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Abstract

Mobile data traffic is predicted to have an exponential ghoimtthe future. In or-
der to meet the challenge as well as the form factor limitaba the base station,
3D “massive MIMQO" has been proposed as one of the enablingt#agies to sig-
nificantly increase the spectral efficiency of a wirelesgesys In “massive MIMO"
systems, a base station will rely on the uplink soundingagfrom mobile stations
to figure out the spatial information to perform MIMO beanmAong. Accordingly,
multi-dimensional parameter estimation of a MIMO wirelekannel becomes crucial

for such systems to realize the predicted capacity gains.

In this thesis, we study and analyze both separated andhijogi and delay estimation
for 3D “massive MIMO" systems based on parametric channeletiog in mobile
wireless communications. To be specific, we first introdusearated low complex-
ity time delay and angle estimation in the millimeter wavessizge MIMO system.
Furthermore, a matrix-based ESPRIT-type algorithm isiedgb jointly estimate de-
lay and angle, the mean square error (MSE) of which is alstyzed We found that
azimuth estimation depends on the number of vertical aatelfements as well as that
of horizontal antenna elements. Simulation results sugges the configuration of
the underlying antenna at the base station plays a critidalin determining the es-
timation performance. These insights will be useful forigesg practical “massive

MIMO" systems in future mobile wireless communications.
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Chapter 1

Introduction

Rarely have technical innovations changed everyday lifapglly and profoundly as mobile wire-
less communications. According to the International Tetecunication Union (ITU) [1], the
number of mobile wireless subscriptions has pass&8 billion in year 2013, which is more than
90% of the world population. In additional, smart phone arabite tablet penetrations are also
rising rapidly. In general, the data consumption of a sisghart phone is equivalent to the traffic
generated by 50 featured phones; while a mobile tablet cadupe 120 times the data volume of a
featured phone [2]. As aresult, in May 2013, Cisco systeradipted a staggering 66% compound
annual growth rate (CAGR) for global mobile data traffic fr@612 to 2017 [3]. This is an 13-fold
increase in wireless traffic over a five-year period.

A key societal question and a pressing engineering chale-How can we support the pre-
dict exponential growth in mobile data traffic?" To meet thereasing traffic demand, other than
reallocating radio spectrum to wireless providers, spectefficiency will need to be improved
significantly. Multiple-input-multiple-output (MIMO) tehnology, together with multi-user MIMO
(MU-MIMO), offer efficient ways to increase the spectral @fncy of a mobile broadband com-
munication system [4]. Recently, a new MIMO paradigm callgthssive MIMO" has generated
much interest in both academia [5] [6] and industry. Usinfprimation theoretical analysis, it

can be shown that even with random user scheduling and necellecooperation, unprecedented



spectral efficiency in time-division-duplex (TDD) celluksystems can be achieved if a sufficiently
large number of transmit antennas are employed at each tadiemn s

Due to the form factor limitation, 3D "massive MIMO" systeme introduced to fit a large
number of antenna elements on the base station in reali\83].7]On the other side, millimeter
wave wireless communication with carrier frequency betwge to 300GHz has enable gigabit
per second data transmission indoor wireless communicagistems and has been introduced for
mobile cellular network to combat the form factor limitatioCommunication in the millimeter
wave band make it possible to pack a large amount of anteen@eels on a base station therefore
also enable practical massive MIMO systems.

In order to realized the capacity gains promised by "madsiildO" systems, it is crucial
for the base station to know the channel state informatid® @ perform the transmit precod-
ing. Traditionally, channel estimation can be done by eatiing the transfer function. Such a
strategy may yield poor performance in 3D active "massivéMT systems due to the large di-
mensionality of the channel matrix. Alternatively, chahestimation could be conducted based
on parametric channel models where direction-of-arria4) and direction-of-departure (DoD)
estimation of resolvable paths can be estimated [9]. Whersyistem is calibrated, it is shown
that the performance bound of the channel estimation thraygarametric approach outperforms
simple unstructured interpolation scheme [10]. Under mpatsic channel modeling of massive
MIMO systems, estimation of the channel becomes estimatidtne DoA/DoD and the delay of
each resolvable paths. In this thesis, we focus on jointeaagtl delay estimation for 3D massive
MIMO systems based on parametric channel modeling.

There are many existing subspace-based method such as MESRRIT and matrix pencil to
estimate DoA/DoD for two-dimensional (2D) mobile wirelesstems. However, its counterpart
in 3D, together with delay estimation is yet not well exptbfer mobile wireless communication
systems. In [11], an efficiency way for estimating the delagl ®0A of multiple reflections of
a know signal is presented, but the complexity of the algarits prohibitively high due to the

iterative procedure. Some methods in [12] are introduceestonate channel parameters with



low complexity, but the disadvantages are that the pairinth@ 3D angles and delay can not be
automatically determined, which means two signals witlsetbparameters are indistinguishable.
The TST-MUSIC (Time-Space-Time MUSCI) algorithm proposedll3] has great performance
in estimating the DoAs and delay of a wireless multi-ray etenbut it can only solve the problem
in the case of only one close parameter and the complexittiligedatively high. Hence, in
this thesis, we introduce two approaches to estimate thesDoo® delay with low complexity
utilizing the shift-invariance property of ESPRIT algdit. Moreover, few of the aforementioned
papers deal with derivation of the analytical mean squaie ¢MSE). Analytical results on the
performance of standard ESPRIT is first investigated in.[Hwever, the result goes back to a
result on the distribution of the eigenvectors of a simpleac@ance matrix. In contrast, in [15] a
different approach is proposed, which provides an exgiist-order expression of the subspace
of a desired signal if a small additive perturbation is assdimNevertheless, the authors in [15]
only consider the 1D standard ESPRIT method. Moreover, thigewmoise is assumed in order to
get the desired result. In order to overcome these drawb&demeret.al[16] provider a frame
of the MSE analysis which considers the multiple dimensicase. In [16], it is shown that the
MSE expression only depends on the second-order momertis obise. However, these results
are so complicated and only can be simplified in the signdl pase. Thus little intuition can
be obtained through them. In this thesis, we will derive timepéified results in multiple paths
case using the subspace-based estimation methods in theetel wave massive MIMO system,
which can provide us the intuitions of the real system desmn

The contribution of the thesis can be summarized as follows.

Firstly, we propose the separated delay and angle estimatéthod, which is rarely investi-
gated in the literature. It has also been shown that if DoAdiféérent paths are drawn to uniform
distribution, the delays of different paths can be estichatarectly and vice versa.

Secondly, we derive the MSE of the delay and angle estimébiodifferent paths using the
standard and unitary ESPRIT. Furthermore, we simplify #siits in the massive MIMO system

which shows that the MSE depends heavily on the number of thkenaas, the number of the



snapshots and the transmit power. There are few papersrigausthe analysis of the MSE of the
elevation angle and azimuth angle estimation for diffepaths. Compared to the results in the
literature, our analytical result can provide the intuigof the real system design.

Thirdly, we analyze the impact of various antenna configonaton the estimation performance
and observe some "surprising"” results. For example, fostesywith total 64 antenna elements,
using ESPRIT-type DoA estimation algorithms, it can be shtvat a 88 array yields better DoA
estimation than 416 array in both elevation angle and azimuth angle estimatidhe low and
median signal to noise ratio (SNR) regime.

Finally, the MSE of the delay and angle estimation usingtjaingle and delay estimation
(JADE) methodology is investigated. In the massive MIMOtsgs the simplified closed-form
MSE of elevation angle and azimuth angle estimation is abtgi which is unexplored in the
literature.

The remainder of this thesis is organized as follows. Weodhice the multi-path ray-based
channel model in Chapter 2. Chapter 3.1 mainly focuses caydedtimation based on discrete
Fourier transform, while the 3D DoA estimation followingrdine of work is given in Chapter 3.2
through unitary ESPRIT. The matrix-based joint angle andydestimation algorithm is conducted
in Chapter 4.1, together with the theoretical analysis efrtitean square error (MSE) of the pro-
posed method in Chapter 4.2. Simulation results are ilitestkin Chapter 5. Finally, Chapter 6
concludes this thesis and we show a list of active reseapibsavhich need to be investigated in

the future.



Chapter 2

Data Model

A typical 3D "massive MIMO" system witM xN antenna array at the base station can be shown

in Fig. 2.1.

Figure 2.1: Model of 3D “Massive MIMO” System

In this particular system, a base station is at the heiglit @fhile a mobile station is at the
height ofh,. The antenna array at the base station is a planar arraydalatiee X-Z plane witiM
antenna elements vertically ahdantenna elements horizontally. The spacing between adjace
antenna element is assumed tadbé-or simplicity, throughout the thesis, we assume thattieer
only one transmit antenna at the mobile station. In the 3Dmanication system shown in Fig. 2.1,
instead of mechanical down-tiling the antenna array tow#né mobile station, the base station
could also perform digital beam-forming in both elevatiol @zimuth domain towards the mobile

station. In TDD system, 3D direction of arrival estimatioilwrovide the base station the channel



knowledge on the downlink. That is why it is crucial for TDDdesl "massive MIMO" system. In
reality, the propagation situation in a wireless commuiacesystem is rather complicated. The
uplink sounding reference signals usually go through sdaty, reflection and diffraction before
they reach the base station. For a multiple path scenarid,wi®less channel is usually modeled
by a finite number of rays, each parameterized by a compleXitahg angle and time delay [10].
Generally, suppose that there &eesolvable propagation paths impinging oR-dimensional

grid of sizeM1 x M> - - - x MR [17], the measurement data samples are given by:

P R

, )
Ymy,mp....me(t) = /Z ag(t) rLeJ(ml)u” r(t— 1) +Wmym,,...me (1), (2.1)
/=1 r=

wherem, = 1,2, ..., M,. a,(t) denotes the complex channel gair/eth path at time instartt ug)
symbolizes the spatial frequency of pétin ther-th mode for =1,2,... R r(t) is the transmitted
signal, denoted by(t) = S s(t —KT), wheres, is the sequence of data bits we transmitted over
the channel, and(t) is a known pulse shape function by whighis modulated.T is the symbol
rate and for notation simplicity, it will be normalized o= 1 from now on. 1, represents the
time delay of patlY andWm, m,....mx(t) is assumed to be the zero mean additive Gaussian noise
uncorrelated in all dimensions with variangé.

Here, our received signal is referenced®y 1 indices and the most common way to handle
this multi-dimensional measurement data is to stack dimessnto a highly structured matrix in
a majority of existing literatures. In this thesis, our gisab jointly estimate the 3D DoAs and the
corresponding delay of a particular path under a uniformngnarray of sizévl x N. Hence, we
will take R= 2 to introduce the matrix-based system model.

Accordingly, (2.1) implies that the received signal imgimggon a 2D antenna array can be

compactly expressed as:

P
Y(t) :; a(t)a(up)al (vo)r(t— 1) +W(b), (2.2)
=]



T T
wherea(u)) = | 1 el¥ . ei(M—l)Uz} anda(ve):{l eive . @l(N=-1)v can be viewed

as the steering vector of elevation angle and azimuth amgeectively. u, = @cos@,g, vy =
@ sinf, cosy, represent two spatial frequencies of p4th is the wavelengthW (t) denotes the
AWGN noise and each of its element has zero mean and var@hae (t) is the channel gain of
the /-th path.

Now we need to stack dimensions through collecting all aregponses into a x N steering

matrix A(uy, Vy), it can be shown that:
ay = a(vy) ®a(uy),

where® is the Kronecker product.

We can construct a 2D steering matrix of the received sighat | a; a, ... ap | €
CMNxP hased oray, which contains all the information related to tRepaths signal whose el-
evation angléd, and azimuth angley are to be estimated.

It is reasonable to assume that the known modulation pulapesfunctiong(t) has finite
support[0,Lg) and the channel is fading but stationary over short timeniate. With Tmax =
max <¢<p T, denotes the maximum delay spread, the channel length-isg + Tmax, Which means
the channel impulse responis@ (t) in then-th time interval has finite duration and is zero outside
an interval[O, L) [18]:

h(t) = i ™ (t)ag(t— 1) (2.3)
=1
whereL andLg are both measured in symbol periods. It should be noted tleatwmber of the
paths in the millimeter wave system is rather limited [19. 20e assumed that the received data
is sampled at a rate &f times the symbol rate and we start sampling -atnL. During the first

sample period in the-th time interval, the noiseless received data written icteeform is shown



to be:

y™(0) &
ym (L) e s
| YPA-9) | | S,n()L—l) _
where ] -
h(™(0) h(M (1) h()(L— 1)
B _ h<“>(\7) h(W(1+4 ) hO(L—1+3)
1
i h(n>(1—\—/) hW2-3) ... hr-3 |

Extending toQ symbol periods, we obtain the data mode as:

Y = HOS® L w i (2.4)

Y

WhereY(ln) represents thBINV x Q received data matrix arw(ln) denotes the AWGN nois&™

is theL x Q Toeplitz matrix of data symbols. If transmitted sequepﬁag)} Is known, we can
directly estimate th&INV x L channel matrix through least-square type of methods,\fg).,:
Y(ln)S(”)T, where the superscript T represents matrix pseudo-inviéithe transmitted sequence is
unknown, the blind channel estimation methodology can logted which is beyond the scope of

our thesis. In fact, we can always express the noisy chalstima{eg((zn) as:
YO =H® 4w, (2.5)

wherew ) = w\"s"1 is the estimation noise matrix.
It is convenient to rearrange the impulse response samuieanMN x LV channel matrix

H\(,”) , Which includes all the effects of the array response, paléygdsymbol waveform and fading



parameters:

ax(n) g(t)"
HYY = [ a - ap } . | —Adiag{b(n)}G,  (2.6)

ap(n) o(te)’

whereb(n) is theP x 1 vector containing complex fading envelope in thth time interval. G

denotes th® x LV time delay matrix, wherg(t,)T is a 1x LV row vector of samples ad(t — 7).

In the present of the noise, (2.6) can be expressed as

Y = Adiag{b(n)} G +W_" 2.7)

Y

WhereW(sn) is the noise matrix.



Chapter 3

Separated Delay and DoA Estimation

It can be observed from (2.7) that the delay and DoAs can oea&sd through the shift-invariance
structure of the received signal. In this section, we wittaduce the separated delay and DoA
estimation algorithm using the standard and unitary ESRR¢Thod. Furthermore, we will derive
the simplified mean square error (MSE) of delay and anglenasitbn using the standard and

unitary ESPRIT method in the millimeter wave massive MIMGtsyn.

3.1 Low Complexity Delay Estimation

It is common to assume that the transmitted waveform funao) is the raised cosine roll-off
signal. Under the assumption of our data model, the knowrefeamg(t) is sampled at a rate of

V which can be arranged into a row vector:

9' = | 90) o) - gL-P) |- (3.1)

We use a discrete Fourier transform (DFT) to map the delay phiase shift agf = g'F,

10



whereF represents the DFT matrix of sit®¥ x LV defined by [12]:

1 1 1

1 e 1(2m/LV) . grierwv)(Lv-1)
F =

1 e i@MV)(LV-1)  g-j@r/LV)(LV-1)?

If 7, is an integer multiple of AV , the Fourier transforrg; of the sampled version @f(t — 1)
is given by

gr=1|1 er (L[JTV)Z (er)LVfl diag(gF) (3_2)

wherey = e 12TLY),
Under the assumption thgtt) is bandlimited and sampled at or above the Nyquist rate, the

channel matrix in (2.6) after DFT transformation can be shag.

1 g - qﬂl-V—l

1 LY
Y4 = Adiag{b} V2 \C diag{gr } + W4

_1 Pp - Lp'F;Vfl_

= Adiag{b} Fydiag{gr } + W4

wherey, = e, w, = —27,. Note that the time indeX is omitted in this section for brevity.

If diag{gr } is non-singular, we can directly estimate the paramgtasing standard or unitary
ESPRIT after dividingyr 4 by diag{gr } . However, the matrix diafgr } might be singular because
g(t) is a bandlimited signal. Assume that the normalized bandwgW (W < V), gr only has
LW number of non-zero discrete values. In order to avoid blgwip the noise, we need to define

a selection matrixlg € CYV*™W to choose appropriate submatricesYaf. Jg has the following

11



form [21]:

0 Ny
Jg= 0 0 ) (3.3)
nwyz O

We can obtain the channel model with desired structure wisigiven by:
Ys =V, Jg[diag{grdg}] = Adiag{b} Fyy+Ws, (3.4)

whereWs = Wy - Jg [diag{gFJg}]_l.

Note that, the role oF,, € C°*W is equivalent to the array steering matrix in our former data
model [22]. Hence, we can follow our line of work using ESPRIgorithm to obtairw,, as well
as the parameter of interestthrough shift-invariance property.

We can apply the one dimensional standard ESPRIT algorithendluate the estimation per-

formance. Take the transpose of (3.4), we have

YL = Fldiag{b} AT + W]
(3.5)
:{fl fo ... fp]SJrWE

wheref,=| 1 W . @i(lv-1w }T can be regarded as the steering vector’:alﬁdjiag{b}AT
is the equivalent “training sequence".

In order to estimate the delay Bidifferent paths, the rank of the equivalent “training setpes
Sshould be equal t&. In fact, the DoAs of different paths are drawn to the unifatistribution,
e.g.,U[—r, 7], it can be obtained that the probability that two differeatis have the same DoAs

is zero. We can easily obtain the rank of the noiseless redeiignals as follows:
Rank{diag{b(n)} AT} = Rank{diag{b(n)}} =P. (3.6)

We can also perform one dimensional unitary ESPRIT algaritthich has low computational

12



complexity. To be specific, the received signal after thevéod and backward averaging becomes:
Yau=[Y: MuwYENun] = [FRS MuwFRS Mun] + WL AMowWE M ] (3.7)

wherell, is the exchange matrix which has one on its antidiagonalehsmand zeros elsewhere.
It has been proved in [16] that the unitary transformatiolhnat affect the MSE of the ESPRIT
method, however, it is clear that the statistics of the naisgthe signal subspace are changed due

to the forward and backward averaging. The covariance antplenentary covariance matrix

becomes:
R 0
Rim? = |
0 MuwmnRAMwMN
- - (3.8)
(fba) 0 RnnrI LWMN
Cnn — )
MuwmnRAR 0

whereRpn =E {vec{Wg }vec{wI " }

Proof. Denoteng, = vec{[W{ MwWE5Mun]} be the noise vector after forward-backward av-

eraging. Based on the definition of the covariance matrixhae

Rin ™ = E{nau- i}
vec{W!
= M) eI} (vec{ Mty
vec{I'ILWWE'I'IMN}
vec{W]} {vec{WE}}H vec{W! } {vec{NwWH I'IMN}}H
vec{l‘ILWWEI'IMN} {VGC{W;}}H vec{l‘ILWWE'I'IMN} {vec{l‘ILWWEI'IMN}}H

It can be immediately observed that y&¢! } {vec{Wg}}H = Rpn. In the next step, we can

13



further simplify the rest entries in the covariance matex a

vec{W{} {vec{NMuwWE My} }"

= vec{W3 } {Miw ® Mynvec{Ws } }H
— vec{W{} {Mynowvec{wt } 1"

= vec{W{ } {vec{W{} }T MmN

=0
and

vec{MuwWE Nun} {VEC{HLWWE”MN}}H
= nMNvaeC{WE} {nMNvaeC{WE}}H
= nMNvaeC{WE} {VeC{WE}}H I-IMNLW

= MowmnRaMowmn.
Similarly, we can prove that:

C%ba) = IE{ndu' n-(lj—u}

0 RanMMowmn

MuwmnRAR 0
[l

In the following, we will derive the MSE of the delay estin@tiusing unitary ESPRIT method-
ology. We first make the following assumptions to facilitate analysis.

Al: SWHSI js a scaled identity matrix, which leads to the minimizedrotel estimation
error. Moreover, it can be obtained that after the leastregciaannel estimation, we still have the
white Gaussian noise.

A2: The sample numbeV is large. Note that as long ggis known, it is safe to overestimate

14



L as this will only extendd by zero columns.

Based oA1, we have the following lemma:

Lemma 1. The covariance matriRn, and complementary matr®,, for the delay estimation are
given by:
Rnn= UZ'MN®Gg Chn=0, (3.9)

whereGg = diag{ [|or (— [ 1) 72, [gr (15X ))] 2]}

Proof. In order to simplify the proof, leD = [diag{gFJg}]*l. Based on the definition of the

covariance matrix, we have
Rin=E {vec{Wg }vec{w¢ }H }
= 0'2 (I MN ® (JgD)T) (I MN ® (JgD>*)
= 0%lyn® (DTJ§JgD%)

= O'2| MN & Gg.
We can prove that,, = 0. O

Similarly, we can also obtain the covariance matrix and dementary matrix for the DoA

estimation.

Lemma 2. The covariance matriR,, and complementary matri@,, for the DoA estimation are
given by:
Ron= 0°Gg®ImMn  Cnn=0. (3.10)

15



Proof. Based on the definition of the covariance matrix, we have

Rin=E {vec{W5} vec{W5}H }

E {vec{W43gD} vec{WaJsD}" }

E { ((JgD)T @1 MN) vec{W,} vec{W,}" ((JgD)* @I MN)}
o2 <(JgD)T ®I MN) ((JgD)* @ 1un)

= 0%(D"J33gD*) ® Iun

= O'ng Q IMN-
We can prove that,, = 0. O
Furthermore, according #2, we have:

Lemma 3. If the delays of different paths are drawn independentiynfi continuous distribu-
tion, the normalized vectofg = 1/v/LWf, k € {1,2,...,P} are orthogonal, that is1/+/LWf; L
span {1/+v/LWf, | Yk # ¢} when LW is large and the number of paths is-B(LW).

Proof. LetF X =1/VIW|[f1,...,fi_1,fks1,...,p], we have

im_[fF| < tim ;k\ﬂjf}\
LW—c0 LW—)oo‘

Lw-1

1 i 21
— lim il — T n(Te—T)
W 2, TW | 2, ©

1
< lim —
_LW%w;k LW l_e—jon(Tg—Tk)

=0
[
We also have the similar lemma for the normalized steeriotpvey = 1/v/MNay, k={1,2,... ,P}:

Lemma 4. If the elevation and azimuth angle are both drawn indepetigérom a continuous

16



distribution, the normalized array response vector aréhogonal, that isay | span{a | Vk # ¢}

when MN is large and the number of paths iss(MN).

Denotew; the estimated time delay for tleth path, the estimation error is given byw, =

w, —W,. Take the singular value decomposition (SVD) of the noseleceived signal, we have

s 0f |VE
[FRS MuwFESTun] = [Us Un} ° (3.11)
0 o| [VH
It has been derived in [16] that the first order approximatbthe mean square error (MSE)

for the unitary ESPRIT method is given by:

1
E{(aw)?} =5 (1 Wina R - Wy 10—~ Re{rT - Winar CH?™> - Wl 1 }) . (312)

The vectorr, and the matridV 4 are given by

=q® <[(31Us)T (3p/€l —31)}T pe) (3.13)

Wmat = (Z57Vs) ® (UnUp). (3.14)

whered; = [Ii\w—1 0] andJ2 = [0 Iw-_1] are the selection matriX; is the matrix which con-
tains the eigenvector c(ﬂlus)T(JZUs), gy is the/-th column of the matrixT, p} is the/-th row

of matrix T—1, R%fnba) andCﬁLba) are the covariance matrix and complementary covariancexmat
respectively.

It can be seen that (3.12) depends on the singular value gexsition of the noiseless received
signal, which is hard to obtain at the base station (BS). ¢t fais extremely difficult to simplify
such complicated result in the multiple path case. Fortlpain the massive MIMO system, it
can be significantly simplified in terms of the orthogonatfythe steering vector. The simplified

result is only related to the real system parameters sudieasumber of the antennas, number of

snapshots and transmit power. Specifically, we have theviollg theorem:

17



Theorem 1. In the massive MIMO system, the MSE of delay estimation @isengnitary ESPRIT

is given by
L20®  gr(=[SDI?+lgr([FDI2
E{(ATK)Z} = 8mMN|b(¢)|2 2 (LW —1)2 :

(3.15)

Proof. See Appendix A. O

Remark 1. In order to facilitate the expression of the underlying M$te selected frequency

parameteme (k) appear in the increasing order from[LW /2] to |[LW/2].
Based on proof oTheorem 1, we have

Corollary 1.1. The MSE of the time frequency estimation using the unitaBREE is given by

o2 g (=TI + g (1)) 2
E{ (Bw)?) = IMN[B(0) 2 TWo1Z

(3.16)

After obtaining the simplified MSE of the delay estimatiomgsunitary ESPRIT, it is straight-
forward to derive the MSE ofi, using the standard ESPRIT:

Corollary 1.2. The MSE of the delay estimation using the standard ESPRIAothé&t the same as
that using the unitary ESPRIT method.

Remark 2. It can be implied fron§3.15)that the sample number will have more noticeable effects
on the MSE of the delay. We can also easily come to the coanltisat the MSE of the delay is

only related to the totally number of antennas, e.g., MN.

3.2 Low Complexity Angle Estimation

In this section, we will first introduce a low complexity DoAtemation algorithm based on unitary

ESPRIT to jointly estimate the elevation and azimuth angle array manifold matrix of all x N
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antenna array can be expressed as:
A(ug,vp) = a(Ug)aT(Vg),

that is, the steering matrix can be decomposed to the pradiwb steering vectors.

Since we are only interested in DoA estimation, (3.4) carcheitten as
Ys5=AS+Ws, (3.17)

whereS = diag{b} F.
It can be easily verified that RagRS} = P provided that the delay of different paths are dis-
tinct. In order to perform the unitary ESPRIT, we also neeas® the forward-backward averaging

to process the received signal in (3.17).

Yau = [Y5 nMNYEHLw] (3.18)
The noiseless received signal can be decomposed into:

. s 0 |Vd
[AS I'IMNA S*an] = {Us Un} . (3.19)
0 0| |VH

Following our line of work, we have achieved the followindat&on:
Ug Ripy R
tan( = )Kaa™(up) = Kaa™(u).

Here,K1 = Re{Qf 132Qm}, K2 = Im{Qfl ,32Qm}. J2 is the(M — 1) x M selection matrix by
taking the lasM — 1 rows ofly, wherely is theM x M identity matrix. Qu is the constructed

unitary transformation matrix, which changa@s,) to the real-valued steering veciat(u,). Ex-
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tending the relation to 2D antenna array
tan(%) K]_AR(Ug,Vg> = KzAR(Ug,Vg). (3.20)
where
AR(ug,v) = QRra(ug)a’ (ve) Qg = a(uy) (a%(ve)) .
Furthermore, we can rewrite the formulation in (3.20) as:

tan<%) Kxavec{AT(ur,vi) } = Kiavec{AT(ur,vp) }

whereK,q £ Iy ® K1, andKy £ Iy ® Ko, Accordingly, we can specify akIN x P real-valued

array manifold matrix:

ARA [ vec{aR(u;,v1)} ... vec{aR(up,vp)}
Then, we have the shift-invariance equation:
KaARQ, = K 0AR (3.21)

where
Q2 diag{tan(%) ,tan(%) el tan(u—2P> } .

It is important to note that after the unitary transformatiall the matrices become real-valued
matrices. This will significantly reduce the computatiooamplexity.
Similarly, for a(v), we can conduct the same process. Ket= Re{QH_;J5Qn}, andK4 =
Im {QK_,J5Qn }, whereld, is the(N — 1) x N matrix constructed by taking the lagi — 1) rows
of In. Accordingly, we have

Ky1ARQy = K pAR (3.22)
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whereKy1 £ Kz ® Iy, Ky £ K4®1y, and

Q, = diag{tan<v—21> ,tan(v—22> feee tan(vip) }

Let Us be the signal subspace afde the nonsingular transformation matrix, we hélge=
ART since the array steering matrix® and the matrixJs span the same column space in the
absence of noise or with an infinite number of measurememdekthe noisy case or with a finite
number of measurements, this expression holds approXyn8igostitute this relation into (3.21),
we have

whereA, 2 T~1Q,T. Similarly, we also have
Ky1Us/\y = KyoUs (3.24)

whereA, = T_lnyT. From (3.23) and (3.24), we can solve oy and/A\y based on the estimated
signal subspace using least square type of methods. Leigbervalues of thd® x P complex

matrix Ay + j/A\y beﬁ\g,ﬁ =12,...,P. u andv, can be estimated from:

0, =2tant {Re(ﬁg) } v =2tan’’ {Im <}‘f) }

Accordingly, the DoAs of interest are obtained through demgarameter transformation.

In the massive MIMO system, we have the following theorem.

Theorem 2. For the case of 3D DoA estimation based on a uniform planaayef Mx N ele-
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ments, the mean square errors of the elevation and azimjle &stimation are given by:

2 Sl
A8} = i bW~ TN
B -2
_ 0? % Ty 30} cot(6,) cof (@) 1
{(A%) }_ m2siné(6,)  [b(0)[2(LW)? ( (M—1)2N +sm2( ))(N— 1)2M)
(3.25)
Proof. See Appendix B. O

Based on the proof ofheorem 2, it is straightforward to obtain the MSE of the spatial fre-

guenciesy, andyv, as follows:

Corollary 2.1. In the massive MIMO system, the MSE of the spatial frequengje/, using the

unitary ESPRIT are given by:
L 2 J -2
2 2 L 9r ()]~
E{(Aue)z} = 2 =Tz
b()[2(LW)2 (M —1)°N

o2 I o)l

E{@W)z} b()(LW)2 (N—1)2M

(3.26)
-2

For the 2D standard ESPRIT method, following the similagpprocedure off heorem 2, we

have the following corollary.

Corollary 2.2. In the massive MIMO system, the MSE of elevation and azinstithation using
the 2D standard ESPRIT is the same as that using the 2D urli8BRIT.

It is clear that the angles and delay can be estimated indepdy of each other, by directly
working on the rows and columns of the transformed channéiixn&lowever, this does not give

a pairing between angles and the corresponding delay. Wenwdduce the joint angle and delay
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estimation algorithm for rectangular planar array andwethie corresponding MSE in the massive

MIMO system in the following chapter.
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Chapter 4

Joint Angle and Delay Estimation

In this chapter, we will construct a space-time manifol@tlgh vectorization and jointly estimate
the delay and DoAs using ESPRIT algorithm in Chapter 4.1. MIB& of the joint angle and delay

estimation using ESPRIT method is derived in Chapter 4.2.

4.1 Matrix-based Joint Estimation Using ESPRIT Method

Recall that our received signal after deconvoluatiog(df is given in (3.4):
Y5= Adlag{b} Fw+ Ws.

In order to estimate angle and delay jointly, the first stefpisonstruct the channel matrix
which involves delay, elevation angle and azimuth angleicivican be obtained either through
stacking the received signdk into Hankel matrix or taking vectorization. In the next twexsons,
we will give a detailed description of the two methods andops® our own matrix transformation

methodology.
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4.1.1 Matrix Transformation through Hankel Matrix

The main idea now is as follows. Fro¥fy, we can construct a Hankel mati by left-shifting
and stackingncopies ofY's. For 1<i < m, define the left-shifted matrﬁ(ﬂ) =Ys5(:,i: LW —m+i).
Note that the notatiofx,i : LW —m+ 1) indicates taking columnisthroughLW —m+- 1 of a ma-

trix. Then the Hankel matri¥ y can be defined as

7
Y= : (4.1)

g(m

whereYy € CMMNxLW-m+1

The motivation behind such matrix stacking is tNat has a factorization as [18]:

Yn = Andiag{b} Fy,

1 .. 1
e iemln  aj@erU, (4.2)
AH =A¢
e im-DETLn g jm-1)@m/L)

whereo denotes the Khatri-Rao product, i.e., a column-wise Kr&aeproduct. If we choose the

stacking parameters), to make the Hankel matriXy satisfy the following condition:

MNm> P,

LW-—m+1>P,

then we can estimat®y up to anP x P factor at the right as long as all factors are full rank. Hence
we can estimate the unknowns through shift invariance ptppe
Nevertheless, the drawback of stacking the received siggahto a Hankel matrix is that

the degree of freedom that we can utilize to perform the E$AR&thod is diminished. To be
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specific, the number of rows in our Hankel matrixneviN, which means the whole degree of
freedom,LW MN, has not been fully exploited. In order to combat this disedage, in the next
section, matrix vectorization is used to transform the ikeszkmatrix into a space-time manifold

matrix which involves both delay and angle estimation.

4.1.2 Matrix Transformation through Vectorization

The matrix vectorization and Khatri-Rao has the followiegationship [23]:
vec(AXB) = (BT oA) vecd(X), (4.3)

whereA,B, X denote the arbitrary matrix which dimension meet the regnent of the matrix
multiplicity, vecd() indicates the vectorization operator which selects ondydiagonal elements
of the matrix into a vector.

In terms of (4.3), we can take vectorization of the receivigda:

y = A(1,0,9)b(n) +vec{Wé”)} . (4.4)

Collecty\(,n) duringK time intervals, we have

Yyv=A(T1,0,0)B+ Weg, (4.5)

where

B:[b(l) b(2) ... b(K)]

Wszlvec{Wél)} vec{Wéz)} vec{W(SK)}}

A(1,0,0) = Fl oA

SinceF,, and A are the time delay matrix and array matrix respectively witmdermonde
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structure. Hence we can utilize the shift-invariance prtypef this highly structured matrix to
jointly estimate the unknowns based on ESPRIT-type allgmst

To estimatew,, we should take the first and respectively I&&¥ (LW — 1) rows of channel
matrix as two submatrices, while fd}; estimation, we may take its first and respectively last
M — 1 rows for allLW N blocks of channel matrix, similarly, fap, estimation, we may take its first
and respectively last — 1 rows for allLW M blocks. Hence, we may define the selection matrices

as follows:

) = low—1 0 ® lmn ng) = [0 low—1] ® Imn

) S

at
3P = lwn®[Im-1 0] 35 = 1wn® [0 Iw_d]
I =lweIn10in IP =Iwe0In_1]®Iu

Through shift-invariance property, we can write:

IPA(T,0,0W = IVA(1,0,0)
IPA(T,60,0)0=37A(1,0,0) (4.6)

IPA(1,0,0)0=IPA(1,6,0),

whereW, © and® are the corresponding diagonal matrices, containing eldgarameters for
each path.

Then we can directly apply the ESPRIT-type algorithm totjlgiestimate the delay and DoAs.
Note that, the advantage of JADE is that it can work even whemtumber of paths exceeds the
number of antenna?(> MN). We only need the space-time manifold matrix to be a tall ma-
trix, which meand® < MNLW. The unitary ESPRIT can also be performed through the fatwar
backward averaging which can provide the correctly paibetyveen the delay and the correspond-

ing DoAs through Jacobian matrix [17].
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4.2 Mean Square Error (MSE) of Matrix-Based ESPRIT Method

In this section, we will focus on the theoretical analysidled mean square error (MSE) of the
matrix-based ESPRIT method. For simplicity, we denpli@ = Uy, uéz) = v, and u,fs) = W,.
Define the estimation errakp!” = i) — u{"), wheref1" is the estimated resuit,

The noiseless signal in (4.5) can be decomposed into:

s 0f |VE
A(1,6,9)B=Us U, (4.7)
0 0| [VH

The first order approximation of the mean square error (M8E)He/-th spatial frequency in

ther-th mode is given by [16]

2 1
N ——

(fba)

(4.8)
—Re{rg”T Wnat- CHP¥ W rg>}) re{1,23).

The vectorrg) and the matriXxV 4 are given by

T Lo T
" =ae ([(J&”Us) (34" -a0)] pé) 7

Wmat = (Z51Ve ) ® (UnUY), (4.10)

whereq, is the ¢-th column of the transformation matrik, p, is the ¢-th row of matrix T2,

Rﬁ,fnba) andCﬁ,‘;ba) are the covariance and complementary covariance matipecsésely.

Lemma 5. The MSE of the JADE using unitary ESPRIT is giveri48)in which the covariance
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and complementary covariance matrix are as follows:

e
0  MuwmnRApMwMN
- : (4.11)
(fba) 0 RnanMowmn
Cnn =
MwmnRAn 0,
whereRpn = 02l ® Gg® | uN-
Proof. We only need to investigate the covariance matrix of theivedesignal:
Rnn = vec{Ws} {vec{W¢} "
vec{W(Sl)}
_ : (W1 (K"
=1 | ee{w@ ) e}
vec{WéK)}
- (4.12)
O'ZGg QRIMN ... 0
0 .. UZGg ® MmN
= 021K ® Gg® -
Substitute (4.12) into (4.8), the prove is finished. O

For the standard ESPRIT, we have the simplified MSE of theatilmv anglef, and azimuth

angleg in the massive MIMO system as follows:

Theorem 3. In the case of 3D DoA estimation based on a uniform planarnaofaM x N elements,
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the mean square errors of the elevation and azimuth angimason are given by:

02 RIWO (e DI+ 1o (L)1)
E{<A9€)2} T s (6)) 2K(M2— 1)2NLW ;
0% RGO (g (DI 2+ g (L)) ?) (cof(6y) cof(@r)
E{(A@)Z} ~ 1sird(6)) 22KLW : ( (Mﬁ—l)ZN
1
+sin2((pg)(N - 1)2|v|)
(4.13)
Proof. See Appendix C. O

Based on the proof dfheorem 3, we can obtain the MSE of the delay as follows:

Corollary 3.1. The MSE of the delay estimation using the standard ESPRIiVes @py:

8 {(an2) = L TR T2 oe(14)) ) @10

T 2K (LW — 1)2MN

4.3 Cramer-Rao Bound

The CRB provides a lower bound on the variance of any unbiaestihator. The CRB depends on
whether the path fading are modeled as unknown deternurmjgtintities or as random variables
with a know distribution. In the case of the deterministidifay scenario in which the noise is
assumed to be random and the fading is assumed to be unknostany if we apply the vector-

ization operator to the noise-perturbed model in (2.7), areabtain
h:=Ub+v (4.15)

whereU =G oA, b= [b(1),..., b(P)]T andyv is the noise on the channel estimation.
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Then CRB for DoA with delay spread was derived in [24], whislgiven by
02 H~H -1
CRB(a,T) = RReal{‘B D" Py DZB} (4.16)

wherea =[61,...,6p,01,.... @], T=[11,...,1p|", B = l,@diag{b(n)}, Py =1 —U (U*U) " tU*,
andD = U’. Here prime denotes differential.
For a Rayleigh-fading channel, the path fadings have a meran complex Gaussian distribu-

tion, with some covariance matriX,. The CRB in this case is also given in [24]:
2

lo} -1
CRB(a,T) = - Real{ D*PUD ® (13x3® RyU"R-IURy) " (4.17)
2K h

whereR;, = URp,U + 02/KI.
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Chapter 5

Performance Evaluation

In this chapter, we will evaluate the performance of the irdiased ESPRIT method. First, we
can directly follow the one dimensional unitary ESPRIT aitjon to obtain the delay estimation.
Assume that there are five resolvable paths, which is thedypumber in the outdoor millimeter
wave system [19]. The known pulse shape function we use ised-aosine signal, with roll-off
factor Q5 and oversampling rate 2 compared to the normalized synal®l iThe received signal
noise ratio (SNR) is defined as SNRE{s} Zipzl aiz/az. The performance of delay under different
SNR, ranging form-4 dB to 24 dB (dynamic range of SNR in a cellular environmeistghown

in Fig. 5.1. We can see from the figure that our analytic resaliches the empirical results.

-8 Standard ESPRIT result
-6~ Unitary ESPRIT result
—e—Analytical result

Mean Square Error (MSE)
)
e

20 24

10
SNR (dB)

Figure 5.1: MSE of separated delay estimation

The MSE of the spatial frequeney using unitary ESPRIT method is illustrated in Fig. 5.2. It
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can be seen that the MSE of the spatial frequenajecreases with the increasing of the number
of antennas horizontally. Moreover, as the SNR increasesgempirical result approaches the
analytical one asymptotically, which verifies our analgticesult. We can also obtain the same

result for spatial frequency,, which is shown in . The performance of angle estimation thase

‘ —&-Empirical result, 322
-©-Analytical result, 322
-8-Empirical result, 184
-©-Analytical result, 184
- Empirical result, 88
_ -0 Analytical result, 88

=
O\
o= il

[N
o\
f\‘Nf\

Mean Square Error (MSE)
0]
:

-4 0 10
SNR (dB)

‘ —e—Empirical result,88
—&— Analytical result,88
-e-Empirical result,184
-8-Analytical result,184
o Empirical result, 322
-8-Analyical result, 322

N
O\

Mean Square Error
=
O\
‘lli 0 n‘“’

=
O\
&

&

=
O\

[N
o

10
SNR(dB)

Figure 5.3: MSE of separated spatial frequency

on unitary ESPRIT is evaluated in Fig. 5.4 and Fig. 5.5 undeious antenna configurations. The
elevation angle is restricted to the rar{@é°,82°] while the azimuth angle is withif10°,80°]. It
can be seen from Fig. 5.4 that the MSE of the elevation angimaison with different antenna
structures are almost parallel to each other in the high Sijrre. Furthermore, it is interesting
to note that the MSE of azimuth angle estimation doesn’tespabportionally to the number of

antennas horizontally, as shown in Fig. 5.5. We observettieaMSE of azimuth estimation of a
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4 x 16 array is even larger than that ok&, which seems a little bit counter-intuitive. The reason
for this phenomenon to happen is because azimuth estimatectually coupled with elevation
estimation. In the case of:88 antenna configuration, the performance of elevation isso fhat

it affects the performance of azimuth estimation.

‘ ‘ ‘ —&-Empirical result, 4 16

02: —a -o-Analytical result, 416
g 10 ¢ ~a -B-Empirical result, 88
=3 T m -©-Empirical result, 88
5 104 .
w
IS
]
3
jo
%}
c
I
()
=

10°

10
SNR (dB)

Figure 5.4: MSE of separated elevation angle estimation

‘ —&-Empirical result, 416
-©-Analytical result, 416
-8-Empirical result,88
-©-Analytical result,&8

Mean Square Error (MSE)
B
Q

10
SNR (dB)

Figure 5.5: MSE of separated azimuth angle estimation

The MSE of the delay estimation using the joint angle andydetsimation (JADE) methodol-
ogy is shown in Fig. 5.6. In contrast with the separated nthte performance of the standard
ESPRIT is proportional to the number of the intervals, whigkequivalent to the “training se-
guence". The length of the “training sequen&ealso impacts the MSE of the delay and angle
estimation. Here is set to be 15. It can be clearly seen from Fig. 5.6 that thpgsed JADE

method can achieve a better performance compared to theassphanethod. Moreover, we can
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observed that in the high SNR regime, the empirical MSE ofkleE method matches our ana-
lytical result proposed ilCorollary 3.1. The similar results can be obtained for the MSE of the
angle estimation. The Cramer-Rao bound(CRB) of the joigleaand delay estimation (JADE)

methodology can be seen in Fig. 5.7

10°

—&- Separate empirical result
—-©-Separate analytical result
-8-Joint empirical result
-©-Joint analytical result

o

,_\
O\
o

Mean Square Error (MSE)

10
SNR (dB)

Figure 5.6: MSE of joint and separated delay estimation

107
—&—Joint empirical result
—e-Joint analytical result
e ——CRB
102}

Mean Square Error (MSE)

-5 0 5 10 15 20 25
SNR (dB)

Figure 5.7: The CRB of delay estimation
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Chapter 6

Conclusion and Future Work

Joint and separated angle and delay estimation methoéslagi3D massive MIMO millimeter
wave systems are investigated in the thesis. Specifichlé/ntean square error (MSE) of the
ESPRIT method are analyzed and the simplified results aeenmat.

First, we investigate the separate angle and delay estimatethod using standard and unitary
ESPRIT. In light of the orthogonality of the steering vedtothe massive MIMO system, we obtain
the simplified MSE of the ESPRIT-type method. Secondly, wiévdehe simplified expression of
the MSE in the massive MIMO system. The performance of theaéilen and azimuth angle under
various antenna configurations is investigated.

For the 3D channel sounding, we can observe that the azinmgfle @stimation actually de-
pends heavily on the elevation angle estimation, and iteopaance is more vulnerable. Using
ESPRIT-type DoA algorithms, a:88 array may outperform a»% 16 array in both elevation and
azimuth angle estimation. This is of significant meaning@oa®tenna array design for the future
“massive MIMO” research. For example, this result may slgiat bn the actual antenna configu-
ration as well as the reference signal (pilot) design for S8&sive MIMO base stations/systems.

There are still many open issues related to DoA estimationamanvestigated in the future:

e Full-dimension multi-input-multi-output (FD-MIMO) andser-equipment (UE) specific ele-

vation beamforming were identified as one promising teabmyto further increase spectral
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efficiency. FD-MIMO places a large number of active anterlaments in a two-dimensional
grid at the base station, which can support elevation andwthi beamforming. In October
2014, a new study item on FD-MIMO and UE-specific elevatioarb®rming was initiated
in the 3GPP [25]. Samsung, which is now leading the standaddraplementation of FD-
MIMO, has already implemented 2D active antenna array fofMADIO system [26]. In
order to perform the two-dimensional beamforming at theslstation, it is crucial to per-
form the two-dimensional DoA estimation to estimate bothelevation and azimuth angle.
How to make the accurate DoA estimation with the low compiexi FD-MIMO system

will still be a challenge [27].

Although theoretically the system performance in both gnesaving and spectrum effi-
ciency can be increase dramatically in massive MIMO systétowever, in practice, the
performance will be affected by the acquisition of the clestate information (CSI) [28].
In TDD system, the uplink pilot in one cell may be contaminlaby the same pilot from
other cells, which will diminish the performance gain in th@vnlink beamforming. Even
though there are already some literature dealing with tlod pontamination via DoA esti-

mation [29], there are still many open problems in this topic

In the massive MIMO system, due to the orthogonality propeite DoA steering vector
can be used to perform the downlink beamforming [30]. In owvus paper [31], the
impact of DoA estimation error on the underlying achievahle is analyzed in single-user
single-cell MIMO system. How to extend to multi-user, mudéll MIMO scenario is still an

open question.
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Appendix A

Proof of Theorem 1

The first order approximation of the MSE for the time frequensing unitary ESPRIT is given
by (3.12):

1 . fb b
E{(AWg)Z} = (rgH W RUPAT W py Re{r} Winat- CHP? W rg}) .

(A1)
The vector, and the matriXV 4 are given by
T j Wy T
ry=0o® [(31Us> (J2/e —31)} Ps (A.2)
Wmat = (Z57Vs) ® (UnUp). (A3)

. T
DenoteB, = Vs 1q, anda, = <p} (31Us)" (Jo/€W — 3) (Unuﬁ)) , we have

Whar = (£V1) @ (UUH))" (aeo ([0 @2re ™ ~30)] )
= (VsZstqy) ® (p} (J1Us)" (3p/€" — 3y) (Unuﬁ))T

=B,®ay
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The MSE in (A.1) can be rewritten as:

e{(aw)?} =3 ((Boa)" RIPT- (8,00 - Re{(B,0a)"-Cli™ (B,0an)}).

The covariance and complementary covariance matrix in )(&d shown in (2.7):

R 0
Rim™ = |
0 MuwmnRAMwMN
cliba) _ 0 Ranluwmn
nn —
MuwmnRAR 0
fba) (fba)

We first need to simplif}Rgn andCpn ~’ based ohemma 1:

NunewRrnMvnow = (M @ M) (021w @ G) (M @ M)
= 0% (MunMunMvn) @ (MawGw)

2 !
= 0°IMN ® Gy

RonMuniw = (0%1un @ G) (M @ Muw)

= NN @ (GgMyw)

NunuwRn = (Mun @ M) (621N ® G)
= 0’NMun @ (MuwGy),
whereGg = diag{ [|gr (|9 )72, |ge (—=[%1)1 2]}
The vectora, can be simplified as [15]:
aj =p] (I1Us)" (32/€" — 31) (ULUH)

p
=] ((3Fh) 32— (31F)) ' 91),
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(A.4)

(A.5)

(A.6)

(A.7)

(A.8)



wheree, = {o N o} is the column selection vector with all zeros elements eixtiep
/-th one.

According toLemma 3, when the sample numbEW is large, we have

(02F0) " = (0F0)" (02FD) " (32F)"

-1
1 JFD) T (32FT
Tw-1 <( 2 |v_v\2v_(12 W)> (32F3)" (A.9)
1 H
= LW —1 (‘JZFVTV) :
Similarly, we have:
1
(1F0) = g (A" (A.10)

Substitute the preceding results into (A.8), the simplifiesllt of vectora} is given by

1 .
T _ . —j(LW—1)w;,
a, LW—l[ 1,0,...,0,e ] (A.11)

In order to simplify the ternf,, we need to obtain the singular decomposition (SVD) of the

noiseless received signal which is processed by forwactivioard averaging:

[Fidiag{b} AT MuwFl {diag{b} AT} M|
byel#: byel ¥ '
= |FT AT FIA AT % Ny
bpel#p bpel ¢

= Fydiag{bg} [AL AAZMwn],

e (LW-D)w; elh1
whereA = ,bg = {bl bp} andAl = AT,
e (W-Dwp eitr

Based orL,emma 3 andLemma 4, we can obtaitJs = 1/vLWF],, £s = v2MNLWdiag{bg}
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andV{ = 1/vV2MN (Al AAENun].

In [15], the vectoi, is given by:
B, =Vs2UEFe,. (A.12)

SubstitutdJs, Zs andVsinto (A.12), we have

1

Bi= Ib(£)|V2MN

Ve (A.13)

Now, we can calculate the MSE in (A.4) term by term. To be dprdhe first term in (A.4)

can be simplified as follows:

Boa)=——" faeny
RAY) = —— ®a;
! b(6)[V2MN | [, 7l LW-Lw,
(A.14)

1 {5@6”’”}*@04

(O)IV2MN | et el W-2w g g, |

wherea, = 1/v/2MNa,. Substitute (A.14) into (A.4), we have

(Broa)™ R - (B o)
o’ ~ H = = H / —
= ZE2MN <(ag®a€) (IMn®Gg) (a7 @ ay) + (Munay @ ay) <|MN ®Gg) (I'IMNag®a£)> .
(A.15)
ConsidefA®B) (C®D) = (AC)® (BD), we have
_ W1y -2 LW y—2
@oa) (IuneGy) (& ®ay) = o (=1 ;ELW-E%FZ(L 2))l (A.16)
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|0e (— [

—
=

DI+ lgr (L)1
2(LW — 1)2 '

(Muna @ a,)" (IMN®G/g> (Munay @ ay) = (A.17)

Where@ holds due tdlynMmn = Tun. Substitute (A.16) and (A.17) into (A.15), finally we have

(fba)

(B€®aﬁ) ‘Ron - (B, ay)
0 gD lgr (1Y) 3 (A.18)
~ 2b(0)PMN (W —1)? :

Next, we will calculate the second term in (A.4), which isateld to the complementary of the

covariance matrix4f?¥:

fba
(

(ﬁe®a€) B,@ay)

= (@ @ a)" (Mun e (GgMw) (Mund; @ ar)
_ - . el (W-1)w; 52 (A.19)
+(NMunay @ ay) (nMN®(anGg))(a€®ag)> W

% g (YD g (1))
2/b(¢)2MN (Lw—1)2 '

Substitute (A.18) and (A.19) into (A.4), we have

2 02 |gr(—[ZDI 2 +1gr (|5 ))] 2
E{ (2w} = IMN[b(0) ]2 W1z (A.20)
Based on Jacobian matrix, we have:
2
E{(AQ)Z} - 4L—7T2E{(Aw4)2}. (A.21)

Substitute (A.21) into (A.20), the proof is finished.
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Appendix B

Proof of Theorem 2

The MSE of the spatial frequenciasandv, using unitary ESPRIT can be expressed as

E{(AV@)Z} (B 1)
- % <(a"7€®ﬁf)H Rin ™" (ave @ By) - Re{(an@BIZ)T Chn? (av,e®l34)}> '

E{(AU@)Z}

_ % ((auj 2B R (ay, 2 B,) - Re{ (a0, 2B,)"-CH¥ (ay, ©B,) }) . (B.2)

The covariance matriRE,';,ba) and complementary covariance mat@&ﬁba) are given by:

R 0
Rin? = |
0 MuwmNRAMwWMN
(fba) 0 RnnMowmn
Cnn —
MuwmnRAR 0

whereR,, andCy, are given byLemma 2.
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It can be obtained that

MvntwRanMvNw = UZG;® IMN
RnnMvnww = 02 (GgMuw) @ M

MyniwRmn = 02 (NuwGg) © M.

aye in (B.1) is given by:

~ T... ~ T...
ag =€ ((vazA) Ju2— (JviA) Jv,1> (B.3)
Wherej\,,1 =[In-1 O]®Im andi,yz =[0 IN—1]®Im are the selection matrix.
In our previous work [31], we have the following results:
3 T 5 H -1 H
(JuiA) = ((leA) (Jw1A>> (Jv1A)
~ H  ~ -1
1 (Ju1A)" (Jv1A) N H
(N—l)M( (N—1)M (JaA) (B4)
(a) 1 ~ H
= ——— (JuA
(N—l)M(V’l )"
where(a) holds due td.emma 4.
Similarly, we have
~ 1 1 % H
Ju2A) =—— (Jy2A) . B.5
(\/72 ) (N—l)M(V’Z ) ( )
Substituteﬁml andf]vg into (B.4) and (B.5). After some simplifications, we have
~ T... ~ 1-,..
ay = ¢ ((320A) T2y — (310A) 31
= {_1 —_elu  _giM-Du o j(N-Dve g J(IN=Dvety) g J(IN=D)veH(M=D)up) | |
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Next, we need to perform the SVD of the noiseless signal 3o obtainB,:

[Adiag{b}Fy MunA* {diag{b} Fy}* Myw]

[ [byeitn ] [yl 1 1 ]
— A Fw AA Fwp Mw
byei: beel?:
e I(M=D)u1+(N-1)v1)
whereA = and

o 1((M=1)up+(N-Dvp)
cid
Few= Fu.
ol
Based orLemma 3 andLemma 4, we can obtaits = 1/v/MNA, Zs = v2MNLWdiag{bg }
andVH = 1/v2LW [Few AFEMiw].
Substitutels, Zs andVs into B, = V=g 1UH Aey, we have

1

b= b(£)[v/2LW

The first term in (B.1) can be simplified as follows:

; 1 (Tt}
DUy = ———— _ ® Ay
T b vaw Mo {fei?} el ((M-Dur+(N-2)vy) !
- (B.7)
1 {fgej"’f}* X Ayy

BOIVZIW | 1y, (Freitr) el (M-Dur(N-2v) gy gr, |

wheref_g =1/v/2LWf,.
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Substitute (B.7) into (B.1), we have
(Bi@an)™ R
g2

~ |b(0)[22Lw <(f_z®ae)H (Gg@Iwn) (fi 2 ar)

+ (ﬂwa_e®az)H <G:J®|MN) (nLWf_£®a£)) -

(By®ay)

The first term in (B.8) can be simplified as follows:

> lgr (D)2
(N—=1)>M(LW)

LLW

z |‘LW"||g ()|72

(f_}f®a€)H (Gg@lwn) (f 2 ay) =

(nMNf_€®a€)H <G/g®|MN> (Mwnfroag) =

Substitute (B.9) into (B.8), we have

0?5 %y e ()] 2
21b{0) PLW)2(N — 1)2M

B,oa)™ RWYT-(B,0ay) =

Similarly, we can get

2<%
(fba) o zl*—fTW

# iyl )2
B ) =gl o) pwN 1

B,2a,)"-Cin

Substitute (B.9) and (B.10) into (B.1), we have

LLW

a%y, ki e [9F (D)2

2

B {0} = B e o

Similarly, we have

025 0 ()12
B{(0u?} = i prow e — o
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(N=1)>M(LW)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)



Based on Jacobian matrix, we have:

E{(26)°} =E{ (2w} n25ir112<9g)

E{(Au@z}co@(e@co@(@) E{(AW)Z}
+
2 sirt(6,) 2 sirt(6,) sirt (@)

(B.14)
E{(20)°} =

Finally, substitute (B.12) and (B.13) into (B.14), we hakie tlesirable results.
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Appendix C

Proof of Theorem 3

For the standard ESPRIT method, it is easy to find that the mgntary covariance matrix is
equal to zero matrix:

Cnn - O

Hence the expression of the MSE using ESPRIT method in (¢ :@duced to:

2 1 H .
E{ (Aup) } = (rg> W LRI CWT rg”) . (C.1)

whereRp, can be obtained ihemma 5.

r T
Denotef, = VSZglqg andag) = (p} (JlUS)Jr (Jz/el“e< ) —Jl> (UnUn)) , we have

W%atrér) =B/® aér) (C.2)
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Substitute (4.12) and (C.2) into (C.1) we have

E{ <A“‘(r)>2} - %2 ("Wl @ Gge - W)

2
o ~1/2
= Ik ®Gg @ lun-WT -3

2 (C.3)
= Slikecs el (B,oa) |}

2
o
= S 1B (al™ (Gge i) ).

It has been proved in [15] thalB,||3 = Rsd (¢, £)/K, whereRss is the covariance matrix of the

transmitted signals, here it denotes the covariance maitthe channel attenuator:
Rss=E {bb"}. (C.4)
Following the prove of th&heorem 2, we can get

a" (GgoIwn) al’

_ (lor (=TI 2 +1ge ([54)[2) M: (€5)
(My — 1)2M, '
whereM; = LW, My = M, M3 = N andM¢ = M1MoMs.
Substitute|B,||5 = Rsd (¢, ¢)/K and (C.5) into (C.1), finally, we have
2 -1 _ LWy -2 LW y|—2 M
E{@@r)) }:asts (¢,0) (lgr (=[Z )| +|92F(L 2 )19 '

vre{1,2,3},/{1,2,...,P}.
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Based on (C.6), we can obtain the MSE of the spatial freqesnogiandyv, as follows:

B{(2u)?) - 52Rss (4.0 (I@m(—(%)lﬂ2 lor (|2 ))172)
2K (M —1)2NLW

Rs2(4,0) (1gr (=) |72+ |gr (| XX )| -2)

E{(Aw)z} = o2 oK Z(N—l)ZMLW 2 '

Substitute (C.7) into (B.14), the proof is finished.
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