>

Figure 30. Evaluation of BnIm analogues.
III.4.3. Development of Resorcinol-Isoindoline Class of Grp94 Inhibitors

As previously mentioned, the co-crystal structure of BnIm demonstrated a re-orientation of the protein, as well as a 180° rotation of the resorcinol ring. An overlay of BnIm’s co-crystal structures with Grp94 and Hsp90α revealed the conformational change, which formed an exclusive sub-pocket near the ester of BnIm as shown in Figure 31. Based on these observations, it was hypothesized that ligands targeting this region of the Grp94 binding pocket would provide selectivity for Grp94 versus other Hsp90 isoforms. Therefore, in pursuit of more efficacious Grp94 inhibitors, modifications to the resorcinol ring were pursued.

Modifications at the 5-position of the resorcinol ring of BnIm were deemed difficult, and consequently an alternative scaffold was pursued to rapidly access analogues that bind to this unique sub-pocket. After careful consideration, the resorcinol-isooindoline compound 61 was chosen for the development of 5-resorcinol analogues. Compound 61 is derived from a known Hsp90 inhibitor, AT13387 (Figure 32a) and was synthesized following literature procedure.72, 73

For selective Grp94-inhibiton, the incorporation of alkyl esters and aryl groups onto the 5-position was proposed, via the preparation of compounds 62–64 to gain understating of the binding pocket. Compounds 62 and 63 were designed to mimic ester moiety of BnIm, and compound 64 was proposed to produce hydrophobic interactions with the sub-pocket. In parallel to these studies, Patel and co-workers identified a purine-derived inhibitor PU-WS13 (Figure 32a) that also take advantage of this Grp94 sub-pocket.44, 74 They screened a library of Hsp90 inhibitors against all
Hsp90 isoforms and identified, PU-WS13 as Grp94-selective inhibitors. Compounds 62–65 were then proposed to confirm their findings as they encompass optimal aryl substitutions obtained from their studies.

III.4.3.1 Syntheses of Resorcinol-Isoindoline Analogues

![Chemical structures](image)

Figure 32. Development of resorcinol-isoiindoline class of Grp94-selective inhibitors. (a) Structure of AT13387 and PU-WS13. (b) Proposed resorcinol-isoiindoline compounds for selective Grp94 inhibition.

Synthesis of the proposed analogues began via the preparation of 69 following literature procedures. As shown in Scheme 8, the proposed analogues were prepared via palladium catalyzed cross-coupling reactions with 69. A palladium catalyzed decarboxylative coupling reaction of 69 enlisting ethyl potassium oxalate, palladium (II) trifluoroacetate, and 1,3-Bis(diphenylphosphino)propane (dppp), and subsequent cleavage of the benzyl ethers furnished the desired compound, 62. Transesterification of 62 in the presence of methanol gave methyl
ester, 63. N-methyl aniline in 64 was coupled by the use of Tris(dibenzylideneacetone)dipalladium(0) (Pd₂(dba)₃) in the presence of RuPhos. For the syntheses of compounds 65–68, the requisite thiols were coupled enlisting (Pd₂(dba)₃), sodium tert-butoxide, and XPhos to give corresponding thioethers. However, this reaction did not work for synthesis of 68, as 2,4-dichlorobenzethiol is sterically hindered and is an electronically disfavored coupling partner. Instead, synthesis of 65 was accomplished with palladium acetate (Pd(OAc)₂) and the Josiphos ligand. The benzyl ethers of these intermediates phenyl thioethers were cleaved via boron tribromide to furnish the corresponding resorcinol products 65–68.

Scheme 8. Synthesis of resorcinol-isooindoline class of Grp94 inhibitors.

III.4.3.2. Evaluation of Resorcinol-Isoindoline Class of Grp94 Inhibitors

Binding affinity of compounds 62–68 were determined against Hsp90α and Grp94 in the FP assay and summarized in Table 11. Aryl thioether containing compounds, 65–68, manifested
low nM affinity for Grp94. Surprisingly, these compounds did not manifest selectivity over Hsp90α. Similarly, N-methyl aniline containing 64 manifested apparent K_d of 17 nM against Grp94 and manifested only a two-fold selectivity over Hsp90α. The most selective compound of this series was the 2,4-dichlorophenyl thioether 68, which manifested 8-fold selectivity for Grp94. Incorporation of a methyl ester (63) at the 5-position did not increase affinity for Hsp90α or Grp94. Conversely, the ethyl ester 62 manifested IC$_{50}$ of 0.77 μM with 5-fold selectivity for Grp94.

Table 11. Evaluation of resorcinol-isocindoline class of Grp94 inhibitors

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_d Grp94 (μM)</th>
<th>K_d Hsp90α (μM)</th>
<th>Fold-selectivity for Grp94</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnIm</td>
<td>1.14 ± 0.1</td>
<td>13.1 ± 1.1</td>
<td>12</td>
</tr>
<tr>
<td>62</td>
<td>0.77 ± 0.1</td>
<td>3.52 ± 2.3</td>
<td>5</td>
</tr>
<tr>
<td>63</td>
<td>>10</td>
<td>>10</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>0.017 ± 0.003</td>
<td>0.034 ± 0.008</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>0.021 ± 0.003</td>
<td>0.066± 0.006</td>
<td>3</td>
</tr>
<tr>
<td>66</td>
<td>0.033 ± 0.002</td>
<td>0.075 ± 0.004</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>0.031 ± 0.003</td>
<td>0.029 ± 0.010</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>0.059 ± 0.006</td>
<td>0.460 ± 0.006</td>
<td>8</td>
</tr>
</tbody>
</table>

These results were unexpected as these compounds were predicted to selectively bind Grp94. The excellent binding affinities against Hsp90α indicate that these substitutions are also accommodated within the Hsp90α ATP-binding pocket. In depth analysis of various co-crystal structures of Hsp90α revealed that some purine-derived ligands induce an extra binding channel in Hsp90α, which is not usually induced with resorcinol derived inhibitors.44,81 Overlay of these purine-bound co-crystal structures with our resorcinol based inhibitors revealed this binding channel in Hsp90α expands about the 5-position of the resorcinol ring (Figure 33a and 33b). An overlay of two co-crystal structures of purine based inhibitors (PU-H36 and PU-H54) bound to Hsp90α (PDB: 3O0I) and Grp94 (PDB: 3O2F) suggests that the phenyl ring attached to a sulfanyl
linker can bind both Grp94 and Hsp90α. As shown in Figure 33b, an 80° tortional rotation about the sulfanyl linker can project the 8-phenyl ring into the Hsp90α-specific binding channel from the Grp94-specific subpocket. When compound 65 was modeled in these co-crystal structures, the rotation about the sulfanyl linker indicated that the phenyl ring could be accommodated in both the Hsp90α and Grp94 binding pockets, resulting in no selectivity (Figure 33c & 33d).

Figure 33. Binding modes of compound 61 and 65. (a) Compound 61 modeled in different co-crystal structures of Hsp90, with and without additional binding pocket around 5-position of resorcinol ring. (green, PDB: 3O0I, orange, PDB: 2XAB). (b) Overlay of purine based-inhibitors bound to Hsp90α (Green PDB: 3O0I) and Grp94 (blue, PDB: 3O2F). (c) Proposed binding mode of 65 in Grp94; (d) Proposed binding mode of 65 in Hsp90α. (e) Structures of PU-H36 and PU-H54.

These results indicate that modification at the 5-position of the resorcinol may induce an opening of a binding channel that is similar to that observed with purine inhibitors, resulting in the inhibition of Grp94 and Hsp90α. For selective Grp94 inhibition, incorporation of a linker-less aryl group at the 5-position was therefore proposed. A linker appears to be required to project 5-aryl substituents towards the Hsp90α-specific binding pocket (Figure 33d) and hence, the omission of a nitrogen or sulfur linker would produce a molecule that induces a steric clash with Phe138 within the Hsp90α binding site. However, this modification should be accommodated in the Grp94-
binding pocket. To test this hypothesis, two molecules containing a phenyl and a furan attached to the 5-position of resorcinol ring were proposed. As shown in Figure 34, a furan will be accommodated in the Grp94 binding pocket as the oxygen would interact favorably with Asn107.

![Figure 34. Overlay of proposed binding modes of 71 in Hsp90α (green, PDB 1UY6) and Grp94 (blue, PDB: 3O0I) binding pocket.](image)

![Scheme 9. Syntheses of compounds 70 and 71.](image)

Analogues 70 and 71 were synthesized via a Suzuki cross-coupling reaction between phenyl boronic acid or 2-furylboronic acid with 69, followed by hydrogenolysis (Scheme 9). These molecules were evaluated via a fluorescence polarization assay for their affinity and selectivity (Table 12). Analogue 71 manifested an apparent Kd of 220 nM for Grp94 with 35-fold selectivity over Hsp90α. Unfortunately, 70 did not bind at the highest concentration tested (100 μM).

Table 12. Apparent Kd values of des-linker analogues 70 and 71

<table>
<thead>
<tr>
<th>Compound</th>
<th>Kd Grp94 (μM)</th>
<th>Kd Hsp90α (μM)</th>
<th>Fold-selectivity for Grp94</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnIm</td>
<td>1.14 ± 0.1</td>
<td>13.1 ± 1.1</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>71</td>
<td>0.22 ± 0.029</td>
<td>7.79 ± 1.02</td>
<td>35</td>
</tr>
</tbody>
</table>

III.5. Conclusions and Future Directions
The co-crystal structures of several pan-Hsp90 inhibitors bound to Hsp90α, Hsp90β, and Grp94 provided strong rationale for the structure-based design of Grp94-selective inhibitors. Three different scaffolds were evaluated during the pursuit of selective Grp94-selective inhibitors. Studies on the pan-Hsp90 inhibitor, radamide generated improved Grp94-selective inhibitors and modifications to the aryl side chain of BnIm provided a 40-fold selective analog with an apparent K_d of 650 nM. The resorcinol-isoiindoline scaffold was also evaluated to probe the second exclusive sub-pocket of Grp94, which led to the identification of the highly efficacious Grp94-selective inhibitor 71, which can serve as a starting point for the development of more potent inhibitors. Evaluation of compound 71 against Her2-positive cancer cells and multiple myeloma cells is currently underway. In collaboration with Chad Dickey’s lab at the University of South Florida, compound 71 will be evaluated for the potential treatment of glaucoma. Together, these Grp94-selective inhibitors will enable identification of more Grp94-specific client proteins and lead to the further understanding of the Grp94-dependent processes.

III.6. Methods and Experiments

All reactions were performed in oven-dried glassware under argon atmosphere unless otherwise stated. Dichloromethane (DCM), tetrahydrofuran (THF), and toluene were passed through a column of activated alumina prior to use. Anhydrous methanol, acetonitrile, and N-methyl-2-pyrrolidone (NMP) were purchased and used without further purification. Flash column chromatography was performed using silica gel (40–63 μm particle size). The 1H (500 and 400 MHz) and 13C NMR (125 and 100 MHz) spectra were recorded on 500 and 400 MHz spectrometer. Data are reported as p = pentet, q = quartet, t = triplet, d = doublet, s = singlet, br s = broad singlet, m = multiplet; coupling constant(s) in Hz. Infrared spectra were obtained using FT/IR.
spectrometer. High resolution mass spectral data were obtained on a time-of-flight mass spectrometer and analysis was performed using electrospray ionization.

Fluorescence Polarization Assay

The assay was performed in 96-well format in black, flat bottom plates (Santa Cruz Biotechnology) with a final volume of 100 μL. 25 μL of assay buffer (20 mM HEPES, pH 7.3, 50 mM KCl, 5 mM MgCl₂, 20 mM Na₂MoO₄, 2 mM DTT, 0.1 mg/mL BGG, and 0.01% NP-40) containing 6 nM FITC-GDA (fluorescent tracer, stock in DMSO and diluted in assay buffer) and 50 μL of assay buffer containing 10 nM of either Grp94 or Hsp90α were added to each well. Compounds were tested in triplicate wells (1% DMSO final concentration). For each plate, wells containing buffer only (background), tracer in buffer only (low polarization control), and protein and tracer in buffer with 1% DMSO (high polarization control) were included. Plates were incubated at 4 °C with rocking for 24 h. Polarization values (in mP units) was measured at 37 °C with an excitation filter at 485 nm and an emission filter at 528 nm. Polarization values were correlated to % tracer bound and compound concentrations. The concentration of inhibitor at which the tracer was 50% displaced represents apparent K_d.

General method for amide formation for compounds 35–36 and 38–50

To a solution of acid 34 (0.05 mmol), EDCI·HCl (0.12 mmol), and pyridine (0.13 mmol) in dichloromethane (1 mL) was added the corresponding aniline (0.1 mmol) and stirred at room temperature under argon overnight. Upon complete consumption of acid 34, the solvent was removed and the residue dissolved in THF (1 mL). The reaction mixture was then treated with TBAF (0.2 mmol) and stirred for 30 min, and upon completion saturated aqueous NH₄Cl was added and extracted with ethyl acetate. The combined organic layers were then dried over Na₂SO₄,
filtered, and concentrated to give a crude oil. The residue was purified via flash chromatography (SiO$_2$, 49:1 CH$_2$Cl$_2$/MeOH) to afford the desired amides.

Methyl 3-chloro-4,6-dihydroxy-2-(3-(methyl(phenyl)amino)-3-oxopropyl)benzoate (35): 28 mg, 77% yield, white amorphous solid: 1H NMR (400 MHz, CDCl$_3$–MeOD) δ 7.34 (dd, $J = 8.4$, 6.8 Hz, 2H), 7.31–7.23 (m, 2H), 7.15–7.08 (m, 2H), 6.33 (s, 1H), 3.87 (s, 3H), 3.25 (d, $J = 7.5$ Hz, 5H), 2.35–2.27 (m, 2H); 13C NMR (CDCl$_3$–CH$_3$OH, 125 MHz) δ 172.9, 171.0, 162.1, 157.9, 143.7, 142.3, 130.0 (2), 128.1, 127.2 (2), 114.8, 106.0, 102.3, 52.4, 37.6, 33.4, 28.9; (ESI+) m/z [M+H$^+$] calcd for C$_{18}$H$_{19}$ClNO$_5$, 364.0952; found 364.0943.

Methyl 3-chloro-2-(3-(ethyl(phenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (36): 30 mg, 79% yield, white amorphous solid: 1H NMR (500 MHz, CDCl$_3$–CD$_3$OD) δ 7.34 (t, $J = 7.7$ Hz, 2H), 7.31–7.24 (m, 2H), 7.06 (dd, $J = 7.3$, 1.7 Hz, 2H), 6.33 (d, $J = 4.0$ Hz, 1H), 3.87 (d, $J = 3.9$ Hz, 3H), 3.70 (q, $J = 7.1$ Hz, 3H), 3.27–3.19 (m, 2H), 2.34–2.16 (m, 2H), 1.07 (td, $J = 7.2$, 3.4 Hz, 3H); 13C NMR (CDCl$_3$–CD$_3$OD, 125 MHz) δ 172.3, 171.0, 162.0, 157.9, 142.3, 141.9, 129.9 (2), 128.3 (2), 128.2, 114.7, 106.1, 102.2, 52.4, 44.3, 33.7, 28.8, 13.0; (ESI+) m/z [M+H$^+$] calcd for C$_{19}$H$_{21}$ClNO$_5$, 378.1108; found 378.1108.
Methyl 3-chloro-4,6-dihydroxy-2-(3-(isopropyl(phenyl)amino)-3-oxopropyl)benzoate (37):

A solution of benzyl protected acid 1a (100 mg, 0.22 mmol) in dichloromethane was treated with oxalyl chloride (23 μL, 0.33 mmol) under argon atmosphere and then stirred at room temperature for 2 h. The solvent was then removed and the residue was placed under high vacuum for 30 min to remove any unreacted oxalyl chloride. The residue was then re-dissolved in dry CH₂Cl₂ (3 mL), cooled to 0 °C, and was treated sequentially with diisopropylethyl amine (57 μL, 0.33 mmol) and N-isopropylaniline (72 μL, 0.33 mmol). The resulting mixture was stirred at room temperature overnight under Ar. The solvent was removed and the residue was passed through a short pad of silica (1:1, ethyl acetate/Hexanes) and was concentrated to afford the amide crude product, which was dissolved in methanol (5 mL) and treated with Pd/C (10%). The resulting suspension was charged with a hydrogen balloon and stirred under H₂ at room temperature for 16 h, filtered through celite, concentrated, and purified by flash chromatography (SiO₂, 1:1 EtOAc/Hexanes) to afford compound 51 (30 mg, 35% yield over 2 steps) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.27 (m, 13H), 7.06–7.12 (m, 2H), 6.41 (s, 1H), 5.07 (hept, J = 6.8 Hz, 1H), 5.04 (s, 2H), 4.98 (s, 2H), 3.88 (s, 3H), 3.03–2.93 (m, 2H), 2.30–2.21 (m, 2H), 1.08 (d, J = 6.8 Hz, 6 H). ¹³C NMR (125 MHz, CDCl₃): δ 171.1, 167.5, 155.4, 154.5, 138.6, 138.3, 136.2, 135.9, 130.3, 129.2, 128.6, 128.5, 128.1, 127.9, 126.9, 126.8, 118.4, 115.5, 98.2, 70.9, 70.8, 52.4, 45.8, 34.4, 27.9, 21.0. HRMS (ESI+) m/z [M+Na⁺] calcd for, C₂₀H₂₂ClNO₅Na, 414.1084; found 414.1076.
Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridin-2-ylamino)propyl)benzoate (38): 10 mg, 62 %, pale yellow amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 8.39–8.07 (m, 2H), 7.80 (dd, $J = 8.7, 7.4, 1.8$ Hz, 1H), 7.10 (dd, $J = 7.3, 4.8, 1.1$ Hz, 1H), 6.55 (s, 1H), 3.99 (s, 3H), 3.57–3.42 (m, 2H), 2.98–2.77 (m, 2H). 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 171.60, 162.34, 158.67, 153.19, 148.85, 143.11, 138.72, 120.02, 114.86, 114.29, 108.11, 103.12, 52.92, 36.62, 28.77. HRMS (ESI+) m/z [M+Na$^+$] calcd for C$_{16}$H$_{15}$ClN$_2$O$_5$Na, 373.0669; found, 373.0630.

Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyridazin-3-ylamino)propyl)benzoate (39): 26 mg, yield 74%, white amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 10.04 (s, 1H), 8.92 (dd, $J = 4.7, 1.5$ Hz, 1H), 8.47 (dd, $J = 9.0, 1.5$ Hz, 1H), 7.63 (dd, $J = 9.0, 4.7$ Hz, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 3.54–3.38 (m, 2H), 2.99–2.84 (m, 2H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 158.78, 149.10, 142.85, 128.79, 118.60, 118.54, 103.20, 52.93, 36.60, 28.60; HRMS (ESI+) m/z [M+Na$^+$] calcd for C$_{15}$H$_{14}$ClN$_3$O$_5$Na, 374.0520; found 374.0534.

Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyrimidin-2-ylamino)propyl)benzoate (40):
21 mg, yield 60%, white amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 9.04 (d, $J = 1.3$ Hz, 2H), 8.83 (s, 1H), 6.51 (s, 1H), 3.94 (s, 3H), 3.57–3.31 (m, 2H), 2.82–2.69 (m, 2H); 13C NMR (125 MHz, (CD$_3$)$_2$CO): δ 171.7, 171.2, 158.6, 154.2, 148.0, 147.9, 142.7, 135.6, 135.5, 114.8, 108.3, 103.2, 52.9, 36.4, 28.7; HRMS (ESI+) m/z [M+Na$^+$] calcd for C$_{15}$H$_{14}$ClN$_3$O$_5$Na, 374.0520, found 374.0527.

\[\text{Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(pyrimidin-5-ylamino)propyl)benzoate (41)}: \]

23 mg, 66% yield, white amorphous solid: 1H NMR (400 MHz, CDCl$_3$–CD$_3$OD) δ 9.01 (s, 2H), 8.84 (s, 1H), 6.42 (s, 1H), 3.91 (s, 3H), 3.59–3.36 (m, 2H), 2.70–2.51 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz): δ 172.1, 170.9, 162.0, 158.1, 152.9, 147.6 (2), 141.8, 114.8 (2), 106.2, 102.6, 52.6, 35.7, 28.2; (ESI+) m/z [M+H$^+$] calcd for C$_{15}$H$_{15}$ClN$_3$O$_5$, 352.0712; found 352.0712.

\[\text{Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(thiazol-2-ylamino)propyl)benzoate (42)}: \]

30 mg, 84% yield, white amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 7.40 (d, $J = 3.6$ Hz, 1H), 7.11 (d, $J = 3.6$ Hz, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 3.57–3.34 (m, 2H), 2.98–2.78 (m, 2H); 13C NMR ((CD$_3$)$_2$CO, 125 MHz) δ 171.3, 170.7, 162.4, 158.9, 158.7, 142.7, 138.5, 114.9, 113.9, 108.2, 103.3, 53.0, 35.4, 28.6. (ESI+) m/z [M+H$^+$] calcd for C$_{14}$H$_{14}$ClN$_2$O$_5$S, 357.0312; found 357.0323.
Methyl 2-(3-((1,3,4-thiadiazol-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (43): 28 mg, 78% yield, white amorphous solid: 1H NMR (500 MHz, CDCl$_3$–CD$_3$OD) δ 8.79 (d, $J =$ 0.9 Hz, 1H), 6.44 (d, $J =$ 0.9 Hz, 1H), 3.89 (d, $J =$ 0.9 Hz, 3H), 3.62–3.30 (m, 2H), 2.93–2.40 (m, 4H); 13C NMR(CDCl$_3$–CD$_3$OD, 125 MHz): 171.0, 170.9, 162.3, 159.5, 158.1, 148.0, 141.3, 114.9, 106.1, 102.8, 52.6, 34.9, 28.0. (ESI+) m/z [M+Na$^+$] calcd for C$_{13}$H$_{12}$ClN$_3$O$_5$SNa, 380.0084; found 380.0090.

Methyl 2-(3-((1,2,4-thiadiazol-5-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (44): 19 mg, 53% yield, white amorphous solid: 1H NMR (400 MHz, CDCl$_3$–CD$_3$OD) δ 8.19 (s, 1H), 7.72 (s, 1H), 6.36 (s, 1H), 3.83 (s, 3H), 3.50–3.32 (m, 2H), 2.91–2.69 (m, 2H); 13C NMR (CDCl$_3$–CD$_3$OD, 125 MHz): δ 179.3, 176.3, 174.5, 163.0, 162.2, 161.6, 144.8, 118.6, 110.2, 106.4, 56.3, 38.1, 33.5. (ESI+) m/z [M+Na$^+$] calcd for C$_{13}$H$_{12}$ClN$_3$O$_5$SNa, 380.0084; found 380.0078.
Methyl 3-chloro-2-(3-((6-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (45): 27 mg, 70% yield, white amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 10.88 (1H, br s), 9.48 (1H, br s) 8.09 (dd, $J = 8.2$, 1.8 Hz, 1H), 7.80–7.58 (m, 1H), 7.00 (dd, $J = 7.9$, 1.7 Hz, 1H), 6.63–6.10 (m, 1H), 3.93 (s, 3H), 3.46–3.10 (m, 2H), 2.91–2.55 (m, 2H); 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 172.1, 171.5, 158.8, 153.3, 149.6, 143.1, 142.2, 119.9 (2), 115.0, 112.8, 108.3, 103.3, 53.1, 36.7, 28.8; (FAB) m/z [M+Na$^+$] calcd for C$_{16}$H$_{14}$Cl$_2$N$_2$O$_5$Na, 407.0174, found 407.0177.

![Methyl 3-chloro-2-(3-((6-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate](image)

Methyl 3-chloro-2-(3-((3-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (46): 21 mg, 55% yield, white amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 8.36 (dd, $J = 4.7$, 1.6 Hz, 1H), 7.92 (dd, $J = 8.0$, 1.6 Hz, 1H), 7.27 (ddd, $J = 8.0$, 4.7, 0.6 Hz, 1H), 6.52 (s, 1H), 3.97 (s, 3H), 3.55–3.39 (m, 2H), 3.00–2.76 (m, 2H). 13C NMR (125 MHz, (CD$_3$)$_2$CO) δ 171.4, 171.28, 158.6, 149.3, 147.5, 143.2 (2), 139.3, 122.9 (2), 114.8, 108.14, 103.1, 52.9, 35.9, 28.8; (ESI+) m/z [M+Na$^+$] calcd for C$_{16}$H$_{14}$Cl$_2$N$_2$O$_5$Na, 407.0174; found 407.0174.

![Methyl 3-chloro-2-(3-((3-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate](image)

Methyl 2-(3-((3-bromopyridin-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (47): 31 mg, 71% yield, white amorphous solid: 1H NMR (400 MHz, CDCl$_3$–MeOD) δ 8.47 (dd, $J = 4.7$, 1.6 Hz, 1H), 7.98 (dd, $J = 8.0$, 1.6 Hz, 1H), 7.27–7.22(m, 1H), 6.34 (s, 1H), 3.85 (s, 3H),

![Methyl 2-(3-((3-bromopyridin-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate](image)
3.35–3.29 (m, 2H), 2.91–2.65 (m, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 172.8, 170.0, 161.2, 156.9, 149.7, 147.8, 141.7, 140.6, 124.9, 120.3, 113.8, 105.0, 101.4, 51.6, 36.3, 26.6. (ESI+) m/z [M+Na$^+$] calcd for C$_{16}$H$_{14}$BrClN$_2$O$_5$Na, 450.9672; found 450.9677.

![Chemical Structure](image)

Methyl 3-chloro-2-(3-((4-chloropyridin-2-yl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (48): 31 mg, 71% yield, white amorphous solid: 1H NMR (400 MHz, CDCl$_3$–CD$_3$OD) δ 8.47 (dd, $J = 4.7$, 1.6 Hz, 1H), 7.98 (dd, $J = 8.0$, 1.6 Hz, 1H), 7.27–7.22 (m, 1H), 6.34 (s, 1H), 3.85 (s, 3H), 3.35–3.29 (m, 2H), 2.91–2.65 (m, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 172.8, 170.0, 161.2, 156.9, 149.7, 147.8, 141.7, 140.6, 124.9, 120.3, 113.8, 105.0, 101.4, 51.6, 36.3, 26.6. (ESI+) m/z [M+Na$^+$] for C$_{16}$H$_{14}$BrClN$_2$O$_5$Na, 450.9672; found 450.9677.

![Chemical Structure](image)

Methyl 2-(3-((5-bromopyridin-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (49): 29 mg, 68% yield, white amorphous solid: 1H NMR (500 MHz, CDCl$_3$–MeOD) δ 8.31–8.19 (m, 1H), 8.19–8.05 (m, 1H), 7.84–7.71 (m, 1H), 6.54–6.28 (m, 1H), 3.94 (s, 3H), 3.42–3.35 (m, 2H), 2.63 (dq, $J = 12.7$, 3.8, 2.1 Hz, 2H); 13C NMR (CDCl$_3$–CD$_3$OD, 125 MHz): δ 171.5, 170.9, 162.1, 158.2, 150.2, 148.6, 141.6, 141.0, 115.5, 114.8, 114.5, 106.1, 102.6, 52.6, 36.4, 28.3. (FAB) m/z [M+Na$^+$] calcd for C$_{16}$H$_{14}$BrClN$_2$O$_5$Na, 450.9672; found 450.9681.
Methyl 2-(3-((5-bromo-1,3,4-thiadiazol-2-yl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxy benzoate (50): 12 mg, 28% yield, gray amorphous solid: 1H NMR (500 MHz, (CD$_3$)$_2$CO) δ 6.53 (s, 1H), 3.94 (s, 4H), 3.59–3.43 (m, 2H), 3.05–2.84 (m, 2H). 13C NMR (125 MHz, (CD$_3$)$_2$CO): δ 171.7, 161.6, 158.7, 142.2, 134.8, 130.6, 114.9, 108.1, 103.3, 79.3, 53.0, 35.2, 21.1. HRMS (ESI+) m/z [M+H$^+$] calcd for C$_{13}$H$_{12}$BrClN$_3$O$_5$S: 435.9370; found 435.9377.

General procedure for multicomponent cyclization reaction:

Requisite benzyl amines (0.26 mmol, 1.0 eq.) were added to a stirred solution of 9 (125 mg, 0.26 mmol, 1.0 eq.) in wet methanol (2 mL) and stirring continued for 30 min at rt before the addition of NH$_4$HCO$_3$ (0.26 mmol) and glyoxal (0.26 mmol). After stirring for 12 h, tetrabutylammonium fluoride (0.52 mL of 1 M solution in THF, 0.52 mmol) was added and then stirred for 30 min before the reaction was quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (3 x 10 mL). The organic layers were combined, dried (Na$_2$SO$_4$), filtered, and concentrated. The residue was purified via flash chromatography (SiO$_2$, 1:49 MeOH:dichloromethane) to afford the desired product as amorphous solids.

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-methylbenzyl)-1H-imidazol-2-yl)ethyl)benzoate (52): 44 mg (43%), off-white amorphous solid. 1H NMR (500 MHz, CD$_3$OD) δ 7.15 (d, $J = 7.9$
Hz, 2H), 7.03 (d, \(J = 1.4 \) Hz, 1H), 7.00–6.96 (m, 2H), 6.94 (d, \(J = 1.5 \) Hz, 1H), 6.39 (s, 1H), 5.05 (s, 2H), 3.77 (s, 3H), 3.37–3.30 (m, 2H), 2.97–2.89 (m, 2H), 2.31 (s, 3H). \(^{13}\)C NMR (125 MHz, MeOD) \(\delta \) 171.3, 160.9, 159.0, 148.8, 141.5, 138.9, 135.1, 130.5 (2), 127.9 (2), 127.1, 121.8, 115.0, 110.1, 103.3, 52.8, 50.1, 31.5, 27.3, 21.1. HRMS (ESI+) \(m/z \) [M + H]\(^+\) for C\(_{21}\)H\(_{22}\)ClN\(_2\)O\(_4\), 401.1268; found 401.1266.

Methyl 3-chloro-2-(2-(1-(4-ethylbenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate (53): 37 mg (39%), off white amorphous solid. \(^1\)H NMR (500 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 7.14 (d, \(J = 8.1 \) Hz, 2H), 7.11–7.08 (m, 1H), 6.98–6.91 (m, 2H), 6.85 (d, \(J = 1.5 \) Hz, 1H), 6.44 (s, 1H), 4.96 (s, 3H), 3.54–3.45 (m, 2H), 3.04 (t, \(J = 7.9 \) Hz, 2H), 2.59 (q, \(J = 7.6 \) Hz, 2H), 1.17 (td, \(J = 7.6, 1.0 \) Hz, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 170.6, 162.1, 158.2, 147.2, 145.0, 145.0, 140.9, 132.1, 128.8 (2), 127.2 (2), 124.2, 120.6, 114.9, 106.2, 103.0, 50.0, 49.9, 30.7, 28.6, 25.6, 15.6. HRMS (ESI+) \(m/z \) [M + H]\(^+\) for C\(_{22}\)H\(_{24}\)ClN\(_2\)O\(_4\), 415.1425; found 415.1432.

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-isopropylbenzyl)-1H-imidazol-2-yl)ethyl)benzoate (54): 25 mg (22%), white amorphous solid. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.13 (d, \(J = 8.1 \) Hz, 2H), 7.03 (s, 1H), 6.90 (d, \(J = 8.2 \) Hz, 2H), 6.80 (d, \(J = 1.5 \) Hz, 1H), 6.49 (s, 1H), 4.95 (s, 2H), 3.79 (s, 3H), 3.50 (t, \(J = 7.9 \) Hz, 2H), 3.00–2.92 (m, 2H), 2.82 (hept, \(J = 6.9 \) Hz, 1H), 1.16 (d, \(J =

192
7.0 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 170.63, 162.91, 157.32, 149.25, 147.18, 127.20 (2), 126.81 (2), 120.19, 114.50, 106.24, 103.00, 99.98, 52.76, 49.56, 33.81, 30.77, 29.72, 23.93 (2). HRMS (ESI+) m/z [M + H]$^+$ calced for C$_{23}$H$_{26}$ClN$_2$O$_4$, 429.1581; found 429.1588.

![Methyl 3-chloro-2-(2-(1-(4-cyanobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate](image)

Methyl 3-chloro-2-(2-(1-(4-cyanobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate (55): 37 mg (39%), off white amorphous solid. 1H NMR (500 MHz, CDCl$_3$) δ 7.79 (q, $J = 7.8$, 6.0 Hz, 2H), 7.61–7.36 (m, 2H), 7.20–7.12 (m, 1H), 7.05 (s, 1H), 6.57 (s, 1H), 5.44–5.25 (m, 2H), 4.00 (s, 3H), 3.57 (q, $J = 7.7$ Hz, 2H), 3.02 (t, $J = 7.9$ Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): 170.4, 161.5, 158.0, 147.8, 142.0, 141.2, 132.8, (2), 127.7, 127.4, 127.0 (2), 120.2, 118.2, 114.5, 111.6, 102.4, 52.4, 52.3, 30.8, 26.0. HRMS (ESI+) m/z [M + H]$^+$ for C$_{21}$H$_{19}$ClN$_3$O$_4$, 412.1064; found 412.1049.

![Methyl 3-chloro-2-(2-(1-(furan-3-ylmethyl)-1H-imidazol-2-yl)ethyl)-4,6 Dihydroxybenzoate](image)

Methyl 3-chloro-2-(2-(1-(furan-3-ylmethyl)-1H-imidazol-2-yl)ethyl)-4,6 Dihydroxybenzoate (56): 40 mg (41%), off-white amorphous solid. 1H NMR (500 MHz, CDCl$_3$, CD$_3$OD) δ 7.30 (d, $J = 1.6$ Hz, 1H), 7.20 (s, 1H), 6.84 (dd, $J = 2.7$, 1.4 Hz, 1H), 6.78 (d, $J = 1.4$ Hz, 1H), 6.36 (d, $J = 2.0$ Hz, 1H), 6.15 (d, $J = 1.9$ Hz, 1H), 4.80 (s, 2H), 3.78 (d, $J = 1.9$ Hz, 3H), 3.39 (tt, $J = 8.9$, 2.5 Hz, 2H), 2.95–2.80 (m, 2H). 13C NMR (125 MHz, CDCl$_3$, CD$_3$OD): δ 170.8, 161.8, 158.1, 147.3,
144.1, 141.6, 141.6, 140.1, 126.7, 121.0, 119.6, 114.7, 109.4, 106.2, 102.5, 52.4, 41.0, 30.8, 26.1.

HRMS (ESI+) \(m/z \) [M + H]\(^+\) for C\(_{18}\)H\(_{18}\)ClN\(_{2}\)O\(_{5}\), 377.0904; found 377.0905.

Methyl 3-chloro-2-(2-(1-(furan-2-ylmethyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate (57): 44 mg (45%), off-white amorphous solid. \(^1\)H NMR (500 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 7.31 (dt, \(J = 2.4, 1.2 \) Hz, 1H), 6.87 (dd, \(J = 2.4, 1.4 \) Hz, 1H), 6.83 (d, \(J = 1.5 \) Hz, 1H), 6.40 (d, \(J = 1.8 \) Hz, 1H), 6.26 (dt, \(J = 3.5, 1.7 \) Hz, 1H), 6.18 (d, \(J = 3.3 \) Hz, 1H), 4.94 (d, \(J = 1.6 \) Hz, 2H), 3.82 (d, \(J = 1.9 \) Hz, 3H), 3.46 (ddd, \(J = 10.2, 6.1, 2.0 \) Hz, 2H), 2.95 (ddd, \(J = 9.8, 5.9, 1.5 \) Hz, 2H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 170.9, 162.0, 158.2, 149.1, 147.4, 143.2, 141.8, 126.9, 119.7, 114.8, 110.6, 108.8, 106.2, 102.6, 52.6, 42.6, 30.8, 26.1. HRMS (ESI+) \(m/z \) [M + H]\(^+\) for C\(_{18}\)H\(_{18}\)ClN\(_{2}\)O\(_{5}\), 377.0904; found 377.0911.

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(thiophen-2-ylmethyl)-1H-imidazol-2-yl)ethyl)benzoate (58): 37 mg (37%), yellow amorphous solid. \(^1\)H NMR (400 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 7.23 (dd, \(J = 5.1, 1.3 \) Hz, 1H), 6.95 (d, \(J = 1.5 \) Hz, 1H), 6.92 (dd, \(J = 5.1, 3.5 \) Hz, 1H), 6.87 (dd, \(J = 3.5, 1.9 \) Hz, 2H), 6.43 (s, 1H), 5.17 (d, \(J = 0.9 \) Hz, 2H), 3.84 (s, 3H), 3.56–3.44 (m, 2H), 3.01–2.92 (m, 2H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\), CD\(_3\)OD) \(\delta \) 170.9, 162.1, 158.2, 147.3, 141.7, 138.5, 127.2, 126.9, 126.4, 126.2, 119.7, 114.9, 106.2, 102.7, 52.6, 44.7, 30.9, 26.2. HRMS (ESI+) \(m/z \) [M + H]\(^+\) for C\(_{18}\)H\(_{18}\)ClN\(_{2}\)O\(_{4}\)S, 393.0676; found 393.0674.
Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(thiophen-3-ylmethyl)-1H-imidazol-2-yl)ethyl) benzoate (59): 8 mg (27%), yellow amorphous solid. 1H NMR (400 MHz, CDCl$_3$, CD$_3$OD) δ 7.25 (d, $J = 4.8$ Hz, 1H), 6.98–6.92 (m, 2H), 6.83 (d, $J = 1.5$ Hz, 1H), 6.81–6.78 (m, 1H), 6.37 (s, 1H), 4.97 (s, 2H), 3.79 (s, 3H), 3.43–3.37 (m, 2H), 2.95–2.88 (m, 2H). 13C NMR (126 MHz, CDCl$_3$, CD$_3$OD) δ 174.48, 165.67, 162.02, 151.06, 145.03, 140.31, 131.26, 130.04, 129.39, 126.69, 124.00, 118.61, 110.15, 106.53, 56.40, 49.27, 34.49, 29.68. HRMS (ESI+) m/z [M + H]$^+$ for C$_{18}$H$_{18}$ClN$_2$O$_4$S, 393.0676; found 393.0693.

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-((5-methylfuran-2-yl)methyl)-1H-imidazol-2-yl)ethyl)benzoate (60): 46 mg (46%), off white amorphous solid. 1H NMR (400 MHz, CDCl$_3$, CD$_3$OD) δ 6.87 (d, $J = 1.4$ Hz, 1H), 6.84 (d, $J = 1.4$ Hz, 1H), 6.41 (s, 1H), 6.08 (d, $J = 3.1$ Hz, 1H), 5.84 (dd, $J = 3.0$, 1.2 Hz, 1H), 4.88 (s, 2H), 3.84 (s, 3H), 3.49–3.42 (m, 2H), 3.08–2.93 (m, 2H), 2.18 (d, $J = 1.0$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$, CD$_3$OD) δ 171.0, 162.2, 158.3, 153.1, 147.3, 147.1, 141.9, 126.7, 119.7, 114.9, 109.7, 106.5, 106.1, 102.6, 52.6, 42.7, 30.9, 26.2, 13.5. HRMS (ESI+) m/z [M + H]$^+$ for C$_{19}$H$_{20}$ClN$_2$O$_5$, 391.1061; found 391.1066.
Ethyl 2,4-dihydroxy-5-(isoindoline-2-carbonyl)benzoate (62): A biotage microwave vial was charged with 69 (150mg, 0.29 mmol, 1 eq.), ethyl potassium oxalate (68 mg, 0.44 mmol, 1.5 eq.), 1,3-Bis(diphenylphosphino)propane (9mg, 0.021 mmol, 0.075 eq.), and palladium (II) trifluoroacetate (5mg, 0.015 mmol, 0.05 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of N-methyl 2-pyrrolidone (0.7 mL) by syringe. The resulting mixture was heated at 150 °C for 24 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to give the corresponding 5-ester product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO₂, 1:2 ethyl acetate/hexanes) to give the desired product 62 as white amorphous solid (15 mg, 15 %).

¹H NMR (500 MHz, CDCl₃) δ 12.21 (s, 1H), 11.19 (s, 1H), 8.29 (s, 1H), 7.34 (s, 4H), 6.54 (s, 1H), 5.12 (s, 4H), 4.45 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 170.2, 169.6, 167.4, 165.6, 135.9 (2), 131.8 (2), 128.2 (2), 122.8, 109.7, 105.0, 104.6, 55.4, 53.8, 61.7, 14.5. HRMS (ESI+) m/z [M+H⁺] calcd for C₁₈H₁₈NO₅, 328.1185, found 328.1187.
Methyl 2,4-dihydroxy-5-(isoindoline-2-carbonyl)benzoate (63): A solution of 62 (20 mg, 0.06 mmol, 1.0 eq.) in methanol was heated at 80 °C for 14 h in presence of 1,8 Diazabicyclo[5.4.0]undec-7-ene (2 μL, 0.012 mmol, 0.2 eq.). The solvent was removed and the residue purified with flash chromatography (SiO₂, 1:2 ethyl acetate/hexanes) to give the desired product 63 as white amorphous solid (14 mg, 73%). ¹H NMR (400 MHz, CDCl₃ δ 12.27 (s, 1H), 11.13 (s, 1H), 8.28 (s, 1H), 7.34 (s, 4H), 6.55 (d, J = 0.7 Hz, 1H), 5.12 (s, 4H), 3.99 (d, J = 0.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 169.6, 167.4, 165.6, 135.9 (2), 131.8 (2), 128.2 (2), 122.8, 109.9, 105.2, 104.8, 55.4, 53.8, 52.7. HRMS (ESI+) m/z [M+H⁺] calcd for C₁₇H₁₆NO₅, 314.1028, found, 314.1023.

(2-Hydroxy-5-(methyl(phenyl)amino)phenyl)(isoindolin-2-yl)methanone (64): A biotage microwave vial was charged with 69 (180mg, 0.35 mmol, 1 eq.), N-methylaniline (45 μL, 0.42 mmol, 1.2 eq.), RuPhos (7 mg, 0.014 mmol, 0.04 eq), Tris(dibenzylideneacetone)dipalladium(0) (16mg, 0.017 mmol, 0.05 eq.), sodium tert-butoxide (40 mg, 0.53 mmol, 1.5 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated
sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to give the desired product 64 as white amorphous solid (47 mg, 38%). 1H NMR (500 MHz, CDCl$_3$) δ 11.59 (s, 1H), 7.38 (s, 1H), 7.33 – 7.21 (m, 6H), 6.90 (tt, J = 7.3, 1.1 Hz, 1H), 6.81 – 6.75 (m, 2H), 6.70 (s, 1H), 6.43 (s, 1H), 4.97 (s, 4H), 3.23 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 170.2, 161.5, 149.6, 157.1, 135.7 (2), 129.3 (3), 127.8 (2), 127.3, 127.1, 122.5 (2), 119.5, 114.7, 110.1, 103.7, 54.7, 53.8, 40.3. HRMS (ESI-) m/z [M–H$^+$] calcd for C$_{22}$H$_{19}$NO$_5$, 359.1396, found 359.1387.

(5-((3,4-Dimethylphenyl)thio)-2,4-dihydroxyphenyl)(isoindolin-2-yl)methanone (65): A biotage microwave vial was charged with 69 (180 mg, 0.35 mmol, 1 eq.), 3,4-dimethylbenzenethiol (54 mg, 0.38 mmol, 1.1 eq.), 1,1 ferrocenediy1-bis(diphenylphosphine) (20 mg, 0.035 mmol, 0.1 eq), Tris(dibenzyldieneacetone)dipalladium(0) (17 mg, 0.018 mmol, 0.05 eq.), N,N-diisopropylethylamine (67 µL, 0.39 mmol, 1.1 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide.
(0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to give the desired product 65 as white amorphous solid (34 mg, 25%). 1H NMR (500 MHz, CDCl$_3$) δ 12.06 (s, 1H), 7.90 (s, 1H), 7.38 – 7.29 (m, 3H), 7.04 (d, $J = 7.9$ Hz, 1H), 6.92 (d, $J = 2.1$ Hz, 1H), 6.87 – 6.81 (m, 2H), 6.70 (s, 1H), 5.08 (s, 4H), 2.28 – 2.13 (m, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 170.0, 165.2, 161.1, 138.2, 137.5, 135.4, 132.7, 130.8, 128.1 (2), 128.1 (2), 124.5 (2), 122.8, 111.1, 107.0, 104.1, 55.7, 53.8, 20.1, 19.5. HRMS (ESI+) m/z [M+H$^+$] calcd for C$_{23}$H$_{22}$NO$_3$S, 392.1320, found 392.1317.

(5-((3,5-Dimethylphenyl)thio)-2,4-dihydroxyphenyl)(isoindolin-2-yl)methanone (66): A biotage microwave vial was charged with 69 (180 mg, 0.35 mmol, 1 eq.), 3,5-dimethylbenzenethiol (54 mg, 0.38 mmol, 1.1 eq.), 1,1'-ferrocenediyi-bis(diphenylphosphine) (20 mg, 0.035 mmol, 0.1 eq.), Tris(dibenzylideneacetone)dipalladium(0) (17 mg, 0.018 mmol, 0.05 eq.), N,N'-diisopropylethylamine (67 µL, 0.39 mmol, 1.1 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 ºC for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to
give the corresponding 5-substituted product, which was used further as obtained, and taken in
dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide
(0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate
solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers
were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium
sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO₂, 1:2 ethyl
acetate/hexanes) to give the desired product **66** as white amorphous solid (42 mg, 31 %).¹H NMR
(500 MHz, CDCl₃ δ 12.09 (s, 1H), 7.83 (s, 1H), 7.31 (dt, J = 6.4, 3.3 Hz, 3H), 7.05 – 7.02 (m, 1H),
6.93 – 6.87 (m, 1H), 6.80 (s, 1H), 6.71 (s, 1H), 6.64 (d, J = 8.0 Hz, 1H), 5.04 (s, 4H), 2.44 (s, 3H),
2.29 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 169.9, 165.1, 161.1, 137.4 (2), 136.2, 135.5 (2), 131.8
(2), 131.6 (2), 127.8 (2), 126.0 (2), 111.2, 106.2, 104.2, 55.7, 53.8, 21.0, 20.1. HRMS (ESI-) m/z

![Structure of compound 66](image)

5-((3,5-Dichlorophenyl)thio)-2,4-dihydroxyphenyl)(isoindolin-2-yl)methanone (67): A
biotage microwave vial was charged with **69** (150 mg, 0.29 mmol, 1 eq.), 3,5-dichlorobenzenethiol
(52 mg, 0.29 mmol, 1.0 eq.), 1,1’-ferrocenediyli-bis(diphenylphosphine) (16 mg, 0.029 mmol, 0.1
eq.), Tris(dibenzylideneacetone)dipalladium(0) (13 mg, 0.015 mmol, 0.05 eq.), N,N’-
diisopropylethylamine (55 μL, 0.39 mmol, 1.1 eq.). The tube was sealed with a cap lined with a
disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the
addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h,
cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.5 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to give the desired product 67 as white amorphous solid (23 mg, 18 %). 1H NMR (500 MHz, CDCl$_3$) δ 12.11 (s, 1H), 7.88 (s, 1H), 7.35 – 7.30 (m, 4H), 7.18 (t, J = 1.8 Hz, 1H), 6.93 (d, J = 1.8 Hz, 2H), 6.75 (s, 1H), 6.60 (s, 1H), 5.10 (s, 4H). 13C NMR (125 MHz, CDCl$_3$) δ 169.7, 166.0, 161.2, 140.4, 138.0 (2), 136.1(2), 128.2 (2), 126.6 (2), 124.1 (2), 122.8 (2), 111.8, 104.7, 103.8, 54.9, 53.8. HRMS (ESI+) m/z [M+H$^+$] for C$_{21}$H$_{16}$Cl$_2$NO$_3$S, 433.0306, found 433.0317.

(5-((2,4-Dichlorophenyl)thio)-2,4-dihydroxyphenyl)(isoindolin-2-yl)methanone (68): A biotage microwave vial was charged with 69 (150 mg, 0.29 mmol, 1 eq.), 2,4-dichlorobenzenethiol (52 mg, 0.29 mmol, 1.0 eq.), JosiPhos (4 mg, 0.001 mmol, 0.02 eq.), palladium (II) acetate (7 mg, 0.029 mmol, 0.1 eq.), sodium tert-butoxide (41 mg, 0.32 mmol, 1.1 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (1.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate).
Solvent was removed and the residue purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.5 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to give the desired product 68 as white amorphous solid (17 mg, 14 %). 1H NMR (400 MHz, CDCl$_3$) δ 12.21 (s, 1H), 7.89 (s, 1H), 7.42 (d, $J = 2.1$ Hz, 1H), 7.32 (s, 5H), 7.11 (dd, $J = 8.6$, 2.2 Hz, 1H), 6.74 (s, 1H), 6.61 (s, 1H), 6.58 (s, 1H), 5.09 (s, 4H). HRMS (ESI+) m/z [M+H$^+$] calcd for C$_{21}$H$_{16}$Cl$_2$NO$_3$S, 433.0306, found 433.0310.

![Structure](image)

(4,6-Dihydroxy-[1,1'-biphenyl]-3-yl)(isoindolin-2-yl)methanone (70): A biotage microwave vial was charged with 69 (100 mg, 0.19 mmol, 1 eq.), phenyl boronic acid (549 mg, 0.39 mmol, 2.0 eq.), and [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium (27 mg, 0.038 mmol, 0.2 eq). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of a solvent mixture of toluene (1.0 mL), ethanol (1.0 mL), and saturated sodium bicarbonate solution (1.0 mL) by syringe. The resulting mixture was heated at 80 °C for 14 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO$_2$,
1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.5 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to give the desired product 70 as white amorphous solid (31 mg, 49 %). ¹H NMR (500 MHz, CDCl₃) δ 11.67 (s, 1H), 7.57 (s, 1H), 7.56 – 7.41 (m, 5H), 7.34 – 7.28 (m, 4H), 6.63 (s, 1H), 5.78 (s, 1H), 5.11 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 162.6, 156.8, 136.6, 136.0 (2), 130.4, 129.7 (4), 128.1 (3), 128.0, 122.8, 119.7, 110.4, 104.5, 55.2, 53.4. HRMS (ESI-) m/z [M–H⁺] calcd for C₂₁H₁₆NO₃, 330.1130, found 330.1124.

![Diagram](image)

(5-(furan-2-yl)-2,4-dihydroxyphenyl)(isoindolin-2-yl)methanone (71): A biotage microwave vial was charged with 69 (100 mg, 0.19 mmol, 1 eq.), 2-furanylboronic acid (43 mg, 0.39 mmol, 2.0 eq.), tetrakis(triphenylphosphine)palladium (0) (67 mg, 0.06 mmol, 0.3 eq), and cesium carbonate (76 mg, 0.23 mmol, 1.2 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of a solvent mixture of toluene (1.5 mL) and methanol (0.5 mL) by syringe. The resulting mixture was heated at 110 °C for 1 h under microwave heating. The reaction mixture was filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by
flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was subjected to hydrogenolysis as obtained. The residue was dissolved in a solvent mixture of ethyl acetate (1.5 mL) and ethanol (0.5 mL), followed by the addition of 10% palladium on carbon and cyclohexene (0.2 mL). The resulting mixture was heated at 100 °C for 14 h, filtered through a pad of celite (elution with ethyl acetate), and concentrated. The residue purified with flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to give the desired product 71 as white amorphous solid (13 mg, 14%). 1H NMR (400 MHz, CDCl$_3$) δ 11.51 (s, 1H), 7.84 (s, 1H), 7.45 (dd, $J=1.8$, 0.8 Hz, 1H), 7.20 – 7.24 (m, 4H), 6.97 (s, 1H), 6.60 – 6.56 (m, 1H), 6.50 (br s, 1H), 6.48 (dd, $J=3.4$, 1.9 Hz, 1H), 5.07 (s, 4H). 13C NMR (100 MHz, CDCl$_3$) δ 170.6, 162.4, 156.7, 151.6, 141.3 (3), 128.1 (2), 127.0 (2), 122.8, 112.0, 110.5, 109.1, 106.1, 105.3, 54.0 (2). HRMS (ESI+) m/z [M+H$^+$] calcd for C$_{19}$H$_{16}$NO$_4$, 322.1079, found 322.1086.

III.7. References

64. Wassenberg, J. J.; Reed, R. C.; Nicchitta, C. V. Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. II. Ligand-mediated activation of GRP94 molecular chaperone and peptide binding activity. J. Biol. Chem. 2000, 275, 22806-22814.

Chapter IV

Development of the First Hsp90β-Selective N-Terminal Inhibitor

IV.1 Introduction

Heat shock protein 90 (Hsp90) is responsible for maintaining cellular homeostasis by assisting in the maturation of nascent polypeptides and the rematuration of the denatured proteins into their biologically active conformations.\(^1\)\(^-\)\(^5\) There are more than 200 protein substrates (clients) that are dependent upon Hsp90 for their maturation and proper function. Many of these client proteins are signaling proteins that can lead to tumor initiation, tumor progression, and metastasis.\(^6\)\(^-\)\(^8\) In fact, Hsp90’s clients are associated with all 10 hallmarks of cancer; hence, Hsp90 facilitates cancer cell growth and survival.\(^9\)\(^,\)\(^10\) Hsp90 also folds many of the oncogenic and mutant client proteins, which helps to explain the increased dependency of tumor cells on Hsp90.\(^11\)\(^,\)\(^12\) Increased dependency on Hsp90 correlates directly with increased Hsp90 levels in most cancers.\(^13\)\(^-\)\(^16\) As shown previously, Hsp90 exists primarily in an activated heteroprotein complex in cancer cells, which exhibits >200-fold higher affinity for ATP than the homodimer in normal cells.\(^17\) Similarly the heteroprotein complex also exhibits greater ATPase activity.\(^17\) Unlike conventional chemotherapy agents that target a single oncogene, enzyme, or receptor, Hsp90 inhibition simultaneously disrupts of multiple signaling nodes essential to cancer, and thus, mimics combination therapy through a single target.\(^18\)\(^-\)\(^21\) Since Hsp90 inhibitors accumulate in tumor cells more effectively than normal tissues, Hsp90 inhibitors can exhibit a broad therapeutic window. As a result, Hsp90 has become a highly sought after target for the development of anti-tumor agents, and has led to 17 clinical candidates.\(^21\)\(^-\)\(^23\) However, the clinical progress of these inhibitors has been hampered by modest efficacy, escalated dosing, and adverse effects that include cardiotoxicity, hepatotoxicity, bone metastasis, and ocular toxicity.\(^24\)\(^-\)\(^28\)
All of the Hsp90 inhibitors under clinical investigation bind the N-terminal nucleotide binding pocket and exhibit pan-Hsp90 inhibitory activity against all four Hsp90 isoforms; Hsp90α (cytosolic and inducible), Hsp90β (cytosolic and constitutively expressed), Grp94 (endoplasmic reticulum located) and TRAP1 (mitochondria localized).

This simplistic model of pan-Hsp90 inhibition for the treatment of cancer requires significant modification to address the detriments associated with current Hsp90 inhibitors. The expression of Hsp90 isoforms can vary among cancers, which suggests that a cancer’s dependence upon individual isoforms also varies. In addition, Hsp90 isoforms exhibit specificity for client protein substrates and interacts with co-chaperones, which suggests that Hsp90 isoforms could be targeted individually. Consequently, isoform-selective Hsp90 inhibitors are likely to provide a therapeutic opportunity to minimize off-target toxicity by limiting the number of clients affected via Hsp90 inhibition. Among the four isoforms, some specific roles for Grp94 and the consequences of Grp94-inhibition have been reported. Isoform-dependent clients of Grp94 (e.g. mutant myocilin, immunoglobulins, TLR1, TLR2, TLR9, IGF-1, IGF-2) have been identified and Grp94 inhibitors have shown efficacy for the potential treatment of glaucoma, multiple myeloma, and cancer metastasis. The two cytosolic isoforms, Hsp90α and Hsp90β, are the most relevant for the treatment of cancer as majority of oncogenic proteins are dependent upon them for proper function. Some isoform-selective clients of the two cytosolic isoforms have recently been identified, and proteomic studies have identified survivin, Raf, and the hERG channel as Hsp90α-dependent clients. c-IAP1 and CXCR4 are dependent upon Hsp90β. However, they have not been confirmed via pharmacological studies. Collectively, these prior studies establish that both cytosolic isoforms modulate substrates associated with different oncogenic pathways, supporting the hypothesis that selective inhibition
of each Hsp90 isoform represents a new approach to improve the therapeutic potential of Hsp90 inhibitors. Since the hERG channel is dependent upon the Hsp90α isoform, Hsp90β-selective inhibitors may avoid the cardiotoxicity often observed in clinical trials with some pan-Hsp90 inhibitors. In addition, Hsp90β-specific inhibitors would enable the identification of Hsp90β-selective clients and provide data to identify the cancers that are driven by Hsp90β-dependent substrates.

IV.1.1. Hsp90β

The Hsp90β isoform is located in the cytosol along with the Hsp90α isoform and is encoded by the HSPAB1 gene.29, 49 Hsp90β is constitutively expressed, and its expression can be induced, but to a lesser extent than Hsp90α.49 Overexpression of Hsp90β has been associated with chronic tumors.33, 50-54 Most studies do not differentiate between the roles of these two cytosolic isoforms but some biochemical and functional differences have been reported.24, 29, 49, 55 The Hsp90β-isoform plays a key role in early embryonic development, germ cell maturation, cytoskeleton stabilization, cellular transformation, and long term cellular adaptation.55-61 Hsp90α is involved with growth promotion, cell cycle regulation, and stress-induced cytoprotection.62, 63 Hsp90β interacts with P-glycoproteins, therefore, its expression has been associated with drug-resistance.64 A few Hsp90β-dependent oncogenic clients have been identified, including CXCR4 and CDK6 (unpublished data). Client proteins, co-chaperones and partner proteins interacts differently with each cytosolic isoform. For example, the Hsp90 co-chaperone, GCUNC45, interacts preferentially with Hsp90β.65 Recently, Neckers and co-workers studied ligand and client protein binding to Hsp90β and Hsp90α.40 Using various Hsp90 mutants, they showed that Hsp90 clients manifest different affinity for both cytosolic isoforms.
Collectively, these prior studies establish specific roles of Hsp90β in carcinogenesis and underline the need to develop Hsp90β-selective inhibitors.

IV.2. Differences in N-Terminal ATP-Binding Pocket of Hsp90 Isoforms

Greater than 85% identity is shared between in the N-terminal ATP-binding sites of the Hsp90 isoforms, which has limited the development of isoform-selective inhibitors.\(^\text{29, 49}\) Since Grp94 shares the least identity amongst the Hsp90 isoforms, it was the first sought for the development of isoform-selective inhibitors. Grp94-selective inhibitors have been developed and are currently being evaluated for various therapeutic applications.\(^\text{21, 44, 45, 66, 67}\) However, Hsp90α and Hsp90β are >95% identical within the N-terminal binding site, suggesting that selective inhibition of these isoforms would be more challenging. Sequence alignment of the N-terminal domain of the Hsp90 isoforms reveals (Figure 35A) that there are only two amino acids that differ between Hsp90α versus Hsp90β. As shown in Figure 35B, there is a network of water-mediated hydrogen bonds that align at the bottom of the pocket surrounding the phenols of radicicol bound to each Hsp90 isoform. The carbonyl and 4-phenol make hydrogen bonds with Thr184 and Asp93 (numbered for Hsp90β) through these water molecules, which are conserved amongst the majority of Hsp90 co-crystal structures and mediate hydrogen bonding interactions between ligands and Hsp90 isoforms. Leu48, Lys58, Asp93, Ile96, Gly97, Met98, Leu107, Thr109, Phe138, Tyr139, Trp162, and Thr184 (numbered for Hsp90β) represent the key amino acids within the N-terminal ATP-binding pocket and are conserved amongst the four isoforms. Overlay of the Hsp90α and Hsp90β co-crystal structures revealed that the ATP binding pocket in Hsp90β contains Ala52 and Leu91, in lieu of Ser52 and Ile91, which are present in Hsp90α. The Grp94 and Trap1 binding pockets contain Val147 and Ile156 in lieu of Leu91, respectively. Based on these observations, we hypothesized that an Hsp90β-selective inhibitor should exhibit substitutions at the 4-position of
the resorcinol ring that creates an unfavorable steric interactions with the bulkier side chains present in Hsp90α, Grp94, and Trap-1.

IV.3. Development of Resorcinol Analogues Modified at the 4-Position

IV.3.1. Design of Resorcinol Analogues Modified at the 4-Position for Selective Hsp90β-Inhibition

To probe the subtle differences about the 3- and the 4-position of the resorcinol ring, modifications to the 4-position were pursued. Based on prior experience with the resorcinol-isoindoline scaffold (Chapter III), it was chosen for the development of new Hsp90β-selective
Since modification at the 4-position were sought, initial investigation began with compound 72 (Figure 36a), which lacks the 4-phenol. Hsp90β inhibitory activity of compound 72 was confirmed via a fluorescence polarization assay and manifested an apparent K_d of 1.63 μM against Hsp90β. The 2-phenol and the amide moiety of compound 72 mimic the corresponding 2-
phenol and lactone present in radicicol. The 5-isopropyl produces hydrophobic interactions with Phe138 and Val186.

Molecular modeling studies suggested that the incorporation of bulky substituents at the 4-position would impart greater selectivity for Hsp90β. Therefore, 73–82 were proposed to investigate the differences between Hsp90β and other Hsp90 isoforms. As shown in Figure 36b & 36c, 4-cyanomethylene (73) was proposed to accommodate within the ATP-binding pocket of Hsp90β. The cyanomethyl would not be tolerated in the case of Hsp90α and Grp94, due to unfavorable steric interactions with Ile91 in Hsp90α (Figure 36b), and Val187 in Grp94 (Figure 36c). In addition, the nitrile appears to displace a conserved water molecule in Hsp90, which would increase the entropy of binding and thereby enhance affinity. The conserved water molecules are located in a semi-hydrophobic environment comprising of Leu48, Leu91, Ala52 and Val186.

IV.3.2. Synthesis of 4-Modified Resorcinol Analogues

IV.3.2.1. Synthesis of Compound 72

![Scheme 10. Synthesis of compound 72.](image)

Compound 72 was synthesized starting from commercially available 5-bromo salicylic acid, 83.68, 69 Carbodiimide coupling of the acid with isoindoline produced intermediate 84 (Scheme 10). The isopropyl group at the 5-position was introduced via a Suzuki coupling reaction of 84 with potassium isopropenyl trifluoroborate and subsequent reduction of the olefin afforded 72.
IV.3.2.2 Syntheses of 73–82

For the synthesis of compounds 73–82, a revised synthetic scheme allowed for late stage diversification to access the desired analogues (Scheme 11). Compound 74 was envisioned as a common intermediate to 73, and 75–82. As shown in Scheme 11, bromination of 74 would yield the corresponding benzylic bromide (80), which would undergo nucleophilic displacement with the requisite nucleophiles to give 73, 77, and 76. Hydrolysis of the nitrile present in 73 would give access to the corresponding amide, 79. Oxidation of the benzylic alcohol (74), would generate the corresponding aldehyde (78), which could be modified to afford analogues 81 and 82 via Wittig olefination and reduction. In addition, reductive amination of 78 would afford 75.
Synthesis of 74 commenced with bromination of methyl 2-methoxy-4-methylbenzoate (85, Scheme 12), which occurred in a regioselective manner to give the corresponding 5-bromo product, 86. Benzylic bromination of 86 with N-bromosuccinimide and azaisobutyronitrile afforded 87. Subsequent hydrolysis of the benzyl bromide (87) using calcium carbonate gave the corresponding benzylic alcohol, 88.\(^{70}\) 88 was converted to methoxy methyl ether (89) using methoxymethyl chloride, and N,N-diisopropylethylamine. Ester 89 was hydrolyzed under basic conditions to provide the corresponding acid, 90, which upon 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI)-mediated coupling with isoindoline gave 91. Isopropyl group at the 5-
position was introduced as described previously. Demethylation of 92 enlisting boron tribromide gave the bromomethyl containing compound 80, as the major product, the corresponding benzylic alcohol, 74, was also isolated as a minor product during this transformation. Nucleophilic displacement of the benzylic bromide in 80 with methyl amine and methanol gave 76 and 77, respectively (Scheme 13). Similarly, 80 was further modified via potassium cyanide and 18-crown-6 to furnish 73, which upon basic hydrolysis gave the amide, 79.

![Scheme 13. Modification of benzyl bromide analogue 80.](image)

Oxidation of the benzylic alcohol (74) to the corresponding benzaldehyde did not work (using Dess-Martin periodinane, tetrapropylammonium perruthenate, manganese dioxide), because the benzylic positions of the isoindoline were also readily oxidized (Scheme 12). Therefore, an alternative route was devised, and oxidation of the benzylic alcohol was accomplished before introduction of the isoindoline (Scheme 14). Intermediate 88 was coupled with potassium isopropyl trifluoroborate as previously described, to give 93. Compound 93 was
oxidized using manganese dioxide (MnO₂) to give the corresponding aldehyde, which upon hydrolysis of ester followed by carbodiimide coupling with isoindoline afforded 94. Hydrolysis of ester 93 and subsequent coupling with isoindoline furnished aldehyde, 94. However, chemoselective reduction of the alkene using diphenyl sulfide did not provide the desired product. Therefore, reduction of the alkene prior to oxidation of the alcohol was sought out. The desired intermediate 97 was obtained in three steps from alcohol 88. The isopropyl group was incorporated
as previously described to give benzyl alcohol, 96, which underwent oxidation via manganese dioxide to give aldehyde 97.

Hydrolysis of the ester present in 97 did not proceed under basic conditions. Analysis of the side products revealed the likely generation of a carbanion that results from deprotonation of the benzylic hydrogen at the 5-position. Consequently, a milder condition was used to hydrolyze the ester of 97. Prior studies by Nicolaou and co-workers have demonstrated that trimethyl tinhydride can hydrolyze aromatic esters in the presence of other base sensitive moieties.71 Therefore, the methyl ester 97 was subjected to these conditions, which provided the corresponding acid, 98, in good yield. Carbodiimide coupling of the acid gave 95, which upon cleavage of the methyl ether using boron tribromide furnished the desired analogue, 78. Aldehyde 95 served as a common intermediate for the syntheses of the analogues 75, 81, and 82 (Scheme 14). Treatment of 95 with benzyl carbamate, trifluoroacetic acid, and triethylsilane gave the corresponding carbamate, which upon hydrogenolysis under a hydrogen atmosphere and in the presence of palladium on carbon, afforded the desired benzyl amine. For the preparation of 81, the aldehyde (95) was converted to the corresponding alkyne via utilization of the Bestmann-Ohira reagent. Hydrogenation of the alkyne followed by methyl ether cleavage furnished the 4-ethyl analogue, 81. Similarly, the \textit{iso}-butyl analogue was synthesized from aldehyde 94 by a Wittig reaction enlisting isopropyl triphenylphosphonium iodide and butyl lithium, followed by reduction of the corresponding alkene.

IV.3.3. Evaluation of 4-Modified Resorcinol Analogues

The synthesized analogues were evaluated via a fluorescence polarization assay. Analogue 73 exhibited an apparent K_d of 2.27 μM and 0.97 μM against Hsp90\textalpha{} and Hsp90\textbeta{}, respectively (Table 13). The selectivity and potency of benزالdehyde, 78, was better than the corresponding
benzyl alcohol 74 and benzyl amine 75. The benzaldehyde analogue a manifested an apparent K_d of 240 nM for Hsp90β and 5-fold selectivity versus Hsp90α. This data suggests that aldehyde may act as a hydrogen bond accepter. The methoxy methyl ether 76 did not bind Hsp90β. Interestingly, benzyl bromide 80 manifested increased affinity and selectivity for the Hsp90β. Its bioisosteric replacement by an isopropyl group (82) decreased affinity. Overall, some analogues did maintain or improve affinity for Hsp90β compared to compound 72. The lack of selectivity of 72 versus Hsp90α was surprising. Collectively, these results suggested the potential of alternative binding modes for these analogues. To better understand the binding interactions of 73 and 78 with Hsp90β; co-crystal structures of these compounds bound to Hsp90β were solved in collaboration with Dr. Robert Matts at Oklahoma State University. Examination of the co-crystal structures revealed some rationale for the poor selectivity manifested by these molecules.

Table 13. The Evaluation of 4-resorcinol analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_d Hsp90α ((\mu M))</th>
<th>K_d Hsp90β ((\mu M))</th>
<th>Fold-selectivity for Hsp90β</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>3.21 \pm 0.43</td>
<td>1.63 \pm 0.04</td>
<td>2</td>
</tr>
<tr>
<td>73</td>
<td>2.28 \pm 0.12</td>
<td>0.97 \pm 0.03</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td>4.21 \pm 0.62</td>
<td>1.97 \pm 0.07</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>>50</td>
<td>>50</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>>50</td>
<td>>50</td>
<td>-</td>
</tr>
<tr>
<td>77</td>
<td>>100</td>
<td>23.19 \pm 1.07</td>
<td>4</td>
</tr>
<tr>
<td>78</td>
<td>0.24 \pm 0.08</td>
<td>1.21 \pm 0.12</td>
<td>-</td>
</tr>
<tr>
<td>79</td>
<td>15.21 \pm 1.15</td>
<td>5.50 \pm 0.51</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>4.98 \pm 0.97</td>
<td>0.73 \pm 0.11</td>
<td>7</td>
</tr>
<tr>
<td>81</td>
<td>>50</td>
<td>>50</td>
<td>-</td>
</tr>
<tr>
<td>82</td>
<td>>50</td>
<td>>50</td>
<td>-</td>
</tr>
</tbody>
</table>

As shown in Figure 37a, the cyanomethylene (73) side chain adopts a backward conformation instead of the expected forward orientation, which is attributed to the free rotation of the methylene group within the binding pocket. This binding mode could not be predicted in the original molecular modeling studies, as it would have caused a steric clash with the Asn46
residue. The co-crystal structure revealed that the side chain of Asn46 shifts 0.6 Å to accommodate the cyanomethylene group (Figure 37c and 37d) to produce a hydrogen bond. The carbonyl of 78 also binds in a similar conformation and interacts favorably with Asn46. The 2-phenol of both compounds maintained interactions with Asp88 and Thr179. Only two other co-crystal structures of Hsp90β exist (none with the resorcinol core). Therefore, the co-crystal structure of 73 and 79 were highly beneficial and subsequently used for the design of new Hsp90β-selective inhibitors.

IV.4. Development of a 3-Modified Resorcinol Analogue

IV.4.1. Design of a 3-Substituted Resorcinol Analoques for Selective Hsp90β-Inhibition

Unfortunately, modification of the 4-position did not increase selectivity, and therefore, an alternative strategy was devised based on the newly obtained co-crystal structures of 73 and 78 bound to Hsp90β. It was proposed that the introduction of the substituents at the 3-position would allow for exploitation of both the amino acids that differ between Hsp90α (Ser52, Ile91) and Hsp90β (Ala, Leu) and manifest increased selectivity while simultaneously projecting substituents to the small exclusive sub-pocket present in Hsp90β. Molecular modeling studies suggested that the inclusion of a hydroxymethylene group at the 3-position would produce selectivity for Hsp90β. The methylene group would sterically clash with Ser52 in Hsp90α, while the hydroxyl group would produce a steric clash with Ile91 in Hsp90α. Similarly, the introduction of a hydroxymethylene group would produce unfavorable interactions with Val148 and prohibit Grp94 binding. In addition, the hydroxyl group would likely displace a conserved water molecule in this region, and therefore provide an entropic driving force.
Figure 37. Co-crystallization of 4-modified resorcinol analogues. (a) Co-crystal structure of 73 bound Hsp90β; (b) co-crystal structure of 79 bound Hsp90β; (c) Movement of Asn46 allows for backward bending of nitrile, Previous position of Asn46 is represented in pink. Asn46 in co-crystal structure of 73 is represented in blue. (d) two-dimensional representation of binding modes of 73.
IV.4.2. Synthesis of a 3-Substituted Resorcinol Analogue

Synthesis of the proposed analogue 102 commenced via 103, which was prepared following a literature procedure. Formylation of 103 via the Duff reaction gave the 3-formyl resorcinol intermediate, 104 (Scheme 15). Reduction of aldehyde 104 with sodium borohydride furnished the desired product 102.

Scheme 15. Synthesis of 102.

IV.4.3. Evaluation and Co-Crystallization of 102
Upon preparation of analogue 102, it was evaluated via a fluorescence polarization and found to manifest an apparent K_d of 4.27 µM for Hsp90β. More importantly, it manifested selectivity (>24-fold) over other isoforms (Figure 39). The co-crystal structure of the compound 102 (KUNB30) bound to Hsp90β was then solved in collaboration with Dr. Robert Matts, which suggested that the benzyl alcohol has displaced a conserved water molecule. The benzylic alcohol made hydrogen bonding interactions with the backbone of Leu43.

IV.5. Development of KUNB31

IV.5.1 Design of KUNB31

Flexibility associated with the hydroxymethylene group in KUNB30 exhibits a significant entropic penalty upon binding. Therefore, it was proposed that the introduction of a ring constrained variant would reduce the entropic penalty and enhanced binding affinity. Using the co-crystal structure of KUNB30, it was envisioned that introduction of a heterocyclic ring system that joined the 3- and 4-positions of the resorcinol ring would illicit such properties. Therefore, benzoisoxazole 105 was designed and sought after for biological evaluation.
IV.5.2. Synthesis and Evaluation of KUNB31

Analogue 105 was synthesized from 104 enlisting triflic acid and sodium azide (Scheme 16). The two regeoisomeric isooxazole products were separated by column chromatography, and the structure of 105 was confirmed by X-ray crystallography. Analogue 105 (KUNB31) manifested an apparent K_d of 180 nM against Hsp90β, and exhibited ~50-fold selectivity versus Hsp90α and Grp94.

IV.6. Cellular Studies

IV.6.1. Anti-Proliferation Activity

Once the Hsp90β-selective inhibitors, KUNB30 and KUNB31, were identified, cellular studies commenced to evaluate the effect of Hsp90β-inhibition on cancer cell lines (Table 14). Growth inhibitory activity manifested by these compounds was evaluated against NCI-H23 (lung cancer), MCF-7 (breast cancer), and SkBr3 (breast cancer) cells. KUNB31 manifested an IC$_{50}$'s of 6.74 ± 1.10μM, 28.27 ± 1.47μM and 38.21 ± 2.75 μM against NCI H23, MCF-7, and Skbr3 cells, respectively. KUNB30 was more efficacious in cells and manifested an IC$_{50}$ of 3.90 ± 0.33, 13.67 ± 1.46, 9.13 ± 1.03 against NCI H23, MCF-7, and Skbr3 cells, respectively. These studies

\[\text{Scheme 16. (a) Synthesis, evaluation; and (b) X-ray crystal structure of KUNB31.} \]
confirmed that selective inhibition of the Hsp90β isoform manifests growth inhibitory activity against cancer cells.

Table 14. Anti-proliferative activity of **KUNB30** and **KUNB31** against cancer cells

<table>
<thead>
<tr>
<th>Cancer Cell Line</th>
<th>KUNB30 (µM)</th>
<th>KUNB31 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI-H23</td>
<td>3.90 ± 0.33</td>
<td>6.74 ± 1.10</td>
</tr>
<tr>
<td>MCF-7</td>
<td>13.67 ± 1.46</td>
<td>28.27 ± 1.47</td>
</tr>
<tr>
<td>SkBr3</td>
<td>9.13 ± 1.03</td>
<td>38.21 ± 2.75</td>
</tr>
</tbody>
</table>

IV.6.2. Western Blot Analyses

Figure 41. Western blot analyses of **KUNB31** in NCI-H23 cell line.

After determination of anti-proliferation activity, western blot analyses were conducted on NCI-H23 cell lysates that were treated with **KUNB31**. Since, Hsp90 inhibition induces the degradation of client proteins via ubiquitin-proteasome pathway, levels of Hsp90-dependent clients were evaluated upon administration of **KUNB31** in NCI-H23 cells. Additionally, immunoblots for Hsp90 and Hsp70 were also obtained to evaluate the induction of the heat-shock response. As shown in Figure 41, **KUNB31** induced the degradation of Hsp90β–dependent clients c-IAP1, CXCR4, and CDK6 without the induction of Hsp70 and Hsp90 levels. Similar to genetic knockdown studies, Hsp90α-dependent clients Raf and survivin were less sensitive to Hsp90β-
inhibition. Degradation of non-selective client Erk5 was also observed. These results suggest that Hsp90β inhibition limits the detrimental induction of the heat shock response, and hence, represents an alternative approach to pan-Hsp90 inhibition.

IV.7. Conclusions and Future Directions

Using a structure-based design, the first small molecule N-terminal inhibitors of the Hsp90β isoform have been developed. These inhibitors manifest anti-proliferation activity against cancer cell lines, and induce the degradation of Hsp90 client proteins. Hence, Hsp90β inhibitors represent a new class of Hsp90 inhibitors for the treatment of cancer. In addition, Hsp90β-selective inhibitors will serve as useful probes to identify of Hsp90β-dependent clients and enable the identification of specific roles played by individual isoforms.

Induction of the pro-survival heat shock response has limited the clinical success of current pan-Hsp90 inhibitors. Induction of heat shock response results in higher levels of Hsp90, which leads to decreased occupancy of the target by such inhibitors. Consequently, the induction of heat shock response results in poor efficacy by Hsp90 inhibitors and leads to dosing and scheduling complications. In our preliminary studies, Hsp90β-inhibitors did not exhibit these detrimental activities, which suggests that selective Hsp90β inhibition is a useful alternative to pan-Hsp90 inhibition.

Prior to this work, there were only two other co-crystal structure of Hsp90β bound to an inhibitor reported. This work produced co-crystal structures of three inhibitors bound to Hsp90β, which can be used to design future isoform-selective inhibitors. The Co-crystal structure of KUNB30 bound to Hsp90β represents the first co-crystal structure of a resorcinol based inhibitor bound to Hsp90β. Co-crystallization of KUNB31 is underway in collaboration with the Robert Matts Laboratory, at Oklahoma State University.
IV.8. Methods and Experiments

All reactions were performed in oven-dried glassware under argon atmosphere unless otherwise stated. Dichloromethane (DCM), tetrahydrofuran (THF), and toluene were passed through a column of activated alumina prior to use. Anhydrous methanol, acetonitrile, N,N-dimethylformamide (DMF), and carbon tetrachloride (CCl4) were purchased and used without further purification. Flash column chromatography was performed using silica gel (40−63 μm particle size). The 1H (500 and 400 MHz) and 13C NMR (125 and 100 MHz) spectra were recorded on 500 and 400 MHz spectrometer. Data are reported as p = pentet, q = quartet, t = triplet, d = doublet, s = singlet, br s = broad singlet, m = multiplet; coupling constant(s) in Hz. Infrared spectra were obtained using FT/IR spectrometer. High resolution mass spectral data were obtained on a time-of-flight mass spectrometer and analysis was performed using electrospray ionization.

(5-Bromo-2-hydroxyphenyl)(isoindolin-2-yl)methanone (84): 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (5.20 g, 27.64 mmol, 2.0 eq.) was added to a stirred solution of 83 (3.0 g, 13.82 mmol, 1 eq.), isoindoline hydrochloride (3.22 g, 20.73 mmol, 1.5 eq.), 1-hydroxybenzotriazole (3.73 g, 27.64 mmol, 2 eq.) N,N-diisopropylethylamine (4.81 mL, 27.64 mmol, 2.0 eq.) in dichloromethane (150 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (120 mL). The organic layer was washed with 1 M hydrochloric acid solution (120 mL) and saturated sodium chloride solution (120 mL), dried over sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO2, 1:4 hexanes/ethyl acetate) to afford 84 (3.24 g, 77.9 %) as a white
amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 10.92 (s, 1H), 7.73 (d, J = 2.2 Hz, 1H), 7.48 (dd, J = 8.8, 2.4 Hz, 1H), 7.34 (s, 4H), 6.94 (d, J = 8.8 Hz, 1H), 5.10 (s, 4H). 13C NMR (100MHz, CDCl$_3$) δ 169.4, 159.4, 136.1 (2), 134.8, 130.5, 128.2 (2), 122.8 (2), 120.2, 118.7 110.2, 55.8, 53.3. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$BrNO$_2$, 318.0130, found 318.0119.

(2-Hydroxy-5-isopropylphenyl)(isoindolin-2-yl)methanone (72): A biotage microwave vial was charged with 84 (1.0 g, 3.42 mmol, 1 eq.), triethylamine (0.62 mL, 4.44 mmol, 1.3 eq.), [1,1’ Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (278 mg, 0.34 mmol, 0.1 eq.), potassium isopropenyltrifluoroborate (604 mg, 4.10 mmol, 1.2 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of 2-propanol (17 mL) by syringe. The resulting mixture was heated at 100 °C for 6 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO$_2$, 1:4 ethyl acetate/hexanes) to afford (2-hydroxy-5-(prop-1-en-2-yl)phenyl)(isoindolin-2-yl)methanone, which was used further as obtained. Palladium on carbon (10%) was added to a solution of (2-hydroxy-5-(prop-1-en-2-yl)phenyl)(isoindolin-2-yl)methanone in ethyl acetate (25 mL). The suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford 72 (652 mg, 67.5 %) as a white amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 10.44 (s, 1H), 7.40 (d, J = 2.2 Hz, 1H), 7.28 (s, 4H), 6.92 (d, J = 8.5 Hz, 1H), 5.06 (s, 4H), 2.88 (hept, J = 7.0 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 171.4, 157.9, 138.8, 136.1 (2), 131.5, 128.0 (2), 125.7, 122.8 (2), 118.0, 117.1,
Methyl 5-bromo-2-methoxy-4-methylbenzoate (86): A solution of bromine in chloroform was added dropwise to a solution of 85 (10.0 g, 55.4 mmol, 1.0 eq.) in chloroform at 0 °C (250 mL). The resulting mixture was stirred at rt for 4 h before quenching with 10% aqueous solution of sodium thiosulfate (200 mL). The organic layer was washed with saturated sodium bicarbonate solution (2 × 200 mL) and saturated sodium chloride solution (200 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:9 ethyl acetate/hexanes) to afford 86 (12.81 g, 89.2 %) as a light brown amorphous solid.

\[
{^1}\text{H NMR (400 MHz, CDCl}_3\text{): }\delta 7.93 (dt, J = 7.1, 4.0 \text{ Hz, } 1\text{H}), 6.82 (t, J = 4.0 \text{ Hz, } 1\text{H}), 3.97 - 3.76 (m, 6\text{H}), 2.38 (dt, J = 6.5, 4.0 \text{ Hz, } 3\text{H}).
\]

\[
{^{13}}\text{C NMR (125 MHz, CDCl}_3\text{): }\delta 165.2, 158.5, 144.0, 135.2, 118.9, 114.8, 114.6, 56.3, 52.2, 23.7.
\]

HRMS (ESI+) m/z [M + H⁺] calcd for C₁₀H₁₂BrO₃, 258.9969, found 258.9973.

Methyl 5-bromo-4-(bromomethyl)-2-methoxybenzoate (87): A solution of 86 (12.8 g, 48.8 mmol), N-bromosuccinimide (9.68 g, 54.78 mmol, 1.1 eq.), azobisisobutyronitrile (1.64 g, 9.96 mmol, 0.2 eq.) in carbon tetrachloride was heated at 70 °C. After 14 h, solvent was removed and the residue purified by flash chromatography (SiO₂, 1:9 ethyl acetate/hexanes) to afford 87 (13.92 g, 71.3 %) as a white amorphous solid.

\[
{^1}\text{H NMR (500 MHz, CDCl}_3\text{): }\delta 7.91 (s, 1\text{H}), 7.60 (s, 1\text{H}), 7.00 (s, 1\text{H}), 3.99 (s, 3\text{H}), 3.90 (s, 3\text{H}).
\]

\[
{^{13}}\text{C NMR (125 MHz, CDCl}_3\text{): }\delta 164.7, 159.0, 144.8, 135.5,
\]
123.0, 114.6, 109.5, 56.7, 52.7, 39.3. HRMS (ESI+) m/z [M + H+] calcd for C_{10}H_{11}Br_{2}O_{3}, 336.9075, found 336.9079.

Methyl 5-bromo-4-(hydroxymethyl)-2-methoxybenzoate (88): Calcium carbonate (11.3 g, 113.4 mmol, 3 eq.) was added to a solution of 87 (12.8 g, 37.8 mmol, 1 eq.) in dioxane (100 mL) and water (100 mL). The resulting mixture was heated at 120 °C in a sealed tube for 16 h. The reaction mixture was cooled to rt, filtered, and concentrated. The residue was purified by flash chromatography (SiO_{2}, 1:5 ethyl acetate/hexanes) to afford 88 (8.2 g, 79.2%) as a colorless amorphous solid. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.9 (s, 1H), 7.2 (d, \(J = 0.9\) Hz, 1H), 4.7 (dd, \(J = 5.7, 1.0\) Hz, 2H), 3.9 (s, 3H), 3.9 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 165.5, 159.0, 145.7, 135.3, 120.0, 111.9, 111.3, 64.8, 56.5, 52.5. HRMS (ESI+) m/z [M + H\(^+\)] calcd for C_{10}H_{12}BrO_{4}, 274.9919, found 274.9923.

Methyl 5-bromo-2-methoxy-4-((methoxymethoxy)methyl)benzoate (89): A solution of 88 (3.2 g, 11.63 mmol, 1.0 eq.) in dichloromethane (116 mL) was cooled to 0 °C before the addition of \(N,N\)-diisopropylethylamine (12.13 mL, 69.79 mmol, 6.0 eq.) and 6M solution of chloromethoxymethyl ether (11.8 ml, 69.79 mmol, 6.0 eq.). The reaction was allowed to reach at rt and stirred for 14 h before quenching with saturated sodium bicarbonate solution (60 mL). The aqueous layer was extracted with dichloromethane (2 × 60 mL) and the combined organic layers were washed with saturated sodium chloride solution (150 ml), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:49
acetone/dichloromethane) to afford 89 (2.82 g, 76.1%) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (s, 1H), 7.18 (d, $J = 0.9$ Hz, 1H), 4.80 (s, 2H), 4.64 (d, $J = 0.9$ Hz, 2H), 3.93 (s, 3H), 3.89 (s, 3H), 3.44 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.4, 158.9, 143.4, 135.4, 120.3, 112.4, 111.8, 96.6, 68.9, 56.6, 55.9, 52.4. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{12}$H$_{16}$BrO$_5$, 319.0181, found 319.0187.

5-Bromo-2-methoxy-4-((methoxymethoxy)methyl)benzoic acid (90): Lithium hydroxide monohydrate (5.37 g, 128.0 mmol, 10.0 eq.) was added to a solution of 89 (4.08 g, 12.8 mmol, 1 eq.) in a solvent mixture of tetrahydrofuran (43 mL), water (43 mL), methanol (43 mL). The resulting mixture was stirred at rt for 16 h and concentrated. The residue was treated with 1 M hydrochloric acid and pH was adjusted to 2. The resulting suspension was extracted with ethyl acetate (3 \times 100 mL), the combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered and concentrated to afford 90 (3.26 g, 83.2%) as a light brown solid. 1H NMR (500 MHz, CDCl$_3$) δ 10.59 (s, 1H), 8.33 (s, 1H), 7.30 (s, 1H), 4.83 (s, 2H), 4.67 (d, $J = 0.9$ Hz, 2H), 4.12 (s, 3H), 3.46 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 164.1, 157.5, 145.5, 137.1, 117.8, 113.9, 111.6, 96.7, 68.7, 57.3, 56.0. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{11}$H$_{14}$BrO$_5$, 305.0025, found 305.0028.

(5-Bromo-2-methoxy-4-((methoxymethoxy)methyl)phenyl)(isoindolin-2-yl)methanone (91): 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.25g, 6.54 mmol, 2.0 eq.) was added to a
stirred solution of 90 (1.0 g, 3.27 mmol, 1 eq.), isoindoline hydrochloride (663 mg, 4.26 mmol, 1.3 eq.), 1-hydroxybenzotriazole (1.0 g, 6.54 mmol, 2 eq.) N,N-diisopropylethylamine (1.72 mL, 9.81 mmol, 3.0 eq.) in dichloromethane (33 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (30 mL). The organic layer was washed with 1 M hydrochloric acid solution (30 mL) and saturated sodium chloride solution (30 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethylacetate) to afford 91 (1.22 g, 91.8%) as a colorless oil.

\(^1\)H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.37 – 7.26 (m, 3H), 7.19 – 7.12 (m, 2H), 4.99 (s, 2H), 4.82 (s, 2H), 4.68 (s, 2H), 4.62 (s, 2H), 3.88 (s, 3H), 3.48 (s, 3H). HRMS (ESI+) m/z [M + H\(^+\)] calcd for C₁₁H₁₄BrO₅, 452.1072, found 452.1066.

Isoindolin-2-yl(5-isopropyl-2-methoxy-4-((methoxymethoxy)methyl)phenyl)methanone (92): A biotage microwave vial was charged with 91 (1.0 g, 2.46 mmol, 1 eq.), Tetrakis(triphenylphosphine)palladium (0) (277 mg, 0.24 mmol, 0.1 eq.), cesium carbonate (2.4 g, 7.4 mmol, 3 eq.), and potassium isopropenyltrifluoroborate (427 mg, 2.88 mmol, 1.2 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of tetrahydrofuran (10.8 mL) and water (1.2 mL) by syringe. The resulting mixture was heated at 100 °C for 24 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to afford isoindolin-2-yl(2-methoxy-4-((methoxymethoxy)methyl)-5-(prop-1-en-2-yl)phenyl)methanone, which was used further as
obtained. Palladium on carbon (10%) was added to a solution of Isoindolin-2-yl(2-methoxy-4-
((methoxymethoxy)methyl)-5-(prop-1-en-2-yl)phenyl)methanone in ethyl acetate (25 mL). The
suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad
of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford 92 (530 mg, 58.3
%) as a light brown amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 1H), 7.60
(td, J = 7.6, 1.1 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.21 (s, 1H), 6.94 (s,
1H), 4.94 (s, 2H), 4.67 (s, 2H), 4.63 (s, 2H), 3.70 (s, 3H), 3.37 (s, 3H), 3.05 (h, J = 6.8 Hz, 1H),
1.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 166.3, 155.0, 141.6, 139.0, 138.4, 134.1, 131.6,
128.7, 125.7, 125.4, 125.2, 123.7, 111.2, 96.0, 66.8, 56.1, 55.7, 48.7, 28.4, 24.0 (2). HRMS (ESI+)
m/z [M + Na⁺] calcd for C₂₂H₂₇NO₄Na, 392.1838, found 392.1838.

(4-(Bromomethyl)-2-hydroxy-5-isopropylphenyl)(isoindolin-2-yl)methanone (80): 1 M
solution of boron tribromide (1.22 mmol, 1.22 mL, 2 eq.), was added to a solution of 92 (200 mg,
0.61 mmol) in anhydrous dichloromethane (6.1 ml) at 0 °C. The resulting mixture was stirred at rt
for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer
was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with
saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and
concentrated. The residue was purified by flash chromatography (SiO₂, 1:50 acetone/dichloromethane) to afford 80 (98 mg, 43.7 %) as a white solid. Additionally, compound
74 (38 mg, 20%) was also isolated. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.53 (s, 1H), 7.32 (s, 4H), 6.94
(s, 1H), 5.07 (s, 5H), 4.53 (s, 2H), 3.27 (p, J = 6.8 Hz, 1H), 1.31 (d, J = 6.8 Hz, 5H). ¹³C NMR
(125 MHz, CD$_2$Cl$_2$) δ 170.5, 157.3, 139.9 (2), 138.1 (2), 128.1, 126.3, 123.0, 119.4 (2), 119.1 (2), 118.5, 55.9 (2), 31.0, 24.3 (2). HRMS (ESI+) m/z [M + Na$^+$] calcd for C$_{19}$H$_{20}$BrNO$_2$Na, 374.756, found 374.0769.

2-Hydroxy-4-(hydroxymethyl)-5-isopropylphenyl)(isoindolin-2-yl)methanone (74): 1 M solution of boron tribromide (1.22 mmol, 1.22 mL, 2 eq.), was added to a solution of 92 (200 mg, 0.61 mmol) in anhydrous dichloromethane (6.1 ml) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to afford 74 (38 mg, 20%) as a colorless solid. Additionally, compound 80 (98 mg, 43.7 %) was also isolated as a colorless solid. 1H NMR (400 MHz, CDCl$_3$) δ 10.53 (s, 1H), 7.53 (s, 1H), 7.32 (s, 4H), 7.07 (s, 1H), 5.10 (s, 4H), 4.76 (s, 2H), 3.17 – 3.22 (m, 1H), 1.26 – 1.30 (m, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 171.0, 158.0, 150.2, 143.1, 136.1, 136.4, 129.9, 129.1, 126.8, 126.6, 125.2, 116.9, 116.6, 62.9, 55.8, 53.4, 30.2, 24.5 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{22}$NO$_3$, 312.1600, found 312.1604.
(2-Hydroxy-5-isopropyl-4-(methoxymethyl)phenyl)(isoindolin-2-yl)methanone (76): Sodium methoxide (10.8 mg, 0.20 mmol, 2.5 eq.) was added to a solution of 80 (30 mg, 0.08 mmol, 1 eq.) in anhydrous methanol. The resulting mixture was heated at 60 °C for 8h, before quenching with 1 M hydrochloric acid (2 mL), extracted with ethyl acetate (3 × 3 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 3:10 ethyl acetate/hexanes) to afford 76 (13 mg, 49.9 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.45 (s, 1H), 7.52 (s, 1H), 7.29 (d, J = 19.5 Hz, 4H), 7.02 (s, 1H), 5.09 (s, 4H), 4.50 (s, 2H), 3.43 (s, 3H), 3.14 – 3.46 (m, 1H), 1.28 (d, J = 6.9 Hz, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 157.4, 140.4 (2), 137.0 (2), 127.8, 124.9(2), 122.6, 117.8 (2), 116.6, 72.1, 58.3 (3), 28.0, 24.2 (2). HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₀H₂₃NO₃Na, 348.1576, found 346.1567.

2-(5-Hydroxy-4-(isoindoline-2-carbonyl)-2-isoproplylphenyl)acetonitrile (73): Potassium cyanide (43 mg, 0.66 mmol, 5.0 eq.) was added to a solution of 80 (50 mg, 0.14 mmol, 1.0 eq.) and 18-crown-6 (71 mg, 0.27 mmol, 2.0 eq.) in N,N-dimethylformamide (2.0 mL) at rt. The reaction was stirred for 2 h, diluted with water (20 mL), extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with saturated sodium chloride solution (30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to afford 73 (39.9 mg, 92.5 %) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 7.54 (s, 1H), 7.32 (d, J = 4.6 Hz, 4H), 7.03 (s, 1H), 5.09 (s, 4H), 3.74 (s, 2H), 3.07 (hept, J = 6.9 Hz, 1H), 1.32 (d, J = 6.8 Hz, 6H). ¹³C NMR (100
MHz, CDCl$_3$ δ 170.5, 158.0, 136.5, 135.85 (2) 132.4, 128.1, 125.7 (2), 122.8, 118.6, 117.7, 117.5, 56.2 (2), 29.0, 24.1(2), 21.7. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{20}$H$_{21}$N$_2$O$_2$, 321.1603, found 321.1610.

(2-Hydroxy-5-isopropyl-4-((methylamino)methyl)phenyl)(isoindolin-2-yl)methanone (77):
2.0 M methyl amine in tetrahydrofuran (0.1 mL, 0.20 mmol, 2.5 eq.) was added to a solution of 80 (30 mg, 0.08 mmol, 1 eq.) in tetrahydrofuran (1 mL). The resulting mixture was stirred at rt for 6 h, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:10 methanol/dichloromethane) to afford 77 (8 mg, 28 %) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.43 (s, 1H), 7.32 (d, J = 4.7 Hz, 4H), 6.97 (s, 1H), 5.07 (s, 5H), 3.78 (s, 2H), 3.21 (p, J = 6.8 Hz, 1H), 2.54 (s, 3H), 1.27 (d, J = 6.8 Hz, 7H). 13C NMR (125 MHz, CDCl$_3$) δ 171.1, 157.4, 142.4, 137.2, 136.2, 128.0 (2), 125.0 (2), 122.8 (2), 118.7, 118.1, 55.5, 53.3, 52.7, 36.5, 28.2, 24.4 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{20}$H$_{25}$N$_2$O$_2$, 325.1916, found 325.1904.

2-(5-Hydroxy-4-(isoindoline-2-carbonyl)-2-isopropylphenyl)acetamide (79): 30 % Hydrogen peroxide (0.10 mL, 0.19 mmol, 3.0 eq.) and 2M solution of sodium hydroxide (95 µl, 0.19 mmol, 3.0 eq.) was added to a solution of 73 (20 mg, 0.062 mmol, 1.0 eq.) in a solvent mixture of ethanol (0.5 mL) and dimethyl sulfoxide (0.2 mL). The resulting mixture was stirred for 1 h before the
addition of water (3 mL). The resulting mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparatory TLC (SiO₂, 1:9 acetone/dichloromethane) to give 79 as a colorless amorphous solid (12 mg, 54.4%).

^1^H NMR (500 MHz, CDCl₃) δ 10.6 (s, 1H), 7.6 (s, 1H), 7.3 (d, J = 5.0 Hz, 4H), 6.9 (s, 1H), 5.4 (s, 2H), 5.1 (s, 4H), 3.6 (s, 2H), 3.1 (hept, J = 6.8 Hz, 1H), 1.3 (d, J = 6.8 Hz, 7H).

^1^3^C NMR (125 MHz, CDCl₃) δ 172.7, 170.7, 158.0, 137.9 (2), 137.7, 135.9, 128.2, 126.0 (2), 122.9, 119.8(2), 117.2, 55.9, 53.5, 41.3, 28.9, 24.4 (2). HRMS (ESI+) m/z [M + H^+] calcd for C₂₀H₂₂N₂O₃, 339.1709, found 339.1699.

Methyl 4-formyl-2-methoxy-5-(prop-1-en-2-yl)benzoate (93): A biotage microwave vial was charged with 88 (0.75 g, 2.7 mmol, 1 eq.), tetrakis(triphenylphosphine)palladium(0) (312 mg, 0.27 mmol, 0.1 eq.), cesium carbonate (2.68 g, 8.25 mmol, 3 eq.), and potassium isopropenyltrifluoroborate (440 mg, 2.97 mmol, 1.2 eq.). The tube was sealed with a cap lined with a disposable teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of tetrahydrofuran (21.6 mL) and water (2.4 mL) by syringe. The resulting mixture was heated at 100 °C for 24 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue was purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to afford 93 as a colorless amorphous solid (580 mg, 90 %).

^1^H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.14 (s, 1H), 5.19 (p, J = 1.7 Hz, 1H), 4.82 – 4.76 (m, 1H), 4.69 (s, 2H), 3.84 (d, J = 3.0 Hz, 6H), 2.72 (s, 1H), 2.06 – 1.94 (m, 3H). ^1^3^C NMR
(100 MHz, CDCl$_3$) δ 166.7, 158.4, 144.0, 143.3, 134.2, 131.3, 118.1, 116.1, 110.9, 62.5, 56.1, 52.1, 24.8. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{13}$H$_{17}$O$_4$, 237.1126, found 237.1122.

4-(Isoindoline-2-carbonyl)-5-methoxy-2-(prop-1-en-2-yl)benzaldehyde (94): Manganese dioxide (2.80 g, 24.0 mol, 10.0 eq.) was added to a solution of 93 (550 mg, 2.40 mmol, 1.0 eq.) in dichloromethane (120 mL) at rt. The resulting mixture was stirred at rt for 16 h, filtered through a small pad of celite, eluted with ethyl acetate, and concentrated. Solvent was removed to give the corresponding aldehyde which was used further as obtained. Lithium hydroxide monohydrate (1.0 g, 24.0 mmol) was added to a solution of the aldehyde in methanol (8 mL), tetrahydrofuran (8 mL), and water (8 mL). The resulting mixture was stirred for 14 h at rt. The residue was treated with 1 M hydrochloric acid and pH was adjusted to 2. The resulting suspension was extracted with ethyl acetate (3 × 50 mL), the combined organic layers were washed with saturated sodium chloride solution (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated to afford the corresponding acid as off-white solid which was used further as obtained. Ethenyl-3-(3-dimethylaminopropyl)carbodiimide (1.53 g, 4.80 mmol) was added to a stirred solution of the acid, isoindoline hydrochloride (485 mg, 3.12 mmol), 1-hydroxybenzotriazole (735 mg, 4.8 mmol), N,N-diisopropylethylamine (1.25 mL, 7.20 mmol) in dichloromethane (24 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (20 mL). The organic layer was washed with 1 M hydrochloric acid solution (15 mL) and saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 hexanes/ethyl acetate)
to afford 94 as a light brown amorphous solid (331 mg, 43%). HRMS (ESI+) m/z [M + H+] calcd for C_{20}H_{20}NO_{3}, 322.1443, found 322.1449

![Image of molecule](attachment:image.png)

Methyl 4-(hydroxymethyl)-5-isopropyl-2-methoxybenzoate (96): Palladium on carbon (10%,) was added to a solution of 93 (500 mg, 2.11 mmol) in ethyl acetate (6 mL). The suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford 96 (476 mg, 94.2 %) as a colorless amorphous solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.71 (s, 1H), 7.06 (s, 1H), 4.78 (s, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.06 (hept, \(J = 6.9\) Hz, 1H), 1.22 (d, \(J = 6.8\) Hz, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.1, 157.5, 143.7, 137.9, 128.9, 118.9, 111.1, 62.5, 56.3, 52.2, 28.0, 23.9 (2). HRMS (ESI+) m/z [M + Na\(^+\)] calcd for C_{13}H_{18}O_{4}Na, 261.1103, found 261.1091

![Image of molecule](attachment:image.png)

Methyl 4-formyl-5-isopropyl-2-methoxybenzoate (97): Manganese dioxide (1.64 g, 18.8 mmol, 10.0 eq.) was added to a solution of 96 (450 mg, 1.88 mmol, 1.0 eq.) in dichloromethane at rt. The resulting mixture was stirred at rt for 16 h, filtered through a small pad of celite, eluted with ethyl acetate, and concentrated. The residue was purified by flash chromatography (SiO\(_2\), 1:6 ethyl acetate/hexanes) to afford 97 (367.3 mg, 82.7 %) as a yellow colorless solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.44 (s, 1H), 7.77 (s, 1H), 7.40 (s, 1H), 3.91 (d, \(J = 3.5\) Hz, 6H), 3.84 – 3.75 (m, 1H), 1.30 (d, \(J = 6.9\) Hz, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 190.9, 166.5, 156.8, 143.2, 136.1, 129.6,
125.6, 112.0, 56.4, 52.5, 27.2, 24.2 (2). HRMS (ESI+) m/z [M + H⁺] calcd for C₁₃H₁₇O₄, 237.1127, found 237.1117.

4-Formyl-5-isopropyl-2-methoxybenzoic acid (98): Trimethyltinhydroxide (3.63 g, 20.1 mmol, 4.0 eq.) was added to solution of 97 (1.12 g, 5.03 mmol, 1.0 eq.) in 1,2 dichloroethane (25 mL). The resulting mixture was heated at 75 °C for 50 h, cooled to rt, and concentrated. The residue was suspended in ethyl acetate (100 mL), washed with 1 M hydrochloric acid (3 × 60 mL) and saturated sodium chloride solution (100 mL). The solvent was removed to afford 98 (952 mg, 85.1 %) as a colorless amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.74 (br s, 1H), 10.52 (s, 1H), 8.27 (s, 1H), 7.53 (s, 1H), 4.13 (s, 3H), 3.79 – 4.13 (m, 1H), 1.36 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 164.9, 156.2, 145.1, 137.5, 132.6, 122.3, 111.5, 57.3, 27.4, 24.3. HRMS (ESI−) m/z [M − H⁺] calcd for C₁₂H₁₃O₄, 221.0814, found 221.0809.

4-(Isoindoline-2-carbonyl)-2-isopropyl-5-methoxybenzaldehyde (95): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (1.63 g, 8.54 mmol, 2.0 eq.) was added to a stirred solution of 98 (950 mg, 4.27 mmol, 1 eq.), isoindoline hydrochloride (731 mg, 4.70 mmol, 1.1 eq.), 1-hydroxybenzotriazole (635 mg, 4.70 mmol, 1.1 eq.) N,N-diisopropylethylamine (3.26 mL, 18.8 mmol, 4.4 eq.) in dichloromethane 42 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (30 mL). The organic layer was washed with 1 M hydrochloric acid solution (30 mL) and saturated sodium chloride solution (30
mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 3:10 hexanes/ethyl acetate) to afford 95 (1.22 g, 91.8%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 7.48 – 7.21 (m, 5H), 7.15 (d, J = 7.4 Hz, 1H), 5.01 (s, 2H), 4.58 (s, 2H), 4.02 – 3.76 (m, 4H), 1.32 (d, J = 6.8 Hz, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 167.6, 153.7, 144.9, 136.4, 136.4, 134.4, 132.5, 128.0, 127.7, 126.1, 123.3, 122.7, 111.2, 56.1, 53.4, 52.3, 27.3, 24.4 (2). HRMS (ESI+) m/z [M + Na⁺] calcd for C₂₀H₂₁NO₃Na, 346.1419, found 346.1404.

5-Hydroxy-4-(isoindoline-2-carbonyl)-2-isopropylbenzaldehyde (78): 1 M solution of boron tribromide (1.22 mmol, 1.22 mL, 2 eq.), was added to a solution of 95 (200 mg, 0.61 mmol) in anhydrous dichloromethane (6.1 ml) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:50 acetone/dichloromethane) to afford 78 (121.8 mg, 63.7 %) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 10.11 (s, 1H), 7.64 (s, 1H), 7.43 (s, 1H), 7.37 – 7.29 (m, 4H), 5.08 (s, 5H), 3.93 (h, J = 6.9 Hz, 1H), 1.34 (d, J = 6.7 Hz, 6H). HRMS (ESI-) m/z [M – H⁻] calcd for C₁₉H₁₈NO₃, 308.1287, found 308.1282.
Benzyl (4-(isoindoline-2-carbonyl)-2-isopropyl-5-methoxybenzyl)carbamate (99): Benzyl carbamate (109 mg, 0.72 mmol, 3.0 eq.), triethyl silane (114 µl, 0.72 mmol, 3.0 eq.) and trifluoroacetic acid (36 µl, 0.48 mmol, 2.0 eq.) were added to a solution of 78 (75 mg, 0.24 mmol, 1.0 eq.) in acetonitrile (2.5 mL). The resulting mixture was stirred for 24 h before quenching with saturated sodium bicarbonate solution (10 mL). The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 ethyl acetate/hexanes) to afford 99 (93.7 mg, 87.9 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 7.50 (s, 1H), 7.41 – 7.27 (m, 9H), 6.92 (s, 1H), 5.15 (s, 3H), 5.06 (s, 4H), 4.45 (d, J = 5.9 Hz, 2H), 3.20 – 3.05 (m, 1H), 1.27 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 157.7, 156.4, 136.7, 136.6, 136.0, 128.7(3), 128.3 (2), 128.3 (2), 128.0, 125.3 (2), 122.8 (2), 117.0, 116.8, 67.1, 55.6, 55.3, 42.4, 28.2, 24.3 (2). HRMS (ESI+) m/z [M + H⁺] calcd for C₂₇H₂₉N₂O₄, 445.2127, found 445.2131.

(4-(Aminomethyl)-2-hydroxy-5-isopropylphenyl) (isoindolin-2-yl)methanone (75): Palladium on carbon (10%) was added to a solution of 99 (93 mg, 0.21 mmol) in ethyl acetate (5 mL). The suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad.
of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford 75 (36 mg, 55.6 %) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.48 (s, 1H), 7.31 (s, 4H), 6.99 (s, 1H), 5.08 (s, 4H), 3.91 (s, 2H), 3.17 (hept, $J = 6.8$ Hz, 1H), 1.28 (d, $J = 6.8$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 171.0, 157.7, 145.4, 136.4, 136.1 (2), 128.0 (2), 125.1, 122.8 (2), 116.6, 116.4, 53.6 (2), 43.4, 28.1, 24.5 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{23}$N$_2$O$_2$, 311.1760, found 311.1774.

(4-Ethynyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (100): Dimethyl-1-diazo-2-oxopropylphosphonate (60 µL, 0.40 mmol, 1.2 eq.) was added to a stirred solution of aldehyde 95 (100 mg, 0.31 mmol, 1.0 eq.) and potassium carbonate (86 mg, 0.62 mmol, 2.0 eq.) in methanol (3.1 mL). The resulting mixture was stirred for 24 h at rt and diluted with ethyl acetate (10 mL). The organic layer was washed with saturated sodium bicarbonate solution (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to afford 100 (77.1 mg, 78.1 %) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.35 – 7.23 (m, 3H), 7.21 (s, 1H), 7.13 (d, $J = 7.4$ Hz, 1H), 7.05 (s, 1H), 4.98 (s, 2H), 4.58 (s, 2H), 3.81 (d, $J = 1.3$ Hz, 3H), 3.82 – 3.40 (m, 1H), 3.33 (s, 1H), 1.24 (d, $J = 7.1$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 168.1, 152.9, 144.3, 136.7, 136.5, 127.9, 127.8, 127.6, 124.7, 123.2, 122.9, 122.7, 115.5, 82.0, 81.8, 56.0, 53.4, 52.2, 31.0, 23.3 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{21}$H$_{22}$NO$_2$, 320.1651, found 320.1660.
(4-Ethyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (81): Palladium on carbon (10%) was added to a solution of 95 (75 mg, 0.23 mmol) in ethyl acetate (10 mL). The suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford (4-ethyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (72.1 mg, 97.6 %) as a colorless amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.24 (m, 3H), 7.19 (s, 1H), 7.14 (d, J = 7.4 Hz, 1H), 6.75 (s, 1H), 5.00 (s, 2H), 4.63 (s, 2H), 3.83 (s, 3H), 3.11 – 3.18 (m, 1H), 2.71 (q, J = 7.5 Hz, 2H), 1.21 – 1.27 (m, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 168.1, 152.9, 144.3, 136.7, 136.5, 127.9, 127.8, 127.6, 124.7, 123.2, 122.9, 122.7, 115.5, 82.0, 81.8, 56.0, 53.4, 52.2, 31.0, 23.3 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{21}$H$_{26}$NO$_2$, 324.1963, found 324.1969.

1 M solution of boron tribromide (0.38 mmol, 0.38 mL, 2 eq.), was added to a solution of (4-ethyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (60 mg, 0.19 mmol) in anhydrous dichloromethane (2 mL) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 x 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:2 ethyl acetate/hexanes) to afford 81 (33.2 mg, 56.7 %) as a pale yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 10.54 (s, 1H), 7.40 (s, 1H), 7.30 – 7.18 (m, 4H), 6.75 (s, 1H), 5.02 (s, 4H), 3.09 (hept, J = 6.7 Hz, 1H), 2.61 (q, J = 7.6 Hz, 2H), 1.15 – 1.21 (m, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 171.3, 157.9, 147.3, 136.7, 136.2 (2), 128.0, 124.9, 122.8 (2), 117.5 (2), 115.0, 56.1 (2),28.2, 25.8, 24.5 (2), 15.4. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{20}$H$_{24}$NO$_2$, 310.1807, found 310.1794.
Isoindolin-2-yl(5-isopropyl-2-methoxy-4-(2-methylprop-1-en-1-yl)phenyl)methanone (101):

1.6 M Solution of n-butyl lithium in hexanes (0.32 mL, 0.5 mmol, 2.0 eq.) was added to a suspension of isopropyltriphenylphosphonium iodide (216 mg, 0.5 mmol, 1.0 eq.) in tetrahydrofuran (1 mL) at 0 °C. The resulting mixture was stirred for 30 min before the addition of a solution of 95 (80 mg, 0.25 mmol, 1.0 eq.) in tetrahydrofuran (1 mL) at 0 °C. The reaction was warmed to rt and stirred for 5 h before quenching with water (10 mL). The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:5 ethyl acetate/hexanes) to afford 101 (66.6 mg, 75.9 %) as a pale yellow oil. \(^{1}H\) NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 4H), 7.16 (d, J = 5.1 Hz, 2H), 6.78 (s, 1H), 6.25 (s, 1H), 5.14 – 5.12 (m, 1H), 5.01 (s, 2H), 4.93 – 4.85 (m, 1H), 4.67 (s, 2H), 3.84 (s, 3H), 1.99 (s, 3H), 1.91 (s, 3H), 1.81 (s, 3H). \(^{13}C\) NMR (100 MHz, CDCl₃) δ 168.6, 153.8, 144.8, 138.8, 136.9, 136.7, 135.7, 135.7, 127.8, 127.6, 127.5, 125.0, 124.6, 123.3, 122.7, 115.7, 113.0, 56.0, 53.6, 52.2, 26.4, 24.2, 19.7. HRMS (ESI+) \(m/z \) [M + H⁺] calcd for C₂₃H₂₆NO₂, 310.1807, found 310.1794.
(2-Hydroxy-4-isobutyl-5-isopropylphenyl)(isoindolin-2-yl)methanone (82): Palladium on carbon (10%) was added to a solution of 101 (60 mg, 0.17 mmol) in ethyl acetate (5 mL). The suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with EtOAc (20 mL). The eluent was concentrated to afford (4-isobutyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (56.3 mg, 94.2 %) as a colorless amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.22 (m, 3H), 7.20 (s, 1H), 7.14 (d, $J = 7.3$ Hz, 1H), 6.67 (s, 1H), 5.00 (s, 2H), 4.62 (s, 2H), 3.81 (s, 3H), 3.13 (hept, $J = 6.9$ Hz, 1H), 2.54 (d, $J = 7.2$ Hz, 2H), 1.85 (dp, $J = 13.6$, 6.8 Hz, 1H), 1.20 (d, $J = 6.8$ Hz, 6H), 0.97 (d, $J = 6.6$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 169.2, 152.8, 141.3, 139.8, 137.0, 136.8, 127.8, 127.5, 124.9, 124.8, 123.2, 122.7, 113.2, 55.9, 53.5, 52.2, 42.6, 30.4, 28.4, 24.4 (2), 22.8 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{23}$H$_{30}$NO$_2$, 352.2277, found 352.2275. 1 M solution of boron tribromide (0.34 mmol, 0.34 mL, 2 eq.), was added to a solution of (4-isobutyl-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (60 mg, 0.17 mmol) in anhydrous dichloromethane (2 mL) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 ethyl acetate/hexanes) to afford 82 (33.2 mg, 56.7 %) as a colorless amorphous solid. 1H NMR (500 MHz, CDCl$_3$) δ 10.60 (s, 1H), 7.48 (s, 1H), 7.32 (s, 4H), 6.77 (s, 1H), 5.10 (s, 4H), 3.16 (hept, $J = 6.8$ Hz, 1H), 2.51 (d, $J = 7.2$ Hz, 2H), 1.87 (dt, $J = 13.5$, 6.8 Hz, 1H), 1.26 (d, $J = 6.8$ Hz, 7H), 0.96 (d, $J = 6.6$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 171.3, 157.4, 144.8, 137.3, 136.2 (2), 128.0, 125.1, 122.8, 119.1, 115.2, 55.9, 53.5, 42.2, 30.1, 28.3, 24.7 (2), 22.9 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{22}$H$_{28}$NO$_2$, 338.2120, found 338.2125.
2,6-Dihydroxy-3-(isoindoline-2-carbonyl)-5-isopropylbenzaldehyde (104): A solution of 103 (400 mg, 1.34 mmol, 1 eq.), hexamethylenetetramine (376 mg, 2.68 mmol, 2.0 eq.) in trifluoroacetic acid was heated at 100 °C for 14 h in a sealed tube, cooled to rt, and solvent was removed. The residue was treated with 3 M hydrochloric acid and the resulting mixture was heated at 60 °C for 3 h. The mixture was cooled to rt, diluted with water (20 ml), extracted with ethyl acetate (2 × 20 mL). The organic layer was washed with water (30 ml), saturated sodium bicarbonate solution (30 mL), and saturated sodium chloride solution (30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:9 ethyl acetate/hexanes) to afford 104 (312.2 mg, 71.8 %) as a pale yellow amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 13.06 (s, 1H), 12.74 (s, 1H), 10.44 (s, 1H), 7.74 (s, 1H), 7.34 (d, J = 2.2 Hz, 4H), 5.12 (s, 4H), 3.36 – 3.27 (m, 1H), 1.28 (d, J = 6.9 Hz, 6H).¹³C NMR (125 MHz, CDCl₃) δ 195.1, 170.7, 165.0, 164.0, 135.7, 133.5 (2), 128.2 (2), 126.2, 122.8 (2), 110.1, 106.9, 54.8 (2), 26.1, 22.7 (2). HRMS (ESI+) m/z [M + H⁺] calcd for C₁₉H₂₀NO₄, 338.2120, found 338.2117.

(2,4-Dihydroxy-3-(hydroxymethyl)-5-isopropylphenyl)(isoindolin-2-yl)methanone (102): Sodium borohydride (2.8 mg, 0.06 mmol) was added to a solution of 104 (20 mg, 0.07 mmol, 2.0
eq.) in a solvent mixture of tetrahydrofuran (1.5 mL) and methanol (0.5 mL) at °C. The resulting mixture was stirred at rt for 1 h before the addition of 1 M hydrochloric acid (2 mL). The aqueous layer was extracted with ethyl acetate (2 × 5 mL), and the combined organic layers washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparatory TLC (SiO$_2$, 1:3 ethyl acetate/hexanes) to give 102 as a colorless amorphous solid (14.2 mg, 72.2 %). 1H NMR (500 MHz, CDCl$_3$) δ 11.72 (s, 1H), 8.76 (s, 1H), 7.43 (s, 1H), 7.32 (s, 4H), 5.11 (s, 6H), 3.34 – 3.24 (m, 1H), 2.31 (s, 1H), 1.28 (d, $J = 6.9$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 171.7, 158.6, 157.1, 136.2 (2), 128.0, 126.3 (2), 125.5, 122.8 (2), 111.4, 108.3, 59.3, 54.2 (2), 26.6, 23.1 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{21}$NO$_4$, 328.1549, found 328.1543.

(4-Hydroxy-7-isopropylbenzo[d]isoxazol-5-yl)(isoindolin-2-yl)methanone (105): Triflic acid (79 µL, 0.90 mmol, 6.0 eq.) and sodium azide (15 mg, 0.23 mmol, 1.5 eq.) were added to a solution of 104 (50 mg, 0.15 mmol, 1.0 eq.) in acetonitrile (1.5 mL) at rt. The resulting mixture was stirred for 5 min and concentrated. The residue was treated with water (2 mL) and ethyl acetate (3 mL). The aqueous layer was extracted with ethyl acetate (2 × 3 mL) and the combined organic layers washed with saturated sodium chloride solution (6 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified using preparatory TLC (SiO$_2$, 1:3 ethyl acetate/hexanes) to afford 105 as a white amorphous solid. (18.3 mg, 37.8 %). Additionally, 106 (13.1, 27.1 %) was also isolated as a white amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 12.42 (s, 1H), 8.86 (d, $J = 1.3$ Hz, 1H), 7.65 (s, 1H), 7.34 (s, 4H), 5.14 (s, 4H), 3.40 (hept, $J = 7.0$ Hz,
1H), 1.45 (d, J = 7.1 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 171.1, 163.7, 156.1, 145.2, 135.9, 128.2 (2), 126.5 (2), 122.8 (2), 121.6, 112.9, 110.4, 54.2 (2), 29.4, 22.7 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{19}$N$_2$O$_3$, 323.1396, found 323.1392.

![Structure](image.png)

(4-Hydroxy-5-isopropylbenzo[d]isoxazol-7-yl)(isoindolin-2-yl)methanone (106): 1H NMR (400 MHz, CDCl$_3$; δ 9.59 (s, 1H), 9.10 (s, 1H), 7.60 (s, 1H), 7.45 – 7.26 (m, 3H), 7.16 (d, J = 7.4 Hz, 1H), 5.17 (s, 2H), 4.91 (s, 2H), 3.18 (h, J = 7.0 Hz, 1H), 1.06 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 167.9, 157.9, 151.0, 145.2, 136.5, 135.8, 135.0, 129.4, 128.1, 127.9, 123.1, 122.8, 112.6, 109.5, 53.9, 53.3, 26.4, 22.9 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{19}$H$_{19}$N$_2$O$_3$, 323.1396, found 323.1399.

IV.9. References

Chapter V
The Development of Hsp90α-Selective Inhibitors

V.1. Introduction

The development of isoform-selective inhibitors of the Hsp90 protein folding machinery represents a new paradigm for anti-cancer drug discovery.\(^1\)-\(^8\) The limited success of pan-inhibitors in clinical trials warrants the development of alternative strategies to modulate Hsp90.\(^9\)-\(^{11}\) Isoform-selective inhibitors represent one such approach as individual Hsp90 isoforms have been associated with oncogenesis and genetic knockdowns of individual isoforms resulted in depletion of selected oncogenic proteins.\(^2\),\(^{12}\)-\(^{15}\) Towards this objective, Grp94-selective inhibitors (BnIm, KUNG29, WS-13) have been identified and are currently under investigation for the potential treatment of breast, blood, and liver cancer.\(^5\), \(^8\), \(^{16}\), \(^{17}\) Additionally, Grp94 inhibitors are being investigated for the treatment of glaucoma and metastatic cancer.\(^13\) Chapter IV described development of the first Hsp90β-selective inhibitor (KUNB31) and preliminary studies show that Hsp90β-inhibition induced the degradation of client proteins without induction of Hsp90 and Hsp70 levels. Hence, Hsp90β-selective inhibitors may overcome the detriments of the heat-shock response, which is one of the major concerns associated with pan-Hsp90 inhibitors. While a Trap-1-selective inhibitor has yet to be identified, selective inhibition of Trap-1 has been accomplished by mitochondrial targeting methods.\(^4\) Hence, for complete deconvolution of all Hsp90-isoforms, the development of Hsp90α-selective inhibitors was pursued and is described in this chapter.

V.1.1. Hsp90α Isoform

The Hsp90α isoform resides in the cytosol and is encoded by the HSP90AA1 gene.\(^18\), \(^19\) The primary amino acid sequence in Hsp90α is 86% identical and 93% similar to Hsp90β, while the N-terminal ATP binding site is more than 95% identical between these two isoforms.\(^20\), \(^21\) Prior
studies have identified only few biochemical differences between Hsp90α and Hsp90β. Hsp90α readily dimerizes when compared to Hsp90β. Unlike Hsp90β, Hsp90α does not interact with microtubules. Hsp90α is more inducible than Hsp90β and its cellular roles involve growth promotion, cell cycle regulation, and stress-induced cytoprotection. Hsp90α knockout in mice was shown non-lethal and resulted in dysfunctional spermocytes in male mice. Hsp90β-knockout in mice exhibit compromised cellular differentiation. These studies suggest that unlike Hsp90β, Hsp90α is not essential for survival. However, Hsp90α has tissue specific roles that cannot be compensated by Hsp90β. Hsp90α is overexpressed in cancers and has been associated with poor prognosis of breast cancer, pancreatic carcinoma, and leukemia. Prior studies have shown that genetic knockdown of Hsp90α results in the degradation several oncogenic client proteins. Therefore, the administration of an Hsp90α-selective inhibitors could selectively inhibit some cancers.

Hsp90α is responsible for the proliferation and metastasis of many cancers. Hsp90α is also responsible for hERG channel maturation and trafficking. siRNA knockdown of Hsp90α disrupts hERG maturation, which may cause the cardiotoxicity observed with pan-Hsp90 inhibitors in the clinic. Despite this problems, selective inhibition of Hsp90α is of interest as a chemical probe to further delineate the biological impact of isoform-selective inhibition and to validate that small molecule inhibition of Hsp90α does in fact lead to the cardiotoxicity observed with its genetic knockdown. Maturation of Hsp90α client hERG channel occurs within the cell, while extracellular Hsp90α has been implicated as an anti-cancer target. Extracellular Hsp90α activates MMP-2 and promote tumor invasion. Both the intra and extracellular functioning of Hsp90α.
highlight the advantages of its selective inhibition, and studies to produce Hsp90α-selective inhibitors may be useful for anti-cancer applications.

V.2. Identification of a Lead Compound for the Development of Hsp90α-Selective Inhibitors

V.2.1. Binding of Radicicol and PU3 with Hsp90α versus Hsp90β

![Figure 42. Differences in binding of ligands between Hsp90α and Hsp90β.](image)

Hsp90α and Hsp90β share more than 95% similarity in their N-terminal ATP-binding pocket. As described in chapter IV, only two amino acids differ in the ATP-binding pocket of Hsp90α (Ser52, Ile91) and Hsp90β (Ala52, Leu91). The bulkier side chains of Ser52 and Ile91 in Hsp90α produced a steric clash with Hsp90β-selective inhibitor, KUNB31, providing selectivity for Hsp90β. For the development of an Hsp90α-selective inhibitor, these steric interactions would
not be relevant. Hence, the hydrogen bonding interactions manifested by the phenols with Ser52 (Ala in other three isoforms) were sought for further evaluation.

Purine derived compound, **PU3**, is the only known Hsp90 inhibitor that has been co-crystallized with both Hsp90α and Hsp90β (PDB: 1UYM and 1UY6). A comparison of the two co-crystal structures revealed that **PU3** binds to both isoforms similarly. The only difference in binding is the interaction between the N-6 amine and Ser52 (Figure 42a & 42b) in Hsp90α. The N-6 amine produces two additional water-mediated hydrogen bonding interactions with Ser52 of Hsp90α. These interactions are not present in Hsp90β due to the presence of Ala52. Similar to purine-derived inhibitors, resorcinol-based inhibitors also produce a stronger hydrogen bonding network with Hsp90α. Radicicol has never been co-crystallized with Hsp90β; its co-crystal structures with Hsp90α and Hsc82 (yeast homologue of Hsp90) have been solved. Comparison of the primary sequences of these proteins shows that Hsc82 contains Ala38, in lieu of Ser52 in Hsp90α, and Ala52 in Hsp90β, and is more similar to Hsp90β (Table 15). Evaluation of the co-crystal structure of radicicol bound to Hsp90α shows that the presence of Ser52 (Figure 42c & 42d), as opposed to Ala52 in Hsp90β, results in a stronger hydrogen bonding network. Conserved water molecules in Hsp90α coordinate with Ser52, whereas in Hsp90β/Hsc82, Ala52 alters this spatial arrangement.

Table 15. Difference in Hsp90α, Hsp90β, and yeast Hsp90 (Hsc82) ATP binding pocket

<table>
<thead>
<tr>
<th>Protein</th>
<th>Residues (numbered for Hsp90α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>91</td>
</tr>
<tr>
<td>Hsp90α</td>
<td>Ser</td>
</tr>
<tr>
<td>Hsp90β</td>
<td>Ala</td>
</tr>
<tr>
<td>Hsc82</td>
<td>Ala</td>
</tr>
</tbody>
</table>
Interestingly, these additional hydrogen bonds result in only 3-fold selectivity for Hsp90α versus Hsp90β as radicicol manifested an apparent K_d of 4 nM for Hsp90α versus 15 nM for Hsp90β in a thermal shift calorimetry assay. Prior studies by Vilma and co-workers have provided insights into the differences in binding of radicicol to both cytosolic isoforms. The intrinsic enthalpy of binding (ΔH) for radicicol is 10 kJ higher for Hsp90α than Hsp90β, which should result in a greater difference in dissociation constants (K_d). However, binding of radicicol to Hsp90β results in greater entropy when compared to Hsp90α, which accounts for the observed difference in dissociation constants. This observation can be rationalized by greater hydrophobicity with Hsp90β when compared to Hsp90α (Table 16), and consequently radicicol produces more hydrophobic interactions within the Hsp90β binding pocket and results in greater entropy contribution. Collectively, these studies suggest that the interactions manifested by the ligand with Ser52 are critical for the development of an Hsp90α-selective inhibitor.

Table 16. Relative hydrophobicity of Hsp90 isoforms

<table>
<thead>
<tr>
<th>Protein</th>
<th>Hydrophobic</th>
<th>Hydrophilic</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsp90α</td>
<td>1.46</td>
<td>0.97</td>
<td>1.5</td>
</tr>
<tr>
<td>Hsp90β</td>
<td>1.73</td>
<td>0.82</td>
<td>2</td>
</tr>
<tr>
<td>Grp94</td>
<td>2.98</td>
<td>0.63</td>
<td>5</td>
</tr>
<tr>
<td>Trap-1</td>
<td>2.2</td>
<td>0.72</td>
<td>3</td>
</tr>
</tbody>
</table>

V.2.2. Synthesis and Evaluation of 4-Amino 2-Phenol Analogues

The development of Hsp90α-selective inhibitors commenced via optimization of the 5-bromo resorcinol compound, 61 (Chapter III) to probe the hydrogen bonding interactions with Ser52. At first, conversion of the 4-phenol to the aniline was proposed. The 5-bromo substituent was replaced with an isopropyl group, and analogues with electron withdrawing groups on the nitrogen were also evaluated. Syntheses of the proposed analogues (109, 111–113, Scheme 17)
commenced via bromination of the 4-amino-2-methoxybenzoic acid (107) to give 108. Carbodiimide coupling of the acid (108) with isoindoline gave 109, which upon methyl ether cleavage using boron tribromide gave the desired product, 110. Suzuki coupling of 109 with potassium isopropenyl trifluoroborate, followed by palladium-catalyzed hydrogenation under a hydrogen atmosphere furnished the 5-isopropyl intermediate 111, which upon treatment with boron tribromide gave 112. The aniline was modified to the corresponding cyanamide by enlisting cyanogen bromide.

![Scheme 17. Syntheses of 4-amino-2-phenol analogues.](image)

The 4-amino-2-phenol analogues 110, 112, and 113 were evaluated in a fluorescence polarization assay and did not exhibit selectivity for Hsp90α (Table 17). These analogues were less efficacious than the corresponding 4-phenol (61). This data suggested that the 4-phenol is producing more efficacious interactions with Ser52 than the corresponding aniline.
Table 17. Evaluation of 4-amino-2-phenol analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>Apparent Kd Hsp90α (µM)</th>
<th>Apparent Kd Hsp90β (µM)</th>
<th>Selectivity for Hsp90α</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>0.025 ± 0.01</td>
<td>0.033 ± 0.01</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>0.22 ± 0.01</td>
<td>0.50 ± 0.01</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>0.46 ± 0.22</td>
<td>0.71 ± 0.13</td>
<td>1.5</td>
</tr>
<tr>
<td>113</td>
<td>0.18 ± 0.01</td>
<td>0.42 ± 0.05</td>
<td>2</td>
</tr>
</tbody>
</table>

In a parallel, additional scaffolds were also evaluated for selective Hsp90α inhibition. As shown in Figure 43, the 3-position of resorcinol moiety was modified to improved interactions with Ser52 (KUNA01, KUNA02). Unfortunately, an Hsp90α-selective inhibitor could not be identified. Research groups from academia and industry screened several known Hsp90 inhibitors to identify isoform-selective inhibitors but these efforts were not productive.2, 45, 46

V.2.3. Identification of the Monophenol-Isoindoline Scaffold for Selective Hsp90α-Inhibition

After these failed attempts, a different strategy was devised to exploit the hydrogen bonding network that surrounds the resorcinol ring. As previously mentioned, only the 4-phenol of the resorcinol interacts with Ser52 in Hsp90α (Ala in Hsp90β, Grp94, and Trap1). Hence it should drive selectivity for Hsp90α. The 2-phenol interacts similarly with both the Hsp90α and Hsp90β ATP-binding pockets (Figure 42). While collectively the resorcinol moiety results in 3-fold selectivity for
Hsp90α, the individual contribution of each phenol had never been evaluated for binding with individual isoforms. Therefore, compounds that lacks the 4-phenol were considered for evaluation. We had access to compound 72, that lacks 4-phenol (Chapter IV). Additionally, compound 114, which lacks the 2-phenol was synthesized using a reported procedure. These compounds were evaluated in a fluorescence polarization assay and their binding affinities for Hsp90α and Hsp90β were determined. While compound, 72 manifested 2-fold selectivity for Hsp90β, compound 114 bound Hsp90α with 10-fold selectivity. The selectivity of 114 confirmed our hypothesis that exclusive interactions of the 4-phenol with Ser52 could lead to an Hsp90α-selective inhibitor. Therefore, further development of 114 was pursued.

V.3. Development of the Monophenol-Isoindoline Scaffold for Selective Hsp90α Inhibition

It was proposed that substituents at the 4- and 5-positions may change the electronic nature and spatial arrangement of the 4-phenol and alter its hydrogen bonding interactions with Ser52. Therefore, two different series were proposed for investigation of 114 analogues: (1) replacements of the 4-phenol, and (2) Modification of the 5-position of the resorcinol. Initially, replacement of the 4-phenol with the corresponding aniline and methoxy group were proposed, as well as heterocycles adjoining the 4- and the 5-positions (Series I, Figure 45). In a second series, modifications of the 5-position were also pursued (Series II, Figure 45)

V.3.1. Syntheses of Series I and Series II Analogues

Compound 115, 121, and 126 were synthesized following a literature procedure. The synthesis of 116 commenced with 4-amino benzoic acid, which upon electrophilic bromination and subsequent carbodiimide coupling with isoindoline gave 132. Suzuki coupling of 132 with isopropenyl trifluoroborate and subsequent hydrogenation of the olefin gave the desired analogue 116. Analogues 117–120 were synthesized by an EDCI-mediated coupling of isoindoline with
commercially available appropriate heterocyclic carboxylic acids. Analogues 129–130 were synthesized from 128, which upon treatment with sodium borohydride and methyl magnesium bromide gave 129 and 130, respectively (Scheme 18).

![Figure 45](image-url) Proposed modifications on monophenol-isoindoline scaffold.

V.3.2. Evaluation of Series I and Series II Anallogues

Upon preparation, compounds 115–130 were evaluated in a fluorescence polarization assay. As shown in Table 18, replacement of the 4-phenol with an aniline (116) or methyl ether (115) decreased affinity, which suggested that the 4-phenol acts as a hydrogen bond donor. The heterocycles were also inactive, which suggests that spatial arrangement of the hydrogen bond donor at the 4-position is important. Replacement of the isopropyl with a chlorine, bromine, or tert-butyl substituents enhanced selectivity for Hsp90α. Analogue 130 manifested the highest
affinity for Hsp90α, which indicated potential interactions of the tertiary alcohol with Asn84. Compound 126 was chosen for further optimization based on these observed trends.

![Scheme 18](image)

Scheme 18. Syntheses of Series I and Series II analogues for selective Hsp90α-inhibition

V.4. **Modification to the Isoindoline Core of 126**

Prior studies on the resorcinol-isooindoline scaffold have shown that modifications to the 5-position of the isoindoline ring system modulate Hsp90 affinity and cellular efficacy. The co-crystal structure of compound 121 bound to Hsp90α has been reported previously, which shows that the benzene ring of the isoindoline projects towards the solvent exposed region of the N-terminal ATP-binding site (Figure 46a). Substituents at the 5-position of the isoindoline may interact with the surrounding hydrophilic residues (Asp54, Lys58, Figure 46a). Therefore,
compounds 133–138 were proposed (Figure 46b). Additionally, an analogue containing a 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine in lieu of isoindoline was also sought.

Table 18. The evaluation of Series-I and Series-II analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>Apparent K_d Hsp90α (µM)</th>
<th>Apparent K_d Hsp90β (µM)</th>
<th>Selectivity for Hsp90α</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>68.09 ± 3.96</td>
<td>>100</td>
<td>2-fold</td>
</tr>
<tr>
<td>116</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>117</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>121</td>
<td>2.62 ± 0.08</td>
<td>>200</td>
<td>>75-fold</td>
</tr>
<tr>
<td>122</td>
<td>7.90 ± 1.18</td>
<td>>200</td>
<td>>25-fold</td>
</tr>
<tr>
<td>123</td>
<td>4.69 ± 0.27</td>
<td>>200</td>
<td>>42-fold</td>
</tr>
<tr>
<td>124</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>125</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>126</td>
<td>2.73 ± 0.19</td>
<td>>200</td>
<td>>73-fold</td>
</tr>
<tr>
<td>127</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>128</td>
<td>>100</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>129</td>
<td>7.11 ± 0.42</td>
<td>57.17 ± 0.88</td>
<td>8-fold</td>
</tr>
<tr>
<td>130</td>
<td>0.65 ± 0.04</td>
<td>12.92 ± 1.92</td>
<td>19-fold</td>
</tr>
</tbody>
</table>

V.4.1. Synthesis of Analogues with Modification to the Isoindoline Core

The proposed analogues 133–138 were prepared via an EDCI-mediated coupling of 3-bromo-4-hydroxybenzoic acid (Scheme 19) with the requisite isodindolines. 138 was prepared by methyl ether cleavage of 137 using boron tribromide.

V.4.2 Evaluation of Analogues with Modification to the Isoindoline Core

The isoindoline analogues 133–139 were evaluated in a fluorescence polarization assay. Incorporation of bulkier substituents on the isoindoline ring did not improve Hsp90α affinity
However, introduction of a fluorine, chlorine or phenol substituents was tolerated at the 5-position. The inclusion of a bulkier bromine and methyl ester decreased affinity.

Figure 46. Proposed modification to isoindoline core. (a) Previously reported co-crystal structure of 121 (PDB: 3XHX) (b) Proposed isoindoline analogues

V.5. Preliminary Studies to Probe the Inducible Binding Pocket

Prior studies demonstrated conformational flexibility in amino acid residues 104–111 of Hsp90α/Hsp90β, as they can adopt various conformations (α-helix, closed loop, and open loop) upon binding to an inhibitor. These conformational variations produce an additional binding pocket within the Hsp90α/Hsp90β ATP binding site, which can produce beneficial interactions with inhibitors. A survey of the co-crystal structures bound to various ligands provided further insights. The purine and benzamide class of Hsp90 inhibitors induced this additional binding pocket, whereas the resorcinol and ansamycin classes of inhibitors did not. Structurally, induction of this additional binding pocket has been associated with three-dimensional conformations of the amino acid residues 104–111. As shown in Figure 47, these residues adopt an α-helix

![Figure 46. Proposed modification to isoindoline core. (a) Previously reported co-crystal structure of 121 (PDB: 3XHX) (b) Proposed isoindoline analogues](image-url)
(BIIB021), an open loop (17-DMAG), or a closed loop (AUY-922) conformation. The additional binding pocket is induced only when these residues adopt the α-helix conformation in the case of BIIB021 bound to Hsp90α. However, when these residues adopt an open or a closed loop conformation, the binding pocket is blocked by Phe124. Recently, Shen and co-workers obtained a co-crystal structure of resorcinol-derived inhibitor that demonstrated an additional binding pocket about the 5-position of the resorcinol ring. In the co-crystal structure, the residues 104–111 were shown to adopt a α-helix conformation. This was the first time when a resorcinol-based compound, similar to purine-based inhibitors, was shown to induce the additional binding pocket about the 5-position of resorcinol ring.

![Scheme 19. Modifications to the isoindoline core.](image)

As shown in Chapter III, our resorcinol based inhibitors were expected to induce a similar binding pocket as the incorporation of benzyl thioethers (65–68) and phenyl amines (64) were more beneficial than the corresponding 5-bromo containing compound (61). To determine whether a similar binding pocket can be induced with the monophenol 126, two analogues 140 and 141 were proposed (Scheme 20). Preparation of these analogues is described in Scheme 20. The 4-
phenol on 3-bromo-4-hydroxybenzic acid was modified to the corresponding benzyl ether, which upon carbodiimide coupling with isoindoline afforded 142. Subsequent palladium-catalyzed coupling of 142 with thiophenol or N-methyl aniline, followed by cleavage of benzyl ethers using boron tribromide afforded 140 and 141, respectively. Analogue 141 manifested a 3-fold improvement in affinity as compared to 126, whereas thiophenyl ether 140 manifested similar affinity as 126.

Table 19. Evaluation of isoindoline analogues in FP assay

<table>
<thead>
<tr>
<th>Compound</th>
<th>Hsp90α</th>
<th>Hsp90β</th>
<th>Selectivity for Hsp90α</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>8.04 ± 0.15</td>
<td>>200</td>
<td>>24-fold</td>
</tr>
<tr>
<td>134</td>
<td>6.17 ± 1.24</td>
<td>>200</td>
<td>>32-fold</td>
</tr>
<tr>
<td>135</td>
<td>>200</td>
<td>>200</td>
<td>-</td>
</tr>
<tr>
<td>136</td>
<td>94.47 ± 27.31</td>
<td>>200</td>
<td>>2-fold</td>
</tr>
<tr>
<td>137</td>
<td>11.59 ± 2.62</td>
<td>>200</td>
<td>>17-fold</td>
</tr>
<tr>
<td>138</td>
<td>13.25 ± 3.20</td>
<td>>200</td>
<td>>15-fold</td>
</tr>
<tr>
<td>139</td>
<td>8.21 ± 0.59</td>
<td>>200</td>
<td>>24-fold</td>
</tr>
</tbody>
</table>

This data suggests that the thiophenyl ether and the N-phenylamine substituents are tolerated at the 5-position. Therefore, modification to the 5-position of 126 induces this conformational change and creates the additional binding pocket. While these analogues maintained high selectivity for Hsp90α over Hsp90β-isoform, their selectivity over Grp94 was only ~5-fold, due to the binding of these substituents in adjacent Grp94-exclusive binding pocket (discussed in Chapter III). These findings are highly important and suggests this sub-pocket can be probed for to attain better Hsp90α inhibitors.
Figure 47. Binding modes of ligands in Hsp90α N-terminal binding pocket. (a) Structure of 17-DMAG, BII021, and AUY 922; (b) Apo-Hsp90α (PDB: 1YER); (b) 17-DMAG (PDB: 1OSF); (c) BII021 (PDB: 3qdd); (d) AUY922 (PDB: 2VCI); (e) Overlay of co-crystal structure of Apo-Hsp90α (gray) with BII021 bound to Hsp90α (green); (f) Proposed binding mode of 140 in Hsp90α binding pocket.
V.6. Cellular Efficacy of Hsp90α-Selective Inhibitors

Once the Hsp90α-selective inhibitors were identified, cellular studies commenced to evaluate the effect of Hsp90α-inhibition on the growth of breast cancer cell lines (MCF-7 and SkBr3). The anti-proliferation activities are summarized in Table 19. 126 manifested an IC\textsubscript{50} of 48.34 ± 5.64 μM and 40 ± 3.21 μM against the MCF-7 and Skbr3 cancer cell lines, respectively.

![Scheme 20](image)

Interestingly, 5-\textit{tert} butyl analogue, 121, manifested a 6-fold improvement in cellular efficacy. Incorporation of a fluorine or a chlorine substituent at the 5-position of the isoindoline also improved anti-proliferation activity. Similarly, the thiophenyl ether analogue 140 was also more efficacious, and manifested an IC\textsubscript{50} of 11.57 ± 1.16 μM and 12.96 ± 1.67 μM against the MCF-7 and SKBr3 cell lines, respectively.

V.7. Western Blot Analyses of Compound 126

Prior studies in the Blagg laboratory have led to the identification of a few Hsp90α-selective and Hsp90β-selective clients via genetic knockdown of individual isoforms in PC3 cells (Figure 48). These studies identified CXCR\textsubscript{4} and CDK6 as Hsp90β-dependent clients, whereas
survivin, Raf, c-Src, and hERG were identified as the Hsp90α-dependent client proteins. Additionally, Erk5, and Akt were degraded upon knockdown of either Hsp90α or Hsp90β, indicating an overlapping roles for both isoforms. To verify these findings, western blot analyses were conducted on PC cell lysates that were treated with the Hsp90α-selective inhibitor 126. As shown in Figure 46, 126 induced the degradation of Hsp90α client protein Raf. Additionally, levels of Akt and Her2 were also degraded. In contrast to genetic knock down studies, levels of CDK6 were also depleted, which indicates a difference between the genetic knockdown and pharmacological studies.

Table 20. Evaluation of Hsp90α-selective inhibitors in MTS assay

<table>
<thead>
<tr>
<th>Compound</th>
<th>MCF-7</th>
<th>SKBr3</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>7.32 ± 1.19</td>
<td>8.87 ± 2.23</td>
</tr>
<tr>
<td>126</td>
<td>48.34 ± 5.64</td>
<td>40 ± 3.21</td>
</tr>
<tr>
<td>130</td>
<td>20.51 ± 3.93</td>
<td>22.29 ± 2.61</td>
</tr>
<tr>
<td>133</td>
<td>22.36 ± 2.76</td>
<td>5.17 ± 1.16</td>
</tr>
<tr>
<td>134</td>
<td>9.69 ± 1.71</td>
<td>7.28 ± 2.68</td>
</tr>
<tr>
<td>140</td>
<td>11.57 ± 1.16</td>
<td>12.96 ± 1.67</td>
</tr>
<tr>
<td>141</td>
<td>11.77 ± 1.05</td>
<td>10.22 ± 2.10</td>
</tr>
</tbody>
</table>

121: X = tert-butyl, Y = H
126: X = Br, Y = H
130: X = 4-hydroxy-3-(2-hydroxypropan-2-yl), Y = H
133: X = Br, Y = F
134: X = Br, Y = Cl
140: X = thiophenyl, Y = H
141: X= methyl phenylamino, Y = H
V.8. Evaluation of Compound 126 and KUNB31 in NCI-60 Cell Panel

The isoform selective-inhibitors 126 and KUNB31 were also evaluated in a NCI-60 panel to evaluate the dependence of different cancers upon individual Hsp90 isoforms. The screening results showed that isoform-selective inhibitors affect cancer cell lines differently than pan-inhibitors. While the Hsp90α selective inhibitor, compound 126, was more efficacious against A549, NCI-H322, HT29, and OVCAR-5 cancer cell lines (Figure 49), the Hsp90β-selective inhibitor, KUNB31, manifested higher efficacy against MOLT-4, NCI-H23, SNB-75, MCF-7, and MDA-MB231 cells (Figure 50). These studies confirm that isoform-selective inhibitors modulate different cancer pathways and provide a more selective approach to treat various cancers.

V.9. Conclusions and Future Directions

By taking advantage of the hydrogen bonding network that aligns at the bottom of the Hsp90 ATP-binding pocket, the first Hsp90α-selective inhibitors have been identified. We have shown that the hydrogen bonding interaction manifested by the 4-phenol of the resorcinol-based Hsp90 inhibitors with Ser52 provides selectivity for Hsp90α. Modification of 126 resulted in analogues that potentially change the conformation of Hsp90α and open an extended binding pocket near the 5-position of the resorcinol ring. These compounds showed growth inhibitory activity against the
Figure 49. Evaluation of compound 126 in NCI-60 cell panel.
Figure 50. Evaluation of KUNB31 in NCI-60 cell panel.
MCF-7 and SkBr3 cell lines and represent a new class of Hsp90 inhibitors for the treatment of cancer. Co-crystallization of these inhibitors is currently in progress in collaboration with Dr. Robert Matts at the Oklahoma State University.

Isoform-selective inhibition of Hsp90 represents an innovative approach that has the potential to overcome the detriments associated with current pan-Hsp90 inhibitors. Our efforts have provided isoform-selective inhibitors for three of the four Hsp90 isoforms. NCI-60 panel screening of compound 126 and KUNB31 identified cancer cell lines that are more sensitive to inhibition of the Hsp90α and Hsp90β isoforms, respectively. These findings provide a clinical potential for each class of Hsp90 isoform-selective inhibitor. In addition, future studies that utilize Hsp90α-, Hsp90β-, and Grp94-selective inhibitors will also enhance our understanding of the dependence of client proteins upon each isoform and may provide opportunities to target a more selective group of cancers.

V.10. Methods and Experiments

All reactions were performed in oven-dried glassware under argon atmosphere unless otherwise stated. Dichloromethane (DCM), tetrahydrofuran (THF), and toluene were passed through a column of activated alumina prior to use. Anhydrous methanol, acetonitrile, and N-methyl-2-pyrrolidone (NMP) were purchased and used without further purification. Flash column chromatography was performed using silica gel (40–63 μm particle size). The \(^1\)H (500 and 400 MHz) and \(^13\)C NMR (125 and 100 MHz) spectra were recorded on 500 and 400 MHz spectrometer. Data are reported as p = pentet, q = quartet, t = triplet, d = doublet, s = singlet, br s = broad singlet, m = multiplet; coupling constant(s) in Hz. Infrared spectra were obtained using FT/IR spectrometer. High resolution mass spectral data were obtained on a time-of-flight mass spectrometer and analysis was performed using electrospray ionization.
4-Amino-5-bromo-2-methoxybenzoic acid (108): N-bromosuccinimide (2.79 g, 15.7 mmol, 1.05 eq.) was added to a solution of 107 (2.5 g, 14.9 mmol, 1.0 eq.) in acetonitrile (75 mL). The resulting mixture was heated at 60 °C for 14 h, cooled to rt, diluted with water (100 mL), and extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over sodium sulfate, filtered, and concentrated to give 4-amino-5-bromo-2-methoxybenzoic acid (2.80 g, 77.1 %) as light brown amorphous solid. 1H NMR (500 MHz, DMSO-d_6) δ 11.87 (s, 1H), 7.73 (s, 1H), 6.44 (s, 1H), 6.04 (s, 2H), 3.72 (s, 3H). 13C NMR (125 MHz, DMSO) δ 165.3, 160.2, 150.8, 135.9, 108.2, 97.7, 97.0, 55.5. HRMS (ESI−) m/z [M − H$^+$] calcd for C$_9$H$_7$BrNO$_3$, 255.9609, found 255.9604.

(4-Amino-5-bromo-2-methoxyphenyl)(isoindolin-2-yl)methanone (109): 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (3.89 g, 20.32 mmol, 2.0 eq.) was added to a stirred solution of 108 (2.5 g, 10.16 mmol, 1 eq.), isoindoline hydrochloride (2.05 mg, 13.20 mmol, 1.3 eq.), 1-hydroxybenzotriazole (3.11 g, 20.32 mmol, 2 eq.) N,N-diisopropylethylamine (5.30 mL, 30.48 mmol, 3.0 eq.) in dichloromethane (100 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (100 mL). The organic layer was washed sodium chloride solution (100 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 hexanes/ethyl acetate) to afford 109.
(2.31 g, 65.7%) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.38 (s, 1H), 7.35 – 7.25 (m, 3H), 7.18 – 7.13 (m, 1H), 6.35 (s, 1H), 4.96 (s, 2H), 4.66 (s, 2H), 4.29 (s, 2H), 3.78 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 167.5, 156.2, 146.3, 136.9, 136.7, 131.9, 127.8, 127.6, 123.2, 122.7, 118.4, 99.9, 98.6, 56.0, 53.6, 52. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{10}$H$_{16}$BrN$_2$O$_2$, 347.0395, found 347.0398.

(4-Amino-5-bromo-2-hydroxyphenyl)(isoindolin-2-yl)methanone (110): 1 M solution of boron tribromide (0.60 mmol, 0.60 mL, 2 eq.), was added to a solution of 109 (104.2 mg, 0.30 mmol) in anhydrous dichloromethane (6 mL) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:6 ethyl acetate/hexanes) to afford 110 (67.7, mg, 67.81 %) as a colorless amorphous solid. 1H NMR (500 MHz, CDCl$_3$) δ 11.88 (s, 1H), 7.73 (s, 1H), 7.33 (s, 4H), 6.36 (s, 1H), 5.10 (s, 4H). 13C NMR (125 MHz, CDCl$_3$) δ 170.0, 162.3, 148.4, 136.0 (2), 132.4 (2), 128.0, 122.8 (2), 108.5, 102.8, 97.8, 55.1 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{14}$BrN$_2$O$_2$, 333.0239, found 333.0238.
(4-Amino-5-isopropyl-2-methoxyphenyl)(isoindolin-2-yl)methanone (111): A biotage microwave vial was charged with 110 (1.0 g, 2.46 mmol, 1 eq.), [1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane (251 mg, 0.32 mmol, 0.2 eq.), triethylamine (289 µl, 2.1 mmol, 1.3 eq.), and potassium isopropenyltrifluoroborate (309 mg, 2.10 mmol, 1.3 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of 2-propanol (8 mL) by syringe. The resulting mixture was heated at 100 °C for 6 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to afford (4-amino-2-methoxy-5-(prop-1-en-2-yl)phenyl)(isoindolin-2-yl)methanone, which was used as obtained and dissolved in ethyl acetate (15 mL). Palladium on carbon (10%) was added to this solution and the suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with ethyl acetate (20 mL). The eluent was concentrated to afford 111 (318.3 mg, 64.9 %) as a colorless amorphous solid. ¹H NMR (500 MHz CDCl₃) δ 7.34 – 7.23 (m, 3H), 7.16 – 7.12 (m, 1H), 7.10 (s, 1H), 6.27 (s, 1H), 4.99 (s, 2H), 4.66 (s, 2H), 3.92 – 3.81 (m, 2H), 3.78 (s, 3H), 2.83 (hept, J = 6.8 Hz, 1H), 1.24 (d, J = 6.8 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 154.6, 145.9, 137.3, 136.9, 127.7, 127.5, 125.7, 124.9, 123.2, 122.6, 117.3, 98.8, 55.8, 53.6, 52.3, 27.4, 22.5 (2). HRMS (ESI+) m/z [M + H⁺] calcd for C₁₉H₂₃N₂O₂, 311.1760, found 311.1745.
(4-Amino-2-hydroxy-5-isopropylphenyl)(isoindolin-2-yl)methanone (112): 1 M solution of boron tribromide (0.32 mmol, 0.60 mL, 2 eq.), was added to a solution of 111 (50 mg, 0.16 mmol) in anhydrous dichloromethane (3 mL) at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 ethyl acetate/hexanes) to afford 112 (59.3 mg, 28.1 %) as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 11.52 (s, 1H), 7.42 (d, J = 0.6 Hz, 1H), 7.31 (s, 4H), 6.26 (s, 1H), 5.10 (s, 4H), 4.08 (d, J = 45.9 Hz, 2H), 2.90 – 2.81 (m, 1H), 1.31 (d, J = 6.8 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 160.8, 148.5, 136.4, 127.9 (2), 126.0 (2), 122.7 (2), 107.3, 102.8, 54.8 (2), 27.4, 22.8 (2). HRMS (ESI+) m/z [M + H⁺] calcd for C₁₈H₂₁N₂O₂, 297.1603, found 297.1609.

N-(5-Hydroxy-4-(isoindoline-2-carbonyl)-2-isopropylphenyl)cyanamide (113): Cyanogen bromide (35 mg, 0.32 mmol, 2eq.) was added to a solution of 112 (50 mg, 0.16 mmol, 1 eq.) in diethyl ether at °C. The resulting mixture stirred for 14h at rt, diluted with ethyl acetate (10 mL), washed with water (10 mL) and saturated sodium chloride solution (10 mL). The organic layer was dried over sodium sulfate, filtered and concentrated. The residue was taken in dichloromethane (2 mL) and 1M solution of boron tribromide (0.32 mL, 0.32 mmol, 2.0 eq.) was added at 0 °C. The resulting mixture was stirred at rt for 14 h before quenching with saturate sodium bicarbonate solution (5 mL). The aqueous layer was extracted with dichloromethane (2 ×
The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:6 ethyl acetate/hexanes) to afford **113** (25.0 mg, 48.6 %) as a colorless amorphous solid. \(^1\)H NMR (500 MHz, Methylene Chloride-\(d_2\)) \(\delta\) 11.38 (s, 1H), 7.54 (s, 1H), 7.32 (s, 4H), 6.83 (s, 1H), 6.03 (s, 1H), 5.08 (s, 5H), 2.80 (hept, \(J = 6.8\) Hz, 1H), 1.30 (d, \(J = 6.8\) Hz, 7H). \(^{13}\)C NMR (125 MHz, CD₂Cl₂) \(\delta\) 170.6, 160.6, 139.0 (2), 128.1, 126.6 (3), 124.3, 122.9, 112.7, 110.2, 104.3 (2), 54.9 (2), 27.4, 22.9 (2). HRMS (ESI+) m/z [M + H\(^+\)] calcd for C\(_{20}\)H\(_{20}\)N\(_3\)O\(_2\), 334.1556, found 334.1565.

(4-Amino-3-bromophenyl)(isoindolin-2-yl)methanone (132): 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (4.32 g, 37.02 mmol, 2.0 eq.) was added to a stirred solution of 4-amino-3-bromobenzoic acid (4.0 g, 18.51 mmol, 1 eq.), isoindoline hydrochloride (4.32 g, 27.77 mmol, 1.5 eq.), 1-hydroxybenzotriazole (5.0 g, 37.02 mmol, 2 eq.) N,N-diisopropylethylamine (6.44 mL, 37.02 mmol, 2.0 eq.) in dichloromethane (200 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (150 mL). The organic layer was washed sodium chloride solution (150 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 hexanes/ethyl acetate) to afford **132** (4.33 g, 73.8 %) as a colorless oil. \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.74 (d, \(J = 1.9\) Hz, 1H), 7.41 (dd, \(J = 8.2, 1.9\) Hz, 1H), 7.36 – 7.25 (m, 3H), 7.19 (d, \(J = 7.3\) Hz, 1H), 6.79 (d, \(J = 8.3\) Hz, 1H), 5.00 (s, 2H), 4.86 (s, 2H), 4.38 (br s, 2H). \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 170.6, 160.6, 139.0 (2), 128.1, 126.6 (3), 124.3, 122.9, 112.7, 110.2, 104.3 (2), 54.9 (2), 27.4, 22.9 (2). HRMS (ESI+) m/z [M + H\(^+\)] calcd for C\(_{20}\)H\(_{20}\)N\(_3\)O\(_2\), 334.1556, found 334.1565.
MHz, CDCl₃) δ 169.1, 146.1, 136.7, 132.3, 128.1, 128.0, 127.7, 127.2, 123.1, 122.6, 114.9, 108.5, 55.4, 52.9. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₅H₁₄BrN₂O, 318.1243, found 318.1241.

(4-Amino-3-isopropylphenyl)(isoindolin-2-yl)methanone (116): A biotage microwave vial was charged with 132 (1.0 g, 3.15 mmol, 1 eq.), [1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane (251 mg, 0.32 mmol, 0.2 eq.), triethylamine (289 µl, 2.1 mmol, 1.3 eq.), and potassium isopropenyltrifluoroborate (309 mg, 2.10 mmol, 1.3 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of 2-propanol (8 mL) by syringe. The resulting mixture was heated at 100 °C for 6 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to afford (4-amino-2-methoxy-5-(prop-1-en-2-yl)phenyl)(isoindolin-2-yl)methanone, which was used as obtained and dissolved in ethyl acetate (15 mL). Palladium on carbon (10%) was added to this solution and the suspension was stirred for 16 h under a hydrogen atmosphere before it was filtered through a pad of celite and eluted with ethyl acetate (20 mL). The eluent was concentrated to afford 116 (318.3 mg, 64.9 %) as a colorless amorphous solid. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.40 (d, J = 1.9 Hz, 1H), 7.35 – 7.12 (m, 5H), 6.69 (dd, J = 8.2, 1.2 Hz, 1H), 4.94 – 4.83 (m, 4H), 4.05 (br s, 2H), 2.95 – 2.88 (m, 1H), 1.27 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 170.6, 145.6, 137.2, 131.8, 127.5, 126.6, 126.1, 125.3, 122.8, 122.5, 114.6, 55.2, 52.5, 27.7, 22.0. ¹³C NMR (100 MHz, CD₂Cl₂) δ 170.6, 145.6, 137.2 (2), 131.8, 127.5, 126.6, 126.1 (2), 125.3 (2),
122.8, 122.5, 114.6, 55.2, 52.5, 27.7, 22.0. HRMS (ESI+) m/z [M + H+] calcd for C_{18}H_{21}N_{2}O, 281.1654, found 281.1642.

(1H-Indol-5-yl)(isoindolin-2-yl)methanone (117): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (142 mg, 0.74 mmol, 2.0 eq.) was added to a stirred solution of 1H-indole-5-carboxylic acid (59 mg, 0.37 mmol, 1 eq.), isoindoline hydrochloride (87 mg, 0.46 mmol, 1.5 eq.), 1-hydroxybenzotriazole (100 mg, 0.74 mmol, 2 eq.) N,N-diisopropylethylamine (0.141 mL, 0.81 mmol, 2.2 eq.) in dichloromethane (4 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (4 mL). The organic layer was washed with 1 N HCl (2 × 3 mL) and saturated sodium chloride solution (3 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 117 (56 mg, 57.8 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.91 (s, 1H), 7.43 (s, 2H), 7.14 (d, J = 7.5 Hz, 1H), 6.62 (t, J = 2.4 Hz, 1H), 5.09 (s, 2H), 4.88 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 137.0, 136.8, 128.4, 127.9, 127.6, 127.5, 125.7 (2), 123.1, 122.6, 121.4, 120.2, 111.4, 103.4, 55.6, 52.8. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₇H₁₅N₂O, 263.1184 found, 263.1182

(1H-benzo[d]imidazol-5-yl)(isoindolin-2-yl)methanone (118): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (142 mg, 0.74 mmol, 2.0 eq.) was added to a stirred solution
of 1H-benzo[d]imidazole-5-carboxylic acid (60 mg, 0.37 mmol, 1 eq.), isoindoline hydrochloride (87 mg, 0.46 mmol, 1.5 eq.), 1-hydroxybenzotriazole (100 mg, 0.74 mmol, 2 eq.) N,N-diisopropylethylamine (0.141 mL, 0.81 mmol, 2.2 eq.) in dichloromethane (4 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (4 mL). The organic layer was washed with 1 N HCl (2 × 3 mL) and saturated sodium chloride solution (3 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 118 (60 mg, 61.3 %) as a colorless oil.¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.93 (s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.41 – 7.24 (m, 3H), 7.14 (d, J = 7.4 Hz, 1H), 5.06 (s, 2H), 4.82 (s, 2H).¹³C NMR (125 MHz, CDCl₃) δ 167.5, 142.9, 141.7, 136.5, 136.2, 134.5, 131.2, 128.9, 128.0, 127.8, 125.5, 124.4, 123.7, 123.1, 54.0, 52.9. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₆H₁₄N₃O, 264.1137 found, 264.1129.

Benzofuran-5-yl(isoindolin-2-yl)methanone (119): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (142 mg, 0.74 mmol, 2.0 eq.) was added to a stirred solution of benzofuran-5-carboxylic acid (60 mg, 0.37 mmol, 1 eq.), isoindoline hydrochloride (87 mg, 0.46 mmol, 1.5 eq.), 1-hydroxybenzotriazole (100 mg, 0.74 mmol, 2 eq.) N,N-diisopropylethylamine (0.141 mL, 0.81 mmol, 2.2 eq.) in dichloromethane (4 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (4 mL). The organic layer was washed with 1 N HCl (2 × 3 mL) and saturated sodium chloride solution (3 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography
(SiO$_2$, 1:3 hexanes/ethyl acetate) to afford 119 (60 mg, 67.4%) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$) δ 7.85 (dd, $J = 1.7$, 0.7 Hz, 1H), 7.71 (d, $J = 2.2$ Hz, 1H), 7.58 (dt, $J = 8.5$, 0.9 Hz, 1H), 7.54 (dd, $J = 8.5$, 1.7 Hz, 1H), 7.39 – 7.27 (m, 3H), 7.15 (d, $J = 7.5$ Hz, 1H), 6.85 (dd, $J = 2.2$, 0.9 Hz, 1H), 5.07 (s, 2H), 4.82 (s, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 170.9, 155.7, 146.3, 136.7, 136.6, 131.8, 128.0, 127.7, 127.6, 123.7, 123.2, 122.6, 120.6, 111.7, 107.1, 55.5, 52.8. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{17}$H$_{14}$NO$_2$, 264.1025 found, 264.1021

(1H-benzo[d][1,2,3]triazol-5-yl)(isoindolin-2-yl)methanone (120): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (142 mg, 0.74 mmol, 2.0 eq.) was added to a stirred solution of 1H-benzo[d][1,2,3]triazole-5-carboxylic acid (60 mg, 0.37 mmol, 1 eq.), isoindoline hydrochloride (87 mg, 0.46 mmol, 1.5 eq.), 1-hydroxybenzotriazole (100 mg, 0.74 mmol, 2 eq.) N,N-diisopropylethylamine (0.141 mL, 0.81 mmol, 2.2 eq.) in dichloromethane (4 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (4 mL). The organic layer was washed with 1 N HCl (2 × 3 mL) and saturated sodium chloride solution (3 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 hexanes/ethyl acetate) to afford 120 (53 mg, 56.4%) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$-CD$_3$OD δ 8.12 (s, 1H), 7.88 (d, $J = 8.6$ Hz, 1H), 7.63 (dd, $J = 8.5$, 1.4 Hz, 1H), 7.42 – 7.28 (m, 3H), 7.15 (d, $J = 7.4$ Hz, 1H), 5.09 (s, 2H), 4.82 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 170.2, 147.7, 136.2 (2), 136.1(2), 128.2, 127.9 (2), 123.2, 122.6, 115.9, 114.7, 55.4, 52.9. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$N$_4$O, 265.1089 found, 265.1081.
(4-Hydroxy-3-(trifluoromethyl)phenyl)(isoindolin-2-yl)methanone (122): 1-Ethyl-3-(3-
dimethylaminopropyl) carbodiimide (192 mg, 2.0 mmol, 2.0 eq.) was added to a stirred solution
of 4-hydroxy-3-(trifluoromethyl)benzoic acid (206 mg, 1.0 mmol, 1 eq.), isoindoline
hydrochloride (233 mg, 1.5 mmol, 1.5 eq.), 1-hydroxybenzotriazole (306 mg, 2.0 mmol, 2 eq.) N-
,N-diisopropylethylamine (0.39 mL, 2.2 mmol, 2.2 eq.) in dichloromethane (10 mL) at 0 °C The
resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate
solution (10 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium
chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The
residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 122 (164
mg, 53.8 %) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 2.2 Hz, 1H), 7.55 (dd, J
= 8.4, 2.2 Hz, 1H), 7.21 (s, 6H), 7.12 (d, J = 7.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 4.94 (s, 2H),
4.76 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 155.9, 135.1, 135.0, 131.4, 126.9, 126.6, 126.1,
125.3 (q, J = 5.2 Hz), 123.6 (q, J = 269 Hz), 121.9, 121.4, 116.0, 115.8 (q, J = 30.2 Hz), 54.1, 51.7.
¹⁹F NMR (376 MHz, CDCl₃) δ -63.0. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₆H₁₃F₃NO₂,
306.0742 found, 306.0754.

(3-Chloro-4-hydroxyphenyl)(isoindolin-2-yl)methanone (123): 1-Ethyl-3-(3-
dimethylaminopropyl) carbodiimide (149 mg, 1.16 mmol, 2.0 eq.) was added to a stirred solution
of 3-chloro-4-hydroxybenzoic acid (100 mg, 0.55 mmol, 1 eq.), isoindoline hydrochloride (128 mg, 0.82 mmol, 1.5 eq.), 1-hydroxybenzotriazole (211 mg, 1.10 mmol, 2 eq.) N,N-diisopropylethylamine (0.21 mL, 1.21 mmol, 2.2 eq.) in dichloromethane (6 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (5 mL). The organic layer was washed with 1 N HCl (2 × 5 mL) and saturated sodium chloride solution (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:3 hexanes/ethyl acetate) to afford 123 (82 mg, 54.6 %) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, $J = 2.0$ Hz, 1H), 7.47 (d, $J = 8.4$ Hz, 1H), 7.36 – 7.28 (m, 3H), 7.19 (d, $J = 7.3$ Hz, 1H), 7.10 (d, $J = 8.4$ Hz, 1H), 5.02 (s, 2H), 4.84 (s, 2H). 13C NMR (125 MHz, CDCl$_3$-CD$_3$OD) δ 169.2, 153.8, 136.4, 136.3, 129.3, 128.9, 128.1, 127.8, 127.6, 123.1, 122.6, 120.4, 116.4, 55.3, 52.9. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$ClNO$_2$, 274.0635 found 274.0640.

(4-hydroxy-3-nitrophenyl)(isoindolin-2-yl)methanone (124): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (192 mg, 2.0 mmol, 2.0 eq.) was added to a stirred solution of 4-hydroxy-3-nitrobenzoic acid (183 mg, 1.0 mmol, 1 eq.), isoindoline hydrochloride (233 mg, 1.5 mmol, 1.5 eq.), 1-hydroxybenzotriazole (306 mg, 2.0 mmol, 2 eq.) N,N-diisopropylethylamine (0.39 mL, 2.2 mmol, 2.2 eq.) in dichloromethane (10 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (10 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The
residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 124 (207 mg, 72.8%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, <i>J</i> = 2.2 Hz, 1H), 7.86 (dd, <i>J</i> = 8.7, 2.2 Hz, 1H), 7.37 – 7.11 (m, 5H), 5.02 (s, 2H), 4.86 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 156.4, 136.7 (2), 136.1, 136.0, 128.6, 128.3, 127.9, 124.5, 123.2, 122.7, 120.7, 55.3, 53.1. HRMS (ESI+) m/z [M - H]⁺ calcd for C₁₅H₁₁NO₂, 283.0719, found 283.0725.

2-Hydroxy-5-(isoindoline-2-carbonyl)benzonitrile (125): 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (586 mg, 3.06 mmol, 2.0 eq.) was added to a stirred solution of 4-hydroxy-3-nitrobenzoic acid (250 mg, 1.53 mmol, 1 eq.), isoindoline hydrochloride (356 mg, 3.06 mmol, 1.5 eq.), 1-hydroxybenzotriazole (470 mg, 3.06 mmol, 2 eq.) N,N-diisopropylethylamine (1.12 mL, 6.42 mmol, 4.2 eq.) in dichloromethane (16 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL). The organic layer was washed with 1 N HCl (2 × 15 mL) and saturated sodium chloride solution (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 125 (162 mg, 61.5%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃-CD₃OD) δ 7.72 (dd, <i>J</i> = 9.3, 2.2 Hz, 1H), 7.62 (ddd, <i>J</i> = 10.9, 8.0, 2.2 Hz, 1H), 7.31–7.23 (m, 3H), 7.16 (t, <i>J</i> = 8.7 Hz, 1H), 6.97 (t, <i>J</i> = 8.6 Hz, 1H), 4.95 (d, <i>J</i> = 11.5 Hz, 2H), 4.80 (d, <i>J</i> = 9.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 162.0, 136.0, 135.9, 133.8, 132.4, 128.1, 127.8, 127.5, 123.0, 122.6, 116.6, 116.4, 99.8, 55.3, 52.9. HRMS (ESI+) m/z [M + H]⁺ calcd for C₁₆H₁₃NO₂, 265.0977, found 265.0984.
(4-hydroxy-3-iodophenyl)(isoindolin-2-yl)methanone (127): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (192 mg, 2.0 mmol, 2.0 eq.) was added to a stirred solution of 4-hydroxy-3-iodobenzoic acid (264 mg, 1.0 mmol, 1 eq.), isoindoline hydrochloride (233 mg, 1.5 mmol, 1.5 eq.), 1-hydroxybenzotriazole (306 mg, 2.0 mmol, 2 eq.) N,N-diisopropylethylamine (0.39 mL, 2.2 mmol, 2.2 eq.) in dichloromethane (10 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (25 mL) and ethyl acetate (50 mL). The organic layer was washed with 1 N HCl (2 × 25 mL) and saturated sodium chloride solution (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane to afford 127 (166 mg, 45.6 %) as an off-white amorphous solid. 1H NMR (400 MHz, DMSO-d_6) δ 11.29 – 11.14 (br s, 1H), 7.64 (d, $J = 7.3$ Hz, 1H), 7.46 – 7.27 (m, 5H), 6.92 (dd, $J = 11.1$, 1.6 Hz, 1H), 4.82 (s, 2H), 4.64 (s, 2H). 13C NMR (100 MHz, DMSO-d_6) δ 163.3, 157.7, 136.4, 135.9, 132.1, 132.0, 127.5, 127.4, 123.0, 122.9, 117.3, 104.7, 103.8, 51.7 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$I NO$_2$, 365.9991, found 365.9998.

1-(2-Hydroxy-5-(isoindoline-2-carbonyl)phenyl)ethan-1-one (128): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (4.26 g, 22.20 mmol, 2.0 eq.) was added to a stirred solution of 3-chloro-4-hydroxybenzoic acid (2.0 g, 11.10 mmol, 1 eq.), isoindoline hydrochloride (2.59 g, 22.20 mmol, 2.0 eq.) in dichloromethane (10 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (25 mL) and ethyl acetate (50 mL). The organic layer was washed with 1 N HCl (2 × 25 mL) and saturated sodium chloride solution (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane to afford 128 (166 mg, 45.6 %) as an off-white amorphous solid. 1H NMR (400 MHz, DMSO-d_6) δ 11.29 – 11.14 (br s, 1H), 7.64 (d, $J = 7.3$ Hz, 1H), 7.46 – 7.27 (m, 5H), 6.92 (dd, $J = 11.1$, 1.6 Hz, 1H), 4.82 (s, 2H), 4.64 (s, 2H). 13C NMR (100 MHz, DMSO-d_6) δ 163.3, 157.7, 136.4, 135.9, 132.1, 132.0, 127.5, 127.4, 123.0, 122.9, 117.3, 104.7, 103.8, 51.7 (2). HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$I NO$_2$, 365.9991, found 365.9998.
16.7 mmol, 1.5 eq.), 1-hydroxybenzotriazole (2.99 g, 22.2 mmol, 2 eq.) N,N-diisopropylethylamine (8.12 mL, 46.62 mmol, 4.2 eq.) in dichloromethane (110 mL) at 0 °C The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (100 mL). The organic layer was washed with 1 N HCl (2 × 100 mL) and saturated sodium chloride solution (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 128 (2.12 g, 67.8 %) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 12.49 (s, 1H), 8.09 (d, J = 2.1 Hz, 1H), 7.75 (dd, J = 8.6, 2.1 Hz, 1H), 7.39 – 7.28 (m, 3H), 7.20 (d, J = 7.5 Hz, 1H), 7.06 (d, J = 8.6 Hz, 1H), 5.05 (s, 2H), 4.86 (s, 2H), 2.69 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 204.7, 169.2, 163.9, 136.4 (2), 134.9, 131.1, 128.2, 127.8, 127.5, 123.2, 122.6, 119.6, 118.5, 55.4, 53.0, 27.0. HRMS (ESI+) m/z [M + H⁺] calced for C₁₇H₁₆NO₃, 282.1130, found 282.1135.

(4-Hydroxy-3-(1-hydroxyethyl)phenyl)(isoindolin-2-yl)methanone (129): Sodium borohydride (12 mg, 0.35 mmol, 1.5 eq.) was added to a solution of 128 (56 mg, 0.2 mmol, 1.0 eq.) in a solvent mixture of tetrahydrofuran (0.5 mL) and methanol (1.5 mL) at 0 °C. The resulting mixture was stirred for 1 h at rt before the addition of saturated ammonium chloride solution (2 mL). The aqueous layer was extracted with ethyl acetate (2 × 3 mL). The combined organic layers were washed with saturated sodium chloride solution (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:2 hexanes/ethyl acetate) to afford 129 (25 mg, 45.22 %) as a colorless oil. ¹H NMR (400 MHz, CD₃OD) δ 7.65 (d, J = 2.2 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.33 – 7.20 (m, 3H), 6.85 (d, J = 8.3 Hz,
1H), 5.18 (q, J = 6.4 Hz, 1H), 4.94 (s, 2H), 1.45 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CD$_3$OD) δ 172.9, 157.5, 137.9, 137.1, 133.7, 128.8, 128.6, 128.4, 128.1, 126.4, 123.8, 123.6, 115.9, 66.3, 56.3, 53.6, 24.1. HRMS (ESI+) m/z [M + H$^+$] calcd for 284.1287, C$_{17}$H$_{18}$NO$_3$, found 284.1281.

![Chemical structure](image)

(4-Hydroxy-3-(2-hydroxypropan-2-yl)phenyl)(isoindolin-2-yl)methanone (130): 1 M solution of methyl magnesium bromide in tetrahydrofuran (0.24mL, 0.24 mmol, 1.2 eq.) was added to a solution of 128 (56 mg, 0.2 mmol, 1.0 eq.) in tetrahydrofuran (2.0 mL) 0 °C. The resulting mixture was stirred for 1 h at 0 °C before the addition of saturated ammonium chloride solution (2 mL). The aqueous layer was extracted with ethyl acetate (2 × 3 mL). The combined organic layers were washed with saturated sodium chloride solution (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:2 hexanes/ethyl acetate) to afford 130 (19 mg, 33.2 %) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 9.83 (s, 1H), 7.35 – 7.25 (m, 5H), 7.16 (d, J = 7.3 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 4.98 (s, 2H), 4.80 (s, 2H), 4.59 (br s, 1H), 1.62 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 171.1, 158.0, 136.6, 136.4, 132.1, 128.0, 127.7, 127.6, 127.0, 125.3, 123.1, 122.6, 117.3, 75.4, 55.4, 52.9, 31.1, 30.2. HRMS (ESI+) m/z [M - H$^+$] calcd 296.1287 for C$_{18}$H$_{18}$NO$_3$, found, 296.1278.

![Chemical structure](image)
(3-Bromo-4-hydroxyphenyl)(5-fluoroisoindolin-2-yl)methanone (133): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (88 mg, 0.46 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (50 mg, 0.23 mmol, 1 eq.), 5-fluoroisoindoline hydrochloride (48 mg, 0.28 mmol, 1.2 eq.), 1-hydroxybenzotriazole (62 mg, 0.46 mmol, 2 eq.) N,N-diisopropylethylamine (0.17 mL, 0.97 mmol, 4.2 eq.) in dichloromethane (3.0 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (3 mL). The organic layer was washed with 1 N HCl (2 × 3 mL) and saturated sodium chloride solution (3 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO₂, 1:3 hexanes/ethyl acetate) to afford 133 (58 mg, 76.1 %) as a light gray amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.48 (s, 1H), 7.45 (d, J = 2.2 Hz, 1H), 7.35-7.25 (m, 3H), 7.27 – 7.24 (m, 2H), 6.97 (d, J = 8.5 Hz, 1H), 5.10 (s, 4H), 2.92 (hept, J = 7.0 Hz, 1H), 1.29 (d, J = 6.9 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.55. ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 167.1 (d, J = 120 Hz), 160.9, 144.7, 143.6, 138.3, 137.7, 133.5, 129.7, 121.0, 119.6 (d, J = 23 Hz), 115.2 (d, J = 23 Hz), 114.1, 59.3, 57.1. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₅H₁₂BrFNO₂, 336.0035, found 336.0042.

(3-Bromo-4-hydroxyphenyl)(5-chloroisooindolin-2-yl)methanone (134): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (47 mg, 0.24 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (25 mg, 0.12 mmol, 1 eq.), 5-chloroisooindoline hydrochloride (26 mg, 0.13 mmol, 1.2 eq.), 1-hydroxybenzotriazole (38 mg, 0.24 mmol, 2 eq.) N,N-diisopropylethylamine (0.09 mL, 0.51 mmol, 4.2 eq.) in dichloromethane (2.0 mL) at 0 °C. The
resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL) and ethyl acetate (15 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane (5 mL) to afford 134 (26 mg, 65.0 %) as a white amorphous solid. 1H NMR (500 MHz, CD$_3$OD) δ 8.08 – 7.46 (m, 3H), 7.29 – 7.05 (m, 2H), 6.77 (d, $J = 8.4$ Hz, 1H), 4.77 – 4.67 (m, 4H). 13C NMR (125 MHz, CD$_3$OD) δ 169.2, 153.4, 138.7, 135.3, 131.8, 131.1, 127.5, 127.2, 124.3, 124.0, 123.9, 122.7, 115.6, 54.2, 52.0. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{12}$ClBrNO$_2$, 351.9740, found 351.9747.

(3-Bromo-4-hydroxyphenyl)(5-bromoisoindolin-2-yl)methanon (135): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (44 mg, 0.23 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (25 mg, 0.12 mmol, 1 eq.), 5-bromoisoindoline hydrochloride (33 mg, 0.14 mmol, 1.2 eq.), 1-hydroxybenzotriazole (31 mg, 0.23 mmol, 2 eq.) N,N-diisopropylethylamine (0.09 mL, 0.48 mmol, 4.2 eq.) in dichloromethane (2.0 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL) and ethyl acetate (15 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO$_2$, 1:19 acetone/dichloromethane) to afford 135 (27 mg, 58.4 %) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$-CD$_3$OD) δ 7.86 – 7.76 (m, 1H), 7.52 – 7.37 (m, 2H), 7.27 – 7.14 (m, 1H), 6.97 (d, $J = 8.5$ Hz, 1H), 4.96 – 4.86 (m, 4H). 13C NMR (125 MHz, CD$_3$OD) δ 170.7, 157.4, 139.3, 136.4, 133.3,
131.7, 128.9, 128.8, 126.8, 125.3, 122.1, 116.7, 110.6, 55.6, 53.2. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₅H₁₂Br₂NO₂, 395.9235, found 395.9251.

Methyl 2-(3-bromo-4-hydroxybenzoyl)isoindoline-5-carboxylate (136): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (88 mg, 0.46 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (50 mg, 0.23 mmol, 1 eq), methyl isoindoline-5-carboxylate hydrochloride (58 mg, 0.27 mmol, 1.2 eq.), 1-hydroxybenzotriazole (62 mg, 0.46 mmol, 2 eq.) N,N-diisopropylethylamine (0.17 mL, 0.97 mmol, 4.2 eq.) in dichloromethane (3.0 mL) at 0 °C The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL) and ethyl acetate (15 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane (5 mL) to afford 136 (42 mg, 47.9 %) as a pale yellow amorphous solid. ¹H NMR (500 MHz, CD₃OD) δ 8.04 – 7.91 (m, 2H), 7.81 (d, J = 2.1 Hz, 1H), 7.53 – 7.35 (m, 2H), 6.99 (d, J = 8.4 Hz, 1H), 5.00 – 4.95 (m, 4H), 3.91 – 3.89 (m, 3H). ¹³C NMR (125 MHz), CD₃OD δ 171.0, 168.2, 157.8, 143.1, 138.3, 133.7 (2), 131.2, 130.5, 129.7, 129.1, 125.1, 124.1, 110.8, 56.0, 53.6, 52.7. HRMS (ESI+) m/z [M + H⁺] calcd for C₁₇H₁₅BrNO₄, 377.0263, found 377.0277.
(3-Bromo-4-hydroxyphenyl)(5-methoxyisoindolin-2-yl)methanone (137): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (88 mg, 0.46 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (50 mg, 0.23 mmol, 1 eq.), 5-methoxyisoindoline hydrochloride (52 mg, 0.28 mmol, 1.2 eq.), 1-hydroxybenzotriazole (62 mg, 0.46 mmol, 2 eq.) N,N-diisopropylethylamine (0.17 mL, 0.97 mmol, 4.2 eq.) in dichloromethane (3.0 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL) and ethyl acetate (15 mL). The organic layer was washed with 1 N HCl (2 × 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane (5 mL) to afford 137 (32 mg, 41.3 %) as a white amorphous solid.

1H NMR (500 MHz, CD$_3$OD) δ 7.58 (d, $J = 2.0$ Hz, 1H), 7.28 (dd, $J = 8.4, 2.1$ Hz, 1H), 7.05–6.93 (m, 1H), 6.94 (d, $J = 8.4$ Hz, 1H), 6.78–6.59 (m, 2H), 4.66 – 4.57 (m, 4H), 3.60–3.57 (m, 3H). 13C NMR (125 MHz, CD$_3$OD) δ 169.6, 159.9, 156.3, 137.8, 137.0, 132.2, 127.8, 127.6, 123.1, 115.4, 113.9, 109.4, 107.1, 53.6, 54.4, 52.1. HRMS (ESI+) m/z [M - H$^+$] calcd for C$_{16}$H$_{13}$BrNO$_3$, 346.0079 found 346.0089.

(3-Bromo-4-hydroxyphenyl)(5-hydroxyisoindolin-2-yl)methanone (138): Boron tribromide (1M solution in dichloromethane, 0.12 mL, 0.12 mmol, 2.0 eq.) was added to a solution of 136 (20 mg, 0.06 mmol, 1.0 eq.) at 0 °C. The resulting mixture was stirred at rt for 6 h before the addition of saturated sodium bicarbonate solution (10 mL) and ethyl acetate (10 mL). The organic layer was washed with saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate,
filtered, and concentrated. The residue was triturated with dichloromethane (2 mL) to afford 138 (14 mg, 70.2 %) as pale yellow amorphous solid. 1H NMR (500 MHz, Methanol-d_4) δ 7.78 (d, $J = 2.0$ Hz, 1H), 7.48 (dd, $J = 8.4, 2.1$ Hz, 1H), 7.16 – 7.04 (m, 1H), 6.98 (dd, $J = 8.4, 1.3$ Hz, 1H), 6.81 – 6.64 (m, 2H), 4.86 – 4.77(m, 4H). 13C NMR (125 MHz, CD$_3$OD) δ 171.0, 158.6, 157.6, 138.7, 133.6, 129.7, 129.0, 127.9, 124.5, 116.8, 116.2, 110.7, 110.2, 56.0, 53.5. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{15}$H$_{13}$BrNO$_3$, 334.0079, found 334.0094.

![Chemical Structure](image_url)

(3-Bromo-4-hydroxyphenyl)(1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)methanone (139): 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (47 mg, 0.24 mmol, 2.0 eq.) was added to a stirred solution of 3-bromo-4-hydroxybenzoic acid (25 mg, 0.12 mmol, 1 eq), 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine dihydrobromide (37 mg, 0.13 mmol, 1.2 eq.), 1-hydroxybenzotriazole (38 mg, 0.24 mmol, 2 eq.) N$_2$N-diisopropylethylamine (0.09 mL, 0.51 mmol, 4.2 eq.) in dichloromethane (2.0 mL) at 0 °C The resulting solution was stirred at rt for 14 h before the addition of saturated sodium bicarbonate solution (15 mL) and ethyl acetate (15 mL). The organic layer was washed with 1 N HCl (2 x 10 mL) and saturated sodium chloride solution (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was triturated with dichloromethane (5 mL) to afford 139 (21 mg, 54.3 %) as a white amorphous solid. 1H NMR (500 MHz, Methanol-d_4) δ 8.62 – 8.43 (m, 2H), 7.81 (d, $J = 2.1$ Hz, 1H), 7.52 – 7.33 (m, 2H), 6.97 (d, $J = 8.4$ Hz, 1H), 5.03 – 4.95 (m, 4H). 13C NMR (125 MHz, CD$_3$OD) δ 171.1, 158.5, 148.9, 148.5, 145.0, 135.1, 133.7, 129.2, 128.8, 119.9, 117.1, 111.1, 55.0, 52.7. HRMS (ESI+) m/z [M + H$^+$] calcd for C$_{14}$H$_{12}$N$_2$O$_2$, 319.0082, found 319.0079.
(4-(Benzyloxy)-3-bromophenyl)(isoindolin-2-yl)methanone (142): Potassium carbonate (10.22 g, 73.6 mmol, 4 eq) was added to a solution of 3-Bromo-4-hydroxybenzoic acid (4 g, 18.4 mmol, 1.0 eq) of acetonitrile (150 mL). Subsequently, benzyl bromide (4.37 mL, 4.05 mmol, 2.2 eq) was added dropwise, and the reaction was heated at 80 °C for 14 h. Upon cooling, the reaction mixture was filtered, the residue washed with ethyl acetate (100 mL), and concentrated. The resulting white solid (7.0 g, 17.8 mmol, 1 eq) was then suspended in a solvent mixture of terahydrofuran (60 mL), water (20 mL) and methanol (20 mL) and lithium hydroxide (1.29 g, 53.4 mmol, 3 eq) was added. The reaction stirred for 16 hours at room temperature, and concentrated. The residue was treated with 1 M hydrochloric acid solution and pH was adjusted to 2. The resulting mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with saturated sodium chloride solution (200 mL), dried over anhydrous sodium sulfated, and concentrated. The resulting acid (5.19 g, 16.9 mmol, 1 eq) was added to a stirred solution of isoindoline hydrochloride (3.22 g, 25.35 mmol, 1.5 eq.), 1-hydroxybenzotriazole (3.73 g, 33.8 mmol, 2 eq.) N,N-diisopropylethylamine (4.81 mL, 33.8 mmol, 2.0 eq.) in dichloromethane (170 mL) at 0 °C. The resulting solution was stirred at rt for 14 h before quenching with saturated sodium bicarbonate solution (120 mL). The organic layer was washed with 1 M hydrochloric acid solution (120 mL) and saturated sodium chloride solution (120 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (SiO2, 1:4 hexanes/ethyl acetate) to afford 142 (3.24 g, 43 %) as a light brown amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.85 (d, J = 2.0 Hz, 1H), 7.55 – 7.47 (m,
3H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (dq, J = 14.0, 6.8 Hz, 4H), 7.19 (d, J = 7.3 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 5.23 (s, 2H), 5.01 (s, 2H), 4.83 (s, 2H). ^1^C NMR (100 MHz, CDCl\textsubscript{3}) δ 168.8, 156.6, 136.4, 136.2 (2), 132.7, 130.5, 128.9 (2), 128.3, 128.1, 128.0, 127.8 (2), 127.2, 123.2, 122.7, 113.3, 112.5, 71.1, 55.3, 52.9. HRMS (ESI+) m/z [M + H+] calcd for C\textsubscript{22}H\textsubscript{19}BrNO\textsubscript{2}, 408.0599, found 408.0591.

![Chemical structure](image.png)

(4-Hydroxy-3-(phenylthio)phenyl)(isoindolin-2-yl)methanone (140): A biotage microwave vial was charged with 142 (100 mg, 0.25 mmol, 1 eq.), thiophenol (42 μL, 0.45 mmol, 1.9 eq.), 1,1'-ferrocenediyldiphenylphosphine (45 mg, 0.05 mmol, 0.2 eq.), Tris(dibenzylideneacetone)dipalladium(0) (31 mg, 0.05 mmol, 0.2 eq.), N,N'-diisopropylethylamine (79 μL, 0.46 mmol, 1.9 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO\textsubscript{2}, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over anhydrous sodium
sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO₂, 1:2 ethyl acetate/hexanes) to give the desired product 140 as white amorphous solid (36 mg, 41 \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 7.83 (d, \(J = 2.1\) Hz, 1H), 7.66 (dd, \(J = 8.4, 2.2\) Hz, 1H), 7.36 – 7.25 (m, 4H), 7.23 – 7.11 (m, 5H), 6.82 (s, 1H), 5.01 (s, 2H), 4.82 (s, 2H). \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 169.2, 158.8, 136.6, 136.5, 136.0, 135.2, 131.7, 129.8, 129.6 (2), 128.1, 127.8, 127.7, 126.9 (2), 123.1, 122.6, 117.4, 115.8, 55.3, 52.9. HRMS (ESI+) m/z [M + H\(^+\)] calcd for C\(_{21}\)H\(_{18}\)NO\(_2\)S, 348.1058, found 348.1051.

![Chemical Structure](image)

(4-hydroxy-3-(methyl(phenyl)amino)phenyl)(isoindolin-2-yl)methanone: A biotage microwave vial was charged with 142 (100 mg, 0.25 mmol, 1 eq.), N-methyl aniline (44 \(\mu\)l, 0.36 mmol, 1.5 eq.), RuPhos (10 mg, 0.02 mmol, 0.08 eq.), Tris(dibenzylideneacetone)dipalladium(0) (22 mg, 0.02 mmol, 0.1 eq.), sodium tert-butoxide (35 mg, 0.36 mmol, 1.5 eq.). The tube was sealed with a cap lined with a disposable Teflon septum. The tube was evacuated and purged with nitrogen (3 times), before the addition of toluene (3.0 mL) by syringe. The resulting mixture was heated at 120 °C for 18 h, cooled to rt, and filtered through a small pad of celite (elution with ethyl acetate). Solvent was removed and the residue purified by flash chromatography (SiO₂, 1:3 ethyl acetate/hexanes) to give the corresponding 5-substituted product, which was used further as obtained, and taken in dichloromethane (2 mL), cooled to 0 °C before the addition of 1 M solution of boron tribromide (0.6 mL). The resulting mixture was stirred for 6 h, quenched with saturated sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with saturated sodium chloride solution (15 mL), dried over
anhydrous sodium sulfate, filtered, and concentrated. The residue purified with flash chromatography (SiO₂, 1:2 ethyl acetate/hexanes) to give the desired product 141 as white amorphous solid (36 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.4, 2.1 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.30 (dd, J = 9.9, 4.3 Hz, 3H), 7.25 – 7.22 (m, 1H), 7.17 (d, J = 7.3 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.89 (tt, J = 7.3, 1.0 Hz, 1H), 6.79 – 6.74 (m, 2H), 6.35 (s, 1H), 4.98 (s, 2H), 4.80 (s, 2H), 3.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 154.6, 149.2, 136.6 (2), 135.9, 129.9, 129.5 (2), 128.0, 127.7, 127.5, 126.9, 123.1, 122.6, 120.0, 115.5, 115.4 (2), 55.3, 52.8, 40.3. HRMS (ESI+) m/z [M + H⁺] calcd for C₂₂H₂₁N₂O₂, 345.1603, found 345.1612.

V.11. References

