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Abstract 

 

The serotonin-1A receptor (5-HT1A-R) is an abundant 5-HT receptor located in both 

pre-synaptic and post-synaptic membranes of neurons. Activation of this receptor has been 

involved in the mechanism of action of antidepressant, antipsychotic and anxiolytic drugs. 

Thus, studies of 5-HT1A-Rs might help to manage various psychiatric diseases. 

 

SUMOylation of 5-HT1A-Rs has recently been reported and evidence suggests that 

SUMOylation might play an important role in the regulation of 5-HT1A-Rs. Previous studies 

in our lab found that 5-HT1A-Rs can be modified by SUMO-1 in rat brain and 

neuroblastoma2a cells. The majority of SUMO-1-5-HT1A-Rs are co-localized with 

endoplasmic-reticulum and trans-Golgi-network markers. Treatment with the 5-HT1A-R 

agonist, 8-OH-DPAT, increases SUMO-1-5-HT1A-Rs in the detergent-resistant membrane 

(DRM). SUMO-1-5-HT1A-Rs minimally bind to 5-HT1A-R agonist. Investigating the 

mechanism involved in the SUMOylation of 5-HT1A-R will help to understand the 

regulation of 5-HT1A-R and may lead to the development of novel therapeutic approaches 

for psychiatric diseases. 

 

In this study, I focused on the SUMO machinery regulating deSUMOylation of 5-HT1A-Rs 

and the SUMOylation sites on 5-HT1A-Rs. I found that mouse Neuroblastoma 2a (N2a) cells 

can express exogenous 5-HT1A-Rs and verified expression of endogenous SUMOylation of 

5-HT1A-Rs. The SUMOylation of 5-HT1A-Rs was detected around 55KD in N2a cells 

which is consistent to our previous finding in rat brain. In addition, N2a cells can express 
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transfected sentrin-specific proteases (SENPs) proteins in the membrane fraction. 

Transfection of SENP1, 2 and 6 causes a significant difference among groups but there is no 

significant difference between each transfected SENPs group compared to the 

non-transfected control group.  

 

To identify the SUMOylation sites on 5-HT1A-Rs, six possible SUMOylation sites on 

5-HT1A-R: K302, K332, K324, K232 and K235 were mutated into nonSUMOylatable 

arginine residues. I transfected each 5-HT1A-R mutant into N2a cells and found that 

transfection of each 5-HT1A-R mutant does not reduce SUMOylation of 5-HT1A-Rs. 

However, SUMOylation of transfected rat 5-HT1A-Rs has a different molecular mass 

compared to SUMOylation of endogenous 5-HT1A-Rs in N2a cells. 
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Chapter I: Introduction 

 

 

1.1. Serotonin and Serotonin neurons 

Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter derived 

from tryptophan. It is found primarily in the gastrointestinal tract, blood platelets, and 

central nervous system. The gastrointestinal tract produces around 95% of serotonin 

[1-3]. It is also involved in healing wounds, stimulating nausea, and maintaining bone 

health. In the central nervous system, serotonin is associated with temperature 

regulation, circadian rhythmicity, vomiting, aggression, and energy balance [4]. 

Serotonin plays a role in psychiatric diseases such as depression, anxiety, and 

schizophrenia. Serotonin can be taken up by cells such as platelets and neurons 

through the serotonin transporter (SERT). Serotonin can also be transported via a 

vesicular monoamine transporter (VMAT) into vesicles [5]. After it is transported into 

vesicles, serotonin is released via exocytosis into the synaptic cleft and thereafter 

binds to pre and post-synaptic serotonin receptors. Serotonergic neurons develop from 

mesopontine and medullary primordia, which group into rostral and caudal clusters 

that are maintained into adulthood [6]. Serotonergic neurons originate in the dorsal 

and median raphe nucleus of the caudal midbrain. Neurons within the rostral raphe 

complex project to the forebrain, neurons within the caudal raphe complex primarily 

project to the brainstem nuclei and to the spinal cord [6]. In fact, every cell in the 

brain is close to a serotonergic neuron [7].  
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All serotonin receptors belong to the G-protein coupled receptor family, except the 

5-HT3 receptor which is a ligand-gated ionotropic receptor [8]. Serotonin receptors 

can be subdivided into 7 families based on the type of G proteins to which they are 

coupled. Serotonin 1 receptors (5-HT1-Rs) or serotonin 5 receptors (5-HT5-Rs) 

couple to Gαi/Gαo proteins; the serotonin 2 receptors (5-HT2-Rs) bind to Gαq/11 

proteins; the serotonin 4 receptors (5-HT4-Rs), serotonin 6 receptors (5-HT6-Rs) and 

serotonin 7 receptors (5-HT7-Rs) couple to Gαs proteins [9]. Different subtypes of 

serotonin receptors activate different signaling pathways based on the Gα protein to 

which it couples. For example, activation of Gαs coupled receptors leads to elevation 

of cyclic AMP(cAMP), which is a second messenger associated with other proteins 

such as ion channels and protein kinase A (PKA). In contrast, activation of the Gαi 

receptor leads to downregulation of cAMP [10]. The activation of Gαq/11 coupled 

receptors activates protein kinase C (PKC) and results in the formation of 

diacylglycerol (DAG) and inositol-phosphate (IP3), which leads to the elevation of 

intracellular calcium [11]. Other factors also contribute to the diversity of serotonin 

receptors. There are thirteen genes coding for GPCR serotonin receptors that couple 

to almost every G-protein in the cell membrane and probably act without coupling to 

them [12]. Also, this diversity is made more complex by posttranslational 

modifications [12]. 

1.2. 5-HT1A receptor 

5-HT1A-R is a subtype of serotonin receptor which binds to serotonin with a high 
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affinity. It has a molecular weight around 42kDa with 422 amino acids. 5-HT1A-Rs 

exist in many regions of the brain, but different regions express different densities of 

5-HT1A-Rs. A recent study on the distribution of human 5-HT1A-R using 

autoradiography and positron emission tomography (PET) demonstrated higher levels 

of 5-HT1A-R in the infralimbic cortex, hippocampus (specifically within CA1), 

cingulate cortex, neocortex and raphe nuclei. Lower levels of 5-HT1A-R were  

reported in the basal ganglia and cerebellum [13]. From previous studies, the major 

effect of 5-HT1A-R stimulation is the activation of hyperpolarizing K+ channels, 

resulting in the inhibition of neuronal firing. 5-HT1A-Rs are also involved in different 

signaling pathways such as regulation of phospholipase C activity, inhibition of 

cAMP production and reduction of calcium currents [14]. 5-HT1A-Rs are located at 

pre- and post-synaptically. Pre-synaptic 5-HT1A-R are  present in the serotonergic 

neurons with cell bodies located in raphe nuclei [15]. Serotonin release is thought to 

activate pre-synaptic auto-receptors, thus completing an autoinhibitory feedback loop 

[16]. Post-synaptic 5-HT1A-Rs are abundantly expressed in the hippocampus, septum, 

amygdala, and prefrontal cortex [17]. Activation of post-synaptic 5-HT1A-Rs 

mediates serotonin actions on fear, anxiety, stress and cognitive function [17]. 

5-HT1A-R is involved in many psychiatric disorders such as depression, anxiety, and 

schizophrenia. The role of 5-HT1A-Rs in anxiety disorders is well studied. A study in 

5-HT1A-R knockout mice showed an increasing anxiety behaviors [1]. The role of 

5-HT1A-Rs in schizophrenia remains unclear. However, a study in 5-HT1A-R 

knockout and knockdown mice showed that 5-HT1A-Rs are necessary for the atypical 
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antipsychotic drug induced elevation in cortical dopamine transmission [2]. Studies 

have shown an elevation in cortical 5-HT1A-R density in schizophrenia patients, 

which also suggests the role of 5-HT1A-Rs in schizophrenia [3]. The role of 

5-HT1A-Rs in depression has been extensively studied. Antidepressants such as 

tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs) 

both alter 5-HT1A-R signaling by direct or indirect mechanisms. Increased DNA 

methylation of the 5-HT1A-R promoters in brains of suicide victims has also been 

reported [18]. Further, a study in serotonin transporter knockout mice suggested that 

early life blockade of 5-HT1A-Rs normalizes depression-like behaviors [19]. Thus, 

5-HT1A-Rs appear to play an important role in mental health and may be a useful 

target in the management of various psychiatric diseases.  

 

5-HT1A-Rs can be modified by phosphorylation, glycosylation, palmitoylation and 

SUMOylation. Glycosylation is a process in which a carbohydrate is attached to a 

hydroxyl or other glycosyl acceptor molecule. Glycosylation of 5-HT1A-Rs takes 

place in the trans-Golgi network and is involved in transporting the receptor from the 

cytosol to the membrane [20].  

Palmitoylation is a covalent attachment of the fatty acid and the palmitic acid to 

cysteine, serine and threonine residues of a protein. Palmitoylation of 5-HT1A-R 

occurs early after synthesis of the 5-HT1A-R [21]. Replacement of cysteine residues 

(417 or 420) prevented palmitoylation, reduced binding of 5-HT1A-R with Gi and 
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impaired inhibition of adenylyl cyclase activity [21]. In fact, when both palmitoylated 

cysteines were mutated, the association of 5-HT1A-R with Gi was completely 

abolished [21]. Moreover, non-palmitoylatable mutants were not able to inhibit 

forskolin-stimulated cAMP formation, suggesting that palmitoylation of the 

5-HT1A-R is important for the Gi signaling [21].  

Phosphorylation of 5-HT1A-Rs is thought to be involved in desensitization of 

5-HT1A-Rs [22]. Studies have shown that stimulation of protein-kinase C (PKC) by 

application of phorbol esters induces a rapid phosphorylation of the 5-HT1A-Rs [22]. 

PKC phosphorylation of the 5-HTlA-Rs leads to a decreased efficiency of coupling to 

G proteins [22]. Desensitization could be reversed by mutation of three putative PKC 

sites in the 5-HT1A-Rs, demonstrating a functional link between phosphorylation and 

desensitization of 5-HT1A-Rs [23]. 

Previous studies in our laboratory reported that 5-HT1A-Rs can be SUMOylated by 

SUMO1 protein [24]. The SUMO-1-5-HT1A-R is ~55 kDa, is located in the 

membrane fraction, but not the cytosol, and is distributed in all of the brain regions 

expressing 5-HT1A-Rs examined [24]. Acute stimulation of 5-HT1A-Rs significantly 

increased SUMO-1-5-HT1A-R in rat hypothalamus [24]. Pretreatment with estradiol 

for 2 days, which causes a partial desensitization of 5-HT1A-R signaling, potentiated 

agonist-induced increases in SUMO-1-5-HT1A-Rs in the hypothalamus of rats [24]. 

Using discontinuous gradient centrifugation followed by digitonin treatment, we 

found that the majority of SUMO-1-5-HT1A-Rs is co-localized with 
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endoplasmic-reticulum and trans-Golgi-network markers [24]. Although a small 

proportion of SUMO-1-5-HT1A-Rs are located in the detergent resistant 

microdomain (DRM) that contain active G-protein coupled receptors, their 

distribution was different from that of the Gαz protein that couples to the receptors 

[24]. These data suggest that the SUMO-1-5-HT1A-Rs are an inactive form of 

5-HT1A-Rs, a finding further supported by results showing minimal 5-HT1A-R 

agonist binding to SUMO-1-5-HT1A-Rs [24]. Furthermore, SUMO1- 5-HT1A-Rs in 

the DRM were increased by treatment with a 5-HT1A-R agonist, 8-OH-DPAT [24]. 

Together, these data suggest that SUMOylation of 5-HT1A-Rs may be related to 

5-HT1A-R trafficking and internalization, which may contribute to 5-HT1A-R 

desensitization [24]. Therefore, understanding the mechanism of SUMOylation of 

5-HT1A-Rs will help us understand the regulatory mechanisms of these receptors in 

disease and provide potential targets for further diagnostic and therapeutic 

consideration. 

1.3. SUMOylation 

SUMOylation is the covalent binding of a SUMO group to a lysine residue of its 

substrates. It reversibly modulates the activity, stability, and the intracellular 

localization of proteins. Unlike chemical modifications such as phosphorylation, 

glycosylation, and methylation, SUMOylation is a small peptide called small 

ubiquitin-like modifier (SUMO). In fact, a large family of ubiquitin-like modifiers 

have been identified, SUMO, Nedd8, ISG15, FAT10, FUB1, UFM1, URM1, Atg12 
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and Atg8 [27].  

The process of SUMOylation is carried out by an enzymatic cascade of 4 enzymes. 

The first step in SUMOylation is the maturation of pre-SUMO proteins by SUMO 

proteases. SUMO proteases can cleave the C-terminus of the SUMO precursor protein 

resulting in a C-terminal glycine residue to allow the formation of an isopeptide bond 

between this glycine residue of SUMO and the lysine residue of the substrate. Then 

SUMO protein needs to be activated by E1 enzymes, followed by conjugation to the 

E2 enzyme, Ubc9. E3 ligases may help to transfer SUMO protein to substrates. The 

SUMOylation process is reversed by SUMO proteases. SUMO proteases catalyze the 

removal of SUMO from SUMO-conjugated substrate proteins, and this process is 

called deSUMOylation. Although SUMOylation and ubiquitylation share many 

similarities, the number of related enzymes is different. There are several E2 and more 

than 600 E3 enzymes regulating ubiquitylation while only one E1 enzyme 

(SAE1/SAE2), one E2 enzyme (Ubc9) and only a few E3 enzymes that regulate 

SUMOylation have been discovered so far [25].  

Previous studies revealed that most of the lysine residues that are SUMOylated lie 

within a specific consensus motif: ΨKXE (ψ, a hydrophobic amino acid; X, any 

amino acid residue) [28]. However, recent studies suggest that around 40% of 

SUMOylation site do not lie within this motif [29], and analysis of SUMOylation and 

SUMO interaction is still challenging.  

Studies also suggest that SUMOylation contributes to disease onset and progression. 
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SUMO modification has been associated with cancer, pathogenic infections and 

neurodegeneration [26-28]. Notably, it has been reported that SUMOylation supports 

tumor growth [29]. Also, studies have suggested the that SUMOylation pathway plays 

an important role in regulating cardiovascular function [25]. Overexpression of 

Sentrin-specific protease 2 (SENP2) and expression of an SUMOylation-deficient 

mutant of the cardiac-specific homeobox protein (Nkx2.5) leads to congenital heart 

defects and cardiac dysfunctions in mice [30]. Many of the key proteins in various 

neurodegenerative diseases are SUMO targets such as huntingtin, tau, DJ1, 

α-synuclein and superoxide dismutase 1 [25]. There are some studies which indicate 

that SUMOylation helps to prevent neurons from damage triggered by transient 

ischemia [31]. Therefore, investigating the mechanism of SUMOylation will help us 

understand the mechanisms of disease and inform new therapeutic approaches for 

these diseases.   

1.3.1. Small Ubiquitin-like Modifier (SUMO) proteins  

In mammalian cells, there are 4 SUMO paralogues: SUMO-1, SUMO-2, SUMO-3, 

and SUMO-4. SUMO-1, SUMO-2, and SUMO-3 are detected in all tissues, whereas 

the existence of SUMO4 has only been demonstrated in the kidneys, dendritic cells, 

and macrophages [32]. SUMO-1 is 45% identical to SUMO-2 and SUMO-3. 

SUMO-2 and SUMO-3 share 95% identity and are often referred to as SUMO-2/3. 

Some SUMO substrates only associate with SUMO-1 protein, some only associate 

with SUMO-2/3, while others can associate with all SUMO proteins. For example, 
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RanGap1 is the major substrate for SUMO-1 but can still be modified by SUMO-2/3 

[33]. Cells contain a larger pool of SUMO-2/3 compared to SUMO-1, which might be 

because SUMO-2/3 is responsible for polySUMO chain formation. A conserved 

lysine sequence ΨKXE (ψ, a hydrophobic amino acid; X, any amino acid residue) in 

the N-terminal of SUMO-2/3 can be SUMOylated, and can lead to the formation of 

the polySUMO chains. SUMO-1 does not have this conserved lysine site and does not 

play a role in the formation of the polySUMO chain [34]. However, SUMO-1 might 

terminate polySUMO chains as a cap at the end of the polySUMO chain [34]. 

Furthermore, studies reveal that conjugation to SUMO-2/3 appears under stress 

conditions, but SUMO-1 conjugation does not [33]. Although the biological relevance 

of SUMO-4 remains unclear, SUMO-4 can be matured by the stress-induced 

hydrolase and is able to conjugate to its substrates when cells are under stress 

conditions [35].    

1.3.2. SUMO-activating enzyme (E1)  

There are two E1 enzymes in mammals, Sae1 and Sae2. The E1 enzyme catalyzes the 

reaction of activating SUMO protein and transferring it to SUMO conjugation 

enzyme (Ubc9). The reaction is a 3 step reaction: In the first step, the carboxyl group 

of SUMO C-terminal attacks ATP and forms an SUMO-adenylate intermediate with 

the release of pyrophosphate [36]. In the second step, the SUMO C-terminal is 

transferred to the catalytic cysteine of Sae1, forming a high-energy thioester bond 

between Sae1 and the C-terminal glycine of SUMO and releasing AMP [36]. Finally, 
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the SUMO is transferred to SUMO-conjugating enzyme Ubc9 and forms another 

thioester bond [36]. 

1.3.3. SUMO-conjugating enzyme (Ubc9) 

Unlike the ubiquitin system, Ubc9 is the only SUMO conjugating enzyme in 

eukaryotic cells [37]. Human Ubc9 is a 17 kDa protein which is 100% identical to 

mouse [38]. In mammalian cells, Ubc9 is expressed in the nucleus, nuclear pore 

complex, nuclear envelope, cytoplasm and cell membrane [38]. It has a conserved 

cysteine residue in its active site and forms a thioester bond with SUMO [39]. It 

recognizes a specific motif of amino acid sequence in its substrates. The motif is 

described as ΨKxD/E where Ψ indicates a hydrophobic residue, followed by a lysine 

residue, a spacer, and an acidic residue. An isopeptide linkage between the C-terminus 

of SUMO and the target protein is formed, followed by the nucleophilic attack of the 

ε-amino group of a substrate lysine residue [38]. Studies have shown that Ubc9 can be 

SUMOylated at lysine14 and the SUMOylation of Ubc9 results in an enhanced 

interaction between SUMO interaction motif (SIM) of transcriptional factor Sp100 

and SUMO protein [40].  

1.3.4. SUMO ligases (E3) 

SUMO ligases facilitate SUMO transfer from Ubc9 to its substrate. Some SUMO 

ligases have been described and can be divided into several classes such as: 

Siz/PIAS-family proteins, RanBP2, and other SUMO ligases. SUMO ligases might 

serve to (i) enhance the affinity of Ubc9 for a specific target, (ii) stabilize the Ubc9–
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target intermediate, (iii) help to orientate the acceptor lysine, or (iv) contribute to 

conjugation.  

1.3.4.1. Siz/PIAS-family proteins 

The Siz/PIAS-family of E3 ligases contain a RING finger-like domain, which is also 

called SP-RING motif [41]. The Siz/PIAS family includes PIAS1, PIAS3, PIASxα, 

PIASxβ, and PIASy in mammals. The RING finger-like domain is required for ligase 

activity but does not seem to contribute the catalytic residue to SUMO conjugation 

[39]. Siz/PIAS-family E3 ligases bind directly to Ubc9 and express substrate 

specificity. The five vertebrate PIAS proteins are involved in many processes, 

including gene expression, signal transduction and genome maintenance[42].  

1.3.4.2. RanBP2 

Studies have shown that RanBP2 expresses SUMO ligase activity in vitro [43]. 

RanBP2 is a nuclear pore complex protein that is located at the cytoplasmic pore. It 

contains an internal repeat domain (IR) which is two continuously repeated sequences 

of about 50 amino acids [44]. IR domain is required for SUMO ligase activity. 

RanBP2 facilitates SUMOylation in a substrate-independent manner. It promotes 

SUMOylation by folding around and aligning the Ubc9-SUMO intermediates in an 

optimal conformation that allows the interaction with lysine site of the substrate [45]. 

1.3.4.3. Other SUMO ligases 

Other proteins that have been reported as SUMO ligases include histone deacetylase 4 
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(HDAC4), Pc2, Topors and KRAB-associated protein (KPA1) [43]. HDAC4 is 

involved in the SUMOylation of myocyte-specific enhancer factor 2 (MEF 2) [46]. It 

binds to Ubc9 and facilitates the SUMOylation of MEF 2 [46]. The krab-associated 

protein contains a PHD-finger domain that promotes SUMOylation of an adjacent 

KAP1 bromodomain [47]. The PHD-finger and bromodomain associate together and 

bind to Ubc9 thus facilitating SUMOylation [47]. 

1.3.5. SUMO de-conjugating enzymes 

SUMO de-conjugating enzymes serve two major effects. First, the enzyme can cleave 

the C-terminus of the SUMO precursor protein resulting in a C-terminal glycine 

residue to allow the formation of an isopeptide bond between this glycine residue of 

SUMO and the lysine residue of the substrate. This reaction is referred to as the 

hydrolase activity of SUMO protease. Second, the enzyme can remove SUMO from 

its substrate by cleavage of an epsilon-linked peptide bond between the C-terminal 

glycine of the mature SUMO and the lysine epsilon-amino group of the target protein. 

This reaction is referred to as the isopeptidase activity of SUMO protease. SUMO 

de-conjugating enzymes were first described in yeast as UBL-specific proteases (UlPs) 

and include UlP1P, UlP2P. Later, six types of sentrin specific proteases (SENPs) were 

identified in humans followed by the discovery of 2 types of deSUMOylating 

isopeptidases (DESI1 and DESI2) and ubiquitin-specific proteases like-1 (USPL1) 

[48]. A list of various SUMO de-conjugating enzymes and their characteristics are 

summarized in Table 1 [49-52]. 
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                 Table 1 The characteristics of SUMO proteases 

 

 

SUMO 

protease 

Sub-cellular 

localization 

SUMO 

preference 

Cleavage of 

pre-SUMO 

Removal of 

SUMO from 

substrates 

SUMO poly 

chain 

editing 

UIp1 Nuclear pole Smt3 Yes Yes No 

UIp2 Nucleoplasm Smt3 No Yes Yes 

SENP1 Nuclear pole, 

Nuclear foci 

SUMO-1, 

SUMO-2/3 

Yes Yes Yes 

SENP2 Nuclear pole, 

Nuclear foci, 

Cytoplasm 

SUMO-1. 

SUMO-2/3 

Yes Yes No 

SENP3 Nucleolus, 

Nucleoplasm 

SUMO-2/3 Unclear Yes No 

SENP5 Nucleolus, 

Mitochondria 

SUMO-2/3 Yes Yes No 

SENP6 Nucleoplasm SUMO-2/3 Yes Yes Yes 

SENP7 Nucleoplasm SUMO-2/3 No Yes Yes 

DESI-1 Nucleus, 

Cytoplasm 

SUMO-1, 

SUMO-2/3 

Unclear Unclear Yes 

DESI-2 Cytoplasm Unclear No Yes Unclear 

USPL1 Cajal bodies SUMO-2/3 Yes Yes Yes 

 

1.3.5.1. Ubiquitin-like proteases (UlPs) 

The family of UlPs contains two enzymes: UlP1P and UlP2P. UlPs/SENPs share a 

conserved catalytic domain at C-terminal which is around 200 amino acids in length 

[43]. UlP1P is localized in the nuclear pole and is involved in the maturation of Smt3p 

[48]. UlP2P is localized in the nucleoplasm and plays a role in regulating the 

formation of poly-Smt3p chains [53].  

1.3.5.2. Sentrin specific proteases (SENPs) 
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In mammals, there are 7 SENPs (SENP1, SENP2, SENP3, SENP5, SENP6, SENP7 

and SENP8). Most of the SENPs are involved in the regulation of SUMOylation 

except SENP8. It is important to note that SENP8 is specific for Neddylation [54]. 

SENPs belong to the CE clan of cysteine proteases and share a common fold of their 

catalytic domain that encompasses the catalytic triad residues His478, Asp495, and 

Cys548 [49]. The domain architecture of each SENPs is shown in Figure 1. SENPs 

can be divided into 3 families. SENP1 and SENP2 belong to the first family because 

of the broad specificity for all SUMO isoforms [55]. The second family includes 

SENP3 and SENP5 for their preference on SUMO2/3 and localization in the 

nucleolus [55]. SENP6 and SENP7 also have a preference on SUMO2/3, but they 

have an additional loop inserted in the catalytic domain which makes them belong to 

the third family [55]. Different SENPs have distinct subcellular localizations. Studies 

have shown that their localizations are determined by their nonconserved N-terminal 

regions [56]. All SENPs can be activated by their substrate SUMO even though the 

mechanism remains unclear [49]. SENPs also exhibit selectivity toward SUMO 

substrates. Some studies indicate that substrate specificity of SENPs is an intrinsic 

characteristic while others suggest the importance of distinct localization of different 

SENPs [57]. Studies also suggest that the C-terminal end of each SUMO isoform 

might contribute to the preference of SENPs [58]. SENPs have been shown to play a 

pivotal role in cell cycle by regulating deSUMOylation.  
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Figure 1. The conserved catalytic domain is represented in black. White bars 

represent the N-terminal region which might be involve in the localization of SENPs. 

SENP6 and SENP7 have insertions in the catalytic domain. SENP8 shares the same 

catalytic domain with other SENPs but is not involved in the SUMOylation process 

[49].                  

1.3.5.2.1. SENP1 

Homo Sapien SENP1 is composed of 643 amino acids with a weight of 73 KD. The 

catalytic domain of SENP1 is formed by Cys602, His533 and Asp550 [59]. SENP1 

exists at the nuclear envelope and can efficiently remove all three SUMO isoforms 

from their targets [60]. Studies have suggested that SENP1 is involved in the 

formation of polySUMO chains by removing the SUMO-1 protein from the end of the 

polySUMO chain [61]. Moreover, it processes the SUMO-1, -2 and -3 precursors to 

remove a C-terminal pro-peptide to expose the C-terminal diglycine. Some studies 
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show that SENP1 knockdown mice exhibit an increased level of SUMO-1 

conjugation and accumulation of free SUMO-1, suggesting that SENP1 might have a 

preference to SUMO-1 [57]. Furthermore, studies have shown that SENP1 may itself 

be a target for SUMO-1 modification at a nonconsensus site [57]. Expression and 

localization of SUMO-1-conjugated target proteins play a pivotal role in the 

localization of SENP1 [57]. 

1.3.5.2.2. SENP2 

Homo Sapien SENP2 is a 589 amino acids protein [58]. It is located at the nuclear 

pole, nuclear foci, and cytoplasm. It can be subdivided into 2 subdomains. An 

N-terminal domain with α helices that contain the protease nucleophile, and a 

C-terminal with a five-stranded β sheet and 2 α helices [58]. The SENP2 active site is 

formed by a catalytic triad of amino acid residue including Cys548, His478, and 

Asp495, just like other cysteine protease active sites [58]. SENP2 regulates the 

maturation of pre-SUMO and has a preference for pre-SUMO-2 compared to 

pre-SUMO-1 and pre-SUMO-3 [58]. It recognizes and cleaves all SUMO isoforms 

but is not involved in the editing of the poly-SUMO chain. 

1.3.5.2.3. SENP3 and SENP5 

Homo Sapien SENP3 is a 574 amino acids protein and Homo Sapien SENP5 has 755 

amino acid residues. They are both found in the nucleolus while SENP3 can also be 

found in nucleoplasm and SENP5 also exists in the mitochondria. SENP3 has 

substrate specificity similar to that of SENP5; both of them exhibit a substrate 
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preference on SUMO2/3. The effect of SENP3 on SUMO maturation remains unclear, 

however, SENP5 exhibits hydrolase activity. The active site of SENP3 is formed by a 

catalytic triad of 3 amino acid residues including Cys532, His465, and Asp482. The 

SENP5 active site consists of Cys713, His646, and Asp663. Studies suggest that 

SENP3 plays an important role in regulating ribosome biogenesis by association with 

nucleophosmin1 [62, 63]. SENP5 might play a role in mitosis and cytokinesis [64]. 

Knockdown of SENP5 inhibits cell proliferation and alters the morphology of the 

nucleus [55]. SENP5 is also found in mitochondria and overexpression of SENP5 

deconjugates SUMO-1 from a number of mitochondrial substrates, and rescues 

SUMO-1 induced mitochondrial fragmentation. Also, knock down of SENP5 results 

in abnormal mitochondrial development [55]. 

1.3.5.2.4. SENP6 and SENP7 

Homo Sapien SENP6 consists of 1112 amino acids and Homo Sapien SENP7 has a 

984 amino acid residues protein. Both SENP6 and SENP7 have a preference for 

SUMO2/3 but do not regulate the maturation of pre-SUMO. SENP6 was initially 

thought to localize to the cytoplasm. However, further studies suggest that SENP6 as 

well as SENP7 localize in the nucleoplasm [55]. Both are involved in the editing of 

polySUMO chains [65]. Active sites of SENP6 include amino acid residues 637–1112 

[65]. The SENP7 catalytic domain includes amino acids 662–984[65]. Although the 

structure of SENP6 remains unclear, SENP6 and SENP7 share similar characteristics 

and have conserved sequence insertions in distinct positions within their catalytic 
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domains [65]. Structural studies of SENP7 revealed some unique features compared 

to other members from SENP/ULP family: 1. The lack of N-terminal α helix which 

exists in structures of SENP1, SENP2 and ULP1 [65]; 2. Four insertion loops; and 3. 

Alteration of some secondary structure elements in SENP7 compare to SENP1 or 

SENP2 [65]. Interestingly, recent studies note that the unexpected specificity of 

SENP6 and SENP7 distinguishes them from other members of SENPs family, 

suggesting that they might have substrates other than SUMO conjugates [66]. 

1.3.5.3. DeSUMOylating isopeptidases (DESI) 

DeSUMOylating isopeptidases are a set of newly discovered SUMO proteases 

belonging to a putative isopeptidase superfamily. Two types of deSUMOylating 

isopeptidases have been reported so far, including DESI-1 and DESI-2. DESI-1 and 

DESI-2 belong to a group of proteins called PPPDE (Permuted Papain fold Peptidases 

of Ds-RNA viruses and Eukaryotes) and contain around 140 amino acids [52]. The 

active sites of DESI-1 and DESI-2 are formed by the catalytic domain containing two 

conserved cysteine and histidine residues [67]. DESI-1 deconjugates both SUMO-1 

and SUMO2/3 while DESI-2 remains unclear [67]. In contrast to Ulp/SENP family 

members, the DESI-1 and DESI-2 enzymes have isopeptidase activity on a selected 

substrate but do not seem to process the maturation of pre-SUMO [52]. Although 

there are very limited studies about the substrate of DESIs, it is suggested that DESIs 

have different substrate specificity compared to SENPs [67].  

1.3.5.4. Ubiquitin-specific proteases like-1 (USPL1) 



19 
 

Ubiquitin-specific protease like-1 is a recently discovered SUMO protease. It belongs 

to cysteine protease USP family and has a molecular weight at 120 KD [68]. A 

structural study shows that a catalytic triad residues of Cys236, His 456, Asp472 

forms the active site of USPL1. Studies suggest that USPL1 can process pre-SUMO-1 

and pre-SUMO2 and has a preference for SUMO2/3 [68]. It also influences the 

editing of poly-SUMO chains, especially SUMO-3 chains [68]. USPL1 is found in the 

Cajal bodies colocalized with coilin [68]. Interestingly, global SUMOylation is not 

affected by the depletion of USPL 1, however, the distribution of coilin and cell 

proliferation was affected [68]. The mechanism remains unclear, but the catalytic 

domain of USPL 1 is not involved [68]. 

1.3.6. SUMO-interacting motif 

Substrates containing a specific motif can bind with SUMO non-covalently [69]. This 

specific motif is called SUMO-interacting motif (SIM). It was first observed in the 

SUMOylation of P73 [69]. Scientists found that certain proteins containing a 

Ser-X-Ser sequence flanked by a hydrophobic core on one side and acidic amino 

acids on the other can bind with SUMOylated P73 [69]. Further studies suggest that 

the hydrophobic core, with the consensus Val/ Ile-X-Val/Ile-Val/Ile (V/I-X-V/I-V/I) 

facilitates the interaction between SUMO and SIM-containing peptides [70]. Recent 

studies suggest that the hydrophobic core is an essential component of the SIM and it 

is usually juxtaposed to a negatively charged cluster of amino acids [71]. In some 

cases, SIM-containing proteins do not have this negatively charged amino acid 
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juxtaposed to the hydrophobic core. Phosphorylated serine and threonine residues all 

found adjacent to the hydrophobic SIM domains, which is a good way to introduce a 

negatively charged cluster into the SIM domains [72]. Interestingly, some studies even 

indicate that SUMO-2 prefers to conjugate with SIMs that lacks negatively charged 

amino acids, suggesting that the negatively charged cluster might affect the affinity, 

orientation and paralogue specificity of SUMO conjugation [72].  

The identification of SUMOylation sites in proteins and enzymes involved in 

SUMOylation is fundamental for improving the understanding of SUMOylation 

recognition, understanding the biological functions and regulatory mechanisms of 

SUMOs, and provides potential targets for further diagnostic and therapeutic 

considerations [73]. To study the mechanism of SUMOylation of 5-HT1A-Rs, we 

need to know what enzymes regulate the SUMOylation of 5-HT1A-Rs and the SUMO 

consensus sites on 5-HT1A-Rs. A previous study on the PIAS proteins in 

neuroblastoma 2a (N2a) cells demonstrated that PiasXα facilitates the SUMOylation 

of 5-HT1A-Rs in N2a cells. SUMO proteases involved in the SUMOylation of 

5-HT1A-Rs remains unclear. In this study, I focused on the deSUMOylation of 

5-HT1A-Rs and examined possible SUMOylation sites on 5-HT1A-Rs.  The specific 

aims of my thesis are as follows: 

Aim1: To determine which SENPs regulate the deSUMOylation of 5-HT1A-Rs. 

Aim2: To determine the SUMOylation sites on 5-HT1A-Rs. 
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Chapter II: Materials and Methods 

2.1. Plasmid constructs 

The plasmid constructs used in this project are listed in Table 1. 

QIAGEN®Plasmid Midi Kit (25) (Cat#12143, QIAGEN, USA) was used to 

isolate and purify plasmids. RGS-Senp3 and RGS-Senp5 were cut at BamH1/ 

Xho1 sites. Human Senp3 and Senp5 coding sequences were isolated and 

inserted in-frame into the pCMV-3Tag 2B vector at BamH1/ Xho1 sites. 

            Table 2. Summary of the plasmid constructs used 

Plasmid constructs Vector Tag Source 

pcDNA4 HisMax C pcDNA4 HisMax C His, 

Xpress 

ThermoFisher# 

V86420 

pcDNA4 HisMax 

C- 5-HT1A-R 
pcDNA4 HisMax C His, 

Xpress 

 

pcDNA4 HisMax 

C- 5-HT1A-R 

-K332R 

pcDNA4 HisMax C His, 

Xpress 

 

pcDNA4 HisMax 

C- 

5-HT1A-R-K302R 

pcDNA4 HisMax C His, 

Xpress 

 

pcDNA4 HisMax 

C- 5-HT1A-R 

-K332.302R 

pcDNA4 HisMax C His, 

Xpress 
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pcDNA4 HisMax 

C- 5-HT1A-R 

-K324R 

pcDNA4 HisMax C His, 

Xpress 

 

pcDNA4 HisMax 

C- 5-HT1A-R 

-K232.235R 

pcDNA4 HisMax C His, 

Xpress 

 

pcDNA4 HisMax 

C- 5-HT1A-R 

-K232.235.324R 

pcDNA4 HisMax C His,  

Xpress 

 

Flag-SENP1 pFLAG-CMV(4700bp) Flag 
Plasmid# 17357, 

Addgene 

Flag-SENP2 pFLAG-CMV(4700bp) Flag 
Plasmid# 18047, 

Addgene 

Myc-SENP3 pCMV3Tag-2B(4200bp) 3×Myc  

 

Myc-SENP5 pCMV3Tag-2B(4200bp) 3×Myc  

Flag-SENP6 pFLAG-CMV(4700bp) Flag 
Plasmid# 18065, 

Addgene 

RGS-SENP3 pcDNA3-RGS(5400bp) RGS 
Plasmid# 18048, 

Addgene 

RGS-SENP5 pcDNA3-RGS(5400bp) RGS 
Plasmid# 18053, 

Addgene 

 

2.2. Cell culture and harvesting 

Mouse Neuroblastoma 2a cells (N2a cells) were cultured in 50% Dulbecco's 

Modified Eagle Medium (1X DMEM, high glucose, pyruvate, Cat# 11995-073, 
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Thermo Fisher, USA) and 50% Opti-MEM (Cat# 31985088, Thermo Fisher, 

USA) supplemented with 10% Fetal Bovine Serum (FBS) (Cat# S11150, 

Atlanta Biologicals, USA) and 1% Penicillin-Streptomycin solution (Cat# 

P0781-100ML, Sigma, USA). N2a cells were transfected with mammalian 

expression plasmids using Lipofectamine 3000 (Cat# L3000015, Thermo 

Fisher, USA). The medium was changed 6 hours and 24 hours after 

transfection. 48 hours after transfection, cells were washed with 

phosphate-buffered saline and hypotonic buffer (0.25M sucrose 50 mM Tris, 

pH 7.5, 5mM EDTA, 100 mM NaCl). The cells were harvested in hypotonic 

buffer (20mM NEM, 1/100 dilution of phosphatase inhibitors and protease 

inhibitors were added before use), sonicated three times for 10s in ice with 

~30s interval to cool down the solution. After sonication, cells were 

centrifuged at 25000 x g 4oC for 1 hour. The supernatant was collected as the 

cytosol fraction. The pellet was suspended in solubilization buffer (20 mM 

Tris, pH 8, 1 mM EDTA, 100 mM NaCl. 1% sodium cholate hydrate, 20mM 

NEM, 1/100 dilution of phosphatase inhibitors and protease inhibitors) and 

sonicated 3 times for 10s each in ice with ~30s interval. After sonication, the 

vials were shaken horizontally at high speed, at 4oC for 1 hour, and samples 

were then centrifuged at 25000 x g, at 4 oC for 1 hour. The supernatant was 

collected as the solubilized membrane fraction. Protein samples were stored at 

-80 oC. Protein concentration was measured using the BCA protein assay (Cat# 

23228, Cat# 1859078, BCA Protein Assay, Thermo Fisher, USA). 
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2.3. Immunoprecipitation assay 

Protein from the N2a cell membrane fraction was used for the 

immunoprecipitation assays and incubated with mouse anti-SUMO-1 antibody, 

1:40 (Cat# sc-5308, Santa Cruz, USA), rabbit anti-SUMO-1 antibody, 1:125 

(donated by Dr. Yoshi Azuma), rabbit IgG control, 1:40 (Cat# 170-6515, 

Bio-Rad, USA) or mouse IgG control, 1:80 (Cat# sc-2025, Santa Cruz, USA) 

overnight at 4 oC. After incubation, 50ul of recombinant Protein G agarose 

(Cat# 15920-010, Invitrogen, USA) or Protein A affinity resins (Cat# 

10-2003-01, Repligen, USA) were used for precipitation. The beads were 

washed 3 times with IP buffer (50 mM Tris, pH 7.4, 10 mM EGTA, 100 mM 

NaCl, 0.5% Triton X-100, containing 20 mM NEM, 1X protease inhibitor 

cocktail, 1X phosphatase inhibitor cocktail I and II,) and incubated with 

protein samples and antibody at 4oC overnight. The beads were centrifuged at 

1000 x g at 4 oC for 3min. The pellets were collected, and the bound proteins 

were eluted with 50ul 2×SDS sample buffer (10g SDS in 100ml ddH2O with 

β-mercaptoethanol) and used for immunoblot assays. 

2.4. Immunoblot assay 

Protein samples were separated using SDS-PAGE as previously described [74] 

and then transferred to PVDF membranes. After transferring, the PVDF 

membranes were incubated in 5% non-fat milk in Tris-buffered saline, pH 7.6, 

with 0.1% Tween-20. The membranes were incubated overnight with primary 

antibodies as described and listed in Table 2. The proteins were detected with 
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an ECL detection kit (Cat# WBLUR0500, Millipore, USA, Cat# 10026384, 

Cat# 10026385, BioRad, USA). 

 

Table 2. Antibodies used for immunoprecipitation and immunoblots 

Antibodies Dilution Source 

Rabbit anti-5-HT1A-Rs 
1:1000 

Cat# PA5-28090, Thermo 

Fisher, USA 

Rat-anti-Flag 1:2000 Cat# 200474-21, Agilent, USA 

Mouse-anti-Na+,K+, 

ATPase 
1:1000 Cat# 05-369, Millipore, USA 

Mouse-anti-Xpress 1:5000 Catalog#: R910-25, Invitrogen, 

USA 

Mouse-anti-β-actin  1:20000 Cat# 691001, MP Biomedicals, 

LLC 

Goat-Anti-Mouse IgG 
1:10000 for β-actin 

antibody 

1:5000 for Xpress 

antibody 

Cat# 119380, Jackson 

ImmunoResearch, USA 

Goat Anti-Rabbit IgG 1:10000 
Cat# 120745, Jackson 

ImmunoResearch, USA 

Goat Anti-Rat IgG 1:10000 Cat# 112-005-003 

Rabbit-anti-SUOM-1  1:125 (for 

immunoprecipitation) 

Gift from Dr. Yoshiaki Azuma 
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2.5. Data analysis and statistics 

Densitometric analysis of immunoblots was implemented with ImageLab 3.0 

software (BioRad, Hercules, CA). The SUMOylated 5-HT1A-R proteins 

levels were normalized to β-actin which is measured on a SDS-PAGE gel 

performed with membrane fraction used as the input for the 

immunoprecipitation. All data were analyzed by one-way analysis of variance 

(ANOVA) using the GraphPad Prism (version 6.02) followed Dunnett’s 

multiple comparisons test and the criterion of significance was set at p<0.05. 

Quantitative data are presented as the mean±SEM.  

 

2.6. Prediction of SUMOylation sites 

Previous studies indicated that most of SUMOylation sites follow a consensus 

motif of ΨKXE (ψ, a hydrophobic amino acid; X, any amino acid residue). It 

is possible to predict the SUMOylation sites in silico in order to narrow down 

the number of candidate sites and generate helpful information for further 

exploration. Here we used SUMOplot and PCI-SUMO programs to predict 

possible SUMOylation sites on the rat 5-HT1A-R. The sequence of rat 

5-HT1A-R was obtained from The National Center for Biotechnology 

Information (NCBI). Data are shown in Table 3. Lysine 302 has the highest 

score which suggests that it has the highest chance to be the SUMOylation 

site. 
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Lysine Location 
Window of Residues Score 

 

232 FRIRKTVRKVEKKGAGT 0.1458 

235 TVKKVEKTGADTRH 0.33 

302 EVHRVGNSKEHLPLPSE 0.5633 

324 YAPACLERKNERNAEAK 0.2620 

332 KNERNAEAKRKMALARE 0.2643 

Table 3. Possible SUMOylated lysine residues and the sequence at which they 

are located. The higher the score the higher chance to be a SUMOylation site. 
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Chapter Ⅲ. Results 

3.1. Identification of Sentrin specific proteases of 5-HT1A-Rs. 

To investigate which SENP proteins are involved in the de-SUMOylation of 

5-HT1A-Rs, SENP proteins were transfected into N2a cells. I used several SENPs 

plasmids, FLAG-SENP1, FLAG-SENP2, MYC-SENP3, MYC-SENP5, RGS-SENP3, 

RGS-SENP5, and FLAG-SENP6. Cell membrane fractions were collected and the 

expression levels of each transfected SENPs were examined by immunoblotting with 

anti-FLAG, anti-MYC and anti-His antibodies. In the cell membrane fraction, 

transfected SENP1 was detected at 75kDa, transfected SENP2 was detected at 55kDa 

and transfected SENP6 was detected at 150kDa, all of which are the appropriate size 

(Figure 1A). Among the three SENPs, the SENP1 construct expressed most 

abundantly. The expression levels of SENP2 and SENP6 are very similar, and express 

at a lower level (Figure 1A). In the cell cytosol fraction, transfected SENP1, 2 and 6 

were detected at appropriate size as well however, the expression of SENP1 and 

SENP6 were quite abundant, SENP2 remained at a low expression level (Figure 1B). 

Several anti-MYC antibodies and anti-His antibodies were used to try to detect the 

transfected proteins, however none of them detected transfected proteins or positive 

controls. These results verify transfection and the expression of only FLAG-SENP1, 

FLAG-SENP2 and FLAG-SENP6 in N2a cells.  

 

To determine the effects of SENPs on SUMOylation of 5-HT1A-Rs, the cell 

membrane fraction was collected and immunoprecipitated with a SUMO-1 antibody 



29 
 

followed by immunoblotting with a 5-HT1A-R antibody. A 55kDa band in the 

membrane fraction was detected (Figure 1C) which is consistent with our previous 

findings that 5-HT1A-R can be SUMOylated by SUMO-1 protein in rat brain [24]. 

Based on our ability to confirm the over-expression of FLAG-SENP1, FLAG-SENP2 

and FLAG-SENP6, I used one-way ANOVA to compare the effects of these SENPs to 

the non-transfected control group. Statistical analysis shows that there is a significant 

difference in SUMO-1-5-HT1A-R levels among non-transfected, SENP1, 2 and 6 

transfected groups (n=5, One-way ANOVA, F (3, 15) = 4.15, p=0.025) (Figure 1D), 

but the Dunnett’s multiple comparisons test shows no significant difference between 

the non-transfected group compared to each SENP transfected group.  

 

Na+, K+ ATPase is a plasma membrane marker and was selected to verify separation 

of membrane and cytosolic fractions (Figure 1E). The results show that there was 

abundant Na+, K+ ATPase in the membrane fraction while there was no Na+, K+ 

ATPase detected in the cytosolic fraction, indicating successful separation of 

membrane and cytosol fraction. 

 

3.2. Overexpression of rat 5-HT1A-Rs in N2a cells. 

To identify the SUMOylation sites on 5-HT1A-Rs, we first determined whether the 

N2a cells can express transfected 5-HT1A-Rs and determined the optimal amount of 

5-HT1A-Rs constructs for overexpression. A rat 5-HT1A-R sequence was inserted 

into the pcDNA4HisMaxC plasmid. N2a cells were transfected with different 
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amounts of pcDNA4HisMaxC-5-HT1A-Rs plasmids. Immunoblotting with an Xpress 

antibody was used to identify the overexpressed 5-HT1A-Rs in both cytosol and 

membrane fraction. Our results show that the expression levels of transfected 

5-HT1A-Rs increased with the increasing amounts of 5-HT1A-Rs plasmids and 14ug 

of pcDNA4HisMaxC-5-HT1A-Rs plasmids resulted in an optimal expression level 

(Figure 2A).  

 

Next, to examine the SUMOylated 5-HT1A-Rs, different amounts of membrane 

proteins were collected and immunoprecipitated with a mouse SUMO-1 antibody 

followed by immunoblotting with mouse Xpress antibody. N2a cell membrane 

preparations containing 250, 350, 450, 550, 650 and 750ug were used for 

immunoprecipitation assays followed by immunoblotting with Xpress antibody. As 

Fig. 2B shows, we observed bands around 48kDa, 55kDa and above 70kDa (Figure 

2B). Unfortunately, mouse IgG heavy chain was detected at 55kDa which is the 

expected position of SUMO-1-5-HT1A-Rs, because the same species of antibody was 

used for immunoprecipitation and detection on the immunoblot. The SUMOylated 

5-HT1A-R levels detected were increased and correlated to the protein concentration 

in the range between 250 and 750 mg of protein. Based on this study, we used 450 mg 

of protein in subsequent experiments (Figure 2B). 

 

To prevent detection of IgG heavy chain, we chose a polyclonal rabbit SUMO-1 

antibody (donated by Dr. Yoshiaki Azuma) [75] to pull down the SUMOylated 
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proteins. The mouse Xpress antibody detected protein bands at ~48kDa and above 

~70kDa (Figure 2C). Bands at 48kDa and above 70kDa are not the predicted 

molecular size for SUMO 1- 5-HT1A-R complex as previously detected in different 

regions of rat brain tissue. In order to determine if the protein bands detected by 

Xpress antibody are SUMOylated 5-HT1A-Rs, we removed NEM (which inhibits 

deSUMOylation) from the buffers. When NEM was not used to harvest N2a cells and 

conduct immunoprecipitation experiments, the intensity of SUMOylated 5-HT1A-Rs 

was dramatically decreased, thus confirming that the band around 48 kDa and bands 

above 70kDa represents the SUMOylated 5-HT1A-Rs (Figure 2C).  

 

3.3. Identification of SUMOylation sites on 5-HT1A-Rs. 

SUMO proteins associate with target proteins at lysine residues. Thus, to identify the 

SUMOylation sites on 5-HT1A-Rs, possible SUMOylation sites: K302, K332, K324, 

K232 and K235 were mutated into nonSUMOylatable arginine residues. Each 

5-HT1A-R mutant was transfected into N2a cells. Membrane fractions were collected 

after 48 hours and immunoprecipitated with a rabbit SUMO-1 antibody followed by 

immunoblotting with a mouse Xpress antibody. Bands at 48kDa and above 70kDa 

were detected. As shown in Figure 3A, we quantified the 48kDa band and the 75kDa 

bands. Statistical analysis shows that there is no significant difference between 

mutants and wild-type 5-HT1A-R for either the 48kDa band (n=3, One-way ANOVA, 

F (6, 17) = 0.9182, p=0.5059) (Figure 3A) or the 75kDa band (n=3, One-way ANOVA, 

F (6, 14) = 0.1483, p=0.9864) (Figure 3A).    
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Next, we compared SUMOylation of endogenous 5-HT1A-Rs and SUMOylation of 

transfected 5-HT1A-Rs. The same PVDF membrane was incubated with a rabbit 

5-HT1A-R antibody to look at the SUMOylation of endogenous 5-HT1A-Rs. The 

endogenous SUMO-1-5HT1A-Rs were detected at 55kDa (Figure 3B). Next, we 

merged Figure 3A and Figure 3B together to compare the SUMOylation of 

endogenous 5-HT1A-Rs and transfected 5-HT1A-Rs. As shown in Figure 3C, the 

band of SUMOylated endogenous 5-HT1A-R is at 55kDa while the bands of 

SUMOylated transfected 5-HT1A-R is at 48KD, and above ~70kDa, suggesting that 

the transfected receptors that are SUMOylated are a different size than the 

endogenous receptor (Figure 3C).  
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Figure 1. Identification of SENPs proteins in N2a cells. N2a cells were transfected 

with FLAG-SENP1, FLAG-SENP2, MYC-SENP3, MYC-SENP5, RGS-SENP3, 

RGS-SENP5, and FLAG-SENP6 plasmid constructs. The SUMO-1-5-HT1A-Rs were 

immunoprecipitated with a mouse SUMO-1 antibody followed by immunoblotting 

with a rabbit 5-HT1A-Rs antibody. (A). The expression of transfected SENPs in 

membrane fraction. (B). The expression of transfected SENPs in cytosol fraction. (C). 

The effect of SENPs proteins on SUMOylation of 5-HT1A-Rs (blots from all five 

independently repeated experiments are shown). (D). Quantification of 

SUMO-1-5-HT1A-Rs. Data are presented as mean±SEM (n=5). One-way ANOVA 

shows there is a significant difference among groups (F (3, 15) = 4.15, p=0.0251) but 

Dunnett’s multiple comparison test post-hoc test shows there is no significant 

difference comparing NT group to each SENPs group. (E). The separation of 

membrane fractions was verified by immunoblotting using Na+/K+ ATPase as plasma 

membrane marker. MT: Mock transfection. IgG: immunoprecipitation with the same 

amount of mouse IgG instead of a mouse anti-SUMO-1 antibody. NT: None 

transfection. 
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Figure 2. Overexpression of rat 5-HT1A-Rs in N2a cells. (A). The N2a cells were 

transfected with different amount of pcDNA4HisMaxC-5-HT1A-R plasmids. 

Membrane fractions were isolated 48 hours after transfection and immunoblotted with 

a mouse Xpress antibody. Several bands were detected. A band near 42kDa might 

indicate the unmodified transfected 5-HT1A-Rs; a band around 50kDa might 

represent SUMO-1-5-HT1A-Rs; several bands above 50kDa might indicate other post 

translational modifications of transfected 5-HT1A-Rs. N2a cells can express 

pcDNA4HisMaxC-5-HT1A-R construct and 14ug of plasmids results in optimal 

expression levels. (B). 450ug of protein is an optimal amount for immunoprecipitation. 

250-750ug protein of cell membrane preparation was immunoprecipitated with a 

mouse SUMO-1 antibody and immunoblotted with a mouse Xpress antibody. (C). 

Protein bands at 48kDa, 70kDa~250kDa indicate the SUMOylation of transfected 

5-HT1A-Rs. Membrane fractions were isolated in the absence or presence of NEM. 

The bands at 48kDa and 70kDa~250kDa significantly decreased in the absence of 

NEM. A band at the top of the blot does not decreased in the absence of NEM 

treatment, indicating nonSUMOylated protein aggregates. 
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Figure 3. Identification of SUMOylation sites on 5-HT1A-Rs. Six 5-HT1A-R 

mutants were constructed and transfected into N2a cells, including K332R; K302R; 

K332,302R; K324R; K232,235R; K232,235,324R. (A). Membrane fraction was 

collected, immunoprecipitated with a rabbit SUMO-1 antibody and examined on 

immunoblots with a mouse Xpress antibody. The experiment was repeat five times 

(all blots from five repeats are shown). Quantification of 48kDa band and 75kDa band 

from 3 separate experiments shows that there is no significant difference between 

transfection groups for the 48kDa band (n=3, one-way ANOVA, F (6, 17) = 0.9182, 

p=0.5059). Quantification of 75kDa bands shows no significant difference between 

groups due to transfection of the mutant or wild-type 5-HT1A-R (n=3, one-way 

ANOVA, F (6, 14) = 0.1483, p=0.9864). (B). The immunoblot shown in the upper 

right corner was next incubated with a 5-HT1A-R antibody to look at the endogenous 

SUMOylation of 5-HT1A-Rs. A band at 55kDa was detected, which indicates the 

expression of SUMO-1-5-HT1A-Rs in the presence of NEM. SUMO-1-5HT1A-Rs 

were not detected in the absence of NEM which further verifies the band at 55kDa 

represents the SUMOylation of 5-HT1A-Rs. (C). Figure 3A and Figure 3B were 

merged. The 48kDa band does not overlap with 55kDa band, demonstrating that these 

are different molecular mass protein bands. 
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Chapter Ⅳ. Discussion 

In this study, we focused on the deSUMOylation of 5-HT1A-Rs and the 

SUMOylation sites on 5-HT1A-Rs. Our studies have demonstrated that 1). 

Transfected SENP1, 2 and 6 can be expressed in the membrane fraction of N2a cells; 

2). Transfection of SENP1, 2 and 6 had a significant effect on de-SUMOylation of 

5-HT1A-Rs. 3); N2a cells express 5-HT1A-Rs and transfected rat 5-HT1A-Rs can be 

SUMOylated. 4); Transfection of 5-HT1A-R mutant has no significant effect on 

SUMOylation of 5-HT1A-Rs after statistical analysis of protein bands at 48kDa and 

75kDa; 5). SUMOylation of transfected rat 5-HT1A-Rs has different molecular mass 

bands compared to SUMOylation of endogenous 5-HT1A-Rs in N2a cells. 

 

There are 7 SENPs (SENP1, SENP2, SENP3, SENP5, SENP6, SENP7, and SENP8) 

in mammals. All these SENPs are involved in the regulation of SUMOylation except 

SENP8. Previous studies on SENPs demonstrated the distribution of SENPs in 

nucleus and cytosol, however, the SUMO machinery can also translocate to different 

regions of neurons during development [76, 77]. SUMO-1-5-HT1A-Rs are located at 

ER and Golgi, and in the detergent-resistant membrane (DRM) where the active 

5-HT1A-Rs are located. A previous study in which PIAS proteins were transfected 

into N2a cells confirmed the distribution of PIAS protein in the membrane. Here, I 

verified the expression of SENP1, 2 and 6 in membrane fraction of N2a cells and 

found that SENP1 was expressed more abundantly (Figure 1A) in the membrane 

fraction. However, in my experiment, I used sodium cholate to extract the 
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hydrophobic proteins located in the plasma membrane including DRM as well as 

Golgi and ER. To determine if SENP1 expressed more abundantly than other SENPs 

in the cell membrane, more evidence is required. For example, we can further isolate 

cell membrane by ultracentrifugation.  

 

In the experiment to identify the effect of SENPs on deSUMOylation of 5-HT1A-Rs, 

I also transfected MYC-SENP3, MYC-SENP5, RGS-SENP3, and RGS-SENP5 

constructs into N2a cells, but I was not able to detect the expression of these proteins. 

The MYC-SENP3, MYC-SENP5, RGS-SENP3 and RGS-SENP5 constructs were 

sequenced by ACGT, Inc. in order to rule out the possibility about incorrect sequence. 

Different MYC antibodies and RGS antibodies were used in the immunoblot but none 

of them can detected the expression of transfected proteins including the positive 

control. Since I could not verify the expression of these constructs, the effects of these 

SENPs on SUMOylation of 5-HT1A-Rs are unreliable. To solve this problem, we 

could try different antibodies for the MYC tagged and RGS tagged proteins or to 

choose SENPs specific antibodies to verify the expression of SENP proteins. 

 

Transfection of SENP2 seemed to decrease the SUMOylation of 5-HT1A-Rs (Figure 

1B), and one-way ANOVA showed there is a significant difference of SUMOylation 

of 5-HT1A-Rs after transfection with SENP1, 2 and 6. However the post-hoc test 

showed there was no significant difference when each transfected SENPs group was 

compared to the non-transfected control group. There are two possible explanations. 
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First, the variability of the data might contribute to the lack of statistical significance. 

Since SENP1, SENP2 and DESI-1 are the only three SUMO proteases that have a 

preference for SUMO-1 and 5-HT1A-Rs can be SUMOylated by SUMO-1, SENP1, 

SENP2, and DESI-1 are possibly involved in the deSUMOylation of 5-HT1A-Rs [50]. 

Moreover, there are no reports about the isopeptidase effects of DESI-1, suggesting 

that DESI-1 might not be involved in the cleavage of SUMO protein from its substrate 

[50]. Thus, SENP1 and SENP2 are more likely to play a role in the deSUMOylation 

of 5-HT1A-Rs, especially SENP2 according to the present study (Figure 1B). Another 

possible explanation is that deSUMOylation of 5-HT1A-Rs is processed by an 

undiscovered SUMO protease belonging to deSUMOylating isopeptidases. To further 

identify the SUMO proteases involved in the deSUMOylation of 5-HT1A-Rs, a 

fluorescence resonance energy transfer (FRET) assay can be performed [39]. FRET is 

a process by which the excited state energy of a fluorescent donor molecule is 

transferred to an acceptor molecule [39]. Efficient energy transfer requires very close 

proximity, and can therefore be used as a read-out for covalent protein interactions 

such as SUMOylation [39]. Moreover, a SUMO-CHOP-Reporter assay platform 

would be able to test the SUMO proteases activity to further study the mechanism of 

SUMOylation of 5-HT1A-Rs [39]. The SUMO-CHOP-Reporter assay platform was 

developed by Progenra, Inc. A reporter construct was created by fusing His6-tagged 

small ubiquitin-like modifier (SUMO) to the amino terminus of the reporter enzyme 

phospholipase A2 (PLA2) [39]. Following cleavage by a SENP, free PLA2 is able to 

hydrolyze its substrate, resulting in the release of a fluorescent product which is 
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readily quantifiable using a fluorimeter or a fluorescence plate reader  [39].  

 

Here, I expressed rat 5-HT1A-Rs in N2a cells and verified that rat 5-HT1A-Rs can be 

SUMOylated in N2a cells. In the initial experiment, I immunoblotted the membrane 

fraction with the same rabbit 5-HT1A-R antibody as I used in the SENPs experiment. 

However, there was no change in the level of 5-HT1A-Rs after transfection of rat 

5-HT1A-Rs (data not shown). The lack of expression of 5-HT1A-Rs might be due to 

the rabbit 5-HT1A-R antibody only recognizing endogenous 5-HT1A-Rs. So, we 

immunoblotted membrane fraction with a mouse Xpress antibody to detect Xpress 

tagged 5-HT1A-Rs in N2a cells (Figure 2A). A concentration-response assay showed 

that 14ug of plasmids transfection can express transfected 5-HT1A-Rs. To only look 

at SUMOylation of transfected 5-HT1A-Rs, I next immunoprecipitated membrane 

fractions with a mouse SUMO-1 antibody and immunoblotted with a mouse Xpress 

antibody. Unfortunately, mouse IgG heavy chain was detected at 55kDa which is the 

expect position of SUMO-1-5-HT1A-Rs. To prevent detection of IgG heavy and light 

chain, we chose another rabbit SUMO-1 antibody from Dr. Yoshiaki Azuma. The 

mouse Xpress antibody detected protein bands at ~48kDa and above ~70kDa. The 

bands were further verified in the absence of SUMO protease inhibitor NEM (Figure 

2C), suggesting SUMOylation of transfected 5-HT1A-Rs. To further confirm the 

SUMOylation of transfected 5-HT1A-Rs, N2a cells can be treated with SUMOylation 

inhibitors such as ginkgolic acid and measure the level of SUMOylation.  
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Our lab previously reported several SUMOylated protein bands which were detected 

by a 5-HT1A-R antibody at ~75kDa, ~55kDa. The 55kDa band was consistently 

present but the 75kDa was not. The protein band at 55kDa was shown to be a 

SUMO-1 modified 5-HT1A-Rs, but the identity of the protein band at 75kDa remains 

unclear [24]. However, here we observed protein bands at ~48kDa and 

70kDa~250kDa but not 55kDa. Possible explanations include that 5-HT1A-Rs might 

be SUMOylated at multiple lysine sites, a cross-talk between SUMOylation and other 

post-translational modifications or the formation of polySUMO chains. The formation 

of polySUMO chains would significantly increase the molecular weight of 

SUMO-conjugation, which is consistent to the high molecular weight of bands. The 

editing of polySUMO chains by SENPs generate variable length SUMO chains, 

reflected on the SDS-PAGE as multimeric cleavage intermediates. The protein band at 

~48kDa might indicate one SUMO protein added to 5-HT1A-Rs as an intermediate 

since the predicted molecular weight of 5-HT1A-R is ~42kDa and a single SUMO-1 

protein is around 8~10kDa. Thus, the previously reported 55kDa protein band might 

result from two SUMO proteins bound to 5-HT1A-Rs. To further verify the formation 

of polySUMO chains, a SUMO-2/3 antibody could be used for immunoblotting, since 

polySUMO chains are formed by SUMO-2/3. Another alternative explanation is the 

crosstalk of other post-translational modifications on SUMO-1-5-HT1A-Rs. Studies 

have shown post-translational modifications involved in 5-HT1A-Rs include 

palmitoylation, glycosylation and phosphorylation. Glycosylation usually results in an 

additional high molecular weight polysaccharide to the protein and thus causes a high 
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molecular mass complex. Thus, the crosstalk between glycosylation and 

SUMOylation might contribute to the 70kDa~250kDa bands. Palmitoylation can add 

a single palmitoyl modification or be dually modified with one or more palmitoyl 

groups to cysteine and less frequently to serine and threonine residues of proteins. It is 

reported that palmitoylation of 5-HT1A-Rs occurs at Cys 417 and Cys 420 and the 

molecular weight of palmitoylated 5-HT1A-Rs is around 46kDa [21], it is possible 

that two palmitoyl groups are added to SUMO-1-5-HT1A-Rs and results in a 

molecular weight at ~55kDa. However, phosphorylation only provides an additional 

80Da phosphate group to the protein which does not seems to change the molecular 

weight of the protein by much. So, it is likely that the protein band at 55kDa is caused 

by the cross-talk between SUMOylation and palmitoylation, and two palmitoyl 

groups might added to the SUMO-1-5-HT1A-Rs. 

 

I speculate that the 55kDa band might be caused by two SUMO protein SUMOylation 

or two palmitoyl groups added to SUMO-1-5-HT1A-Rs and the 48kDa band from 

transfected 5-HT1A-Rs might be only one SUMO-1 protein SUMOylation. One 

possible reason that may have happened is that transfected 5-HT1A-R does not 

process through ER and Golgi and might not be palmitoylated, thus exists as a 48kda 

band instead of the 55kDa band. In my experiment, I used a lipofectamine 3000 

transfection method. This method can deliver foreign DNA plasmids into nucleus, but 

foreign DNA will not integrate with the host genome. In this way, it is possible that 

the expressed proteins do not process through ER and Golgi. In addition, the 
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70kDa~250kDa bands are more likely caused by SUMOylation at multiple sites than 

the glycosylation, because most of the glycosylation also occurs in ER and Golgi [78]. 

There is another possibility that those modified proteins aggregated together and 

formed high molecular complex. Thus, without processing through ER and Golgi 

network, the transfected 5-HT1A-Rs are unable to process post translational 

modifications like endogenous 5-HT1A-Rs and thus, causes different molecular 

weight bands. A transfection approach such as lentivirus might help solve this 

problem. Lentivirus are RNA viruses that carry a gene for a reverse transcriptase that 

transcribes the viral genetic material into a double stranded DNA intermediate [79]. 

This DNA intermediate is then incorporated into the host DNA allowing the host cell 

machinery to produce the desired protein [79]. Additionally, because the viral genome 

is stably integrated into the host DNA, any modification that has been made will be 

passed to all daughter cells that are derived from the transfected cell [79]. In this way, 

the transfected 5-HT1A-Rs can process post translational modifications and enter 

proper signaling pathways similar to the endogenous 5-HT1A-Rs.  

 

After transfection of rat 5-HT1A-R mutants into N2a cells, there is no significant 

difference in SUMOylation of 5-HT1A-Rs, which means the mutations failed to 

prevent 5-HT1A-Rs from SUMOylation. As I discussed above, the rat 5-HT1A-R 

might not be expressed properly. Another possible scenario is that other lysine 

residues got SUMOylated instead of 6 candidate lysine residues. A proteomic mass 

spectrometry approach would be able to tell us all the SUMOylation sites on 
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5-HT1A-Rs, however this approach requires a large amount of protein. 

 

In conclusion, my experiments found that N2a cells can express transfected 

5-HT1A-Rs, and that transfected SENP1, 2 and 6 are expressed in the membrane 

fraction of N2a cells. I also found that transfection of SENP1, 2, and 6 causes a 

significant difference among groups but additional works is needed to improve the 

observed variability and to allow for a more definitive conclusion with respect to 

which SENP may regulate the SUMOylation of 5-HT1A-Rs. 
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