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Abstract

Mobile data traffic is predicted to have an exponential growth in the future. In or-

der to meet the challenge as well as the form factor limitation on the base station,

3D “massive MIMO" has been proposed as one of the enabling technologies to sig-

nificantly increase the spectral efficiency of a wireless system. In “massive MIMO"

systems, a base station will rely on the uplink sounding signals from mobile stations

to figure out the spatial information to perform MIMO beam-forming. Accordingly,

multi-dimensional parameter estimation of a MIMO wirelesschannel becomes crucial

for such systems to realize the predicted capacity gains.

In this thesis, we study and analyze both separated and jointangle and delay estimation

for 3D “massive MIMO" systems based on parametric channel modeling in mobile

wireless communications. To be specific, we first introduce aseparated low complex-

ity time delay and angle estimation in the millimeter wave massive MIMO system.

Furthermore, a matrix-based ESPRIT-type algorithm is applied to jointly estimate de-

lay and angle, the mean square error (MSE) of which is also analyzed. We found that

azimuth estimation depends on the number of vertical antenna elements as well as that

of horizontal antenna elements. Simulation results suggest that the configuration of

the underlying antenna at the base station plays a critical role in determining the es-

timation performance. These insights will be useful for designing practical “massive

MIMO" systems in future mobile wireless communications.
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Chapter 1

Introduction

Rarely have technical innovations changed everyday lift asrapidly and profoundly as mobile wire-

less communications. According to the International Telecommunication Union (ITU) [1], the

number of mobile wireless subscriptions has passed 6.83 billion in year 2013, which is more than

90% of the world population. In additional, smart phone and mobile tablet penetrations are also

rising rapidly. In general, the data consumption of a singlesmart phone is equivalent to the traffic

generated by 50 featured phones; while a mobile tablet can produce 120 times the data volume of a

featured phone [2]. As a result, in May 2013, Cisco systems predicted a staggering 66% compound

annual growth rate (CAGR) for global mobile data traffic from2012 to 2017 [3]. This is an 13-fold

increase in wireless traffic over a five-year period.

A key societal question and a pressing engineering challenge is:"How can we support the pre-

dict exponential growth in mobile data traffic?" To meet the increasing traffic demand, other than

reallocating radio spectrum to wireless providers, spectrum efficiency will need to be improved

significantly. Multiple-input-multiple-output (MIMO) technology, together with multi-user MIMO

(MU-MIMO), offer efficient ways to increase the spectral efficiency of a mobile broadband com-

munication system [4]. Recently, a new MIMO paradigm called"Massive MIMO" has generated

much interest in both academia [5] [6] and industry. Using information theoretical analysis, it

can be shown that even with random user scheduling and no inter-cell cooperation, unprecedented
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spectral efficiency in time-division-duplex (TDD) cellular systems can be achieved if a sufficiently

large number of transmit antennas are employed at each base station.

Due to the form factor limitation, 3D "massive MIMO" systemsare introduced to fit a large

number of antenna elements on the base station in reality [7][8]. On the other side, millimeter

wave wireless communication with carrier frequency between 30 to 300GHz has enable gigabit

per second data transmission indoor wireless communication systems and has been introduced for

mobile cellular network to combat the form factor limitation. Communication in the millimeter

wave band make it possible to pack a large amount of antenna elements on a base station therefore

also enable practical massive MIMO systems.

In order to realized the capacity gains promised by "massiveMIMO" systems, it is crucial

for the base station to know the channel state information (CSI) to perform the transmit precod-

ing. Traditionally, channel estimation can be done by estimating the transfer function. Such a

strategy may yield poor performance in 3D active "massive MIMO" systems due to the large di-

mensionality of the channel matrix. Alternatively, channel estimation could be conducted based

on parametric channel models where direction-of-arrival (DoA) and direction-of-departure (DoD)

estimation of resolvable paths can be estimated [9]. When the system is calibrated, it is shown

that the performance bound of the channel estimation through a parametric approach outperforms

simple unstructured interpolation scheme [10]. Under parametric channel modeling of massive

MIMO systems, estimation of the channel becomes estimationof the DoA/DoD and the delay of

each resolvable paths. In this thesis, we focus on joint angle and delay estimation for 3D massive

MIMO systems based on parametric channel modeling.

There are many existing subspace-based method such as MUSIC, ESPRIT and matrix pencil to

estimate DoA/DoD for two-dimensional (2D) mobile wirelesssystems. However, its counterpart

in 3D, together with delay estimation is yet not well explored for mobile wireless communication

systems. In [11], an efficiency way for estimating the delay and DoA of multiple reflections of

a know signal is presented, but the complexity of the algorithm is prohibitively high due to the

iterative procedure. Some methods in [12] are introduced toestimate channel parameters with

2



low complexity, but the disadvantages are that the pairing of the 3D angles and delay can not be

automatically determined, which means two signals with closed parameters are indistinguishable.

The TST-MUSIC (Time-Space-Time MUSCI) algorithm proposedin [13] has great performance

in estimating the DoAs and delay of a wireless multi-ray channel, but it can only solve the problem

in the case of only one close parameter and the complexity is still relatively high. Hence, in

this thesis, we introduce two approaches to estimate the DoAs and delay with low complexity

utilizing the shift-invariance property of ESPRIT algorithm. Moreover, few of the aforementioned

papers deal with derivation of the analytical mean square error (MSE). Analytical results on the

performance of standard ESPRIT is first investigated in [14]. However, the result goes back to a

result on the distribution of the eigenvectors of a simple covariance matrix. In contrast, in [15] a

different approach is proposed, which provides an explicitfirst-order expression of the subspace

of a desired signal if a small additive perturbation is assumed. Nevertheless, the authors in [15]

only consider the 1D standard ESPRIT method. Moreover, the white noise is assumed in order to

get the desired result. In order to overcome these drawbacks, Roemeret.al [16] provider a frame

of the MSE analysis which considers the multiple dimensionscase. In [16], it is shown that the

MSE expression only depends on the second-order moments of the noise. However, these results

are so complicated and only can be simplified in the signal path case. Thus little intuition can

be obtained through them. In this thesis, we will derive the simplified results in multiple paths

case using the subspace-based estimation methods in the millimeter wave massive MIMO system,

which can provide us the intuitions of the real system designing.

The contribution of the thesis can be summarized as follows.

Firstly, we propose the separated delay and angle estimation method, which is rarely investi-

gated in the literature. It has also been shown that if DoAs ofdifferent paths are drawn to uniform

distribution, the delays of different paths can be estimated correctly and vice versa.

Secondly, we derive the MSE of the delay and angle estimationfor different paths using the

standard and unitary ESPRIT. Furthermore, we simplify the results in the massive MIMO system

which shows that the MSE depends heavily on the number of the antennas, the number of the
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snapshots and the transmit power. There are few papers focusing on the analysis of the MSE of the

elevation angle and azimuth angle estimation for differentpaths. Compared to the results in the

literature, our analytical result can provide the intuitions of the real system design.

Thirdly, we analyze the impact of various antenna configurations on the estimation performance

and observe some "surprising" results. For example, for a system with total 64 antenna elements,

using ESPRIT-type DoA estimation algorithms, it can be shown that a 8×8 array yields better DoA

estimation than 4×16 array in both elevation angle and azimuth angle estimation in the low and

median signal to noise ratio (SNR) regime.

Finally, the MSE of the delay and angle estimation using joint angle and delay estimation

(JADE) methodology is investigated. In the massive MIMO system, the simplified closed-form

MSE of elevation angle and azimuth angle estimation is obtained, which is unexplored in the

literature.

The remainder of this thesis is organized as follows. We introduce the multi-path ray-based

channel model in Chapter 2. Chapter 3.1 mainly focuses on delay estimation based on discrete

Fourier transform, while the 3D DoA estimation following our line of work is given in Chapter 3.2

through unitary ESPRIT. The matrix-based joint angle and delay estimation algorithm is conducted

in Chapter 4.1, together with the theoretical analysis of the mean square error (MSE) of the pro-

posed method in Chapter 4.2. Simulation results are illustrated in Chapter 5. Finally, Chapter 6

concludes this thesis and we show a list of active research topics which need to be investigated in

the future.
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Chapter 2

Data Model

A typical 3D "massive MIMO" system withM×N antenna array at the base station can be shown

in Fig. 2.1.

Figure 2.1: Model of 3D “Massive MIMO” System

In this particular system, a base station is at the height ofh, while a mobile station is at the

height ofhm. The antenna array at the base station is a planar array placed in the X-Z plane withM

antenna elements vertically andN antenna elements horizontally. The spacing between adjacent

antenna element is assumed to bed. For simplicity, throughout the thesis, we assume that there is

only one transmit antenna at the mobile station. In the 3D communication system shown in Fig. 2.1,

instead of mechanical down-tiling the antenna array towards the mobile station, the base station

could also perform digital beam-forming in both elevation and azimuth domain towards the mobile

station. In TDD system, 3D direction of arrival estimation will provide the base station the channel
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knowledge on the downlink. That is why it is crucial for TDD based "massive MIMO" system. In

reality, the propagation situation in a wireless communication system is rather complicated. The

uplink sounding reference signals usually go through scattering, reflection and diffraction before

they reach the base station. For a multiple path scenario, a 3D wireless channel is usually modeled

by a finite number of rays, each parameterized by a complex amplitude, angle and time delay [10].

Generally, suppose that there areP resolvable propagation paths impinging on aR-dimensional

grid of sizeM1×M2 · · ·×MR [17], the measurement data samples are given by:

ym1,m2,...,mR(t) =
P

∑
ℓ=1

αℓ(t)
R

∏
r=1

ej(mr−1)u(r)ℓ r(t− τℓ)+wm1,m2,...,mR(t), (2.1)

wheremr = 1,2, . . . ,Mr . αℓ(t) denotes the complex channel gain ofℓ-th path at time instantt. u(r)ℓ

symbolizes the spatial frequency of pathℓ in ther-th mode forr = 1,2, . . . ,R. r(t) is the transmitted

signal, denoted byr(t) = ∑k skg(t−kT), wheresk is the sequence of data bits we transmitted over

the channel, andg(t) is a known pulse shape function by whichsk is modulated.T is the symbol

rate and for notation simplicity, it will be normalized toT = 1 from now on. τℓ represents the

time delay of pathℓ andwm1,m2,...,mR(t) is assumed to be the zero mean additive Gaussian noise

uncorrelated in all dimensions with varianceσ2.

Here, our received signal is referenced byR+1 indices and the most common way to handle

this multi-dimensional measurement data is to stack dimensions into a highly structured matrix in

a majority of existing literatures. In this thesis, our goalis to jointly estimate the 3D DoAs and the

corresponding delay of a particular path under a uniform planar array of sizeM×N. Hence, we

will take R= 2 to introduce the matrix-based system model.

Accordingly, (2.1) implies that the received signal impinging on a 2D antenna array can be

compactly expressed as:

Y(t) =
P

∑
ℓ=1

αℓ(t)a(uℓ)a
T(vℓ)r(t− τℓ)+W(t), (2.2)
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wherea(uℓ)=
[

1 ejuℓ . . . ej(M−1)uℓ

]T

anda(vℓ)=
[

1 ejvℓ . . . ej(N−1)vℓ

]T

can be viewed

as the steering vector of elevation angle and azimuth angle respectively. uℓ =
2πd

λ cosθℓ, vℓ =

2πd
λ sinθℓcosφℓ represent two spatial frequencies of pathℓ, λ is the wavelength.W(t) denotes the

AWGN noise and each of its element has zero mean and varianceσ2, αℓ(t) is the channel gain of

theℓ-th path.

Now we need to stack dimensions through collecting all arrayresponses into anM×N steering

matrixA(uℓ,vℓ), it can be shown that:

aℓ = a(vℓ)⊗a(uℓ),

where⊗ is the Kronecker product.

We can construct a 2D steering matrix of the received signal,A =

[

a1 a2 . . . aP

]

∈

CMN×P based onaℓ, which contains all the information related to theP paths signal whose el-

evation angleθℓ and azimuth angleφℓ are to be estimated.

It is reasonable to assume that the known modulation pulse shape functiong(t) has finite

support[0,Lg) and the channel is fading but stationary over short time intervals. With τmax=

max1≤ℓ≤Pτℓ denotes the maximum delay spread, the channel length isL = Lg+τmax, which means

the channel impulse responseh(n)(t) in then-th time interval has finite duration and is zero outside

an interval[0,L) [18]:

h(n)(t) =
P

∑
ℓ=1

α(n)
ℓ (t)aℓg(t− τℓ) (2.3)

whereL andLg are both measured in symbol periods. It should be noted that the number of the

paths in the millimeter wave system is rather limited [19, 20]. We assumed that the received data

is sampled at a rate ofV times the symbol rate and we start sampling att = nL. During the first

sample period in then-th time interval, the noiseless received data written in vector form is shown
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to be:


















y(n)(0)

y(n)( 1
V )

...

y(n)(1− 1
V )



















= H(n)



















s(n)0

s(n)−1
...

s(n)−(L−1)



















where

H(n) =





















h(n)(0) h(n)(1) . . . h(n)(L−1)

h(n)(
1
V
) h(n)(1+ 1

V ) . . . h(n)(L−1+ 1
V )

...
...

...
...

h(n)(1− 1
V
) h(n)(2− 1

V ) . . . h(n)(L− 1
V )





















.

Extending toQ symbol periods, we obtain the data mode as:

Y(n)
1 = H(n)S(n)+W(n)

1 , (2.4)

whereY(n)
1 represents theMNV×Q received data matrix andW(n)

1 denotes the AWGN noise.S(n)

is theL×Q Toeplitz matrix of data symbols. If transmitted sequence{s(n)k } is known, we can

directly estimate theMNV×L channel matrix through least-square type of methods, i.e.,Y(n)
2 =

Y(n)
1 S(n)†, where the superscript † represents matrix pseudo-inverse. If the transmitted sequence is

unknown, the blind channel estimation methodology can be adopted which is beyond the scope of

our thesis. In fact, we can always express the noisy channel estimatesY(n)
2 as:

Y(n)
2 = H(n)+W(n)

2 , (2.5)

whereW(n)
2 = W(n)

1 S(n)† is the estimation noise matrix.

It is convenient to rearrange the impulse response samples into anMN×LV channel matrix

H(n)
v , which includes all the effects of the array response, path delay, symbol waveform and fading
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parameters:

H(n)
v =

[

a1 · · · aP

]













α1(n)

. . .

αP(n)

























g(τ1)
T

...

g(τP)
T













= Adiag{b(n)}G, (2.6)

whereb(n) is theP×1 vector containing complex fading envelope in then-th time interval. G

denotes theP×LV time delay matrix, whereg(τℓ)T is a 1×LV row vector of samples ofg(t−τℓ).

In the present of the noise, (2.6) can be expressed as

Y(n)
3 = Adiag{b(n)}G+W(n)

3 , (2.7)

whereW(n)
3 is the noise matrix.
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Chapter 3

Separated Delay and DoA Estimation

It can be observed from (2.7) that the delay and DoAs can be estimated through the shift-invariance

structure of the received signal. In this section, we will introduce the separated delay and DoA

estimation algorithm using the standard and unitary ESPRITmethod. Furthermore, we will derive

the simplified mean square error (MSE) of delay and angle estimation using the standard and

unitary ESPRIT method in the millimeter wave massive MIMO system.

3.1 Low Complexity Delay Estimation

It is common to assume that the transmitted waveform function g(t) is the raised cosine roll-off

signal. Under the assumption of our data model, the known waveformg(t) is sampled at a rate of

V which can be arranged into a row vector:

gT =

[

g(0) g( 1
V ) . . . g(L− 1

V )

]

. (3.1)

We use a discrete Fourier transform (DFT) to map the delay into phase shift asgT
F = gTF,
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whereF represents the DFT matrix of sizeLV ×LV defined by [12]:

F =



















1 1 . . . 1

1 e− j(2π/LV) . . . e− j(2π/LV)(LV−1)

...
...

...

1 e− j(2π/LV)(LV−1) . . . e− j(2π/LV)(LV−1)2



















If τℓ is an integer multiple of 1/V , the Fourier transformgτ of the sampled version ofg(t− τ)

is given by

gτ =

[

1 ψτV (ψτV)2 . . . (ψτV)LV−1

]

diag(gF) (3.2)

whereψ = e− j(2π/LV).

Under the assumption thatg(t) is bandlimited and sampled at or above the Nyquist rate, the

channel matrix in (2.6) after DFT transformation can be shown as:

Y4 = Adiag{b}



















1 ψ1 · · · ψLV−1
1

1 ψ2 · · · ψLV−1
2

...
...

...
...

1 ψP · · · ψLV−1
P



















diag{gF}+W4

= Adiag{b} F̂ψdiag{gF}+W4

whereψℓ = ejwℓ,wℓ =−2π
L τℓ. Note that the time index(n) is omitted in this section for brevity.

If diag{gF} is non-singular, we can directly estimate the parameterτℓ using standard or unitary

ESPRIT after dividingY4 by diag{gF}. However, the matrix diag{gF} might be singular because

g(t) is a bandlimited signal. Assume that the normalized bandwidth is W(W < V), gF only has

LW number of non-zero discrete values. In order to avoid blowing up the noise, we need to define

a selection matrixJg ∈ C
LV×LW to choose appropriate submatrices ofY4. Jg has the following
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form [21]:

Jg =













0 I⌊LW/2⌋

0 0

I ⌈LW/2⌉ 0













. (3.3)

We can obtain the channel model with desired structure whichis given by:

Y5 = Y4 ·Jg
[

diag
{

gFJg
}]−1

= Adiag{b}Fw+W5, (3.4)

whereW5 = W4 ·Jg [diag{gFJg}]−1.

Note that, the role ofFw ∈ CP×LW is equivalent to the array steering matrix in our former data

model [22]. Hence, we can follow our line of work using ESPRITalgorithm to obtainwℓ, as well

as the parameter of interestτℓ through shift-invariance property.

We can apply the one dimensional standard ESPRIT algorithm to evaluate the estimation per-

formance. Take the transpose of (3.4), we have

YT
5 = FT

wdiag{b}AT +WT
5

=

[

f1 f2 . . . fP

]

S+WT
5

(3.5)

wherefℓ=
[

1 ejwℓ . . . ej(LV−1)wℓ

]T

can be regarded as the steering vector andS=diag{b}AT

is the equivalent “training sequence".

In order to estimate the delay ofP different paths, the rank of the equivalent “training sequence"

S should be equal toP. In fact, the DoAs of different paths are drawn to the uniformdistribution,

e.g.,U [−π ,π ], it can be obtained that the probability that two different paths have the same DoAs

is zero. We can easily obtain the rank of the noiseless received signals as follows:

Rank
{

diag{b(n)}AT}= Rank{diag{b(n)}}= P. (3.6)

We can also perform one dimensional unitary ESPRIT algorithm which has low computational
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complexity. To be specific, the received signal after the forward and backward averaging becomes:

Ydu =
[

YT
5 ΠΠΠLWYH

5 ΠΠΠMN
]

=
[

FT
wS ΠΠΠLWFH

wS∗ΠΠΠMN
]

+
[

WT
5 ΠΠΠLWWH

5 ΠΠΠMN
]

(3.7)

whereΠΠΠm is the exchange matrix which has one on its antidiagonal elements and zeros elsewhere.

It has been proved in [16] that the unitary transformation will not affect the MSE of the ESPRIT

method, however, it is clear that the statistics of the noiseand the signal subspace are changed due

to the forward and backward averaging. The covariance and complementary covariance matrix

becomes:

R( f ba)
nn =







Rnn 0

0 ΠΠΠLWMNR∗
nnΠΠΠLWMN







C( f ba)
nn =







0 RnnΠΠΠLWMN

ΠΠΠLWMNR∗
nn 0






,

(3.8)

whereRnn = E

{

vec
{

WT
5

}

vec
{

WT
5

}H
}

.

Proof. Denotendu = vec{
[

WT
5 ΠΠΠLWWH

5 ΠΠΠMN
]

} be the noise vector after forward-backward av-

eraging. Based on the definition of the covariance matrix, wehave

R( f ba)
nn = E{ndu ·nH

du}

=







vec
{

WT
5

}

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}







[

{

vec
{

WT
5

}}H {

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}}H
]

=







vec{WT
5}
{

vec{WT
5}
}H vec{WT

5}
{

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}}H

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}{

vec
{

WT
5

}}H
vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}{

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}}H







It can be immediately observed that vec{WT
5}
{

vec{WT
5}
}H

= Rnn. In the next step, we can

13



further simplify the rest entries in the covariance matrix as:

vec{WT
5}
{

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}}H

= vec{WT
5}
{

ΠΠΠLW ⊗ΠΠΠMNvec
{

WH
5

}}H

= vec{WT
5}
{

ΠΠΠMNLWvec
{

WH
5

}}H

= vec{WT
5}
{

vec
{

WT
5

}}T ΠΠΠMNLW

= 0

and

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}{

vec
{

ΠΠΠLWWH
5 ΠΠΠMN

}}H

= ΠΠΠMNLWvec
{

WH
5

}{

ΠΠΠMNLWvec
{

WH
5

}}H

= ΠΠΠMNLWvec
{

WH
5

}{

vec
{

WH
5

}}H ΠΠΠMNLW

= ΠΠΠLWMNR∗
nnΠΠΠLWMN.

Similarly, we can prove that:

C( f ba)
nn = E{ndu ·nT

du}

=







0 RnnΠΠΠLWMN

ΠΠΠLWMNR∗
nn 0






.

In the following, we will derive the MSE of the delay estimation using unitary ESPRIT method-

ology. We first make the following assumptions to facilitateour analysis.

A1: S(n)HS(n) is a scaled identity matrix, which leads to the minimized channel estimation

error. Moreover, it can be obtained that after the least square channel estimation, we still have the

white Gaussian noise.

A2: The sample numberLW is large. Note that as long assk is known, it is safe to overestimate

14



L as this will only extendH by zero columns.

Based onA1, we have the following lemma:

Lemma 1. The covariance matrixRnn and complementary matrixCnn for the delay estimation are

given by:

Rnn= σ2IMN ⊗Gg Cnn= 0, (3.9)

whereGg = diag
{[

|gF(−⌈LW
2 ⌉)|−2, . . . , |gF(⌊LW

2 ⌋)|−2
]}

.

Proof. In order to simplify the proof, letD = [diag{gFJg}]−1. Based on the definition of the

covariance matrix, we have

Rnn = E

{

vec
{

WT
5

}

vec
{

WT
5

}H
}

= σ2
(

IMN ⊗ (JgD)T
)

(

IMN ⊗ (JgD)∗
)

= σ2IMN ⊗
(

DTJT
g JgD∗)

= σ2IMN ⊗Gg.

We can prove thatCnn= 0.

Similarly, we can also obtain the covariance matrix and complementary matrix for the DoA

estimation.

Lemma 2. The covariance matrixRnn and complementary matrixCnn for the DoA estimation are

given by:

Rnn= σ2Gg⊗ IMN Cnn= 0. (3.10)
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Proof. Based on the definition of the covariance matrix, we have

Rnn = E

{

vec{W5}vec{W5}H
}

= E

{

vec
{

W4JgD
}

vec
{

W4JgD
}H
}

= E

{(

(JgD)T ⊗ IMN

)

vec{W4}vec{W4}H ((JgD)∗⊗ IMN
)

}

= σ2
(

(JgD)T ⊗ IMN

)

(

(JgD)∗⊗ IMN
)

= σ2(DTJT
g JgD∗)⊗ IMN

= σ2Gg⊗ IMN.

We can prove thatCnn= 0.

Furthermore, according toA2, we have:

Lemma 3. If the delays of different paths are drawn independently from a continuous distribu-

tion, the normalized vectors̄fk = 1/
√

LWfk,k∈ {1,2, . . . ,P} are orthogonal, that is,1/
√

LWfk ⊥

span
{

1/
√

LWf l | ∀k 6= ℓ
}

when LW is large and the number of paths is P= o(LW).

Proof. Let F−k = 1/
√

LW [f1, . . . , fk−1, fk+1, . . . , fP], we have

lim
LW→∞

∣

∣

∣
f̄H
k F−k

∣

∣

∣
≤ lim

LW→∞ ∑
ℓ6=k

∣

∣f̄H
k f̄ℓ
∣

∣

= lim
LW→∞ ∑

ℓ6=k

1
LW

∣

∣

∣

∣

∣

LW−1

∑
n=0

e− j 2π
L n(τℓ−τk)

∣

∣

∣

∣

∣

≤ lim
LW→∞ ∑

ℓ6=k

1
LW

2
∣

∣

∣
1−e− j 2π

L (τℓ−τk)
∣

∣

∣

= 0

.

We also have the similar lemma for the normalized steering vectorāk=1/
√

MNak,k= {1,2, . . . ,P}:

Lemma 4. If the elevation and azimuth angle are both drawn independently from a continuous
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distribution, the normalized array response vector are orthogonal, that is,̄ak ⊥ span{āl | ∀k 6= ℓ}

when MN is large and the number of paths is P= o(MN).

Denoteŵℓ the estimated time delay for theℓ-th path, the estimation error is given by△wℓ =

wℓ− ŵℓ. Take the singular value decomposition (SVD) of the noiseless received signal, we have

[

FT
wS ΠΠΠLWFH

wS∗ΠΠΠMN
]

=

[

Us Un

]







ΣΣΣs 0

0 0













VH
s

VH
n






(3.11)

It has been derived in [16] that the first order approximationof the mean square error (MSE)

for the unitary ESPRIT method is given by:

E

{

(△wℓ)
2
}

=
1
2

(

rH
ℓ ·W∗

mat ·R
( f ba)T
nn ·WT

mat · r ℓ−Re
{

rT
ℓ ·Wmat ·C( f ba)

nn ·WT
mat · r ℓ

})

. (3.12)

The vectorr ℓ and the matrixWmat are given by

r ℓ = qℓ⊗
(

[

(J1Us)
†(J2/ej ·wℓ −J1

)

]T
pℓ

)

(3.13)

Wmat =
(

ΣΣΣ−1
s VT

s

)

⊗
(

UnUH
n

)

, (3.14)

whereJ1 = [ILW−1 0] andJ2 = [0 ILW−1] are the selection matrix,T is the matrix which con-

tains the eigenvector of(J1Us)
†(J2Us), qℓ is theℓ-th column of the matrixT, pT

ℓ is theℓ-th row

of matrix T−1, R( f ba)
nn andC( f ba)

nn are the covariance matrix and complementary covariance matrix

respectively.

It can be seen that (3.12) depends on the singular value decomposition of the noiseless received

signal, which is hard to obtain at the base station (BS). In fact, it is extremely difficult to simplify

such complicated result in the multiple path case. Fortunately, in the massive MIMO system, it

can be significantly simplified in terms of the orthogonalityof the steering vector. The simplified

result is only related to the real system parameters such as the number of the antennas, number of

snapshots and transmit power. Specifically, we have the following theorem:
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Theorem 1. In the massive MIMO system, the MSE of delay estimation usingthe unitary ESPRIT

is given by

E

{

(△τℓ)2
}

=
L2σ2

8π2MN|b(ℓ)|2
|gF(−⌈LW

2 ⌉)|−2+ |gF(⌊LW
2 ⌋)|−2

(LW−1)2 (3.15)

Proof. See Appendix A.

Remark 1. In order to facilitate the expression of the underlying MSE,the selected frequency

parametergF(k) appear in the increasing order from−⌈LW/2⌉ to ⌊LW/2⌋.

Based on proof ofTheorem 1, we have

Corollary 1.1. The MSE of the time frequency estimation using the unitary ESPRIT is given by

E

{

(△wℓ)
2
}

=
σ2

2MN|b(ℓ)|2
|gF(−⌈LW

2 ⌉)|−2+ |gF(⌊LW
2 ⌋)|−2

(LW−1)2 (3.16)

After obtaining the simplified MSE of the delay estimation using unitary ESPRIT, it is straight-

forward to derive the MSE ofwℓ using the standard ESPRIT:

Corollary 1.2. The MSE of the delay estimation using the standard ESPRIT method is the same as

that using the unitary ESPRIT method.

Remark 2. It can be implied from(3.15)that the sample number will have more noticeable effects

on the MSE of the delay. We can also easily come to the conclusion that the MSE of the delay is

only related to the totally number of antennas, e.g., MN.

3.2 Low Complexity Angle Estimation

In this section, we will first introduce a low complexity DoA estimation algorithm based on unitary

ESPRIT to jointly estimate the elevation and azimuth angle.The array manifold matrix of anM×N
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antenna array can be expressed as:

A(uℓ,vℓ) = a(uℓ)a
T(vℓ),

that is, the steering matrix can be decomposed to the productof two steering vectors.

Since we are only interested in DoA estimation, (3.4) can be rewritten as

Y5 = AS+W5, (3.17)

whereS= diag{b}Fw.

It can be easily verified that Rank{AS}= P provided that the delay of different paths are dis-

tinct. In order to perform the unitary ESPRIT, we also need touse the forward-backward averaging

to process the received signal in (3.17).

Yau = [Y5 ΠΠΠMNY∗
5ΠΠΠLW] (3.18)

The noiseless received signal can be decomposed into:

[AS ΠΠΠMNA∗S∗ΠΠΠLW] =

[

Us Un

]







ΣΣΣs 0

0 0













VH
s

VH
n






. (3.19)

Following our line of work, we have achieved the following relation:

tan(
uℓ
2
)K1aR(uℓ) = K2aR(uℓ).

Here,K1 = Re{QH
M−1J2QM}, K2 = Im{QH

M−1J2QM}. J2 is the(M−1)×M selection matrix by

taking the lastM −1 rows ofIM, whereIM is theM ×M identity matrix. QM is the constructed

unitary transformation matrix, which changesa(uℓ) to the real-valued steering vectoraR(uℓ). Ex-

19



tending the relation to 2D antenna array

tan
(uℓ

2

)

K1AR(uℓ,vℓ) = K2AR(uℓ,vℓ). (3.20)

where

AR(uℓ,vℓ) = QH
Ma(uℓ)a

T(vℓ)Q
∗
N = aR(uℓ)(a

R(vℓ))
T .

Furthermore, we can rewrite the formulation in (3.20) as:

tan
(uℓ

2

)

K x1vec
{

AR(uℓ,vℓ)
}

= K x2vec
{

AR(uℓ,vℓ)
}

whereK x1 , IN ⊗K1, andK x2 , IN ⊗K2. Accordingly, we can specify anMN×P real-valued

array manifold matrix:

AR ,

[

vec
{

aR(u1,v1)
}

. . . vec
{

aR(uP,vP)
}

]

Then, we have the shift-invariance equation:

K x1ARΩΩΩx = K x2AR (3.21)

where

ΩΩΩx , diag
{

tan
(u1

2

)

, tan
(u2

2

)

, . . . , tan
(uP

2

)}

.

It is important to note that after the unitary transformation, all the matrices become real-valued

matrices. This will significantly reduce the computationalcomplexity.

Similarly, for a(vℓ), we can conduct the same process. LetK3 = Re
{

QH
N−1J′2QN

}

, andK4 =

Im
{

QH
N−1J′2QN

}

, whereJ′2 is the(N−1)×N matrix constructed by taking the last(N−1) rows

of IN. Accordingly, we have

K y1ARΩΩΩy = K y2AR (3.22)
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whereK y1 , K3⊗ IM, K y2 , K4⊗ IM, and

ΩΩΩy , diag
{

tan
(v1

2

)

, tan
(v2

2

)

, . . . , tan
(vP

2

)}

Let Us be the signal subspace andT be the nonsingular transformation matrix, we haveUs =

ART since the array steering matrixAR and the matrixUs span the same column space in the

absence of noise or with an infinite number of measurements. Under the noisy case or with a finite

number of measurements, this expression holds approximately. Substitute this relation into (3.21),

we have

K x1UsΛx = K x2Us (3.23)

whereΛΛΛx , T−1ΩΩΩxT. Similarly, we also have

K y1UsΛy = K y2Us (3.24)

whereΛΛΛy , T−1ΩΩΩyT. From (3.23) and (3.24), we can solve forΛ̂ΛΛx andΛ̂ΛΛy based on the estimated

signal subspace using least square type of methods. Let the eigenvalues of theP×P complex

matrix Λ̂ΛΛx+ jΛ̂ΛΛy beλ̂ℓ, ℓ= 1,2, . . . ,P. uℓ andvℓ can be estimated from:

ûℓ = 2tan−1
{

Re
(

λ̂ℓ

)}

v̂ℓ = 2tan−1
{

Im
(

λ̂ℓ

)}

Accordingly, the DoAs of interest are obtained through simple parameter transformation.

In the massive MIMO system, we have the following theorem.

Theorem 2. For the case of 3D DoA estimation based on a uniform planar array of M×N ele-
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ments, the mean square errors of the elevation and azimuth angle estimation are given by:

E

{

(△θℓ)2
}

=
σ2

π2sin2(θℓ)

∑
⌊ LW

2 ⌋
i=−⌈ LW

2 ⌉ |gF(i)|−2

|b(ℓ)|2(LW)2(M−1)2N

E

{

(△φℓ)2
}

=
σ2

π2sin2(θℓ)

∑
⌊ LW

2 ⌋
i=−⌈ LW

2 ⌉ |gF(i)|−2

|b(ℓ)|2(LW)2

(

cot2(θℓ)cot2(φℓ)
(M−1)2N

+
1

sin2(φℓ)(N−1)2M

)

.

(3.25)

.

Proof. See Appendix B.

Based on the proof ofTheorem 2, it is straightforward to obtain the MSE of the spatial fre-

quenciesuℓ andvℓ as follows:

Corollary 2.1. In the massive MIMO system, the MSE of the spatial frequencies uℓ, vℓ using the

unitary ESPRIT are given by:

E

{

(△uℓ)
2
}

=
σ2

|b(ℓ)|2(LW)2

∑
⌊ LW

2 ⌋
i=−⌈ LW

2 ⌉ |gF(i)|−2

(M−1)2N

E

{

(△vℓ)
2
}

=
σ2

|b(ℓ)|2(LW)2

∑
⌊ LW

2 ⌋
i=−⌈ LW

2 ⌉ |gF(i)|−2

(N−1)2M

(3.26)

.

For the 2D standard ESPRIT method, following the similar proof procedure ofTheorem2, we

have the following corollary.

Corollary 2.2. In the massive MIMO system, the MSE of elevation and azimuth estimation using

the 2D standard ESPRIT is the same as that using the 2D unitaryESPRIT.

It is clear that the angles and delay can be estimated independently of each other, by directly

working on the rows and columns of the transformed channel matrix. However, this does not give

a pairing between angles and the corresponding delay. We will introduce the joint angle and delay
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estimation algorithm for rectangular planar array and derive the corresponding MSE in the massive

MIMO system in the following chapter.
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Chapter 4

Joint Angle and Delay Estimation

In this chapter, we will construct a space-time manifold through vectorization and jointly estimate

the delay and DoAs using ESPRIT algorithm in Chapter 4.1. TheMSE of the joint angle and delay

estimation using ESPRIT method is derived in Chapter 4.2.

4.1 Matrix-based Joint Estimation Using ESPRIT Method

Recall that our received signal after deconvoluation ofg(t) is given in (3.4):

Y5 = Adiag{b}Fw+W5.

In order to estimate angle and delay jointly, the first step isto construct the channel matrix

which involves delay, elevation angle and azimuth angle, which can be obtained either through

stacking the received signalY5 into Hankel matrix or taking vectorization. In the next two sections,

we will give a detailed description of the two methods and propose our own matrix transformation

methodology.
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4.1.1 Matrix Transformation through Hankel Matrix

The main idea now is as follows. FromY5, we can construct a Hankel matrixYH by left-shifting

and stackingmcopies ofY5. For 1≤ i ≤m, define the left-shifted matrix̂Y(i)
H :=Y5(:, i : LW−m+ i).

Note that the notation(:, i : LW−m+1) indicates taking columnsi throughLW−m+1 of a ma-

trix. Then the Hankel matrixYH can be defined as

YH =













Ŷ(i)
H
...

Ŷ(m)
H













(4.1)

whereYH ∈ CmMN×LW−m+1.

The motivation behind such matrix stacking is thatYH has a factorization as [18]:

YH = AHdiag{b}Fw,

AH = A ⋄



















1 . . . 1

e− j(2π/L)τ1 . . . e− j(2π/L)τP

...
...

e− j(m−1)(2π/L)τ1 . . . e− j(m−1)(2π/L)τP



















(4.2)

where⋄ denotes the Khatri-Rao product, i.e., a column-wise Kronecker product. If we choose the

stacking parameters,m, to make the Hankel matrixYH satisfy the following condition:

MNm≥ P,

LW−m+1≥ P,

then we can estimateAH up to anP×P factor at the right as long as all factors are full rank. Hence

we can estimate the unknowns through shift invariance property.

Nevertheless, the drawback of stacking the received signalY5 into a Hankel matrix is that

the degree of freedom that we can utilize to perform the ESPRIT method is diminished. To be
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specific, the number of rows in our Hankel matrix ismMN, which means the whole degree of

freedom,LWMN, has not been fully exploited. In order to combat this disadvantage, in the next

section, matrix vectorization is used to transform the received matrix into a space-time manifold

matrix which involves both delay and angle estimation.

4.1.2 Matrix Transformation through Vectorization

The matrix vectorization and Khatri-Rao has the following relationship [23]:

vec(AXB) =
(

BT ⋄A
)

vecd(X) , (4.3)

whereA,B,X denote the arbitrary matrix which dimension meet the requirement of the matrix

multiplicity, vecd() indicates the vectorization operator which selects only the diagonal elements

of the matrix into a vector.

In terms of (4.3), we can take vectorization of the received signal:

y(n)v = A(τ,θ ,φ)b(n)+vec
{

W(n)
5

}

. (4.4)

Collecty(n)v duringK time intervals, we have

Yv = A(τ,θ ,φ)B+W6, (4.5)

where

B =

[

b(1) b(2) . . . b(K)

]

W6 =

[

vec
{

W(1)
5

}

vec
{

W(2)
5

}

. . . vec
{

W(K)
5

}

]

A(τ,θ ,φ) = FT
w ⋄A

SinceFw andA are the time delay matrix and array matrix respectively withVandermonde
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structure. Hence we can utilize the shift-invariance property of this highly structured matrix to

jointly estimate the unknowns based on ESPRIT-type algorithms.

To estimatewℓ, we should take the first and respectively lastMN(LW− 1) rows of channel

matrix as two submatrices, while forθℓ estimation, we may take its first and respectively last

M−1 rows for allLWNblocks of channel matrix, similarly, forφℓ estimation, we may take its first

and respectively lastN−1 rows for allLWM blocks. Hence, we may define the selection matrices

as follows:

J(1)1 = [ILW−1 0]⊗ IMN J(1)2 = [0 ILW−1]⊗ IMN

J(2)1 = ILWN⊗ [IM−1 0] J(2)2 = ILWN⊗ [0 IM−1]

J(3)1 = ILW ⊗ [IN−1 0]⊗ IM J(3)2 = ILW ⊗ [0 IN−1]⊗ IM

Through shift-invariance property, we can write:

J(1)1 A(τ,θ ,φ)W = J(1)2 A(τ,θ ,φ)

J(2)1 A(τ,θ ,φ)Θ = J(2)2 A(τ,θ ,φ)

J(3)1 A(τ,θ ,φ)Φ = J(3)2 A(τ,θ ,φ),

(4.6)

whereW, Θ andΦ are the corresponding diagonal matrices, containing desired parameters for

each path.

Then we can directly apply the ESPRIT-type algorithm to jointly estimate the delay and DoAs.

Note that, the advantage of JADE is that it can work even when the number of paths exceeds the

number of antennas (P > MN). We only need the space-time manifold matrix to be a tall ma-

trix, which meansP< MNLW. The unitary ESPRIT can also be performed through the forward-

backward averaging which can provide the correctly pairingbetween the delay and the correspond-

ing DoAs through Jacobian matrix [17].
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4.2 Mean Square Error (MSE) of Matrix-Based ESPRIT Method

In this section, we will focus on the theoretical analysis ofthe mean square error (MSE) of the

matrix-based ESPRIT method. For simplicity, we denoteµ(1)
ℓ = uℓ, µ(2)

ℓ = vℓ and µ(3)
ℓ = wℓ.

Define the estimation error△µ(r)
ℓ = µ̂(r)

ℓ −µ(r)
ℓ , whereµ̂(r)

ℓ is the estimated result.

The noiseless signal in (4.5) can be decomposed into:

A(τ,θ ,φ)B =

[

Us Un

]







ΣΣΣs 0

0 0













VH
s

VH
n






(4.7)

The first order approximation of the mean square error (MSE) for theℓ-th spatial frequency in

ther-th mode is given by [16]

E

{

(

△µ(r)
ℓ

)2
}

=
1
2

(

r (r)Hℓ ·W∗
mat ·R

( f ba)T
nn ·WT

mat · r
(r)
ℓ

−Re
{

r (r)Tℓ ·Wmat ·C( f ba)
nn ·WT

mat · r
(r)
ℓ

})

, r ∈ {1,2,3} .
(4.8)

The vectorr (r)ℓ and the matrixWmat are given by

r (r)ℓ = qℓ⊗
(

[

(

J(r)1 Us

)†
(

J(r)2 /ej ·µ(r)
ℓ −J(r)1

)]T

pℓ

)

(4.9)

Wmat =
(

ΣΣΣ−1
s VT

s

)

⊗
(

UnUH
n

)

, (4.10)

whereqℓ is the ℓ-th column of the transformation matrixT, pℓ is the ℓ-th row of matrixT−1,

R( f ba)
nn andC( f ba)

nn are the covariance and complementary covariance matrix respectively.

Lemma 5. The MSE of the JADE using unitary ESPRIT is given by(4.8) in which the covariance
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and complementary covariance matrix are as follows:

R( f ba)
nn =







Rnn 0

0 ΠΠΠLWMNR∗
nnΠΠΠLWMN







C( f ba)
nn =







0 RnnΠΠΠLWMN

ΠΠΠLWMNR∗
nn 0,







(4.11)

whereRnn = σ2IK ⊗Gg⊗ IMN.

Proof. We only need to investigate the covariance matrix of the received signal:

Rnn = vec{W6}{vec{W6}}H

=













vec
{

W(1)
5

}

...

vec
{

W(K)
5

}













[

{

vec
{

W(1)
5

}}H
. . .

{

vec
{

W(K)
5

}}H
]

=













σ2Gg⊗ IMN . . . 0
...

...
...

0 . . . σ2Gg⊗ IMN













= σ2IK ⊗Gg⊗ IMN.

(4.12)

Substitute (4.12) into (4.8), the prove is finished.

For the standard ESPRIT, we have the simplified MSE of the elevation angleθℓ and azimuth

angleφℓ in the massive MIMO system as follows:

Theorem 3. In the case of 3D DoA estimation based on a uniform planar array of M×N elements,
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the mean square errors of the elevation and azimuth angle estimation are given by:

E

{

(△θℓ)2
}

=
σ2

π2sin2(θℓ)
R−1

ss (ℓ, ℓ)
(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

2K(M−1)2NLW

E

{

(△φℓ)2
}

=
σ2

π2sin2(θℓ)
R−1

ss (ℓ, ℓ)
(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

2KLW

(

cot2(θℓ)cot2(φℓ)
(M−1)2N

+
1

sin2(φℓ)(N−1)2M

)

(4.13)

Proof. See Appendix C.

Based on the proof ofTheorem 3, we can obtain the MSE of the delay as follows:

Corollary 3.1. The MSE of the delay estimation using the standard ESPRIT is given by:

E

{

(△τℓ)2
}

=
L2

4π2

σ2R−1
ss (ℓ, ℓ)

(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

2K(LW−1)2MN
(4.14)

4.3 Cramer-Rao Bound

The CRB provides a lower bound on the variance of any unbiasedestimator. The CRB depends on

whether the path fading are modeled as unknown deterministic quantities or as random variables

with a know distribution. In the case of the deterministic fading scenario in which the noise is

assumed to be random and the fading is assumed to be unknown constant, if we apply the vector-

ization operator to the noise-perturbed model in (2.7), we can obtain

h := Ub+v (4.15)

whereU = GT ⋄A, b = [b(1), . . . ,b(P)]T andv is the noise on the channel estimation.
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Then CRB for DoA with delay spread was derived in [24], which is given by

CRB(ααα,τττ) =
σ2

2K
Real

{

B
HDHPUDB

}−1
(4.16)

whereααα = [θ1, . . . ,θP,φ1, . . . ,φP]
T , τττ = [τ1, . . . ,τP]

T ,B= I2⊗diag{b(n)}, PU = I−U(U∗U)−1U∗,

andD = U′. Here prime denotes differential.

For a Rayleigh-fading channel, the path fadings have a zero-mean complex Gaussian distribu-

tion, with some covariance matrixRb. The CRB in this case is also given in [24]:

CRB(ααα,τττ) =
σ2

2K
Real

{

D∗PUD⊙
(

13×3⊗RbUHR−1
h URb

)T
}−1

(4.17)

whereRh = URbUH +σ2/KI .
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Chapter 5

Performance Evaluation

In this chapter, we will evaluate the performance of the matrix-based ESPRIT method. First, we

can directly follow the one dimensional unitary ESPRIT algorithm to obtain the delay estimation.

Assume that there are five resolvable paths, which is the typical number in the outdoor millimeter

wave system [19]. The known pulse shape function we use is a raised cosine signal, with roll-off

factor 0.5 and oversampling rate 2 compared to the normalized symbol rate. The received signal

noise ratio (SNR) is defined as SNR=E{s}∑P
i=1α2

i /σ2. The performance of delay under different

SNR, ranging form−4 dB to 24 dB (dynamic range of SNR in a cellular environment),is shown

in Fig. 5.1. We can see from the figure that our analytic resultmatches the empirical results.
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Figure 5.1: MSE of separated delay estimation

The MSE of the spatial frequencyvℓ using unitary ESPRIT method is illustrated in Fig. 5.2. It
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can be seen that the MSE of the spatial frequencyvℓ decreases with the increasing of the number

of antennas horizontally. Moreover, as the SNR increases, the empirical result approaches the

analytical one asymptotically, which verifies our analytical result. We can also obtain the same

result for spatial frequencyuℓ, which is shown in . The performance of angle estimation based
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Figure 5.2: MSE of separated spatial frequencyvℓ
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Figure 5.3: MSE of separated spatial frequencyuℓ

on unitary ESPRIT is evaluated in Fig. 5.4 and Fig. 5.5 under various antenna configurations. The

elevation angle is restricted to the range[11◦,82◦] while the azimuth angle is within[10◦,80◦]. It

can be seen from Fig. 5.4 that the MSE of the elevation angle estimation with different antenna

structures are almost parallel to each other in the high SNR regime. Furthermore, it is interesting

to note that the MSE of azimuth angle estimation doesn’t scale proportionally to the number of

antennas horizontally, as shown in Fig. 5.5. We observe thatthe MSE of azimuth estimation of a
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4×16 array is even larger than that of 8×8, which seems a little bit counter-intuitive. The reason

for this phenomenon to happen is because azimuth estimationis actually coupled with elevation

estimation. In the case of 8×8 antenna configuration, the performance of elevation is so poor that

it affects the performance of azimuth estimation.
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Figure 5.4: MSE of separated elevation angle estimation
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Figure 5.5: MSE of separated azimuth angle estimation

The MSE of the delay estimation using the joint angle and delay estimation (JADE) methodol-

ogy is shown in Fig. 5.6. In contrast with the separated method, the performance of the standard

ESPRIT is proportional to the number of the intervals, whichis equivalent to the “training se-

quence". The length of the “training sequence"K also impacts the MSE of the delay and angle

estimation. HereK is set to be 15. It can be clearly seen from Fig. 5.6 that the proposed JADE

method can achieve a better performance compared to the separated method. Moreover, we can
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observed that in the high SNR regime, the empirical MSE of theJADE method matches our ana-

lytical result proposed inCorollary 3.1. The similar results can be obtained for the MSE of the

angle estimation. The Cramer-Rao bound(CRB) of the joint angle and delay estimation (JADE)

methodology can be seen in Fig. 5.7
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Figure 5.6: MSE of joint and separated delay estimation
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Chapter 6

Conclusion and Future Work

Joint and separated angle and delay estimation methodologies in 3D massive MIMO millimeter

wave systems are investigated in the thesis. Specifically, the mean square error (MSE) of the

ESPRIT method are analyzed and the simplified results are obtained.

First, we investigate the separate angle and delay estimation method using standard and unitary

ESPRIT. In light of the orthogonality of the steering vectorin the massive MIMO system, we obtain

the simplified MSE of the ESPRIT-type method. Secondly, we derive the simplified expression of

the MSE in the massive MIMO system. The performance of the elevation and azimuth angle under

various antenna configurations is investigated.

For the 3D channel sounding, we can observe that the azimuth angle estimation actually de-

pends heavily on the elevation angle estimation, and its performance is more vulnerable. Using

ESPRIT-type DoA algorithms, a 8×8 array may outperform a 4×16 array in both elevation and

azimuth angle estimation. This is of significant meaning to 3D antenna array design for the future

“massive MIMO” research. For example, this result may shed light on the actual antenna configu-

ration as well as the reference signal (pilot) design for 5G massive MIMO base stations/systems.

There are still many open issues related to DoA estimation wecan investigated in the future:

• Full-dimension multi-input-multi-output (FD-MIMO) and user-equipment (UE) specific ele-

vation beamforming were identified as one promising technology to further increase spectral
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efficiency. FD-MIMO places a large number of active antenna elements in a two-dimensional

grid at the base station, which can support elevation and azimuth beamforming. In October

2014, a new study item on FD-MIMO and UE-specific elevation beamforming was initiated

in the 3GPP [25]. Samsung, which is now leading the standard and implementation of FD-

MIMO, has already implemented 2D active antenna array for FD-MIMO system [26]. In

order to perform the two-dimensional beamforming at the base station, it is crucial to per-

form the two-dimensional DoA estimation to estimate both the elevation and azimuth angle.

How to make the accurate DoA estimation with the low complexity in FD-MIMO system

will still be a challenge [27].

• Although theoretically the system performance in both energy saving and spectrum effi-

ciency can be increase dramatically in massive MIMO system.However, in practice, the

performance will be affected by the acquisition of the channel state information (CSI) [28].

In TDD system, the uplink pilot in one cell may be contaminated by the same pilot from

other cells, which will diminish the performance gain in thedownlink beamforming. Even

though there are already some literature dealing with the pilot contamination via DoA esti-

mation [29], there are still many open problems in this topic.

• In the massive MIMO system, due to the orthogonality property, the DoA steering vector

can be used to perform the downlink beamforming [30]. In our previous paper [31], the

impact of DoA estimation error on the underlying achievablerate is analyzed in single-user

single-cell MIMO system. How to extend to multi-user, multi-cell MIMO scenario is still an

open question.
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Appendix A

Proof of Theorem 1

The first order approximation of the MSE for the time frequency using unitary ESPRIT is given

by (3.12):

E

{

(△wℓ)
2
}

=
1
2

(

rH
ℓ ·W∗

mat ·R
( f ba)T
nn ·WT

mat · r ℓ−Re
{

rT
ℓ ·Wmat ·C( f ba)

nn ·WT
mat · r ℓ

})

.
(A.1)

The vectorr ℓ and the matrixWmat are given by

r ℓ = qℓ⊗
(

[

(J1Us)
†(J2/ej ·wℓ −J1

)

]T
pℓ

)

(A.2)

Wmat =
(

ΣΣΣ−1
s VT

s

)

⊗
(

UnUH
n

)

, (A.3)

Denoteβββ ℓ = VsΣΣΣ−1
s qℓ andαααℓ =

(

pT
ℓ (J1Us)

†(J2/ejwℓ −J1
)(

UnUH
n

)

)T
, we have

WT
matr ℓ =

((

ΣΣΣ−1
s VT

s

)

⊗
(

UnUH
n

))T
(

qℓ⊗
(

[

(J1Us)
†(J2/ej ·wℓ −J1

)

]T
pℓ

))

=
(

VsΣΣΣ−1
s qℓ

)

⊗
(

pT
ℓ (J1Us)

†(J2/ejwℓ −J1
)(

UnUH
n

)

)T

= βββ ℓ⊗αααℓ
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The MSE in (A.1) can be rewritten as:

E

{

(△wℓ)
2
}

=
1
2

(

(βββ ℓ⊗αααℓ)
H ·R( f ba)T

nn · (βββ ℓ⊗αααℓ)−Re
{

(βββ ℓ⊗αααℓ)
T ·C( f ba)

nn (βββ ℓ⊗αααℓ)
})

.

(A.4)

The covariance and complementary covariance matrix in (A.4) are shown in (2.7):

R( f ba)
nn =







Rnn 0

0 ΠΠΠLWMNR∗
nnΠΠΠLWMN







C( f ba)
nn =







0 RnnΠΠΠLWMN

ΠΠΠLWMNR∗
nn 0






.

We first need to simplifyR( f ba)
nn andC( f ba)

nn based onLemma 1:

ΠΠΠMNLWRnnΠΠΠMNLW = (ΠΠΠMN ⊗ΠΠΠLW)
(

σ2IMN ⊗G
)

(ΠΠΠMN ⊗ΠΠΠLW)

= σ2(ΠΠΠMNΠΠΠMNΠΠΠMN)⊗ (ΠΠΠLWGΠΠΠLW)

= σ2IMN ⊗G
′
g

(A.5)

RnnΠΠΠMNLW =
(

σ2IMN ⊗G
)

(ΠΠΠMN ⊗ΠΠΠLW)

= σ2ΠΠΠMN ⊗ (GgΠΠΠLW)

(A.6)

ΠΠΠMNLWRnn = (ΠΠΠMN ⊗ΠΠΠLW)
(

σ2IMN⊗G
)

= σ2ΠΠΠMN ⊗ (ΠΠΠLWGg),

(A.7)

whereG
′
g = diag

{[

|gF(⌊LW
2 ⌋)|−2, . . . , |gF(−⌈LW

2 ⌉)|−2
]}

.

The vectorαααℓ can be simplified as [15]:

αααT
ℓ = pT

ℓ (J1Us)
†(J2/ejwℓ −J1

)(

UnUH
n

)

= eT
ℓ

(

(

J2FT
w

)†
J2−

(

J1FT
w

)†
J1

)

,
(A.8)

43



whereeℓ =
[

0 . . . 1 . . . 0

]

is the column selection vector with all zeros elements except the

ℓ-th one.

According toLemma 3, when the sample numberLW is large, we have

(

J2FT
w

)†
=
(

(

J2FT
w

)H (
J2FT

w

)

)−1
(

J2FT
w

)H

=
1

LW−1

(

(

J2FT
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)H (J2FT
w

)

LW−1

)−1
(

J2FT
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=
1

LW−1

(

J2FT
w

)H
.

(A.9)

Similarly, we have:
(

J1FT
w

)†
=

1
LW−1

(

J1FT
w

)H
. (A.10)

Substitute the preceding results into (A.8), the simplifiedresult of vectorαααT
ℓ is given by

αααT
ℓ =

1
LW−1

[

−1,0, . . . ,0,e− j(LW−1)wℓ

]

. (A.11)

In order to simplify the termβββ ℓ, we need to obtain the singular decomposition (SVD) of the

noiseless received signal which is processed by forward-backward averaging:
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bPejϕP













AT























∗

ΠΠΠMN













= FT
wdiag

{

bg
}[

AT
e ΛΛΛAH

e ΠΠΠMN
]

,

whereΛΛΛ=













e−(LW−1)w1

. . .

e−(LW−1)wp













, bg =

[

b1 . . . bP

]

andAT
e =













ejϕ1

. . .

ejϕP













AT .

Based onLemma 3 andLemma 4, we can obtainUs= 1/
√

LWFT
w, ΣΣΣs=

√
2MNLWdiag

{

bg
}
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andVH
s = 1/

√
2MN

[

AT
e ΛΛΛAH

e ΠΠΠMN
]

.

In [15], the vectorβββ ℓ is given by:

βββ ℓ = VsΣΣΣ−1
s UH

s FT
weℓ. (A.12)

SubstituteUs, ΣΣΣs andVs into (A.12), we have

βββ ℓ =
1

|b(ℓ)|
√

2MN
Vseℓ. (A.13)

Now, we can calculate the MSE in (A.4) term by term. To be specific, the first term in (A.4)

can be simplified as follows:

(βββ ℓ⊗αααℓ) =
1

|b(ℓ)|
√

2MN







{

āℓejϕℓ
}∗

ΠΠΠMNāℓejϕℓej(LW−1)wℓ






⊗αααℓ

=
1

|b(ℓ)|
√

2MN







{

āℓejϕℓ
}∗⊗αααℓ

ΠΠΠMNāℓejϕℓej(LW−1)wℓ ⊗αααℓ






,

(A.14)

whereāℓ = 1/
√

2MNaℓ. Substitute (A.14) into (A.4), we have

(βββ ℓ⊗αααℓ)
H ·R( f ba)T

nn · (βββ ℓ⊗αααℓ)

=
σ2

2b2
ℓMN

(

(ā∗ℓ ⊗αααℓ)
H (IMN ⊗Gg)(ā∗ℓ ⊗αααℓ)+(ΠΠΠMNāℓ⊗αααℓ)

H
(

IMN ⊗G
′
g

)

(ΠΠΠMNāℓ⊗αααℓ)
)

.

(A.15)

Consider(A ⊗B)(C⊗D) = (AC)⊗ (BD), we have

(ā∗ℓ ⊗αααℓ)
H (IMN ⊗Gg)(ā∗ℓ ⊗αααℓ) =

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2

2(LW−1)2 (A.16)
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,

(ΠΠΠMNāℓ⊗αααℓ)
H
(

IMN ⊗G
′
g

)

(ΠΠΠMNāℓ⊗αααℓ)
(a)
=

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2

2(LW−1)2 . (A.17)

where
(a)
= holds due toΠΠΠMNΠΠΠMN = IMN. Substitute (A.16) and (A.17) into (A.15), finally we have

(βββ ℓ⊗αααℓ)
H ·R( f ba)

nn · (βββ ℓ⊗αααℓ)

=
σ2

2|b(ℓ)|2MN

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2

(LW−1)2 .

(A.18)

Next, we will calculate the second term in (A.4), which is related to the complementary of the

covariance matrixC( f ba)
nn :

(βββ ℓ⊗αααℓ)
T ·C( f ba)

nn (βββ ℓ⊗αααℓ)

=
(

(ā∗ℓ ⊗αααℓ)
T (ΠΠΠMN ⊗ (GgΠΠΠLW))(ΠΠΠMNāℓ⊗αααℓ)

+(ΠΠΠMNāℓ⊗αααℓ)
T (ΠΠΠMN ⊗ (ΠΠΠLWGg))(ā∗ℓ ⊗αααℓ)

) ej(LW−1)wℓσ2

2|b(ℓ)|2MN

=− σ2

2|b(ℓ)|2ℓMN

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2

(LW−1)2 .

(A.19)

Substitute (A.18) and (A.19) into (A.4), we have

E

{

(△wℓ)
2
}

=
σ2

2MN|b(ℓ)|2
|gF(−⌈LW

2 ⌉)|−2+ |gF(⌊LW
2 ⌋)|−2

(LW−1)2 . (A.20)

Based on Jacobian matrix, we have:

E

{

(△τℓ)2
}

=
L2

4π2E

{

(△wℓ)
2
}

. (A.21)

Substitute (A.21) into (A.20), the proof is finished.
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Appendix B

Proof of Theorem 2

The MSE of the spatial frequenciesuℓ andvℓ using unitary ESPRIT can be expressed as

E

{

(△vℓ)
2
}

=
1
2

(

(

αααv,ℓ⊗βββ ℓ

)H ·R( f ba)T
nn ·

(

αααv,ℓ⊗βββ ℓ

)

−Re
{

(

αααv,ℓ⊗βββ ℓ

)T ·C( f ba)
nn

(

αααv,ℓ⊗βββ ℓ

)

})

.

(B.1)

E

{

(△uℓ)
2
}

=
1
2

(

(

αααu,ℓ⊗βββ ℓ

)H ·R( f ba)T
nn ·

(

αααu,ℓ⊗βββ ℓ

)

−Re
{

(

αααu,ℓ⊗βββ ℓ

)T ·C( f ba)
nn

(

αααu,ℓ⊗βββ ℓ

)

})

. (B.2)

The covariance matrixR( f ba)
nn and complementary covariance matrixC( f ba)

nn are given by:

R( f ba)
nn =







Rnn 0

0 ΠΠΠLWMNR∗
nnΠΠΠLWMN







C( f ba)
nn =







0 RnnΠΠΠLWMN

ΠΠΠLWMNR∗
nn 0






.

whereRnn andCnn are given byLemma 2.
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It can be obtained that

ΠΠΠMNLWRnnΠΠΠMNLW = σ2G
′
g⊗ IMN

RnnΠΠΠMNLW = σ2(GgΠΠΠLW)⊗ΠΠΠMN

ΠΠΠMNLWRnn = σ2(ΠΠΠLWGg)⊗ΠΠΠMN.

αααv,ℓ in (B.1) is given by:

αααT
v,ℓ = eT

ℓ

(

(

J̃v,2A
)†

J̃v,2−
(

J̃v,1A
)†

J̃v,1

)

(B.3)

whereJ̃v,1 = [IN−1 0]⊗ IM andJ̃v,2 = [0 IN−1]⊗ IM are the selection matrix.

In our previous work [31], we have the following results:

(

J̃v,1A
)†

=
(

(

J̃v,1A
)H

(Jv,1A)
)−1

(

J̃v,1A
)H

=
1

(N−1)M

(

(

J̃v,1A
)H (

J̃v,1A
)

(N−1)M

)−1
(

J̃v,1A
)H

(a)
=

1
(N−1)M

(

J̃v,1A
)H

,

(B.4)

where(a) holds due toLemma 4.

Similarly, we have
(

J̃v,2A
)†

=
1

(N−1)M

(

J̃v,2A
)H

. (B.5)

SubstitutẽJv,1 andJ̃v,2 into (B.4) and (B.5). After some simplifications, we have

αααv,ℓ = eT
ℓ

(

(

J̃2,vA
)†

J̃2,v−
(

J̃1,vA
)†

J̃1,v

)

=

[

−1 −e− juℓ . . . −e− j(M−1)uℓ . . . e− j(N−1)vℓ . . . e− j((N−1)vℓ+uℓ) e− j((N−1)vℓ+(M−1)uℓ)

]

.
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Next, we need to perform the SVD of the noiseless signal in (3.19) to obtainβββ ℓ:

[Adiag{b}Fw ΠΠΠMNA∗{diag{b}Fw}∗ΠΠΠLW]

=













A













b1ejϕ1

. . .

bℓejϕℓ













Fw AΛΛΛ



































b1ejϕ1

. . .

bℓejϕℓ













Fw























∗

ΠΠΠLW













= Adiag
{

bg
}

[Few ΛΛΛF∗
ewΠΠΠLW] ,

whereΛΛΛ =













e− j((M−1)u1+(N−1)v1)

. . .

e− j((M−1)uP+(N−1)vP)













and

Few=













ejϕ1

. . .

ejϕℓ













Fw.

Based onLemma 3 andLemma 4, we can obtainUs= 1/
√

MNA, ΣΣΣs=
√

2MNLWdiag
{

bg
}

andVH
s = 1/

√
2LW [Few ΛΛΛF∗

ewΠΠΠLW].

SubstituteUs, ΣΣΣs andVs into βββ ℓ = VsΣΣΣ−1
s UH

s Aeℓ, we have

βββ ℓ =
1

|b(ℓ)|
√

2LW
Vseℓ. (B.6)

The first term in (B.1) can be simplified as follows:

βββ ℓ⊗αααv,ℓ =
1

|b(ℓ)|
√

2LW







{

f̄ℓejϕℓ
}∗

ΠΠΠLW
{

f̄ℓejϕℓ
}

ej((M−1)uℓ+(N−1)vℓ)






⊗αααv,ℓ

=
1

|b(ℓ)|
√

2LW







{

f̄ℓejϕℓ
}∗⊗αααv,ℓ

ΠΠΠLW
{

f̄ℓejϕℓ
}

ej((M−1)uℓ+(N−1)vℓ)⊗αααv,ℓ






,

(B.7)

wheref̄ℓ = 1/
√

2LWfℓ.
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Substitute (B.7) into (B.1), we have

(βββ ℓ⊗αααℓ)
H ·R( f ba)

nn · (βββ ℓ⊗αααℓ)

=
σ2

|b(ℓ)|22LW

(

(

f̄∗ℓ ⊗αααℓ

)H
(Gg⊗ IMN)

(

f̄∗ℓ ⊗αααℓ

)

+
(

ΠΠΠLW f̄ℓ⊗αααℓ

)H
(

G
′
g⊗ IMN

)

(

ΠΠΠLW f̄ℓ⊗αααℓ

)

)

.

(B.8)

The first term in (B.8) can be simplified as follows:

(

f̄∗ℓ ⊗αααℓ

)H
(Gg⊗ IMN)

(

f̄∗ℓ ⊗αααℓ

)

=
∑LW

i=1 |gF(i)|−2

(N−1)2M(LW)

(

ΠΠΠMN f̄ℓ⊗αααℓ

)H
(

G
′
g⊗ IMN

)

(

ΠΠΠMN f̄ℓ⊗αααℓ

)

=
∑
⌊ LW

2 ⌋
i=−⌈ LW

2 ⌉ |gF(i)|−2

(N−1)2M(LW)
.

(B.9)

Substitute (B.9) into (B.8), we have

(βββ ℓ⊗αααℓ)
H ·R( f ba)T

nn · (βββ ℓ⊗αααℓ) =
σ2∑

⌊ LW
2 ⌋

i=−⌈ LW
2 ⌉ |gF(i)|−2

2|b(ℓ)|2(LW)2(N−1)2M
. (B.10)

Similarly, we can get

(βββ ℓ⊗αααℓ)
T ·C( f ba)

nn · (βββ ℓ⊗αααℓ) =−
σ2∑

⌊ LW
2 ⌋

i=−⌈ LW
2 ⌉ |gF(i)|−2

2|b(ℓ)|2(LW)2(N−1)2M
. (B.11)

Substitute (B.9) and (B.10) into (B.1), we have

E

{

(△vℓ)
2
}

=
σ2 ∑

⌊ LW
2 ⌋

i=−⌈ LW
2 ⌉ |gF(i)|−2

|b(ℓ)|2(LW)2(N−1)2M
. (B.12)

Similarly, we have

E

{

(△uℓ)
2
}

=
σ2 ∑

⌊ LW
2 ⌋

i=−⌈ LW
2 ⌉ |gF(i)|−2

|b(ℓ)|2(LW)2(M−1)2N
. (B.13)
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Based on Jacobian matrix, we have:

E

{

(△θℓ)2
}

= E

{

(△uℓ)
2
} 1

π2sin2(θℓ)

E

{

(△φℓ)2
}

=
E

{

(△uℓ)
2
}

cot2(θℓ)cot2(φℓ)

π2sin2(θℓ)
+

E

{

(△vℓ)
2
}

π2sin2(θℓ)sin2(φℓ)
.

(B.14)

Finally, substitute (B.12) and (B.13) into (B.14), we have the desirable results.
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Appendix C

Proof of Theorem 3

For the standard ESPRIT method, it is easy to find that the complementary covariance matrix is

equal to zero matrix:

Cnn = 0.

Hence the expression of the MSE using ESPRIT method in (4.8) is reduced to:

E

{

(

△µ(r)
ℓ

)2
}

=
1
2

(

r (r)Hℓ ·W∗
mat ·RT

nn ·WT
mat · r

(r)
ℓ

)

. (C.1)

whereRnn can be obtained inLemma 5.

Denoteβββ ℓ = VsΣΣΣ−1
s qℓ andααα(r)

ℓ =
(

pT
ℓ (J1Us)

†
(

J2/ejµ(r)
ℓ −J1

)

(UnUn)
)T

, we have

WT
matr

(r)
ℓ = βββ ℓ⊗ααα(r)

ℓ (C.2)

.
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Substitute (4.12) and (C.2) into (C.1) we have

E

{

(

△µ(r)
ℓ

)2
}

=
σ2

2

(

r (r)Hℓ ·W∗ · IK ⊗Gg⊗ IMN ·WT · r (r)ℓ

)

=
σ2

2
||IK ⊗G−1/2

g ⊗ IMN ·WT · r (r)ℓ ||22

=
σ2

2
||IK ⊗G−1/2

g ⊗ IMN ·
(

βββ ℓ⊗ααα(r)
ℓ

)

||22

=
σ2

2
||βββ ℓ||22

(

ααα (r)H
ℓ (Gg⊗ IMN)ααα(r)

ℓ

)

.

(C.3)

It has been proved in [15] that||βββ ℓ||22 = R−1
ss (ℓ, ℓ)/K, whereRss is the covariance matrix of the

transmitted signals, here it denotes the covariance matrixof the channel attenuator:

Rss= E
{

bbH} . (C.4)

Following the prove of theTheorem 2, we can get

ααα(r)H
ℓ (Gg⊗ IMN)ααα(r)

ℓ

=

(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

Mr

(Mr −1)2Mc
.

(C.5)

whereM1 = LW, M2 = M, M3 = N andMc = M1M2M3.

Substitute||βββ ℓ||22 = R−1
ss (ℓ, ℓ)/K and (C.5) into (C.1), finally, we have

E

{

(

△µ(r)
ℓ

)2
}

= σ2R−1
ss (ℓ, ℓ)

2K

(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

Mr

(Mr −1)2Mc
,

∀r ∈ {1,2,3} , ℓ ∈ {1,2, . . . ,P} .
(C.6)
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Based on (C.6), we can obtain the MSE of the spatial frequenciesuℓ andvℓ as follows:

E

{

(△uℓ)
2
}

= σ2R−1
ss (ℓ, ℓ)

2K

(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

(M−1)2NLW

E

{

(△vℓ)
2
}

= σ2R−1
ss (ℓ, ℓ)

2K

(

|gF(−⌈LW
2 ⌉)|−2+ |gF(⌊LW

2 ⌋)|−2
)

(N−1)2MLW
. (C.7)

Substitute (C.7) into (B.14), the proof is finished.
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