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Abstract 

Higher-lying excited electronic states of model, photoactivated molecules are studied 

using nonlinear excitation to explore the electronic spectroscopy, excited-state dynamics, and 

reaction quantum yields. The photoactivated molecules studied in this dissertation include two 

photochromic molecules, stilbene and 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluoro-

cyclopentene, that reversibly convert between different isomers following irradiation, as well as 

a photoactivated protecting group, para-hydroxyphenacyl, that photochemically releases a bound 

substrate. Studying higher-lying excited states above S1 following nonlinear excitation provides 

information about the initially excited state, the subsequent excited-state dynamics, and the 

reaction quantum efficiency. Much less is known about the higher-lying excited states as 

compared to the well-studied ground and lowest-lying excited states, which motivates the work 

in this dissertation to investigate the higher-lying excited states of photoactivated molecules 

following nonlinear excitation. 

The measurements of the higher-lying excited states reported here include a broadband 

pump-probe technique that is used to measure the two-photon absorption spectroscopy, as well 

as the excited-state dynamics following linear and nonlinear excitation of the studied 

photoactivated molecules. The broadband two-photon absorption spectroscopy measurements 

reveal the two-photon accessible states and their absolute two-photon absorption cross sections. 

Separate measurements of the excited-state dynamics and of the reaction quantum yields 

following nonlinear excitation collectively provide information about the behavior of the higher-

lying excited-states, and how the identity of the excited states affect the outcome of the 

photochemical reactions. Probing the spectroscopy, dynamics, and quantum yields of the studied 

photoactivated molecules is important to develop a fundamental understanding of photochemical 
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reactions from higher-lying excited states. The spectroscopy, dynamics, and quantum yield 

measurements in this dissertation can also serve as new benchmarks for computational studies of 

these model molecules. 
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1. Introduction 

1.1 Nonlinear Excitation of Higher-Lying Excited States 

This dissertation explores the electronic spectroscopy, excited-state dynamics, and 

reaction quantum yields of photoactivated molecules following nonlinear excitation. The insight 

we obtain from our nonlinear excitation measurements can be used to broaden our understanding 

of higher-lying excited states, which then can be used to control photochemical reactions by 

preferentially exciting states that may lead to favorable reaction pathways. These experiments 

also provide information about higher-lying excited states of several model compounds that can 

serve as benchmarks for experimental and computational studies of the excited-state energies, 

excited-state dynamics, and quantum yields. 

Nonlinear excitation processes, namely two-photon excitation, can be used to selectively 

control reaction pathways and even the efficiency of photochemical reactions.1-19 Studying the 

dynamics from higher-lying excited electronic states above S1 following nonlinear excitation 

provides information about the initially excited state and also about the relaxation mechanism. 

Much less is known about the higher-lying excited states as compared to the well-studied ground 

and lowest-lying excited states for most molecules. Studying the excited-state dynamics from 

these higher-lying states is challenging because of the increasing density of states and strong 

configurational mixing, which leads to ultrafast electronic relaxation to the lowest excited state, 

S1, consistent with Kasha’s rule.20 Computational measurements of higher-lying excited states 

are difficult, especially for two-photon accessible states that primarily have double-excitation 

character.21-25 By studying higher-lying excited states that are accessed with nonlinear excitation 

we can gain a better fundamental understanding of these states, which can be utilized to control 

the outcome of photochemical reactions.  
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The work in this dissertation uses broadband two-photon absorption (2PA) spectroscopy 

to measure broadband 2PA spectra, absolute 2PA cross sections, and to determine the symmetry 

character of excited states. We use these 2PA measurements to assign specific electronic states to 

the observed 2PA transitions. We also measure the excited-state dynamics from highly excited 

two-photon accessible states to obtain information about the initially excited electronic states as 

well as about the relaxation pathway that can affect the reaction quantum yields.26-29 Typically, 

highly-excited states relax on the order of hundreds of fs to lower-lying excited states through 

internal conversion20 and once relaxed to lower-lying excited states the molecule can follow the 

same dynamics as with linear excitation.1-4,6,12,15,17 Conversely, previous studies have also shown 

that some molecules excited to two-photon accessible states may undergo different excited-state 

dynamics and access reaction pathways that are inaccessible with one photon.5,7-11,13,18,19 When 

different reaction pathways are accessed the efficiency of the reaction can be modified; 

particularly, the reaction dynamics and quantum yields following irradiation with one or more 

photons.7-9,18,19  

 

1.2 Advantages of Using Two-Photon Excitation  

Nonlinear excitation induces a photochemical reaction with two or more photons, unlike 

linear excitation with only a single photon. Usually, nonlinear excitation refers to a two-photon 

excitation, which occurs through the simultaneous absorption of two photons, where the total 

energy of the two photons is equal to a two-photon allowed transition. The decrease or loss of 

intensity, I, of the single laser beam passing through a sample path length in the z direction is 

proportional to the square of the intensity.  

 !"
!"
= −𝛽 𝐼!           (1) 
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Here β is the two-photon absorption coefficient and I is the excitation pulse intensity. The right 

side of Equation 1 is dependent on the square of the intensity, which leads to the transmitted 

intensity from a single laser field having a quadratic dependence as a function of the incident 

intensity, indicating a two-photon absorption. Figure 1.1 shows the degenerate excitation as two 

red arrows. Generally, two-photon absorption is only observed at very high photon flux since the 

probability of a two-photon absorption is small compared to a linear absorption. 

 

 

Figure 1.1 Energy level diagram of one- and two-photon absorption. 

 

Two-photon excitation is also possible through the interaction of two different fields with 

intensity, Ipump and Iprobe. For example, broadband 2PA spectroscopy measurement uses two 

fields to induce a two-photon excitation, one from a pump beam and another from a probe beam.  

!"
!"
= −𝛽 𝐼!"#! 𝐼!"#$%         (2) 

Here Ipump and Iprobe are the excitation pulse intensities of pump and probe fields, respectively. 

The set of blue and multicolored arrows on the right side of Figure 1.1 represent the pump and 

probe pulses in the broadband 2PA spectroscopy measurement, respectively. The pump pulse is 

monochromatic light and the broadband probe pulse consists of a white-light continuum. Two-

photon absorption is measured when the total energy of one pump and one probe photon are 

equal with a two-photon allowed transition.  
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Figure 1.1 shows that two-photon absorption proceeds through a nonresonant 

intermediate state (i.e. virtual state), which does not correspond to any electronic or vibrational 

energy eigenstate and has a short lifetime compared to eigenstates of the system. The virtual state 

can be represented as a sum-over-states, where the 2PA cross section (σ2PA) is, 

 σ!"# ∝
! !∙𝛆!"#! ! ! !∙𝛆!"#$% !

ℏ!!"#!!!!"
+ ! !∙𝛆!"#$% ! ! !∙𝛆!"#! !

ℏ!!"#$%!!!"

!

!    (3) 

Here µ is the dipole operator, εpump and εprobe are the polarization vectors of the absorbed photons, 

ωpump and ωprobe are the photon frequencies, and Ekg is the energy between the ground state g and 

the intermediate state k. The first term in Equation 3 represents the absorption of a pump photon 

from the ground electronic state g to an intermediate state k, followed by the absorption of a 

probe photon to reach the final electronic state f, and the second term in Equation 3 is the 

possibility of absorbing the probe photon first followed by the pump photon. The denominator of 

each term in Equation 3 is the energy difference between the excitation energy of one absorbing 

photon and the energy of the eigenstates of the system. The individual terms become large when 

the difference in energies in the denominator becomes small, meaning the absorbing photon 

becomes nearly resonant with an electronic transition.  

The one- and two-photon absorption properties of molecules are dependent on the 

molecular symmetry of the system.30-34 Molecules are assigned to point groups based on the 

molecular symmetry and the point group determines the parity selection rules of the system. For 

a molecule with an inversion center the parity selection rules are strict thus the one- and two-

photon accessible states are different.30-34 For example, excited states that are normally forbidden 

through one-photon transitions become allowed for two-photon absorption by centrosymmetric 

molecules.30-34 Specifically, when the ground state of a centrosymmetric molecule is of gerade 

(even) symmetry two-photon transitions only access other gerade states, while ungerade (odd) 
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states are accessed by one-photon transitions.30-34 For noncentrosymmetric molecules these 

parity selection rules are not mutually exclusive for one- and two-photon absorption but the 

symmetry of the final excited state and the polarization of the excitation beam determines which 

two-photon absorption transitions are preferentially excited.32,34-36  

 

1.3 Nonlinear Excitation Measurements of Photoactivated Molecules 

The molecular systems studied throughout this dissertation include two photochromic 

molecules, stilbene and 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluoro-cyclopentene 

(DMPT-PFCP), as well as a phototrigger molecule, para-hydroxyphenacyl (pHP). Photochromic 

molecules undergo reversible photochemical reactions, which include photoisomerization and 

photocyclization.13,37-39 Phototriggers are a series of molecules that can be used to spatially and 

temporally control the release of bound substrates.40-42 We use nonlinear excitation to study the 

electronic spectroscopy, excited-state dynamics, and reaction quantum yields of these 

photochromic and phototrigger molecules. The experimental and data analysis methods used 

throughout this dissertation are described in Chapter 2.  

 

1.3.1 Photochromic Molecules 

Photochromic molecules reversibly convert between different isomers following 

irradiation with light. These molecules can be used for materials science applications.33,43,44  

More specifically, the nonlinear absorption properties can be utilized for applications ranging 

from optical data storage13,33,44,45 to three-dimensional microfabrication33,44,46 to optical power 

limiting.33,47 However, for photochromic molecules to be used in these applications the molecule 

must possess desirable properties that include thermal stability, fatigue resistance, rapid response 
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time, and high sensitivity.13,38,48-52  

Stilbene is one of the simplest photochromic molecules and has been extensively studied, 

making stilbene an ideal model compound for exploring new techniques and dynamics.37-39,48,53 

Figure 1.2 shows that trans-stilbene undergoes photoisomerization to cis-stilbene and, following 

further irradiation, cyclizes to 4a,4b-dihydrophenanthrene, which irreversibly oxidizes to 

phenanthrene.  

 

 

Figure 1.2 Stilbene photoisomerization and photocyclization reactions. 

 

The excited-state dynamics of trans-stilbene from the lowest-lying excited state (S1) to 

the ground state are well known.37,39,53 However, much less is known about the two-photon 

accessible excited states for stilbene and additional measurements were necessary to measure the 

two-photon absorption properties. Chapter 3 explores the two-photon accessible excited states 

of trans-stilbene through complimentary measurements of the broadband two-photon absorption 

(2PA) spectroscopy and of the excited-state dynamics following degenerate two-photon 

excitation. The broadband 2PA spectroscopy reveals distinct absorption bands near 5.1 and 6.4 
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eV. In separate measurements, the 2PA bands are excited with a degenerate two-photon 

excitation to probe the excited-state dynamics from those states. The dynamics reveal rapid 

relaxation from the initially excited states to S1 in ~100 fs through internal conversion, which 

then lead to the same dynamics as linear excitation. The one- and two-photon absorption 

spectroscopy of the stilbene series, which includes trans-stilbene, cis-stilbene, and phenanthrene, 

are compared in Chapter 4. The experimentally measured excited-state transition energies and 

absolute 2PA cross sections are compared to computationally calculated transition energies and 

2PA cross sections found in the literature. This series of molecules serves as a consistent 

benchmark for high-level computational measurements.  

DMPT-PFCP (Figure 1.3) is a more complex photochromic molecule that is locked into a 

cis configuration due to the addition of a perfluorocyclopentene ring to the central C=C double 

bond, so the photocyclization reaction is preferentially selected over photoisomerization. Figure 

1.3 shows that DMPT-PFCP undergoes reversible cyclization and cycloreversion when irradiated 

with light.  

 

 

Figure 1.3 DMPT-PFCP photocyclization reaction. 

 

DMPT-PFCP is thermally stable and fatigue resistant, making this molecule an ideal 

candidate to study higher-lying two-photon accessible excited states. Chapter 5 examines the 
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spectroscopy and cycloreversion reaction quantum yields of DMPT-PFCP for one- and two-

photon excitation. We report the absolute 2PA cross sections within the two lowest energy 

absorption bands of the closed-ring isomer. The cycloreversion reaction quantum yield is ~1.5% 

following excitation with one photon into the two lowest energy absorption bands, but a multi-

photon excitation increases the quantum yield to ~16%. Chapter 6 explores the cycloreversion 

mechanism of DMPT-PFCP with nonresonant high-intensity irradiation to investigate why the 

cycloreversion quantum yield increases under this irradiation condition. Evidence of a new 

reaction pathway following nonlinear excitation is presented, which is different from the known 

dynamics induced by linear excitation. The transient absorption following nonlinear excitation 

suggests an ionization pathway may be responsible for the increased cycloreversion quantum 

yield.  

 

1.3.2 Phototrigger Molecules 

Phototrigger molecules can selectively control the release of a bound substrate with 

light.40-42 These molecules can be used for a wide variety of applications that use two-photon 

excitation to initiate release reactions ranging from medicine33,54,55 to biology.33,56-58 Specific 

applications include two-photon fluorescence microscopy,33,56-58 drug delivery, 33,40-42 and two-

photon photodynamic therapy.33,54,55 Para-hydroxyphenacyl (pHP) is a phototrigger molecule 

that possesses desirable properties for these applications that include fast and efficient release of 

substrates, strong absorption in the visible to infrared, blue-shifted photoproduct absorption, and 

a biologically benign photoproduct. Figure 1.4 shows the release mechanism for pHP, which 

efficiently releases a substrate, X, when in aqueous media and produces only one significant 

byproduct, para-hydroxyphenylacetic acid (pHPAA).40,41,59-63  
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Figure 1.4 para-Hydroxyphenacyl (pHP) release reaction. 

 

pHP photochemically releases a substrate with linear excitation and we have 

demonstrated the same release with two-photon excitation. Chapter 7 compares the electronic 

spectroscopy and reaction quantum yields of substrate release from pHP following one- and two-

photon excitation. The spectroscopy suggests the same excited electronic states are accessed with 

either one or two photons for both the protonated and deprotonated compounds, where the 

deprotonated compounds have the lowest energy absorption band shifted to the red. Two-photon 

induced release of phosphate groups from pHP is observed and likely undergoes the same release 

mechanism as with a one-photon excitation.  
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2. Experimental Methods 

2.1 Overview 

 The spectroscopy, dynamics, and quantum yields of various photoactivated molecules in 

solution have been measured using laser-based techniques. Primarily, nonlinear excitation 

processes were investigated, with an emphasis on excitations with two photons. A two-photon 

transition occurs through the simultaneous absorption of two photons, which the absorbed 

photons are either degenerate or nondegenerate. The total energy of the two absorbed photons 

also needs to be resonant with a two-photon allowed transition. Exciting molecules with two 

photons can access different excited states, induce different excited-state dynamics, and change 

the efficiency of reactions as compared to exciting with only a single photon.  

This chapter describes the experimental pump-probe setup we use to measure the excited-

state dynamics following one- and two-photon excitation. The pump-probe setup is also used to 

measure the broadband two-photon absorption (2PA) spectroscopy, which is used to determine 

the absolute 2PA cross section and the polarization ratio of the 2PA spectra, measured at parallel 

and perpendicular relative polarization of the pump and probe beams. The 2PA measurement 

provides information about the symmetry of the two-photon accessible states. Reaction quantum 

yields were measured following a one-photon excitation and also a degenerate two-photon 

excitation within a single beam, to determine the efficiency of photochemical reactions. Exciting 

molecules to higher-lying excited states that are two-photon accessible can open up different 

reaction pathways, which can induce different excited-state dynamics, electronic spectroscopy, 

and reaction quantum yields as compared to linear excitation.  
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2.2 Transient Absorption Spectroscopy Following One- and Two-Photon Excitation 

A pump-probe technique was used to measure the excited-state dynamics following one- 

and two-photon excitation. The sample is irradiated with an intense pump pulse that excites the 

sample to an excited electronic state. The pump pulse excites the sample and a broadband probe 

pulse is overlapped spatially and temporally to measure the transient absorption spectra. The 

pump and probe pulses were derived from a regeneratively amplified Ti:Sapphire laser (Legend 

Elite, Coherent), with <35 fs pulses at a repetition rate of 1 kHz.  

The pump beam is generated from a tunable optical parametric amplifier (TOPAS-C, 

Light Conversion). The fundamental 800 nm light is sent into the TOPAS-C and produces 

tunable pump light in the range of 2600–240 nm. The TOPAS-C software (WinTOPAS) controls 

the pump wavelength by using a wavelength calibration installed in the software and the actual 

wavelength is verified with a spectrometer (BLUE-Wave, StellarNet). A sychronized optical 

chopper (NewFocus, 3501) blocks every other pulse of the pump beam for active background 

subtraction when calculating the transient absorption signal. The pump beam has a repetition rate 

of 1 kHz and the chopper is set at 500 Hz. The polarization of the pump beam is controlled by a 

λ/2 waveplate to have control over the relative polarization of the pump and probe at the sample. 

The pump beam is slightly focused into the sample with a beam diameter of ~200–300 µm for 

one-photon excitation and the beam is tightly focused to ~50–100 µm within the sample to 

induce a degenerate two-photon excitation within a single pump pulse. The transmitted pump 

light through the sample is blocked to minimize excess scattered light at the detector.  

The broadband probe beam is generated by focusing either the fundamental 800 nm light 

or a small portion of infrared pump light from the TOPAS-C into a material to produce a white 

light continuum (WLC). The material for WLC generation can be a translating 2 mm calcium 
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fluoride (CaF2) crystal, a 2 mm sapphire crystal, or a 1 cm quartz cuvette filled with water. For 

the dynamics measurements the WLC is generated exclusively in CaF2 to minimize the amount 

of material the beam passes through prior to reaching the sample, since dispersion stretches the 

probe pulse as it passes through material. The WLC usually extends from 750–350 nm, but the 

WLC generated in CaF2 can extend further to the UV to ~300 nm. When using infrared pump 

light to generate WLC, the usable probe range is extended to the red to ~1000 nm by eliminating 

interference effects between the intense fundamental 800 nm and the WLC. The polarization of 

the probe beam is also controlled with a λ/2 waveplate that is placed prior to the generation of 

WLC. The WLC maintains the same polarization as the incident beam, as long as the WLC is 

generated in an isotropic material.1,2 The CaF2 crystal is not isotropic, so the crystal is also 

rotated to maintain the proper polarization of the WLC. A Glan-Taylor polarizer can be used to 

measure the polarization purity. Further details for generating WLC have been described 

previously.1-3 The probe beam is focused at the sample to a diameter of ~50–100 µm and 

overlapped spatially with the pump beam within the sample.  

The probe light transmitted through the sample is passed through a transmission grating 

that disperses the different wavelengths onto a 256-element photodiode array (Hamamatsu, 

S3901-256Q). Excess fundamental 800 nm or infrared light was filtered out of the probe beam 

by either using two 2 mm KG3 colored glass bandpass filter (transmits 710–315 nm), one 2 mm 

BG38 colored glass bandpass filter (580–335 nm), one 2 mm BG39 colored glass bandpass filter 

(580–360 nm), or one 2 mm BG40 colored glass bandpass filter (610–335 nm). For the dynamics 

measurements the bandpass and longpass filters are placed after the sample to reduce material 

the probe beam passed through prior to the sample. These filters eliminate excess fundamental 

800 nm and the second-harmonic generation of the fundamental, respectively. In some cases a 



 21 

407 nm colored glass longpass filter is used after the sample as well to eliminate any second-

harmonic generation from the residual 800 nm fundamental in the probe beam. 

To measure the excited-state dynamics following one- and two-photon excitation the 

pump and probe beams are spatially and temporally overlapped in the sample. The sample for the 

one- and two-photon excitation measurements is a liquid solution that is forced through a 

sapphire slit nozzle (Kyburz) to produce a windowless, liquid jet with a path length of 300 µm.3 

Using the windowless jet eliminates material (i.e. glass) from the sample, thus reducing material 

dispersion through the sample. Typically, the relative polarization of the pump and probe beams 

is set to magic angle (54.7°), to only measure the isotropic signal.4,5 For the two-photon 

excitation measurement the relative angle between the pump and probe beams is also set to 

magic angle. There are equal contributions from parallel and perpendicular polarization 

components of the transient absorption signal at magic angle, which eliminates any anisotropic 

effects from the transient absorption.4,5 

 The transient absorption spectra following one- and two-photon excitation can be 

analyzed to extract time constants to then understand the excited-state dynamics. Specifically the 

time constants can be determined through global and target analyses, details of these analyses are 

described elsewhere.3,6,7 Briefly, the global analysis fits a sum of exponentials simultaneously to 

all probe wavelengths in the transient absorption signal while fixing the time constants and 

allowing only the amplitudes of the fits to change. Global analysis produces decay-associated 

spectra (DAS) and the shape and amplitudes of the DAS provide information about the kinetic 

evolution of the system. The target analysis imposes a physical model onto the measured 

transient absorption signal to extract species-associated spectra (SAS) of the evolving excited 

state.3,6,7  
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All of the data analysis is performed using custom data analysis and modeling software 

written in IGOR Pro 6.37 (WaveMetrics) and Maple 17 (Maplesoft). The technical details of the 

pump-probe setup, including the electronics and LabVIEW programs used to run measurements 

are in the Ph.D. dissertation of Cassandra Ward.3  

 

2.3 Broadband Two-Photon Absorption Spectroscopy 

The experimental setup to measure the broadband two-photon absorption (2PA) spectra 

of liquid solutions is essentially the same as the transient absorption spectroscopy measurements, 

with a few differences.8-15 The broadband 2PA spectrum of the sample is measured when the 

pump and probe beams are overlapped spatially and temporally. Two-photon absorption occurs 

through the simultaneous absorption of one pump and one probe photon. A 2PA is observed 

when the total energy of the pump and probe photons is resonant with a two-photon allowed 

transition. Other more traditional methods that measure the 2PA at single wavelengths are 

susceptible to point-to-point variations along the spectrum due to changes of the pump beam at 

each wavelength, while the broadband method we use is less sensitive to variations across the 

spectrum because all wavelengths are measured simultaneously.  

 The broadband two-photon absorption (2PA) spectrum is measured when the pump and 

probe beams cross at a small angle to one another and are overlapped in time and space in the 

sample. The sample is typically a 1 mm quartz cuvette filled with a concentrated liquid solution, 

usually >0.1 M. The energy of the pump beam needs to be low enough (usually <5 µJ) to not 

observe measurable transient absorption signal outside of the pump-probe overlap due to 

nonlinear excitation of the sample. The optimum energy of the pump beam for the 2PA 

measurement depends on the diameter of the pump beam, the overlap of the pump and probe 
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beams, the 2PA signal, and the concentration of the sample. The relative delays between the 

pump and probe pulses are scanned to account for the temporal dispersion of the linearly chirped 

probe pulse. The 2PA spectrum is usually measured by scanning a 2–3 ps range with a step size 

of 10 fs to ensure no additional signals are measured before and after the temporal overlap of the 

pump and probe pulses. Representative 2D contour plots are shown in Figure 2.1A–B. The first 

300 fs prior to the overlap of the pump and probe pulses are averaged at each probe wavelength 

and are used for baseline correction across the entire spectrum. The maximum overlap of the 

pump and probe pulses in time are fit to a polynomial as function of probe wavelength to 

represent the “time zero” or “τ=0” to account for the temporal dispersion of the probe pulse 

(Figure 2.1A). A range of usually about ±0.3 ps around the “time zero” is integrated at each 

wavelength to obtain the 2PA signal. The integration also eliminates dispersive effects, such as 

cross-phase modulation, therefore only absorptive features are measured, such as 2PA and 

stimulated Raman scattering. 14,16 We use a numerical integration method, specifically Simpson’s 

rule, to obtain the 2PA spectrum. The integration range around “time zero” is varied to ensure 

there are no signals from photoproduct transient absorption and extending the integration range 

confirms there is no effect on the integrated signal (Figure 2.1B). Figure 2.1 pictorially shows the 

process for analyzing the 2PA signal. Figure 2.1C shows the 2PA signals plotted as a function of 

the probe wavelength.  

 

2.3.1 Two-Photon Absorption (2PA) Cross Section 

The absolute 2PA cross sections at each probe wavelength can be determined from the 

2PA signal at that wavelength. The 2PA cross section is measured in units of GM (1 GM = 10–50 

cm4·s·molecule–1·photon–1). The 2PA cross section (σ2PA) is determined using Equation 1.14 
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Figure 2.1 Obtaining the two-photon absorption spectrum from pump-probe measurements. (A) 

2D contour plot of measured 2PA signal with a “time zero” fit, (B) 2D contour plot showing the 

variation of integration ranges around “time zero” to obtain the 2PA signal, and (C) integrated 

2PA signal plotted against probe wavelength. Pump wavelength = 370 nm. 
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Epump is the energy of the pump pulse, ℓ is the path length of the sample, GF is a Gaussian 

overlap factor, h is Planck’s constant, c is the speed of light, λpump is the pump wavelength, N is 

the number density of the sample, and ∫ΔA(τ)dτ2PA is the time-integrated 2PA signal at each 

probe wavelength. The spatial overlap GF is determined from the spatial overlap of the pump 

and probe beams at the sample, assuming both beams are Gaussian.14  

 𝐺𝐹 = !

!! !!,!"#!
!! !!,!"#$%

!
 !

!! !!,!"#!
!! !!,!"#$%

!
    (2) 

The ωx,pump and ωy,pump are the widths of pump beam in the x and y direction, respectively, and 

ωx,probe and ωy,probe are the widths of the probe beam in the x and y direction, respectively. The 

widths of the two beams are determined by placing a razor blade at the same location as the 

sample, on an XYZ linear translation stage and then move the razor blade into the beam while 

measuring the transmitted energy as a function of the razor blade position. The measured energy 

as a function of distance is fit to an error function, which gives the beam widths for the pump and 

probe beams that can be input into Equation 2.  

 We calculate the constant value on the right side of Equation 1 based on experimental 

parameters and the 2PA signal, ∫ΔA(τ)dτ2PA, is the measured value from the analysis above. The 

broadband 2PA spectrum can be plotted as a function of total energy (pump+probe energy) in 

eV.  

 

2.3.2 Stimulated Raman as an Internal Standard  

In addition to the 2PA signal, resonant stimulated Raman scattering signals can also be 

observed when the pump and probe beams are temporally and spatially overlapped. The 

stimulated Raman signal is due to the coherent interaction of the pump and probe light, where 
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the difference in energy between the pump wavelength and probe wavelength is resonant with a 

vibrational transition. The stimulated Raman signal of the solvent or solute can be used as an 

internal standard to more accurately determine the 2PA cross section of the studied molecules.17 

The spatial overlap of the pump and probe beams is the main source of uncertainty in the 2PA 

cross section measurement (i.e. GF). However, the stimulated Raman and 2PA signals have the 

same dependence on the spatial overlap of the pump and probe beams, which means the Raman 

signal can be used to calibrate the 2PA cross section measurement without needing to know the 

spatial overlap of the beams.17  

Figure 2.2 shows an example of the 2PA spectra integrated in time, ∫ΔA(τ)dτ2PA, of a 

solute and of a pure solvent (methanol), where both have contributions from stimulated Raman 

scattering.  

 

 

Figure 2.2 An example of the combined two-photon absorption (2PA) and stimulated Raman 

spectra for a solution (red line), as compared with the stimulated Raman spectrum of the pure 

solvent (methanol; pink line). 
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The stimulated Raman band for the C–H stretching vibrations of the solvent (pink line) is 

plotted as a function of frequency in Figure 2.3. The black dotted line in Figure 2.3 is a Gaussian 

fit to the stimulated Raman spectrum and the fit is integrated in the frequency domain over the 

entire Raman band, which gives the total stimulated Raman signal integrated in time and 

frequency, ∫∫ΔA(τ,ω)dτ2PAdωRaman that is proportional to the spontaneous Raman scattering cross 

section (dσ/dΩ), where dΩ is the differential scattering solid angle. The stimulated Raman signal 

in Figure 2.3 is negative in the anti-Stokes region of the spectrum and the signal would be 

positive in the Stokes region of Raman scattering spectrum. We are unable to resolve the 

individual Raman transitions of methanol because we are using fs pulses that have spectral 

bandwidths of ~10 nm. Due to the Fourier-transform-limit the spectral broadening is typically 

~350 cm–1 for ~45 fs pulses.  

 

 

Figure 2.3 Integrated stimulated Raman spectrum of C–H stretches in methanol plotted as a 

function of frequency. 
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The stimulated Raman scattering signal of a pure solvent integrated in the time and 

frequency domain is proportional to the spontaneous Raman scattering cross section (dσ/dΩ) of 

that solvent.17  

!"
!!
= − !" !"

!!"#! ℓ !"
 
ℏ !!"#! !!"#$%

!

! !! !! !!"#$%&'
Δ𝐴 𝜏,𝜔 𝑑𝜏!!"𝑑𝜔!"#"$   (3) 

The integral, ∫∫ΔA(τ,ω)dτdωRaman, is the pump-probe signal integrated over all delay times and 

across the entire stimulated Raman band , the ωpump is the angular frequency of the pump beam, 

ωprobe is the angular frequency of the probe beam, and Nsolvent is the number density of the 

solvent.  

The spontaneous Raman scattering cross section and absolute 2PA cross section (σ2PA)14 

are both given as a function of the spatial overlap of the pump and probe beams (GF).17  

 𝜎!!" =
!" !"

!!"#! ℓ !"
 ℏ !!"#!

!!"#$%&
Δ𝐴 𝜏 𝑑𝜏!!"      (4) 

The spatial overlap of the pump and probe beams have the same effect on the 2PA and 

stimulated Raman cross section measurements. Since the Gaussian overlap factor (GF) for the 

2PA and stimulated Raman cross section measurements are the same, the GF value in Equation 3 

for the stimulated Raman cross section can be used with Equation 4 for the 2PA cross section. A 

more accurate measurement of the absolute 2PA cross section of the solute is determined by 

using the integrated Raman band of the solvent as an internal standard. Using the integrated 

Raman band eliminates the need to use the spatial overlap of the pump and probe beams to 

determine the 2PA cross section and is given by,  

𝜎!!" = − ! !! !! !!"#$%&'
!!"#$%& !!"#$%

!  !"
!!

 !! ! !!!!"
!! !,! !"!#!"#"$

     (5) 
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All of the constants on the right side of Equation 5 are known from experimental parameters 

except for the differential spontaneous Raman cross section, dσ/dΩ, which is from the literature. 

The 2PA cross section in Equation 5 is calibrated using the Raman band as an internal standard 

at each probe wavelength, which also incorporates the experimentally determined constants from 

the right side of Equation 5, including the 2PA signal (∫ΔA(τ)dτ2PA) from the pump-probe 

experiment described previously. This procedure gives the broadband 2PA spectrum with the 

calibrated absolute 2PA cross sections, which can be plotted as a function of total energy in eV.  

 

2.3.3 Two-Photon Absorption Polarization Ratios 

 The 2PA spectra are measured separately for relative polarizations of the pump and probe 

beams that are parallel (σ2PA(||)) and perpendicular (σ2PA(⊥)). The separate 2PA polarization 

measurements are compared and used to determine a polarization ratio,18-21 

 𝑟 = !!!" ∥
!!!" !

          (6) 

The polarization ratio provides information about the symmetry of the two-photon allowed 

electronic transitions of the molecules. For any point group, totally symmetric transitions have 

r≥4/3 when using linearly polarized light and for nontotally symmetric transitions r<4/3. Table 

2.1 gives the polarization ratios for two-photon allowed transitions under general conditions and 

also in two limiting cases, as discussed by McClain and coworkers.18-20 The limiting case of 

degenerate excitation is when the two absorbed photons have the same energy and the near-

resonance limiting case refers to one of the absorbed photons being close in energy to a one-

photon allowed transition of the molecule.  
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Table 2.1 Polarization ratio limits for parallel and perpendicular linearly polarized light for 

molecules belonging to any point group. 

Symmetry  General Degenerate Near-resonance 

Totally symmetric δpara/δperp 4/3 ↔ ∞ 4/3 ↔ ∞ 3 

Nontotally symmetric δpara/δperp 1/2 ↔ 4/3 4/3 1/2 
 

2.4 Degenerate Two-Photon Absorption Cross Sections 

More traditional measurements of the 2PA cross section typically use degenerate 

excitation with a single laser beam. We use degenerate excitation within a single pump pulse to 

measure the absolute 2PA cross section to compare with our broadband absolute 2PA cross 

section. Figure 2.4 shows the experimental setup to measure the absolute 2PA cross section at a 

single wavelength. The pump beam is split into two different beams, one that is used as a 

reference and another that passes through the sample. The intensity of every incident and 

transmitted pump pulse is measured simultaneously on two different photodiodes (PD) in order 

to account for laser fluctuations. The two large-area silicon PDs (~13 mm2; Hamamatsu, S1336-

44BQ) record the integrated intensity of each laser pulse at the 1 kHz repetition rate of the laser.3 

These UV-enhanced silicon PDs have a spectral response from 1100–190 nm. The attenuation of 

the beam passing through the sample as a function of incident intensity reveals the two-photon 

absorption coefficient (β).  

A telescope decreases the diameter of the pump beam to ensure a high enough photon 

flux to induce a simultaneous two-photon absorption in the sample. Diameter of the beam is 

typically ~300 µm and the intensity is usually within 10–1000 GW/cm2 to induce a degenerate 

two-photon excitation. The collimated pump beam after being passed through the sample is then 

slightly focused on the PD to ensure all the light reaches the PD and the beam is also attenuated 
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so the PD does not saturate. The sample in this experiment consists of a 1 cm quartz cuvette 

filled with 1 mL of a solution and stirred continuously with a magnetic stir bar.  

 

 

Figure 2.4 Degenerate two-photon absorption and quantum yield measurement at a single 

energy. 

 

The decrease or loss of intensity, I, of the single laser beam passing through a path length 

in the z direction is given as,  

!"
!"
= −𝛼 𝐼 − 𝛽 𝐼!         (7) 

Here α is the one-photon absorption coefficient and β is the two-photon absorption coefficient. 

The second term on the right side of Equation 7 is dependent on the square of the intensity and 

thus the transmitted light as a function of the incident light has a quadratic dependence indicating 

a two-photon allowed transition. To determine the absolute 2PA cross section for degenerate 

excitation the transmittance through the sample as a function of the incident intensity is 

measured to determine the two-photon coefficient, β. In the limit of no linear absorption, i.e. α = 

0, solving the differential equation in Equation 7 gives,  
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 transmittance = !
!!
= !

!!! ℓ !!
        (8) 

Here I is the transmitted intensity, I0 is the incident intensity, and ℓ is the path length. The 

absolute 2PA cross section (σ2PA) is proportional to β as a function of the number density of the 

sample, N.  

 σ!"# =
!
!

! !
!

          (9) 

When the excitation wavelength is resonant with both a one- and two-photon allowed transition 

the additional one-photon absorption contribution needs to be accounted for when measuring β. 

Including the one- and two-photon absorption components when solving the differential equation 

in Equation 7 gives,22-26  

 transmittance = !
!!
= !!!ℓ

!!! !!
!!!!!ℓ

!

       (10) 

The one-photon absorption coefficient, α, is related to the one-photon extinction coefficient (ε) 

with the concentration (c0) of the sample, i.e. α = ln(10) ε·c0. The absolute 2PA cross sections 

measured with a degenerate two-photon excitation within a single beam can include additional 

intensity losses from one-photon absorption and from solvent losses, but these losses are 

accounted for when using Equation 10 to extract the two-photon absorption coefficient, β. 

 

2.5 Quantum Yield Measurements 

 The number of molecules converted per absorption event is the quantum yield.  

 Φ = !"#$%&#$' !"#$%&'%(
!"#$%&'($) !"!#$

        (11) 

We measure the quantum yields by monitoring the photochemical conversion reactions of 

photochromic and phototrigger molecules. A single laser beam at one wavelength is used to 

induce the photochemical reaction with linear or nonlinear excitation. We monitor the changing 
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concentration per laser pulse via the absorption of incident light, where the absorbance of the 

incident light is also responsible for inducing the conversion reaction. Throughout this 

dissertation the quantum yield is reported as the number of molecules converted per absorption 

event. For example, a two-photon absorption event means two photons were simultaneous 

absorbed and is equated to one event, while for a one-photon absorption only one photon is 

absorbed per event.  

 

2.5.1 One-Photon Excitation 

 Figure 2.5 shows the general setup of the one-photon absorption (1PA) quantum yield 

(Φ1PA) measurement. The spot size of the pump beam is usually >1 mm to ensure the pump beam 

irradiates as much of the sample volume as possible. The single pump beam is divided into two 

different beams by a beamsplitter. One beam acts as a reference to track laser fluctuations, and 

the beam is attenuated and gently focused onto the PD in the same way as before. The other PD 

measures the transmitted energy through the sample. Again the transmitted beam is slightly 

focused onto a different PD and neutral density (ND) filters attenuate the beam so as not to 

saturate the PD. The sample is in a 1 cm quartz cuvette filled with 1 mL of the sample and is 

constantly stirred with a magnetic stir bar.  

The PDs measure the energy per pulse and the energies are collected with the LabVIEW 

program “Run Quantum Yield Experiment”, which has been described in detail previously.3 

Typically, pump light irradiates the sample on the order of tens of minutes to induce a 

measureable change to the molecules, while recording every pulse of light that reaches the PDs. 

A calibration is implemented to convert the measured PD voltages to laser pulse energies. 
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Figure 2.5 One-photon absorption quantum yield measurement at a single energy. 

 

Sometimes when allowing a sample to completely convert through a photochemical 

reaction, the energies at the reference and sample PDs do not converge, as shown in Figure 2.6. 

In other words, the measured reference energies are shifted by a constant offset, which may arise 

from reflection losses that were not accounted for during calibration or if the sample was moved 

after the calibration. To account for this offset the transmitted energy through the sample as a 

function of laser pulses (thin red line) is fit to an exponential function and the energy at the 

reference PD (thin green line) averaged. The difference between the asymptotic limit of the 

signal and the average value of the reference is used to shift the energy of the reference PD (thick 

blue line) to match the offset from the exponential fit of the sample energy.  

The difference in pulse energy between the reference (thick blue line) and sample (thin 

red line) PDs, is proportional to the number of photons absorbed by the sample for any given 

laser pulse (Figure 2.6). To determine the total number of photons absorbed throughout the 

experiment, the energy differences between the reference and sample PDs are summed over all 

laser pulses (m).  

photons absorbed = !!
! !"#!"#

= !
! !
∙ 𝑛! ∙ 𝐸! 𝑚 − 𝐸 𝑚!    (12) 
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Figure 2.6 Representative one-photon absorption quantum yield measurement. The thick green 

line is the measured reference energy per laser pulse, the thick blue line is the reference energy 

shifted to account for additional losses, and the thin red line is the measured transmitted energy. 

 

The excitation wavelength is λ, Planck’s constant is h, the speed of light is c, the incident energy 

measured at time/laser pulse (m) is E0(m), the transmitted energy measured at the same time/laser 

pulse is E(m), and each collected data point is the sum of a number of laser pulses, np. This 

method works best in the limit of complete conversion of the sample because this method uses 

the accumulated signal of the entire measurement so this measurement is less sensitive to shot-

to-shot variations, but is sensitive to the initial measurement of incident energy. 

The number of molecules converted is determined by first using Beer’s Law to calculate 

the concentration of the sample before (c0) and after (cf) irradiation from the measured 

absorbances with a UV-vis spectrophotometer. The number of molecules in the sample is 

determined using the volume (V) of sample.  

 Molecules converted = 𝑐! − 𝑐! ∙ 𝑉 ∙ 𝑁! = ∆𝑐 ∙ 𝑉 ∙ 𝑁! =
∆!
! ℓ

 ∙ 𝑉 ∙ 𝑁! 

    = !
! ℓ

 ∙ 𝐴! − 𝐴! ∙ 𝑁!      (13) 
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Where A0 is the absorbance of the sample prior to irradiation, Af is the absorbance after 

irradiation, NA is Avogadro’s number, ε is the extinction coefficient of the target molecule, and ℓ 

is the path length of the sample. The 1PA quantum yield is obtained by substituting Equations 12 

and 13 into Equation 11.  

 Φ!"# =
!
! ℓ  ∙ !!!!!  ∙ !!

!
! ! ∙ !! ∙ !! ! !! !!

= !
! ℓ

! !
!
!!
!!

!!!!!
!! ! !! !!

    (14) 

The 1PA quantum yield is reported as the number of molecules converted per absorption event, 

which is also equal to the number of molecules converted per absorbed photon of light.  

 

2.5.2 Two-Photon Excitation 

 The experimental setup used to measure the quantum yield following two-photon 

excitation (Φ2PA) is the same as the degenerate two-photon absorption measurement in Figure 

2.4, except that we do not vary the intensity of the beam during the experiment. We use a high 

intensity laser beam to simultaneously induce and measure nonlinear absorption. The spot size of 

the pump beam is reduced with a telescope to ensure a high enough photon flux at the sample. 

The two reference and pump beams are then slightly focused on two different PDs, one used for 

a reference to measure the incident energy and another to measure the transmitted energy 

through a sample. In the same way as the quantum yield measurements following one-photon 

excitation, every pulse of light that reaches the PDs is recorded as a voltage and is converted to 

laser pulse energy through a calibration. The sample is irradiated for up to several hours to 

measure a distinguishable change in the nonlinear transmittance of the sample. A measureable 

change of the sample occurs on the order of many hours but complete conversion can take much 

longer, so we typically only measure the initial conversion rate. The sample again is a 1 mL 

solution placed in a 1 cm quartz cuvette that is constantly stirred with a magnetic stir bar.  
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 For consistency and ease of comparison the 2PA and 1PA quantum yields are reported as 

molecules converted per absorption event. In the case of the 2PA quantum yield, one absorption 

event occurs when two photons are simultaneously absorbed by the sample.  

To determine the 2PA quantum yield we first need to know the absolute 2PA cross 

section (σ2PA) because we actually measure a two-photon action cross section (σ2PAΦ2PA), which 

is the product of the two-photon absorption quantum yield and the absolute 2PA cross section. 

When measuring the two-photon action cross section with this single wavelength method our 

observable with the large-area silicon PDs is the intensity of the laser pulse integrated in the 

radial coordinate r and in time t, as well as through the path length z, I(r,t,z), which is used to 

determine the 2PA action cross section and then the 2PA quantum yield. The differential 

intensity, I, of the single laser beam passing through a path length in the z direction, as a function 

of the radial coordinate r and time t, assuming only a two-photon absorption process is given as,  

 !" !,!,!
!"

= −𝛽 𝐼 𝑟, 𝑡, 𝑧 ! = −σ!"# 𝑁 !
!!

𝐼 𝑟, 𝑡, 𝑧 !     (15) 

The irradiance in the r radial coordinate, through the path length in the z coordinate, and in time, 

t, is I(r,t,z) and the integrated intensity is proportional to the energy, the 2PA coefficient is β, the 

number density of the sample is N, and the pump wavelength is λ. Where the 2PA coefficient is 

proportional to the absolute 2PA cross section and the irradiance has a quadratic dependence for 

a two-photon absorption process. The transmitted irradiance in time and in the r coordinate, 

I(r,t), is obtained by integrating over the path length of the sample in the z direction, for an 

incident irradiance, I0, to give the measured transmittance through the sample that is related to 

the absorbance by the sample,  

 𝐼 𝑟, 𝑡 = !! !,!
!!! ℓ !! !,!

         (16) 
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In the limit βℓI0(r,t)≪1, which occurs when the incident irradiance is small while still producing 

a measureable β, the change of irradiance before and after the sample, ΔI, can be represented as,  

 Δ𝐼 = 𝐼! 𝑟, 𝑡 − 𝐼 𝑟, 𝑡 ≅ 𝛽 ℓ 𝐼!! 𝑟, 𝑡        (17) 

The incident pulse I0(r,t) is approximated as a Gaussian function both radially and in time,  

 𝐼! 𝑟, 𝑡 = 𝐼! 𝑒!!! !!!𝑒!!! !!!       (18) 

Here the pulse diameter is ρ, the pulse duration is τ, and the peak irradiance is I0,  

 𝐼! =
!

!! ! ! !! !
         (19) 

Here the integrated laser pulse energy is E. We do not measure I0 directly, but we are able to 

measure E, to then relate laser pulse energy to irradiance through the pulse parameters in 

Equation 19. We measure the change in energy of the laser pulse, ΔE, that can be determined 

from the difference of the incident energy, E0, and the energy as a function of position in the path 

length of the sample, E(z). The change in energy is determined by integrating the difference in 

irradiance in time t and in the radial coordinate r, over the entire laser pulse.  

 Δ𝐸 = 𝐸! − 𝐸 𝑧 = Δ𝐼 𝑑𝑟 𝑑𝑡       (20) 

The change in energy ΔE becomes,  

 Δ𝐸 = !!"# ! ℓ !!

!!! ! !! !
!
! !

         (21) 

This change in energy ΔE is related to number of molecules converted, which is also 

proportional to the two-photon excitation conversion rate (Rate). The Rate is the measure of 

molecules converted per laser pulse, which is proportional to the 2PA quantum yield Φ2PA.  

 Rate = !!
! !
!

 Φ!"# =
! ℓ

!!! ! !! !
!
! !

!
𝐸! σ!"#Φ!"#     (22) 

By substituting Equation 21 into Equation 22, the Rate is given in terms of our experimental 

parameters, which becomes, 
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 Rate = ! ℓ
!!! ! !! !

!
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!
𝐸! σ!"#Φ!"#       (23) 

Rearranging Equation 23 gives the 2PA quantum yield,  

 Φ!!" = 8𝜋! ! !
! !
! ℓ

! !
!

! !
!!

!
!!"#

       (24) 

The absolute 2PA cross section can be determined more accurately by measuring the β as a 

function of number density N and fitting a line to the β versus N data. The slope of the linear 

regression is proportional to the absolute 2PA cross section, 

 𝛽 𝑁 = !!"# !
! !

 𝑁 + offset        (25) 

Here the offset is related to any other intensity losses besides from a two-photon absorption. The 

slope of Equation 25 gives a more accurate absolute 2PA cross section and thus can give a more 

accurate 2PA quantum yield in Equation 24 because fluctuations between each 2PA 

measurement are averaged out.  

To account for one- and two-photon absorption processes occurring simultaneously 

within the sample, as well as any offset to β due to solvent losses (scattering or absorption), we 

include the one-photon absorption term in Equation 15 and becomes,  

 !" !,!,!
!"

= −𝛼 𝐼 𝑟, 𝑡, 𝑧 − 𝛽 𝐼 𝑟, 𝑡, 𝑧 !       (26) 

Here α is the 1PA coefficient. In the same way as above, the transmitted irradiance in time and in 

the r coordinate, I(r,t), is obtained by integrating over the path length of the sample in the z 

direction, to obtain the transmittance through the sample, 

 𝐼 𝑟, 𝑡 = !
! !!ℓ!! !! !,!  !!ℓ!! !! !,!

       (27) 

As above, the two-photon absorption quantum yield is obtained by calculating the difference 

between incident energy and transmitted energy as a function of position in the path length of the 

sample along the z direction energy, ΔE, that includes the one-photon absorption coefficient, α, 
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that becomes ΔE'. Including the change in energy that includes the one- and two-photon 

absorption contributions in the Rate equation in Equation 22 and then solving for just the 2PA 

quantum yield gives,  

 Φ!!" =
!"#$
!!!

! !
!
−Φ!!"        (28) 

This 2PA quantum yield equation is only necessary when the excitation wavelength is resonant 

with one-photon absorption; otherwise, when only a two-photon absorption is resonant with the 

excitation wavelength then Equation 24 is used to determine the 2PA quantum yield.  
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3. Two-Photon Excitation of trans-Stilbene: Spectroscopy and Dynamics of 

Electronically Excited States above S1 

(Published previously by Houk, et al. in The Journal of Physical Chemistry B)1 

3.1 Introduction 

Probing the ultrafast dynamics of molecules in electronically excited states above S1 

represents an important frontier in the field of chemical reaction dynamics that challenges the 

current limits of both experiment and theory.2 Among other complications, the rapidly increasing 

density of electronic states leads to strong configurational mixing and very short excited-state 

lifetimes for even the smallest of molecules, as manifest in Kasha’s rule.3 Nevertheless, probing 

the behavior of these highly excited systems is important for developing a predictive and general 

understanding of the nonadiabatic dynamics that govern chemical reactions under a wide range 

of conditions.  

Extensive work over the past 70 years provides significant insight into the 

photoisomerization dynamics of stilbene, making this compound an ideal prototype for studying 

excited-state dynamics.4-8 Experimental9-19 and theoretical20-28 studies reveal a mechanism in 

which torsional rotation around the central C=C double bond carries the molecule over a small 

barrier in the S1 excited state before passing through a conical intersection (CI) that returns the 

molecule to S0. The CI connecting the ground and excited electronic states is located near the 

minimum of the S1 excited-state potential energy surface, where the phenyl rings have 

perpendicular orientation, but also requires some degree of pyramidalization at one of the 

ethylene carbon atoms.25,27 Passage through the CI results in a roughly 1:1 ratio of cis- and trans-

stilbene.4  
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One-photon excitation of the lowest excited state of trans-stilbene initially accesses a 

singly excited state with ππ* character. However, the electronic configuration that correlates 

diabatically with the ground electronic state of the product, and therefore participates in the CI, is 

a doubly excited state with π*π* character (becoming ππ in the ground state).21,29 This two-

electron excited state of trans-stilbene has been observed previously using two-photon 

absorption spectroscopy,29-35 which is suitable for accessing doubly excited states because of the 

propensity for two-photon–two-electron interactions.36 Two-photon excitation also satisfies the 

symmetry selection rules for accessing the totally symmetric (Ag) π*π* state; therefore, the 

electronic configuration that correlates diabatically with the product ground state is accessible 

directly via a symmetry-allowed two-photon (HOMO)2→(LUMO)2 transition from a equilibrium 

ground state of the trans isomer. Although there have been no direct reports of the excited-state 

dynamics following two-photon excitation, competing kinetics measurements for both isomers 

indicate that the cis–trans isomerization process is more efficient following two-photon 

excitation than for one-photon excitation.37-39  

Despite the detailed picture that emerges for dynamics on the lowest ππ* excited state of 

stilbene, and even for the π*π* excited state, much less is known about the dynamics in the 

higher-lying excited states, or how excitation to these levels might be used to selectively control 

the photoisomerization reaction. Recently, Bao and Weber probed the dynamics of cis- and 

trans-stilbene in the gas phase following excitation of one-photon-accessible excited-states lying 

roughly 6 eV above the respective ground-state minima, and observed distinctly different 

dynamics than the well-known torsional isomerization pathway that occurs on S1.17,18,40 In 

particular, coherent oscillations in the higher-lying excited-state (S5) of trans-stilbene were 

attributed to an antisymmetric twisting motion of the phenyl groups about the C–C single bonds, 



 46 

which suggests that excitation to higher excited-states gives rise to different initial motions of 

trans-stilbene than on the S1 surface. Similarly, Kovalenko and coworkers13 probed the solution-

phase photoisomerization dynamics of stilbene following one-photon excitation to the second 

absorption band at 226 nm, from which they observed rapid (sub-100 fs) internal conversion 

followed by vibrational cooling on the lowest excited state.  

The experiments presented in this chapter examine the spectroscopy and dynamics of 

two-photon-accessible excited-states of trans-stilbene in solution. Mutually exclusive selection 

rules due to the inversion center of trans-stilbene ensure that one- and two-photon excitation 

access different excited states of the molecule. Here, we present the first continuous 2PA 

spectrum of trans-stilbene up to 6.5 eV, and then compare the excited-state dynamics following 

one- and two-photon excitation. Our results provide new benchmarks for computational studies 

of the electronic structure and excited-state dynamics of trans-stilbene above S1.  

 

3.2 Experimental Methods 

We use ultrafast pump-probe techniques to examine the spectroscopy and dynamics of 

trans-stilbene in solution. Briefly, the two-photon absorption (2PA) spectrum is obtained from 

the wavelength-dependent attenuation of a broadband probe pulse that is temporally and spatially 

overlapped in the sample with a nonresonant pump pulse,41-45 whereas the excited-state dynamics 

are monitored via the evolution of the transient absorption (TA) spectrum as a function of time 

following one- or two-photon excitation.46,47 In both experiments, pump and probe pulses are 

derived from the output of a regeneratively amplified Ti:Sapphire laser (Legend Elite, Coherent). 

Nonlinear frequency conversion produces pump pulses that are tunable across the visible-UV, 

and continuum generation in a 2 mm CaF2 crystal produces broadband probe pulses covering the 
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range 750-350 nm. We control the relative polarization of the linearly polarized pump and probe 

light by rotating a λ/2 waveplate in the 800 nm fundamental prior to continuum generation, while 

also rotating the CaF2 crystal to maintain the polarization purity of the probe beam.48,49 After 

passing through the sample, the probe light is dispersed with a UV transmission grating onto a 

256 element photodiode array for shot-to-shot detection. A chopper wheel blocks alternating 

pump pulses before the sample for active background subtraction. We typically average 6 ×103 

laser pulses per delay for the 2PA measurements and 104 laser pulses per delay for the TA 

measurements, as described below.  

In the 2PA experiments, the simultaneous absorption of one pump and one probe photon 

occurs when the combined energy of the two photons is resonant with a two-photon-allowed 

transition, but neither photon is absorbed individually.41-45 Using three different pump 

wavelengths (370, 390, and 420 nm) and a continuum probe in the range 750–400 nm gives 

overlapping spectra that cover the full range of 2PA transition energies from 4.6 to 6.5 eV. We 

scan the relative delay of the two pulses in order to account for temporal dispersion of the probe 

and then integrate the transient signal at each probe wavelength over a range of delay times 

(typically ±0.3 ps relative to the optimum temporal overlap) to obtain the relative 2PA cross 

section as a function of the total pump + probe transition energy.41 The integrated signal is 

independent of nonresonant effects, such as cross-phase modulation of the probe light.41,50 

Varying the integration range confirms that there are no contributions to the signal from 

photoproduct transient absorption, because the integrated signal does not change when increasing 

the integration window outside of the region of pulse overlap. The diameters of the overlapping 

pump and probe beams are ~300 µm and ~100 µm at the sample, respectively, and the average 

energy of the pump pulse is typically 35 nJ/pulse. The sample for the 2PA measurements 
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consists of a 1 mm path length quartz cuvette filled with a 0.5 M solution of trans-stilbene 

(Aldrich, 96%) in chloroform (Sigma-Aldrich, ≥99%). We are unable to measure the 2PA 

spectrum of trans-stilbene in cyclohexane due to low solubility in that solvent.  

Separate TA experiments probe the excited-state dynamics of trans-stilbene following 

one- and two-photon excitation.47,48 One-photon excitation (1PE) experiments use pump pulses 

at 310 nm (4.0 eV) that are resonant with the lowest absorption band of trans-stilbene. The ~0.5 

µJ pulses are weakly focused to a diameter of ~300 µm at the sample, where they intersect the 

~100 µm diameter probe beam. Nonresonant two-photon excitation (2PE) requires higher-

intensity pump pulses, therefore we reduce the beam diameter to ~100 µm at the sample and 

increase the pulse energy (~2 µJ at 475 nm, or ~3 µJ at 380 nm). The intense, nonresonant pump 

beam induces degenerate two-photon excitation at a total transition energy equal to twice the 

photon energy, which is 5.2 eV for 475-nm irradiation and 6.5 eV for 380-nm irradiation. The 

TA measurements cover a range of delays on a quasi-logarithmic scale from –1 to 800 ps, with 

the relative polarization of the pump and probe set to the magic angle (54.7°) in order to exclude 

anisotropic effects. Samples of trans-stilbene in cyclohexane (Sigma-Aldrich, >99%) were 

prepared with concentrations of 1.2 mM for the 1PE measurements and 6.5 mM for the 2PE 

measurements. The sample solution passes through a slit nozzle to form a windowless liquid 

stream with a path length of 300 µm.  

 

3.3 Results and Analysis 

3.3.1 One- and Two-Photon Absorption Spectroscopy 

The top panel of Figure 3.1 shows the one-photon absorption (1PA) spectrum of trans-

stilbene in solution. The spectrum is essentially the same in both cyclohexane and chloroform, 
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except for a weak bathochromic shift of 4 nm. Solvent absorption below 260 nm prevents us 

from measuring the full 1PA spectrum of trans-stilbene in chloroform. The three prominent 

bands in the 1PA spectrum, located near 4.1, 5.4, and 6.1 eV, have been discussed extensively in 

the literature.29,34,51,52 The solid vertical bars in the figure represent transition energies and 

oscillator strengths for one-photon allowed transitions that were calculated by Molina et al.52 

using CASPT2. The calculated energies are in good agreement with our experimental spectrum 

(see Table 3.1).  

The bottom panel of Figure 3.1 shows the two-photon absorption (2PA) spectrum of 

trans-stilbene in chloroform. We measure the broadband 2PA spectrum using both parallel and 

perpendicular relative polarization of the pump and probe light. In both cases, the spectrum has 

distinct bands centered near 5.1 and 6.4 eV, with the only difference being a cross section (σ) 

that is smaller by about a factor of 3 for perpendicular polarization. The inset shows that the 

polarization ratio, σpara/σperp, is constant across the entire spectrum. The figure also shows the 

baseline signal obtained under identical conditions for pure chloroform, and confirms that 2PA 

by the solvent is insignificant below 6.5 eV. The hollow vertical bars in the figure mark the 

calculated (CASPT2) transition energies for two-photon accessible states of trans-stilbene from 

Molina et al.52 All of the bars have the same height in this case because those authors did not 

report two-photon absorption intensities.  
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Figure 3.1 One- and two-photon absorption spectroscopy of trans-stilbene in solution. The top 

panel shows one-photon absorption spectra in cyclohexane (solid line) and in chloroform (dashed 

line). The bottom panel shows two-photon absorption spectra in chloroform, measured using 

both parallel (dark blue line) and perpendicular (light blue line) relative polarization of the pump 

and probe light. The inset shows the ratio of the two-photon cross sections for parallel and 

perpendicular polarization. The solid bars in the top panel are calculated one-photon transition 

energies and intensities, and the hollow bars in the lower panel are two-photon transition 

energies, both from Ref. 52. 

 

The experimental 2PA cross sections at the maxima of the two absorption bands are 

40±16 and 270±110 GM (1 GM = 10–50 cm4·s·molecule-1·photon-1), respectively, for parallel 

polarization of the pump and probe light. The uncertainties in the absolute 2PA cross sections 

represent estimated 95% confidence intervals. As in all 2PA experiments, obtaining the absolute 
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cross section requires precise knowledge of the spatially dependent intensity profile,53 therefore 

we measure the horizontal and vertical profiles of both beams at the sample position in order to 

determine the spatial overlap of the two beams. Small deviations from the ideal overlap 

conditions and subtle imperfections of the pump and probe beams are the primary sources of 

uncertainty in our measurement. 

 

Table 3.1 One- and two-photon transition energies of trans-stilbene (in eV). 

Excited 
State 

Experimental Calculated CASPT2 
(major configuration)a 

Calculated 
SDCI/P 200b 

1Bu 4.03 3.77 (4au→5bg)c 

4.07 (4au→4bg)c 
4.31 
4.67 

 

1Ag 5.12 4.13 (3bg→4bg) 
4.95 (4au

2→4bg
2) 

5.30 (2bg→4bg) 

4.67 
5.23 
5.93 

 

1Bu 5.41 5.42 (3au→4bg) 
5.42 (4au→5bg) 
5.46 (2au→4bg) 

5.80 
6.27 
6.60 

 

1Bu 6.14 5.95 (3au→5bg) 7.07 
 

1Ag 6.40  6.19 
7.05 
7.15 

a Ref. 52. b Ref. 29. c See Ref. 54 for a discussion about the correct ordering of the two lowest 

states. 

 

Our results for the lower energy band are in excellent agreement with degenerate 2PA 

cross sections in the range of 8-80 GM that were measured previously using various nonlinear 

techniques.29-32,55-58 Although the cross section is not necessarily the same for degenerate and 

nondegenerate excitation at the same total energy, we expect only small deviations in this case, 

because both pump and probe photons are individually nonresonant, and therefore resonance-

enhancement effects are negligible.  



 52 

Importantly, these are the first 2PA spectra of stilbene to be measured on a continuous 

energy scale, rather than point by point. This is also the first direct measurement of the 2PA 

spectrum. Previous measurements used indirect methods, such as two-photon fluorescence or 

thermal lensing, to measure the “action” cross section on a point-by-point basis while tuning the 

excitation laser across the spectrum.29-35 Even after applying a wavelength-dependent correction 

to obtain the two-photon absorption from the action cross section,32 point-by-point measurements 

are susceptible to variation of the pump beam conditions at each wavelength. By simultaneously 

measuring a broad range of the 2PA spectrum with a broadband probe pulse, our measurement is 

less sensitive to variations across the spectrum, and therefore provides a more accurate 

representation of the energy-dependence of the 2PA cross section. Notably, we do not observe 

vibronic structure in the 2PA bands, as was previously reported.29,33,35 By recording the 

absorption cross section directly, our measurement is also independent of the wavelength-

varying fluorescence quantum yield.29,31-35 

The polarization dependence of the 2PA spectrum in the inset of Figure 3.1 confirms that 

only Ag-symmetry states contribute to the 2PA spectrum below 6.5 eV. The polarization ratio 

σpara/σperp depends on the relative symmetry of the two transition dipole moments associated with 

a transition, and therefore reveals the overall symmetry of the transition.59-61 For molecules in the 

C2h point group, totally symmetric (Ag) transitions give a ratio ≥4/3, and nontotally symmetric 

(Bg) transitions give a ratio <4/3.59 The constant experimental polarization ratio of ~3 across the 

entire spectrum therefore indicates that only Ag-symmetry transitions are responsible for the 2PA 

bands below 6.5 eV. Our observation is consistent with the absence of calculated Bg-symmetry 

states within the range of our 2PA spectrum,29,62 as well as the constant polarization ratio for 

degenerate excitation comparing circular and linearly polarized light, σcirc/σpara, across the lowest 
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2PA band.29,31,33 Deviations from the planar equilibrium geometry play a negligible role in the 

spectrum of trans-stilbene in solution;31 therefore, the polarization ratio provides a good measure 

of the electronic symmetries of the two-photon accessible excited states. 

 

3.3.2 Excited-State Dynamics Following One- and Two-Photon Excitation 

Figure 3.2A shows the evolution of the transient absorption spectrum of trans-stilbene 

following excitation with one-photon at 310 nm (total energy of 4.0 eV). Consistent with earlier 

studies,9,13,16,19,63-65 the TA spectrum is dominated by an excited-state absorption (ESA) band 

centered near 585 nm and a weaker stimulated emission (SE) band near 365 nm. The asymmetry 

of the ESA band, including a weak shoulder near 550 nm, was previously assigned as a vibronic 

progression in the Sn←S1 transition.13,66-70 Both the positive ESA band at 585 nm and the 

negative SE band at 365 nm decay to the baseline on a timescale that is consistent with the 

previously reported lifetime of 69±11 ps for trans-stilbene in cyclohexane.11 We also observe 

very weak shifting and narrowing of the spectrum within the first 10-20 ps due to vibrational 

cooling in the excited state.13  

On the basis of previous interpretations of the excited-state dynamics of trans-

stilbene,9,15,16,19,63,64 we model the ps-scale relaxation following one-photon excitation with a 

sequential, two-step kinetic scheme.  

𝑆!∗
!! 𝑆!

!! 𝑆! 

The first species represents vibrationally excited stilbene in the first excited electronic 

state, S1
*, which relaxes to the thermally populated S1 state before returning to the ground 

electronic state. The TA signal is insensitive to the branching between cis and trans isomers 
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when returning to the ground state, because neither of the ground-state species absorb in the 

probe window. 

A global fit to the broadband TA data using this simple kinetic model gives time 

constants of (k1)–1 = 8±2 ps and (k2)–1 = 78±6 ps (95% confidence) for the two steps in the 

sequential relaxation. Although the excitation at 310 nm deposits very little excess energy above 

the S1 band origin,71 we include the S1
* state in the model in order to obtain the best possible fits 

to the data and for consistency with the analysis at higher excitation energies. Species-associated 

spectra (SAS) obtained from the best fit to the transient absorption data for one-photon excitation 

at 4.0 eV are shown in the top panel of Figure 3.3. The slight narrowing and shifting of the ESA 

band between the first and second species is characteristic of vibrational cooling in the excited 

state.13,15,19  

The lower two panels of Figure 3.2 show the TA spectrum following two-photon 

excitation at 475 nm (total energy 5.2 eV) and 380 nm (total energy 6.5 eV), respectively. The 

TA signals are much weaker than for 1PE due to a substantially smaller cross section for two-

photon excitation, that is only partially offset by the higher concentration and more intense pump 

pulses. Additionally, the two-photon process depends quadratically on the excitation intensity, 

which amplifies small fluctuations of the pump pulse intensity and further increases the noise 

level in the 2PE experiments. As expected from the relative 2PA cross sections, exciting the 

lower-energy band at 5.2 eV with two photons produces a weaker TA signal than does exciting 

the higher-energy band at 6.5 eV. To compensate for the lower signal-to-noise ratio in the lower-

energy 2PE scan, we average three adjacent time points to obtain the TA spectrum in Figure 

3.2B. Figure 3.7 in the Appendix compares the ps-scale time evolution of the ESA and SE bands 

for all three excitation pathways. 
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Figure 3.2 Transient absorption spectra of trans-stilbene following one-photon excitation at 310 

nm (A), two-photon excitation at 475 nm (B), and two-photon excitation at 380 nm (C). The 

spectra in part B are averaged over three adjacent time points in order to improve the signal-to-

noise ratio. 
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Figure 3.3 Species-associated spectra (SAS) from global fits to the transient absorption data 

using the sequential kinetics models described in the text. Excitation with one-photon of 310 nm 

(A), excitation with two photons of 475 nm (B), and excitation with two photons of 380 nm (C). 

 

Despite the lower signal-to-noise ratio for the two-photon excitation experiments, we 

clearly observe additional spectral evolution on a timescale of 1-2 ps that is not observed 

following one-photon excitation into the lowest-energy absorption band. In order to model the 
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additional spectral evolution, we add an extra species to the sequential kinetic model to represent 

a precursor to S1
*.  

𝑆!∗∗
!! 𝑆!∗

!! 𝑆!
!! 𝑆! 

The lower two panels of Figure 3.3 show the SAS obtained from global fits to the ps-scale 

transient absorption data using this four-state model. The additional step in the relaxation reveals 

spectral narrowing (primarily on the high-energy side of the ESA band) with time constants of 

1.9±1.2 ps and 1.5±0.3 ps following 2PE at 5.2 and 6.5 eV, respectively. In both cases, the initial 

relaxation is followed by two slower steps that occur on the same timescales as the relaxation 

following 1PE.  

The similar spectra of all three species in the 2PE experiments (i.e. S1
**, S1

*, and S1) 

suggest that S1
** represents another vibrationally excited state of S1. Therefore, we propose that 

S1
** represents a highly nonstatistical distribution of vibrational energy in S1 following rapid 

(sub-ps) internal conversion from the initially excited state, Sn. Intramolecular vibrational 

redistribution (IVR) produces a more statistical distribution of vibrational energy, represented by 

S1
*, within the next 1-2 ps. The red-shift and broadening of the S1

* spectrum is significantly more 

pronounced for excitation to the higher-lying states than it is following 1PE at 310 nm, because 

of the larger amount of excess energy deposited into the molecule. The ~8 ps relaxation time of 

S1
* is consistent with vibrational cooling (VC) of the hot excited state.9,19,63,64,71 Both the 

vibrational cooling time and the ~80 ps excited-state (ES) lifetime of S1 are consistent with the 

1PE result. Based on this picture, we re-label the time constants from the two kinetic models to 

reflect the underlying process in each step (i.e. τIVR, τVC, and τES). Table 3.2 summarizes the time 

constants for all three excitation energies.  
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Table 3.2 Time constants for intramolecular vibrational relaxation (τIVR), vibrational cooling 

(τVC), and relaxation of the excited state (τES) of trans-stilbene from global fits to the transient 

absorption spectra using sequential kinetic models.a 

 τIVR / ps	 τVC / ps	 τES / ps 
1PE (4.0 eV)	 – 7.6 (1.8)	 78 (6)	
2PE (5.2 eV)	 1.9 (1.2)	 6.2 (2.5)	 83 (17)	
2PE (6.5 eV)	 1.5 (0.3)	 9.3 (1.5)	 82 (5)	

a Values in parentheses are estimated uncertainties at 95% confidence. The wavelength-

dependent amplitudes associated with each time constant are available as decay associated 

spectra (DAS) in Figure 3.8 of the Appendix. 

 

We see evidence of the faster Sn→S1 electronic relaxation on a sub-ps timescale, as shown 

in Figure 3.4. The figure compares the evolution of the transient absorption spectrum within the 

first 600 fs following one- and two-photon excitation of trans-stilbene. The most obvious 

difference between the two transient spectra is a new, short-lived absorption band in the higher-

energy region of the spectrum following 2PE. The short-lived absorption band precedes the 

formation of the 585-nm ESA band following two-photon excitation (Figure 3.4B), whereas the 

rise of the 585-nm ESA band is instrument-limited following one-photon excitation (Figure 

3.4A). A delayed onset of the S1 excited-state absorption and stimulated emission bands was also 

observed by Kovalenko et al.13 following one-photon excitation into the second absorption band 

at 226 nm, therefore we interpret the delayed appearance of the 585-nm ESA band as relaxation 

from the initially excited electronic state Sn to the vibrationally hot S1
**.  
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Figure 3.4 Transient absorption spectra of trans-stilbene at early time delays following excitation 

with one-photon at 310 nm (A) and two-photons at 380 nm (B). The black arrows show the 

rising excited-state absorption signal up to a delay of 100 fs. Note that the rise in the ESA band is 

complete with the instrument response time of ~75 fs in Part A, but the signal continues to rise 

for several hundred fs in Part B. The thin dashed line in part B is the scaled two-photon 

absorption spectrum, and therefore represents an upper limit for the 2PA contribution to the 

transient absorption signal at 0 ps delay (black line). 

 

Figure 3.5 shows the temporal evolution of the sub-ps transient absorption signals at 

several probe wavelengths. Following two-photon excitation the short-lived TA signal at 400 nm 

decays within ~100 fs, with a weak tail extending to a few hundred fs. The fleeting transient 

absorption signal is at least partially due to ESA from an electronic state above S1, as discussed 
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below. The initial decay of this band is comparable to the instrument response time of ~75 fs 

(FWHM), reflecting a very short lifetime for the higher-lying electronically excited state. The 

slower decaying tail at 400 nm, which matches the rise at 600 nm, could be either an 

intermediate electronic state, or a very nonstatistical distribution of vibrational energy in S1 that 

precedes even S1
**.  

 

 

Figure 3.5 Evolution of the transient absorption of trans-stilbene at early time delays following 

excitation with one-photon at 310 nm (A) and two-photons at 380 nm (B). Each transient is 

averaged over an ~13 nm range of probe wavelengths (11 adjacent pixels) to improve the signal-

to-noise. The dashed line in Part B is the instrument response function for the two-photon 

excitation experiment, based on the coherent Raman response of the solvent at 425 nm. 
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Nonresonant two-photon (pump + probe) absorption could also contribute to the short-

lived TA signal within the instrument response time. However, the spectral shape of the TA 

feature in Figure 3.4B is inconsistent with the broadband 2PA spectrum in Figure 3.1. Most 

notably, the short-lived TA band decreases monotonically across the spectrum, with no evidence 

of the 2PA minimum at 5.6 eV. The 2PA minimum would be observed at a probe wavelength of 

530 nm in the case of the 380-nm pump (i.e. 3.3 eV pump + 2.3 eV probe), as shown by the 

dashed line in Figure 3.4B. The 2PA signal cannot exceed the total TA signal at any single 

wavelength; therefore, the dashed line represents the upper limit of the signal due to nonresonant 

two-photon (pump + probe) absorption, and indicates that the ESA of an electronically excited 

state is responsible for at least a majority of the time-zero TA signal in the region 450-600 nm.72 

The isosbestic point near 500 nm further supports the picture of a sequential population decay 

from Sn to S1
** following 2PE at 6.5 eV.  

The situation is less clear following 2PE at 5.2 eV, due to the lower signal-to-noise ratio, 

and because the Raman response of the solvent induced by 475-nm pump light overlaps a 

broader region of the transient absorption spectrum. However, subtraction of the solvent signal 

(see the Appendix) indicates that there is probably a similar short-lived ESA band in that case, as 

well. Therefore, the sub-ps evolution of the TA spectrum reveals internal conversion from a 

higher-lying electronic state (or states) and the formation of the highly vibrationally excited S1
** 

following 2PE at both excitation energies. 

 

3.4 Discussion 

One- and two-photon absorption spectroscopy reveals a great deal of information about 

the electronic structure of trans-stilbene. The one- and two-photon spectra are complementary, 
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because different transitions are allowed in the two cases based on parity selection rules and the 

C2h symmetry of the planar molecule. The one-photon spectrum of trans-stilbene has been 

discussed widely,29,34,51,52 therefore we describe primarily the 2PA spectrum. We observe two 

distinct, broad transitions near 5.1 and 6.4 eV, respectively. These two bands represent the two 

excited electronic states that we access in the transient absorption experiments.  

As a first step toward identifying the two-photon-accessible excited states, the 2PA 

polarization ratio (Figure 3.1, inset) indicates that only Ag-symmetry states contribute to the two-

photon spectrum below 6.5 eV. Calculations show that there are several two-photon accessible 

states with Ag symmetry in the region of our experiment.21,22,29,52,62,73-75 Although we compare 

our experimental transition energies with the CASPT2 calculations by Molina et al.,52 those 

authors did not report 2PA intensities; therefore, we look to lower-level configuration interaction 

calculations to help identify which states contribute to the 2PA spectrum (see Table 3.1). The 

latter calculations suggest that the lowest-lying Ag-symmetry state has a much smaller 2PA cross 

section than higher-lying states of the same symmetry.29,76 The calculations are consistent with 

earlier observations of a very weak 2PA band near 4.1 eV that lies below the range of our 2PA 

spectrum.29,35 In contrast, the second lowest-energy state with Ag-symmetry has a larger two-

photon absorption cross section.29 This transition has significant doubly excited character 

(4au
2→4bg

2),52 and was previously attributed to the 2PA band near 5.1 eV. However, the identity 

of the higher-energy 2PA band near 6.4 eV is less clear. The calculations do not reveal a single 

electronic state that is responsible for this more intense, higher-lying two-photon transition, but 

rather several states that may contribute (see Table 3.1).29 Given the high density of electronic 

states and significant configurational mixing, we expect strong coupling among these higher-

lying electronic states.  
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The state diagram in Figure 3.6 provides a reference point for describing the excited-state 

dynamics in the context of the one- and two-photon absorption spectroscopy of trans-stilbene. 

The schematic energy-level diagram in the figure also incorporates information from electronic 

structure calculations,25,27,77 as well as previous dynamics measurements.9-13,15-19,63-65 The 

dynamics following excitation into the first absorption band have been discussed widely; 

however, the dynamics following excitation to the higher-lying states have received much less 

attention.13,17,18,40  

 

 

Figure 3.6 Schematic diagram comparing potential energies curves for several excited states of 

trans-stilbene with the one- and two-photon absorption spectra from the current work and with 

calculated transition energies from Ref. 52. 

 

Two-photon excitation at 5.2 eV accesses a state with significant doubly excited (π*π*) 

character, and therefore correlates diabatically to the ground state of the cis isomer. Further 
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evidence to support the preferential correlation to the cis isomer are 2PE quantum yield 

measurements which revealed a 4:1 ratio of the cis and trans isomers following 2PE of trans-

stilbene with 532 nm light.37,38 Despite an electronic configuration that is diabatically similar to 

the ground state of the product, the ps-scale transient absorption spectroscopy and excited-state 

lifetimes following 2PE of this state are identical to the ps-scale results following 1PE of the 

lowest (π*π) excited state at 4.0 eV. Similar ps-scale dynamics are also observed following two-

photon excitation to a higher-lying state at 6.5 eV. The similar result for all three excitation 

energies indicates that the isomerization reaction follows an analogous path on the adiabatic S1 

state, regardless of the initial excitation level. In other words, rapid electronic relaxation from the 

higher-lying excited state puts the molecule on S1 before crossing a barrier along the torsional 

coordinate that inhibits motion to the S1–S0 conical intersection. That is to say, the molecule 

probably does not reach a perpendicular geometry in the higher-excited state before relaxing 

onto S1.  

Fast electronic relaxation from the higher-lying states to the lowest excited state is 

predicted by Kasha’s rule. Surprisingly, however, the excess vibrational energy following 

internal conversion to S1 does not efficiently couple into the reaction coordinate. There are two 

explanations for this behavior. Either IVR is incomplete, and therefore the excess energy does 

not accelerate the barrier crossing before dissipating to the solvent, or else IVR is complete, but 

there is simply too little energy overall to accelerate the reaction substantially. Assuming 

equipartition, 2PE at 5.2 eV deposits only ~31 cm–1 of excess energy per mode and ~177 cm–1 

for 2PE at 6.5 eV. Given the observation of rapid IVR in the first 1-2 ps following internal 

conversion to the S1 state, the second situation seems more likely. 



 65 

The 1-2 ps IVR process that we observe following two-photon excitation indicates an 

added degree of structural relaxation compared with one-photon excitation to S1 directly. The 

highly nonstatistical distribution of vibrational energy in S1
** is a result of the internal conversion 

from a higher-lying electronic state. Although that excess vibrational energy does not couple 

efficiently into the torsional motion of the molecule, the center wavelength of the ESA band 

temporarily shifts to lower energy in going from S1
** to S1

*, and then shifts back upon cooling to 

the S1 equilibrium state (see the SAS in Figure 3.3). This behavior provides a sensitive probe of 

the energy disposal by probing the transient population of one or a few specific vibrational 

modes of the molecule that are responsible for changing the Franck-Condon overlap with the 

higher-lying state in the transition. For example, similar effects are responsible for coherent 

oscillations of the 585 nm ESA band within the first ps following 1PE (see Figure 3.5), which 

reveals an in-plane C=C–Ph bending motion on the S1 excited state.78 Bao and Weber observed 

coherent oscillations in a different mode that they assigned as torsional motion of the phenyl 

groups following excitation in the gas phase with one-photon at 5.93 eV.17,18 In contrast, we do 

not observe any coherent oscillations following 2PE at 5.2 or 6.5 eV. Either the very short 

electronic lifetimes lead to rapid dephasing, or else electronic spectroscopy is simply not 

sensitive to the specific motions that are induced by excitation to these particular excited states. 

Electronic spectroscopy is a relatively insensitive measure of the vibrational dynamics, therefore 

transient Raman spectroscopy65,71,79-85 could provide additional insight following excitation to 

the higher-lying states of trans-stilbene.  

 The transient absorption spectroscopy measurements also reveal a very short-lived 

excited state species following excitation to the higher-lying states. Unfortunately, we are not 

able to clearly resolve the ESA spectra in order to distinguish different states that may be 
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involved in the relaxation pathways following 2PE. Nevertheless, the TA spectra provide a direct 

probe of the timescales for electronic relaxation from the higher-lying states to S1. Consistent 

with Kasha’s rule, internal conversion to S1 occurs very rapidly, even though the molecule starts 

in a state with different electronic symmetry. One possible pathway to explain the similar short-

lived ESA spectra for the two excitation energies is that the molecule relaxes from the initially 

excited state to the lowest-lying Ag-symmetry state in <75 fs, and then relaxes to S1
** on the 

~100 fs timescale, in which case the ESA contribution that we observe in Figure 3.4B probes the 

population of the lowest-energy Ag state.  

 

3.5 Conclusions 

Complementary two-photon absorption spectroscopy and two-photon excitation 

measurements give new insight into the dynamics of the higher-lying excited states of trans-

stilbene in solution. Spectroscopy is a fundamental tool for determining the excited-state 

energies and identifying the initial excited states that are populated by one- and two-photon 

transitions. For example, the absorption of a single photon at 310 nm excites the molecule 

slightly above the origin of the lowest excited state, depositing a small amount of excess 

vibrational energy that dissipates to the solvent in ~8 ps.71 The molecule then returns to the 

ground electronic state in ~80 ps by passing through a conical intersection with roughly 1:1 

branching between the cis and trans isomers.4 Two additional relaxation processes are observed 

within the first few ps following excitation with two-photons to higher-lying excited-states. 

Internal conversion from the initially excited state, Sn, to a nonequilibrium S1
** state occurs 

within ~100 fs, followed by rapid IVR (1–2 ps). The ensuing dynamics are exactly the same as 

the case of one-photon excitation.  
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Higher-lying excited states are a frontier in the field of chemical dynamics, because those 

states present significant challenges for both experiment and theory. We hope that our 2PA and 

TA measurements will stimulated renewed computational interest in the higher-lying states of 

trans-stilbene and other model systems by providing new spectroscopic benchmarks for high 

level calculations of the transition energies and intensities of two-photon allowed states, as well 

as experimental evidence of the electronic and nuclear relaxation dynamics. Additional 

experimental studies with better time resolution or more sensitive probes of the vibrational 

dynamics will provide further insight into the structural relaxation and isomerization dynamics of 

trans-stilbene following excitation to the higher-lying excited states.  

 

3.6 Appendix 

 The additional figures include kinetic traces showing the evolution of the excited-state 

absorption (ESA) and stimulated emission (ES) bands for all three excitation energies, decay-

associated spectra (DAS) from global fits to the data using a sum of exponentials, the time-

dependent populations of the species-associated spectra (SAS) in Figure 3.3, the sub-ps evolution 

of the transient absorption (TA) spectrum following two-photon excitation (2PE) at 475 nm, and 

power dependence measurements for the 2PE experiments. 
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Figure 3.7 Evolution of the transient absorption of trans-stilbene in cyclohexane following one 

photon excitation at 310 nm (A), two photon excitation at 475 nm (B), and two photon excitation 

at 380 nm (C). The open markers follow the transient signal at 585 nm, the maximum of the S1 

excited-state absorption band. The closed markers follow the transient signal at 365 nm, the 

region of the S1 stimulated emission band. The solid lines are from the global fits to the data 

using the kinetic models described in the main text. The fits begin at ~200 fs delay in this case to 

avoid complications from coherent contributions to the signal when the pump and probe overlap 

in time. We treat the sub-ps region in detail in the mail text (Figures 3.4 and 3.5). The insets 

show the transient absorption signals at shorter delay times. 
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Figure 3.8 Decay-associated spectra (DAS) for trans-stilbene following excitation with one 

photon of 310 nm (A), two photons of 475 nm (B), and two photons of 380 nm (C). The DAS are 

extracted from best fits to the broadband transient absorption spectra in Figure 3.2 of the main 

text using a sum of exponentials. The exponentials are held constant across the spectrum, 

allowing only the amplitudes to vary. The DAS provide complementary information to the SAS, 

except that the latter applies to a specific kinetic model, whereas the DAS assume no connection 

between transient species. 
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Figure 3.9 The populations of excited-state species of trans-stilbene from global fits to the 

kinetic models in the main text following excitation with one photon at 310 nm (A), two photons 

at 475 nm (B), and two photons at 380 nm (C). These populations follow the evolution of the 

SAS in Figure 3.3 of the text. 
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Figure 3.10 Evolution of the transient absorption at early time delays following two-photon 

excitation of trans-stilbene at 475 nm (A). Subtraction of the coherent Raman response of the 

solvent reveals the signal due to the solute alone (B). For comparison, the figure also shows the 

background solvent signal for cyclohexane irradiated under the same conditions (C). Each 

transient is averaged over a probe wavelength range of ~13 nm (11 adjacent pixels) in order to 

improve the signal-to-noise ratio. The early time dynamics have the same behavior as observed 

following excitation with two photons at 380 nm (see text, Figure 3.5). 
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Figure 3.11 Dependence of the transient absorption signal on the energy of incident pump pulses 

for irradiation of trans-stilbene in cyclohexane. The solid lines are the linear fits to the log-log 

data. The slope is close to 2 for irradiation at wavelengths of 475 nm (red) and 380 nm (blue), 

indicating a two-photon-induced excitation in both cases. 
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4. Two-Photon Absorption Spectroscopy of trans-Stilbene, cis-Stilbene, and 

Phenanthrene 

4.1 Introduction 

Stilbene has been extensively studied experimentally and computationally; making this 

compound a prototypical system for studying electronic excited states.1-5 Stilbene is a simple 

photochromic molecule that undergoes reversible photoisomerization and photocyclization 

reactions.2,3,5,6 Trans-stilbene photoisomerizes to cis-stilbene and following further irradiation 

cyclizes to 4a,4b-dihydrophenanthrene, which can easily oxidize irreversibly to phenanthrene.  

 

 

Figure 4.1 Stilbene photoisomerization and photocyclization reactions. 

 

These stilbene compounds are a convenient series of structurally related compounds to 

compare experimental and computational excited-state energies, absolute two-photon absorption 

(2PA) cross sections, and polarization ratios. This series of compounds is structurally similar, but 

each molecule belongs to a different symmetry point group. Specifically, trans-stilbene belongs 

to the C2h point group, cis-stilbene to C2, and phenanthrene to C2v. The structural symmetry of 

these molecules determines the electronic symmetry of the one- and two-photon accessible 
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excited states, whereas the absolute 2PA cross section is a measure of the strength of two-photon 

accessible transitions. Previous experimental and computational measurements of the absolute 

2PA cross sections of the stilbene series are inconsistent with each other, which highlights the 

need for new experimental and computational measurements of the excited-state energies, 

absolute 2PA cross sections, and polarization ratios.  

In this chapter we present the one-photon absorption and broadband two-photon 

absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene. We also report the 

absolute 2PA cross sections of these molecules. Measuring the broadband 2PA spectra back-to-

back for this series of structurally similar molecules reduces uncertainties of the experimental 

parameters between measurements. We compare our experimentally measured excited-state 

energies and 2PA cross sections with calculations found in the literature. A series of new 

calculations are in progress by one of our collaborators using EOM-EE-CCSD (equation-of-

motion for excitation energies CC with single and double substitutions)7 in the Q-Chem 

electronic structure program.8,9 Our collaborators are calculating the two-photon absorption cross 

sections, polarization ratios, and transition energies for this series of molecules to compare with 

our experimental measurements.7 Our experimental two-photon absorption spectroscopy for this 

series of molecules serve as a benchmark for high-level calculations of the excited-state energies, 

polarization ratios, and 2PA cross sections.  

 

4.2 Experimental Methods 

 We use a broadband pump-probe technique to measure the two-photon absorption (2PA) 

spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene in solution. The details of the 

broadband 2PA measurement have been discussed previously,10-15 and are only briefly described 
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here. The 2PA spectrum is measured by spatially and temporally overlapping a nonresonant 

pump pulse with a broadband probe pulse within the sample and then measuring the wavelength-

dependent attenuation of the broadband probe pulse. The pump and probe pulses are generated 

from an ultrafast Ti:Sapphire laser. An optical parametric amplifier generates tunable pump 

pulses in the visible-UV. The broadband probe pulse is generated by focusing fundamental 800 

nm into a 1 cm quartz cuvette of water producing a white light continuum ranging from 750–350 

nm.16,17 We control the relative orientation of the linearly polarized pump and probe beams with 

a λ/2 waveplate in the pump beam. After the sample the transmitted probe beam is dispersed 

through a transmission grating onto a 256-element photodiode array for shot-to-shot detection. 

An optical chopper wheel blocks every other pump pulse before the sample for active 

background subtraction.  

 Two-photon absorption occurs when the total energy of one pump and one probe photon 

is resonant with a two-photon allowed transition. Importantly, neither photon is absorbed alone 

by the solute. The pump and probe diameters are typically ~200 and ~70 µm, respectively. The 

average pump energy is usually ~100 nJ/pulse. The 2PA measurements have a resolution of 

~0.14 eV, limited by the convolution of the bandwidth of the pump pulse and the resolution of 

the spectrograph. The samples for the 2PA measurements are 0.5 M solutions of trans-stilbene, 

cis-stilbene, or phenanthrene  (all from Sigma-Aldrich, >96%) in chloroform (Sigma-Aldrich, 

≥99%) contained in a 1 mm quartz cuvette.  

 

4.3 Results and Discussion 

 Figure 4.2 compares the one- and two-photon absorption spectra of trans-stilbene, cis-

stilbene, and phenanthrene. The one- and two-photon absorption spectra show distinctly different 
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absorption bands when exciting with one versus two photons. The linear absorption spectrum of 

trans-stilbene has three absorption bands near 4.1, 5.4, and 6.1 eV, while the two-photon 

absorption (2PA) spectrum has two bands near 4.2 and 5.1 eV. For cis-stilbene the linear 

absorption spectrum has bands near 4.4 and 5.5 eV, while the 2PA spectrum has bands near 4.5 

and 5.2 eV. The linear absorption spectrum for phenanthrene has two strong bands with 

significant vibronic structure near 4.9 and 5.8 eV, while the 2PA spectrum has two strong bands 

near 4.8 and 5.5 eV.  

Phenanthrene has the most clearly resolved vibronic structure of the three molecules. The 

observed vibronic structure in the linear absorption spectrum is expected since phenanthrene is a 

rigid, planar molecule.18 Despite the vibrational structure of the one-photon absorption (1PA) 

spectrum, no vibronic bands are resolved in the 2PA spectrum of phenanthrene (Figure 4.2F). 

The 2PA measurements have a resolution of ~0.14 eV, which is sufficient to resolve vibronic 

structure similar to that observed in the linear absorption spectrum, although with some 

broadening. The 1PA spectrum has a resolution of ~0.03 eV. Our experimental transition 

energies and absolute 2PA cross sections are summarized in Table 4.1.  

 

Table 4.1 Summary of experimental 2PA transition energies and cross sections.a,b 

Trans-Stilbene Cis-Stilbene Phenanthrene 
Energy (eV) σ2PA (GM) Energy (eV) σ2PA (GM) Energy (eV) σ2PA (GM) 

4.3 4.3 ± 1.8 4.4 1.3 ± 0.6 3.8 0.4 ± 0.2 
5.1 32 ± 13 5.2 10 ± 4 4.0 0.2 ± 0.1 

 40 ± 16c   4.8 4.7 ± 1.9 
6.4 270 ±110c   5.5 10 ± 4 

a Uncertainties are estimated 95% confidence limits. b Two-photon absorption cross sections are 

measured in GM (1 GM = 10–50 cm4·s·molecule–1·photon–1). c From Ref. 10. 
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Figure 4.2 One-photon absorption (1PA) spectra of (A) trans-stilbene, (B) cis-stilbene, and (C) 

phenanthrene in cyclohexane. Two-photon absorption (2PA) spectra of (D) trans-stilbene, (E) 

cis-stilbene, and (F) phenanthrene in chloroform. The 2PA spectra are measured with parallel 

(dark blue line) and perpendicular (light blue line) relative polarization of the pump and probe 

beams. The red sticks in the top panels represent the CASPT2 calculated one-photon excited 

state transition energies and oscillator strengths. The black sticks in the bottom panels represent 

the CASPT2 calculated two-photon excited state transition energies but the heights are all the 

same because the two-photon intensities were not reported.19-21 

 

The two-photon absorption cross section of a molecule depends on the relative 

polarization of the two photons being absorbed, therefore we obtained the 2PA spectra for both 

parallel (σ2PA
para) and perpendicular (σ2PA

perp) relative polarization of the pump and probe beams 

(Figure 4.2D–F). The polarization dependence of a given 2PA band depends on the symmetry of 

the transition, with totally symmetric transitions giving a ratio σ2PA
para/σ2PA

perp ≥ 4/3 and 

nontotally symmetric transitions giving a ratio σ2PA
para/σ2PA

perp < 4/3. Figure 4.3 shows that the 
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polarization ratios are 2–3 across the entire 2PA spectrum for each molecule, indicating that the 

two-photon transitions in this energy range primarily access totally symmetric excited states. 

Trans-stilbene belongs to the C2h point group, cis-stilbene to C2, and phenanthrene to C2v, so the 

totally symmetric transitions access states of Ag-symmetry, A-symmetry, and A1-symmetry, 

respectively. Slight variations of the polarization ratios across each spectrum are consistent with 

weaker, underlying contributions to the 2PA spectra near 4.2 eV for trans-stilbene, and 4.5 eV 

for both cis-stilbene and phenanthrene, as highlighted in Figure 4.3. In other words, the decrease 

in the polarization ratio at lower energies may be due to the two-photon allowed state having a 

different symmetry than the 2PA states at higher energies. Calculations of the excited-state 

energies, the two-photon absorption cross sections, and the character of those states are in 

progress to determine which states contribute to the decrease in the polarization ratio.7  

Figure 4.4 shows the one- and two-photon absorption spectra on an expanded scale, 

where the weaker 2PA bands are more evident. The onset of the 2PA spectra for trans- and cis-

stilbene is at about 4.0 eV and for linear excitation the first absorption band starts near 3.6 eV. 

The relative intensities of the lowest one- and two-photon accessible states are different for these 

molecules, indicating different states are accessed following one- and two-photon excitation. In 

contrast, phenanthrene has a weak 2PA contribution ranging from 3.6–4.0 eV, while the lowest-

lying linear absorption band is weak and extends from 3.5–3.8 eV22. The lowest energy one- and 

two-photon absorption bands measured for phenanthrene may be associated with the same 

transition because this compound is noncentrosymmetric, so the molecule has no strict parity 

selection rules or vibronic symmetry selection rules. The previously calculated oscillator strength 

of the lowest-lying singlet transition is <0.001, indicating this state has a very weak electronic 

transition.21 
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Figure 4.3 Two-photon absorption (2PA) polarization ratios (σ2PA
para/σ2PA

perp) with the respective 

broadband 2PA spectra measured at parallel and perpendicular polarization for (A) trans-

stilbene, (B) cis-stilbene, and (C) phenanthrene. 
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Figure 4.4 Expanded view of the absorption spectra showing the onset of one- and two-photon 

absorption for (A) trans-stilbene, (B) cis-stilbene, and (C) phenanthrene. These are the same 

spectra shown in Figure 4.2. 

 

Calculated transition energies have been reported previously for trans-stilbene,19,23-38 cis-

stilbene,20,27-29,31-37,39 and phenanthrene18,21,40 using various levels of theory. Merchan and 

coworkers reported some of the most comprehensive computational work on the full series of 

molecules using CASPT2 and CASSCF.19-21 The character of the excited states, transition 

energies, and oscillator strengths of the entire molecular series are reported in Table 4.2.19-21 The 
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one-photon allowed transition energies and oscillator strengths calculated with CASPT2 are 

plotted in Figure 4.2A–C as red sticks.19-21 In Figure 4.2D–F the black sticks are the calculated 

two-photon allowed transition energies using CASPT2, but the heights of the sticks are not 

representative of two-photon transition strengths because the two-photon intensities were not 

calculated for these measurements.19-21 The calculated excited-state energies of one- and two-

photon accessible transitions are in good agreement with our experimental spectroscopic 

measurements, as well as the oscillator strengths of one-photon transitions (Figure 4.2).  

For trans-stilbene the two-photon accessible states have Ag-symmetry because trans-

stilbene is centrosymmetric. Only a two-photon absorption can access excited states with gerade 

symmetry, while one-photon absorption accesses excited states with ungerade symmetry. The 

calculated lowest-lying Ag-symmetry state for trans-stilbene is at 4.13 eV,19 which closely 

matches our experimental 2PA band near 4.2 eV.  

Cis-stilbene is noncentrosymmetric, therefore the excited electronic states are accessible 

with one or two photons. The calculated lowest energy A-symmetry state of cis-stilbene is at 

4.45 eV,20 which corresponds well with the lowest-lying 2PA band we observe near 4.5 eV.  

Phenanthrene is also a noncentrosymmetric molecule, so the excited state transitions are 

one and two photon accessible. The two lowest A1-symmetry states calculated for phenanthrene 

are at 3.42 and 4.56 eV.21 The lowest energy transition is outside of the range of our 

measurement but the second transition matches our experiment. However, the 2PA band that we 

measure ranging from 3.5–3.8 eV does not correspond to any calculated two-photon electronic 

transition. The measured 2PA transition may be forbidden by electronic symmetry but may be 

weakly allowed via vibronic coupling.  

 



 92 

Table 4.2 Calculated vertical excitation energies and oscillator strengths from literature.19-21 

Trans-Stilbenea Cis-Stilbeneb Phenanthrenec 

State CASSCF 
(eV) 

CASPT2 
(eV) 

Osc. 
Str. 

State CASSCF 
(eV) 

CASPT2 
(eV) 

Osc. 
Str. 

State CASSCF 
(eV) 

CASPT2 
(eV) 

Osc. 
Str. 

11Bu 5.42 3.77 0.038 11B 5.79 4.11 0.007 21A1(1Lb) 4.25 3.42 0.000 
21Bu 6.05 4.07 0.723 21A 5.64 4.45 0.004 11B2 5.68 4.26 0.000 
21Ag 5.41 4.13  21B 6.57 4.61 0.334 21B2(1La) 6.14 4.37 0.038 
31Ag 5.92 4.95  31B 8.14 5.46 0.406 31A1 6.36 4.56 0.268 
41Ag 7.41 5.30  31A 6.79 5.56 0.007 31B2(1Ba) 6.94 4.81 1.218 

11Au(3s) 5.54 5.33 0.001 41A 7.61 5.61 0.118 41A1(1Bb) 6.57 5.00 0.011 
31Bu 7.96 5.42 0.371 41B(3s) 6.11 5.78 0.013 11B1(3s) 5.23 5.42 0.002 
41Bu 7.76 5.42 0.117 51B 7.89 5.96 0.029 41B2 7.22 5.49 0.003 
51Bu 7.18 5.46 0.019 61B 8.32 6.00 0.057 51A1 6.81 5.75 0.000 

11Bg(3px,3py) 5.73 5.53  71B 8.37 6.00 0.266 61A1 7.14 5.75 0.012 
21Bg(3px,3py) 5.94 5.69  81B(3pz) 6.22 6.03 0.005 51B2 7.56 5.78 0.005 

61Bu 8.36 5.95 0.524 51A(3px,3py) 6.25 6.09 0.001 61B2 8.18 5.92 0.333 
13Bu 3.02 2.56  61A(3px,3py) 6.35 6.18 0.002     

    13B 3.61 3.16      
a From Ref. 19.  b From Ref. 20.  c  From Ref. 21. 

 

 CASPT2 gives accurate one- and two-photon transition energies of the stilbene series and 

agrees well with our experimentally measured spectra.19-21 However, the two-photon absorption 

transition strengths, namely the absolute 2PA cross sections were not reported using CASPT2 

and only a limited number of absolute 2PA cross sections have been calculated using different 

levels of theory for trans-stilbene,38,41-50 cis-stilbene,39 and phenanthrene18,51. Even worse, the 

calculated absolute 2PA cross sections for these molecules vary by orders of magnitude between 

different levels of theory, and the polarization ratios were not reported for any of the calculated 

results. Consistent computational results are needed for comparison with our experimental 2PA 

cross sections and polarization ratios. Such calculations are in progress by our collaborator,7 and 

will provide consistent calculations of the excited-state energies, absolute 2PA cross sections, 

and polarization ratios. Conversely, our broadband 2PA spectroscopy measurements of trans-

stilbene, cis-stilbene, and phenanthrene provide a consistent set of benchmarks for comparing the 

calculated two-photon accessible excited-state energies, polarization ratios, and the 2PA cross 

sections.7,52  
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4.4 Conclusions 

 The broadband 2PA spectroscopy and the measured 2PA cross sections provide 

information about the two-photon accessible excited states of trans-stilbene, cis-stilbene, and 

phenanthrene. The spectroscopy of this series of molecules shows that different excited 

electronic states are accessed following one- and two-photon absorption for molecules with 

various symmetry point groups. The measured excited-state energies are in good agreement with 

the calculated energies using CASPT2.19-21 Unfortunately, the most complete set of calculations 

to date did not include 2PA intensities for comparison. Other calculations are inconsistent 

because the excited-state energies and the absolute 2PA cross sections vary by orders of 

magnitude depending on the computational method. The limited absolute 2PA cross sections 

available are inconsistent with our experimental measurements, highlighting the need for a 

consistent series of calculations to compare with our experimental results. The advantage of our 

consistent 2PA measurements is that these molecules are measured back-to-back, which reduces 

uncertainties of the experimental parameters between measurements. These 2PA spectroscopy 

measurements of this series of stilbene molecules provide a new consistent benchmark for 

further computational studies of two-photon accessible excited states, which includes excited-

state energies, polarization ratios, and 2PA cross sections.  
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5. One- and Two-Photon Absorption Spectroscopy and Quantum Yields of the 

Cycloreversion Reaction of a Photochromic Molecular Switch 

5.1 Introduction 

 Photochromic molecular switches, in particular, diarylethenes convert between open- and 

closed-ring isomers and the different isomers exhibit drastically different optical and electronic 

properties.1,2 Diarylethene derivatives are a widely studied group of photochromic molecules that 

are thermally stable and fatigue resistant.1,2 The properties of diarylethene derivatives make them 

ideal model systems to study higher-lying excited-state properties and dynamics. The 

electrocyclization reaction induced with UV light efficiently produces the closed-ring isomer in 

high yield, while visible light induces the cycloreversion reaction that has a much lower 

quantum.3,4  

 Diarylethene derivatives are used in molecular applications, which range from molecular 

electronics to biological imaging to optical memories.1,2,5-7 In terms of optical memories or data 

storage applications, UV light is used to “write” data because of the efficient electrocyclization 

reaction that converts transparent molecules to their colored form and visible light 

nondestructively “reads-out” the data since the cycloreversion yield is low. To make these 

devices “erasable” the cycloreversion reaction yield needs to be selectively increased. Previous 

studies have observed a measureable increase in the cycloreversion reaction quantum yield by 

exciting the diarylethene molecules through a sequential two-photon excitation mechanism.1,2,8-13 

Diarylethene molecules have also been shown to undergo cycloreversion by a direct 

simultaneous two-photon excitation that may enhance the cycloreversion quantum yield.14-16  

 This chapter examines the spectroscopy and cycloreversion quantum yields following 

one- and two-photon absorption of 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclo-
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pentene (DMPT-PFCP). The broadband two-photon absorption (2PA) spectroscopy 

measurements reveal two-photon accessible states of the open- and closed-isomers. The 2PA 

cross sections of the closed-isomer are determined using broadband 2PA spectroscopy, as well as 

degenerate single-wavelength 2PA measurements. Separate measurements of the cycloreversion 

quantum yield (Φ) are measured following one- and two-photon absorption processes. We 

discuss the difference between the one- and two-photon absorption quantum yields and comment 

on possible mechanisms to explain the discrepancy.  

 

5.2 Experimental Methods 

5.2.1 One- and Two-Photon Absorption Spectroscopy 

 We implement an ultrafast pump-probe technique to measure the two-photon absorption 

(2PA) spectroscopy of DMPT-PFCP in solution. The 2PA spectroscopy technique is discussed 

elsewhere,17-22 and therefore is described here only briefly. A regeneratively amplified 

Ti:Sapphire laser (Legend Elite HE, Coherent) produces nonresonant pump and broadband probe 

pulses. The pump and probe pulses are overlapped temporally and spatially in the sample, and 

we measure the attenuation of the probe pulse, which is wavelength depend. Tunable pump 

pulses in the infrared-UV range are generated with an optical parametric amplifier and a white 

light continuum probe ranging from 1000–700 nm or 750–450 nm is generated in a 1 cm quartz 

cuvette of water.23,24 A λ/2 waveplate in the pump beam controls the relative orientation of 

linearly polarized pump and probe beams. After the probe beam passes through the sample the 

beam is dispersed onto a 256-element photodiode array for shot-to-shot detection and a chopper 

wheel blocks every other pump pulse for active background subtraction.  
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A two-photon allowed transition is accessed when the simultaneous absorption of one 

pump and one probe photon has a total energy resonant with the transition, while neither photon 

is independently resonant. The average energy of the pump light is 2–8 µJ/pulse and the 

diameters of the pump and probe beams are typically ~250 µm and ~80 µm, respectively. The 

samples for the 2PA measurements are in a 1 mm quartz cuvette filled with a 0.1 M solution of 

DMPT-PFCP (TCI America, >98.0%) in chloroform (Sigma-Aldrich, ≥99%).  

 The absolute 2PA cross section at a single wavelength is measured with the simultaneous 

absorption of two photons within the pump beam. For the single-wavelength measurements a 

small portion of the pump beam is used as a reference to determine the pump intensities at the 

sample and the other portion of the beam is transmitted through the sample. We record the 

intensity of every pump pulse to measure the reference and transmitted intensities simultaneously 

and to monitor laser fluctuations. A variable neutral density filter is used prior to splitting the 

pump beam to control the intensity at the sample. The transmittance through the sample as a 

function of the incident intensity is proportional to the two-photon coefficient, β. The absolute 

2PA cross section is then proportional to β as a function of sample concentration.   

 The samples for the single-wavelength measurements consist of a 1 cm quartz cuvette 

filled with 1 mL of a 0.1 M solution of DMPT-PFCP in chloroform and stirred continuously with 

a magnetic stir bar. The sample is irradiated on the order of several minutes to measure the 

change in transmitted light while varying the intensity, but not long enough to induce a 

measureable change in concentration. The pump beam, which is collimated, has a diameter of 

~300 µm (FWHM) across the entire 1 cm path length of the sample. The beam is collimated to 

prevent self-focusing and continuum generation23-25 at the maximum pulse energy of ~15 µJ.  
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5.2.2 One- and Two-Photon Cycloreversion Quantum Yields 

 The quantum yield (Φ) of the cycloreversion reaction of DMPT-PFCP is determined 

following both one- and two-photon excitation by measuring the change in concentration as a 

function of irradiation time under the appropriate conditions. The quantum yields following 

excitation with one and two photons are measured with a similar experimental setup as the 

single-wavelength measurement of the absolute 2PA cross section above. In these measurements 

the light is held at a constant intensity while the sample is irradiated up to several hours to allow 

for a measureable concentration change. The main difference between measuring the quantum 

yields following excitation with one or two photons is the peak intensity, which is inversely 

proportional to the square of the peak diameter. The one-photon excitation quantum yield 

measurements uses a peak intensity of ~4 GW·cm–2 with a beam diameter of ~600 µm (FWHM) 

and peak intensity increases to ~18 GW·cm–2 for the two-photon excitation measurement with a 

beam diameter of ~300 µm (FWHM), when using the same maximum pulse energy of ~15 µJ.  

The samples for the one-photon excitation quantum yield measurements use a 1 mL 

aliquot of 2.3×10–5 M DMPT-PFCP in cyclohexane (Sigma-Aldrich, >99%) held within a 1 cm 

quartz cuvette that is constantly stirring. For the two-photon excitation quantum yield 

measurements the samples are continuously stirring in a 1 cm quartz cuvette filled with 1 mL of 

0.1 M solution of DMPT-PFCP in chloroform.  

 

5.3 Results and Discussion 

5.3.1 One- and Two-Photon Absorption Spectroscopy 

Figure 5.1 shows the one-photon absorption (1PA) spectrum of the closed-ring isomer of 

DMPT-PFCP as a solid red line and red circles represent the broadband two-photon absorption 
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(2PA) spectrum. The 1PA spectrum has four distinct absorption bands that peak near 565, 375, 

290, and 200 nm.1,3,12,13 The broadband 2PA spectrum is measured over a narrower range than 

the 1PA spectrum and the range for the 2PA spectrum consists of 550–375 nm (total energy of 

2.2–3.3 eV). The 2PA spectrum has a strong two-photon allowed transition above ~3 eV, with 

the strongest transition at 3.3 eV, equivalent to a two-photon excitation at 750 nm.  

 

 

Figure 5.1 One- and two-photon absorption spectra of the closed-ring isomer of DMPT-PFCP. 

 

Five nonresonant pump wavelengths (1250, 1080, 980, 880, and 800 nm) with 1000–700 

nm probe light are used to generate the 2PA broadband spectrum of the closed-ring isomer of 

DMPT-PFCP. The broadband 2PA cross sections (σ2PA) are measured for the parallel and 

perpendicular polarizations of the pump and probe beams relative to each other. The polarization 

dependence for DMPT-PFCP, which belongs to the C2 point group, is consistent with totally 

symmetric two-photon allowed (A) transitions across the entire probing region.26-28 Table 5.1 

includes measured 2PA cross sections with the relative parallel polarization of the pump and 

probe beams across the broadband range and 2PA cross sections are reported in GM (1 GM = 
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10−50 cm4·s·molecule−1·photon−1).  

 

Table 5.1 Two-photon cross sections and quantum yields.a 

  σ2PA (GM) 
λ2PA (nm) Energy (eV) Broadband β, Single λ2PA 

750 3.3 107 (20) 37 (2) 
1000 2.5 9 (4) 17 (4) 
1160 2.1 20 (8) 29 (4) 

a The parentheses are the error, at 95% confidence. 

 

Figure 5.2 shows the 1PA and 2PA spectroscopy for the open-ring isomer of DMPT-

PFCP, which undergoes cyclization to produce the closed-ring isomer. The 1PA spectrum shows 

two absorption bands peaking near 270 and 200 nm.1,3,12,13 The 2PA broadband spectrum from 

4.0–5.8 eV of the open-ring isomer is measured with three pump wavelengths (520, 430, and 410 

nm) and 750–450 nm probe light. The broadband 2PA spectrum has an absorption band peak 

between the 1PA bands at 240 nm (total energy of 5.1 eV) and again has a polarization 

dependence consistent with accessing totally symmetric two-photon allowed (A) transitions. The 

remainder of this chapter focuses on the closed-ring isomer, which undergoes a cycloreversion 

reaction.  

The absolute 2PA cross section of the closed-ring isomer of DMPT-PFCP are measured 

following degenerate two-photon absorption at 1160, 1000, and 750 nm by measuring the two-

photon absorption coefficient, β, as a function of concentration. The β values are experimentally 

determined by fitting the transmittance data as a function of incident intensity (W·cm–2) with, 

 transmittance = !
!!
= !

!!!ℓ!!
        (1) 
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Figure 5.2 One- and two-photon absorption spectra of the open-ring isomer of DMPT-PFCP. 

 

 Here the incident intensity is I, the transmitted intensity is I0, and the path length is ℓ. 

Exciting the closed-ring isomer of DMPT-PFCP with 750 nm is resonant with both one- and 

two-photon transitions, so the additional one-photon absorption component needs to be 

accounted for when determining β. Including the one-photon absorption component Equation 1 

becomes,29-33  

 transmittance = !
!!
= !!!ℓ

!!!!!
!!!!!ℓ

!

        (2) 

Here the one-photon absorption coefficient is α, i.e. α = ln(10)·ε·c.  

From the variation of the measured β values versus concentration, we obtain the absolute 

2PA cross section at a single wavelength when including all intensity losses from α, β, and the 

solvent (see the Appendix). Table 5.1 compares the measured absolute 2PA cross sections at 

three different excitation energies with values from the broadband 2PA measurement. The 

absolute 2PA cross sections from both measurements are in agreement with one another by 

factor of <3 difference between the two methods.  
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5.3.2 One- and Two-Photon Cycloreversion Quantum Yields 

 The 1PA and 2PA spectroscopy reveal the energies of one- and two-photon accessible 

electronic excited states. The quantum yield (Φ) for the cycloreversion reaction of DMPT-PFCP 

is a measure of the number of molecules converted per number of photons absorbed.  

 Φ = !"#$%&#$' !"#$%&'%(
!"#$#%& !"#$%"&'

         (3) 

The quantum yield following one-photon excitation (Φ1PA) is determined following a one-photon 

absorption (1PA) within the two lowest energy absorption bands. The wavelengths used to 

induce the 1PA conversion to determine the 1PA quantum yield include 750, 690, 600, 580, 550, 

500, 470, and 375 nm. A representative 1PA quantum yield measurement that depicts the 

reference and transmitted light through the DMPT-PFCP sample is shown in the Appendix. The 

summation of the difference between the reference and transmitted energies is proportional to the 

number of photons absorbed by the sample, which is inversely proportional to the 1PA quantum 

yield. Table 5.2 and Figure 5.3 give the measured 1PA quantum yield across the two lowest 

energy absorption bands using this method. Figure 5.3 shows that the 1PA quantum yield is 

essentially constant at ~1.5% across the two lowest energy absorption bands, which is the same 

behavior observed by Irie and coworkers across the lowest energy absorption band.4  

 

Table 5.2 One-photon extinction coefficients and quantum yields.a 

λ1PA (nm) Energy (eV) ε1PA (103 M-1cm-1) Φ1PA (%) 
375 3.3 10.3 1.7 (0.4) 
470 2.6 2.4 1.9 (0.3) 
500 2.5 5.0 1.9 (0.2) 
550 2.3 10.4 1.6 (0.5) 
580 2.1 10.4 1.7 (0.6) 
600 2.1 9.1 1.4 (0.2) 
690 1.8 0.4 1.2 (0.2) 
750 1.6 0.0 3.8 (2.2) 

a The parentheses are the error, at 95% confidence. 
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Figure 5.3 One- and two-photon excitation quantum yields (open and closed markers, 

respectively), measured in molecules converted per absorption event and the error bars represent 

95% confidence, compared with the one-photon absorption spectrum (solid red line). 

 

 The quantum yield following two-photon excitation (Φ2PA) is determined following a 

degenerate two-photon absorption within the two lowest energy absorption bands, using 1000 

and 750 nm. A similar technique to measure the 1PA quantum yield is used to obtain the 2PA 

quantum yield by measuring the reference and transmitted intensity through the sample. In the 

case of the 1PA quantum yield measurement the transmitted energy reaches an asymptotic limit 

that matches the reference energy, indicating complete conversion of the DMPT-PFCP sample to 

the open-ring isomer, while the 2PA quantum yield measurement does not show the same 

complete conversion; therefore, we use the initial conversion rate to determine the 2PA quantum 

yield.  

 The initial conversion rate is proportional to the two-photon action cross section 

(σ2PAΦ2PA). We define the two-photon action cross section as the product of the absolute 2PA 

cross section and the 2PA quantum yield, so to determine the 2PA quantum yield the absolute 

2PA cross section needs to be known with some certainty. Table 5.3 reports the two-photon 
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action cross section as ~8 GM within the two lowest absorption bands. Since the absolute 2PA 

cross section was determined separately the 2PA quantum yield can be disentangled from the 

2PA action cross section. Table 5.3 also includes the measured 2PA quantum yield, which are 

~16% for the two lowest absorption bands. The 2PA quantum yields are plotted in Figure 5.3 as 

a comparison to the 1PA quantum yields, showing the 2PA quantum yields are about an order of 

magnitude larger than the 1PA quantum yields.  

 

Table 5.3 Two-photon quantum yields.a,b 

λ2PA (nm) Energy (eV) σ2PAΦ2PA (GM) Φ2PA (%)c 

750 3.3 8.2 (2.4) 16.1 (11.0)d 

1000 2.5 7.9 (6.7) 16.3 (9.8) 
a Quantum yields are reported in molecules converted per absorption event. 

b The parentheses are the error, at 95% confidence. 

c Quantum yield determined assuming only a two-photon induced cycloreversion. 

d Quantum yield determined assuming a one- and two-photon induced cycloreversion, with the 

one-photon contribution subtracted from the reported value. 

 

 The above determination of the 2PA quantum yield includes any additional resonant one-

photon absorption contribution from 750 nm since the low energy tail of the 1PA spectrum of 

DMPT-PFCP is excited at that wavelength. In other words, exciting with 750 nm light induces a 

cycloreversion reaction through a one- and two-photon excitation process. The additional 1PA 

contribution is included in the derivation of the quantum yield and gives the 2PA quantum yield 

as ~16%, as reported above.  

 Importantly, two-photon excitation may not be the highest-order excitation process 

initiating the cycloreversion reaction. The optical limiting response of DMPT-PFCP, which is the 
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transmitted energy as a function of the incident energy shows a nonlinear deviation from a purely 

linear response (see the Appendix). The divergence from linearity is due to DMPT-PFCP 

absorbing two or more photons per simultaneous absorption event to induce the cycloreversion 

reaction.  

 Exciting with focused, high intensity nonlinear light gives a quantum yield that is greater 

than the 1PA quantum yield by about an order of magnitude. Since the 1PA and 2PA 

spectroscopy both have strong transitions above ~3 eV along with DMPT-PFCP being a low 

symmetry molecule, one may argue that the same states are accessed with one or two photons. If 

the same state is accessed following a 1PA or 2PA, then the reaction quantum yields should be 

similar because the conversion mechanism is expected to be the same. However, we observe 

about an order of magnitude difference between the measured quantum yields following one- 

and two-photon excitation, suggesting different excitation mechanisms and pathways.  

One explanation for the difference in quantum yields between the 1PA and 2PA 

processes may be that different excited electronic states are initially excited leading to different 

cycloreversion mechanisms and pathways. As stated above, the similarities between the 1PA and 

2PA spectroscopy and the low symmetry of DMPT-PFCP we likely access the same states with 

both a one- and two-photon excitation process. Another possible explanation for the increased 

quantum yields may be due to the formation of a triplet state in the excited state that may 

preferentially lead to the open-ring isomer following relaxation to the ground state.34 An 

additional explanation for the different quantum yields may be due to opening up an additional 

pathway through a higher-order excitation process, such as resonance-enhanced multi-photon 

ionization.35-42 The resonance-enhanced multi-photon ionization may occur through a 2+1, 2+2, 

or 2+n ionization process. The ionization mechanism would account for the quantum yields 
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increasing by about an order of magnitude following irradiation with focused, intense light that 

induces a multi-photon absorption. Transient absorption pump-probe spectroscopy following 

one- and two-photon excitation may be used to measure the excited-state dynamics. The pump-

probe spectroscopy may provide insight into the mechanism and increased quantum yields of the 

cycloreversion reaction after exciting DMPT-PFCP with a focused, intense beam, which will be 

discussed in Chapter 6.  

 

5.4 Conclusions 

 The two methods used to measure the absolute 2PA cross sections of the closed-ring 

isomer agree in both instances. The spectroscopy provides information about the symmetry of 

the excited electronic states along with the energies of those transitions following absorption 

with either one or two photons. The 1PA quantum yields are effectively constant at ~1.5% across 

the two lowest absorption bands of the closed-ring isomer, while the 2PA quantum yields are 

increased by about an order of magnitude to ~16%. The 2PA quantum yields are likely much 

larger than the 1PA quantum yields because the high intensity light used to induce the two-

photon excitation may open an additional pathway that leads to more molecules undergoing 

cycloreversion to the open-ring isomer. Meaning the reported 2PA quantum yields are likely not 

purely from a two-photon excitation process, but includes contributions from an additional 

higher-order process. An ionization mechanism may explain the differences in the quantum 

yields because the excited molecules may lead more favorably to the open-ring isomer. Further 

reaction dynamics experiments are required to elucidate the mechanism that increases the 

cycloreversion quantum yield of DMPT-PFCP following intense nonlinear irradiation.  
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5.5 Appendix 

 The additional figures include the measured two-photon absorption coefficient as a 

function of number density following degenerate two-photon excitation that the slope of the 

linear fit to the data is proportional to the absolute 2PA cross section, representative quantum 

yield measurements following one- and two-photon excitation, and a representative optical 

limiting response of DMPT-PFCP indicating a nonlinear excitation.  

 

 

Figure 5.4 Two-photon absorption coefficient, β, (circles) is proportional to the degenerate two-

photon absorption cross section of the closed-ring isomer of DMPT-PFCP. The degenerate two-

photon absorption cross section is determined from the slope of the fit to the data (solid lines). 
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Figure 5.5 Representative (A) one-photon absorption quantum yield measurement and (B) two-

photon absorption quantum yield measurement. The integrated area between the incident and 

transmitted energy measurements and the initial conversion rate of cycloreversion reaction of 

DMPT-PFCP are measured, respectively, to determine the quantum yield following either a one- 

or two-photon excitation process. 
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Figure 5.6 Representative optical limiting response of DMPT-PFCP in chloroform, which shows 

a nonlinear (red circles) deviation from linearity (black line). 

 

5.6 References 

(1) Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100, 1685-1716. 

(2) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene 

Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174-

12277. 

(3) Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. Photochromism of Dithienylethenes 

with Electron-Donating Substituents. J. Org. Chem. 1995, 60, 8305-8309. 

(4) Sumi, T.; Takagi, Y.; Yagi, A.; Morimoto, M.; Irie, M. Photoirradiation Wavelength 

Dependence of Cycloreversion Quantum Yields of Diarylethenes. Chem. Comm. 2014, 50, 3928-

3930. 

(5) Piao, X.; Zou, Y.; Wu, J.; Li, C.; Yi, T. Multiresponsive Switchable Diarylethene and Its 

Application in Bioimaging. Org. Lett. 2009, 11, 3818-3821. 

(6) Yun, C.; You, J.; Kim, J.; Huh, J.; Kim, E. Photochromic Fluorescence Switching From 

Diarylethenes and Its Applications. J. Photochem. Photobiol. C 2009, 10, 111-129. 



 116 

(7) Liu, H.; Chen, Y.; Yao, B. Two-Photon Absorption of Photochromic Diarylethene and Its 

Application to Rewritable Holographic Recording. Front. Chem. China 2010, 5, 221-225. 

(8) Miyasaka, H.; Murakami, M.; Itaya, A.; Guillaumont, D.; Nakamura, S.; Irie, M. 

Multiphoton Gated Photochromic Reaction in a Diarylethene Derivative. J. Am. Chem. Soc. 

2001, 123, 753-754. 

(9) Miyasaka, H.; Murakami, M.; Okada, T.; Nagata, Y.; Itaya, A.; Kobatake, S.; Irie, M. 

Picosecond and Femtosecond Laser Photolysis Studies of a Photochromic Diarylethene 

Derivative: Multiphoton Gated Reaction. Chem. Phys. Lett. 2003, 371, 40-48. 

(10) Murakami, M.; Miyasaka, H.; Okada, T.; Kobatake, S.; Irie, M. Dynamics and 

Mechanisms of the Multiphoton Gated Photochromic Reaction of Diarylethene Derivatives. J. 

Am. Chem. Soc. 2004, 126, 14764-14772. 

(11) Ishibashi, Y.; Tani, K.; Miyasaka, H.; Kobatake, S.; Irie, M. Picosecond Laser Photolysis 

Study of Cycloreversion Reaction of a Diarylethene Derivative in Polycrystals: Multiphoton-

Gated Reaction. Chem. Phys. Lett. 2007, 437, 243-247. 

(12) Ishibashi, Y.; Okuno, K.; Ota, C.; Umesato, T.; Katayama, T.; Murakami, M.; Kobatake, 

S.; Irie, M.; Miyasaka, H. Multiphoton-Gated Cycloreversion Reactions of Photochromic 

Diarylethene Derivatives with Low Reaction Yields Upon One-Photon Visible Excitation. 

Photochem. Photobiol. Sci. 2010, 9, 172-180. 

(13) Ward, C. L.; Elles, C. G. Cycloreversion Dynamics of a Photochromic Molecular Switch 

via One-Photon and Sequential Two-Photon Excitation. J. Phys. Chem. A 2014, 118, 10011-

10019. 



 117 

(14) Ryo, S.; Ishibashi, Y.; Murakami, M.; Miyasaka, H.; Kobatake, S.; Irie, M. Multiphoton-

Gated Photochromic Reaction of Diarylethene Derivatives in PMMA Solid Film. J. Phys. Org. 

Chem. 2007, 20, 953-959. 

(15) Mori, K.; Ishibashi, Y.; Matsuda, H.; Ito, S.; Nagasawa, Y.; Nakagawa, H.; Uchida, K.; 

Yokojima, S.; Nakamura, S.; Irie, M.; Miyasaka, H. One-Color Reversible Control of 

Photochromic Reactions in a Diarylethene Derivative: Three-Photon Cyclization and Two-

Photon Cycloreversion by a Near-Infrared Femtosecond Laser Pulse at 1.28 µm. J. Am. Chem. 

Soc. 2011, 133, 2621-2625. 

(16) Corredor, C. C.; Belfield, K. D.; Bondar, M. V.; Przhonska, O. V.; Hernandez, F. E.; 

Kachkovsky, O. D. One- and Two-Photon Photochromism of 3,4-bis-(2,4,5-trimethyl-thiophen-

3-yl)furan-2,5-dione. J. Photochem. Photobiol. A 2006, 184, 177-183. 

(17) Negres, R. A.; Hales, J. M.; Kobyakov, A.; Hagan, D. J.; Van Stryland, E. W. Two-

Photon Spectroscopy and Analysis with a White-Light Continuum Probe. Opt. Lett. 2002, 27, 

270-272. 

(18) Negres, R. A.; Hales, J. M.; Hagan, D. J.; Van Stryland, E. W. Experiment and Analysis 

of Two-Photon Absorption Spectroscopy Using a White-Light Continuum Probe. IEEE J. 

Quantum Elect. 2002, 38, 1205-1216. 

(19) Yamaguchi, S.; Tahara, T. Two-Photon Absorption Spectrum of all-trans Retinal. Chem. 

Phys. Lett. 2003, 376, 237-243. 

(20) Yamaguchi, S.; Tahara, T. Observation of an Optically Forbidden State of C60 by 

Nondegenerate Two-Photon Absorption Spectroscopy. Chem. Phys. Lett. 2004, 390, 136-139. 



 118 

(21) Elles, C. G.; Rivera, C. A.; Zhang, Y.; Pieniazek, P. A.; Bradforth, S. E. Electronic 

Structure of Liquid Water from Polarization-Dependent Two-Photon Absorption Spectroscopy. 

J. Chem. Phys. 2009, 130, 084501. 

(22) Houk, A. L.; Zheldakov, I. L.; Tommey, T. A.; Elles, C. G. Two-Photon Excitation of 

trans-Stilbene: Spectroscopy and Dynamics of Electronically Excited States Above S1. J. Phys. 

Chem. B 2015, 119, 9335-9344. 

(23) Nagura, C.; Suda, A.; Kawano, H.; Obara, M.; Midorikawa, K. Generation and 

Characterization of Ultrafast White-Light Continuum in Condensed Media. Appl. Opt. 2002, 41, 

3735-3742. 

(24) Buchvarov, I.; Trifonov, A.; Fiebig, T. Toward an Understanding of White-Light 

Generation in Cubic Media-Polarization Properties Across the Entire Spectral Range. Opt. Lett. 

2007, 32, 1539-1541. 

(25) Brodeur, A.; Chin, S. L. Ultrafast White-Light Continuum Generation and Self-Focusing 

in Transparent Condensed Media. J. Opt. Soc. Am. B 1999, 16, 637-650. 

(26) Monson, P. R.; McClain, W. M. Polarization Dependence of the Two-Photon Absorption 

of Tumbling Molecules with Application to Liquid 1-Chloronaphthalene and Benzene. J. Chem. 

Phys. 1970, 53, 29-37. 

(27) McClain, W. M. Excited State Symmetry Assignment Through Polarized Two-Photon 

Absorption Studies of Fluids. J. Chem. Phys. 1971, 55, 2789-2796. 

(28) Monson, P. R.; McClain, W. M. Complete Polarization Study of the Two-Photon 

Absorption of Liquid 1-Chloronaphthalene. J. Chem. Phys. 1972, 56, 4817-4825. 

(29) Bechtel, J. H.; Smith, W. L. Two-Photon Absorption in Semiconductors with Picosecond 

Laser Pulses. Phys. Rev. B 1976, 13, 3515-3522. 



 119 

(30) Liu, P.; Smith, W. L.; Lotem, H.; Bechtel, J. H.; Bloembergen, N.; Adhav, R. S. Absolute 

Two-Photon Absorption Coefficients at 355 and 266 nm. Phys. Rev. B 1978, 17, 4620-4632. 

(31) Dragonmir, A.; McInerney, J. G.; Nikogosyan, D. N. Femtosecond Measurements of 

Two-Photon Absorption Coefficients at λ = 264 nm in Glasses, Crystals, and Liquids. Appl. Opt. 

2002, 41, 4365-4376. 

(32) Dragomir, A.; McInerney, J. G.; Nikogosyan, D. N.; Ruth, A. A. Two-Photon Absorption 

Coefficients of Several Liquids at 264 nm. IEEE J. Quantum Electron. 2002, 38, 31-36. 

(33) Dragomir, A.; McInerney, J. G.; Nikogosyan, D. N.; Kazansky, P. G. Two-Photon 

Absorption Properties of Commercial Fused Silica and Germanosilicate Glass at 264 nm. Appl. 

Phys. Lett. 2002, 80, 1114-1116. 

(34) Buckup, T.; Weigel, A.; Hauer, J.; Motzkus, M. Ultrafast Multiphoton Transient 

Absorption of β-Carotene. Chem. Phys. 2010, 373, 38-44. 

(35) Takeshita, M.; Irie, M. Enhancement of the Photocyclization Quantum Yield of 2,2'-

dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]-thiophene-6-sulfonate) by Inclusion 

in a Cyclodextrin Cavity. Chem. Comm. 1997, 10.1039/A705677J, 2265-2266. 

(36) Hara, M.; Miwa, M.; Takeshita, T.; Watanabe, S. Resonance Two-Photon Ionization of 

Diarylethene in the Presence of Cyclodextrin. Int. J. Photoenergy 2013, 2013, 6. 

(37) Takeshita, T.; Hara, M. Resonance Photoionization of a Diarylethene Derivative in the 

Presence of Cyclodextrins Using Multi-Color Multi-Laser Irradiation. J. Photochem. Photobiol. 

A 2015, 310, 180-188. 

(38) Hara, M.; Samori, S.; Cai, X.; Fujitsuka, M.; Majima, T. Importance of Properties of the 

Lowest and Higher Singlet Excited States on the Resonant Two-Photon Ionization of Stilbene 



 120 

and Substituted Stilbenes Using Two-Color Two-Lasers. J. Phys. Chem. A 2005, 109, 9831-

9835. 

(39) Samori, S.; Hara, M.; Tojo, S.; Fujitsuka, M.; Majima, T. Important Factors for the 

Formation of Radical Cation of Stilbene and Substituted Stilbenes During Resonant Two-Photon 

Ionization with a 266- or 355-nm Laser. J. Photochem. Photobiol. A 2006, 179, 115-124. 

(40) Miki, H.; Yoshida, K.; Kawate, C.; Shimada, R.; Takaya, T.; Iwata, K.; Hamaguchi, H.-o. 

Two-Step Photoionization of trans-Stilbene in Acetonitrile via an Ion-Pair Precursor Studied 

with Picosecond Time-Resolved Absorption and Raman Spectroscopies. Chem. Phys. Lett. 2012, 

527, 27-30. 

(41) Moreno, J.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky, A. A.; Hecht, S.; Kovalenko, S. A. 

Broadband Transient Absorption Spectroscopy with 1- and 2-Photon Excitations: Relaxation 

Paths and Cross Sections of a Triphenylamine Dye in Solution. J. Chem. Phys. 2015, 143, 

024311. 

(42) Moreno, J.; Gerecke, M.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky, A. A.; Bléger, D.; 

Hecht, S.; Kovalenko, S. A. Two-Photon-Induced versus One-Photon-Induced Isomerization 

Dynamics of a Bistable Azobenzene Derivative in Solution. J. Phys. Chem. B 2015, 119, 12281-

12288. 



 121 

6. Multi-Photon Excitation and Photoionization of a Photochromic Molecular Switch: 

A New Mechanism for Increasing the Cycloreversion Yield 

6.1 Introduction 

Nonlinear excitation provides a means of populating highly excited states of a molecule 

that are not necessarily accessible via single-photon (linear) excitation due to symmetry selection 

rules and other constraints.1-4 Accessing the higher-lying states potentially opens new reaction 

channels, and therefore raises the possibility of selectively controlling the reactivity of a 

molecule by tuning the excitation conditions.4-8 However, the reaction dynamics of higher-lying 

excited states are difficult to probe, both experimental and theoretically, due to strong coupling 

and the high density of states above the lowest excited state, S1. Lifetimes of these states are 

typically on the order of a few hundred fs or less, even for molecules containing only a few 

atoms.3,9-15 Nevertheless, the prospect of controlling the reactivity of a molecule through 

nonlinear excitation provides strong motivation for studying the dynamics of higher-lying 

states.16-20  

Photochromic molecular switches are excellent model systems for studying excited-state 

dynamics because these compounds often have distinctly different optical and electronic 

properties depending on the structure (or state) of the molecule, which simplifies the analysis of 

transient absorption spectra, and therefore provides a valuable window on the reaction 

dynamics.8,21,22 Diarylethene derivatives that reversibly photoisomerize between open- and 

closed-ring isomers comprise a particularly popular group of photochromic switches due to their 

excellent fatigue resistance, thermal stability, and rapid conversion rates.8,22 Many of these 

compounds have a low cycloreversion quantum yield following one-photon excitation,21,22 but 

have been shown to isomerize more efficiently following nonlinear excitation.4 For example, 
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sequential two-photon excitation6,8,22-29 increases the cycloreversion quantum yield for many of 

these compounds by re-exciting the molecule from a relatively unreactive initially excited state 

to a higher-lying state that increases the efficiency of the ring-opening reaction.6,8,22-29 

We previously compared the dynamics following direct one-photon excitation at 375 nm 

with the behavior following sequential two-photon excitation at similar total excitation energies, 

from which we determined the molecule must evolve out of the Franck-Condon region of S1 

prior to re-excitation in order for the reaction yield to increase.1,2 That observation is consistent 

with the ground-breaking work of Miyasaka and co-workers, who inferred that the 

cycloreversion yield does not increase under immediate re-excitation from the initially excited 

state, but rather requires some delay between absorption of the first and second photons. In 

contrast, we found more recently that the efficiency of the cycloreversion reaction increases by at 

least an order of magnitude (from ~1.7% to more than ~16%) due to nonresonant multi-photon 

excitation under intense irradiation at 750 nm.4 Similar examples of direct (nonresonant) two-

photon excitation were also reported by Belefield and coworkers for other molecular switches.30-

32 

The spectra in Figure 6.1 show that both one- and two-photon transitions access the 

second absorption band of DMPT-PFCP at ~3.3 eV (i.e. one-photon excitation at 375 nm or two-

photon excitation at 750 nm), where the 2PA cross section of 37±2 GM is more than an order of 

magnitude larger than for excitation of the lowest absorption band (total energy of ~2.5 eV).4 
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Figure 6.1 One- and two-photon absorption spectra of the closed-ring isomer of DMPT-PFCP. 

 

In this chapter, we monitor the transient absorption (TA) spectroscopy of DMPT-PFCP 

following both linear excitation at 375 nm and nonlinear excitation at 750 nm. We present 

evidence of a new cycloreversion pathway following nonlinear excitation that is different from 

the known dynamics induced by either linear or sequential two-photon excitation. This new 

reaction pathway is a result of a nonlinear process that is highly dependent on the intensity of 

pump light, and probably involves resonance-enhanced multi-photon ionization of the molecule. 

We discuss this proposed mechanism in the context of the observed order of magnitude increase 

of the cycloreversion quantum yield under nonresonant, high-intensity irradiation.4  

 

6.2 Experimental Methods 

We use ultrafast pump-probe spectroscopy to monitor the reaction dynamics of DMPT-

PFCP in solution following linear excitation at 375 nm and nonlinear excitation at 750 nm.1-3,33 

Both one-photon excitation at 375 nm and two-photon excitation at 750 nm are resonant with the 

second absorption band of DMPT-PFCP at a total energy of 3.3 eV (see Figure 6.1). The pump 

and probe pulses are derived from a regeneratively amplified Ti:Sapphire laser (Lesgend Elite, 
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Coherent) that produces <35 fs pulses of 800 nm fundamental light at 1 kHz. Nonlinear 

frequency conversion of the fundamental laser light in an optical parametric amplifier (TOPAS-

C) produces the pump pulses, and white-light continuum generation in a 2 mm CaF2 crystal 

provides broadband probe pulses spanning the range 750–350 nm.34,35   

We measure the dynamics following one-photon excitation at 375 nm by weakly focusing 

a beam of 2.0 µJ pump pulses to a diameter of ~210 µm at the sample. Multi-photon excitation at 

750 nm requires higher-intensity pump pulses, which we obtain with a beam diameter of ~70 µm 

and pulse energies as high as ~32 µJ. For both linear and nonlinear excitation experiments, the 

pump beam intersects the probe at the sample, where the latter has a beam diameter of ~60 µm. 

The relative orientation of the linearly polarized pump and probe light is set to the magic angle 

(54.7°) to eliminate anisotropic contributions,9,36 and a synchronized chopper blocks every other 

pump pulse before the sample for active background subtraction. 

The sample consists of a windowless liquid jet with a path length of 300 µm. Sample 

solutions were prepared by dissolving DMPT-PFCP (TCI America) in cyclohexane (Sigma-

Aldrich, ≥99%), methanol (Sigma-Aldrich, ≥99%), or cyclohexanone (Acros Organics, ≥99.8%). 

The concentration was 0.2 mM for the one-photon excitation measurements at 375 nm and 0.5 

mM for the nonlinear excitation measurements at 750 nm. In some experiments, we use N2O to 

quench solvated electrons by bubbling the gas through the sample solution prior to the TA 

measurement.  
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6.3 Results 

6.3.1 Transient Absorption Spectroscopy Following Linear and Nonlinear Excitation 

Figure 6.2 shows the evolution of the transient absorption (TA) spectrum following 

excitation of the closed-ring isomer of DMPT-PFCP under several different conditions. As a 

reference for the nonlinear excitation experiments, the top panels (Figure 6.2A–B) show the TA 

spectra following one-photon excitation into the second absorption band at 375 nm.2,4,21,22 An 

excited-state absorption (ESA) band near 590 nm appears within the instrument response time, 

and then decays on the same timescale that two new bands appear near 410 and 700 nm.2 The 

ESA band near 590 nm was previously assigned as a transition from the initially excited state Sn, 

which relaxes to S1 in about 90 fs.2 Following the initial relaxation, the TA spectrum at 600 fs 

contains contributions from the two S1 ESA bands, as well as the ground-state bleach (GSB), 

which is responsible for the negative signal near 565 nm.2 The ESA bands evolve on a 1 ps 

timescale due to vibrational cooling of S1, followed by 3 ps spectral evolution associated with an 

activated barrier crossing on S1, before finally decaying to the baseline in about 10 ps due to 

relaxation back to the ground electronic state.2 A small fraction of the GSB, matching the inverse 

of the linear absorption spectrum of the closed-ring isomer, lasts for the duration of our 

measurement due to excited molecules that undergo cycloreversion to the transparent open-ring 

isomer (Figure 6.3). The magnitude of the GSB in the long-time limit is consistent with the 

previously reported cycloreversion yield of 1.7±0.4% following UV excitation of DMPT-PFCP.4 

This low quantum yield for excitation into the second absorption band is similar to the quantum 

yield of ~2% across the entire first absorption band,4,21,37 and is consistent with the picture of 

rapid Sn → S1 relaxation.2  
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Figure 6.2 Sub-picosecond (left column) and picosecond (right column) transient absorption of 

the closed-ring isomer of DMPT-PFCP in cyclohexane with (top panels, A–B) 375 nm linear 

excitation, (middle panels, C–D) 750 nm nonlinear excitation, in the low intensity regime, and 

(bottom panels, E–F) 750 nonlinear excitation, in the high intensity regime. Oscillations from 

cross-phase modulation obscure the TA prior to ~100 fs delay for the nonlinear excitation with 

750 nm. The inset in panel D is the log-log power dependence of the transient absorption 

measured at 1 ps delay following nonlinear excitation with 750 nm measured with 410 nm probe 

light and the slope is 1.7, indicating a two-photon excitation process. 
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Figure 6.3 Long time limit of TA signal for (A) linear and (B) nonlinear excitation, compared 

with the linear one-photon spectrum. 

 

The middle panels of Figure 6.2C–D show the sub-picosecond and picosecond TA 

spectra following nonlinear excitation at 750 nm using moderate intensities. We observe only 

subtle differences compared with linear excitation. Although cross-phase modulation partially 

obscures the TA signal at very short delay times, there is a rapidly decaying ESA band near 590 

nm that precedes the appearance of two new ESA bands centered near 410 and 700 nm. Global 

fits emphasize the similar behavior for linear and nonlinear excitation under these conditions, 

including the predominant short-lived ESA band near 590 nm (see Figure 6.9 in the Appendix). 

The two ESA bands near 410 and 700 nm decay to the baseline and the GSB mostly recovers 

within ~10 ps, leaving only a small negative signal from the residual GSB. Figure 6.3 compares 

the GSB at 200 ps for linear and nonlinear excitation with the inverted ground state absorption 

spectrum of the closed-ring isomer of DMPT-PFCP. In general, the only noticeable differences 
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between TA signals for the two excitation conditions in Figure 6.2A–D are the slightly narrower 

ESA band near 410 nm and the different relative intensities of the 410 and 700 nm ESA bands.  

At higher excitation intensities, on the other hand, there are more significant differences 

in the transient spectrum, as shown in the lower panels of Figure 6.2E–F. Most notably, higher 

intensity excitation generates a transient signal that persists well beyond the ~10 ps excited-state 

lifetime of DMPT-PFCP. We highlight the different kinetics for high-intensity excitation in 

Figure 6.4, which shows the evolution of the TA signal at 400 nm for all three excitation 

conditions. Following linear excitation at 375 nm and nonlinear excitation using moderate 

intensities of 750 nm light, the TA signals return to the baseline with a time constant of about 10 

ps. In stark contrast, the TA following high-intensity nonlinear excitation remains positive for 

the duration of the experiment (1400 ps). The long-lived TA signal observed under high-intensity 

irradiation at 750 nm decays slightly on a timescale of ~800 ps or longer. Concentration-

dependent measurements confirm that the long-lived TA signal is entirely due to excitation of the 

closed-ring isomer, rather than residual open-ring isomer or the solvent (see the Appendix).  

 The transient absorption signal at the earliest time delays following high-intenisty 

excitation also deviates from the other two cases (Figure 6.3). Specifically, high-intensity 

excitation gives a broad TA signal that decays on a longer timescale (~250 fs) than the narrower 

590 nm ESA band in the other two cases. Figure 6.5 emphasizes the differences by comparing 

the TA spectra at 600 fs. Unlike linear and low-intensity nonlinear excitation, the transient signal 

is positive across the entire spectrum, including the region of the GSB. We return to this point 

below, after first discussing the intensity dependence of the transient absorption signals. 
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Figure 6.4 Kinetics of the transient absorption of the closed-ring isomer of DMPT-PFCP in 

cyclohexane following excitation with one photon of 375 nm (blue line), multiple photons of 750 

nm, in the low intensity regime (pink line), and multiple photons of 750 nm, in the high intensity 

regime (dark red line). The transient absorption signal was integrated in a 20 nm range (13 

pixels), with 400 nm as the center wavelength. 

 

 

Figure 6.5 Transient absorption spectra of DMPT-PFCP at 600 fs delay normalized at 700 nm 

probe light, following one-photon excitation with 375 nm (blue line), multi-photon excitation 

with 750 nm, in the low intensity regime (pink line), and multi-photon excitation with 750 nm, in 

the high intensity regime (dark red line). 



 130 

6.3.2 Intensity Dependence of Transient Absorption Signals 

The intensity dependence of the transient absorption signals provides valuable insight on 

the competition between various linear and nonlinear excitation processes under 750 nm 

irradiation. The linear (one-photon) extinction coefficient of the closed-ring isomer at 750 nm is 

4.5 M–1 cm–1, giving an optical density of only ~3×10–5 under the current experimental 

conditions, therefore we expect very little contribution from linear excitation at this wavelength. 

In contrast, the absolute two-photon absorption (2PA) cross section at this wavelength is 37±2 

GM, which corresponds to a relatively strong transition into the second absorption band of the 

closed-ring isomer (Figure 6.1).4 The inset of Figure 6.2D shows the intensity dependence of the 

410 nm TA signal measured at 1 ps delay under relatively low excitation intensities (1–5 

µJ/pulse). Even for low-intensity irradiation, the excitation process is nearly quadratic, as 

indicated by the slope of ~1.7 in the log-log plot. Therefore, the TA signal is predominantly from 

two-photon excitation, with only a negligible contribution from one-photon excitation under 

these conditions.  

Figure 6.6 shows the log-log power dependence of the TA signal at 400 nm for higher 

intensity excitation (up to ~32 µJ/pulse), and at two different delay times. Below ~10 µJ, the 

signal at 1 ps delay has the same nearly quadratic power dependence as in the inset of Figure 

6.2D, but the TA signal at 200 ps has a higher-order power dependence that gives a slope of ~4 

in the log-log plot. The steeper slope at 200 ps delay indicates a higher-order process than the 

two-photon excitation process responsible for the TA signal at 1 ps. In other words, the two 

different delay times probe different signals. At a delay of 200 ps we selectively probe only the 

higher-order process that gives rise to the long-lived signal, whereas the 1 ps delay has 

contributions from both two-photon excitation and the higher-order process. Only the signal 
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resulting from higher-order nonlinear excitation contributes at long delay times, because the 

excited-state population decays completely on a timescale of ~10 ps following two-photon 

excitation at 750 nm. The power dependence of the ESA band centered near 700 nm is 

essentially the same as the dependence of the 400 nm ESA band for both delay times.  

 

 

Figure 6.6 Log-log power dependence of the transient absorption measured following excitation 

with multiple photons of 750 nm at delays of 1 and 200 ps and measured with 400 nm probe 

light, the gray dotted line indicates the saturation energy. The transient absorption signal was 

integrated in a 20 nm range (13 pixels), with 400 nm as the center wavelength. 

 

At both delay times, we find that the slope of the log-log plot changes with increasing 

excitation intensity due to saturation effects above ~10 µJ pulse energy. Saturation occurs when 

nonlinear excitation sufficiently depletes the pump beam such that the effective intensity is lower 

than the incident intensity, giving a smaller than expected increase of the TA signal with 

increasing intensity of the laser pulses. The onset of saturation occurs at an intensity that is 

inversely proportional to the square root of the 2PA cross section and the pulse duration.38-40 

Based on our independently measured 2PA cross section (37 GM) and the excitation conditions 
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of the current experiment, the calculated saturation intensity of 2.7x1012 W/cm2 (pulse energy of 

9.7 µJ), is in excellent agreement with the data in Figure 6.6.  

The higher-order power dependence suggests that the long-lived TA signal is the result of 

a resonance-enhanced 2+n multi-photon excitation above the two-photon resonance at 3.3 eV. 

The slope of 4 in the log-log plot indicates that the secondary excitation (the “+n” process) is 

also nonlinear, n≥2, which explains why we are able to observe the two-photon process at 

intermediate intensities. If the secondary excitation was linear, then almost every molecule that 

reaches the intermediate state via two-photon excitation would be efficiently re-excited with an 

additional photon from the same laser pulse. Instead, the nonlinear secondary excitation requires 

sufficient population in the excited state before a significant fraction of the population can be re-

excited. The fact that the TA signals saturate at the same intensity for both 1 and 200 ps delay 

times suggests that the same saturation effect is responsible for the turnover in each case. In 

other words, the saturation of the 2+n process is probably due to depletion of the pump pulse 

intensity, rather than depletion of the intermediate excited-state population. 

The situation for 750 nm excitation is somewhat unique, because the one-photon 

absorption cross section is sufficiently small to avoid linear excitation, but the two-photon 

absorption cross section is sufficiently large to allow efficient nonlinear excitation (Figure 6.1). 

The one-photon absorption cross section increases rapidly for shorter excitation wavelengths, 

leading to a dominant one-photon excitation process. For example, the TA signal following 

excitation with 700 nm is dominated by one-photon excitation due to the larger excitation 

coefficient at this wavelength (170 M–1 cm–1). On the other hand, the two-photon cross section 

decreases rapidly below ~3 eV, making the two-photon process increasingly unlikely for longer 

excitation wavelengths.4 More importantly, the higher-order 2+n process that leads to the long-
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lived TA signal is only observed at relatively high intensities because even the secondary 

excitation is nonlinear. In other words, both the initial two-photon excitation and a 2+1 process 

would have similar (quadratic) intensity dependence, therefore the 2+1 process would be 

difficult to distinguish from two- (and only two) photon excitation. 

 

6.3.3 Evidence of Multi-Photon Ionization 

Figure 6.7 shows the evolution of the TA spectrum following high-intensity nonlinear 

excitation of DMPT-PFCP in cyclohexanone and in methanol. Similar to the results for 

cyclohexane in Figures 6.2E–F, the TA spectra have strong absorption bands near 400 and 700 

nm. However, the TA spectrum in methanol (Figure 6.6D) includes an additional, broad 

absorption band centered near 620 nm that appears on a timescale of about 60 ps. This new 

feature near 620 nm is the characteristic absorption of solvated electrons in methanol.41-43 The 

absorption spectrum of solvated electrons in methanol has been measured previously using pulse 

radiolysis and the spectrum has a broad absorption peak near 620 nm.41-43 The absorption spectra 

of solvated electrons in cyclohexane and cyclohexanone are broad and featureless in this region 

of the spectrum.44,45  

In contrast with the negative TA signal in the region of the GSB following linear 

excitation at 375 nm (Figure 6.2A), we emphasize that the TA signal is positive across the entire 

spectrum for high-intensity irradiation, even in the region of the GSB. Adding N2O reduces the 

TA signal across the entire probe wavelength range, confirming the presence of solvated 

electrons (see the Appendix). These observations are consistent with the formation of solvated 

electrons in all three solvents. The solvated electrons are generated from the solute, because no 

TA signal is observed after exciting the pure solvent under the same conditions. Importantly, the 
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kinetics are not affected by the addition of N2O when the solvated electron is removed from 

solution; therefore, the solvated electron is not responsible for the slow ~800 ps reaction. 

 

 

Figure 6.7 Sub-picosecond (left column) and picosecond (right column) transient absorption of 

the closed-ring isomer of DMPT-PFCP following excitation with multi-photons of 750 nm in the 

high intensity regime in (top panels) cyclohexanone and (bottom panels) methanol. 

 

Finally, we point to the development of two relatively narrow contributions to the TA 

spectrum at 400 and 565 nm following high-intensity irradiation. Together, these observations 

provide clear evidence for ionization of DMPT-PFCP under intense nonresonant irradiation at 

750 nm. Therefore, the long-lived TA signal probably includes contributions from both the 

solvated electron and the molecular cation, DMPT-PFCP+, generated via 2+n multi-photon 

ionization. This resonance-enhanced ionization process involves nonlinear electron ejection from 

the two-photon excited state of the neutral molecule, the dynamics of which are observed under 



 135 

lower-intensity irradiation at 750 nm. Importantly, the MPI process becomes dominant only at 

higher intensities, because of the secondary (ionization) step is also nonlinear.  

 

6.4 Discussion 

The evolution of the TA spectrum for linear and nonlinear excitation in the low intensity 

regime gives similar results despite the different excitation pathways (linear vs quadratic). 

However, Figure 6.5 shows the TA spectra for the nonlinear excitation has an additional 

absorption within the band near 410 nm. The additional absorption probably represents a new 

species following excitation with two or more photons, such as the cation that was proposed by 

Hara and coworkers.46 A small quantity of the additional species is formed under moderate 

intensity irradiation at 750 nm, which may be responsible for the different TA spectra. If the 

additional species is a cation, it must recombine quickly with a free electron in solution, thus 

eliminating the TA signal within about 10 ps. Also, we observe no sign of an increased 

cycloreversion reaction quantum yield under nonlinear excitation with moderate intensity (Figure 

6.3), which is consistent with a previous sequential two-photon excitation measurement that 

shows the one- and two-photon quantum yields are the same when the two excitation photons are 

overlapped in time.2  

However, we observe an additional signal generated via a higher-order nonlinear process 

under high-intensity irradiation. Evidence of increasing solvated electrons under these excitation 

conditions suggests that multi-photon ionization contributes to the TA signal, thus the ionization 

process produces cations of DMPT-PFCP and ejects an electron into solution. The evolution of 

the long-lived TA signals following high-intensity nonlinear excitation at 750 nm shows the 

appearance of two narrow absorption bands near 400 and 565 nm on a timescale of about 20 ps. 
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The absorption bands near 400 and 565 nm for DMPT-PFCP in cyclohexanone and methanol 

exhibit more pronounced narrowing than in cyclohexane. The narrowed bands are likely 

attributed to the formation of cation species of DMPT-PFCP in solution, specifically the 2+ 

cation.47,48  

Electrochemistry measurements of a similar fluorinated diarylethene molecule indicate 

cycloreversion occurs for the 2+ cation of the closed-ring isomer following two-electron 

oxidation at 1.0 V.47,48 The 1+ cation could not be isolated for the fluorinated compound because 

the two one-electron oxidation states are not well separated from each other.47,48 However, a 

similar hydrogenated molecule has well separated one-electron oxidation states and the 

spectroelectrochemistry of the 1+ and 2+ cations were measured for the hydrogenated 

diarylethene.47,48 The spectroelectrochemistry shows the +1 cation has absorption bands shifted 

to either side of the first absorption band of the closed-ring isomer, but the 2+ cation has two 

narrower bands peaked at about the maximum of the first absorption band of the neutral 

molecule and another band to the blue of the first absorption band.47,48 Comparing the 

spectroelectrochemistry result of the hydrogenated compound with the TA spectra of DMPT-

PFCP the narrow absorption band at 565 nm is likely attributed to the 2+ cation because the 2+ 

cation absorption band peaks at about the same energy as the first absorption band of the neutral 

form and the 1+ cation does not absorb in the range of the first absorption band.47,48  

The absorption spectrum of the possible cation species may be extracted from the TA 

signal by subtracting TA spectra at two different time delays. Figure 6.8 is the difference 

spectrum of the TA spectra at delays of 15 and 200 ps. The 15 ps delay corresponds to the 

timescale of the formation of the 2+ cation and the two-photon excitation dynamics are complete 

by 15 ps, while the 200 ps component is the maximum absorption signal for the 2+ cation. The 
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subtracted TA spectra give a reasonable absorption spectrum of the ionization products and are 

then compared to the linear absorption spectrum.  

 

 

Figure 6.8 Transient absorption measurement of DMPT-PFCP following excitation with 

nonlinear, multi-photons of 750 nm with high intensity light produces difference spectra by 

subtracting the 200 ps delay spectrum and the 15 ps delay spectrum. The difference spectrum 

gives a reasonable spectrum of what the absorption spectrum of the ionization product looks like 

and is compared to the one-photon absorption spectrum of the closed-ring isomer. 

 

This additional multi-photon ionization pathway might explain the increase of the 

quantum yield from ~1.7% to ~16% for high-intensity nonlinear excitation.4 Previous work on a 

closely related fluorinated diarylethene compound is shown to undergo cycloreversion while in a 

2+ oxidative state. Assuming DMPT-PFCP also undergoes cycloreversion as a 2+ cation then the 

closed-form isomer likely switches to the open-ring isomer through the 2+ oxidation state before 

relaxing to the ground state in >1400 ps.47,48  
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6.5 Conclusions 

Following direct nonlinear excitation the cycloreversion reaction quantum yield increases 

to ~16% from ~1.7% for linear excitation, about an order of magnitude increase for nonlinear 

excitation.4 An increase for the cycloreversion reaction quantum yield was also previously 

observed following sequential two-photon excitation,6,8,22-29 which means the quantum yield can 

be increased by exciting to higher-lying excited states that couple efficiently to the 

cycloreversion reaction coordinate. However, the ionization pathway provides a different route 

to producing additional open-ring isomers through the cycloreversion reaction while the 

molecules are in a 2+ cation state. Previous work on determining the cycloreversion reaction 

quantum yield of DMPT-PFCP in the presence of cyclodextrins following ionization with two 

photons of 266 nm showed a relatively small increase in the quantum yield, which is still on the 

order of 1–2%.46 The low cycloreversion quantum yield following two-photon excitation of 

DMPT-PFCP in the presence of cyclodextrins may be due to only producing DMPT-PFCP+.46 A 

similar fluorinated diarylethene molecule does not undergo cycloreversion from the 1+ oxidation 

state47,48 so, recombination of the cation and electron may only be observed. Consequently, the 

quantum yield does not change significantly from the linear excitation result.  

Sequential two-photon excitation measurements would be helpful in elucidating the 

mechanism of ionization by controlling the pulse duration. Choosing shorter pulses than the 

~100 fs pulses used in this study could be used to control the 2+n process to determine the 

ionization mechanism, i.e. a one-step simultaneous excitation or a sequential two-step excitation. 

Additional experiments are needed to elucidate the ns timescale dynamics, as well as the 

spectroelectrochemistry of DMPT-PFCP to determine the absorption spectra of the cation 

species. Probing the dynamics of molecules in their higher-lying excited states are pushing the 
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boundaries of our understanding of chemical reaction dynamics and the above findings of the 

studied molecular systems using two-photon excitation provide benchmarks for further 

experimental and computational studies of the higher-lying excited states.  

 

6.6 Appendix 

 The additional figures include decay-associated spectra (DAS) from global fits to the data 

using a sum of exponentials, table of the time constants from the global fits, transient absorption 

(TA) and kinetics traces following linear excitation with 800, 750, and 700 nm, TA and kinetics 

traces following multi-photon excitation of 750 nm with varying concentrations of the closed-

ring isomer of DMPT-PFCP in solution, TA following ionization of cyclohexane, 

cyclohexanone, and methanol, and TA and kinetics traces of the closed-ring isomer DMPT-

PFCP in cyclohexane saturated with N2O following multi-photon ionization with 750 nm. 

 

Table 6.1 Time constants for relaxation of DMPT-PFCP following excitation with 3.3 eV from 

global fits to the transient absorption spectra using sequential kinetic models. 

 τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps) 
1PE 0.09 1.0 3.9 10.4 
2PE 0.09 1.0 2.8 12.4 
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Figure 6.9 Decay associated spectra (DAS) of DMPT-PFCP following (A) one-photon excitation 

with 375 nm and (B) two-photon excitation with 750 nm, low intensity regime. 
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Figure 6.10 Transient absorption (left column) and kinetics (right column) of the closed-ring 

isomer of DMPT-PFCP following one-photon excitation with (A) 700 nm, (B) 750 nm, and (C) 

800 nm. 
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Figure 6.11 Transient absorption of DMPT-PFCP following excitation with multiple photons of 

750 nm light with varying concentrations of closed-ring isomer in solution, but with the same 

overall concentration of DMPT-PFCP in solution. (A) Closed-ring isomer near photostationary 

state, (B) closed-ring isomer at half the photostationary state, (C) open-ring isomer, and (D) 

cyclohexane. 
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Figure 6.12 Kinetics of DMPT-PFCP following excitation with two photons of 750 nm light with 

varying concentrations of closed-ring isomer in solution, but with the same overall concentration 

of DMPT-PFCP in solution. Probe wavelengths for monitoring the kinetics are (A) 400 nm, (B) 

560 nm, and (C) 700 nm, and the left column of figures are long time dynamics and the right 

column depicts earlier time dynamics. The closed-ring isomer near photostationary state is 

represented by the dark red line, the closed-ring isomer at half the photostationary state is the 

pink line, the open-ring isomer is the light blue line, and cyclohexane is the black line. 

 



 144 

 
Figure 6.13 Transient absorption of DMPT-PFCP following excitation with two photons of 750 

nm light with varying concentrations of closed-ring isomer in solution. (A) High concentration of 

closed-ring isomer, (B) half of the high concentration of closed-ring isomer, (C) low 

concentration of closed-ring isomer, and (D) cyclohexane. 
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Figure 6.14 Kinetics of DMPT-PFCP following excitation with two photons of 750 nm light with 

varying concentrations of closed-ring isomer in solution. Probe wavelengths for monitoring the 

kinetics are (A) 400 nm, (B) 560 nm, and (C) 700 nm, and the left column of figures are long 

time dynamics and the right column depicts earlier time dynamics. The high concentration of 

closed-ring isomer is represented by the dark red line, the closed-ring isomer at half the 

concentration is the pink line, the low concentration of closed-ring isomer is the light blue line, 

and cyclohexane is the black line. 
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Figure 6.15 Ionization of pure solvents following high-intensity excitation, cyclohexane (red), 

cyclohexanone (green), and methanol (blue). 

 

 

Figure 6.16 Sub-picosecond (A) and picosecond (B) transient absorption of the closed-ring 

isomer of DMPT-PFCP in cyclohexane, saturated with N2O, following excitation with multi-

photons of 750 nm in the high intensity regime. 
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Figure 6.17 Normalized kinetics of DMPT-PFCP in cyclohexane (thin gray lines) and with added 

N2O (thick black lines), probing at 390, 565, and 700 nm. 
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7. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially 

Controlled Release of Diethyl Phosphate and ATP  

7.1 Introduction 

 Photoactivated protecting groups (PPGs) are covalently bound structures that block the 

normal action of a “caged” compound until the active species is released through photolysis. 

Using a pulsed light source to selectively release chemical triggers from a PPG enables 

potentially transformative studies of biological phenomena, both in vitro and in vivo.1 Ideally, the 

active compound is released rapidly and in high yield, while both the protecting group and its 

photoproducts are biologically inert.2-4 Beginning with a handful of brief reports describing the 

release of “caged” nucleotides (cAMP and ATP) from an o-nitrobenzyl PPG,5,6 the search for 

novel phototriggers has grown into an active field with wide-ranging applications in biology,5,6 

biochemistry,7,8  and physiology.9  

 The challenge of developing efficient and biologically benign PPGs is complicated by the 

practical requirement that the chromophore should absorb in the red or near-IR in order to allow 

better tissue penetration and avoid unintentional photochemical reactions that occur under 

shorter-wavelength irradiation. However, PPGs designed to absorb at long wavelengths are often 

severely limited by inefficient photolysis due to the lower excitation energy, as well as limited 

solubility due to functionalization of the chromophore. As an alternative, therefore, multi-photon 

excitation has become an increasingly popular method for triggering PPGs at relatively long 

wavelengths.10 Multi-photon activation offers the added benefit of spatial control by releasing 

caged compounds only in the focal volume of a laser, a region as small as 10–100 µm3, where 

nonlinear excitation activates the PPG.11  
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 Importantly, two-photon excitation (2PE) of a PPG preserves the selectivity of a single 

chromophore, compared with higher-order multi-photon excitation, which tends to be non-

specific. Selective excitation is important for avoiding unwanted photochemistry in the 

surrounding medium. Depending on the concentration of the caged compound and the quantum 

efficiency of the uncaging reaction, selective activation of a PPG requires a two-photon 

absorption cross section (σ2PA) of a few GM or more (1 GM = 10–50 cm4·s·molecule–1·photon–

1).10  

 Recent advances in the design, construction, and implementation of new two-photon 

PPGs have been only moderately successful.12,13 Although relatively large 2PA cross sections 

have been achieved, the two-photon quantum yields and fragmentation rates remain low, 

solubility is still a concern, and most of these novel compounds have not been vetted for 

biological compatibility.10 Therefore, rather than proposing a new chromophore, we have 

examined the two-photon absorption and release properties of p-hydroxyphenacyl (pHP), a 

known PPG that meets the requirements of rapid and efficient photolysis following one-photon 

excitation.1,7 The pHP chromophore is widely adaptable as a phototrigger,1,7,14-16 and was 

previously screened for biological compatibility.2,3,17  

 In this chapter, we examine the two-photon activation of pHP for the first time. 

Specifically, we report on the broadband two-photon absorption (2PA) spectroscopy of the pHP 

chromophore, including the parent compound p-hydroxyacetophenone (1), then demonstrate the 

feasibility of two-photon activated uncaging of two phosphate derivatives, p-hydroxyphenacyl 

diethyl phosphate (2) and p-hydroxyphenacyl adenosine triphosphate (3), see Scheme 7.1. 

Photolysis of 2 and 3 is known to efficiently release diethyl phosphate (4) and ATP (5), 

respectively, along with the biologically inert photoproduct p-hydroxyphenylacetic acid (6).1,18-22 



 157 

We also discuss using the deprotonated pHP chromophore (pKa ~ 8) to extend the two-photon 

excitation spectrum to even longer wavelengths. 

 

Scheme 7.1 Structures of p-hydroxyphenacyl compounds.  

 

 

7.2 Experimental Methods 

 The synthesis of 1, 2, and 3 (see scheme 7.1) has been described elsewhere.7,18,23 Here, 

we measure the broadband two-photon absorption (2PA) spectra of compounds 1 and 2 (as well 

as the conjugate bases, 1– and 2–) in methanol, and then monitor the two-photon–induced 

uncaging reactions of the PPGs 2 and 3 in aqueous solutions. However, the one-photon 

absorption (1PA) spectra are essentially the same in both solvents. In contrast, we monitor the 

two-photon–induced uncaging of 2 and 3 dissolved in aqueous solutions using much lower 

concentrations (~10–4 M), because photolysis of the PPG proceeds more rapidly in the presence 

of water.7 Although the solubility of compound 3 is sufficiently high to be measured in pure 

water, we add 5% acetonitrile to improve the solubility of compound 2. All solvents were used as 

received without further purification. 

 We measure broadband 2PA spectra using the pulsed output of a regeneratively amplified 

Ti:Sapphire laser (Legend Elite HE, Coherent). Briefly, we overlap monochromatic pump and 
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broadband probe pulses in the sample and measure the attenuation of the probe light as a 

function of wavelength.24-27 Absorption only occurs when the two laser pulses overlap in time 

and space, because neither photon is individually resonant. Scanning the relative delay of the two 

laser pulses and integrating the transient signal at each wavelength accounts for the temporal 

dispersion of the broadband probe pulse and eliminates nonresonant contributions, including 

cross-phase modulation.28 The integrated transient absorption signal is directly proportional to 

the absolute 2PA cross section (σ2PA) of the sample at the total energy of the pump and probe 

photons.24 Combining the spectra obtained for 2–3 different pump wavelengths gives the 2PA 

spectrum across a very broad range of excitation energies. All 2PA spectra were measured with 

parallel relative polarization of the pump and probe light, except where otherwise specified. 

Details of the experimental setup are described elsewhere.27 

 We monitor the progress of the two-photon–induced uncaging reactions of 2 and 3 by 

irradiating 1 mL aliquots of each sample with an intense beam of 180 fs laser pulses at 550 nm, 

while periodically recording the electronic absorption spectrum with a UV-vis spectrophotometer 

(Thermo Scientific, Evolution 300). The absorption measurements reveal the change in 

concentration as a function of irradiation time. The sample solution is held in a 1 cm quartz 

cuvette and continuously mixed with a magnetic stir bar while being irradiated by the laser. The 

collimated laser beam has a diameter of 230 µm (FWHM) across the entire 1 cm path length of 

the sample. A collimated beam is necessary to avoid self-focusing and generation of white-light 

continuum within the sample,29-31 as observed under tighter focusing conditions. A variable 

neutral density filter attenuates the laser intensity for power-dependent measurements of the bulk 

conversion rate. The onset of continuum generation limits the maximum pulse energy to about 10 

µJ, which delivers an average power (energy/time) of only 10 mW at the 1 kHz repetition rate of 
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the laser, but a peak power of more than 50 MW. The peak intensity (power/area) at the center of 

the 230 µm diameter laser beam reaches 25 GW/cm2, which is more than sufficient for 

nonresonant two-photon absorption by the solute.  

 

7.3 Results  

7.3.1 Two-Photon Absorption Spectroscopy 

 Figure 7.1 compares the one- and two-photon absorption spectra of compounds 1 and 2 in 

methanol. The broadband 2PA spectrum of compound 1 was obtained across the full two-photon 

energy range 3.6–6.4 eV using pump pulses at 800, 470, and 370 nm. The 2PA spectrum of 2 was 

measured over a narrower range (800 and 470 nm pump wavelengths only) because our primary 

interest is using long-wavelength excitation to trigger the release of caged compounds. Too little 

sample was available to obtain the 2PA spectrum of 3.  

 All of the absorption spectra were measured in methanol because the 2PA measurement 

requires concentrations of ~0.05 M or higher, which is above the solubility limit of the pHP 

compounds in water. However,  the 1PA spectra are essentially the same in methanol and water, 

with broad absorption bands near 4.5, 5.6, and 6.3 eV. These 1PA bands are a common feature of 

the pHP chromophore.1,32 Compounds 1 and 2 also have a distinct 2PA band centered near 4.5 eV 

that closely resembles the 1PA band at the same total excitation energy. In contrast, the higher-

energy 2PA bands of compound 1 are much weaker.  
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Figure 7.1 Comparison of the 1PA (red) and 2PA (blue) spectra of 1 (top panel; 1.3×10-3 M and 

0.06 M, respectively) and 2 (bottom panel; 1.9×10-3 M and 0.11 M, respectively). All samples 

are in methanol. The light blue regions indicate where the contributions from solvent Raman 

scattering have been subtracted from the 2PA spectra. 

 

 The maximum cross sections of the lowest-energy 2PA bands of 1 and 2 are σ2PA = 23 ± 

11 GM and σ2PA = 11 ± 6 GM, respectively. The estimated uncertainties are 95% confidence 

limits based on the uncertainties of the experimental parameters of each measurement. The 

confidence limits are also consistent with the variation that we observe for several independent 

measurements of the absolute 2PA cross section. Similar to other 2PA measurements, the spatial 

profile of the excitation laser is the largest source of uncertainty, because the excitation intensity 

must be known precisely in order to calculate the absolute 2PA cross section from the measured 
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pump-probe absorption signal.24 However, the relative uncertainty across each broadband 2PA 

spectrum is much lower than the uncertainty in the absolute 2PA cross sections because we 

measure all wavelengths simultaneously. 

 The 2PA spectra in Figure 7.1 were corrected to account for overlapping contributions 

from stimulated Raman scattering of the probe light by the solvent. recorded with parallel 

polarization of the pump and probe light. The solvent Raman bands were removed by subtracting 

the pure solvent signal obtained under identical conditions (see the Appendix). Except for these 

narrow Raman bands, methanol does not contribute any appreciable signal in the 2PA spectrum 

below 6.5 eV.  

Importantly, the stimulated Raman bands provide a useful reference for measuring the 

absolute 2PA cross sections, because the two signals have the same dependence on the intensity 

and spatial overlap of the pump and probe laser beams.33 The integrated, stimulated Raman cross 

section that we measure for the C–H stretching bands of pure methanol under the same 

conditions as in Figure 7.1 (470 nm pump) is about 3.5 times smaller than the previously 

reported value for spontaneous Raman scattering at a similar pump wavelength (488 nm).34,35 

The discrepancy in Raman cross sections suggests that the spectra in Figure 7.1 may slightly 

underestimate the absolute 2PA cross sections of the pHP chromophore. 

The 2PA spectra in Figure 7.1 were recorded with parallel polarization of the pump and 

probe light. The 2PA cross sections are 2–3 times smaller for perpendicular polarization. The 

polarization ratio, r = σ2PA(||)/σ2PA(⊥), is essentially constant across the entire 2PA spectrum of 

each compound as shown in Figures 7.7 and 7.9 of the Appendix. We report the average value of 

the polarization ratio for each compound in Table 7.1. 
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Table 7.1 One- and two-photon absorption properties of the pHP chromophore.a 

 1 2 1– 2– 

ε1PA (M-1 cm-1) 15 000 b 15 000 b 30 000 30 000 
σ2PA (GM) 23±11 11±6 32±16 13±8 

σ2PA(||)/σ2PA(⊥) 2.5 2.3 ~5 – 
a The uncertainties in parentheses are estimated for 95% confidence limits. b Ref. 1. 

 

 Figure 7.2 shows the one- and two-photon absorption spectra of the same two compounds 

under basic conditions, where the phenol functional group is deprotonated (pKa ~ 8).21,22 We 

label the deprotonated compounds 1– and 2– to distinguish the different environments. The 

lowest energy absorption bands of the conjugate bases shift to longer wavelength by ~0.7 eV in 

both the 1PA and 2PA spectra. Interestingly, the one-photon absorptivity increases by about a 

factor of two upon deprotonation. The absolute 2PA cross section also increases slightly, to σ2PA 

= 32±16 GM for 1– and σ2PA = 13±8 GM for 2–, although the difference is within the range of our 

experimental uncertainty. As was the case for the protonated compounds, the absolute 2PA cross 

section is roughly twice as large for the parent chromophore (1–) compared with the caged 

phosphate (2–), although a similar diference is not observed in the 1PA spectra. The one- and 

two-photon absorption properties of all four species are summarized in Table 7.1. 
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Figure 7.2 Comparison of the 1PA (red) and 2PA (blue) spectra of 1– (top panel; 6.0×10-4 M and 

0.06 M, respectively), and of 2– (bottom panel; 3.3×10-4 M and 0.11 M, respectively). All 

samples are in methanol with ~18 equivalents of NaOH. The light blue regions indicate where 

the contributions from solvent Raman scattering have been subtracted from the 2PA spectra. For 

reference, the dashed red lines are the 1PA spectra of 1 and 2 at neutral pH. 

 

7.3.2 Two-Photon Uncaging Efficiency 

 The photolysis of pHP is most efficient in the presence of water,7 therefore we monitor 

the uncaging reactions of compounds 2 and 3 in dilute aqueous solutions (~10–4 M). Although 

compound 3 was studied in pure water, we added 5% acetonitrile to the solution of compound 2 

in order to improve the solubility. We determine the efficiency of the two-photon–induced pHP 

uncaging reactions by monitoring the absorption spectrum as a function of time under 
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nonresonant excitation conditions. Recording the linear absorption of the irradiated samples at 

regular intervals reveals the progress of the uncaging reaction, as shown in Figure 7.3. 

 

 

Figure 7.3 Evolution of the absorption spectrum of 2 under irradiation with nonresonant ~100 fs 

laser pulses at 550 nm. The inset shows the decreasing absorption at 281 nm, including an 

exponential fit to the data. 

 

The uncaging reactions of 2 and 3 are typically initiated through excitation of the lowest 

absorption band of the pHP chromophore, therefore we use intense, nonresonant later pulses at 

550 nm (one-photon equivalent of 275 nm, or 4.5 eV) to induce the two-photon uncaging 

reactions. Scheme 7.2 shows the well-known photochemistry of 2 and 3 following excitation 

with a single UV photon. Each compound efficiently releases a caged phosphate (4 or 5, 

respectively), along with the biologically inert p-hydroxyphenylacetic acid fragment, 6.1,18-22,32 

We monitor the progress of the uncaging reaction under the nonresonant excitation conditions by 

recording the linear absorption spectrum of the irradiated samples at regular intervals.  
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Scheme 7.2 Photolytic uncaging reactions of the pHP chromophore. 

 

 

 Figure 7.3 shows the evolution of the absorption spectrum for nonresonant irradiation of 

compound 2. The absorption spectrum approaches an asymptotic limit that resembles the 

spectrum of photoproduct 6 (λmax = 275 nm), because the uncaged compound 4 does not have 

any appreciable absorption in this region.1,36 In contrast, the asymptotic limit for nonresonant 

excitation of compound 3 (not shown) has an additional contribution from ATP near 265 nm. 

 The inset of Figure 7.3 shows the decreasing absorbance of the sample at 280 nm as a 

function of laser irradiation time. A best fit to the data using a single exponential function with 

constant offset gives a first-order rate constant of kbulk = 2.6×10–8 per laser pulse. At the 1 kHz 

repetition rate of our laser, this corresponds to a half-life of 10.7 hours for conversion of the full 

1 mL sample. The relatively slow conversion in Figure 7.3 is a consequence of the small fraction 

of sample that is irradiated by the pulsed laser. The laser irradiates only about 0.17% of the 1 mL 

sample volume, therefore the overall conversion rate is limited by the small amount of sample 

that is in the laser volume at any given time. We stir the sample continuously to ensure a uniform 

concentration throughout the sample cell. Without stirring or diffusion, we estimate that 

complete conversion of the photocaged compound within the laser volume would take only 

about 1–2 min. Much shorter conversion times could be achieved with a higher repetition rate of 
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the laser. We emphasize that this bulk conversion rate is independent of the microscopic 

photolysis rate, which is of the order 109 s–1.19 

 The rate of conversion depends on the excitation rate (excitation events per unit time) and 

the quantum efficiency of the reaction (fraction of successful uncaging reactions per excitation 

event). Here, we define the quantum efficiency following two-photon excitation (Φ2PA) as the 

fraction of molecules that react per two-photon excitation event, rather than per photon, in order 

to facilitate a comparison with the one-photon conversion efficiency (Φ1PA). The excitation rate 

depends on the absolute 2PA cross section of the molecule, the concentration, and the laser pulse 

characteristics. Thus, the conversion rate for irradiation with a pulsed laser is given by Equation 

1, 

 Rate = 𝑐𝑜𝑛𝑠𝑡 ⋅ σ!"# ⋅Φ!"# ⋅ 𝐸!       (1) 

Here E is the integrated energy of the incident laser pulses (µJ/pulse). The proportionality 

constant in Equation 1 is entirely determined by the experimental parameters, including the laser 

beam diameter, the pulse duration, and the concentration of the sample (see the Appendix).  

 Measuring the initial conversion rate as a function of increasing intensity, as shown in 

Figure 7.4 and 7.5, confirms that two-photon activation mechanism for compounds 2 and 3, 

respectively. The initial conversion rate is measured in the first 20–30 minutes of irradiation for 

laser pulse energies ranging from 1 to 10 µJ/pulse. The conversion rates have been corrected to 

account for a small degree of photoconversion induced by the UV-vis spectrophotometer, as 

measured using a second sample under the same UV-vis irradiation conditions, but in the 

absence of laser excitation. As expected, the conversion rate increases quadratically with the 

laser pulse energy, confirming a two-photon excitation mechanism. 
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Figure 7.4 Two-photon induced conversion rate as a function of laser intensity (energy per pulse) 

at 550 nm for compound 2 (9.8×10-5 M). The solid line is a fit to the data assuming quadratic 

power dependence (Equation 1). 

 

 

Figure 7.5 Two-photon induced conversion rate as a function of laser intensity (energy per pulse) 

at 550 nm for compound 3 (6.4×10-5 M). The solid line is a fit to the data assuming quadratic 

power dependence (Equation 1). 
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 Recognizing that the absolute 2PA cross section and two-photon absorption quantum 

yield are inherent molecular properties, we define an action cross section, σaction = σ2PAΦ2PA, that 

combines both quantities and gives a simplified rate equation.  

 Rate = 𝑐𝑜𝑛𝑠𝑡 ⋅ σ!"#$%& ⋅ 𝐸!        (2) 

The action cross section is the only adjustable parameter in the quadratic fits to the energy-

dependent conversion rates in Figures 7.4 and 7.5. The best fits to the data give two-photon 

action cross sections of 0.53±0.16 GM and 0.28±0.04 GM for compounds 2 and 3, respectively.  

 The action cross sections for 2 and 3 are significantly lower than the independently 

measured absolute 2PA cross sections for the pHP chromophore, suggesting relatively low 

quantum efficiency for the photolysis reaction. For example, using σ2PA = 11 GM from above 

gives a two-photon quantum efficiency of only Φ2PA = 0.05±0.03 for compound 2, compared 

with the one-photon quantum yield of 0.40±0.02.1  

 The discrepancy between the one- and two-photon quantum efficiencies probably reflects 

incomplete mixing of the sample during irradiation with the laser, which would give a lower than 

expected bulk conversion rate due to a concentration gradient between the laser focal volume and 

the bulk solution. In other words, slow mixing compared with the 1 kHz repetition rate of the 

laser may not fully refresh the sample within the laser volume between laser pulses, causing 

slower than expected conversion of the full sample. Thus, the values that we obtain represent 

lower limits for the bulk conversion rates, and probably underestimate the two-photon action 

cross sections and quantum efficiencies. 

 An independently measured value for the absolute 2PA cross section of compound 3 is 

not available for comparison with the measured action cross section, therefore we cannot report a 
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two-photon reaction quantum yield for that compound. The quantum yields and action cross 

sections for both compounds are summarized in Table 7.2. 

 

Table 7.2 Photorelease quantum efficiencies. 

 2 3 
Φ1PAa 0.40±0.02 0.37±0.01 
σaction >0.53±0.16 GM >0.28±0.04 GM 
Φ2PA >0.05±0.03 – 

a From Ref. 7. 

 

7.4 Discussion 

7.4.1 Two-Photon Induced Uncaging 

 The quadratic dependence of the photoconversion rates in Figures 7.4 and 7.5 confirm 

that nonresonant, two-photon activation of the pHP chromophore is possible using a pulsed, 

visible laser. The absolute 2PA cross section is sufficiently large (>10 GM) to allow selective 

excitation of the pHP chromophore, and therefore selective release of caged compounds. The 

discrepancy between the one- and two-photon excitation quantum efficiencies is surprising if 

both excitation methods access the same excited electronic state, although we cannot rule out a 

difference between the quantum efficiencies, the inconsistency probably reflects incomplete 

stirring of the sample creating a concentration gradient within the focal volume. Not only do 

these measurements of the 2PA spectroscopy and quantum efficiencies increase the possibility of 

spatially and temporally selective photorelease of substrates from the pHP PPG at biologically 

inert wavelengths, but the 2PA spectroscopy also provides new information about the electronic 

structure of the pHP chromophore. 
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The desire to push the absorption of PPGs from the mid visible range (500–620 nm) to 

longer wavelengths (550–720 nm) is easily achieved for the pHP chromophores by deprotonating 

the compounds to their respective conjugate bases. The conjugate bases of 1 and 2 display their 

lowest energy 1ππ* transitions at 3.8 eV (Figure 7.2). Recent measurements indicate that the 

quantum efficiency, although lower in the conjugated bases, is still sufficient for the controlled 

release of caged compounds under basic conditions.21,37,38 The 1PA extinction coefficients for the 

lowest energy bands increase by a factor of two upon deprotonation of the pHP chromophores to 

their respective conjugate bases. A slight increase is also observed for the 2PA transitions, 

partially offsetting the lower efficiency of the two-photon–induced uncaging reaction of the 

conjugate bases. The 2PA maxima at 3.8 eV suggest that two-photon excitation of the conjugate 

bases 1– and 2– with a 650 nm pulsed laser is sufficient for the photorelease of the phosphate 

substrates and using longer wavelengths would excite the tail of the 2PA band of the conjugate 

base. 

 

7.4.2 Photoactivated Uncaging Mechanism 

 The currently accepted mechanism for one-photon uncaging from the pHP chromophore 

involves rapid electronic relaxation within the manifold of singlet excited states, followed by 

intersystem crossing to a triplet biradical state that ultimately dissociates to give the 

photoproducts.1,19,20,36 Although one- and two-photon excitation potentially access different 

initially excited states, and could therefore lead to different outcomes,39-42 the similar 1PA and 

2PA bands near 4.5 eV suggest that the same excited state may be responsible for both 

transitions. The similar shifts of the one- and two-photon absorption bands upon deprotonation 
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support this assertion, as does the polarization dependence of the 2PA spectrum, as described 

below.  

The strong absorption band in the 1PA spectrum of the pHP chromophore has been 

assigned as having primarily π→π* character, and accesses the La-type S3 (1ππ*) initially excited 

state.32 The two lower-lying singlet states are the Lb-type S2 (1ππ*) and S1 (1nπ*), both states have 

much lower oscillator strength than S3.32,43 The weak transition to S2 is a consequence of the 

nodal structure for La-type transitions,32,44 whereas symmetry dictates the weak transition 

strength for S1. The transition to the lowest-lying 1nπ* singlet state is very weak because n→π* 

excitation correlates to a one-photon forbidden 1A'' symmetry transition within the Cs point 

group, but the transition is possible due to coupling with the π orbitals.32,36 

All of the electronic transitions are two-photon symmetry allowed for the pHP 

compounds studied here, but our 2PA measurements suggest that a transition to the same S3 

(1ππ*) state dominates the 2PA spectrum. Specifically, we use the 2PA cross sections measured at 

parallel and perpendicular relative polarizations of the pump and probe beams to determine the 

2PA polarization ratios, which gives the character of the two-photon accessible excited states. 

The 2PA polarization ratio is related to the symmetry of the electronic transition through the 

spatially averaged two-photon transition dipole tensor, and, in favorable cases, the magnitude of 

the 2PA polarization ratio reveals the symmetry of the electronically excited state based on 

symmetry requirements of the transition tensor for the two-photon transition.45-49 For example, 

the polarization ratio for molecules belonging to the Cs point group (e.g. compound 1) must be 

≥4/3 for totally symmetric transitions that access a final state with A' (rather than A'') symmetry. 

Nontotally symmetric transitions to states with A'' symmetry must have a polarization ratio 

between 1/2 and 4/3. We measure the 2PA cross sections of compounds 1 and 2 to be 2–3 times 
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smaller for perpendicular, compared with parallel relative polarization, indicating a totally 

symmetric transition to a state with A' symmetry. 

Both the La- and Lb-type 1ππ* transitions of conjugated molecules have A' symmetry, 

consistent with the polarization ratios that we measure for compound 1. Although there is no 

restriction on the polarization ratio for molecules in the lower-symmetry C1 point group, the 

polarization ratio for compound 2 reports on the local symmetry of the pHP chromophore, which 

maintains a similar structure as 1, and therefore will follow a similar trend. Given the relatively 

large polarization ratio across the spectrum for both 1 and 2 (Table 7.1), we are confident that the 

strong 2PA band at 4.5 eV accesses a totally symmetric (A') excited state for both compounds, 

and therefore has little or no contribution from the lower-lying 1nπ* state. 

 

7.5 Conclusions 

 The photochemistry of pHP releasing different phosphates, such as ATP and GTP has 

been thoroughly investigated by a number of research groups.20,36,50 While there are examples of 

PPGs that exhibit two-photon induced reactions using longer wavelength excitation10,13,51-56, 

most have not been well characterized using one-photon to induce uncaging. Here we have 

determined the intensity-dependent 2PE-induced release rates of two well-studied caged 

esters18,23,57 following irradiation with a Ti:Sapphire pulsed femtosecond laser and we also 

measured the broadband 2PA spectroscopy of two pHP chromophores. Based on the known 

efficient, rapid release rates, and the demonstrated biocompatibility of pHP,2,3,17 these esters have 

immediate and wide-ranging applicability as 2PE phototriggers for studies in chemistry and 

biology.7,15,16 Furthermore, this study demonstrates the viability of pHP as a two-photon 

activated PPG to spatially control the release of biologically active compounds. 
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 Although the bulk conversion rates are rather low for the large (1 mL) samples studied 

here, controlled release in the small focal volume of a laser beam would be achieved much faster, 

and could be further accelerated with a higher-repetition rate laser. Our experiments use an 

amplified Ti:Sapphire laser operating at 1 kHz in order to generate tunable pump pulses and 

white light probe, but repetition rates up to 100 MHz are possible using Ti:Sapphire oscillators 

over a narrower wavelength range. Lower pulse energies are easily compensated with tighter 

focusing conditions in order to achieve comparable conversion rates with excellent spatial 

resolution when using a higher repetition rate. Shorter pulse durations would also increase the 

peak intensity, giving increased excitation rates. Conversely, continuous wave (cw) two-photon 

excitation would not allow for the efficient release of substrates from a pHP PPG58 because the 

peak intensities necessary for a two-photon excitation process (10-1010 W/cm2) are not easily 

attained with cw.51,54,59 Our measurements have peak intensities well within the range needed to 

induce efficient two-photon uncaging, as well as the pHP chromophores we studied have 

sufficiently large absolute 2PA cross sections (>10 GM) allowing for selective excitation of the 

pHP chromophore to then selectively release bound substrates. 

 

7.6 Appendices 

7.6.1 Raman Band Subtraction and Polarization Ratios 

 The integrated signal we measure for the broadband 2PA spectra of 1, 2, 1–, and 2– in 

methanol also include a stimulated Raman signal from the pump light dominated by CH3 

stretching modes in methanol. Stimulated Raman contributions from pure methanol are 

subtracted from the broadband 2PA signal of the molecules to give the full 2PA spectra above. 

The entire integrated signals obtained for all the molecules in solvent and pure solvents are 
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below for both relative parallel and perpendicular polarizations of the pump and probe beams 

(Figures 7.6,7.8, 7.10).  

 The 2PA parallel and perpendicular polarization measurements are used to determine a 

polarization ratio, r = σ2PA(||)/σ2PA(⊥).45-47,49 The polarization ratio gives information about the 

symmetry of the two-photon allowed electronic transitions of the molecules. Molecules that 

belong to the C2 point group have r≥4/3 for totally symmetric transitions with A' character and 

r<4/3 for nontotally symmetric transitions with A'' character.45-47,49 The measured polarization 

ratios of the molecules are below (Figures 7.7, 7.9, 7.11). Light gray regions in the spectra of the 

integrated signals and the polarization ratios indicate stimulated Raman signal and the dark gray 

regions are areas of small signals, low signal-to-noise resolution, or additional scattering 

contributions. 
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Figure 7.6 1 in methanol, two-photon absorption (2PA) and stimulated Raman signals integrated 

in time, plotted against total energy (pump+probe energy). Top row of spectra used a pump 

excitation of 800 nm, the middle row of spectra used a pump excitation of 470 nm, and the 

bottom row of spectra used a pump excitation of 370 nm. The light gray boxes indicate the 

energy range that Raman contributions are present following the excitations listed above and the 

dark gray boxes indicate areas of either small signals from low probe light signal, low signal-to-

noise resolution, or additional scattering contributions (i.e. Rayleigh, Stokes, Anti-Stokes 

scattering). 
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Figure 7.7 1 in methanol, 2PA parallel/perpendicular polarization ratio, with the Raman 

contributions subtracted from the 2PA signal. 
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Figure 7.8 2 in methanol, two-photon absorption (2PA) and stimulated Raman signals integrated 

in time, plotted against total energy (pump+probe energy). Top row of spectra used a pump 

excitation of 800 nm and the bottom row of spectra used a pump excitation of 470 nm. The light 

gray boxes indicate the energy range that Raman contributions are present following the 

excitations listed above and the dark gray boxes indicate areas of either small signals, low signal-

to-noise resolution, or additional scattering contributions (i.e. Rayleigh, Stokes, Anti-Stokes 

scattering). 
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Figure 7.9 2 in methanol, 2PA parallel/perpendicular polarization ratio, with the Raman 

contributions subtracted from the 2PA signal. 
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Figure 7.10 (Top) 1– in basic methanol and (Bottom) 2– in basic methanol, both excited with 800 

nm pump light, two-photon absorption (2PA) and stimulated Raman signals integrated in time, 

plotted against total energy (pump+probe energy). The light gray boxes indicate the energy range 

that Raman contributions are present following the excitation listed above and the dark gray 

boxes indicate areas of either small signals, low signal-to-noise resolution, or additional 

scattering contributions (i.e. Rayleigh, Stokes, Anti-Stokes scattering). 
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Figure 7.11 2– in basic methanol, 2PA parallel/perpendicular polarization ratio, with the Raman 

contributions subtracted from the 2PA signal. 

 

7.6.2 Stimulated Raman Scattering as an Internal Standard 

The stimulated Raman signal of the solvent can be used as an internal standard to more 

accurately determine the absolute 2PA cross section of the studied molecules.33 The integrated 

Raman signal of pure methanol in the time and frequency domain is proportional to the Raman 

scattering cross section (dσ/dΩ) of methanol. The stimulated Raman cross section is given as, 

 !"
!!
= − !" !"

!!"#! ℓ !"
 
ℏ !!"#! !!"#$!

!

! !! !! !!"#$%&'
Δ𝐴 𝜏,𝑤 𝑑𝜏𝑑𝑤!"#"$    (3) 

The absolute 2PA cross is given as,24 

 𝜎!!" =
!" !"

!!"#! ℓ !"
 ℏ !!"#!

!!"#$%&'
Δ𝐴 𝜏 𝑑𝜏!!"      (4) 

Equation 5 uses the determined Gaussian overlap factor (GF) from the stimulated Raman cross 

section measurement of the solvent in Equation 3 and uses the determined GF in the absolute 

2PA cross section equation to obtain a more accurate absolute 2PA cross section by using the 

Raman signal as an internal standard.  
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 𝜎!!" = − ! !! !! !!"#$%&'
!!"#$%& !!"#$%

!  !"
!!

 !! ! !!!!"
!! !,! !"!#!"#"$

     (5) 

The 2PA and Raman cross section parameters are listed in Table 7.3. The determined Raman 

scattering cross section is compared against the literature spontaneous Raman cross section of 

methanol to determine accuracy of the measurement (Tables 7.4 and 7.5).34,35 
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Table 7.3 Parameters for the 2PA and Raman cross section measurements.a,b 

Pump light 370 nm 
(1) 

470 nm 
(1) 

470 nm 
(2) 

800 nm 
(1)c 

800 nm 
(2)c 

800 nm 
(1)c 

800 nm 
(1–)c 

800 nm 
(2)c 

800 nm 
(2–)c 

Epump 
(10-6, J/pulse) 

1.00 
[0.10] 

4.54 
[0.14] 

4.54 
[0.14] 

1.46 
[0.04] 

1.46 
[0.04] 

0.86 
[0.03] 

0.86 
[0.03] 

1.42 
[0.04] 

1.42 
[0.04] 

GF 
(cm-2) 

1330 
[40] 

236 
[21] 

236 
[21] 

335 
[28] 

335 
[28] 

793 
[106] 

793 
[106] 

431 
[41] 

431 
[41] 

ωpump 
(1015, s-1) 

5.09 4.01 4.01 2.35 2.35 2.35 2.35 2.35 2.35 

ωprobe 
(1015, s-1) 

3.44 3.49 3.49 2.94 2.94 2.92 2.92 2.92 2.93 

Nsolute 
(1019, molec/cm3) 

12.4 
[0.1] 

3.7 
[0.7] 

6.5 
[1.0] 

3.7 
[0.7] 

6.5 
[1.0] 

3.7 
[0.7] 

3.7 
[0.7] 

6.5 
[1.0] 

3.2 
[1.0] 

∫ΔA(τ,w)dτdwRama

n 
(OD) 

-0.020 
[0.001] 

-0.041 
[0.001] 

-0.041 
[0.001] 

0.025 
[0.001]d 

0.026 
[0.001]d 

0.025 
[0.001] 

0.026 
[0.001] 

0.028 
[0.001] 

0.028 
[0.001] 

∫ΔA(τ)dτ2PA 
(ps·mOD) 

1.19 
[0.02] 

1.05 
[0.02] 

0.81 
[0.02] 

0.62 
[0.01] 

0.58 
[0.01] 

0.78 
[0.02] 

1.42 
[0.03] 

0.61 
[0.01] 

0.46 
[0.01] 

Values in square brackets are reported uncertainties with 95% confidence. a Constant parameters 

for the measurements: ℓ – path length (1 mm); Nsolvent – number density of the solvent methanol 

(1.5×1022 molec/cm3); ħ – Planck’s constant; c – Speed of light. b Definition of parameters: Epump 

– incident energy of pump beam; GF – Gaussian overlap factor of pump and probe beams; ωpump 

– angular frequency of the pump beam; ωprobe – angular frequency of the stimulated Raman band 

in the probe beam; Nsolute – number density of the solute; ∫ΔA(τ,w)dτdwRaman – integrated 

stimulated Raman band in the time and frequency domain; ∫ΔA(τ)dτ2PA – integrated 2PA signal in 

the time domain. c Signal is the Stokes stimulated Raman scattering signal. d Raman and 2PA 

cross-sections were determined using the Raman contribution in the data set of the sample 

because of a diminished Raman signal from the pure solvent data set, likely due to a change in 

the overlap of the pump and probe beams. 

 

 

 

 



 183 

Table 7.4 Measured Raman cross sections of pure methanol and basic methanol. 

 Experiment Literature 
Pump Light 370 nm 

(1) 
470 nm 

(1) 
470 nm 

(2) 
800 nm 

(1–)a 
800 nm 

(2–)a 
488 nmb 

Raman Cross Section 
(10-30 cm2/molec·ser) 13 [3] 1.7 [0.4] 1.7 [0.4] 0.69 [0.21] 0.84 [0.20] 5.7 [0.6] 

2PA Cross Section of Solute 
from Raman Internal Standard 

(GM) 

3.8 [1.1] 
@ 6.12 eV 

87 [25] 
@ 4.50 eV 

38 [11] 
@ 4.50 eV 

265 [76] 
@ 3.85 eV 

91 [35] 
@ 3.85 eV – 

2PA Cross-Section of Solute 
from Measured Parameters 

(GM) 

6.0 [2.7] 
@ 6.12 eV 

26 [12] 
@ 4.50 eV 

11 [6] 
@ 4.50 eV 

32 [16] 
@ 3.85 eV 

13 [8] 
@ 3.85 eV – 

Values in square brackets are reported uncertainties with 95% confidence. a Signal is the Stokes 

stimulated Raman scattering signal. b Refs. 34,35. 

 

Table 7.5 Measured Raman cross sections of pure methanol and basic methanol. 

 Experiment Literature 
Pump Light 800 nm 

(1)a 
800 nm 

(2)a 
800 nm 

(1)a 
800 nm 

(2)a 
800 nm 

(1–)a 
800 nm 

(2–)a 
488 nmb 

Raman Cross Section 
(10-30 cm2/molec·ser) 0.92 [0.23]c 0.94 [0.23]c 0.65 [0.20] 0.82 [0.20] 0.69 [0.21] 0.84 [0.20] 5.7 [0.6] 

2PA Cross Section of 
Solute from Raman 

Internal Standard (GM) 

121 [37]c 

@ 4.50 eV 
63 [19]c 

@ 4.50 eV 
155 [44] 

@ 4.50 eV 
61 [23] 

@ 4.50 eV 
265 [76] 

@ 3.85 eV 
91 [35] 

@ 3.85 eV – 

2PA Cross Section of 
Solute from Measured 

Parameters (GM) 

20 [9] 
@ 4.50 eV 

11 [5] 
@ 4.50 eV 

18 [9] 
@ 4.50 eV 

9 [4] 
@ 4.50 eV 

32 [16] 
@ 3.85 eV 

13 [8] 
@ 3.85 eV – 

Values in square brackets are reported uncertainties with 95% confidence. a Signal is the Stokes 

stimulated Raman scattering signal. b Refs. 34,35. c Raman and 2PA cross sections were 

determined using the Raman contribution in the data set of the sample because of a diminished 

Raman signal from the pure solvent data set, likely due to a change in the overlap of the pump 

and probe beams.  

 

7.6.3 Determination of the Two-Photon Action Cross Section 

 The two-photon action cross section (σaction) is the product of the two-photon reaction 

quantum yield (Φ2PA) and the absolute 2PA cross section (σ2PA). The Φ2PA is the measurement of 

the number of molecules converted per absorption event.  

 Φ!"# =
!"#$%&#$' !"#$%&'%(

!"#$#% !"#$%&'($) !"!#$
        (6) 
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Equation 7 gives the change in irradiance through the path length, ℓ, of the sample when only a 

two-photon absorption process occurs, where I is the irradiance in the r and z cylindrical 

coordinates and in time, t, and β is the 2PA coefficient (proportional to σ2PA), N is the number 

density of the sample, and λ, is the pump wavelength.  

 !" !,!,!
!"

= −𝛽𝐼 𝑟, 𝑡, 𝑧 ! = −σ!"#𝑁
!
!!

𝐼 𝑟, 𝑡, 𝑧 !     (7) 

Using Equation 7 the transmitted irradiance can be determined and is given by Equation 8, where 

I0 is the incident irradiance.  

 𝐼 𝑟, 𝑡 = !! !,!
!!!ℓ!! !,!

         (8) 

Which can be rewritten as, when βℓI0(r,t)≪1, 

 Δ𝐼 = 𝐼! 𝑟, 𝑡 − 𝐼 𝑟, 𝑡 ≅ 𝛽ℓ𝐼!! 𝑟, 𝑡        (9) 

The total difference in energy, ΔE, is the difference of the total incident energy, E0, and the 

energy as a function of position in the path length of the sample, E(z). In Equation 10 ΔE is 

determined by integrating the difference in irradiance, ΔI, over the time, t, and transverse 

coordinates, r.  

 Δ𝐸 = 𝐸! − 𝐸 𝑧 = Δ𝐼 𝑑𝑟 𝑑𝑡       (10) 

The incident pulse shape I0(r,t) is approximated to be Gaussian functions in t and r in Equation 

11; where, ρ is the pulse width, τ is the pulse duration, I0 is the peak irradiance and is given in 

Equation 12, and E is the integrated pulse energy.  

 𝐼! 𝑟, 𝑡 = 𝐼!𝑒!!
! !!!𝑒!!! !!!        (11) 

 𝐼! =
!

!! ! !!!!
          (12) 

Ultimately, ΔE is equal to Equation 13 when Equations 11 and 13 are plugged into Equation 10 

and using the relation of β to σ2PA in Equation 7.  
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 Δ𝐸 = !!"#!ℓ!!

!!! !!!!
!
!!

         (13) 

The two-photon excitation rate (Rate, molecules converted per laser pulse) is related to ΔE,  

 Rate = !!
!!
!

Φ!"# =
!ℓ

!!! !!!!
!
!!

!
𝐸!σ!"#Φ!"#     (14) 

Equation 15 is given in terms of the full width at half maximum (FWHM) of ρ and τ.  

 Rate = ! !" ! ! !!ℓ
!! !!!"#$

! !!"#$

!
!!

!
𝐸!σ!"#Φ!"# = constant 𝐸!σ!"#$%&   (15) 

The two-photon excitation rate is proportional to the product of the two-photon action cross 

section (σaction) and the square of the integrated energy (E) of the laser pulse (Equation 15), 

where σaction is the product of the σ2PA and Φ2PA. The parameters for the two-photon action cross 

section measurements are listed in Table 7.6. 

 

Table 7.6 Parameters of two-photon action cross sections.a,b 

Pump light, λ 550 nm 
(2) 

550 nm 
(3) 

N (1019, molec/cm3) 5.9 [1.7] 3.8 [0.4] 
ℓ (cm) 1.000 [0.002] 1.000 [0.002] 

ρFWHM (10-3, cm) 22.9 [0.8] 22.9 [0.8] 
τFWHM (10-15, s) 87.7 [6.1] 87.7 [6.1] 
σaction (GM) 0.53 [0.16] 0.28 [0.04] 

Values in square brackets are reported uncertainties with 95% confidence. a Constant parameters 

for the measurements: h – Planck’s constant; c – speed of light. b Definition of parameters: N – 

number density of the solute in solution; ℓ – path length; ρFWHM – full width at half maximum of 

the beam diameter; τFWHM – full width at half maximum of the pulse duration; σaction – two-

photon action cross section, σaction = σ2PAΦ2PA. 
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8. Conclusions 

In this dissertation we have used nonlinear excitation, namely two-photon excitation to 

measure the electronic spectroscopy, excited-state dynamics, and reaction quantum yields of 

photoactivated molecules. The photoactivated molecules studied include two photochromic 

molecules, stilbene and 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluoro-cyclopentene 

(DMPT-PFCP), in addition to a phototrigger molecule, para-hydroxyphenacyl (pHP). By 

studying higher-lying excited electronic states of photoactivated molecules, we gain insight into 

the behavior of these states. Additionally, we can use nonlinear excitation to control the 

photochemical reaction pathways of these photoactivated molecules.  

The one- and two-photon absorption spectroscopy provides the excited-state energies of 

the higher-lying one- and two-photon accessible states. The excited-state dynamics from S1 

following linear excitation are well studied for these photochromic molecules, but much less is 

known about the dynamics from higher-lying excited states following nonlinear excitation. The 

excited state dynamics shows the photochromic molecules relax on the order of hundreds of 

femtoseconds to S1 following two-photon excitation to higher-lying states, but once on S1 the 

same dynamics are observed as with linear excitation.1 However, ionization induced by 

excitation with more than two photons opens up a different reaction pathway, which can be used 

to control the photochemical reaction of these photochromic molecules. The nonlinear excitation 

process also affects the reaction quantum yields of the photoactivated molecules. 

Stilbene is an ideal model photochromic system because this molecule undergoes 

photoisomerization and photocyclization.2-6 The complementary spectroscopy and dynamics 

measurements of stilbene from S1 have been studied extensively.2-6 Our one- and two-photon 

absorption spectroscopy measurements of the stilbene series, consisting of trans-stilbene, cis-
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stilbene, and phenanthrene, indicate we access different excited states with one and two photons 

for different symmetry point groups. We then excited higher-lying two-photon accessible states 

of trans-stilbene, which induces very fast dynamics from SN to S1 and the potential energy 

surface of S1 dictates the long time dynamics to the ground S0 state.1 Further dynamics 

measurements following two-photon excitation with better time resolution and/or a better 

measure of the vibrational dynamics can provide added insight into the structural relaxation and 

isomerization dynamics of trans-stilbene from higher-lying excited states. The ionization of 

trans-stilbene with more than two photons can also be investigated to determine if additional 

reaction pathways are accessed by these higher-lying excited states. 

DMPT-PFCP is a more complicated photochromic model system that reversibly 

undergoes cyclization and cycloreversion following irradiation with light, from the open-ring 

isomer to the closed-ring isomer and vice versa, respectively.4,7 We measured the spectroscopy, 

quantum yields, and excited-state dynamics of the closed-ring isomer of DMPT-PFCP to 

investigate the cycloreversion reaction under one- and two-photon excitation. The electronic 

spectroscopy of the closed-ring isomer has a strong absorption at 3.3 eV in both the one- and 

two-photon absorption spectra. However, measuring the quantum yields following linear and 

nonlinear excitation with a total energy of 3.3 eV give reaction yields of ~1.5% and ~16%, 

respectively; which is not consistent if the same reaction pathways are accessed with one and 

two photons. The excited-state dynamics measurements revealed distinct differences following 

linear and nonlinear excitation, as well as with low and high intensity light, indicating a different 

reaction pathway is accessed under high intensity nonlinear excitation. We have provided 

evidence of an ionization pathway being accessed following nonlinear excitation with high 

intensity light, which may explain the order of magnitude increase in the quantum yield 
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following nonlinear excitation. We have suggested the 2+ cation of the closed-ring isomer 

undergoes the cycloreversion reaction to produce more open-ring isomer molecules, but the 

spectroelectrochemistry of DMPT-PFCP would provide spectroscopic information about the 1+ 

and 2+ cations. Additional electron quenching experiments with N2O or another quencher of the 

quantum yields and dynamics following nonlinear excitation will give further evidence for the 

ionization mechanism under these excitation conditions. 

The phototrigger we studied, pHP photochemically releases substrates quickly and 

efficiently in aqueous media and produces only one major photoproduct.8-14 The lowest energy 

absorption bands in the UV are the same for one- and two-photon absorption of the protonated 

pHP compounds. For the deprotonated pHP compounds the lowest energy absorption bands are 

red-shifted and are the same for one- and two-photon absorption. pHP has previously been 

shown to photochemically release a substrate with linear excitation8-14 and we have demonstrated 

the same release following two-photon excitation. Measuring the two-photon induced release of 

substrates from deprotonated pHP compounds would provide a means of releasing substrates 

with visible to near-IR light rather than with UV light.  

 The two-photon absorption spectroscopy, dynamics, and quantum yield measurements 

presented in this dissertation are useful for a wide range of applications. These nonlinear 

measurements of the photochromic molecules studied here can provide fundamental molecular 

information about applications from optical data storage to three-dimensional microfabrication. 

For the phototrigger molecules these measurements can be utilized for applications ranging from 

two-photon fluorescence microscopy to drug delivery. The nonlinear measurements presented in 

this dissertation provide fundamental information about the two-photon accessible excited states 

of these photochromic and phototrigger molecule and this information can be used to improve 
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two-photon excitation applications. Computational studies of two-photon accessible excited 

states can provide spectroscopic information about the photoactivated molecules, ranging from 

the excited-state energies to the character of the excited states. Transient Raman spectroscopy 

can be used to obtain any vibrational information about the higher-lying excited states of these 

photoactivated molecules. Studying the two-photon absorption spectroscopy, dynamics, and 

quantum yields of the photochromic molecules in the solid phase can provide additional 

information about the higher-lying excited states without complications from solvents. 

This dissertation used nonlinear excitation, specifically two-photon excitation to study 

higher-lying excited states to develop a better fundamental understanding of these states. The 

nonlinear spectroscopy research on photoactivated molecules in this dissertation provides 

complimentary information about two-photon accessible exited states, excited-state dynamics, 

and reaction quantum yields. These nonlinear measurements answer fundamental questions 

about the higher-lying excited states of these photoactivated molecules. Additionally, we have 

demonstrated that nonlinear excitation can be used to selectively control the outcome of 

photochemical reactions. This research also provides spectroscopic benchmarks for further 

experimental and computational studies of the character and energies of the two-photon 

accessible states of these photochromic and phototrigger molecules. 
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