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Abstract
Bioluminescence is primarily a marine phenomenon with 80% of metazoan bioluminescent

genera occurring in the world’s oceans. Here we show that bioluminescence has evolved

repeatedly and is phylogenetically widespread across ray-finned fishes. We recover 27

independent evolutionary events of bioluminescence, all among marine fish lineages. This

finding indicates that bioluminescence has evolved many more times than previously

hypothesized across fishes and the tree of life. Our exploration of the macroevolutionary

patterns of bioluminescent lineages indicates that the present day diversity of some inshore

and deep-sea bioluminescent fish lineages that use bioluminescence for communication,

feeding, and reproduction exhibit exceptional species richness given clade age. We show

that exceptional species richness occurs particularly in deep-sea fishes with intrinsic biolu-

minescent systems and both shallow water and deep-sea lineages with luminescent sys-

tems used for communication.

Introduction
Bioluminescence, the production and emission of light from a living organism, is a fascinating
phenomenon that is documented in over 700 genera of metazoans across the tree of life, with
the vast majority living in the ocean [1–3]. Among vertebrates, bioluminescence has evolved in
cartilaginous (Chondrichthyes) [1–4] and ray-finned fishes (Actinopterygii) [1–3], and it is not
observed in any lobe-finned fishes or tetrapods (Sarcopterygii). Previous survey studies [1–2]
have identified bioluminescence in 11 orders of marine fishes; however, the phylogeny and
classification of fishes has changed considerably since these previous studies, and the authors
of these earlier studies did not investigate this phenomenon in a phylogenetic framework, iden-
tify independent evolutionary events of bioluminescence, or explore macroevolutionary pat-
terns of bioluminescent lineages. Broad studies of bioluminescence have typically counted
fishes as a single evolutionary event among the 40 independent higher-level evolutionary
events of bioluminescence documented across the tree of life [2–3]; therefore, a focused study
of the bioluminescent ray-finned fishes is critical to determine the number and identity of bio-
luminescent fish clades.
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Bioluminescence is produced in living organisms following a chemical reaction between a
substrate (luciferin) and an enzyme (luciferase) that results in a visible photon [2–3]. Among
fishes, bioluminescence is generated intrinsically (e.g., stomiiform dragonfish barbels and pho-
tophores) [1–3, 5] or through bacterially mediated symbiosis (e.g., leiognathid [ponyfish]
esophageal pouches, anomalopid [flashlightfish] subocular organs) [6–7]. The functions of bio-
luminescence are diverse and engrossing, exemplified by remarkable morphological specializa-
tions that range from anatomically complex species-specific luminescent structures to
variation in the biochemistry of the bioluminescent systems themselves [1–13]. In ray-finned
fishes, bioluminescent structures are variously used for camouflage, defense, predation, and
communication [1–4, 7–11].

Here we present the first investigation of the evolution and distribution of bioluminescence
across ray-finned fishes in a phylogenetic context. Recent work indicates that bioluminescence
evolved once or twice within chondrichthyans (e.g., Etmopteridae and Dalatiidae) [4, 14]; how-
ever, the phenomenon is considerably more widespread, anatomically variable and complex,
and biochemically diverse in ray-finned fishes [1–13]. Our objectives in this study were to
determine the number of independent evolutionary origins of bioluminescence in ray-finned
fishes, infer the ages of the phenomenon across this assemblage, and investigate patterns of
diversification in bioluminescent lineages. Previous studies have suggested that biolumines-
cence may play a role in diversification within marine environments, particularly in deep-sea
lineages, and specifically among taxa that are hypothesized to use bioluminescence for commu-
nication [8]. We further examine whether any bioluminescent lineages of ray-finned fishes
exhibit exceptional species richness given their clade age for taxa living both in the deep sea,
where there are few obvious physical barriers to reproduction, and shallow water habitats, to
provide a roadmap for future macroevolutionary work.

Materials and Methods
To investigate the evolution of bioluminescence across ray-finned fishes, we inferred a phylog-
eny from ten nuclear (enc1, Glyt, myh6, plagl2, Ptr, rag1, SH3PX3, sreb2, tbr1, zic1) and one
mitochondrial (COI) gene fragments. Taxonomic sampling includes 301 taxa (297 genera, S1
Table). The data matrix is 80% complete and includes 274 newly collected gene fragments (S1
Table, GenBank KX227793-KX228066, with sequences aligned with MAFFT [15]). The previ-
ously published nuclear genes were obtained from a diversity of studies, as described in the
data accessibility section. GenBank accession information is available for mitochondrial gene
fragment cytochrome oxidase I in S2 Table, as data for this gene fragment were taken from var-
ious sources.

Evolutionary relationships were inferred using maximum likelihood in GARLI v2.01 [16]
with 33 partitions (one for each codon position in each gene). Bootstrap values supporting clades
are indicated in S1 Fig following the recommendation of Wiley et al. [17]. Codon positions were
assigned models of nucleotide substitution from Akaike information criterion tests. Models of
molecular evolution were identified by the program jModelTest v.2.1 [18] with the best fitting
model under the Akaike information criterion (AIC): cytochrome oxidase I (GTR+Γ, GTR+I+Γ,
GTR+Γ), ectodermal-neural cortex 1-like gene (GTR+Γ, GTR+I+Γ, GTR+I+Γ), glycosyltrans-
ferase (GTR+I+Γ, HKY+I+Γ, GTR+I+Γ), myosin heavy chain 6 alpha (GTR+I+Γ, GTR+I+Γ,
GTR+Γ), pleiomorphic adenoma gene-like 2 gene (GTR+I+Γ, GTR+Γ, GTR+I+Γ), ptr hypo-
thetical protein (GTR+I+Γ, GTR+I+Γ, GTR+I+Γ), recombination activating gene 1 (GTR+I+Γ,
GTR+I+Γ, GTR+I+Γ), SH3 and PX3 domain-containing 3-like protein gene (GTR+I+Γ,
GTR+I+Γ, GTR+I+Γ), brain super conserved receptor gene (GTR+I+Γ, GTR+I+Γ, GTR+I+Γ),

Repeated andWidespread Evolution of Bioluminescence in Marine Fishes

PLOS ONE | DOI:10.1371/journal.pone.0155154 June 8, 2016 2 / 11

anzac, Astyanax mexicanus, Ateleopus japonicus,
Barbourisia rufa, Bathylaco nigricans, Bathylagus
euryops, Bathypterois atricolor, Bothus lunatus,
Callionymus bairdi, Caranx crysos, Chaetodon
striatus, Chanos chanos, Chaunax suttkusi, Chelmon
rostratus, Chitala chitala, Chologaster cornuta,
Conger oceanicus, Coregonus clupeaformis,
Coryphaena hippurus, Cromeria nilotica, Cyclothone
microdon, Cyttopsis rosea, Denticeps clupeoides,
Echeneis naucrates, Elassoma zonatum, Elops
saurus, Esox lucius, Eurypharynx pelecanoides,
Fistularia petimba, Galaxias maculatus, Galaxiella
nigrostriata, Gephyroberyx darwini, Gnathonemus
petersii, Gonorynchus greyi, Gymnorhamphichthys
petiti, Halieutichthys aculeatus, Halosauropsis
macrochir, Helostoma temminckii, Heteroconger
hassi, Heteromycteris japonicus, Himantolophus
sagamius, Hiodon tergisus, Histiophryne
cryptacanthus, Hypomesus pretiosus, Hypoptychus
dybowski, Ijimaia loppei, Lates niloticus,
Lepidogalaxias salamandroides, Lepidogobius
lepidus, Lepomis macrochirus, Luvarus imperialis,
Macropinna microstoma, Macroramphosus scolopax,
Megalops atlanticus, Melamphaes polylepis, Mola
mola, Monocentris japonica, Nansenia ardesiaca,
Neochanna burrowsius, Neonesthes capensis,
Neoscopelus microchir, Ogcocephalus nasutus,
Opsanus pardus, Opsariichthys uncirostris, Osmerus
mordax, Pachypanchax playfairii, Paratrachichthys
sajademalensis, Percopsis omiscomaycus,
Polypterus ornatipinnis, Porichthys notatus,
Psettodes erumei, Rachycentron canadum, Ranzania
laevis, Retropinna semoni, Rondeletia loricata,
Saccopharynx ampullaceus, Salvelinus alpinus,
Samariscus latus, Scopelengys tristis, Searsia
koefoedi, Selenotoca multifasciata, Sphyraena
barracuda, Stokellia anisodon, Stylephorus
chordatus, Symphurus atricaudus, Syngnathus
fuscus, Tetraodon miurus, Thymallus brevirostris,
Trachipterus arcticus, Triacanthus biaculeatus,
Umbra limi, Xiphias gladius, Zanclus cornuta, and
Zeus faber were taken in whole or in part from Near
et al. [20]. Sequences of Aeoliscus strigatus,
Anarhichas lupus, Aplodinotus grunniens, Apogon
lateralis, Arrhamphus sclerolepis, Aulostomus
maculatus, Betta splendens, Brotula multibarbata,
Cataetyx lepidogenys, Centropomus undecimalis,
Cephalopholis argus, Chromis cyanea, Cottus
carolinae, Cubiceps baxteri, Diodon holocanthus,
Dissostichus eleginoides, Eleotris pisonis,
Etheostoma atripinne, Forcipiger flavissimus,
Gambusia affinis, Gasterosteus aculeatus, Gazza
minuta, Halichoeres bivittatus, Heteroconger hassi,
Hoplostethus atlanticus, Labrisomus multiporosus,
Leiognathus equulus, Lophius americanus,
Maccullochella peelii, Meiacanthus grammistes,
Menticirrhus littoralis, Monopterus albus, Morone



T-box brain 1 gene (GTR+Γ, GTR+I+Γ, GTR+I+Γ), and zic family member protein (GTR+I+Γ,
GTR+Γ, GTR+I+Γ).

Five independent likelihood analyses were conducted, and the tree with the maximum likeli-
hood score was stored and used as a fixed-topology prior to generate a distribution of temporal
(ultrametric) trees for character evolution analyses in BEAST v.1.8 [19]. The relative divergence
times of representative fishes were estimated by incorporating 21 previously published fossil
calibrations [20–21] with lognormal priors (S1 Text, S1 Fig) and builds heavily on previous
phylogenetic work [20]. Parameters and tree topologies from BEAST analyses converged on a
stationary distribution. A 50% maximum clade credibility (mean heights) tree was generated
from the posterior tree distribution and was subsampled down from 45,000 to 5,000 trees (Figs
1 and 2).

Bayesian ancestral-character-state reconstructions for the evolution of bioluminescence (0:
Absent; 1:Present), coded from known and previously published occurrences in ray-finned
fishes [1–3, 5–7], were performed in BayesTraits v2.0 MultiState [22] using Markov chain
Monte Carlo (MCMC) approaches to infer ancestral states at nodes in the phylogeny across a
distribution of topologies (500 trees subsampled from 5,000 post burn-in trees) where the
branches have varying lengths relative to time (Fig 3). Each transformation from absence to
presence in the Bayesian ancestral-states reconstruction was counted as an independent evolu-
tion of bioluminescence among ray-finned fishes. The GEIGER module in R [23] was used to
calculate a 95% confidence interval of the expected number of species within a clade given a
net diversification rate (r), a relative extinction rate, and crown clade age [24]. Rates for net
diversification and relative extinction were estimated with MEDUSA [25] (Fig 4), with species
richness [i.e., the number of currently valid described species for each clade (S3 Table)] gener-
ated from the Catalog of Fishes [26]. Following its use in recent studies [7–8], we identify and
highlight lineages as having exceptional species richness if their known species diversity, given
hypothesized clade age, lie outside the upper confidence interval bounds of expected species
richness.

Results
Bioluminescence is inferred to have evolved independently at least 27 times among 14 major
fish clades (Figs 1 and 2, S1 Fig). Intrinsic bioluminescence, in which a fish produces and emits
light without the aid of bacterial symbiosis, evolved eight times (Figs 1 and 2). Of the approxi-
mately 1,510 species of known bioluminescent fishes, more than half (~785 species) exhibit
intrinsic bioluminescence (Figs 1 and 2, S1 Fig). Bacterially mediated bioluminescence through
symbiosis has evolved at least 17 times (Figs 1 and 2, S1 Fig), representing approximately 48%
of all bioluminescent fishes (~725 species, Fig 4). All occurrences of bioluminescence across
ray-finned fishes evolved from the Early Cretaceous (150 Ma) through the Cenozoic (Fig 1),
with the oldest occurrence in Stomiiformes (Fig 1). Six orders (Alepocephaliformes, Myctophi-
formes, Stomiiformes, Batrachoidiformes, Beryciformes, and Acanthuriformes), representing
57% of all bioluminescent fishes (~814 species), include lineages that exhibit exceptional spe-
cies richness given clade age (Fig 4).

Discussion
Bioluminescence is widespread across ray-finned fishes that occupy marine environments, and
27 independent evolutionary events of bioluminescence are identified (Figs 1 and 2). These 27
groups are distributed across 14 major lineages of ray-finned fishes (Figs 1 and 2, S1 Fig) that
occupy deep-sea (e.g., lanternfishes, anglerfishes), inshore (e.g., ponyfishes, croakers), and
coral reef (e.g., cardinalfishes, pineconefishes) habitats. Our findings demonstrate that the
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chrysops, Parapercis clathrata, Paratilapia polleni,
Polymixia japonica, Pseudopleuronectes americanus,
Ptychochromis grandidieri, Rheocles wrightae,
Rhinesomus triqueter, Ruvettus pretiosus, Sarda
sarda, Scatophagus argus, Sebastes fasciatus,
Sebastolobus alascanus, Seriola dumerili, Serranus
tigrinus, Stegastes leucostictus, Stereolepis gigas,
Toxotes jaculatrix, Trachinotus carolinus,
Triacanthodes anomalus, and Xenentodon cancila
were taken from Wainwright et al. [36]. Sequences of
Abalistes stellatus, Acanthaphritis unoorum,
Acanthurus nigricans, Acropoma japonica, Ameiurus
natalis, Anomalops katoptron, Anoplogaster cornuta,
Antennarius striatus, Antigonia capros, Argentina
silus, Argyropelecus gigas, Assurger anzac,
Ateleopus japonicus, Aulotrachichthys prosthemius,
Banjos banjos, Barathronus maculatus, Barbourisia
rufa, Bathymaster signatus, Beryx decadactylus,
Brosmophycis marginata, Callionymus bairdi,
Cantherhines pullus, Capros aper, Carapus
bermudensis, Caranx crysos, Cataetyx lepidogenys,
Ceratias holboelli, Cetostoma regani, Chaetodon
striatus, Chanos chanos, Chaunax suttkusi, Chelmon
rostratus, Chiasmodon sp., Chologaster cornuta,
Coryphaena hippurus, Cromeria nilotica,
Cryptopsaras couesi, Cyttomimus affinis, Cyttopsis
rosea, Diretmichthys parini, Diretmus argenteus,
Echeneis naucrates, Elassoma zonatum, Electrona
antarctica, Fistularia petimba, Gephyroberyx darwini,
Gigantactis vanhoeffeni, Glaucosoma hebraicum,
Gonorynchus greyi, Helostoma temminckii,
Heteromycteris japonicus, Himantolophus sagamius,
Histiophryne cryptacanthus, Histiopterus typus,
Howella zina, Hygophum proximum, Hypomesus
pretiosus, Icichthys lockingtoni, Kali normani, Kurtus
gulliveri, Lachnolaimus maximus, Lampris guttatus,
Lamprogrammus niger, Lates niloticus, Liparis
mucosus, Lota lota, Luvarus imperialis,
Macroramphosus scolopax, Macrourus sp,
Malakichthys elegans, Melamphaes polylepis, Mene
maculata, Mola mola, Monocentris japonica,
Muraenolepis microps, Naso lituratus, Neonesthes
capensis, Neoscopelus microchir, Nezumia bairdii,
Onuxodon parvibrachium, Ophioblennius atlanticus,
Opsanus pardus, Opsariichthys uncirostris, Osmerus
mordax, Ostracoberyx dorygenys, Pachypanchax
playfairii, Paragalaxias mesotes, Paraliparis
meganchus, Paratrachichthys sajademalensis,
Pempheris schomburgkii, Pempheris schwenkii,
Pentaceros japonicus, Peprilus triacanthus, Polymixia
lowei, Porichthys notatus, Porichthys plectrodon,
Protomyctophum choriodon, Psenes maculatus,
Pseudopentaceros pectoralis, Rachycentron
canadum, Ranzania laevis, Rathbunella hypoplecta,
Regalecus russelii, Rondeletia loricata, Salvelinus
alpinus, Scopelengys tristis, Siganus spinus,
Sphyraena barracuda, Stylephorus chordatus,



number of independent evolutionary events of bioluminescence across the tree of life is signifi-
cantly higher than previous summaries suggest (40) [2–3] and highlight the need to explore the
evolution of this phenomenon phylogenetically in bioluminescent lineages across Metazoa. By
combining our findings with the inference that squaliform sharks have evolved biolumines-
cence once or twice [1, 4, 14, 27], we can infer that bioluminescence has evolved at least 29
times in vertebrates alone. This significant increase in the number of independent origins of
bioluminescence in vertebrates is found exclusively among fishes living in marine environ-
ments. At present, the only known terrestrial animals capable of bioluminescence are arthro-
pods (e.g., fireflies, millipedes) [1]; whereas in marine environments, bioluminescence has
evolved across the tree of life from bacteria to vertebrates (e.g., Ctenophora, Mollusca, Crusta-
cea, Tunicata, Vertebrata) [1–3].

Of the 27 evolutionary events of bioluminescence in ray-finned fishes, bacterially mediated
symbiosis has evolved 17 times (Figs 1 and 2), particularly among acanthomorph (spiny-
rayed) lineages. All bioluminescent bacteria that are symbiotic with fishes are vibrionaceans
[28], and there is little to no host specificity between species of bioluminescent bacteria and
fishes, which acquire bacteria from their local environment [6–7]. Fishes that live in symbiosis
with bioluminescent bacteria exhibit a vast array of anatomical structures to focus, broadcast,
or even restrict the light these bacteria produce [7, 10]. Multiple fish orders with biolumines-
cent bacteria contain lineages that exhibit exceptional species richness given clade age (Fig 4),
including Beryciformes (flashlightfishes) and Acanthuriformes (ponyfishes), with Ceratioidei
(deep-sea anglerfishes) exhibiting exceptional species richness in the younger range of its esti-
mated age of divergence. Ponyfishes (Leiognathidae) have evolved a complex array of sexually
dimorphic muscular shutters and species-specific translucent windows to control the light
emitted by the symbiotic bacteria living in a specialized pouch derived from esophageal tissue
[7, 10], and deep-sea anglerfishes have evolved complex, species-specific bioluminescent dor-
sal-fin escas (lures) that are presumably used for communication and prey attraction [29]. It is
likely that the number of independent symbiotic relationships between fishes and biolumines-
cent bacteria could be higher than those estimated herein, given more fine scale species-level
sampling of some lineages. For example, a densely sampled phylogeny of the diverse order
Gobiiformes [30] suggests that bacterial bioluminescence may have independently evolved
more than once among the cardinalfishes (Apogonidae), although bioluminescence was not
explicitly optimized in the gobiiform study.

Across ray-finned fishes, intrinsic bioluminescence evolved at least eight times (Figs 1 and
2, S1 Fig) in some of the most species-rich lineages of deep-sea fishes (Figs 3 and 4), including
dragonfishes (Stomiiformes, 426 species) and lanternfishes (Myctophiformes, 256 species).
One genus of anglerfishes, the netdevils (Linophyrne), has even evolved an intrinsic biolumi-
nescent chin barbel to complement their bacterially illuminated escal lure [29]. Despite evolv-
ing less frequently than bacterially mediated bioluminescence, intrinsic bioluminescence
notably accounts for more than half of all known bioluminescent fish species and nearly 90
percent of bioluminescent species that exhibit exceptional species richness given their clade age
(Fig 4). A recent study hypothesized that bioluminescence functions as a species-specific com-
munication/identification system among species-rich lineages (lanternfishes, dragonfishes)
and that this system has played a significant role in their diversification in the deep sea, a region
devoid of obvious physical barriers to reproduction [8]. The current study corroborates those
findings and also indicates that other lineages with intrinsic bioluminescence and the potential
for bioluminescent communication (as opposed to camouflage) have increased rates of diversi-
fication, including both inshore and deep-sea bioluminescent lineages that have more recently
evolved (Batrachoidiformes and Alepocephaliformes, respectively, Fig 4). It is still unclear how
most fishes with intrinsic bioluminescence obtain the necessary substrates to produce light. For
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Fig 1. Evolution of Bioluminescence across Ray-Finned Fishes. Evolutionary relationships and divergence times of ray-
finned fishes inferred from 11 gene fragments. Letters at nodes correspond to clades indicated in Fig 4. Branch colors indicate
the presence of bioluminescence and whether the mechanism of bioluminescence is intrinsic, bacterially mediated, or
unknown. Examples of bioluminescent ray-finned fishes include the A: midshipman (Porichthys: intrinsic), and B: flashlight
fish (Anomalops: bacterially mediated).

doi:10.1371/journal.pone.0155154.g001
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at least one lineage of fishes (Porichthys, midshipmen), luciferin is obtained from their diet
[2–3].

We show that bioluminescence has repeatedly evolved in ray-finned fishes at varying times
in Earth’s history (Figs 1 and 2), spanning the Mesozoic (150 to 65 Ma) and Cenozoic (65 Ma
to present day). This suggests bioluminescence was present in Cretaceous seas and may have
played an early role in the diversification of some deep-sea lineages that are exceptionally

Fig 2. Evolutionary Relationships and Divergence Times of Ray-Finned Fishes Inferred from Eleven Gene Fragments.Numbers
at nodes correspond to ancestral-character-state-reconstruction distributions of the evolution of bioluminescence indicated in Fig 3.
Blue branches and taxa labels indicate the presence of bioluminescence, all of which occur in marine habitats. Green taxa labels
indicate additional marine taxa. Pink labels indicate lineages with marine and freshwater taxa, and white labels indicate lineages that are
predominantly found in freshwater habitats.

doi:10.1371/journal.pone.0155154.g002
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Fig 3. Ancestral-Character Evolution of Bioluminescence in Sixteen Major Lineages of Fishes. Bayesian ancestral-character-
states reconstruction of bioluminescence across a distribution of 500 trees that resulted from the Bayesian inference of divergence
times. Each rectangle includes 500 individual reconstructions across this distribution of 500 trees. Blue indicates the presence of
bioluminescence and black indicates absence.

doi:10.1371/journal.pone.0155154.g003
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species rich given their clade age (lanternfishes and dragonfishes). Notably, none of the biolu-
minescent ray-finned fish lineages that possess exceptional present day species richness are
thought to use bioluminescence exclusively for camouflage, with many of these lineages pos-
sessing species-specific anatomical structures that are thought to aid in communication, preda-
tion, and reproduction [7–8]. This pattern is also observed in squaliform sharks, where the two
deep-sea bioluminescent lineages, Etmopteridae and Dalatiidae, are hypothesized to have also
evolved during the Cretaceous and exhibit elevated rates of diversification [27]. As observed in
the species-rich lanternfishes and dragonfishes [8], these sharks have species-specific biolumi-
nescent structures and patterns [31]. Recent studies have shown that luminescent systems
other than bioluminescence, such as biofluorescence, have repeatedly evolved and are phyloge-
netically widespread throughout the evolution of marine fishes [32]. Biofluorescence, like bio-
luminescence, may have a signaling function in marine fishes [32–33]. Our findings, and these

Fig 4. Patterns of Diversification across Ray-Finned Fishes and Bioluminescent Lineages. Temporal hypothesis of the
relationships of ray-finned fishes with net diversification rates and relative rates of extinction estimated by MEDUSA. Species richness
curves indicate the 95 percent confidence interval for the expected number of species given clade age given a net diversification rate
and relative rate of extinction. Letters indicate bioluminescent lineages of fishes in Fig 1.

doi:10.1371/journal.pone.0155154.g004

Repeated andWidespread Evolution of Bioluminescence in Marine Fishes

PLOS ONE | DOI:10.1371/journal.pone.0155154 June 8, 2016 8 / 11



additional studies investigating the evolution and function of bioluminescence and biofluores-
cence in marine systems, highlight how much remains to be discovered regarding the potential
impacts of bioluminescence, and luminescent signaling in general, on the evolutionary history
and ecology of marine fishes.
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S1 Fig. Maximum Likelihood Topology of the Evolutionary Relationships of Ray-Finned
Fishes. Numbers at nodes indicate fossil calibrations. Black dots indicate bootstrap support
value less than 60. All other nodes have bootstrap support values greater than 60.
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