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AOOTRACT 

This dissertation presents the results of experimental studies on 

the rare earth ~orides and rare earth borocarbides. The work consisted 

of six parts: (1) the ternary phases and equilibria in Ln-B-C systems; . . 
(~) the structure of the phase, ~c2; (3) the discovery of the new 

hectobbride phase; (4) the vaporization characteristics of the rare earth 

borides; (5) the decomposition pressures and the heat of sublimation of 

Gd.134; and (6) ternary Ln-M-B compatibi-lity studies. and the boron poten-

tial serieso 

The ternary Ln-B-C systems were investigated.by arc melting and 

x~r~ diffraction techniques •. Emphasis was placed on the metal-deficient 

portion of the ternary Gd-B-C system •. Five ternary phases were identified: 

The LnB2c2 phase was prepared for the lanthanides, Nd, Gd, Tb, Dy, 

Ho, Er, and Yb, by reaction of their tetraborides with graphite. It is 

proposed that the tetragonal LnB2C2 structure contains continuous planar 

sheets of alternate boron and carbon atoms arranged in eight- and four-

membered aromatic rings between 'Which lie the netal atoms. 

A primitive cubic phase of composition ne~ LnB100 was found for 

Gd and Yb. The cell pararnete~E?. were 16.50 and 16.56 i,. respectively. 

By free evaporation arid Knudsen effusion techniques, it was found 

that tetraborides of the light lanthanide metals, La, Ce,. Pr, N~ and Sm, 
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lose metal gas preferentially to produce a hexaboride residue, which 

vaporizes congruently. Hexaborides of Gd, Tb, Dy, and Y vaporize with 
I 

preferential loss of boron gas to a tetraboride residue, 'Which vaporizes 

congruently. Ytterbium gas is lost from YbB4, YbB6 and YbB12 to a YbB100 

residue •. A mass spectrometric study revealed only atomic species in the 

gas phase. 

The decomposition pressures of congruently vaporizing Gd.B4 from 

ZrB2 crucibles were measured in the range 1599-2403°K. by Langmuir, mass 

spectrometric and Knudsen effusion techniques. 

It was demonstrated that variation in metal volatility alone was 

not sufficient to account for the difference in the vaporization behaviors 

of the borides. The stability of the borides with respect to condensed 

elements decreases with increasing atomic number, and the hexaboride be-

comes less stable faster than the tetraboride. 

Ternary compatibility studies ~etween the lanthanide borides and 

Ta, Zr, Wand C were performed with arc melting and X-ray diffraction 

techniques to define the limits on the free energy of formation of the 

lanthanide borides. Emphasis was placed on the gadolinium borides. The 

concept of a boron potential series was developed to order the boride 

systems with respect to their ability to give up boron. 
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INTRODUCTION I . 

General and Long-Range 'Incentives 

Chemistry is a science which characterizes matter and its inter-

actions. From observations of the behavior of countless chemical 

systems, chemists have de~eloped increasingly complex tools to categorize 

these observations and allow predictions of chemical behavior under many 

conditions. The formulations of quantum mechanics~ kinetics, statistical 

mechanics, and thermodynamics are among the tools that have been developed 

in an attempt to explain the nature of the chemical bond. 

The application of quantum theory to simple systems of gaseous 

matter has been most fruitful in lending insight into the role of elec-

trons in determining bond strengths in molecules. However, in complex 

chemical systems where many atomic interactions are present, as in the 

condensed state, the tool of quantum mechanics is not nearly as well 

developed in its ability to_ define those factors which determine bond 

strength. In order for the theoretician to expand his tools for use in 

the condensed state, many experimental observations nrust be made on the 

effects of varying environments on condensed systems. 

One such environmental variable is temperature. The influence 

of temperature on the equation of state of materials accounts for be-

haviors at high temperature considerably different from the behavior of 

materials at low temperatures. Unusual oxidation states, varied structures 
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and different kinetic effects exist at high temperatures. Further, 

chemical reactions which are not energetically favored at ordinary 

temperatures may become important at elevated temp_.eratures because of the 

enhanced TAS contribution to the free energy available for the reaction. 

At sufficiently high temperatures any material can be made to 

vaporize to gas~ous atoms or molecules. If one measures the rate of 

.vaporization as a function of temperature, information concerning the 

stability of the solid with respect to the gas phase is gained. Further, 

if the volatility of the constituents of the gas is known, information 

concerning the stability of the solid with respect to its condensed 

components is available. Still further, the obse~vation of the process 

by which a material vaporizes contributes to the understanding of the 

bond strengths in the solid and the gas phases. 

With the above framework this thesis was undertaken to study the 

factors which contribute to the stability of the lanthanide borides. 

From this information and many, many more experiments on related systems,, 

our understanding of chemical bonding will increase. More specifically, 

from many such experiments, theory describing the equations of state for 

condensed materials will eventually be developed. 

Innnediate Incentives 

Borides 

In the last twenty years the demands of our rapidly expanding 

curiosity, and the development of nuclear and space sciences have forced 

inter-disciplinary focus on ·the physical and chemical behavior of ma-

terials at high temperatures. In the field of materials science, 
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. inorganic and physical chemists, solid state physicists, ceramists, 

metallurgists and chemical engineers are losing their identities in their 

common efforts to contribute to the understanding and development of re-

fractory materials. 

Among the materials most suited for applications at high 

temperatures a~e carbides and borides. Very little is known concerning 

the existence of boride and carbide phases, much less their stabilities 

and interactions at high temperatures. Schwarzkopf and Kieffer (01) dis-

cuss the preparations,. phases and structures of transition metal borides 

and carbides. Heat capacity data and heats of formation are being deter-

mined, with most emphasis to date placed on carbi~es. In the past ten 

years some thermochemical information, based on low temperature heat 

capacity measurements and vaporization studies, has been presented for 

the Periodic Groups !VB, VB and VIB metal borides. The high temperature 

behavior and thermodynamics of B4C and BN have been fairly well charact-

erized. Some thermochemical data are available for MgB4 , UB4 , UB12 and 

SiB6 . Other than these few data, information on the high temperature 

behavior of borides is woefully absent. 

Borides, in general, are extremely interesting from the viewpoint 

of their structures and high stability. The complex cages, nets and 

sheets that boron atoms assume in elemental boron and in borides have 

been described by X-ray structure analysis. Using quantum mechanics, 

chemists have attempted to describe the boron covalent binding in metal 

borides. In general, their interpretations are supported by experiment. 

However, considerable additional experimental work must yet be done to 

provide a foundation for expansion of their theories. The factors which 
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influence the boride structures and stabilities nrust be ascertained. 

In this Laboratory some experiments on the preparation of, and 

the determination of precise lattice parameters for, some lanthanide 

tetra- and hexaborides were performed by Dr. H. A. Eick (02). His work 

initiated a program to study the influence of metal volatility on the 

vaporization pr9cesses of metal borides, which is developed as the 

principal subject of this thesis. 

The lanthanides were chosen for study not only because of their 

extreme variance in metal volatility, but also because the lanthanide 

series is long and because the compounds existing for one lanthanide 

generally exist for all. This fact affords an opportunity to compare 

the effects of many different lanthanides on boride stability with the 

same foundation of structure and composition. In effect, this similarity 

of structure and composition for the solid minimizes the heat effects of 

breaking up structures in which coordination spheres are different for 

different lanthanides, and allows the effect of metal volatility to be 

isol~ted from other factors. With such a wide choice of metal volatility 

and relatively fixed boride heats of formation, perhaps two constant 

vaporizing single phase compositions at the same temperature in the same 

metal-boron system may be found. 

Borocarbides 

An obvious extension of the work on boride and carbide refractory 

materials is the study of M-B-C ternary compounds. No thermochemical 

data exist for M-B-C ternary compounds. In fact, while researchers have 

been looking for such ternary compounds for twelve years, only in the last 

four years have any ternary compounds been found. In Vienna, as noted 
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later, Nowotny has found borocarbides of uranium, thorium and molyb-

denum. 

In view of the similarity between the metal-boron and metal-

carbon systems of thorium and uranium and those of lanthanide metals, 

ternary compound_s might exist in lanthanide systems that are similar to 

those in the ac~inide systems. Further incentive for an examination of 

the lanthanide-boron-carbon system for refractory phases arises from the 

observation of a gadolinium borocarbide formed on interaction of gado-

linium borides with graphite crucibles. 

Structure of the Thesis 

This work deals with phase relations, stabilities and high 

temperature properties of refractory lanthanide borides and borocarbides. 

The thesis is.divided into two parts. Part I is concerned with the solid 

phases in the lanthanide-boron-carbon system. Phase relations were estab-

lished from fifty synthetic compositions in the Gd-B-C field. The 

structure of LnB2c2 is discussed. Part II, the principal effort of this 

work, discusses the existence and stability of lanthanide borides both 

with respect to condensed elements and with respect to gaseous elements 

from an examination of the vaporization properties and from ternary 

compatibility studies·with transition metals and graphite. As a reference 

point for the relative stabilities, the decomposition pressures of GdB4 
are determined as a function of temperature. 
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PART I 

LANTHANIDE-BORON-CARBON SYSTEMS 



CHAPTER 1 

BACKGROUND 

1. 1 Transition Metal Borocarbides 

Steinitz (03) in 1951 studied the interaction of titanium borides 

with titanium carbides and tantalum borides with tantalum carbides with-

out finding any ternary phases. Similarly, Nelson, Willmore and 

Womeldorph (04), and Greenhouse, Accountius and s{sler (05), investi-

gated th~ Ti-B-C system and reported no ternary phases. Glaser (06) in 

1952 surveyed the metal-boron-carbon fields for Ti, Zr, V, Nb, Ta, Cr, 

Mo, Wand Th and found no ternary compounds in any of these systems. 

More recently, Nowotny, Benesovsky, Brukl, Schob, Rudy and Toth (07, 08, 

09, 10), have investigated in detail the systems Zr-, Hf-, Mo-, V-, Nb-, 

Ta- and W-B-C. Only one ternary compound was found, Mo2Bc. This phase 

has been found by NCMotny to melt congruently at 2800 ~ 10°c. (11). 

Jeitschko, Nowotny and Benesovsky (12) determined the crystal structure 

of Mo2Bc as n2h17 , orthorhombic, with all atoms in position 4(c). The 

atoms are located at (0, y, 1/4; 0,, y, 3/4)+(0, O, O; 1/2, 1/2, 0) with 

yB = 0.027 and Ye= 0.192. The cell parameters are 3.086, 17.35 and 

3.047K for a, b and c, respectively. The phase, w2nc, could not be 
0 0 0 

made. An iron phase of composition Fe23c3n3 has been reported by 

Stadelmaier (13). 
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1. 2 Alkaline Earth Borocarbides 

.Markovskii and Vekshina (14) reported the existence of an 

alkaline earth borocarbide of composition Ca-, Sr-, and BaBC2 . This 

phase was formed on reaction of metal oxide, B2o3 and graphite. A more 

detailed study (15) set the composition at MB2c4 , rather than MBC2 • 

This phase appeared in reaction products at 1300°c. along with MC2 , B4c 

and MB6 . A~ higher temperatures only borates~ borides, graphite and/or 

B4C appeared. They attempted to prepare this phase in the lanthanide 

system, but produced only the LnB phase, noted in Chapter 1.4, along 
X 

with LnB6 for the reaction of Ce02 or La 2o3 with B2o3 and graphite (16). 

1. 3 Actinide Borocarbides 

The investigations of Nowotny, Benesovsky and Rudy (17), in the 

U-B-C system revealed a single ternary phase, UBC, with extensive solid 

solution. This phase is orthorhombic, p~~, with a
0

, b
0 

and c
0

, 3.591, 

11.95 and 3.372 R, respectively. Further research by Nowotny, Toth, 

Benesovsky and Rudy (18), in the Th-B-C system exposed, in addition to 

ThBC with the UBC synunetry and extensive solid solution, Th2Bc2 which 

oxidizes in air and has a structure closely related to ThC2 ; ThBC2 which 

has a structure too complex for easy identification; and ThB2c which was 

indexed as a C-32 type hexagonal phase with a and c, 3.872 and 3.812 K, 
0 0 

respectively. There is a summary of the M-B-C systems studied by 

Nowotny's group by Rudy (19) with a discussion of the use of phase re-

lations to derive heats of formation and related thermochemical data 

for binary and ternary refractories. 
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1. 4 Lanthanide Borocarbides 

The existence of ternary borocarbide phases with the lanthanide 

and actinide metals has been partially studied by Brewer and Heraldsen 

(20) in their nitride, boride, carbide compatibility studies. Much of 

the behavior among unfilled d-orbital transition metals noted in Chapters 

1.1 and 1.3 was confinned. In addition they found that CeB6 and carbon 

will not react, but that CeB4 reacts with carbon to form some uncharac-

terized Ce-B-C compound. The CeC-CeB4, Ce2c3-CeB4 and Cec2-CeB4 two 

phase joins which they have inferred nrust be corrected in view of the 

ternary phases found in the present work. 

Hoyt, Cherne and Cunnnings (21) hot pressed·lanthanide tetra- and 

hexaborides with carbon in graphite dies. However, the only products 

they observed were B4C and lanthanide carbides. The attempts of Post, 

Moskowitz and Glaser (22) to prepare lanthanide borides by reaction of 

lanthanide sesquioxides with boron in the presence of carbon at 1500 to 
0 1800 C. in graphite crucibles under inert atmospheres produced the phases 

listed in Table 1. 

Ln 

La 
Pr 
Gd 
~ 

y 

Table 1 

LnB Lattice Parameters and Synnnetry 
X 

a 
0 

~) 

3.82 
3.81 
3.79 
3.77 
3.78 

9 

C 
0 

~) 

3.96 

3.63 
3.56 
3.55 

Synnnetry 

· tetragortal 
cubic or pseudocubic 
tetragonal 
tetragonal 

,tetragonal 



The cubic phase, PrB, occurs when the a and c variations with atomic X O 0 

number cross at Pr, making a nearly equal to c • The phase, YB, was 0 0 · X 

made by Binder in a similar study of yttrium borides (23). These LnB 
X 

phases were suggested as borides (3 < x < 4) stabilized by carbon or 

oxygen. Later, _Binder (24) suggested that carbon was needed to stabilize 

this phase, and that the composition might better be described as MB2C. 

In the work of Johnson and Daane (25) on the La-B system, an unindexed 

ternary phase was found, whose composition was estimated as LaBC. 

In view of the close similarity between Ln-B, Th-Band U-B and 

between Ln-C, Th-C and U-C binary systems, similar ter.nary phases might 

be expected to be fanned in the lanthanide system~. For example, ThBC 

and UBC were found by Nowotny, et al. (18), and have the same structure. 

However, the analagous counterparts to Th2Bc2 , ThBC2 and ThB2C in the 

U-B-C ternary field were absent. The Th-B-C phases were studied in the 
0 same 800 to 1400 C. temp~rature range as the U-B-C system study. 

Tetragonal and cubic phases in the tn~B-C system reported by Post cannot 

be indexed with the ThBC, UBC or ThB2C symmetry. The investigation of 

the Gd-B-C ternary field was undertaken with the above observations in 

mind. 
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CHAPTER 2 

PREPARATION AND CHARACTERIZATION OF SAMPLES 

2. 1 Materials 

Gadolinium rod, 32 g., was obtained from Michigan Chemical Corp. 

The assay provided with the sample specified Gd content as 99-t- percent, 

This sample, lot 8859, was designated Gd-1. 

Amorphous boron, grade AA, 325 mesh, was obtained from Cooper 

Metallurgical Assoc~ates. The assay accompanying the sample specified 

B content at 99.5%, Fe at 0.15% and carbon at 0.10%. This sample, lot 

number 1414, lab sample B-8, was used in preparing GdB4 samples, 16 GdAM, 

17 GdAM and 51 GdAM, and in preparing GdB6 samples, 15 GdAM and 50 GdAM. 

Spectroscopic grade graphite, SP-1, from Lots 329 and 513, was 

obtained from National Carbon Co., Inc. 

The samples of GdB4, i'6 GdAM, 17 GdAM and 51 GdAM, and of GdB6, 

15 GdAM and 50 GdAM, were prepared as indicated in Chapter 2. 2. 2. of 

Part II. Preparations and materials of other lanthanide borides in 

Table 3. 1 are specified in Part II, Chapter 2. 2. 1 and 2. 2. 2. 

Emission spectrographic analysis of GdB4 , 16 GdAM, showed Cr, Cu and Fe, 

less than 0.1%; Si, barely detectable; and no other impurities. 
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2. 2 Preparation and Characterization 

Synthetic compositions in the ternary field on the boron side of 

the GdB4-c join were prepared with GdB6 , Band Corwith GdB4 , Band C. 

About 0.2g of sample was prepared from 325 mesh powdered reagents for 

each synthetic ternary composition. The blended mixture was compacted at 

2000 psi in a o~erquarter inch hardened steel die. The resultant cylin-
\ 

drical pellet was twice melted on a water-cooled copper hearth under an 

oxygen-purged, argon atmosphere in an arc melter. Heating cycle durations 

were typically 30 seconds to two minutes at 200 amperes for each melting. 

On and around some cooled buttons for a radius of one or two inches was a 

light vapor deposit of mostly graphite. While th!°s deposit could be 

wiped from the buttons before they were crushed and ground, the graphite 

contamination of adjacent samples in the arc melter was observed in some 

cases discussed later. The resultant cooled button was crushed in a 

diamond mortar (hardened steel), ground in an agate mortar and X-rayed 

by Guinier focusing or Debye-Scherrer powder diffraction cameras with 

Cu-K o<, (1.54050R) radiation from a Philips Electronics, Inc., generator. 

The Guinier (26) forward focusing camera employed the 1011 re-

flection from a curved quartz crystal to focus and separate Cu-K o<. 1 
(1.54050.R) or Cu-Ka< 2 (1.54434.R) from the primary beam. The primary 

copper radiation passed through the line source side of the Philips 

Electronics X-ray tube mounted horizontally and driven externally from 

the generator. The focusing cameras have a film radius of 83.9mm. Slits, 

monochromator, sample holder and rotating motor and film cassette were 
.. 4 mounted inside a sealed box capable of being evacuated to 10 mm. during 
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the exposure. These two cameras were purchased from Forsvarets, 

Forskningsanstalt, Avdelning 1, Stockholm, Sweden. 

From computational methods with IBM 653 and 1620 machines d-

spacings were generated from the reading of X-ray powder films. From 

these cl-spacings and by comparison of these films with films made on 

reference binary phases, all the lines on the film of the sample could 

be assigned to their appropriate phases in most cases in spite of the 

complexity of the sample composition. 

The preparations in the ternary field on the metal-rich side of 

the GdB4-c join were done with B, C and Gd reactants. All gadolinium 

handling was done in a nitrogen atmosphere dry box, in view of the air 

oxidation characteristic of lanthanide metals. Gadolinium metal filings, 

from which iron contaminati·on was magnetically removed, were collected 

in a tared weighing bottle. This weight of gadolinium was matched with 

the proper amount of boron and graphite to produce the desired synthetic 

stoichiometry. Total sample weights were about 0.5 to 1.2g. After 

being mixed in the weighing bottle, the material was loaded into a three-

eighths inch hard steel die, removed from the glove box, and, in a time 

interval of no more than five minutes, pressed at 6000 psi. The pellet 

was mounted in the arc furnace, melted twice under oxygen-purged argon, 

and the cooled button returned into the glove box. The button was crushed 

and ground as above, but in the glove box. A portion of the sample was 

removed from the box and loaded into the Guinier camera, which was then 
-3 pumped out to 10 nnn. The bulk of the sample was sealed into a weighing 

bottle with paraffin while still in the dry box. 
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The care to exclude oxygen is probably not very important with 

gadolinium, but some of the carbon-rich products were quite pyrophoric. 

For instance, Gdc 2 powder will oxidize completely to Gd 2o3 and carbon in 

one hour in air. The maximum time these preparations were exposed to 

air between melting and X-ray analysis was five minutes. 

Chemical analyses of the ternary preparations generally were not 

performed. The preferential loss of constituents after mixing during 

handling and arc melting was thought to be less than one percent by 

weight. 

14 



CHAPTER 3 

PHASE DIAGRAM RESULTS AND DISCUSSION 

3. 1 Ternary Diagram and Experimental Observations 

Table 3. 1 contains a listing of the synthetic metal-boron-carbon , 

compositions for gadolinium and for other lanthanide metals. The first 

column contains the sample identification. The atomic proportions of 

the components in the synthetic composition in thousandths are listed 

in the second column. Columns three and four reveal the diffraction 

camera used, the photograph number and the phases identified in the 

reaction product. The weights of the starting materials are shown in 

the fifth column. 

Figure 3. 1 summarizes _the fifty synthetic compositions listed 

in Table 3. 1 for the gadolinium-boron-carbon field. In view of the 

heavy concentration of experimental compositions in the GdB4-c-B tri-

angle, a key is provided with the figure to identify the equilibria 

observed at each synthetic composition in this region. 

Figure 3. 2 is a non-isothermal phase diagram derived from the 

observations of Table 3. 1 and Figure 3. 1. The phases on the gadolinium 

side of the GdB4-GdB2c2 and GdB2c2-c joins were not investigated in 

nearly the detail of the metal deficient portion of the ternary field. 

Thus, much of this portion of the diagram is assumed. In addition to 

the GdB2c2 phase, which is discussed in great detail in Chapter 4, four 
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TABLE 3. 1 

Synthetic Lanthanide-Boron-Carbon Compositions and Observed Phases 

D = Guinier film mjr = major tr= trace 
C = Debye-Scherrer film mnr = minor eqc = equal concentrations 

Sample Composition Film Product Phases Starting Material NB page 
Ln B C 

2La.AM 091 546 363 C-2401 LaB6 only .. 11336g LaB6(1La.AM) 467, 
.02618 · C 

7NdAM 105 526 369, C-2353 Nd~C2, mjr .16452 NdB4 ( 5Nd.AMb) 451 
NdB4, mnr .02650 C 
NdB6, tr .00953· B 

8NdAM 105 526 369 C-2355 Nd~C2, mjr .1500 NdB4,Nd~, 464 
NdB4, mnr. Nd~C2, (7Nd.AM) 451 
c, mjr .00106 C 

2Sm.AM 091 546 363 C-2357 SmB6 only .12018 SnB6(1SmAM) 456 
.02710 C 

20GdAM 167 688 164 C-2274 GdB4, mjr .20244 GdB4(l6GdAM) 428 
Gd~C2, tr .01195 C 

\ 
21Gd.AM 181 725 094 C-2276 GdB!~, mjr .20002 GdB4 (16Gd.AM) 428 

Gd~~, tr .00623 C 

22Gd.AM 143 570 287 C-2277 Gd~C2 .20134 GdB4 (16Gd.AM) 429 
GdB4, eqc .02432 C 

23GdAM 112 447 441 C-2278 Gd~C2 .19315 GdB4 ( 16GdAM) 429 
GdB~, eqc .04572 C 
C, r 

24GdAM 091 363 546 C-2308 GdB2c2. .14898 GdB4 (l6Gd.AM) 439 
GdB6 .05379 C 
C, eqc 

25GdAM 091 544 366 c-2298 Gd:B:2C2, mjr .16505 GdB6 (15Gd.AM) 439 
GdB6, tr .03608 C 

2'6GdAM 066 398 535 C-2309 Gd~c2, mjr .17588 GdB6(15Gd.AM) 439 
GdB6 .0768o C 
C, eqc, mnr 

27GdAM 111 556 332 C-2299 Gd~C2, mjr .17046 GdB4 (16Gd.AM) 439 
GdB6 .00924 B 
c, eqc, tr .03055 C 
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TABLE 3. lJ continued 

Sample Composition Film Product Phases Starting Material N.B page 
Ln B C 

28GdAM 077 536 387 C-2302 GdB2c2J mjr .13262 Gd B4 ( 16Gd.AM) 440 
GdB6J mnr .02149 B 

.04015 C 

29Gd.AM 063 428 509 C-2310 Gd.~c2J mjr .12205 GdB4 ( 16GdAM) 440 
GdB6 .01856 B 
CJ eqcJ mnr .05931 C 

30Gd.AM 126 503 372 C-2313 Gd~C2 J mjr .17067 Gd B4 ( 16Gd.AM) 440 
C-2316 GdB6J mnr to tr .03027 C 

32GdAM 132 795. 073 C-2319 GdB6 only .19391 GdB6(15GdAM) 44o 
.00579 C 

33GdAM 124 744 132 C-2320 GdB6 only .19012 GdB6(15GdAM) 440 
.01096 C 

34GdAM 111 668 221 c.:.2318 GdB6J mjr .17945 GdB6(15Gd.AM) 445 
Gd~C2 J mnr .01933 C 

35GdAM 122 732 146 C-2323 GdB6J mjr .1178o GdB6(15GdAM) 445 
Gd~~ .07643 C 
CJ eqcJ mnr 

36GdAM 066 267 667 C-2324 Gd~C2 .12939 GdB4 (16GdAM) 445 
GdB6J eqc J mjr .07765 C 
CJ tr 

40GdAM 125 500 375 C-2574 GdB2c2J mjr 3.30808 GdB4 (16Gd.AM) 492 
GdB4 • 58724 C 
GdB6J eqcJ mnr 
CJ tr 

41GdAM 143 572 286 D-1092 Gd~C2 1.00065 GdB4 (17Gd.AM) 576 
GdB4J eqc .12055 C 581 

42Gd.AM 133 533 334 D-1111 GdB2c2J mjr .57512 GdB4 (17Gd.AM) 586 
GdB6J mnr .08637 C 
GdB4J tr 

43GdAm 100 600 300 D-1112 GdB2c2J mjr .73548 GdB6(15GdAM) 586 
GdB6J mnr .11946 C 

44Gd.AM 100 500 400 D-1113 GdB2c2J mjr .52525 GdB4 (17GdAM) 586 
GdB6J mnr .02839 B 

.12619 C 
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TABLE 3. 1, continued 

Sample Composition Film Product Phases Starting Material NB page 
Ln B C 

45Gd.AM 118 529 353 D-1116 Gd~C2 , mjr .58123 GdB4 (17Gd.AM) 587 
GdB6, mnr .01571 B 

.10461 C 

52Gd.AM 050 800 150 D-1220 GdB6, mjr .12119 GdB6 ( 15Gd.AM) 618 
Gd~C2 , mnr .05912 B 628 
B4C, mnr .01969 C 
C, tr 

53Gd.AM 050 900 050 D-1221 GdB6, mjr .12199 GdB6(15Gd.AM) 618 
B4C, mnr .07140 B 629 
GdE100, mnr .00660 C 

54Gd.AM o4o 160 800 D-1222 GdB2c2 .09090 GdB4 ( 51Gd.AM) 618 
GdB6 .10917 C 
C, eq_c 

55GdAM 130 610 260 D-1223 Gd~C2 , mjr .17279 Gd B4 ( 5 lGd.AM) 618 
GdB4., mnr .00647 B 
GdB6, mnr .02074 C 

56Gd.AM 130 610 260 D-1224 Gd~C2 , mjr .17280 GdB4(51GdAM) 618 
GdB6 .00647 B 
GdB4, eq_c, mnr .02073 C 

57GdAM o8o 470 450 D-1225 Gd~C2 .13898 GdB4 ( 51GdAM) 618 
GdB6, eq_c, mjr .01409 B 
GdB4, tr .04692 C 

72Gd.AM 020 960 020 D-1269 GdB100 ~0968 GdB6( 15Gd.AM) 644 
GdB6, eq_c, mjr .1981 B 
C, tr .0052 C 

73Gd.AM 050 650 300 D-1324 GdB2c2 , mjr .18003 GdB6(15GdAM) 644 
GdB6 · .06147 B 
C, eq_c, tr .05849 C 

74Gd.AM 050 58o 370 D-1328 GdB
2
c2 , mjr .17922 GdB6(15GdAM) 644 

GdB6, mnr .04896 B 
C, tr .07181 C 

75GdAM 040 450 510 D-1329 GdB2c2 , mjr .15413 GdB6 (15GdAM) 644 
GdB6, mnr .03947 B 
C, tr .10640 C 

76GdAM 030 300 670 D-1330 GdB2c2, mjr .12478 GdB6 ( 15GdAM) 644 
GdB6 .02434 B 
C, eq_c, mnr .15088 C 
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TABLE 3. 1, continued 

Sample Composition Film Product Phases Starting Material NB page 
Ln B C 

77GdAM 010 900 090 D-1331 GdB6 .05372 GdB6 ( 15GdAM) 644 
~c .22011 B 

B100, eqc .02618 C 
c, mnr 

78GdAM 070 920 010 n ... 1332 GdB100, mjr .06579 GdB6(15GdAM) 644 
GdB6 .22917 B 
C, eqc, mnr .00508 C 

79GdAM 010 980 010 D-1333 GdB100, mjr .05413 GdB6 ( 15GdAM) 644 
C, mnr .24294 B 
GdB6, tr .00293 C 

94GdAM 333 333 333 D-1671 GdKS9 .54815 Gd 766 
c-2871 lines .0378o B 998 
C-2874 .04196 C 

95GdAM 400 200 400 D-1675 GdKS5, mjr . 58115 Gd 766 
C-2872 GdC2, tr .02004 B 998 
c-2875 .04449 C 

96GdAM 250 250 500 D-1681 GdB:2C2, mjr .71256 Gd 766 
D-1683 GdC2, tr .04914 B 998 
C-2873 .10909 C 
c-2876 

97GdAM 250 500 250 D-1674 GdKS9, mjr ,35235 Gd 766 
c-2879 GdB4, mnr .04860 B 998 

lines .02697 C 

98Gd.AM 200 400 400 D-1672 Gd~~, mjr .82980 Gd 774 
D-1676 GdC2, tr .11445 B 998 
c-2893 .12704 C 

98aGdAM 200 400 400 D-1668 GdB2c2only 3, 92105 Gd 774 
D-1670 .54079 B 998 

.60031 C 

99Gd.AM 400 400 200 D-1669 Gd .77347 Gd 774 
c-2899 GdKSlO, eqc .05334 B 998 

.02961 C 

lOOGdAM 600 200 200 D-1677 Gd .50529 Gd 774 
GdKSlO, eqc .01170 B 998 

.01292 C 
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TABLE 3. 1, continued 

Sample Composition Film Product Phases Starting Material , NB page 
Ln B C 

101 GdAM 200 400 400 D-1682 GdB6 1.08993 Gd 774 
C-2913 Gd~C2, mjr ."15028 B 998 

C, tr .~6~ C 
(o2 present on melting) 

102GdAM 750 125 125 D-1684 Gd only .56000 Gd 774 
D-1673 .00663 B 998 
D-1679 .00722 C 

103GdAM 333 167 500 D-168o GdKS5 only .51023 Gd 783 
.01756 B 998 
.05860 C 

104GdAM 333 500 167 D-1678 GdKS7, mjr .50296 Gd 783 
GdB4, mnr .05026 B 998 

.01928 C 

105GdAM 200 400 400 D-1691 Gd~C2 only 4.02112 Gd 783 
.55424 B 998 
.61575 C 

3TbAM 118 588 294 C-2352 TbB2c2, mjr .16910 TbB4 (2TbAMa) 451 
TbB4, tr to mnr .02533 C 

.00885 B 

2DyAM 091 546 363 C-2375 DyB2c2, mjr .20399 DyB6 ( lDy AMb) 482 
DyB4, mnr .04324 C 475 
C, tr 467 

2HoAM 112 555 333 C-2501 HoB2c2 only .2361 HoB4 6 
(1HoAM)l2 

511 

.0388 C 489, 509 

2ErAM 112 555 333 c-2498 Er~C2, mjr .1155 ErB4 12 (1ErAM) 507 
ErB4, tr .0198 C ' 504 

.0059 B 490 

2YbAM 091 546 363 C-2356 YbB2c2, mjr .12056 YbB6 4 ( lYbAM) 456 
YbB6, mnr .02425 C , 

5YbAM 091 546 363 C-2567 Yb~~, mjr 1.0439 YbB6 4(lYbAM) 523 
Yb%, mnr .2098 C , 
C, tr 

5YbAMa 091 546 363 C-2571 Yb~C2 remelt of 5YbAM 528 
YbB6, eqc 
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other ternary Gd-B-C phases were found. These are called GdKSS, GdKS7, 

GdKS9 and GdKSlO. Their compositions are estimated at Gd0 . 35B0 . 19c0 . 46 , 

Gd7B9c4 , Gd 3B4c3 and Gd8B7c5 , respectively. 

The gadolinium borides, GdB4 , GdB6 and GdB100 , are ~iscussed in 

Part II, Chapter 2. Crystallographic information on all binary compounds 

is listed.in Table 5. 8 and in Table 2. 1, Part II. 

3. 2 Gadolinium Deficient Region 

The two-phase region, GdB4-GdB2c2 , is established clearly by 

preparations 41GdAM, 22GdAM, 21GdAM and 20GdAM. Carbon solubility in 

GdB4 is at most 10 atomic percent, as indicated by 21GdAM. The three-

phase equilibria field, GdB6-GdB4-GdB2c2 , is established by 55GdAM, 

56GdAM, 57GdAM, 42GdAM and 40GdAM. The presence of graphite in 40GdAM 

is attributed to contamination from neighboring pellets during their 

melting in the same copper hearth (cf. Chapter 2. 2). 

The GdB6-GdB2c2 two-phase region was found in 45GdAM, 43GdAM, 

44GdAM, 25GdAM, 28GdAM, 30GdAM and 34GdAM. Apparently, there is much 

more solid solubility of graphite in GdB6 than in GdB4 .. This fact is 

revealed by 32- and 33GdAM. An estimate of 15 atomic percent graphite 

solution in GdB6 is also reflected in the considerable carbon content of 

the GdB6-GdB100 two-phase region. Comparison of the cl-spacings of back 

reflection Debye-Scherrer powder pattern lines indicated no change in 

GdB6 lattice parameter as a function of carbon content. However, Johnson 

and Daane (25) .observed no change in lattice parameter for LaB6 as they 

varied the boron content from 85 to 88 atomic percent through the homo-

geneity range of LaB6 . 
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The GdB6-C-GdB2c2 ternary phase field is demonstrated in 73-, 

74-, 75-, 76-, 54-, 24-, 26-, 27-, 29-, 35-, 36- and 23GdAM. Proper 

compositions were not investigated to demonstrate the GdB6-B4c-c equili-

brium, but it is implied by other observed triangles. In 52GdAM GdB6, 

GdB2c2 and a single B4c line were observed. But graphite was also ob-

served, and the overwhelming .evidence for a GdB6-GdB2c2-c triangle pro-

hibits a GdB6-B4C-GdB2c2 triangle. This weak B4c line and graphite are 

attributed to contamination or incomplete reaction. The GdB6-B4c two-

phase field was not demonstrated. But the GdB6-B4C-GdB100 field is 

established by 77- and 53GdAM. Further, the GdB6-GdB100 two-phase 

equilibrium is revealed by 72-, 78- and 79GdAM, as well as additional 

binary preparations discussed in Part II, Chapter 2. 3. 4. Samples 7~-, 

78- and .79GdAM contained small amounts of graphite. Either a GdB100-B4c-

GdB6 equilibrium or a GdB100-C-GdB6 equilibrium exists. The beautiful 

match of sin29 values for the phases in 77- and 53GdAM with reference 

film and literature values is convincing evidence in favor of the GdB100-

B4C-GdB6 equilibrium. Further support of this conclusion lies in the 

observation of the CeB6-B4c-c equilibrium by Brewer and Heraldsen (20). 

The presence of graphite in 72-, 78- and 79GdAM is, again, explained by· 

incomplete reaction or contamination from neighboring pellets during the 

arc melting. No attempt was made to demonstrate GdB100-B4c and GdB100-

B4c~B equilibria; however, these equilibria must exist. 

3. 3 Gadolinium Rich Region 

3. 3. 1 GdKS5 

The X-ray pattern of GdKSS is fairly simple, i.e., it contains 

relatively few lines. Excellent patterns of GdKSS were obtained in 95-
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and 103GdAM. Even though these patterns do not overlap exactly, their 

synunetries appear quite similar. The differences might be explained by 

extensive anisotropic solid solution ranges. From the synthetic compo-

sition and the phases observed in equilibrium with GdKSS, the composition 

of this phase is estimated as Gd0 . 35B0 _19c0 _46 , close to Gd2Bc2 • This 

material is black and very brittle. 

Since Nowotny (17) did not report a diffraction record for Th2Bc2, 

the synunetries cannot be compared. Nowotny stated that the structure of 

Th2Bc2 is closely related to Thc2, which is monoclinic (17). However, 

from its diffraction record, Gd0 . 35B0 .19c0 . 46 is not at all similar to 

Gdc2 , which is re~orted by Spedding, Gschneidner and Daane (28) to be 

body-centered tetragonal of the C-lla type. The Gd0 . 35B0 _19c0 _46 cell is 

either of lower symmetry or has a large unit cell compared to GdC2 . 

Nowotny reported that Th2Bc2 oxidizes quickly in air similarly 

to Thc2 • The same behavior occurs with Gd0 _35B0 _19c0 . 46 ; however, Gd0 . 35 
B0 •19c0 •46 is more stable ln air than GdC2 . The crushed arc melted buttons 

containing Gd 2Bc2 turn to a white chalky powder in a few hours exposed to 

air. The sample, 103GdAM (Gd2Bc3), must have contained more GdC2 than did 

95GdAM (Gd2Bc2), even though the X-ray pattern revealed none. The powdered 

sample of 103GdAM had oxidized to almost white; but the carbon deficient 

sample, 95GdAM, on being exposed for the same length of time, was still 

nearly black. The inability to see Gdc2 in 103GdAM probably arises from 

oxidation to finely divided oxides during the Guinier exposure. 

An attempt has been made to index GdKSS. It is not cubic, 

tetragonal or hexagonal in synnnetry. It is believed that the phase can 

be indexed on orthorhombic axes. A partial indexing was achieved with 
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a and c, 6.09 and 8.56 R, respectively. The b-axis must be at least 0 0 

as large as eight Angstroms to fit the low angle lines. Table 3. 2 contains 

the diffraction record of both 95- and 103GdAM. 

3. 3. 2 GdKS7 

The X-ray pattern of GdKS7 is given by 104GdAM (Gd2B3C). This 

preparation clearly shows a significant amount of GdB4 • In'view of the 

complexity of the GdKS7 diffraction record {cf. Table 3. 2) no attempt 

was made to index the pattern. On the basis that this phase must have a 

composition richer in metal and carbon than Gd2B3c, the stoichiometry has 

been estimated as Gd7B9c4 • This choice was made considering how the 

overall ternary phase equilibria can best be made ·to agree with the ob-

served experimental results. However, the stoichiometry of this phase 

might well be Gd 2B2c, for which there is no Th-B-C counterpart. The 

phase, GdKS7, is a brittle black material, apparently stable to air at 

room temperature. 

3. 3. 3 GdKSlO 

The diffraction record of GdKSlO, taken from 99- and lOOGdAM, is 

very complex, and the powder photographs are of poor quality. This 

phase is also black, brittle and stable to air at room temperature. While 

comparison is difficult, GdK.810 and GdK.87 are obviously different phases. 

The stoichiometry of GdKSlO is estimated at Gd8B7c5 . GdKS7 and GdKSlO 

diffraction records appear in Table 3. 2 along with the lines of the 

minor phases present. 
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TABLE 3. 2 

GdKS5, GdKS7 and GdKSlO Diffraction Records , 
C~1, 1.54050R, Radiation. 

95GdAM---Gd.KS5 103GdAM---GdKS5 
Film D-1675 Film D-1680 

I/I0 d, i sin2e I/I0 a., R . 2e sin 

s 3.490 0.04868 M 3.515 o.o4Bo3 
vs 3.044 .06403 s 3.155 .05960 
M 2.712 .08071 w 3.089 .06220 

s 2.606 .08737 s 2.738 .07915 
s 2.586 .08876 (\ s 2.587 .08869 
s 2.532 .09257 s 2.535 .09231 

vw 2.113 .13292 vw 2.186 .12412 
M 1.877 .16847 M 1.979 .15145 
M 1.840 .17522 w 1.825 .. 17Bo9 

M 1.813 .18044 w 1.Bo7 .. 18169 
M 1.665 .21393 w 1. 782 .18693 
vw 1.625 .22471 M 1.578 .23833 

M 1.574 .23934 vw 1. 518 .25757 
w 1.520 .25686 vw 1.468 .27522 
w .1.497 .26466 

vw 1.425 .29204 
vw 1.403 .30153 
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TABLE 3. 2, continued 

104Gd.AM---GdKS7 99GdAM- --GdKS10 
Film D-1678 Film D-1669 

I/I0 d, R sin2e I/I0 
a, 5{ . 2e Sln 

w 3.981 0.03744 M 3.375 0.05207 
M 3. 509 .04817 w 3.09i .06205 
M 3.4l4 .05091 M 3.004 .06576 

M 3.38o .05193 M 2.967 .06738 
M 3.133 .06046 M 2.921 .06956 
w 3.071 .06290 w 2.848 .07314 

w 3.044 .06403 w 2.822 .07448 
M 2.991 .06632 M 2.7l4 .08057 
w 2.979 .06728 M 2.646 .08474 

M 2.916 .06978 w 2.611 .08706 
w 2.853 .07294 vw 2.486 .09597 
vw 2.733 .07945 w 2.274 .ll475 

w 2.670 .08321 vw 2.240 .. 11824 
M 2.626 .08607 w 2.214 .l2109 
M 2.544 .09170 M 1.784 .1864o 

M 2.482 .09627 w .1.689 .20866 
M 2.460 .098o1 vw 1.652 .2l738 
M 2.2l4 .12100 w 1.529 .25397 
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3. 3. 4 GdKS9 

GdKS9 also has a complex diffraction record (Table 3. 3) for 

which no indexing scheme has been obtained. The phase is observed in 

94- and 97GdAM. · It too is stable to air at room temperature. While the 

composition is estimated at Gd3B4c3 , GdBC is also possible. No agree-

ment between the diffraction records of ThBC or UBC and GdKS9 was found. 

There appare~tly is quite a range of solid solution for GdKS9, as indicated 

by the variation ind-spacings between 94- and 97GdAM. 

3. 4 Limitations and Qualifications 

No Gd-B-C counterpart was found for Nowotny's hexagonal ThB2C or 

for the orthorhombic ThBC (18). GdKS7 and GdKSlO did not contain any 

GdB2 in view of the high temperature of the arc melting (cf. Part II, 

Chapter 2. 1. 2). None of these ternaries could be matched with the 

powder films or diffraction records of GdC2, Gd2c3, Gd3C, GdC3, GdB2 , 

ThBC, ThB2C, Gd or Gd2o3 • 

This survey of the Gd-B-C ternary field by the arc melting and 

X-ray techniques should not be regarded as representing an equilibrium 

temperature-composition study. The compositions, phase equilibria and 

temperatures are generally poorly defined. In the GdB4-GdB2c2-c-B 

region it was the intention of this study to define the behavior of GdB4, 

GdB6 and GdB100 in graphite at high temperatures. The compositions and 

equilibria found in this region are those observed after rapid cooling 

of melted samples each of which melts at a different temperature. 

Certainly different solid solution ranges, phase transitions and other 

equilibria might exist at lower temperatures. However, it is believed 
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TABLE 3. 3 

GdKS9 Diffraction Records. C~F 1. 540501() Radiation. 

94Gd.AM---GdKS9 97Gd.AM- - -GdKS9 
Filrn D-1671 

sin2e 
Film D-1674 2 I/I0 d, R I/I0 
d, R sine 

M 3.782 0.04149 vw 4.118 0 .03501 
s 3.733 .04257 w 3.757 .04204 
w 3.502 .04838 w 3.622 .04521 

M 3.440 .05014 M 3.471 .04927 
M 3.353 .05277 vw 3.391 .05160 
M 3.141 .06016 vw 3.309 .05421 

w 3.008 .06557 w 3.234 .05676 
M 2.934 .06892 vw 2.968 .06738 
s 2.753 .07830 vw 2.791 .07613 

M 2.688 .08211 M 2. 712 .08o67 
w 2.573 .08961 vw 2.599 .08787 
w 2.537 .09217 M 2.545 .09159 

s 2.522 .09330 M 2.510 .09417 
M 2.491 .09564 vvw 2.284 .11375 
w 2.212 .12125 w 2.241 .11808 

w 1.950 .15605 w 1.872 .16922 
M 1.855 .17238 w 1. 746 .19456 
s .l. 720 .20044 w 1.730 .19829 

vw 1.630 .22335 vw 1.646 .21914 
w 1.618 .22675 vw 1.636 .22174 
s 1.554 .24411 vw 1.604 .23069 

vw 1.574 .23945 
vw 1.566 .24197 
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that the behaviors in this region generally represent those at lower 

temperatures and may be used to catalogue relative stabilities (cf. Part 

II, Chapter 14). The even more cursory examination of the GdB4-GdB2c2-

C-Gd region was performed only to uncover the ternary phases that might 

exist. 
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CHAPTER 4 

PREPARATION AND PROPERTIES OF LnB2c2 

4. 1 Description and Properties 

GdB2c2 has no counterpart in the phases of the Tb-B-C system 

(18). This phase is a black brittle solid, stable in air at room 

temperature, and does not decompose or melt in the presence of graphite 

up to 2400°K. in vacuum. This refractory material~is not soluble in 

acetone, ether, alcohol, carbon tetrachloride, ethylene trichloride or 

water. It is attacked very slowly by concentrated HCl and will dissolve 

slowly in hot concentrated nitric, sulfuric or perchloric acids. 

Table 4. 1 contains the diffraction rJcord of this ternary 

compound with the indexing. Column one contains the relative intensi-

ties estimated from the Debye-Scherrer film. Columns three and four 

contain the computed cl-spacings and sin29 values from the film reading. 

Calculated sin29 values are based on the indexing in column two with 

tetragonal unit cell having a and c parameters, 3.7919R and 3.6399R, 
0 0 

respectively. These parameters are in agreement with the lattice 

parameters and synnnetry that Post (22) reported for GdB (cf. Table 1). 
X 

The crystallographic density calculated with one GdB2c2 unit in 

this cell is 6.44g/cm3 • · The density determined on powdered GdB2c2 , 
3 98aGdAM, in a 10 ml. pycnometer was 6.lg/cm. in nitrobenzene and 

32 



TABLE 4. 1 

Ga.B2C2 Diffraction Record. Cu-Ko( Radiation. Film C-2047. 

Calculated Values of Sin2Q and Values of hk.l are Ba~ed on 
Cell Parameters, a0 == 3. 7919 and c0 == 3. 6399, • 

I/I0 hkl d, i. 2 . 2e sin eobs. sin calc. 

50 100 3, 78o 0.04159 0.04140 
30 001 3.628 .04516 .04500 
30 110 2.674 .08313 .o828o 

100 011 2.617 .08679 .08640 
20 .111 2.154 .128o9 .1278 
30 200 1.893 .16583 .1656 

30 002 1.817 .18oo7 .18oo 
40 120 1.694 .. 20703 .2070 
40 201 1.678 .21094 .2106 

40 102 1.638 .22139 .2214 
40 121 1.535 .25227 .2520 
40 112 1.503 .26299 .2628 

30 202 1.313 .34496 .3456 
30. 221 1.257 .37606 .3762 
40 122 1.239 .38711 .3870 

30"1_ 130 1.198 .41370 .4133 
20oC2 .41716 .4154 

3<X1 013 1.155 .44490 .4456 
20o<2 .44751 .4479 

30cC.J. 131 1.139 .45753 .4582 
20~ .46014 .·4605 

20oq .113 1.104 .48637 .4870 
10~ .48855 .4894 

3oo<1 231 1.010 .58144 .5822 
2oo1.2 .58532 .5851 

30o(1 132 1.0005 .59264 .5930 
20°'2 .59522 .5960 

30°1_ 123 . 9857' .61064 .6llO 
2012 .61149 .6140 
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TABLE 4. 1, continued . 

I/I0 hkl a, R . 2e sin obs. . 2e sin calc. 

30c(J_ 140 0.9194 0.70192 0.7026 
20~ . 70592 .7061 

40°i 232 .9101 .71624 .7170 
30~ . 71860 .7206 

30~ 223 .9003 .73189 .7349 
20"2 .73460 .7386 

30°i 141 .8920 .74573 .7476 
20CQ .74991 .7513 

20DEi 014 .8846 .75820 .7601 
10°2 .76269 .7639 

30°i 033 -~754 .77413 ,7763 
20°2. .77960 .7802 

30~ 331 .8689 .78574 .7889 
20°2 . 79217 ,7928 

30~ 114 .8618 .79888 .8o14 
20CQ . 80307 .8o54 

40°i 133 .8528 . 81579 ,.8176 
30~ .81951 .8217 

40oq 042 .8411 .83862 .8410 
30~ .. 84342 .8452 

4oc<i 241 .8262 .86919 .8n.5 
30«e .87329 .8759 

40a<1 142, 024 .8209 .88048 .8823 
3Qo<2 .88527 .8867 

5<X1 332, 124 .Bo18 .92275 .9237 
40c<2 .92849 .9283 

4oo<1 323 .7948 ,93914 .9416 
30o<2 .94447 .9463 



5.Sg/cm. 3 in water, glycerol and benzene, which is in sufficient agreement 

with the crystallographic density to preclude the occupancy of more than 

one GdB2c2 formula unit for this cell volume. 

4. 2 Analysis and Composition 

An analysis of 105 GdAM (Table 3. 1) for gadolinium and for 

boron was pe;formed on a pair of one-gram samples. The borocarbide 

sample from the arc melter was crushed in a steel mortar, ground in an 

· agate mortar, washed successively with warm 50% HCl to remove oxides, 

dried at 110°c. in air, weighed and dissolved into a warm perchloric-

nitric acid mixture in a reflux vessel. The resultant solution was 

saturated with oxalic acid and digested overnight. Gadolinium oxalate 

precipitate was filtered and ignited in air to Gd2o3 , from which the 

gadolinium content was calculated. After adjusting the filtrate to 

pH= 6.0 with NaOH or HCl solution, solid mannitol was added and the 

solution quickly titrated to the phenophthalein end point of the mono-

protic boric acid complex with potassium acid phthalate-standardized 

sodium hydroxide solution. The carbon percentage was obtained by the 

·difference of the sum of the gadolinium and boron analyses and the 

total sample weight. This analysis revealed a composition of Gdl.OQ±.02 
n2 •03 t .01c2 •66 • If the sample had a three weight percent impurity, 

the Gd/B/C ratio would have been Gd1 •00n2 .03c2 •0 • Further, evidence that 

this phase has appreciable carbon solid solution is given in Chapter 4. 3. 

Additional information of the GdB2c2 stoichiometry and of the 

rep~oducibility of the arc melted compositions is given in Table 3. 1 

by the four preparations of GdB2c2, 98-, 98a-, 101- and 105 GdAM. These 
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s~mples all were prepared with a synthetic composition of GdB2c2 and 

showed only GdB2c2 or principally GdB2c2 as the reaction product. A 

trace of GdC2 was noted in 98 GdAM. Sample 101 GdAM was known to have 

been melted with a large air leak in the arc furnace, thus explaining 

the abstraction of carbon. Samples 98a- and 105 GdAM, gave no indica-

tions by X-ray analysis of anything but GdB2c2 . 

4. 3 Solid Solution 

As discussed above, solid solution between tetragonal GdB4 and 

tetragonal GdB2c2 is not large. Further, the solid solution between 

GdB2c2 and tetragonal ·GdC2 is not extensive, as illustrated by the ob-

servation of both GdC2 and GdB2c2 in 96 GdAM. The equilibrium between 

GdB2c2 and GdB6 as well as graphite has also been demonstrated. 

However, some solid solution effects are noted in GdB2c2 • The 

variation of lattice parameters for three ternary compositions contain-

ing GdB6 and/or GdB4 as minor phases is illustrated in Table 4. 2. 

Column one lists the synthetic compositions and column two the phases 

present as. identified in the· film of column· seven. Colunms three and 

four contain the a parameter and its associated error. Similarly, 
0 

columns five and six contain the c parameter with its error. These 
0 

precise parameters and their errors were computed from diffraction 

records with an IBM 653 computer, using the least squares technique de-

scribed by Hess (29). The variation inc is just outside the error and, 
0 

therefore, not considered significant. The carbon-rich composition, 

however, has a value of the a parameter significantly smaller than the 
0 

other preparations. This deviation can be explained by the substitution 
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of carbon atoms with a covalent radius of 0.77K for boron atoms with 

a o.a1K radius. 

TABLE 4. 2 

GdB2c2 Lattice Parameter Variation Demonstrating Solid Solution 

Synthetic Solid Phases delta delta film Composition Present a C 
0 Bo 0 Co 

Gd.126B.503c.372 GdB2c2 ,mjr 3.7757 .0058 3.6379 .0034 C-2047 
GdB6, nmr 

Gd.143B.572c.286 GdB2c2 ,mjr 3.7992 .0017 3.6421 .0010 D-0884 
GdB4, nmr 
GdB6 , tr 

Unknown GdB2c2 , mjr 3.7919 .0007 3.6399 .0003 D-1092 
GdB6, nmr 

4. 4 LnB2Q2 Existence and Lattice Parameters 

The existence of LnB2c2for lanthanides other than GdB2c2 was 

investigated. Samples were prepared by the reaction of mixtures of LnB6 

and/or LnB4 with graphite in the arc melter ·furnace (cf. Table 3. 1). 

Exceptions to this were erbium, where the reactants were ErB4, ErB12 and 

graphite, and holmium, where the holmium reactant contained HoB4, HoB6 

and HoB12 • An attempt to produce LaB2c2(2 LaAM) by the reaction of LaB6 
with graphite yielded a product with an X-ray pattern containing only 

LaB6 lines. Similarly, SmB2c2 could not be prepared by the reaction of 

SmB6 and graphite (2 SmAM). The phase, LnB2c2, was observed with the 

metals, Nd, Gd, Tb, Dy, Ho, Er and Yb. No attempt was made to prepare 

this borocarbide for other lanthanides. 
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An investigation of the lattice parameters of LnB2c2 for different 

lanthanides is illustrated in Table 4. 3. Column one contains the parti-

cular °lanthanide metal designation. Colunms two and three and columns 

·four and five contain the computed values of a with its error and of c 
0 0 

with its error. Column six lists the increment in a as a function of 
0 

the lanthanide. Similarly, colunm seven lists the c increment with 
.0 

lanthanide. 

The parameters in Table 4. 3 were computed in the fashion de-

scribed above. In this table, all compositions showed excess·LnB4 or 

LnB6 as the minor phases except the holmium system, which showed only 

HoB2c2 • Since the minor phases present are nearly the same in ,all cases, 
'·· 

the compositions of the LnB2c2 phase-may be considered the same in all 

cases. Thus, the variation in lattice parameters as a function of 

lanthanide may be determined. 

Figure 4 graphically illustrates the lattice parameter variation 

over all the lanthanides and YB2c2 • The parameters for La-, Pr- and YB2c2 
are those reported by Post (22) (cf. Table 1). Parameters for the com-

pound with other lanthanides determined in this work are listed in 

Table 4. 3. The scale on a and c are the same to dramatize the extreme 
0 0 

variation inc compared to that in a. While a changes only one per-o O 0 

cent from La to Lu, c changes 13 percent. The variation inc is about 
0 0 

twice that of a in LnB6 and of a and c in Lnc2, and even greater than 
0 0 0 

the parameter variation in the lanthanide metals (30). 
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TABLE 4. 3 

Precise Lattice Parameters of LnB2c2 Determined by the Hess Method 

Ln delta delta a C 
a C 0 0 

0 a 0 C increment increment 0 0 

Nd 3.8o3 R .008 3.794 .009 ;011 .154 

Gd 3.7919 .0007 3.6399 .0003 .0079 .0487 

Tb 3. 7840 .0016 3.5912 .0003 .0022 .0313 

Dy 3.7818 .0019 3.5599 .0010 .0017 .0225 

Ho 3.7801 .0003 3.5374 .0001 .0024 .0297 

Er 3. 7777 .0006 3.5077 .0003 .0025 -.0521 

Yb 3.7752 .0014 3.5598 .0006 

39 



0 
(A) 

4.000 .--....---..--.-------------------4.000 

3,900 

3.800 

3.700 

~ 
\ 

' \ 
\ 
\ 
\ 
\ 
\ 3.900 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

' 
(!).---~---- 3,800 

~ --- . a 
\ ~----0----.e 

\ \ co 
\ \ ,1, 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 3.700 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

3.800 3.600 

l;l. .... , 
/ '-m I 

I 
I 

I 
I 

I 

3 • SO O '--L...L..a.___..__P,±,-r___.__p._,...__.__,,E_u-"--T ...... b__.__H._o-.L.__.T_m__,____._L_u.--'---J 3 • SO O 

C• NJ S'1t1 Ge! Dy Er Vb V 

ln 82 C2 Lattice Parameter Variation 

FIGURE 4 

4o 



CHAPTER 5 

5. 1 Experimental 

With the use of a Weissenberg single crystal camera with a 57.3 

nun. diameter (Charles Supper Co., Newton Center, Massachusetts), a 

Philips Electronics Co. X-ray diffractometer and the employment of 

techniques discussed by Buerger (31, 32) for single crystal photograph 

interpr~tation and structure analysis, the structure of LnB2c2 has been 

fairly well established. Mo-Ko( (MoKc( = 0.70926, 0.71354, 0.7107i) 

radiation from a Philips Electronics Co. generator and tube was used in 

the single crystal studies, and Cu-K~ (Cu~K~= 1.54050, 1.54434, 

1.54180g) radiation was employed to obtain an intensity record with the 

Philips diffractometer, which was equipped with a proportional counting 

system. 

From the crushed, arc melted button of 3 TbAM (Table 3. 1), single 

crystals of TbB2c2 were found. Two crystals from this sample were chosen 

for single crystal analysis. Crystal no. 1 had dimensions, 0.1 x .05 x 

.01 nun. Crystal no. 2 haddi.mensions, 0.2 x 0.1 x 0.03 nun. While these 

crystals were not spherical, they had dimensions which were large enough 

to allow appreciable diffraction, but small enough so that absorption was 

not too great. More specifically, 
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-dI = f Idt (5. 1) 

relates the linear absorption coefficient, r 'for a particular wave-

length radiation, the intensity, I, and the thickness of the crystal, dt, 

to the attenuation of the beam. Further, 

(5. 2) 

where pis the fraction by weight of that element in the compound, {' 

is the crystal density and (f If) is the mass absorption coefficient 

taken from the literature (33) for that particular element. For a 

crystal·density of 6.62g/cm. 3 , ;«·{TbB2c2) is 347 cm:1 for Mo radiation. 

An optimum size crystal has linear dimensions such that the beam travels 

through a path distance of 2/f'- . The intensity of diffracted radiation 

increases to this thickness and decreases beyond this thickness (31, p. 

180). Thus, the dimensions of the crystal should be near 0.05 mm. to an 

order of magnitude, which matches the size of crystal from which the 

TbB2c2 synnnetry properties were determined. 

With a 400-mesh powdered sample of HoB2c2 (2 HoAM) and with· the 

use of the Philips diffractometer,. an intensity record containing thirty 

diffraction angles was determined on charts C-2553, C-2555 and C-2557. 

The sample was mixed with a small amount of powdered gum arabic and a 

drop of water. In this fashion preferred orientation of the micro-

crystals was avoided. Integrated areas under the one-eighth degree per 

minute diffractometer trace were determined with a Keuffel and Esser 
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calibrated planimeter (Ser. No. 98759). It is believed that these 

relative intensities are determined with at least ten percent precision 

and generally to better than five percent. 

5. 2 Single Crystal X-ray Analysis and Point Group 

Oscillation and rotation photographs were taken to align crystal 

no. 1 along each of two different directions. Normal beam,zero-layer, 

Weissenberg photographs about the crystal [110] axis (film D-0886) and 

the [100] axis (film D-0889) were taken. These films allowed the. mapping 

of reciprocal lattice planes on cylindrical coordinates, 5 and ry' ., 
from -the film coordinates, x and y. From these reciprocal lattice mappings 

the value of c ·was calculated as 3.61 Rand a as 3.82 R to be compared 
0 0 

with powder photograph parameter values of 3.59 and 3.78 K, respectively. 

A rotation photograph about [001] (D-0911), equiinclination 

Weissenberg photographs for the (khO), (hkl), (hk2), (hk3) and (hk4) layers 

(films D-0914, D-0915, D-0917, D-0918 and D-0919) and an anti-equiinclina-

tion photograph of the (hkO) layer (film D-0920) were taken on ThB2c2 
crystal no. 2. The layer line coordinates were determined.from the [001] 

rotation film (D-0911). Table 5. 1 sunnnarizes the films, layers, layer 

line coordinates, inclination angles, exposure times and layer screen 

settings. Figure 5. 1 illustrates these mappings with the size of the 

lattice point increasing with the intensity of the reflection. 

Figure 5. 1. 1 is the reciprocal lattice determined with [110] 

rotation from the normal beam Weissenberg film, D-0886. Figure 5. 1. 2 

is the reciprocal lattice mapped from the (Okl) layer Weissenberg film, 

D-0889. Figure 5. 1. 3 shows the tetragonal axis from a graphing of the 
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spots on the (hkO) layer Weissenberg film, D-0920. Reciprocal cell 

dimensions are shown on each figure. 

TABLE 5. 1 

TbB2c2 Single Crystal Analysis Photographs; Mo-Ko( Radiation 

Crystal No. 1: 

D-0885 Oscillation about [110]. 
D-0886 Weissenberg, Rotation about [110], normal beam. Nine hours. 
D-0887 Oscillation about [100], 
D-0888 Rotation about [100],normal peam, 14 hours. 
D-0889 Weissenberg, rotation about [100], normal beam, (Okl) layer, 

three films • 
Crystal No. 2: 
D-0910 Oscillation about [001]. 
D-0911 Rotation about .[001], normal beam. 

D-0912 
D-0913 
D-0914 
D-0915 
D-0916 
D-0917 
D-0918 
D-0919 
D-0920 

Layer line coordinates determined as: 
Layer Y (mm.) ) 

(hkl) 5.30 .19 
(hk2) 12.35 .39 
(hk3) 21.15 .59 
(hk4) 36.9 .78 

Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 
Weissenberg, 

anti-equiinclination, f.. =11.5° ,X=5.2nnn. (hkO), 12 hrs. 
0 normal beam, (hkO), 190-390, 12 hrs. 

0 normal beam, (hk.O), 0-200, 20 hrs. 
. 0 equiinclination, f =5.2, X=2.3mm,(hkl), 20 hrs. 

equiinclination, f =11. 4° ,X=5. lmm, (hk2) ,· 20 hrs. 
equiinclination, f =11.4°,X=5.lnnn,(hk2), 20 hrs. 
equiinclination, f =17.3°,X=7.911!11,(hk3), 20 hrs. 

0 equiinclination, f =23.2 ,X=l0.9nnn,(hk4), 20 hrs. 
anti-equiinclination,JA =-17.3°,X=7.9nnn,(hk0),20 hrs. 

X, layer screen setting 
/"' inclination angle 
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These films confirm the symmetry and unit cell dimensions assigned 

to the powder photographs. In addition, they reveal that there are no 

extinctions among the reciprocal lattice· points for the cell chosen 

{cf. Figures 5. l. 1, 5. 1. 2 and 5. 1. 3). The absence of an extin-

guished class implies the absence of any symmetry element with a trans-

lation component, i.e., glide planes or screw axes, and also implies that 

the cell is .primitive. 

The point group from X-ray diffraction observations is 4/mmm. 

The symmetry elements of the point group are summarized in Figure 5. 2. 

There is a four-fold axis of rotation on the [001] axis, vertical mirror 

planes both diagonal and perpendicular to the cell edges, and a horizontal 
\ 

mirror which reflects any point above the plane through the plane. The 

possible space groups that this phase might have are P422-No. 89, P4nu.n-

No. 99, P42m-No. 111, P4m2-No. 115 and P4/mmm-No. 123 (33). The first 

four of these space groups exhibit no center of synnnetry. If a center 

of synnnetry were added to each of these, P4/nunm would result. 

5. 3 Intensity, Structure Factor and Phase Problem 

In order to decide among these space groups and to ascertain the 

locations of the atoms in the structure, a measurement of the intensities 

from the diffracting planes must be made. The intensity is given by 

I= KLpmA I F(hkl) 1, 2 (5. 3) 

where I is the intensity of the diffracted beam in arbitrary units; K is 

the proportionality constant for the experiment; Lis the Lorentz factor; 

p, the polarization factor; m, the multiplicity; A, the absorption 
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factor; and F, the structure factor. The structure factor is given by 

F(hkl) = ~ i2n(hx.+kyj+lz.) 
L, f. e J . J , 
j J 

(5. 4) 

where fj is the atomic scattering factor for the jth atom; xj, yj and zj 

are the position parameters for the jth atom in the cell as fractions of 

the unit ceU lengths; and the sum is over all atoms in the cell. Obvi-

ously, the quantities we wish to determine are xj, yj and zj. The 

structure factor may be considered a resultant vector of vectors, 

f i2n(hx.+ky.+lz.) h 1· d f . f d h je J J J , w ose amp itu es or scattering are j' an w ose 

directions into the complex plane are determined by the phase of the 

scattered wave, i.e., 

i2n(hxi+kyJ.+lzJ.) e = cos 2n(hx.+ky.+lz.) + i sin 2rr(hx.+ky.+lz.). 
J J J J J J 

(5. 5) 

F(hkl) = (r fj cos 2n(hxj+ky. +lz. )I +i ( r: f sin 2n(hx .+kyj+lz. ~ 
J JJ j j J JJ 

(5. 6) 

(5. 7) 

+ [r; f sin 2n(hx.+ky .+lz l ]2J 112 
j j J J J 

From equations 5. 6 and 5. 7, it is apparent that when one computes 
2 IF(hkl)I from measured intensities he obtains only the scattering ampli-

tude of the structure factors and not the phase angles. The inability 

to measure exp~rimentally a quantity which will allow one to calculate 
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the phases of the diffraction spectra is the so-called "phase problem" 

of crystallography. 

Buerger (32) discusses this problem and sununarizes the many 

methods that have been devised to extract the most information about the 

phases of scattering centers from intensity measurements. Very often a 

knowledge of the number of atoms per cell and their radii will allow one 

to guess the position parameters of the atoms. From this guess, the 

structure. factors and their absolute values may be computed. When the 

quantity, 

R= 
E l!F(hkl)obs.l • IF(hkl)calcJI 

E IF (hkl)obs. I 
(5. 8) 

is less than 0.4, the structure is assumed solved (32, p. 586). 

5. 4 Electron Density and Patterson Functions 

One powerful tool for the location of scattering maxima in a 

crystal was devised by Patterson (32, p. 554; 34). One can consider 

that the structure e~~ibits an electron density, f (X}!Z), which varies 

continuously over the cell volume and has a value at any X'YZ in the cell 

as well as at xj, yj and zj. Then equation 5. 4 may be replaced by 

V 

F(hkl) = J j (XYZ) e2ni(hX+kY-tlZ) dV (5. 9) 

0 

.V = abc and dV = dxdydz. Hence, dV = V (dx/a)(dy/b)(dz/c). Then in 

fractional coordinates, 

dV = V dX dY dZ. (5.10) 
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Thus, 

F(hkl) = / // f (XYZ)eZ,ri(hX+kY+lZ)VdXdYdZ 

0 0 O 

Gene1ally, a three dimensional Fourier series is given by 

p (XYZ) = E +; E K(h 'k' l ')e ·2ni(h'X-tk 'Y+l 'Z), 
./ h'k'l' 

- 00 

(5 .11) 

(5 .12) 

where K(h'k'l') is a Fourier coefficient. Substituting equation 5.12 

into equation 5.11, one derives the relation, 

F(hkl)=J't~E+:;::E K(h'k'l')e-2,ri(h'X+k'Y+l'Z)e2,ri(hX+kY+lZ)VdXdYdZ, J)h 1k'l' .. 
0 0 o . -oo 

(5 .13) 

Rearranging equation 5.13, 
I I I 

F(hkl)= Et-; E ,,,K(h 'k' 1 1 )e21Ti [ (h-h 1 )X+{k-k' )Y+(l-l' )Z]VdXdYdZ. h'k 11.JJJ, 
--" 0 0 0 

.(5.14) 

For h-= h', k = k' and 1 = 1 1 

f I I . 

JJJK(hkl)e0 VdXdYdZ = VK(hkl), (5 .15) 

0 0 O 

If one or more pairs of indices are not equal, 

I I I If f K(h'k'l ')e2,ri(h-h')Xe2,ri{k-k')Ye2,ri(l-l' )Z VdXdYdZ 

0 0 0 (5 .16) 

will vanish on integration from zero to one. Thereforei in the non-· 

vanishing condition of equal indices, 
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F(hkl) = VK(hkl) • (5 .17) 

Substituting equation 5.17 into equation 5.12, one finds the following 

expression for electron density: 

f' (XYZ) = ~ . ~ F (hkl)e -2ni(hXikY+lZ). 
hkl 
~.o 

This is the electron density function. 

(5 .18) 

Patterson noted that if two Fourier series, each representing 

the electron density of a crystal, are nrultiplied together, terms such 

--- * as F (hld) · F (hld) occur •. 

F (hkl) • F (iiki) * = F (hkl) • F (hkl) * = IF (hkl) 12, (5 .19) 

which is the phaseless quantity determined by experimental intensity 

measurements. Therefore, a Fourier synthesis with coefficients, 

jF(hkl)l 2, defines a relation between the phase dependent structure 

factor and its complex conjugate. The general Patterson fun~tion is 

given in equation 5.20. 

(5. 20) 

The electron density map will have maxima at atomic positions. 

But the Patterson synthesis map will have maxima at the ends of vectors 

between the atomic positions revealed by the electron density map. Thus~ 
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for every pair of electron density maxima one Patterson maximum will 

exist. As a result, the Patterson map will reveal many maxima only a 

specific few of which would be observed as atomic positions in the 

electron density map. The population of the cell and steric considers.~ 

tions will force a choice for atomic positions from these Patterson 

maxima that, for simple structures, may be unequivocable. 

A point should be made about the possibility of positioning the 

light atoms, boron and carbon, in the presence of lanthanide atoms by 

the use of the Patterson function. The scattering amplitude, f., 
J 

decreases as sin 9/ ).. increases. The relative scattering power of one 

atom compared to another is in the same relation as their atomic number, 

Z. In particular, the contribution to the amplitude of diffraction of 

X-rays from planes, (hkl}, by the terbium, boron and carbon atoms, which 

populate that plane to equal atomic concentrations, will be, to a first 

approximation, in the ratio of their atomic numbers or 65:5:6. In the 

case of a Patterson function, which involves the scattering power 

squared, the ratio of the atomic scattering amplitudes in their contri-

bution to the function will be 4225:25:36. Obviously, unless planes 

which contain large numbers of the light atoms relative to terbium can 

be included in the synthesis and unless precise intensity measurements 

can be made, there is little chance of locating the light atoms in the 

structure, much less distinguishing between the boron and carbon 

equivalent positions. 

Another problem with the Patterson synthesis is its inh,rent 

centrosynmetry. For each interatomic vector there exists the reverse 

interatomic vector. Thus, the Patterson function for each of the five 
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possible space groups will contain many equivalent positions related not 

only by the space group symmetry, but by centrosymmetry. Again, one 

cannot decide the space group from a Patterson synthesis alone. 

5. 5 Experimental Intensity Measurement 

Without a single crystal diffractometer the determination of 

accurate intensities from (hkl) reflections from single crystals is 

difficult. When precise intensities are needed, as is the case for 

LnB2c2 , multiple film techniques are not very useful. An examination of 

the intensities of spots on three film layers for each of the Weissenberg 

films of Table 5. 1 demonstrated that all spots, which represent planes 

that reflect at the same Bragg angle in powder diffraction, had equal 

intensity (cf. Figure 5. 1). This is a consequence of Friedel's Law (32) 

and the point group. Friedel's Law states that, since phases cannot be 

measured in X-ray diffraction experimentation, it follows that reflections 

from (hkl) and (hki) have the same intensities. Thus, with the four-fold 

rotation axis of Figure 5.2, 

IF{hkl) 1=\F{hkl) l=IF(hkl) l=IF(hki) l=IF(hkl) l=IF{hki) l=IF(hki) l=IF(iiki) I• 
(5. 21) 

Therefore, the number of planes contributing to each element of the powder 

diffraction record is known, and the extent of their contribution to the 

intensity is equal. This observation enables one to measure intensities 

precisely with the use of a diffractometer and proportional counting 

equipment. 

Using the appropriate multiplicities and measuring the intensities 

on a powdered specimen on a Philips Electronics Co. diffractometer with a 
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proportional counter (cf. Chapter 5. 1), one may calculate the intensity 

from each reflecting plane, (hkl). Table 5. 2 contains these data taken 

from diffraction charts, C-2553, C-2555 and C-2557. Column one contains 

the indices based on a primitive tetragonal cell with a and c, 3.7801 
0 0 

and 3.5374K, respectively. Column two contains the diffraction angle in 

degrees. Relative intensity in units of square centimeters as determined 

with ·the planimeter are listed in colunm three. The statistical devia-

tions from the mean of the four measurements of relative intensity for a 

particular diffraction angle are listed in column four. Colunm five con-

tains the Lorentz and polarization factors at the diffraction angle of 

colunm two for powdered samples taken from Henry, Lipson and Wooster 

(35, Table 9). The multiplicity determined from the point group is listed 

in colunm six.· Finally, the square of the absolute structure factor, as 

calculated from equation 5. 3, is contained in colunm seven. The 

absorption factor was assumed unity. 

5. 6 Patterson Synthesis 

Since the space group will be decided finally by choosing likely 

positions for the atoms from many possible equivalent positions, the 

Patterson function for the centrosymm.etric space group P4/mmm, No. 123, 

was used to treat the data in order to expose all possible maxima. From 

the International Tables of Crystallography (33) the Patterson function is 

8 • .t>-0 2 P(UVW) = ---- ~ IF(hkl)I cos 2TihU cos 2nkV cos 2nlW. 
V 

2 
000 

(5. 22) 

C hkl 

2 The IF(hkl)I values were not normalized to absolute values by applying 
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TABLE 5. 2 

Powder Intensity Record for HoB2C2 
Obtained with Diffractometer and Proportional Counter, Copper Radiation 

hkl 2e,( 0
) 1obs. (I-I.m)2 · 1 + cos22e m IF(hkl)obs .( 2 

N ,. sin2ecos8 
100 23.52 11.9 0.2 38.14 4 o.78o 
001 25.17 5.0 .1 39.22 2 .637 
110 33.44 5.2 .3 21.40 4 .0607 
101 34.75 17.9 .1 19.67 8 .114 
111 42.37 7.4 .2 12. 71 8 .0728 
200 48.14 1.28 .01 9.516 4 .0336 
002 51.70 1.49 .09 8.090 2 .0921 
210 54.25 2.50 .05 7.248 8 .0431 
201 55.11 1. 78 .02 6.998 8 .0318 
102 57.51 1.85 .02 6.354 8 .0364 
211 60.72 2.08 .02 5.622 16 .0231 
112 62.98 1.18 .06 5.185 8 .0284 
220 70.42 0.38 .02 4.095 4 .0232 
202 73.38 .835 .015 3.779 8 .0276 
030 75.41 .199 .024 3.594 4 .0138 
221 76.18 1.322 .154 3.529 8 .0468 
122 78.22 1.658 .194 3.374 16 .0307 
130 80.35 0.636 .074 3.233 8 .0246 
031 81.00 .747 .087 3.194 8 .0292 
131 85.81 .858 2.962 16 .0181 
103 86.39 .829 2.939 8 .0353 
113 91.3.1 .492 2.799 8 .0220 
222 92.58 .178 2·. 775 8 .008o2 
230 94.67 .340 2.747 8 .0155 
032 97.44 .141 2. 729 8 .00646 
231 100.14 .361 2.732 16 .00826 
023 100.67 . 363 2. 734 . 8 .0166 

132 .102.25 .604 2.748 16 .0137 
123 105.75 .492 2.798 16 .0110 
o4o .109. 36 .262 2.884 4 .0286 
232 117.46 .588 3.198 16 .0115 
141 120.75 .502 3.377 16 .00929 
223 121.45 .662 3.420 8 .0242 
014 127.19 .748 3.828 8 .0244 
133 133.54 .790 4.416 16 .0112 
042 135.44 .476 4.645 8 .0128 
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scale and temperature factors. This omission does not change the location 

of the maxima. The values of IF(hkl)l 2 for reflections for which there 

was no observed intensity were set equal to zero. The quantity, IF(OOO)l 2 , 
I: 

was also set equal to zero; although, (rr(OOO}f 2 = z2, where z is the total 

number of electrons in the unit cell ( 32, p. ·375 ). The effect of set-

ting jF(OOO)j 2 to zero is to subtract out a constant from each vector. The 

relative peaks are affected uniformly. 

One must be careful in using the multiplicity. The multiplicity 

generated from Friedal's Law and the 4/mmm point group is already included 

in the Patterson function by the factor eight (cf. Chapter 5. 5). How-

ever, this eight-fold multiplicity inherent in the Patterson function is 

not the correct multiplicity for all (hkl) reflections. As noted in 

Table 5. 2, column six, the point group multiplicity may be 1, 2, 4, 8 

or 16, depending on the orientation of the reflecting planes. Since the 

Patterson map is generated from relative IFl 2 values, the factor eight in 

equation 5_. 22 may be effectively treated as a scale constant affecting 

the Patterson maxima amplitude at each point of generation in the unit 

cell to the same extent without affecting the position of the maxima. 

Thus, the values of IF(hkl)l 2 used in the Patterson function calculations 

were taken as those of Table 5. 2, column seven, multiplied by the multi-

plicity of column six, Table 5. 2. 

There is yet another complicating factor in detennining the 

proper multiplicity. The procedure for introduction of the (hkl) values 

and their accompanying jF(hkl)j 2 values into the computer causes reflec-

tions (hkl) and (khl) to be picked up separately. However, these two 

sets represent planes reflecting at the same Bragg angle and, therefore, 
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are considered together in the multiplicity of Table 5. 2. Thus, the 
2 IF(hkl)I values, with the appropriate multiplicity factor of Table 5. 2 

already included, must be divided by two on introduction into the com-

puter for reflections of the type hkl, hfk. For h=k, (hhl), the computer 
2 only reads one jF(hhl)I value; and no additional computer multiplicity 

factor is needed. 

Table 5. 3 contains a record of the Patterson input data in the 

order of introduction to the computer. The hkl values are listed in 

column one from 000 to 444. The accompanying IF(hkl)j 2 values are listed 

in column two and include all the multiplicity considerations discussed 

above. 

The three-dimensional Fourier synthesis was progrannned generally 

for hk.1 'from 000 to 555 to compute the Patterson function in sixteenths 

of the unit cell. An IBM 653 computer was employed for these compµta-

tions. Only one-eighth of the unit cell was computed, since the rest of 

the cell can be generated by synnnetry. These computed values are listed 

by layers in Table 5. 4. The nine layers are taken at increments of 

one-eighth of the c-axis. Since there is a diagonal mirror perpendicular 

to the XYO plane and passing through the origin, the field for Y greater 

than X need not be shown. Negative values arise from failure to scale 
2 the IF(hkl)I values. 

The conclusions to be drawn from this Fourier synthesis are these: 

First, and most important, there can be no possibility of holmium atoms 

in any position other than the corners of this unit cell of a and c 
0 0 

dimensions, 3.7801 and 3.5374K, respectively. Second, with such a domi-

nating influence on the positions displayed by the large scattering holmium 
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TABLE 5. 3 

Input Data for HoB2c2 Patterson Synthesis for Space Group P4/mmm. 

hkl I F(hkl) obs _12 hkl jF(hkl)obsJ 2 hkl f F(hkl)obs .J 2 hkl f F(hkl)obs .J 
2 

000 0 113 .1760 231 .0661 344 0 
001 .637 114 0 232 .0920 400 .0572 
002 .0921 120 .1724 233 0 401 0 

003 0 121 .1848 234 0 402 .0512 
004 0 122 .2456 240 0 403 0 
010 1.560 123 .o88o 241 0 404 0 

011 .456 124 0 242 0 410 0 
012 .1456 130 .0984 243 0 411 .0743 
013 .1412 131 .1448 244 0 412 0 

014 .0976 132 .1096 300 .0276 413 0 
020 .0672 133 .0896 301 .1168 414 0 
021 .1272 134 0 302 .0258 420 0 

022 .1104 140 0 303 0 421 0 
023 .0664 141 .0743 304 0 422 0 
024 0 142 0 310 .0984 423 0 

030 .0276 143 0 311 .1448 424 0 
031 .1168 144 0 312 .1096 430 0 
032 .0258 200 .0672 313 .0896 431 0 

033 0 201 .1272 314 0 432 0 
034 0 202 .1104 320 .0620 433 0 
o4o .0572 203 .0664 321 .0661 434 0 

041 0 204 0 322 .0920 440 0 
042 .0512 210 .1724 323 0 441 0 
043 0 211 .1848 324 0 442 0 

044 0 212 .2456 330 0 443 0 
100 1.560 213 .0880 331 0 444 0 
101 .456 214 0 332 0 

102 .1456 220 .0928 333 0 
103 .1412 221 .3744 334 0 
104 .0976 222 .0642 340 0 

110 .2428 223 .1936 341 0 
111 .5824 224 0 342 0 
112 .2272 230 .0620 34 '3 0 
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TABLE 5. 4 

Patterson Synthesis Output Data on Ho~C2 with Space Group P4/mrmn 

x/1'6 0 1 2 3 4 5 6 7 8 
Y/16 0 1.84 1.58 1.02 0.544 0.309 0.202 0.121 0.0651 0.0475 

1 l.35 .877 .485 .292 .192 .103 .0404 .0206 

2 .590 .373 .262 .165 .0539 -.0240 - .0478 

3 .296 .229 .111 -.0275 -.114 -.138 

4 .147 -.0019 -.148 -.223 -.239 

5 -.159 . -.284 -.330 -.334 
Z = 0/16 

61 -.374 -.397 -.394 

7 -.413 -.410 

8 -.409 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

o.498 0.118 0.0611+ 0.0440 0 1. 56 1.35 o.884 0.301 0.200 

1 i..16 .767 .445 .282 .187 .0985 .0373 .0184 

2 . 528 .345 .247 .154 .0485 -.0237 -.0454 

3 .274 .208 .0982 -.0270 -.104 - .126 

4 .130 -.0025 -.131 -.198 -.212 
Z = 1/16 

5 -.138 -.247 -.291 -.296 

6 -.329 -.358 -.360 

7 -.387 -.392 

8 -.400 
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TABLE 5. 4, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y,/16 

O · 0.981 o.866 0.620 o.414 0.291 0.197 0.108 o.495 0.0318 
1 .765 .553 .376 .269, .178 .0867 .0264 00082 

2 .414 .301 .221 .130 .0330 - .q306 -.0495 

3 .235 .166 .0671 -.0357 -.0989 -.117 
4 .0894 -.0152 -.113 -.168 -.183 

5 
Z = 2/16 

-.113 -.196 -.240 -.252 
6 -.267 -.311 . - . 324 

7 -.365 -.385 
'8 -.409 

x/16 0 l 2 3 4 5 6 7 8 
Y/16 

0 0.554 0.512 o.443 0.364 0.282 0.184 0.0889 0.0278 0.0088 

1 .487 .415 .339 .259 .161 .0665 .0054 -.0137 

2 . 351 .28o .201 .104 .0098 -.0521 -.0717 

3 .210 .128 .0304 - .0628 -.124 -.144 

4 .0442 - .0494 -.137 -.196 -.216 

5 -.133 -.211 -.267 -.287 

6 Z = 3/16 -.283 -.340 -.362 

7 -.402 - .428 

8 -.454 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 o.423 o.414' 0.384 0.325 0.239 0.139 0.0522 -.0027 -.0207 

1 .403 .368 .306 .219 .120 .0329 -.0228 -.0414 

2 .324 .255 .166 .0681 - .0195 -.0782 -.0985 

3 .182 .0925 -.0043 -.0941 -.158 -.18o 

4 .0055 -.09()1 -.181 -.248 -.273 

5 -.184 -.272 -.336 -.359 
6 z = 4/16 -.351 -.405 -.423 

7 -.446 · -.459 
8 -.469 
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TABLE 5. 4, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 o.411 0.393 0.339 0.256 0.161 0.0744 0.0084 -.0330 -.0472 
1 .375 .321 .239 .146 .0593 -.0078 - .0502 - .·0649 
2 .269 .193 · .105 .0203 -.0496 -.0948 -.110 
3 .127 .0475 -.0378 -.113 -.162 -.178 
4 --.0297 -.121 -.204 -.255 -.272 
5 -.222 -.310 -.358 -.371 
6 z = 5/16 -.392 -.426 -.432 

7 -.442 -.438 
8 -.431 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 0.357 0.333 0.272 0.193 0.113 0.0407 ~ .0156 - .0509 - .0628 
1 .310 .252 .175 .0947 .0212 -.0357 -.0692 -.0798 
2 .199 .130 .0539 -.0209 -.0764 -.103 -.109 

3 .0733 .0032 - .0718 -.124 -.140 -.139 
4 -.0663 -.148 -.204 -.213 -.208 

5 Z = 6/16 
-.248 -.318 -.330 - . 323 

6 -.404 -.423 -.417 

7 -.446 -.441 
8 -.435 

x/16 0 l 2 3 4 5 6 7 8 
Y/16 

0 0.273 0.259 0.224 0.181 0.126 0.0556 -.0115 -.0542 -.0676 

1 .244 .207 .160 .0985 .0238 -.0419 - .0782 -.0878 

2 .165 .111 .0405 -.0395 - .0951 -.110 -.108 

3 .0523 -.0223 -.100 -.137 -.120 -.103 
4 - .0985 -.178 -.207 -.172 -.143 

5 Z = 7/16 
-.274 -.328 -.305 -.28o 

6 -.424 -.444 -.434 

7 -.505 -.512 
8 -.527 
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TABLE 5. 4, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 0.236 0.228 0.212 0.189 0.145 0.0723 -.0041 -.0530 -.o68o 

1 .218 .196 .166 .113 .0337 -.0402 -.o8o4 ... 0904 

2 .161 .114 .0436 -.0424 -.102 -.114 -.109 

3 .0514 -.0289 -.111 -.144 -.115 - .0896 

4 -.112 -.193 -.211 -.157 -.119 

5 -.289 -.334 -.300 --0.267 
Z = 8/16 

6 -.440 -.463 -.454 

7 -.546 -.562 

8 -.588 

64 



atoms, there is no chance to locate the light atoms from a Patterson 

map.· Third, even though the structure is centrosymmetric with respect 

to the holmium atoms, the structure may not be centrosymmetric with 

respect to the light atoms too. Therefore, the space group is still 

unknown. The slight troughs and ridges may be due to diffraction rings 

arising from errors from cutting off the Fourier series before the limit-
! 

ing convergence has been reached. 

5. 7 Light Atom Structure Factor 

The position of the holmium atoms in the corners of the unit cell 

determ:ires the phase of the holmium atoms. Thus, the structure factor 

becomes: 

F(hkl) = fH e2rri(ho+ko+lo)+ }:!f e2rri(hxj+kyj+lzj) 
0 j j 

(5. 23) 

where the sum is now over equivalent positions for boron and carbon atoms 

only. 

(5. 24) 

(5. 25) 

This derivation points out the fact that if the sign of the total 

structure factor, F(hkl), could be ascertained, after scaling the inten• 

sity data and correcting for temperature, the scaled and corrected 

scattering factor of holmium could be subtracted out from the total 

structure factor. An electron density map (cf. equation 5.18 and 
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Chapter 5. 4) of the residual structure factor would be a function only 

of the positions of the boron and carbon atoms. 

The total structure factor is always positive because the 

holmium atom dominates the diffraction pattern as can be seen from the 

following arguments. Consider Figure 5. 3. This graph is a plot of the 

atomic scattering factors for boron, carbon and holmium atoms versus 

sinQ/ A. The scattering factors for boron were taken from !hers (36); 

for carbon, from Berghuis, et al. (37); and for holmium, from Inter-

nationale Tabellen (38). The scattering factors decrease with sinQ/X • 

However, 0 fH
0 

decreases less rapidly than either 0 fB or ~£
0

• Therefore, 

the amplitude of the structure factors for boron and carbon are most 

important relative to that of holmium at sin9/A equal to zero. If in 

addition the phase contribution to the structure factor from the light 

atoms is taken to be minus one as the absolute minimum, the largest 

possible negative structure factor sum for the two boron and two carbon 

atoms per cell will be given by 

~ 
j 

Therefore, from equation 5. 26 

F(hkl) = 67 - 22 = 45 > O. 

(5.26) 

(5.27) 

It is then possible to compute the electron density map from the 

temperature-corrected and scaled intensity measurements with the holmium 

contribution removed. If the intensity measurements were accurate enough· 

and if sufficient terms in the Fourier series are available, the boron 

and carbon atomic positions can be revealed. 
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5. 8 Light Atom Electron Density; Scale and Temperature Factors 

It should be pointed out that this electro~ density map will 

include the inverse mapping as well as the real mapping. 

IF (hkl) 12 = F (hkl) • F* (hkl)' (5. 28) 

(5.29) 

+ r E f f e2ni0i e·2ni0j 
i j i j 

(5. 30) 

ifj 

If the sum or the average is taken over a large number of hkl values, 
the last term tends to zero, since it contains as many positive as nega• 

tive components. Therefore, 

(IF(hkl) 12) 112= fH2 + fH (E f e 1+ E f e j) + E f. • 
· ( 2ni0 -2ni0 · 2) 1/2 

o oi i j j j j . 
(5. 31) 

( 
2ni0 -2ni0 2 Jl/2 F(hkl) = f H l+ _.L (E f e i+ E f e j)+-\ E f • 

o f Ho i i j j £Ho j j 
(5. 32) 

Expanding the right hand side into a binomial series, one finds: 

2ni0 -2ni0 2 
F(hkl)\ia fH [l+ 2£ l (i:f e 1+ Ef e j)+ ~ i: f + .....• ] • (5.33) 

o Ho ii j j 2£ j j Ho 
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Hence, 

F' (hkl) = F(hkl) - f 
Ho 

(.5 .. 34) 

The structure factor Fourier coefficients, F'(hkl), in the electron 

density synthesis will involve the inverse terms, -t- ~ f.e- 2ni0j, 
J J 

as well as the real terms. But, again, atomic size considerations will 

force a choice of the positions revealed by the electron density map. 

A scale factor, which could be ignored in the ~atterson synthesis, 

nrust be applied to the observed F(hkl) values and a temperature factor 
0 applied to fHo in order that the F'{hkl) values represent the difference 

between numbers on the same scale and at the same temperature. These 

factors are determined in the following fashion: Recall equations 5.28 

and 5. 4. In general, 

IF(hkl) 12 = (E f e2ni01)(E f e -2ni0j)' 
j j j j 

= E ~ f f e2ni[h(x1-xj)+k(y1-Yj)+l(z1-zj)1, 
i j i j 

= E f 2+ IT: ffe211i[h{x1-xj)+k(y1-yj)+l(z1-zj)] 
j j ij ij 
i=j i;&j 

(5 .-35) 

(5. 36) 

(5. 37) 

As pointed out in equation 5. 30, the last term of 5. 37 approaches zero 

for an average over all hkl. Therefore, 

IF(hkl) 12 = E f 
2 

j j 
(5.38) 
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Further, 

IF{hkl) b 1
2 

= K IF{hkl) b 12 ' o s. a s. 

where K is the scale_ factor. From equation 5.38 

IF{hkl) b 12 = K ~ f 2 
0 S. j j 

The temperature factor correction (32) is given by 

2 
2 2 f (sin 9) 

f = Of e -X, 

0 where f is the atomic scattering factor. at zero degrees absolute. 

Consequently, 

and 

ln 

• 29 
f (Sl.ll2 ) 

Ke A 

IF (hkl) obs .12 
~ of 2 
j j 

= 

Equation 5.43 is of the form, 

2 
f 1.Si~z8) y=a+ \,..., 

0 2 
~ f 
j j 

2 
= ln K + f (sin 9) 

~ 

(5.39) 

(5.40) 

(5. 41) 

(5. 42) 

(5 .43) 

(5.44) 

2 2 Thus, a plot of the left hand side of equation 5.43 versus sin 9/ ~ 
2 2 in the limit of sin 8/ X equal to zero produces the scale factor, K. 
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The temperature factor, f(81~~9}, can be calculated from this curve for 

each sin29/ A2 desired. 

Figure 5. 4 is a graph of equation 5.43 for HoB2c2 • The data 

were taken from.Table 5. 5, coltnnns five and seven. The five numbers 

arranged horizontally halfway up the figure represent the average values 

for the vertical coordinates of experimental points lying between the 

brackets on either side of the average value. 

Normally, such a curve as defined by equation 5.43 is a straight 

line with slope equal to -2B. This factor is the De bye-Waller temperature 

factor. However, in this case (Figure 5. 4) a parabolic plot resulted. 
0 The parabolic behavior is attributed to an error in the fH

0
+3 litera-

ture values (38). However, a scale and temperature correction can still 

be made.-

The corrections applied are of the form, 

F' (hkl) = F(hkl)- ~
0
= !F(hkl)obs, I 

. Kl/2 

. 29 
0 f (Sl.~2 ) /2 

f e 
Ho 

(5.45) 

where f( 8 i~~9) is taken from Figure 5. 4 as the difference between the 

two curves on the graph. 

For F'(hkl) values below the series cut-off point where sin28/ ')...2 

is .360 at 444 and for which no experimental intensity was observed, 

F' (hkl) = F (hid) -£ Ho (5. 46) 

0 f (sin2e) /2 
= 0 - f e A2 

Ho 
0 f(si~~e)/Z (5.47) = - f e 

Ho 
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The F'(hkl) values should be small positive or negative numbers. 

Any small error in the measured intensities will be amplified considerably 

in F'(hkl) after subtracting f . Thus, the maxima in the electron density · Ho 

map due to the light atoms may be obscured by series termination maxi~, 

and the location of the maxima representing atomic positions may be 

shifted from their real position because of intensity measurement error. 

The light atom structure factor data are listed irt Table 5. 5. 

The indexing applies to the cell with a and c dimensions, 3.7801 and 
0 0 

3.5374K, respectively. Columns one through five contain the indices of 

the reflecting planes, the atomic scattering factors at 0°K. for covalent 

boron and carbon atoms and for trivalent holmium ions, and (sin2e)/ A.2 . 

Column six lists IF(hkl)l 2 observed experimentally from Table 5. 2. In 

addition, hkl values, such that sin 9 is less than one and for which no 

reflection was observed, are listed with IF{hkl)l 2 set equal to zero. 

Column seven lists the left side of equation 5.43. Column eight contains 

scaled structure factors at the room temperature of the intensity data 

collection. Column nine contains the holmium structure factor at room 

temperature, and column ten contains the absolute light atom structure 

factor at room temperature. 

The 100 and 001 values in Table 5. 5 were omitted from the electron 

density computations because of their obviously too large size. As in 

the Patterson synthesis, this omission will have some effect on the 

amplitude of the maxima, but not on the position of the electron denijity 

maxima. 

For the same reasons discussed in t~e Patterson synthesis, the 

electron density functions for space group, P4/numn, were computed rather 
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TABLE 5. 5 

Ho~C2 Light Atom Structure Factors Corrected for Scale and Temperature Factors. K = 3.439 X 10-5 

sin2G I J jF(bkl) obs .12 hkl of of of 7 F(hkl) 2 -ln ~ 0 2 F(hkl)abs. fHo F(hkl)abs :-f Ho . Ho B C obs. f. . l 
l 

000 67.00 5.00 6.00 .00000 .00000 .000 67.0 -67.0 100 59.67 3.575 4.50 .01748 .78o 8.449 151. 55.83 95.2 001 58.98 3.44 4.37 .01996 .637 8.625 136. 54.66 81.3 
110 55.49 2.84 3.85 .03482 .0607 10.851 42.0 48.63 -6.57 101 54.96 2.76 3.65 .03752 .1.14 10.200 57.6 47.91 9.69 111 52.05 2.38 3.24 ·.05490 .0728 10. 538 46.o 42.62 3.38 
200 49.82 2.17 2.8o .06996 .0336 11.222 31.3 38.76 -7.46 
002 48.52 2.07 2.65 ·.07998 .0921 10.160 51.8 36.64 15.16 

-.:J 210 47.59 2.01 2.55 .08750 .0431 10. 88o 35.4 35.17 .23 w 

201 47.30 l.98 2.54 .09000 .0318 11.173 30.4 34.65 -4.25 
102 46.56 1.94 2.44 .09734 .0364 11.006 32.5 33.4o -.90 
211 45:56 1.88 2.37 .10745 .0231 ll.417 25.9 31.8o -5.90 
112 44.88 1.84 2.30 .11492 .0284 11.181 28.7 27.81 .89 
220 42.71 1. 75 2.08 .13988 .0232 11.260 26.0 27.56 -1. 56 
202 41.84 1. 72 2.03 .15015 .0276 11.068 28.3 26.40 1.90 

030 41.29 1. 70 1.99 .15724 .0138 11. 734 20.0 25.70 -5.70 
221 41.10 1.69 1.98 .16008 .0~68 10.504 36.9 25.42 11.52 
122 40.65 1.68 1.93 .16736 .0307 10.903 29.9 24.81 5,09 

130 40.15 1.66 1.90 .17514 .0246 11.123 26.7 24.18 2.52 
031 40.05 1.66 1.89 .17741 .0292 10.924 29.1 23.99 5.11 
003 39.8 .17981 .0000 .000 23.8 -23.8 

131 39.00 l.62 1.85 .19492 .0181 11.350 22.9 22.79 .11 
103 38.90 1.62 1.83 .19714 .0353 10.676 32.0 22.64 9.36 
113 37.90 l.59 l.8o .215ll .0220 11.120 25.3 21.62 3.68 



TABLE 5. 5J continued 

sin2G f F(hkl)obs .12 
hkl ofHo of of 7 f F(bkl) obsl~ -ln F(hkl)abs. fHo . F(hkl)abs ~fHo B C i Of~ 

l l 

222 37.65 1.58 1. 79 .21977 .008o2 12.093 15.3 21.38 -6.08 
230 37.25 1.57 1. 76 .22753 .0155 11.413 21.2 21.02 .18 
032 36.75 1.56 L 74 .23756 .00646 12.262 13.7 20.60 -6.90 

231 36.25 1.54 1.72 .24741 .00826 u.989 15.5 20.28 -4.78 
023 36.10 1.54 1. 71 .24930 .0166 11.281 22.0 20.17 1.83 
132 35.93 1.53 1. 71 .25502 .0137 11.464 20.0 20.07 -.07 

123 35.52 1.52 1.68 .26750 .OllO 11.661 17.9 19.86 -1.96 
040 35.11 1.50 1.67 .28oo5 .0286 10.681 28.8 19.71 9.09 
140 34.9 .29741 .00000 .000 19.9 -19.9 

401 34.7 .29991 .00000 .000 19.8 -19.8 
--;J 232 34.26 1.47 1.63 .30736 .0115 ll. 544 18.3 19.77 -1.47 + 

330 34.4 .31492 .00000 .000 20.0 -20.0 

141 33.92 1.45 .1.62 .31787 .00929 11.739 16.4 19.94 -3-54 
004 34.2 .31966 .00000 .0000 20.l -20.1 
223 33.86 1.44 1.61 .32013 .0242 10. 753 26.5 19.95 6.55 

331 33.6 .33491 .00000 .000 20.6 -20.6 
033 33.6 ·. 33727 .00000 .000 21.1 -21.1 
014 33.35 1.43 1.58 .33756 .0244 10. 737 26.6 20.54 6.06 

240 33.1 .34991 .00000 .000 21.2 -21.2 
114 33.0 .35465 .00000 .000 21.6 -21.6 
133 32.84 1.41 1.56 .35522 .0112 11.486 18.0 21.46 -3.46 

042 32. 70 l.4o 1.55 .36024 .0128 11.341 19.3 21.83 -2.53 

-;-,j.!FChk.1 l I 2 0 f(sin2G/ A2)/2 F(hkl) = + obs· fHo = fHo e abs. K 



than one of the other four possible space groups. Minor changes in the 

computer program discussed above, mostly concerned with the adaptation 

of the program to the IBM 1620 computer, were made. The expression for 

the electron density function for space group P4/mmm is given by 

J° (XYZ) 
8 =-v 

+oo 
~ F'(hkl) cos 2rrhX cos 2nkY cos 2n1Z. 
hkl 

0 
(5 .48) 

This function was computed in units of sixteenths of the unit cell edges 

for one-eighth of the cell. Again the rest of the cell is obtained by 

synnnetry. 

The computer input data are listed in Table 5. 6 in the same 

format and with the same multiplicity considerations of Table 5. 3. The 

computer output data are listed in Table 5. 7 again in the same fonnat 

and unit cell choice as for the Patterson computations of Table 5. 4. 

These electron density data are mapped by layers up the c-axis in 

Figure 5. 5. Contour lines on the nine layers define the positions of 

the centers of electron concentration. Figure 5. 6 is a (xy0} projection 

of the maxima of Figure 5. 5 with the radius of the circles indicative 

of the size of the maxima. The fractional heighth up the c-axis is 

indicated with each circle. 

While there are many more maxima than there are atoms to put in 

them, the four maxima at 1/4, .1/2, 1/2; 1/2, 1/4, 1/2; 3/4, 1/2, 1/2 

and 1/2, 3/4, 1/2 do stand out as nearly twice as intense as the next 

most intense maxima. 
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TABLE 5. 6 

Input Data for Ho~C2 Light Atom Electron Density Synthesis for Space Group P4/mmm. 

hkl F(hkl)abs :-fHo hkl F(hkl) abs -f'H hkl F(hkl)abs:-fHo hkl F(hkl)abs:-fno • 0 

000 -8.38 113 3.68 231 -4.78 344 .000 
001 .000 114 -21.6 232 -1.47 400 2.27 
002 3.79 120 .12 233 .000 401 -9.90 

003 -5.95 121 -5.90 234 .000 402 -1.27 
004 -5.03 122 5.09 240 -10.6 403 .000 
010 .000 123 -1.96 241 .000 4o4 .000 

011 4.85 124 .000 242 .000 410 -9.95 
012 -.45 130 1.26 243 .000 411 -3.54 
013 4.68 131 .11 244 .000 412 .000 

014 3.03 132 -.07 300 -1.43 413 .000 
020 -1. 83 133 -3.46 301 2.56 414 .000 
021 -2.13 134 .000 302 -3.45 420 -10.6 

022 .95 140 -9-95 303 -10. 5 421 .000 
023 .915 141 -3.54 304 .000 422 .000 
024 .000 142 .000 310 1.26 423 .000 

030 -1.43 143 .000 311 .11 424 .000 
031 2.56 144 .000 312 -.07 430 .000 
032 -3.45 200 -1. 83 313 -3.46 431 .000 

033 -10.5 201 -2.13 314 .000 432 .000 
034 .000 202 .95 320 .09 433 .000 
040 2.27 203 .915 321 -4.78 434 .000 

041 -9.90 204 .000 322 -1.47 440 .000 
042 -1.27 210 .12 323 .000 441 .000 
043 .000 211 -5.90 324 .000 442 .000 

044 .000 212 5.09 330 -10.0 443 .000 
100 .000 213 -1.96 331 -20.6 444 .000 
101 4.85 214 .000 332 .000 

102 -.45 220 -. 78 333 .000 
103 4.68 221 11.5 334 .000 
104 3.03 222 -6.08 340 .000 

110 -3.29 223 6.55 341 .000 
111 3.38 224 .000 342 .000 
112 .89 230 .09 343 .000 
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TABLE 5. 7 
Ho~c2 Light Atom Electron Density Synthesis Output Data with 

Space Group, P/4mmm 

0 1 2 3 4 5 6 7 

-23.0 -12.0 4.11 3.00 -7-91 -9.33 -2.30 1.04 

-4.,37 5.62 2.32 -6.43 -5.96 .103 1.19 

5.53 .356 -2.92 .653 3.77 .307 

-1.23 .183 3.17 2.48 -2.76 

. 508 -1.92 -4.70 -6.oo 

-9.56 -11.5 -7.01 
Z = 0/16 

-11.7 -6.45 

-6.20 

0 1 2 3 4 5 6 7 

-17.5 -7-91 5.72 3.97 -5.78 -6.25 -1.45 -.766 

-1.57 6.26 2.47 -5.16 -4.22 .362 -.825 

4.58 -.Bo3 -3.02 1.10 3.35 -1. 55 

-2.44 .078 3.87 2.92 -3.04 

L 78 .611 -1.98 -3.74 

-5.32 -6.85 -2.81 
Z = 1/16 

-6.48 -1.70 

-1.77 

77 

8 

0.680 

-.236 

-3.00 

-6.01 

-6.20 

-3.81 

-3.29 

-6.31 

-8.45 

8 

-2.38 

-3.32 

-5-52 

-6.64 

-4.22 

.075 

1.15 

-2.12 

-4.45 



TABLE 5. 7, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -9.65 -2.88 6.18 4.14 -2.05 -1.09 1.68 -2.04 -5.72 
1 1.02 5.04 1.26 -3.10 -.488 1.95 2.84 -6.98 
2 .911 -3.99 -3-57 1.78 2.74 -4.09 -8.86 
3 -5.17 -.437 4.57 3.15 -3.60 -7.47 
4 3.69 4.35 1. 75 -.734 -1.54 

5 
Z = 2/16 

1.01 -.363 2.51 4.76 
6 .133 3.60 5.73 

7 2.50 1.62 
8 -1.10 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -9.82 -4.98 1.60 1.03 -.919 2.63 5.29 0.811 -3.11 
1 -2.47 .048 -1.98 -2.82 1.58 3.92 -.945 -4.92 
2 -3.86 -6. 72 -4.35 1.13 1.93 -3.78 -3.66 
3 -6.35 -.847 3.26 1.41 -3.94 -5.74 
4 3.89 3.93 .554 3.93 -1. 82 
5 z = 3/16 

.622 -1.83 .232 2.30 
6 -2.73 -.437 1.34 
7 -2.30 -3.22 
8 -5.78 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -12.7 -8.57 -2. 50 -1.88 -2.61 0.983 4.41 2.54 0.244 
1 -6.12 -2. 99 -3.55 -4.oo -.573 3.25 .641 -1.35 

2 -4. 33 . -5.29 -4.17 -1.66 -.8ol -2.53 -3.84 

3 -3.20 .210 .417 -1.99 -3.64 -3.95 

4 3.47 .528 -3.74 ·.528 -2.27 

5 z = 4/16 
-4.36 -1.69 -4.79 -1.95 

6 -9.44 · -6.46 -4.01 

7 -6.86 -6.64 
8 -7.75 
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TABLE 5. 7, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -9.38 -5.94 -1.01 -1.22 -3.66 -2.84 -.601 -.961 -1 . .99 
1 -3.64 -.611 -1.64 -4.42 -4.40 -2.49 -1.89 -2.16 
2 -.116 -.856 -3.06 -5.03 -4.82' -2.81 -1.62 
3 1.90 2.15 -1.91 -4.56 -2.12 .212 
4 4.02 -1.21 -5.27 -2.07 1.20 
5 Z = 5/16 -6.17 -8.8o -3.95 .050 
6 -9.54 -4.61 -1.07 

7 -2.18 -.349 
8 .469 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -3.65 -1.62 1.03 0.200 -1.96 -2.10 -1.98 ..;3.94 -5.45 
1 -.311 1.13 -.356 -3.28 -4.47 -4.05 -3.93 -4.12 
2 1.25 .270 -2.85 -6.27 -6.16 -2.42 - .077 

3 2.79 2.14 -2.79 -4.40 .910 4.88 

4 4.31 -.358 -3.00 2.38 6.79 
5 z = 6/16 -3.63 -5.14 .486 4.83 
6 -5.45 -.423 3.16 

7 2.32 4.45 
8 5.77 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -2.91 -2.29 -1.46 -.874 1.10 3.83 3.20 -1.46 -4.37 
1 -2.22 -2.35 -2.56 -1.78 -.184 .167 -1.39 -2.48 
2 -3.59 -3.84 -4.25 -5.04 · -3.63 .451 2.85 

3 -1.59 -.426 -2.87 -2.38 4.34 8.84 

4 3.16 .721 -.333 5.69 10.2 

5 Z = 7/16 
-1.02 -2.50 2.00 5.68 

6 -4.63 -2.15 ·.244 

7 -2.52 -1.67 
8 -1.58 

\ 
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TABLE 5. 7, continued 

x/16 0 1 2 3 4 5 6 7 8 
Y/16 

0 -4.17 -4.20 -3.87 -2.11 2.58 7.46 6.97 1.10 -2.52 
1 -4.59 -5.27 -4.44 -1.16 2.56 3.32 .965 -.657 
2 -7.17 -6.79 -5.23 -4.04 -1.69 2.40 4.66 

3 -4.58 -2.10 -2.83 -1.23 5.90 10.5 

4 2.18 1.00 .608 6.62 11.0 

5 -.270 -2.06 1.54 4.73 
Z = 8/16 

6 -5.56 -4.77 -3.16 

7 -7.25 -7.28 

8 -8.08 

80 



Ho82 C1 LIGHT ATOM 3-0 ELECTRON DENSITY CONTOURS 

SPACE GROUP P4/mmm 
FIGURE 5. 5 

2 3 4 5 6 7 8 

2 

3 

4 

5 

7 

m m 

2. 3 4 S 6 7 8 

2 

3 

4 
I 

s ~=~s 

6 

7 

8 m 

m m 

81 



2 

3 

4 

5 2 
~ = .>(6 

6 

7 

8 m 

m 
m 

2 3 4 5 e 7 8 

2 

3· 

4 

5 l=% 
6· 

7 

8 

FIGURE 5. 5 m 

82 



2 

3 

4 

5 

4 
e r= ~s 
7 

8 

2 

3 

4 

5 
5 

6 ~ = ;,;6 
7 

8 m 

m m 
FIGURE 5. 5 



2 

3 

4 

s 

6 6 
l = ;.,6 

7 

8 m 

m m 

2 3 4 5 e 1 8 

2 

3 

4 

7 
5 r =~s 
6 

7 

8 

FIGURE 5. 25 m 

84 



2 

3 

4 

s 
8 

6 l =~s 

7. 

8 m 

FIGURE 5, a 



"~1/16 d''6 
X 

Ql/16 0 
01/8 01/8 1/16 

03/8 Q112 03/8 
1/2 0118 0118 

0118 

1/2 1/8 3/8 1/8 0 0 0 0 Q112 
3/16 01/8 
1/2 0118 01,a 

03/8 Q112 03/8 

01/8 Ql/8 1/16 
01116 0 

01116 
16 1/2 

01116 

Ln B2C2 LIGHT ATOM ELECTRON DENSITY PROJECTION 

I OOVI J 

FIGURE 5. 6 

86 

1/2 
3/16 

a• 

3/16 
1/2 



5. 9 Light Atom Positions; Space Group; 
General Structure Discussion 

There are several arguments and observations which define the 

space group of LnB2c2 and the boron and carbon positions. First, the 

chemical analysis and preparative techniques discussed in Chapter 4. 2 

fix the boron to metal and carbon to metal ratios at two. Second, the 

density measurements of Chapter 4. i fix the unit cell content at one 

formula unit -- one metal, two boron and two carbon atoms -- for a cell 

with a and c, 3.7801 and 3.5374K, respectively. 
0 0 

Third, the X-ray information is quite restrictive on the atomic 

positions. In Chapter 5. 6 a Patterson synthesis left no doubt that the 

metal atoms were located only in the corners of the primitive cell 

chosen for the analysis. It is very inviting to place the two boron and 

two carbon atoms in the four (o) equivalent positions, !(x, 1/2, 1/2; 

1/2, x, 1/2), found for the light atom electron density map of Chapter 

5. 8. However, one nrust appreciate that the symmetry demands of the 

computations force the equivalence of these possible positions and the 

equivalence of other maxima observed in the mapping. 

There are three distinct synnnetry considerations. The.first 

is the inherent centrosynunetry of the reciprocal lattice. ·This centro-

symmetry arises from the phase problem (cf. Chapter 5. 3, Friedel's Law) 

involving inverse as well as real structure factors in the IF(hkl)l 2 

values measured, and introduces both structure factors into the point 

group. Thus, the use of the centrosynnnetric 4/mmm point group in 

generating the electron density map is required. A second consideration, 

related to the first, is the unavoidable inclusion of inverse light atom 



structure factors in the synthesis from the light atom phase problem, 

even with the phase problem of the metal atoms solved. Finally, there 

is the inability of X-rays to distinguish between carbon and boron atoms. 

Selection of other-maxima in the electron density map at whicQ 

four atoms may be located was attempted. In order to limit the choices 

to a total of four positions, symmetry elements were removed, i.e., the 

diagonal mirror planes, the four-fold axis, and each of the mutually per-

pendicular mirror planes of Figure 5. 2. All combinations ·of four maxima 

with different point groups could be rejected with steric arguments ex-

cept the obvious equivalent positions described above. 

If these four equivalent positions had not occurred along the 

lines representing the intersection of two mutually perpendicular mirror 

planes, then the number of observed equivalent maxima in Figure 5. 6 

would have been eight or sixteen, depending on whether the maxima were 

located in a mirror plane or not. Then the choice for atomic positions 

would have been more difficult. Thus, since the light atoms have two 

position coordinates equal to 1/2, the point group must contain three 

mutually perpendicular mirror planes. No diagonal mirrors are.required. 

Fourth, the agreement between the atomic position arrangement in 

the LnB2c2 structure and those of LnB6 and LnB4 is remarkable. Figure 

5. 7 illustrates structures reported for LnB4, LnB6, LnB12 , LnC2 and. 

Ln2c3 • In the cubic hexaboride described by Blum and Bertant (39) the 

cell is primitive with respect to the metal ions. Boron positions are 

observed at ~(1/2, 1/2, .207; 1/2, .207, 1/2; .207, 1/2, 1/2). Four of 

these six positions agree precisely with the four largest maxima found 

in the HoB2c2 light atom electron density map. While the tetragonal 
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tetraboride structure discussed by Blum and Bertant and by Zalkin and 

Templeton {39, 40) is more complex than LnB2c2 , a tetragonal cell can 

be chosen that is primitive with respect to the metal ions and contains 

a boron octahedron, which has four boron sites in positions equivalent 

to those for the light atoms in LnB2c2 just as.in LnB6 • There is no such 

striking similarity to the icosahedral boron structure of LnB12 (39, 41), 

to Lnc2 (42, 28, 43), to Ln2c3 (42-3~ 28) or to Ln3c (28). It is apparent, 

then, since there are four positions needed and four obvious maxima 

available, and since the resemblance to LnB4 and LnB6 structures is so 

striking, that the boron and carbon atoms are probably located at 

t(l/2, x, 1/2; x, 1/2, 1/2) with x approximately 1/4. 

The questions of a four-fold, two-fold or one-fold axis must be 

resolved. It should be noted that because of the inaccuracy in the light 

atom structure factors the remaining light atom position parameter to be 

specified need not be fixed at 1/4, but could vary as much as one-eighth 

of the unit cell dimension in either direction, staying in the mirror 

planes. Further, if one recalls that the four-fold axis was an assumption 

included in the tetragonal P4/mmm space group application, the possibility 

that only a two-fold axis· exists cannot be overlooked. This wo~ld define 

two sets of equivalent positions, ~(x,. 1/2, 1/2) and ~(1/2, y, 1/2). A 

one-fold axis would arise, if the equivalent positions were {x, 1/2~ 1/2; 

1/2, 1-x, 1/2) and (1/2, y, 1/2; 1-y, 1/2, 1/2). 

There are six possible arrangements of the boron and carbon 

atoms to be considered. These are illustrated in Figure 5. 8 by projec-

tions on the {XYO) plane. Sheets of metal atoms are at the zero level 

and sheets of boron and carbon atoms are located between metal sheets at 
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a heighth of one-half of the c dimension. The two carbon and two boron 
0 

sites might be adjacent (one-fold axis), as in Figure 5. 1. 1, or oppo-

site (two-fold axis), as in Figure 5. 8. 2. All four of these positions 

might contain only boron atoms or only carbon atoms, and an adjacent cell 

would contain only carbon atoms or boron atoms (two-fold axis), as in 

Figure 5. 8. 3. Necessarily, then, a larger unit cell to define the 

crystal motif would be needed. A fourth possibility would be a random 

ordering of boron and carbon atoms into these four sites (four-fold axis), 

as shown in Figure 5. 8. 4. Fifth, the boron and carbon atoms could be 

arranged in an alternating arrangement going around light atom rings. 

This arrangement would necessitate the choice of the larger unit _cell 

shown in Figure 5. 8. 5. Finally, there may be a screw axis applied to 

all these possibilities, depending how each light atom sheet is oriented 

with respect to another. 

The choice between these sets of equivalent positions would be 

easy if the boron and carbon atoms could be distinguished in the electron 

density map. Intensity data are not accurate enough to distinguish these 

possibilities. Recall from above that with such a disparity in the 

scattering power between the dominant lanthanide atom and the boron and 

carbon atomic scattering power and with such a limited set of measured 

intensities in the diffraction record, it is difficult to locate the 

positions of the light atoms at all, much less distinguish between 

carbon and boron atoms. 

Let us examine the light atom arrangements in Figure 5. 8 in 

more detail. From the average boron-boron separation indicated in 

borides of Table 5. 8 the boron covalent radius is about 0.87K. Also, 
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from Table 5. 8, the covalent carbon radius is about o.10R. In Figure 

5. 8. 1, then, the boron-boron distance will be greater than the carbon-

carbon separation. Thus, even though carbon and boron atoms are indis-

tinguishable by X-ray diffraction, this arrangement can be eliminated 

as a possible structure on the basis of the structure's failure to exhibit 

any four-fold axis. While it might be a coincidence that TbB2c2 would 

exhibit this apparent tetragonal synmetry, it is fortuitous that all the 

lanthanides which have wide ionic radius variation should show the tetra-

gonal synnnetry as discussed in Chapter 4. 4. Never in the high angle 

powder photographs or in the single crystal studies were superlattice 

lines or spots observed indicative of lower synmetry than a four-fold 

axis. 

Similarly, the light atom arrangement in Figure 5. 8. 2 can be 

eliminated. The metal separation in the Y-direction should be larger· 

than that in the X-dimension because of the disparity in boron-boron and 

carbon-carbon distances. This disparity does ~ot allow any four-fold 

axes. 

While there are four-fold axes in the center of the light-atom, 

four-membered rings of the arrangement in Figure 5. 8. 3, there is no 

four-fold axis at the metal ions, as is demanded by the Weissenberg 

photographs coupled with the positioning of the metal atoms in the corner 

of the primitive tetragonal cell chosen for the Fourier analyses. 

The arrangements in Figures 5. 8. 1, 5. 8. 2 and 5. 8.· 3, with 

their screw axis counterparts are, hence, all eliminated as possible 

structures. However, both the random orientation of Figure 5. 8. 4 and 

the alternating arrangement of Figure 5. 8. 5 with its screw counterpart 
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meet the requirements of a four-fold axis and the light atoms positioned 

as required by the electron density analysis. Since boron and carbon 

have equal numbers of core electrons, the differences in their scattering 

amplitude will depend on the valence electrons. It is conceivable that 

bonding requirements would set the scattering abilities equal or even 

reversed from the atomic number ratio. Also, as discussed in the above 

paragraph, from the centrosymmetric space group for which the computa-

tions were done, vectors in the synthesis contributed from carbon sites 

and those contributed from boron sites were set equal by synunetry. 

Therefore, the intensities of the four electron density maxima must be 

equal. 

If a random filling of these positions is allowed, it would 

appear that a solid solution range from the tetragonal tetraboride to the 

tetragonal dicarbide ought to exist. While there is some evidence of 

solid solution in GdB2c2 there is not anything like the solid solution 

range one might expect for such random filling. If such were the case, 

the space group would be P4/mnnn, D~h' No. 123 (33). However, the random 

arrangement seems very improbable. 

Therefore, the only possible light atom arrangement remaining is 

that of Figure 5. 8. 5 with its screw axis counterpart. This alternat-

ing arrangement of boron and carbon atoms in eight- and four-membered 

rings satisfies the symmetry and position requirements established by 

X-ray analysis. 

This structure belongs to the tetragonal space group P4/mbm, No. 127 

(33). There are two LnB2c2 formula units per cell. The atoms and their 
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equivalent positions are: 

Two Ln at 2(a); 000; 1/2, 1/2, O; 

Four Bat 4{h); x, 1/2+x, 1/2; x,·1/2-x, 1/2; l/2+x, x, 1/2; 

1/2-x, x, 1/2; 

Four Cat 4{h); x, 1/2+x, 1/2; x, 1/2-x, 1/2; l/2+x, i, 1/2; 

1/2-x, x, 1/2; 

Figure 5. 9 contains the sYIIU!1etry elements of this space group and 

Figure 5.10 is a projection onto the {XYO) plane of the actual structure. 

There are four-fold inversion axes at the corners of the cell and at the 

center of the cell. Two-fold inversion axes are found half-way along 

the cell edges. There are diagonal mirror planes between adjacent two-

fold inversion axis positions and a mirror plane perpendicular to and 

half-way up the c-axis. There are two-fold rotation axes parallel to the 

paper half-way up the c dimension and defined by the mirror plane inter-o 

sections. Perpendicular glide planes passing through 1/4, 0, 0 and 0, 

1/4, 0 and cell diagonal glide planes exist. Diagonal and perpendicular 

screw diads parallel to the paper and half-way up the c dimension also 
0 

exist. 

The possibility of light atom sheets being alternately in or out 

of phase with respect to superposition down the c-axis must be cons_idered, 

i.e., will a boron atom of one light atom sheet superimpose onto the 

boron atom of the adjacent sheet on projection, or will a carbon atom 

superimpose on a boron atom? As a matter-of fact, many alternate orien-

tations up the c-axis are possible. The space group considered above 

would be an AAAAA ••. arrangement of light atom sheets. For an 

ABABA.B .•• arrangement, the point group would involve two-fold screw 

axes. In particular, the space group would be P4/mnc, No. 128, with 

96 



-(1)+ 
+(1)-

+{1) 
-Cl)+ 

- (l)+ 
+(D-

-<D+ +(])-

+'(D "'" -(I)+ 
+(D-

(D+ -

-(D+ 
+(D-

-(D+ 
+<D--

+<D- (])+ 

(D 
-(J)+ 

+ -

--
' JI' -
' / "! J/ ' 

Origin at centre (4/m) 

~/ 

LnB2C2 SPACE GROUP, P4/mbm, TETRAGONAL 

FIGURE 5. ·g 

-
/ 

" __. 

/ 

" 

-±:~ 
~ , C 

±J..:: o~ B 

O· Ln 

Ln e2 c2 Structure i { oow} Projection 

FIGURE 5. 10 

97 



four fornrula units per cell. The metals would be at 2(a) and 2(b) 

positions; eight boron atoms, at 8(g); and eight carbon atoms, at 8(g). 

More complex sheet ordering is possible.· In an effort to choose the 

smallest cell the space.group is assumed to be P4/mbmwith an A.AAA ••• 

light atom plaµe orientation. The bonding considerations of. Chapter 6 

and the above discussion constitute a fifth argument favoring the selec-

tion of this space group: 

It is now necessary to fix the boron position parameter, xB, and 

the carbon position parameter, xC, in order to completely define the 

structure. The electron density map·does not fix these parameters any 

better than 0.25 t .1. These parameters for HoB2c2 have been established 

by comparing interatomic distances in related compounds. 

Table 5. 8 sunnnarizes crystallographic information for o(-B, 

B4C, tetragonal-B, HoB4 , HoB6, HoB12 , Ho3c, Ho2c3, HoC2 , UBC, ThB2C, and 

HoB2c2 • The table lists space groups, symmetries, lattice parameters, 

fornrula units/cell and interatomic distances. All data, except for 

HoB2c2, were taken from the literature references cited at the heads of 

the colunms. The space group assignment for ThBC is tentative and inter-

atomic distances are nominal. 

The boron-carbon distance in B4c is 1. 64.R and I.in UBC is 1. 64.R. The 

boron-carbon distance in HoB2c2 is assumed to be that distance required by 

a regular octagon ot light atoms all in the diagonal mirrors. Thus, the 

boron-carbon distance is 1.58.R, which agrees quite well with the 1.64.R 
',, 

spacing expected. With this assumption, the holmium-boron and holmium-

carbon distances will be equal at 2.70.R. This metal-light atom distance 

is in excellent agreement with metal-boron distances in related compounds, 
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but a little higher than metal-carbon distances in carbides. The boron-

boron and carbon-carbon separations across the square four-membered rings 

are both 2.2.JR. Arguments are presented in Chapter 6 for aromatic eight-

membered boron-carbon rings. Aromaticity would account for the decrea .. se 

in the boron-carbon separation in HoB2c2 compared to l.64R. The inter-

atomic distances in HoB2c2 are in striking agreement with the expected 

separations (cf. Table 5. 8). The excellent agreement between the 

interatomic distances in HoB2c2 and those of the related compounds is the 

sixth argument confirming the structure. 

Optimization of the position parameters within the restrictions 

of the above space group and the required light-atom regular octagon pro-

duced the distances for HoB2c2 in Table 5. 8. As a result, the boron 

paramete·r, xB, is 0.352; and the carbon parameter, xc, is 0.148. These 

position parameters are not outside the variation allowed by the electron 

density map in terms of the smaller cell. 

Finally, a seventh point in support of this structure is found 

in the variation of the a
0 

= b
0 

and the c
0 

lattice parameters for LnB2c2. 

In Figure 4, it was observed that the a parameter of the smaller unit 
0 

cell chosen at first changes only a total of one percent as atomic number 

increases through the lanthanides. This change compares to lattice para-

meter changes in tetraboride parameters of six percent and in hexaborides 

parameters of seven percent (02). On the other hand, the c parameter 
0 

decreases by thirteen percent, a rate greater than the pure metal lat-

tice parameter decrease with increasing atomic number (30). 

This disparity in a
0 

and c
0 

behavior in LnB2c2 is not at all 

surprising if the structure is examined. Consider LnB2c2 to be made up 
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of sheets of interconnected alternate boron and carbon atoms interspersed 

by metal ions centered between holes in the eight-membered boron-carbon 

rings. It is very easy . for these sheets, separated by '3. 5 .R and thus 

too far for much light atom bonding between sheets, to get closer together 

as the radius of the lanthanide decreases. However, the metal atoms lying 

in a plane parallel to the light atom sheet are fairly well constrained 

to their respective position& regardless of the metal radius, since they 

are required to stay centered with respect to the holes in the eight-

membered light atom rings whose dimensions do not change with metal~ 

Th~s effect is dramatically illustrated in the case of YbB2c2 . 

Nonnally, both parameters would show alkaline earth deviation from the 

lanthanide contraction at ytterbium. In the case of YbB2c2 , c
0 

is no 

exception. However, a deviates only very slightly. 
0 

The crossing of the a and c parameters at praseodymium produces 
0 0 

an interesting situation. Where c was larger than a for lanthanum, 
,0 0 

the reverse situation occurs at Pr or Nd with increasing diversity through 

the ianthanides beyond Nd. The cubic symmetry that would result if a 
0 

equals c would explain Post's cubic or pseudocubic·PrB observation 
0 X 

(Table 1). Even NdB2c2 has an apparent cubic symmetry unless high angle 

lines are available or long wavelength radiation is used to detect line 

splitting. 

With the assignment of the tetra·gonal ·cell.defined in the above 

discussion, it is necessary to re-index the data in Tables 4. 1, 5. 1, 

5. 2, 5. 3, 5. 4, 5. 5, 5. 6 and 5. 7 for·this end-centered cell with 

twice the volume of the unit cell chosen for these data. This new index-

ing scheme is listed in Table 5. 9. As prescribed by the P4/mbm space 
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TABLE 5. 8 

Crystallographic Data and Interatomic Distances in Ianthanide Borides and Carbides and Related Compounds 

o<-B B4C B HoB4 HoB6 Ho:Bi.2 Ho3c Ho2c3 HoC2 UBC ThB2C HoB2c2 

(44) . (44,45) 
(39,40,46, (39j (39, 41, (42,28, (42,28, 

(44) 30,31) 46 46) (28) 43) 43 (17) (18) 

Space R3m R~ P42/nnm P~m Pm3m Fm3m Fm3m 143d 14/nnmn Cmcm (F6/nnmn) P/4mbm 
Group m .(F43m) 

Synnnetry . RhombG- Rhombo- Tetrag- Tetrag- Cubic Cubic Cubic Cubic Tetrag- Ortho- Hexag- Tetrag-
bedral bedral -onal onal onal rhombic onal onal 

lattice a0 ;5.057 5.19 8.75 7.086 2.096 7.492 5.061 8.176 3.643 3.591 3.872 5.3459 
Parameters bo; 4.008 6.139 

11.95 
3.5374 Ci) Co; 5.06 3.372 3.812 

(deg.) o<; 58.06 65.3 
I-' Formula 0 
I-' Weights/Cell 12 15 50 4 1 4 4Ln 8 2 4 1 2 

Interatomic 
Distance, (.~) 

(2. 70) M-B; 2.78 3.02 2.792 2.57 2.70 
2.72 2.75 

M-C; 2.53 2.51 2.47 2.35 (2. 70) 2.70 
2.40 

M-M; 3.64 4.096 3.818 3.578 3.34 3.64 3.58 3.537 
4.01 3.74 3.78o 

B-C; 1.64 1.64 (1. 95) 1.58 

B-B; 1. 74-1.SO 1.74 f l.68) 1.73 1.704 1.766 1.92 (1. 95) 2.23 
1.81) 1.78 

l.77 
C-C; 1.39 1.53 1.226 1.28 2.23 



group, there are two classes of possible reflection~ h + k = 2n for 

general hkl and k = 2n for Okl. 

Further, new unit cell parameters nrust replace those assigned in 

Tables 1, 4. 2 and 4. 3, and in Figure 4. 1 and 5. 8. These corrected 

parameters are contained in Table 5.10. The c-axis has the same length 

as that in Tables 1 and 4. 2; but the a-axis of the correct unit cell is 

(2) 112 times the a parameter of the primitive unit cell of Tables 1 and 
0 

4. 2. 

Final confirmation of the LnB2c2 structure is shown by a compari-

son of the observed and calculated structure factors listed in Table 5.11. 

Columns one and two contain hkl values for the original tetragonal cell 

and the correct.larger cell, respectively. Column three lists the ob-

served, scaled structure factors from Table 5. 5 taken at room temperature. 

The structure factors at absolute zero, calculated with the. position 

parameters described above for space group no. 127, are listed in column 

four. Column five contains the observed structure factors corrected to 

0 absolute zero with the same temperature factor used to correct £Ho in 

Table 5. 5. A corrected scale factor, K' = 1.98, was chosen, which 
0 minimized R of equation 5. 8 on application to F(hkl) b . These re-o s. 

scaled, observed structure factors are listed in column six. The agree-

ment between observed and calculated structure factors is indicated in 

column seven. 

The residual,R, calculated from·equation 5. 8, was found to be 

0.13, which is considerably less than 0.4, the maximum for which the 

structure can be considered solved (c,f. Chapter 5. 3). Hence, the 
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structure is fairly well defined. In view of the uncertainties in the 

measured intensities, the poor data on°£ +3, the small contributions ·of 
Ho 

the light atoms to the structure factors (< 15%}, the few terms in the 

Fourier series and the variance in the difference between observed and 

calculated structure factors, refinement to define the light atom posi-

tion parameters more precisely· is not worth doing. The exact positions 

of the light atoms must await neutron diffraction on a B-11 preparation 

of this phase or X-ray diffraction studies with a lighter metal in the 

phase, such as with ScB2c2 . 

The GdB6-c equilibrium and the CeB6-C-equilibrium (cf. Chapter 3) 

lead one to infer that all LnB6 phases exist in equilibrium with graphite. 

The inability to prepare LaB2c2 or SmB2c2 by reaction of LaB6 or SmB6 with 

graphite supports this argument. It is almost certain that the LnB2c2 
phase can be made for all the lanthanides and certain other. metals as 

well. 
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TABLE 5. 9 

Corrected Tetragonal Unit Cell Indexing of Ln~C2 

hkl hkl hkl hkl hkl hkl 
Small Cell Correct Cell Small Cell Correct Cell Sm.all Cell Correct Cell 

100,010 110 122,212 312,132 232,322 512,152 
001 001 130,310 1i20 ,240 223 1io3 ,01i3 
110 200,020 031,301 331 1li1,li11 531,351 

101,011 lll 031,103 113 Olli ,lOli 111• 
111 201,021 131,311 421,21n 033,303 333 
200,020 220 113 203,023 331 Co1,061 

002 002 222 4o2,01,2 Uli 201, ,021, 
120,210 310,130 230,032 510,150 133,313 1,23 ,21,3 
201,021 221 032,302 332 01,2 ,1,02 1,1,2 

102,012 112 231,321 511,155 21,1,1,21 621,261 
121,211 311,131 123,203 223 11,2 ,1,12 532,352 
112 202,022 132,312 1,22,21,2 021, ,201, 221, 

220 4oo,o4o 123,213 313,133 332 &>2,062 
202,022 222 01,0 ,1,00 1,1,0 121, ,211, 311, ,131, 
030,300 330 11,0 ,1,10 530,350 323,233 513,153 

221 401,041 

TABLE 5 .10 

Corrected Unit Cell Lattice Purnmctcro for LnD2c2 

Ln a0 (R) c0 (R) 

La 5.40 3.96 
Pr 5.39 3.81 
Nd 5.378 ! 0.011 3.791, ! 0.009 
Gd 5.3625 ± 0.0010 3.6399 '!: 0.0003 
Tb 5.3514 ± 0.0023 3.5912 i 0.0003 

5.3483 t 0.0027 + Dy 3.5599 - 0.0010 
Ho 5.3459 ± 0.0004 3.5374 i 0.0001 
Er 5.3425 t 0.0008 3.5077 t 0.0003 
Yb 5.3389 ! 0.0020 3.5598 t 0.0006 
y 5.35 3.55 
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TABLE 5.11 

Ho~C2 Calculated and Observed Structure Factors. K' = 1.98. 

hkl h'k'l' TF(hkl) b OF(hkl) cal OF(hkl)obs K'OF(hkl) OF _Op K' 
0 S obs cal obs 

100 110 151.0 107.8 161.3 
001 001 136.0 B6.7 146.6 
110 200 42.0 103.4 47.9 94.8 8.6 

101 111 57.6 119.1 66.1 130.9 -11. 8 
111 201 46.o 110.5 56.1. 111.1 -.6 
200 220 31.3 101.3 40.2 79.6 21. 7 

002 002 51.8 115.9 68.5 135.7 -19.8 
210 310 35.4 105.4 47.9 94.8 10.6 
201 221 30.4 93.1 41. 5 82.1 ll.0 

102 112 32.5 86.9 45.3 89.7 -2.8 
211 311 25.9 81.6 37.1 73.4 8.2 
112 202 28.7 85.0 41.9 82.9 2.2 

220 400 26.0 75.9 40.3 79.8 -3-9 
202 222 28.3 84.9 44.8 88.8 -3-9 
030 330 20.0 69.6 32.1 63.6 6.o 

221 401 36.9 94.5 59.6 118.1 -23.6 
122 312 29.9 89.4 49.0 96.9 -7.5 
130 420 26.7 83.7 44.3 87.8 -4.1 

031 331 29.1 92.6 48.6 96.1 -3.6 
131 421 22.9 74.7 39.2 77.6 -2.9 
103 113 32.0 82. 7 55.0 108.8 -26.1 

113 203 25.3 79.7 44.3 87.8 -8.1 
222 402 15.3 44.o 26.9 53.3 10. 7 
230 510 21.2 75.0 37.6 74.4 .6 

032 332 13.7 62.1 24.4 48.4 13.7 
231 511 15.5 72.0 27.7 54.8 17.2 
023 223 22.0 71.2 39.3 77.9 -6.7 

132 422 20.0 74.9 35.8 70.9 4.1 
123 313 19.5 63.9 34.9 69.0 -5.1 
o4o 440 17.8 79.1 31. 7 62.8 16.3 

232 512 23.1 69.0 40.0 79.2 -10.2 
141 531 25.5 68.6 43.4 85.9 -17.3 
223 403 8.8 57.5 14.9 29.5 27.9 
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hkl 

014 
133 
042 

TABLE 5.11, continued 

h'k'l' TF(hkl) b OF(hkl) l OF(hkl) b K'OF(hkl) 
0 S ca 0 S 

ll4 l3.2 62.4 21.4 42.4 
423 24.5 62.8 37.5 74.2 
442 31.8 73.7 47.6 94.2 

I f °FobsK' I = 2798 

R = 
Ill°FcJ-fFobsK'll 
~ JoFobsK'I 

= O.l32 (cf. equation 5. 8) 

f(sin29/X2) 
OF(hkl)obs = e 2 TF(hkl)obs 
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CHAPIBR6 

CHEMICAL BINDING IN LnB2c2 

The bonding possibilities in LnB2c2 are extremely exciting. 
2 3 Trigonal sp and tetrahedral sp covalent bonding in boron and carbon 

allotropes, in B4c, between boron atoms in metal borides and between 

carbon atoms in metal carbides are well known. 

Consider the bonding between the boron and carbon atoms in 

Figure 6. Each unit cell contains an eight-membered ring.of alternate 

boron and carbon atoms. Trigonal sp2 hybrid bonds for the boron and 

carbon atoms, resulting in an interlocking net of ("-bonds, would account 

for 24 of the 28 valence electrons contributed by the four boron and 

four carbon atoms in each cell. The remaining four electrons could 

form two rr-bonds in the eight-membered ring. 

However, this arrangement is insufficient to satisfy the Octet 

Rule for two of the carbon atoms in the ring. Further, such a non-con-

jugated eight-membered ring would not be planar because of bond-angle 

strain. Yet, from Chapter 5. 9, the light atoms were demonstrated to 

lie in parallel planes. 

In order to overcome the bond-angle strain, to insure a planar 

eight-membered ring network, and to satisfy the Octet Rule for all atoms 

in the net, additional electrons are needed to conjugate the ring and 
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provide resonance stabilization .. More specifically, the rings must be 

aromatic and,.therefore, obey the Ruckel Rule (47) demanding (4n + 2) 

n·electrons, where n is an integer. The system is not aromatic with only 

four n- electrons. Hence, the metal atoms must contribute their vai'ence 

electrons to the light atom rings. This demand on the metal accounts for 

the necessity of metal in the structure. 

If n = 1, six n·electrons would satisfy the aromaticity rule. 

However, the addition of only two more n-electrons to the ring is not 

sufficient to satisfy the Octet Rule for all members of the ring. Further, 

very little resonance stabilization is added. 

A more obvious choice of n = 2 or ten n·electrons in each eight-

membered ring can be satisfied. If both lanthanide atoms in the unit 

cell contribute three valence electrons each, or a total of six electrons, 

to each eight-membered ring, a total of ten n-electrons will be available 

to aromatize the light atom sheet. Since the lanthanides are normally 

trivalent, the demand of three electrons from each metal is reasonable. 

Further, the inability to prepare MB2c2 for divalent alkaline earth 

metals (cf. Chapter 1. 2) qan be explained by the inability of the light 

atom sheets to gain aromatic character and, hence, sufficient resonance 

stabilization to overcome angle strain. 

Consider the interatomic distances and bond angles in the light 

' atom sheets. The carbon-carbon distances in ethane, ethylene, acetylene, 

benzene and ferrocene are 1.54, 1.34, 1.20, 1.39 and l.4R, respectively. 

The boron-carbon separation was set at 1.58K in the eight-membered ring, 

the boron-carbon distance between rings in the same sheet is also 1.58K. 

In view of the aromatic·character and high resonance stabilization of 
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the bonding of Figure 6, the interatomic separations in the large ring 

are expected to be less than the 1.64g separation in sp3 tetrahedrally-

bound boron and carbon in B4c. However, .the Coulombic repulsion of six 

negative charges per eight-membered ring would compromise the expected 

decrease in eight-membered ring size somewhat, accounting for the failure 

to decrease the boron-carbon ring to the same extent that the carbon-

carbon distance contracts in benzene compared to ethane. Generally, the 

boron-carbon distances expected are in quite satisfactory agreement with 

separations in related aromatic organic systems. 

The sp2 trigonal bond angle in c2H4 and BX3 is 120°. The bond 
0 angles in the LnB2c2 eight-membered rings are 135, and the angles in the 

0 four-membered rings are 90. Cyclooctatetraene, although conjugated, is 

not aromatic and not planar. The resonance stabilization provided by 

the conjugated system is insufficient to allow the bond angles to deviate 

from 120° to 135° without puckering the eight-membered ring. Apparently, 

the added two n·electrons in LnB2c2 rings provide sufficient resonance 

stabilization to overcome the angle strain problem. 

The absence of bonds between light atoms in different light atom 

sheets is supported by the large separation of 3.6R and the metal-like 

vuriation of c with lanthanide (cf. Chapter 5.9). Consequently, as for 
0 

graphite, the electrical conductivity of LnB2c2 in the c
0 

dimension 

should be quite low if all lanthanide valence electrons are involved in 

<r- and n-bonds between light atoms. Further, one would expect very 

large ring currents in the ab -plane, which should be manifested by a 
0 0 

very high electrical conductivity in this dimension. 

The concept of metal atoms donating valence electrons to 

satisfy the orbital requirements of boron-boron covalent bonds is 
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fairly well established in metal borides of high boron content. Electrical 

conductivity and Hall coefficient measurements on borides reported by 

Johnson and Daane (25), particularly hexaborides of the lanthanide and 

alkaline earth metals,indicate that the lanthanide borides are metallic 

in nature while the alkaline earth hexaborides are semiconductors. This 

conductance behavior would be expected if only two metal valence electrons 

were needed to satisfy bonding requirements between boron atoms. 

Theoreticians, using molecular orbital and atomic orbital treatments, 

have demonstrated that tetra-, hexa- and dodecaborides all require two 

electrons per metal atom to satisfy the full complement of electrons 

needed in the covalently-bound boron structure. The realization that 

LnB2c2 is no exception is convincing evidence for the bonding and structure 

proposed. 

The analogy between LnB2c2 and the ferrocene-type compounds in 

the field of organic chemistry is striking. These sandwich compounds 

gain aromaticity by donation of metal valence electrons into n-orbitals 

of the multi-membered carbon rings. These n-electrons, then, are in 

orbitals which overlap with the vacant cl-orbitals of the electrophilic 

metal ion. The extremely significant difference between ferrocene-type 

compounds and LnB2c2, .hCMever, lies in the infinite sheets of electro-

philic metals coupled to continuous boron-carbon aromatic sheets in 

LnB2c2 as opposed to the existence of isolated single molecules in 

sandwich compounds. This distinction, of course, accounts for the thermal 

degradation of ferrocenes at relatively low temperature while LnB2c2 
0 cannot be melted up to 2500 K. 
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Ferrocene-type compounds exist for metals in the center of the 

Periodic Table, particularly those metals in Group VIII. Apparently, 

sandwich compounds have not been observed for the Group IIIB metals or 

the lanthanides. It is interesting to speculate that the LnB2c2-type 

phase will be found for the metals of Group VIII. It is further inter-

esting to ask why the metals in Group IVB, which are capable of trivalency, 

do not exhibit the LnB2c2 phase (cf. Chapter 1. l}. Perhaps the five d-

orbitals of the transition metals do not possess the radial distribution 

necessary to overlap with then-orbitals of the eight-membered rings, 

whereas the seven 4f-orbitals of the lanthanides ·and the five Sd-orbitals 

provide a better possibility of orbital overlap. Recall from above that 

the lanthanide-boron and lanthanide-carbon distances are significantly 

shorter in LnB2c2 than in lanthanide borides and lanthanide carbides. 

This closer approach allows for close orbital overlap. However, the 

existence of YB2c2 in which 4£-orbitals are unimportant casts doubt on 

the above speculation. Perhaps the inability to prepare transition metal 

analogs of LnB2c2 is merely a matter of difficulty in removing the third 

metal valence electron compared to Group IIIB metals and a matter of 

ionic size. 

The existence .of the eight- and four-membered, conjugated, aromatic 

rings in continuous sheets involving a trivalent electrophilic metal, the 

refractory nature of this phase, the unusual electrical properties ex-

pected, and the possibility of analogous phases existing for other metals 

all are considerations generating a very significant problem in the 

elucidation of the theory of chemical bonding. The subtle variations 

between fourteen lanthanide metals and lanthanum afford a wonderful op-

portunity to determine second-order effects on the bonding in this phase. 
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CHAPTER 7 

LANTHANIDE ORTHOBORATES 

7. 1 Experimental 

Powdered samples containing mostly LnB2c2 were sintered in 

evacuated quartz tubes at 1050°c. for two weeks in a Hereaus rhodium-

wound resistance furnace. It was the,purpose of this sintering to grow 

single crystals of the LnB2c2 phase for X-ray crystallographic studies. 

Debye-Scherrer X-ray powder photographs, using Cu-Ko< (l.54180R) radia-

tion, taken of the powdered residues for the gadolinium, terbium and 

ytterbium samples indicated that the LnB2c2 phase had oxidized to 

7 . 2 Background 

) 
Felten (48) has studied the LnB03-type borates and assigned the 

structure of the arthoborates of yttrium and the smaller of the lanthanide 

trivalent ions (samarium through lutetium) to be isostructural with 

vaterite ( f -caco3). Felten pointed out the close similarity between 

the X-ray powder patterns of LnB03 phases and the transition metal 

diborides. Both have hexagonal synnnetry. The patterns are identical 

except for the presence of a weak 101 line in the borate pattern. 

Therefore, the c-axis of the borate is twice that of the transition 
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metal diborides. The metal atom separation is the same in the diboride 

structure as in LnB03 • Felten further pointed out that the hexagonal YB2 
phase reported by Binder (23) with a reported AB2 structure could 

have been YB03 if the 101 line was not observed in the diffraction 

record. Since YB2 was observed as a minor phase in an yttrium-boron 

agglomerate, the 101 line could have been overlooked. Since borate for-

mation persists on fabrication of lanthanide borides (24), interpretation 

of LnB03 as LnB2 is quite possible. The 101 reflection was observed in 

the thirty-two line powder pattern of all the oxidized LnB2c2 samples in 

this work. 

Felten determined the lattice parameters for LnB03 compounds from 

two lines of the diffraction record. His graph of lattice parameters 

versus atomic number showed a linear lanthanide contraction even for the 

YbB03 phase. 

7. 3 ·Lattice Parameters and Discussion 

The precise lattice parameters for gadolinium, terbium and 

ytterbiumorthoborateswere computed by a least squares technique developed 

by Hess (29) for use with X-ray powder diffraction data. An IBM 653 com-

puter was employed. The lattice parameters and ·their errors calculated 

from this work are compared with those of Felten in Table 7. 

The a
0 

parameter for GdB03 agrees with Felten's value quite well. 

However, the c
0 

parameter of this work for GdB03 is 0.05 K smaller than 

that of Felten. This disagreement is inexplicable. As a matter of fact, 

the lattice parameters of GdB4, GdB6 and Gd2o3 are found to be slightly 

larger than would be expected from a linear slope in the variation of 
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TABLE 7 

Lattice Parameters of LnB03. 

Felten This Work 

Orthoborate ao co . ao delta a0 co delta c0 

y 3.118 · 8.814 

Sm 3.862 8.978 

Eu 3.842 8.937 

Gd 3.839 8.906 3.8400 .0113 8.8532 .0084 

Tb 3.8128 .0022 8. 8824 .0018 

Dy 3-793 8.847 

Ho 3.784 8.836 

Er 3.767 8.8o7 

Tm 3-753 8.789 

Yb 3-735 8.747 3.7447 .0007 8.7470 .0004 

Lu 3.727 8.722 
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parameters with atomic number {30). Both experimental a values for 
0 

GdB03 in Table 7 confirm this trend; however, both c
0 

values are below 

the linear slope instead of above. 

The a and c parameters of TbBo3, for which Felten had no 
0 0 

information, fall very well on the linear slope lattice parameter varia-

tion. The parameter, c
0

, for TbB03 is less than Felten's c
0 

for GdB03 as 

expected, but greater than the c
0 

value for GdBo3 from this work. This 

observation coupled with the large discrepancy between the c values for 
0 

GdB03 casts considerable doubt on the accuracy of the c
0 

of GdB03 from 

this work. The parameters computed from this work for YbB03 agree quite 

well with those reported by Felten, 

7. 4 Lattice Parameter-Valence Relationship 

It is interesting to note that the samarium, europium and ytter-

bium parameters also fall on a linear lattice parameter variation slope. 

This behavior is greatly in contrast to the behavior of lanthanide metal 

and of LnB6, but ~n better agreement with the LnB4 , Lnc2 and LnB2c2 be-

havior, and in perfect harmony with the lattice parameter behavior of 

Ln2o3 {30). A plot of the lattice constant for the cubic C-type of the 

lanthanide sesquioxide is linear through europium, samarium and ytterbium. 

The trivalency of the lanthanide ions in each of these sesquioxides except 

for cerium has been confirmed by magnetic studies (30). 

A comparison of the tetragonal LnC2 lattice parameter variation 

with the variation for LnB03 reveals some differences. The average 

valence of ytterbium in YbC2 has been found from magnetic studies to be 
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less than three and, accordingly, the a and c lattice parameters are 
0 0 

larger than that predicted from a linear slope extrapolation through Yb 

{30). The fact that samarium in Smc2 has a measured valence less than 

+3 even though its lattice parameters fall on the linear slope is an 

anomaly which needs investigation. 

In the case of LnB4 {~0), SmB4 has no lattice parameter deviation 

from a linear slope. But both a
0 

and c
0 

for ErB4 are larger than the 

values expected from a linear slope; and, further, a
0 

for YbB4 is quite 

a bit larger than the linear slope value. If this deviation at erbium 

and ytterbium is explained by an ytterbium valency below +3, then samarium 

ought to show a lattice parameter deviation also. Gschneidner pointed 

out that a plot of unit cell volume versus atomic number for ErB4, YbB4 
and LuB4 defines a straight line, which implies that the valency of 

ytterbium is still +3. No magnetic data are available. Tetragonal 

LnB2c2 lattice parameters showanearly linear lattice parameter variation 

for a through ytterbium; but c increases at ytterbium, indicative of 
0 0 

the alkaline earth character of the ytterbium ion. 

The differences in the lattice paraµreter variation for LnB6 and 

lanthanide metal (30) compared with LnB03 are quite large. The lattice 

parameter variation for cubic LnB6 is not linear. Large positive devia-

tions occur for europium and ytterbium hexaboride. Less positive 

deviations are observed for samarium, erbium and lutetium hexaborides. 

Magnetic susceptibility measurements confirm that the valency of samarium 

is less than trivalent in SmB6 . All such deviations are attributed to 

divalent character. There are many modifications for the lanthanide 

metals (30). If a lattice parameter plot of the cubic parameter for the 
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A2-W modification of these metals is constructed, europium and ytterbium 

deviate from a linear slope with extremely large differences. These 

deviations, confirmed by magnetic susceptibility measurements, are inter-

preted as an exhibition of divalent character. 

As the strong ionic character of .o-2 and Bo;3 io.ns is replaced 

by the covalent or metallic character of the non-metal entities in lan-

thanide compounds, and if the lanthanide ions are not separated by too 

large distances or insulated from each other by non-metal cages, the 

rigid demands on the valence electrons are relaxed and the lanthanides 

show valence behavior similar to the metals alone. Thus,it would seem 

that as one compares ph~ses in w·hich a rigid requirement of trivalency in 

all the lanthanides is maintained to those in which the lanthanides take 

on a radius more typical of their value in pure lanthanide metals, the 

bonding characteristics change from ionic to metallic. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

A rough survey of the Gd-B-C system with emphasis on the boron-

and carbon-rich regions of the ternary diagram and on the phase relations 

in the system was performed, using arc melting and X-ray diffraction 

techniques. Five ternary phases were revealed. No relation was found 

among these phases and those of the Th-B-C or U-B-C systems. Four of 

these phases, called Gd0 . 35B0 •19c0 •46 , Gd7B9c4, Gd8B7c5 and Gd 3B4c3, are 

characterized only by their X-ray powder patterns. The stoichiometry 

estimate could be in error by as much as ten atomic percent in each 

element. 

The fifth phase, LnB2c2 , was characterized by chemical analysis 

of gadolinium and boron, phase relationships, multiple preparations, 

density, lattice parameters and crystal structure. This phase was made 

by reaction of LnB4 with graphite for neodymium, gadolinium, terbium, 

dy~prosium, holmium, erbium and ytterbium metals. Lanthanum and samarium 

did not form this phase on reaction of the hexaborides with graphite. 

Some evidence for carbon solid solution in LnB2c2 is shown. 

With Weissenberg single crystal techniques and diffractometer 

intensity measurements, the structure of LnB2c2 was determined. The 

synnnetry is tetragonal with space group, P4/mbm, No. 127. The two metal 

atoms are at 2(a). The four boron atoms are positioned at 4(h) with 
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xB = 0.352. The four carbon atoms are also located in the 4{h} positions 

with x = 0.148. The assignment of the light atom positions was based to 
C 

some extent on the expected interatomic distances in related compounds. 

This structure can be described as composed of parallel sheets of 

eight-membered and four-membered rings of alternate boron and carbon atoms 

that are interspersed with parallel planes of metals centered between the 

holes in the eight-membered rings of the light atom sheets. Further confir-

mation of the structure was derived from lattice parameter variation, 

similarity to boride structures, bond distances, electronic requirements and 

general bonding considerations. The probability of (T - and n-bonds be· 

tween boron and carbon atoms with conjugated, aromatic, planar, four-

and eight-membered light atom rings extending throughout the structure 

in two dimensions was discussed. 

Precise lattice parameters of GdB03 and YbB03 were determined and 

compared with previous work. The lattice parameters of TbB03 were also 

reported. A discussion of the bonding as indicated by variation in 

lattice parameters for various lanthanide compounds leads to a conclusion 

of ionic bonding in LnB03 compounds. 
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CHAPIBR9 

SUGGESTIONS FOR FUTURE RESEARCH 

By far the most significant future research that arises from this 

study is the further investigation of LnB2c2 . Eight- and four-membered 

boron and carbon conjugated ring structures and the possibility of 

ferrocene- or bridge-bonds are extremely exciting. 

The concept of sheets of aromatic boron and carbon atom rings 

similar to graphite, except needing trivalent metal ions for aromaticity, 

is a new· concept in bonding in solids that establishes a bridge between 

the electron interpretation tools of organic chemistry and the study of 

bonding in solid refractory materials. 

Simple experiments can be performed to note whether two or more 

electrons per metal are needed in bonding. For instance, alkaline earth 

borocarbides might exist. In particular, CaB2c2, where the radius of 

divalent calcium ion is compared to trivalent lanthanide ions, may exist. 

Possibly the MB2c4 alkaline earth phase, reported by Russian investigators, 

is really MB2c2 . Electrical conductivity and Hall coefficient measure-

ments will provide insight into how many electrons are involved in localized 

bonding and how many in conduction. Electrical conductivity measurements 

on single crystals of LnB2c2 will confirm or deny the anisotropic con-

ductivity predicted. A test for metal solid solution will determine the 

extent metals are involved in bonding in LnB2c2 . It would be useful to 
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determine the extent of alkali metal substitution for lanthanide and to 

follav changes in electrical properties or c parameter with alkali metal 
0 

content. Quantum mechanical treatments of the bonding, such as were done 

in metal borides, ought to contribute understanding of the bond types. 

More detailed studies of properties which vary with metal or temperature 
~ 

should be investigated. A single crystal structural study of ScB2c2 will 

more clearly fix the boron and carbon position parameters and define any 

deviation from planar light atom sheets. 

As more information on composition, synunetry and structure 

becomes available on other M-B-C compounds, perhaps other aromatic light 

atom ring systems will be.identified. In fact, the criterion of aromati-

city in continuous light atom sheets in metal deficient borocarbides may 

allow the prediction of other metal borocarbides. 

Obviously a more detailed survey of the ternary lanthanide-boron-

carbon system in the region on the lanthanide side of the LnB4-LnB2c2-c 

joins should be performed with arc melter techniques. The primary purpose 

here would be to fix the composition and phase relations of the four 

ternary compounds in this field. Characterization of these phases by 

chemical analysis, density, and crystal structure will make it possible 

to compare the lanthanide borocarbides with the actinide borocarbides. 

Attempts to prepare these ternary compounds for other lanthanides will 

reveal the influence of the size of the metal ion on the phase stability. 

Variation of lattice parameters of these ternary phases with atomic 

number and magnetic susceptibility studies will possibly reveal the kind 

of bonding in these phases. 
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Once the general characteristics of these phases have been 

surveyed, a more detailed study of the temperature-composition phase 

diagrams for two or three of these ternary systems, whose behavior is 

widely divergent, might be ascertained in detail with such a tool as 

high-temperature X-ray diffraction. This investigation would fix melt-

ing points, eutectics, transition temperatures, disproportionation 

behavior and other thermal effects which determine the refractory quality 

of these solids. These characteristics should contribute further to an 

understanding of the size effect on phase stability. 

As of yet, no research has revealed a gaseous metal-boron-carbon 

molecule. Of all of the factors which detennine the stability of a solid 

phase the presence of a stable gaseous molecule is the greatest. Only 

recently have investigators been able to find stable solid borocarbides. 

The possibility of a ternary Ln-B-C molecule over one of these ternary 

phases is very interesting. A mass spectrometric study of LaB2c2, per-

haps the most stable of the LnB2c2 compounds, in graphite crucibles could 

quickly be done. Thermal properties of any species found in the gas phase 

could be determined. In the binary metal-boron systems there are no 

metal-boron gaseous molecules, but GdC2 (g) and Lac2 (g) are reported by 

Jackson, Barton, Krikorian and Newbury in the metal-carbon system (49). 

over boron carbide solid the molecules BC2, B2C and BC were found by 

Drowart in a mass spectrometer up to ten percent in intensity compared 

to atomic boron gas (50). 

Another interesting ternary molecule possibility is the LnB02 

gaseous molecule over LnB03 solid. The alkali metal borates were studied 

in a mass spectrometer by Buchler and Berkowitz-Mattuck (51). They found 
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AB02 and (AB02) 2 molecules. Should such lanthanide borate molecules be 

found, a behavior such as White, Walsh, Ames and Goldstein found in the 

vaporization of lanthanide sesquioxides (52, 53) might be looked for. 

White found that the importance of LnO molecule decreased with respect 

to fonnation of the gaseous elements as atomic number increased across 

the lanthanides. 

The general pressure-composition phase diagrams for the ternary 

lanthanide-boron-carbon systems could be predicted from the behavior of 

the binary systems currently being investigated. Because of the extreme 

volatility of lanthanide metals compared to boron or carbon, and since 

LnC2(s) loses Ln(g) preferentially (49) on heating, and since LnB4(s). is 

either congruently vaporizing or loses Ln(g) preferentially (cf. Part II), 

and if there are no exceptionally stable ternary molecules, all lanthanide 

ternary borocarbides probably will lose metal preferentially on vaporization. 

From measured pressures of metal gas over these ternary systems, thermo-

dynamic data on the stability of the solid may be computed. For instance, 

the temperature coefficient of the gadolinium partial pressure over GdB2c2 
(s) could be measured on vaporization of gadolinium from GdB2c2 in a 

graphite crucible. From this measured heat of vaporization of GdB2c2 to 

graphite a value for the stability of GdB2c2 can be determined. 

In all of these suggestions concerning lanthanide chemical be-

havior, the one characteristic which makes the lanthanides extremely 

interesting is the similarity of chemical behavior for fifteen different 

metals. In no other group or period in the Periodic Table is there 

provided such an opportunity to simplify the number of variables which 

effect the chemical behavior of so many elements. Small changes in the 
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electron population of the 4f orbitals accompanied by small radius 

changes for these metals are manifested by slightly different metal 

activities in these compounds, and yet the gross chemical characteristics 

such as structure, composition and general bond types are preserved. 

Chemists, ceramists, physicists and metallurgists could contribute a 

considerable understanding to the theory of the solid state from a de-

tailed investigation of the subtle variations of behavior among similar 

lanthanide compounds. 
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PART II 

VAPORIZATION AND STABILITIES OF LANTHANIDE BORIDES 



~API'ERl 

STATEMENT OF PROBLEM 

1. 1 Purpose and Organization 

Generally, this work intends to evaluate the factors influencing 

the stability of lanthanide borides with respect to gaseous and to solid 

elements.· More specifically, it is the purpose of this work to relate 

the volatility of the lanthanide metals to the vaporization processes 

exhibited by the lanthanide borides. Since the lanthanide metals exhibit 

an extremely wide range of volatility, quite different vaporization be-

havior can be expected for corresponding compounds of the different lan-

thanide metals. 

Typically, there are five major steps in the organization of a 

vaporization study. First, the solid phases in the system are characterized 

as to composition and structure and a crucible choice is made. The second 

stage is an investigation of the vaporization processes by noting phase 

and/or compositional changes in vaporization residues and analyzed subli-

mates. In order to establish the net process being investigated, the 

third stage is the identification of the gaseous species in the process 

and the confirmation of the stoichiometry of the process. In the fourth 

stage the actual pressures are measured as a function of temperature. 

Thermochemical data are calculated.· Most vaporization studies stop at 

this point, as is the case with this study. But a fifth stage would be 
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a quantitative study of the kinetic factors which govern the vaporization 

process and establishment of its mechanism. 

1. 2 Factors Influencing Vaporization Processes 

The principal vaporization process exhibited by a particular boride 

is that process which develops the highest total pressure, i.e., the 

process which has the smallest standard free energy of vaporization for 

formation of one total mole of gas. Several factors influence the vapori-

zation processes and the their pressures. The most important of these 

factors are the composition and stability of gaseous molecules in the sys-

tem. The second factor is the stability of the solid compound with re-

spect to the solid elements. The third factor is the stability of other 

condensed phases in the system. Component volatility is a fourth factor. 

Fifth, the composition of the compound must be considered in 

properly balancing a chemical equation written to form one total mole of 

gaseous atoms. Consid~r borides of composition MBx and MBx
0 

with MBx
0 

having some specific stability with respect to,form~tion of one total mole 

of gaseous atoms. For a given MBx stability with respect to formation of 

one total mole of gaseous atoms the proximity of x to x0 , which depends 

on the composition of the borides in the system, increases the influence 

of the stability of MB:x on the vaporization behavior of MB:x
0

•. Thus, not 

only are the relative stabilities of the condensed phases in the system 

important on fixing the vaporization behavior, but also their· compositions. 

A sixth factor would be the curvature in the free energy-composi-

tion diagram, particularly for a solid phase wit~ wide solid solution. 

Finally, if one is using kinetic methods to measure equilibrium pressures, 
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the nature of the method used is important in defining the principal vapori-

zation process. 

Let us consider the extent that each of these factors influences 

the vaporization of lanthanide borides. It is shown in Chapter 5 that 

only atomic species are found in the vapor over lanthanide borides. Thus, 

no stable molecule is influencing the gas phase composition. It might be 

supposed that, to a first approximation, corresponding solid compounds 

might have about the same stability for all the lanthanides. Hence, under 

this supposition, variation of the heat of formation of corresponding 

borides is not important in establishing the relative vaporization processes 

for the lanthanide borides. 

Generally, for vaporization processes written to form one total 

mole of gas, the principal contribution to the entropy change will be the 

entropy of the gas. It might be supposed that essentially all the entropy 

of the gaseous atoms is translational entropy; and, therefore, the entropy 

of the vaporization processes is independent of the composition of the 

gas and a constant for processes written to form one total mole of gas. 

In the light of this supposition, the process with the smallest enthalpy 

change, as well as free energy change, will predominate. The volatility 

of the component, boron, is a constant in these studies. Therefore, the 

volatility of the lanthanide metal will be extremely important in defining 

the principal vaporizatiop processes. 

In view of the supposition of constant.heats of formation of cor-

responding borides and since the same compositions occur.for all lanthanide 

borides, the canposition factor is not important in an ordering of vola-

tilities of corresponding lanthanide compounds all vaporizing by the same 
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process. However, the choice of the principal vaporization process for a 

particular lanthanide boride would depend on a knowledge of the presumed 

constant values for the heats of formation of the various borides in the 

processes. Thus, on intercomparison of different vaporization processes, 

the composition factor will be important. 

Since the borides studied have ess'entially no detectable solid 

solution range, the shape of the free energy curve is relatively unimpor-

tant in defining the principal vaporization process. However, the tech-

nique employed to determine the gas pressures in these systems could be 

an important factor influencing the principal vaporization process exhib-

ited by these borides. The problems arising from the kinetic measurements 

of the Knudsen and Langmuir pressure measurement techniques are discussed 

in Chapters 4 ~d 6. 

In swnmary, the factors presumed to be most important in establish-

ing the vaporization behavior of the lanthanide borides are: first, and 

most important, metal volatility; second, composition; and third, experi-

mental methods. 

1. 3 Vaporization Behavior Expected 

The five possible vaporization modes that metal borides may e.xhit-

it are summarized in Table 1. 1. The composition factor is important here; 

however, in general, as metal volatility increases there is a change from 

·loss of boron from all metal borides to loss of metal from all metal bor-

ides. Leitnaker (54) has shown that all· tantalum borides lose boron pref-

erentially. He has also demonstrated that ZrB loses boron to the gas phase 

on vaporization to form ZrB1 •96(s),which vaporizes congruently to the 
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Table I. I 

Possible Modes Of Vaporization Of Metal Borides 

Process .Example 
~ H~98 ~ ( vap. ) 

(keal gr.-at.) 

-M(,~) -M(g) 
MBx MBy .. B Mg 35.6 

bO 
C: 

.,..f 
Ol 

- El( g) + yB( g)J ct1 -M(g) Q) 
S-t MBx MBy Ln 40 to 97 t) 
C: 
H 

I-' ~ .> w .,..f 
1-1 r-f 

.,..f .;.. [M(g) +xB( g)] - gt( g) + yB( gB .> 
ct1 M8x MB Unknown r-f 
0 y 
!> 

-Qt( g) + .xB( g)] -B( g) 
MBX -.. Zr 146.0 

M 
-B(g) -B(g) 

MBx Ta 186.8 



gaseous elements (i31) • .An example of a metal-boron system, which loses 

metal from all borides, is the magnesium-boron system (cf. Chapter 15. 2. 

3) • The requirements that allow two single_-phase solid compositions in 

the same system to develop a ratio of partial pressures of the components 

in the gas phase with the same values as their atomic ratios in the solids 

are extremely restrictive, and no binary refractory system has yet been 

found with such behavior. Perhaps, such a set of conditions might be 

found in the lanthanide-boron systems. The lanthanide tetra- or hexa-

borides generally develop the lowest p_ressures in the lanthanide-boron 

system. Some lanthanides, it will be ·shown, exhibit loss of metal gas 

from the tetraboride to form hexaboride, which then vaporizes congruently, 

and vice versa. 

Table 1~ 2 contains a summary of some physical and thermochemical 

data on the alkaline earth, group IIIB, lanthanide and actinide elements. 

Notice that the heats of sublimation for the lanthanides vary from 40.0 

to 97.3 kcal./g.-at. at 298°K. With this large variation in the volatility 

of the metal and with other factors in the heat of vaporization of the 

boride fairly constant, as the atomic number of the lanthanide is varied, 

the vaporization processes expected for these borides could be .quite dif-

ferent for different lanthanides. Figure 1. 1 is a plot of metal vola-

tility versus atomic number. It could be postulated that a horizontal 

line could be drawn in this graph at some height above which the involatile 

lanthanides will show preferential loss of boron from lanthanide hexa-

borides, and below which the relatively volatile lanthanides will lose 

metal to the gas phase from lanthanide tetraborides. If suitable conditions 

prevail, a metal of intermediate volatility might show congruent vapori-
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TABLE 1. 2 

Physical and Thermochemical Data of Metals 

m.p. LP. (I) LP. (II) LP. (III) r(M°) r(W-2) r(M+3) r(w-4) 
M (OC •) (ev.) (ev.) (ev.) <i) <i) <i) <i) 
B 2025k 

Be 1283k 9.32n 18.21n 154.n l.llOq 0.38n 
Mg 650k 7.64n 15.03n 8o.ln 1.595_q o.66n 
Ca 850k 6.11n 11.87n 51.2n 1.97q 0.99n 
Sr 770k 5.69n 11.03n 2.148q 1.15n 
Ba 710k 5.21n 10.00n 2.171q 1.37n 

Sc 1539j 6.54r 12.8or 24.75r 1.645j o.81n,0.68j 
~ y 1509j 6.38r 12.23r 20.5r 1. 778oj o.96n,o.88j w w La 920j 5.61r 11.43r 19.17r 1.8852j 1~16n,1.04j 

Ce 795j 6.91r 20r 1.8248j (1.2)n 1.14n,1.02j 1.0ln,O. 92j 
Pr 935j 5.76r 1.8363j L12n,1.00j o.99n,o.90j 
Nd 1024j 6.31r 1.8290j LlOn,0.99j 
Pm · L08n,O .98j 
Sm 1072j 5.51r 11.4r 1.8105j (J..J6)n,1.llj 1.07n,o.97j 
Eu 826j 5.66r ll.22r 1.994j (1.14)n,l .09j 1.05n,o.96j 
Gd 1312j 6.16r 1.810j L03?f,0.-94j 
Tb 1363a,1356a, j 6.74r 1.8o05j 1.02n,o.92j ·o.91n,0.84j 
Dy 14o7j 6.82r 1.7952j 1.00n,O .9lj 
Ho 1461j 1.7887j o.99n,o.89j 
Er 1497j 1.7794j o.98n,o.87j 
Tm 1545j 1.7688j o.96n,o.86j 
Yb 824j 6.24r 12.08r L9397j (1.06)n,o. 93j o.95n,o.85j 
Lu 1661,1652j 6.15r 14r 1.7516j o.93n,o.84j 

Th 1695k 1.795q l .08pn o.95p,o.99n u 1133k 1.38q 1.0~p,l.03n o.89P,o.~3n 



TABLE 1. 2, continued 

~~98°K. S0(s)2980K. gO(g)298°K. gO ( l) 2200°K. . gO ( g) 2200°K. 6S~200°K. 6 H~200°K. LiF~200°K. 
vap. 

(~u.) 
vap. vap. vap. 

M ·(kcal./ gfw.) (eu.) (eu.) (eu.) (eu.) . (kcal./gfw.)(kcal./g:rw.) 

B 132.6s 1.392s 36.65s 12.4o(s) 46.58s 34.18s 125.os 45.05 

Be 77.90k 2.28k 32.55k 16.29k 42.48k 
Mg 35.6ok 7.81k 35.51k 45.43(g)k 45.43k 
Ca 42.20k 9.95k- 36.99k 46. 93 (-g)k 46.93k 
Sr 39.lOk 12.50k 39.32k 49.27(g)k 49.27k 
Ba 41.74k 15.50k 40.67k 5L13(g)k 51.13k 

Sc 82.0k (8.5)g 41.75k 24.79k 51.87k 27.09k 72.2k 12.6k 
y 102.0k 10.63g 42.87k 26.70k 53.90k 27.20k 94.7k 34.9k 
La 97.3c 13.64g 43 .56k 30.79k 57.20k 26.8k 95.9k 36.9k 

J-1 Ce 96.4c 16.68g 35.03k (57) (22) (91) (42.6) l>J 
..f="" Pr 85.2d,85.lb 17.49g 35.00k (57) (22) (Bo) (32) 

77.9a 
Nd 75.0d,75.0b 17 .54g 45.24k 37.08k 58.00k 21.0k 70.0k 23.8k 

76.3a 
Pm (17.2)g 34.70k 
Sm 49.9d,49.9b 16.64g 43.72k (34.02)k 57.96k (24.o) 45.4k (-7.4) 
Eu 42.le,43.lb (17.o)g 45.lOk (34.39)k 55.06k (20.6) 35.6k (-8.8) 
Gd 83 .6a,81.2b 15.77g 46.42k 33.66k 58.79k 25.lk 75.3k 20.lk 
Tb 86.9a, 71.4d 17.48g 34.78k (57) (22 .2)" (85) (36.2) 

87 .2a,91.9b 
Dy 61.6a, 71.4b 

(67)a 
17.87g 35.12k (57) (21.9) (66) (17.8) 

Ho 69.5a,75.0b 18.00g 35.02k (57) (22.0) (70) (21.6) 
Er 66.4a,75.4b 17 .52g 34.89k (57) (22) (70) (21.4) 
Tm 58.4a,57.5b 17.37g 34.07k (57) (22.9) (52) (1.6) 

57.6a. 
Yb 4o.Od,4o.Ob (15.o)g 41.35k (31.40 )k 51.28k (19.8) 36.0k (-7.6) 
Lu 94.7a,70.oa 12.19g 44.14k 28.78k 55-7lk 26.9 (95) (35.8) 

102.8b 



TABLE 1. 2, continued 

~H~98°K. s0(s) 
298°K. S0(g\980K. S0(1) 2goo°K. 

80 ( g) 2200°K·. /::,.SO 
2200°K. Ll~200°K. ~~200°K. 

vap. vap. vap. vap. 
M (kcal./ gfw.) (eu.) (eu.) (eu.) (eu.) (eu.) (kcal./grw.)(kcal./gfw.) 

Th 137i,137.7m 12.76k 33.25k 
u 115.2h,126h -- 12.03hk 48.lh,47.73k 33.69k 59.42k 25.73 106.0k 49.4 

117.2k,118b. 
l.14h,122h 

a = 55 g = 61 n = 67 

b = 56 h = 62 p = 45 
I-' 
LA.) 
\Jl 

C = 57 i = 63 q= 68 

d = 58 j = 64 s = 69 

e = 59 k= 65 ( ) = estimated 

f = 6o m= 66 
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zation of both tetra- and hexaboride. This investigation is concerned 

principally with tetra- and hexaborides since these exhibit the least 

volatility among the lanthanide borides. Figure 1. 2 contains pressure-

composition diagrams scllematically illustrating these behaviors in addi-

tion to loss of metal from all lanthanide borides and loss of boron from 

all lanthanide borides. 

In the consideration of which of the possible vaporization 

processes is the principal process, it is important to find the process 

with the smallest heat of vaporization per mole of gas for a particular 

boride (70). Only in this way can the total pressures be compared with 

the equilibrium constants and the entropy change be considered nearly 

constant for all processes. The process developing the highest total 

pressure will be designated by the smallest heat of vaporization, 

assuming entropy changes identical for different processes forming one 

total mole of gas. The possible processes to be considered for LnB4 and 

LnB6 compounds are: 

3 LnB4(s) = 2 LnB6(s) + Ln(g) 

1/5 LnB4(s) = 1/5 Ln(g) + 4/5 B(g) 

1/4 LnB4(s) = 1/4 Ln(l) + B(g) 

for the tetraboride, and: 

2 LnB6(s) = LnB12(s) + Ln(g) 

1/7 LnB6(s) = 1/7 Ln(g) + 6/7 B(g) 

1/2 LnB6(s) = 1/2 LnB4(s) + E(g) 

(1. 1) 

(1. 2) 

(1. 3) 

(1. 4) 

(1. 5) 

(l. 6) 

for the hexaboride. Which two of these are most important for various 

lanthanides will be determined. 
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CH.API'ER 2 

SOLID PHASES IN THE LANTHANIDE-BORON SYSTEM 

2. 1 Previously Established Phases 

The solid phases of the lanthanide-boron system that are reported 

in the literature are lanthanide metal, LnB2, LnB5 <x <4, LnB4, LnB6, 

LnB12, LnB50, LnByo and boron. 

2. 1. 1 Ln 

Table 1. 2 contains some physical and thermochemical information 

for the lanthanide metals. Gschneid.ner (30) summarizes the many solid 

state transformations and structures for these metals. 

2. 1. 2 LnB2 

The compounds, GdB2, TbB2, DyB2, HoB2, ErB2, ScB2.and YB2, have 

all been reported in the literature (46). These compounds were indexed 

with hexagonal symmetry and are of the C-32, AlB2-type. The phase, Gd.B2, 

is reported to disproportionate above 1300°c. to. gadolinium metal and 

GdB4 (71). A DyB2 phase was found by the·same investigators. Both these 

phases are questioned by Gschneidner (30) as possible borates (cf. Part I, 

Chapter 7). The compounds, Gd.B2, TbB2, DyB2, ·HoB2 a.rid ErB2, are reported 

by Post (46) with no preparative details. The phase, ScB2, was identified 

by Russian investigators (72) from X-ray powder techniques. The inter-
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pretation of YB03 as "YB2" (23) has been discussed previously in Part I, 

Chapter 7. Binder (24), who reported the "YB2" phase, admitted that this 

diboride phase is a "ternary boroxide." However, Johnson and Daane (73) 

prepared single crystals of YB2 on which electrical properties were meas-

ured. The compounds, ScB2 and YB2, appear to be well established Group 

IIIB borides. Lattice parameters for the diborides are found in Table 

2. 1. The lanthanide diborides reported must await further characteriza-

tion to remove the possibility of their being borates of similar symmetry. 

2. 1. 3 LnB:x: 

Existence of an LnBx phase with x between three and four was er-

roneously reported by Post, et al. (22), and by Binder (23). As discussed 

in Pa.rt I, Chapter 4. 4, this phase is LnB2C2• 

2. 1. 4 LnB4 

After discovery of the lanthanide hexaborides, the tetraborides of 

Ce, U and Th were discovered by Brewer, Sawyer, Templeton and Dauben (74). 

Zalkin and Templeton (75) in 1953 and Blum and Bertaut (39) in 1954 deter-

mined the structure of this boride. The symmetry is te~ragonal with four 

formula units per cell and has a space gro~p, P4/mbm - I)ih-. __ FoUl" .. JP:~1:;aj. 
+ 1 1 ) . ions are found in positions 4(g) at - (u, u + .2 , O; 2 - u, u, 0 with 

u = 0.310. The sixteen boron atoms in the cell are in positions 4 (e) at 

+ ( 1 1 ) 4 4 (h) t + ( 1 1 1 1) . th - o,o,v; 2 , 2 ,v with v = 0.21, a - w,w+2, 2; 2-w,w,2 wi 

( . ·) + ( . 1 1 1 1 - 1 1 1 1 ) • th w = -0.086, and 8 J at - x,y, 2;x + 2,2-Y,2; y,x,2;Y + 2, x +2, 2 W1 

x = 0.174 and y = 0.042. This structure defines a three dimensional net-

work of covalently-bound boron atoms. These borides are a metallic gray 
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TABLE 2. 1 

Lattice Parameters, Densities and Melting Points of Lanthanide Borides (46). 

ilW2 LnB4 Ln.B6 Ln.Bl2 LnB100(70) 
Ln 

ao Co Deale.- ao Co . Deale. m._p. ao Deale. m.p. ao Deale . ao 
CR) (R) (g./cm.3) ()t) (R) (g./cm.3) ( 0 c.) CR) (g./cm~3) ( 0 c.) (1) (g./cm.3) ci) 

La 7.30 4.17 5.44 18oo±15c 4.143 4.72 2530 

Ce 7.205 4.09() 5.72 > 2100b 4.141 4.79 219() 

Pr 7.20 4.11 5.71 ) 2250b 4.130 4.85 > 2250b 
f....J Nd 7.219 4.102 5.84 4.126 4.94 2540 .f:""' 
f....J 

Pm 

Sm 7 .174· 4.070 6.12 4.133 5.06 254oa 

Eu 4.178 4.94 

Gd 3.31 3.94 7.96 7.144 4.048 6.44 ) 2250b 4.108 5.31 >2100 16.50b 

Tb 3.28 3.86 8.34 7.118 4.029 6.60 ) 2100b 4.102 5.39 >21oob 7.505 4.54.0 (23.5) 

Dy 3.285 3.835 8.53 7.101 4.0l7 6.74 ) 1950b 4.098 5.48 >195ob 7.501 4.600 

Ho 3.27 3.81 8.8o 7.086 4.008 6.86 4.096 5.55 7.492 4.655 (23. 5) 

Er 3.28 3.79 8.89 7.071 3.997 6.99 (4.102) (5.58) 7.484 4.706 

Tm 7.05 3.99 7.10 (4.110) (5.57) 7.476 4.756 



TABLE 2. 1, continued 

Ln~ LnB4 LnB6 LnB12 LnB1oo{p) 
Ln 

ao co Deale. ao Co Deale. m.p. ao Deale. m.p. ao Deale. ao 
(i) 0 . (A) (g./cm.3) (i) (i) (g./cm.3) (OC.) (i) (g./cm.3) (OC.) (i) (g./cm.3) (i) 

Yb 7.01 4.00 7.30 4.147 5.54 7.469 4.818 16. 56b 
(23.5) 

Lu 7.00 3.94 7.50 (4.111) (5.73) 7.464 4.868 

Sc 3.146 3.517 3.67 (4.435) (2.1) 

1--' 
y 3.298 3.843 5.54 7.111 4.017 4.33 4.113 3.67 2300 7.500 3.444 11. 75 

+ 23.5 f\) 

a, 30. b, This work. c, 25. 



in color. Figure 5. 7, Part I, contains a projection of the LnB4 struc-

ture onto the (XYO) plane. 

Since the discovery of the tetraboride phase, many researchers 

have discovered other tetraborides with the same structure (72, 22, 23, 

76, 77, 78, 79, Bo). Of the lanthanides only Eu.B4 and PmB4 have not been 

prepared. Apparently, Eu.B4 cannot be obtained because of its instability 

with respect to formation of europium gas and Eu.B6 (76). 

Many investigators have studied the influence of size of the metal 

ions on the lattice parameters of LnB4 (75, 22, 78-9, 02, 81). The varia-

tion of lattice para.meter wit~ atomic number revea~s a fairly uniform 

lanthanide contraction for both ao and c0 parameters, even through Sm and 

Yb,andis indicative of the same metal ion valency in all the tetraborides. 

Magnetic ·susceptibility measurements (30) established the valency as+ 3. 

This behavior is quite different from the hexaboride behavior (30, 02, 81). 

While the variation in reported lattice parameters is great for particular 

tetraborides, this variation was thought by Eick and Gilles (02) and 

Gschneid.ner (30) not to be evidence of wide solid solution ranges, but, 

rather, evidence for impurities. Binder.(24) pointed out that small 

amounts of oxygen or carbon help to stabilize tetraborides. Eick and 

Gilles prepared many compositions in the two phase regions on either side 

of the tetraboride with no measureable.va.riation in the parameters. This 

behavior implies a narrow range of homogeneity for the tetraboride. Felten, 

Binder,and Post (76) reported a considerable solid solution effect in 

LaB4; however, the detailed work of Johnson and Daane (25) denied this 

conclusion. Table 2. 1 contains a summary of the parameters and densities 

of the lanthanide tetraborides. 
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2. 1. 5 LnB6 

The discovery of the hexaborides of Ca, Sr and Ba was first made 

by Moissan in 1897 (82). At the turn of the century other investigators 

prepared these borides (83-5). Interest was renewed in 1929 by Andrieux 

(86) and by Allard (87) in 1932 with the discovery of ThB6· In 1934 the 

hexaboride structure was determined by von Stackelburg and Neumann and 

also by Laves ( 88-9). These hexaborides have cubic symmetry, have one 

formula unit per cell, and belong to space group O:fi-Prn3m. The metal atom 

is located in position 1 (a) at o,o,o. Six boron atoms are found in 

positions 6 (f) at t (i,!,u;!,u,!;u,!,!) with u = 0.207. A projection of 

the structure onto the (XYO) plane is shown in Figure 5. 7, Part I. In 

this structure the metal ions are surrounded by boron cages in octahedral 

arrangement. 

The hexaborides of all of the lanthanides except promethium have 

been reported (22, 39, 71, 74, 79, 80, 02, 87, 90-lOO)o However, consid-

erable doubt as to the existence of ErB6, TmB6 and LuB6 has been cast 

recently by Sturgeon and Eick (101), who demonstrated that X-ray powder 

patterns of hexaboride preparations for these metals could be indexed as 

a mixture of tetra- and dodecaborides. The hexaborides vary in color from 

deep blue to purple. 

A plot of the cubic lattice parameter for the lanthanide hexaborides 

as a function of atomic number reveals a behavior significantly different 

from that of the tetraboride (02). Large positive deviations at europium 

and ytterbium and a smaller positive deviation at samarium indicate signifi-

cant alkaline earth character in these metal ions. On the other han~ in the 

tetraborides the nearly linear variation of lattice parameters eve~ through 
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these metals indicates that the valency of the metal is more nearly con-

strained to trivalency. This behavior of the hexaborides is strikingly 

similar to the behavior found in lanthanide metals (102). Therefore, as 

susrected, the hexaborides are quite metallic in nature (24, 103, 22, 76). 

A quantum mechanical discussion of the bonding in hexaborides and the im-

plications thereof is presented by several authors (104, 105, 106-8). Cova-

lent boron-boron bonding in MB2, MB4, MB6 and MB12 compounds is demonstrated 

by the above authors and by Johnson and Daane (73). Table 2. 1 summarizes 

the lattice parameters, densities and melting points of lanthanide hexa-

borides. Values for Er- Tm-, Lu- and·ScB6 are indicated by parenthesis, 

reflecting doubt as to their existence. The melting points listed for 

the borides of this table are taken, for the most part, from tables listing 

experiments with these borides performed in this work in which no melting 

was observed. 

The problem of the extent of solid solution in these hexa- and 

tetraborides has not been resolved. Again, as in the case of the tetra-

borides, the wide disagreement in reported lattice parameters might in-

dicate an extensive solid solution range. Eick and Gilles (02) and 

Gschneidner (30) believe a large part of this discrepancy may·well be from 

impure preparations. Post, et al. (76), gave evidence supporting wide 

solid solution in EuB6, and Johnson and Daane (25) determined a solid 

solution range for LaB6 of 85.8 to 88% boron by.X-ray diffraction, syn-

thetic composition and density studies. How~ver, Eick and G~lles were 

able to prepare boron-rich and metal-ricr compositions for the tetra-

borides and hexaborides without finding a change in lattice parameters, 

implying narrow solid solution ranges. While these considerations are 
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not conclusive as to whether or not wide solid solution ranges exist in 

these borides, they seem to support a narrow homogeneity range. Conclusive 

studies of this problem must await high purity materials and precise boron 

analyses. 

2. 1. 6 LnB12 

In 1949 Bertaut and Blum (109) and Andrieux and Blum (110) re-

ported the discovery of UB12• A second dodecaboride, ZrB12, was identi-

fied in 1952 by Post and Glaser (111-2). Blum and Bertaut (109, 39) 

found that the structure of this body-centered-cubic boride contains four 

formula weights per unit cell and belongs to the space group, Fm3m-O~. 

The four metal ions are in positions 4 (a) at (o,o,o;O,!,!;!,o,t;f,!,o). 

The forty-eight boron atoms are in positions 48 (i) at (o,o,o;o,!,!;!,o,!; 

1 1 ) (1 1 1 1 - - 1 - 1 1 - - - 1 - - - 1 1 -
2 , 2 ,0 + 2 ,x,x;x,2 ,x;x,x, 2 ; 2 ,x,x;x, 2 ,x;x,x, 2 ; 2 ,x,x;x~ 2 ,x;x,x, 2 ; 2 ,x,x; 

1 - - 1) x, 2 ,x;x,x, 2 • This structure is described by regular cubo-octahedra of 

boron atoms containing metal ions at the center. Figure 5. 7, Part I, is 

a projection of the MB12 structure onto one face of the cubic cell. 

Unsuccessful efforts to prepare boride phases richer in boron than 

MB6 for the larger radius lanthanides are described by Post, Moskowitz 

and Glaser (113). In 1959 Lundin (80) found YB12• Seybolt (114) in 196o 

confirmed that YB12 was isostructural with UB12• · La Placa, Binder and 

Post (41) were able to make the UB12-type dodecaboride of the smaller 

radius lanthanides, Dy, Ho, Er, Tm and Lu, as well as YB12• They pointed 

out that the size of the metal ion plays a critical role in the formation 

of these dodecaborides. In particular, an atom with metallic radius greater 

than 1.91 i will not be acconnnodated by the size of the holes in the boron 
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cubo-octahedra. However, a later paper by La Placa, Noonan and Post (115) 

reported the exi~tence of TbB12 and YbB12• 

Very little information on the physical properties of these com-

pounds is available. Zr:Bi2 melts at 2680°c. and exhibits metallic con-

duction (116). YB12 melts peritectically at 2200°c. (80). The lattice 

parameters for this cubic phase are presented in Table 2. 1. 

2. 1. 7 LnB50 
In 196o Seybolt (114) discovered an extremely boron-rich yttrium 

boride with metal content between one and two atomic percent yttrium. 

Metallographic studies revealed that this phase is cubic and has about 

1700 atoms/cell. This composition was estimated to be YB50 • No lattice 

parameter was reported. 

2. 1. 8 L@yo 

From an extensive metallographic study of the yttrium-boron sys-

tem, Lundin (Bo) reported a tetragonal phase with an estimated 90% boron 

content and composition YB70.. This symmetry is tentative. The lattice 

parameters, a0 and c0 , were tentatively assigned as 11.75 and 12.62 

t .04 i, respectively. Lundin believes the YB50 and the YB-ro phases are 

probably the same and may be an allotrope of boron stabilized by yttrium. 

Recently, in a report by Post (46), Kasper found that the YByo phase is 

primitive cubic with a0 about 23.50 i. Post reported the existence of Tb-, 

Ho- and YbBro (46). 
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2. 2 Experimental 

2. 2. 1 Materials 

The gadolinium metal used in attempts to prepare Gd.B2 (cf. Chapter 

2. 3. 1) is the same as that described in Part I, Chapter 2. 1. 

Amorphous boron, grade AA, 325 mesh, was obtained from Cooper 

Metallurgical Associates. The assay accompanying the sample specified 

boron content at 99.5%, Fe at 0.15% and carbon at 0.10%. This sample, 

lot number 0361, lab sample B-13A, was used in the preparation of Gd.B4 
(81Gd..AM), GdB6 (83Gd.AM), and all borides of other lanthanide metals and 

in the ternary compatibility studies of Chapter 14. 

All of the metals listed belo~ and ZrB2 were used in the ternary 

compatibility studies of Chapter 14. Reactor-grade, zirconium, metal 

sponge was obtained from Columbia-National Corporation. An analysis of 

this sample showed o:xygen content at 1129 ppm~ Fe at 969 ppm., Mg at 385 

ppm; Cr at 149 ppm., Cl at 118 ppm. and all other contaminants less than 

50 ppm. The sample was denoted Zr-1. Tantalum powder, lot 1000B, lab 

sample Ta-2, type 268, 325 mesh, was purchased from Fansteel Metallurgical 

Corporation. The assay showed 99.88% Ta, 0.02% Fe, 0.01% c, 0.04% Wand 

0.05% Nb. Tungsten powder, lab sample W-1, with an.assay of 99.9% W was 

purchased from Fansteel Metallurgical Corporation. Powdered ZrB2; lot 

112.8L, grade lOOF, lab sample ZrB2-3, was purchased from Norton Company. 

The ZrB2 assay showed 76.0% Zr, 17.9% Band 0.8% C. 

Lanthanide oxide~La2o3, Ce2o3, Ceo2, Prc5°11, Nd203, S~03, Ga.203, 

Tb407, Dy203, Ho203, Er203, Yb203 and Y203 were purchased from Lindsay 

Rare Earth Chemicals of American Potash and Chemical Corporation, from 
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Research Chemicals Division of Nuclear Corporation of America and from 

Vitro Chemical Company. The purities were designated as 99.c.J'fo oxide with 

less than 0.1% other lanthanide oxide content. 

2. 2. 2 Preparation and Characterization 

Many methods have been used to prepare metal borides. These are 

discussed in the references of Chapter 2. 1. Among these methods is the 

reaction of boron with metal oxides. With the use of an arc melting 

furnace the reaction of compacts of lanthanide oxides and boron under 

argon atmospheres produced the desired borides much more swiftly than the 

vacuum heating techniques other researchers employed, and removed the 

possibility of crucible interaction in the preparative scheme. Only tetra-

and hexaborides were prepared in this work. 

It was found that hexaboride preparations according to the stoi-

chiometry, 

(2. 1) 
produced principally hexaboride with tetraboride present in less abundance. 

Preparations of te~raborides according to the stoichiometry, 

(2. 2) 

gave tetraboride as the principal phase with the hexaboride an appreciable 

contaminant. Single phase hexaboride resulted if the stoichiometry, 

2Ln203(s, 1) + 30 B(s, 1) = 4 LnB6(s) + 3 B202(g), (2. 3) 

was followed and the melted pellet was crushed, ground, pressed and re-

melted several times. However, the stoichiometry, 

2Ln203(s, 1) + 22 B(s, 1) = 4 LnB4(s) + 3 ~02(g), (2. 4) 

produced tetraboride severely contaminated with hexaboride. The boron 
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content had to be decreased by twenty atomic percent to generate single 

phase LnB4. These observations were made for all the lanthanides in the 

materials list except for Sm and Yb, where pure tetraborides were never 

made. 

Reactants in the form of 325 to 400 mesh powders were weighed to 

the stoichiometry desired, carefully blended, pressed into a hardened 

steel die and extruded as a cylindrical pellet. Total sample weights 

varied from 200mg. to 5g. Cylindrical dimensions varied from 1/4" to l" 

diameter and from 1/811 to l-l/2n length. The compacting pressure on the 

Carver hydraulic press (Fred S. Carver, Inc., New York) varied from 2000 

to l0,000 lbs./in2• These pellets were mounted on a 9" diameter copper 

hearth cleaned with nitric acid. Af'ter the hearth was mounted in the arc 

melting apparatus, the system was pumped out to a pressure of 5 microns 

with a mechanical forepump. Argon was introduced to a pressure of one 

atmosphere. The atmosphere in the melter was exchanged with argon succes-

sively for three cycles, l~aving one atmosphere of argon in the melter. 

All surfaces which_might heat during the melting were water-cooled. A DC 

arc was struck between the copper hearth anode and the flexible, bellows-

mounted, 1/211
, tungsten cathode with a high frequency arc start. While 

the operator viewed the melting through a glass viewport, zirconium metal 

was first melted to purge the system of residual oxygen, nitrogen and 

water; then the arc was moved onto the powder-compacted pellets and they 

in turn were arc melted with currents from 150 to 300 amp. and heating 

times of 1/4 to 2 minutes. The arc was then extinguished, samples cooled 

·and turned over, and the melting cycle repeated. During these preparatory 

meltings, considerable material was vaporized throughout the melter chamber 
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and high pressures were developed during the heating. A large brass 

bellows with one cubic foot of volume in the relaxed position expanded 

with these pressure surges to allow the operator to maintain a steady 

arc position. 

After the melted pellets cooled, they were removed from the arc 

melter, crushed in a hardened steel "diamond'' mortar and ground in an 

agate mortar. If the melted button appeared free of B203 glass and was 

uniformly blue or gray, indicative of hexa- or tetraboride only, the 

ground material was examined for completeness of boride formation by X-ray 

diffraction. If reaction was obviously incomplete, the ground material 

was compacted again and the melting process repeated~ When the X-ray 

powder photographs revealed only the boride of interest present, the finely 

ground boride was washed several times with warm 50% HCl followed by dis-

tilled water to remove oxide material. In a few cases, when the desired 

boride did not form to the exclusion of other borides after several re-

meltings, additional boron or lanthanide oxide was added and melting re-

peated. 

Regardless of the initial stoichiometry, the boride first appearing 

on arc melting was LnB6. Layer formation of blue hexaboride on a gray 

tetraboride core occurred initially in attempts to prepare tetraborides. 

The hexaboride was imbedded in a melt of oxide ·material.. Continued heat-

ing of this mass vaporized B2o3 and Ln2o3 throughout the melter chamber 

without appreciably increasing the concentration of the boride desired. 

However, if the pellet was crushed, ground and pressed again, more intimate 

contact of the elemental boron and LnB6 With Ln203 was favored, and the 

abundance of the desired boride increased. In an initial stoichiometry of 
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equation 2. 3, repeated melting, crushing, grinding, compacting and melt-

ing produced nearly oxide-free hexaboride after three or four crcles. How-

ever, in the case of the tetraboride preparation, because appreciable Ln2o
3 

was vaporized from the reaction medium after hexaboride was formed, but 

before the hexaboride and metal oxide could be remixed to ailow further 

reduction to the tetraboride, the initial composition had to be rich in 

Ln203 to insure the formation of LnB4. These observations were supported 

by visual and, X~ray evidence. Many of the possible kinetic and competing 

proce,sses in the preparation of lanthanide borides by oxide reduction with 

boron are discussed by Galloway (117). 

X-ray evidence alone is not sufficient to demonstrate that the 

boride prepared in this fashion was pure. For instance, phases present 

in concentrations less than, say, 5% might not have produced structure 

lines on the powder photograph intense enough to allow observation of 

the phase. Further, glasses, -which were a strong possibility with B2o3 
present, have no structure and cannot be observed in X-ray patterns. In 

general, evaporation of the acid washing solutions revealed very little, 

if any, oxide residue. In the Ga.B4 and GdB6 ·preparations, analyses for 

metal and for boron were performed on the finished product material. This 

analysis is described in Chapter 7. Typical results for gadolinium and 

for boron analysis in Gd.B4 and GdB6 are shown in Table 7. The metal anal-

ysis was. accurate tot 1% and the boron analysis was accurate tot 2%. 
The sum of the boron and gadolinium content routinely accounted for 95 to 

loo% of the sample. These analyses precluded the presence of appreciable 

quantities of' metal oxide, boron oxides and/or borates. Excess elemental 

boron may have been observed in powder photographs because of the low 
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intensity of diffracted radiation and would not have been revealed in a 

total metal-boron content analysis. However, the gadolinium to boron 

ratio in these preparations was equal to, or greater than, the stoichi-

ometry of the boride observed in the X-ray pattern. Emission spectro-

graphic analysis of GdB4 (16Gd.AM) prepared in the arc furnace showed Cr, 

Cu and Fe less than 0.1°/o; Si, barely detectable; and no other impurities. 

If.there were wide homogeneity ranges for these borides, large 

composition gradients might have been expected in these preparations, in 

view of the large temperatures inherent with arc meltingo However, from 

the evidence discussed in Chapter 2. 1. 4 and 2. 1. 5, the tetra- and 

hexaborides apparently have narrow solid solution ranges. Therefore, with 

the assumption of narrow solid solution limits and considering the ana-

lytical observations above, it is felt that the phase observed in the 

boride preparation defined the composition fairly well. In addition, 

assuming that the tetra- and hexaborides of other lanthanides than gado-

linium were identical in composition and solid solution characteristics, 

simple observation of the product boride by X-ray diffraction was suffi-

cient to characterize all the boride preparations. 

2. 3 Borides Observed 

2. 3. 1 LnB2 
Never in the course of these studies was any diboride phase ob-

served •. A specific attempt to prepare GdB2 or any boride phase existing 

between the metal and Gd.B4 was made. Powdered Gd.B4 was mixed with gado-

linium metal filings, pressed into a 3/8 11 pellet, mounted into a copper 
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current concentrator on a ZrB2 support and the entire assembly placed into 

a glass vacuum system capable of being pumped to a pressure of 2 x 10-5rmn. 

in two hours from atmospheric pressure. The vacuum assembly and heating 

technique are discussed in Chapter 8. 1. The pellet was heated by induc-

tion to about 1500°c. for 20 minutes. During the heating the gadolinium 

was observed to melt (m.p. 1312°c.), but a solid phase remained suspended 

in the viscous melt. On cooling and removing from the vacuum line, the 

globule was ground.for X-ray analysis. No reaction between the cooler 

ZrB2 base and the sample was observed. X-ray powder photographs (C-2864,5), 

while of poor quality, revealed Ga.B4, ·Gd and Gd203. No AlB2-type symmetry 

was observed. No other specific attempt to prepare lower lanthanide 

borides was made. 

2. 3. 2 LnB4 and LnB6 

Tetra- and hexaborides or two-phase tetra- and hexaboride mixtures 

were prepared with the elements, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, and 

Yb. The synnnetries and intensities exhibited by X-ray powder diffraction 

photographs for all the hexaborides and tetraborides were in agreement 

with previously reported information. Attempts to prepare single-phase 

LaB4 and SmB4 by reduction of the sesquioxide with boron or hexaborides 

in the arc melting apparatus were unsuccessful. In every case the pre-

dominant phase was hexaboride with tetraboride only present as a minor 

phase. YbB4 was never observed in the a.re melting preparations. Even 

samples with la.r$e excesses of Yb203, compared to the reactant ratios 

discussed above, produced only YbB6 or YbB6-YbB12 two phase mixtures. A 

preparation of ErB4 in the stoichiometry of equation 2. 4 produced a 
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mixture of ErB4 and ErB12• An attempt to prepare HoB6 produced an HoB4-

HoB6-HoB12 mixture. For the lanthanides, Ce, Pr, Gd, Tb, Dy and for Y, 

both the tetra- and the hexaborides could be prepared easily. 

Eick and Gilles (02) reported that they were unable to prepare 

ErB6 and YbB4 by this method. However, they were successful in preparing 

SmB4. Binder ( 24) pointed out that EuB4 cannot be prepared by a;ny method 

and that La-, Eu- and YbB4 are difficult to prepare probably because of 

their large metal radii. Difficulty in preparing single-phase SmB4 was 

noted by Galloway and Eick (117). Further, as noted above, Eick and Stur-

geon suggested that ErB6 does not exist. Attempts to prepare ErB6 produced 

ErB4-ErB12 mixtures. These observations are corroborated by this research. 

No attempt was made to prepare Pm, Eu, Tm or Lu borides. 

2. 3. 3 LnB12 

Specific attempts to prepare GdB12 by melting GdB6f'B compacts in 

the arc furnace revealed only a GdB6-GdB100 two-phase region. An ErB4 

preparation, .as noted above, produced ErB4 as a major phase and ErB12 in 

lesser concentration. A similar preparation.of HoB6, in which reaction 

was not complete or in which large temperature gradients existed in the 

arc melting, produced HoB6 as a major phase, and HoB4 and HoB12 as minor 

phases •. Further, a YbB6 preparation according to the stoichiometry of 

equation 2. 3 produced YbB6 as the major constituent and YbB12 as the 

minor constituent. 

The inability to prepare Gd.B12 is in agreement with Post, et al. 

(41, 113), who were unable to prepare dodecaborides of lanthanides larger 

in radius than that of terbium. Further, Post, et al. , did prepare Er B12 
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by reducing Er2o3 with excess boron at 140o-15oooc. in helium. Post 

prepared HoB12 in a similar manner. However, Post I s work failed to pre-

pare YbB12 by reduction of sesquioxide with boron._ This failure was ex-

plained, at first, by the large size of the ytterbium ion in its tendency 

to exhibit divalency. Only direct combination of the elements produced 

YbB12 (115). 

The YbB12 X-ray pattern obtained from this work was identical in 

indexing and intensity to that reported by Post for TmB12• In addition 

the (210), (301) and (321) reflections were observed. Table 2. 2 contains 

the diffraction record computed from a Debye-Scherrer powder photograph 

with an IBM 1620 computer. The unit cell edge of this cubic dodecaboride 

was calculated from high angle lines as 7.462 i to be compared with 7.469 

i reported by Post. This value fits the lanthanide contraction of the 

parameters of other dodecaborides, as reported by Post, quite well (cf. 

Table 2., 1). 

The large increase in cell dimensions which is observed for Yb in 

hexa- and tetraborides and in lanthanide metals is absent for the dodeca-

borides. This absence probably reflects the ·encirclement and insulation 

of metal atoms from one another by boron cages in the dodecaboride struc-

ture. Thus, the metal atoms are not free to interact in the fashion that 

they would if close metal-metal bonding were allowed. Apparently, the 

ytterbium ion is constrained to trivalency. This situation would account 

for the existence of YbB12 even though its metallic radius is greater 

than the 1.91 i limiting value prescribed by Post for dodecaboride stability. 
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TABLE 2. 2 

YbB12 Diffraction Record; Cu-K~ u, 1. 54178 i, 
Radiation; Debye-Scherrer Film C-2895. 

d, i 
sin2Q 

hkl I/I0 (observed) 

111 50 4.295 .03222 
200 30 3.731 .04269 
210 20 3.349 .05297 

220 40 2.641 .08523 
301 10 2.331 .10936 
311 8o 2.252 .11714 

222 20 2.154 .128o7 
321 5 1.977 .15210 
400 6 l.865 .17081 

331 25 1. 714 .20221 
420 20 1.669 .21324 
422 10 1.524 .25594 

511/333 10 1.419 .29511 
531 15 1.261 .37360 
6ll 5 1 .. 196 .41516 

620 95 1.182 .42555 
541 10 1.149 .44992 
533 20 1.139 .45821 

622 50 1.123 .47090 
444 10 1.0786 .51079 
711/551 10 1.0447 .54449 

640 10 1.0356 .55410 
612 10 1.0050 .58838 
731/553 5 .9733 .62734 
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2. 3. 4 LnB100 

2. 3. 4. 1 Gd.B100; Discovery and Composition. In arc melted prepara-

tions in the extremely boron-rich corner of the ternary Gd.-B-C field, dis-

cussed in Part I, a large cell cubic phase was found, 'Which was first 

thought to be an allotrope of boron. This phase has since been demonstrated 

to be a gadolinium boride, the composition of which is definitely between 

Gd.B100 and Gd.B200 and probably closer to Gd.B100 • This boride has been 

designated-Gd.B100• 

Compositions in the extremely boron-rich region of th~ gadolinium-

boron binary system are summarized in Table 2. 3. These samples were 

prepared by arc melting powder compacts of boron mixed with Gd.BG according 

to the synthetic stoichiometry indicated in Table 2. 3. The ground reac-

tion pro~ucts were examined for the phases present by X-ray powder diffrac-

tion techniques by use of the Guinier focusing cameras. 

While ternary Gd-B-C preparations 53-, 72-, 77-, 78-, and 79Gd.AM 

of Table 3. 1, Part I, revealed the existence of Gd.B100, it was not cer-

tain whether the phase was stabilized by carbon or was a boron allotrope. 

The preparations of Table 2. 3 clearly demonstrate that this phase is not 

a ternary carbon-stabilized phase. Further, 87Gd.AM demonstrates the two-

phase region Gd.Bioo-boron, indicating that this phase is definitely not a 

boron allotrope. The two-phase region, Gd.B6-Gd.B100, is revef3.1.ed in 82-

and 86Gd.AM. The absence of Gd.B12 is discussed above. Since the X-ray 

diffraction line intensities of the elemental boron phase in 87Gd.AM 

(Gd.B200 ) are comparable to the intensities of the metal containing phase, 

Gd.Bioo, it is assumed that the composition of the binary phase is consid-

erably more boron deficient than Gd.B200• Similarly, the line intensities 
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TABLE 2. 3 

Boron-Rich Gadolinium Boride Compositions. 

Sample GdB6, mg. B, mg. Composition Film Phases Present 

82Gd.AM 96.85 203.15 Gd.0200B.9soo D-1447 Gd.B100, mj r . 
GdB6, mnr. 

86GdAM 54.18 245.82 Gd.0100B.9900 D-1559 GdB100, mjr. 
D-1563 Gd.]6, rnnr • 

87GdAM 28.81 271.19 Gd.0050B.9950 D-1557 GdB100 
D-1479 rf3 -rhom. B, eqc. 
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of GdB100 compared to the line intensities of the GdB6 phase in 86Gd.AM 

(GdB100) imply that the Ga.B100 phase has a composition not much higher in 

boron content than GdB100 • Therefore, this phase has been labeled GdB100 • 

No attempts to prepare single-phase Gd.B100 or to analyze the prepared 

compositions has been made. 

Only the use of a Guinier focusing camera, whose monochromatic 

radiation and extreme low angle utility range afford excellent resolu-

tion, could allow the analysis of complex diffraction records containing 

mixtures of /3 - rhombohed.ral boron, B4C and GdB100, all of which have 

large unit cells and complex structures. Reference patterns of /3 -
rhombohed.ral boron (D-1373) and B4C (D-1448) were prepared and their dif-

• I I • - - ' • ' 

fraction records computed. Intercomparison of these reference diffraction 

records with those computed from sample preparations made the interpreta-

tion of the phase relations quite simple. 

2. 3. 4. 2 GdB100; X-ray Character. Table 2. 4 contains the dif-

fraction record of Ga.B100 (Guinier film D-1269). From an averaging of the 

a0 parameter determined from intense high angle diffraction lines, the prim-

itive cubic cell edge dimension is 16.50 t .02 i. While the agreement be-

tween observed and calculated sin2g values is not perfect, no other index-

ing scheme could be found without a choice of a larger unit cell. The 

small non-systematic deviations could easily arise from film reading errors, 

in view of the complexity of the pattern and the generally weak intensities. 

An attempt was made to index the GdB100 diffraction record with 

the tetragonal symmetry and 11.75 and 12.62 .5i axes of the Y.By0 phase found 

by Lundin (80). No agreement was found between computed sin2G from the 

YByo cell dimensions and the Ga.B100 observed sin29 values. The cell 
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TABLE 2. 4 

GdBioo and YbBioo Diffraction Records; Cu-Ko(, 1.54050 R, Radiation; 
1 

Gd.Bioo Guinier Film D-l269, YbBioo Debye-Scherrer Film c-3187. 

YbB100. GdB100 
hkl I/I0 d, j . 2g . 2g hkl I/I0 

0 . 2g . 2g sin qbs sin cal a, A sin obs sin cal 

110 · 60 l2.05 0.004095 0~00434 llO 20 11. 75 0.00431 0.00436 
lll 05 9.459 0.00664 0.00651 211 60 6.732 0.01309 0.01309 
200 05 8.301 0.008624 0.00867 220 8o 5.832 0.01744 0.01744 
210 12 7.789 0.009797 0.01084 310 20 5.236 0.02166 0.02181 
211 ll 6.748 0.01305 0.01300 222 20 4.771 0.02607 0.02617 
220 12 5.855 0.01734 0.01735 ·4ol 20 3.948 o.038o6 0.03674 

221 07 5.526 0.01946 0.0195 330 20 3.897 0.03908 0.03926 
301 04 5.249 0.02157 0.02167 331 10 3.792 0.04126 0.04144 
222 20 4.796 0.02584 0.02599 420 10 3.696 0.04346 0.04344 

321 20 4.415 0.03048 0.03033 332 20 3.525 0.04771 0.04777 
401 07 4.036 0.03648 0.03687 501 40 3.243 0.05644 0.05633 
411 05 3.896 0.03915 0.03903 530 10 2.843 0.07340 0.07368 

420 20 3.726 0.04281 0.04338 600 '50 2.758· o.078o3 0.07799 
421 10 3.599 0.04588 0.04552 611 10 2.684 0.08242 0.08234 
332 10 3.529 0.04773 0.04773 621 10 2.577 0.08936 0.08889 

430 15 3.351 0.05291 0.05204 541 10 2.556 0.09080 0.09076 
501 20 3.249 0.05630 0.05639 622 30 2.493 0.09545 0.09527 
333 04 3.169 0.05916 0.05858 630 10 2.454 0.09853 0.09810 

600 15 2.761 0.07797 o.078o2 444 20 2.393 0.10362 0.10373 
611 20 2.68o 0.08274 0.08240 700 30 2.372 0.10550 0.10579 
622 07 2.491 0.09574 0.09535 701 20 2.342 0.10813 0.10793 

630 07 2.462 o.09Bo1 0.09755 640 30 2.296 0.11248 0.11244 
701 10 2.335 0.10904 0.1084 730 30 2.173 0.12570 0.12541 
640 07 2.294 0.1129 0.1127 Bal 10 2.055 o.14o68 0.14050 

721 12 2.247 0.1177 0.1171 811 45 2.035 0.14293 0.14284 
632 04 2.208 0.1219 0.1214 820 30 2.006 0.14748 0.14715 
731 10 2.162 0.1272 0.1278 653 10 1.979 0.15136 0.15179 

650 07 2.116 0.1328 0.1323 822 10 1.951 0.15587 0.15559 
811 10 2.043 0.1424 0.1431 662 4o 1.898 0.16460 0.16449 
820 10 2.006 0.1477 0.1474 921 20 1.787 0.18630 0.18615 
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TABLE 2. 4, continued 

YbB100 GdBlOO 

hkl I/I0 a, R · 2g · 2g sin obs sin cal hkl I/I0 a, R . 2g sin obs . 2g sin cal 

822 09 1.947 0.1568 0.1561 10,1,110 J. 539 0.22106 0.22076 
751 15 1.906 0.1636 0.1626 950 10 1.606 0.23006 0.22968 
901 07 1.830 0.1774 0.1778 10,2,2 10 1.590 0.23455 0.23437 

920 10 1. 796 0.1842 0.1843 10, 3,2 0 1.525 0.25500 0.25592 
664 07 1.762 0.1914 0.1908 
932 14 1.710 0.2033 0.2038 

941 07 1.672 0.2125 0.2124 
10,2,1 04 1.614 0.2282 0.2275 
10,0,3 04 1.590 0.2352 0.2362 

944 04 1.564 0.2431 0.2427 
10, 3, 3 10 1.525 0.2556 0.2558 
10,5,3 04 1.437 o.288o 0.2881 

11,4,o 05 1.416 0.2964 0.2969 
12,2,1 02 1.355 0.3236 0.3230 
12,2,2 03 1.344 0.3289 0.3293 

11,6,3 05 1.287 0.3589 0.3598 
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parameter of the cubic YB50 phase found by Seybolt (114) was not reported; 

:however, it was estimated by him that the Y~5o cell c_ontains 1700 atoms/ 
0 

cell. Assuming closest packing of 0.87 A radius covalently-bound boron 

atoms and ignoring the metal atom content, one calculates 1660 atoms/cell 

for Ga.B100 • It would appear that Gd.B100 and YB5_0 are id~ntical structures. 

In view of Kasper's single crystal YByo cell dimension of 23.50 i (46), 

an attempt was made to index the GdB100 pattern to a cell of approximately 

this dimens.ion.. While the .fit was as good as that obtained for the 16.50 

i cell, it is noted that almost any cell so large could be made to fit 

the observed diffraction record within· the film reading errors involved. 

'!'he 16.50 i primitive cubic cell was chosen, since it is the smallest cell 

possible. 

2. 3. 4. 3 YbB100 • While no specific attempt was made to prepare 

the LnB100 phase for other lanthanides than gadolinium, a Langmuir vapori-

ation experiment of a powder compact of a YbB6-YbB12 mixture (cf. Table 

4. 1) revealed a mixture of ~bB6 and YbB100 on the outer surface of the 

compact after heating. The pellet was mounted on a ZrB2 stand in a copper 

current concentrator furnace (cf. Chapter 8 •. l). Under vacuum of 10-5mm. 

the pelle~ was heated by induction for one hour at 1920°c. The diffrac-

tion record of YbB100 computed from the reading of a Debye-Scherrer X-ray 

powder photograph (c-3187) is in Table 3. 5. The unit cell length of this 

cubic phase calculated from the high angle lines is 16.56 ~ .01· i, slightly 

larger than the cell parameter of Ga.B100 • 

2. 3. 4. 4 Other LnB100 Phases. If the existence of a LnB100 

phase is dependent on the size of the metal ion, and if Yb is constrained 

to a size typical of trivalency as in the dodecaboride, then the LnB100 



phase ought to exist for the lanthanides Gd, Dy, Ho, Er, Tm, Yb and Lu. 

If, on the. other hand, Yb exhibits a radius indicative of that in the pure 

metal, then LnB100 ought to exist for lanthanides larger than gadolinium. 

Johnson and Daane (25) reported eutectic and eutectoid rejections of LaB6 

from rapidly cooled arc melted alloys between 89 and 99. 5% boron. They 

estimated the composition of the eutectoid phase close to 99/o boron and 

suggested the existence of a high temperature modifica~ion of elemental 

boron stabi.lized by lanthanum rather than a La-B phase. However, this 

behavior could easily be explained by a eutectic between LaB6 and LaB100 

followed by disproportionation at a lower temperature of La.B100 into La.B6 

and boron. The discovery of Tb-, Ho- and YbB100 by Post (46), coupled 

with the observations above, leads one to believe that the LnB100 phase 

will be found for all lanthanides and for Y. 

2. 3. 4. 5 Boron Allotropes. It is interesting to compare the 

LnB100 phase with the polymorphic forms of boron. Hoard and others (118-

9, 44) in 196o and 1961 discussed the many boron structural forms. There 

are four polymorphs of boron currently given· credence. These are the low 

temperature,o<.-rhombohedral form (120), the 1100 to 1300°c. tetragonal 

form (121), the high temperature /J -rhombohedral allotrope (122), and more 

recently another tetragonal form (123). These allotropes and other re-

ported forms (124, 125, 126) are summarized in Table 2. 5. 

All of these allotropes except the o( - and g!,-rhombohedral forms 

were found in the temperature range 1000-1300°c. and were all prepared by 

BX3 deposition of boron on hot metal or graphite substrates. Stern and 

Lynds (126) found three different phases of boron in the 1075 to 1200°c. 

range, depending on whether BC13 was decomposed on titanium or graphite 
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TABLE 2. 5 

Allotropic Modifications of Boron 

Densit3 Atoms 
Ref. Modification Conditions Space Group Cell Constants (g./cm. ) /Cell 

120,118 o< -Rhom.bohedral Low temp., 750-1200°c. R3m o a = 5.06 i 2.46 12 
A= 4.908 A o< = 58°4 1 

C = 12.567 j{ 

121,44,118 Tetragonal 1100-1300°c. P42/nnm a = 8. 75 i 
c = 5.06 R 

2.31 50 

122,127,u8 (/1 -Rhombohedral High temp., ) l200°c. R3m a= l0.12 )t 2.35 108±1 
A= 10.95 R o( = 6502sr 

I-' 
c = 23.73 R 

O'\ 
Vl 

44 .Amorphous ( 8oo0 c. < 2.3 

118,123,44 Tetragonal l250°C., BBr3 dep. a = l0.12 R 2.364 192 
c = 14.14 R 

118,124 Tetragonal 1000-1300°c. a= 8.57 5{ 2.33 78 
BBr3 dep. on W, Mo b = 8.13 Jt 

118.,125 Hexagonal 90 

nB,126 Unknown 1075-ll25°C. 2.39-2.49 
BC13 dep. on Ti 

nB,126 Unknown l075-ll25°C. 2.39-2.49 
BCl3 dep. on graphite 



and on the temperature. The phase of Szabo and Tobias (124) resulted 

from deposition from BX3 on tungsten and molybdenum wires. In view of 

the existence of the extremely metal-rich borides noted above, and of the 

strong possibility of stabilization of the "boron allotropesrr, also dis-

cussed above, by reaction with the substrate material on pyrolytic de-

composition of BX3 gases, perhaps many more boron-rich metal borides 

exist. That these latter allotropes might be nonstoichiometric borides 

is suggested by Hoard (44) •. 
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CHAP.rER 3 

CRUCIBLE SELECTION 

3. 1 General Requirements 

The choice of a crucible in which the vaporization properties of 

the tetra- and hexaborides ma:y be studied is dependent on several consid-

erations. First, the crucible material must withstand high temperatures, 

in this case 2500°K., without melting or vaporizing significantly. Sec-

ond the crucible material must not interact with the borides being 

studied at the temperatures of the experiment either in eutectic forma-

tion, eutectoid formation, in solid solution formation, or in oxidation 

or reduction of the sample phases to other binary or ternary compounds. 

Implied in this last requirement is the consideration that the chemical 

potential of boron and of lanthanide in the sample must be less than the 

chemical potential of these components in any compound that might exist 

between these components and the crucible material. More simply, if 

tungsten is the crucible material for the study of the vaporization of 

Gd.B4, the pressure of boron over W2B must be greater than the pressure of 

boron over Ga.B4. Otherwise, W2B will form on reacti.on of tungsten with 

Gd.B4• However, even if crucible interaction does occur, thermochemical 

information concerning the vaporization of the lanthanide boride sample 

can be derived if thermochemical information for the crucible interaction 
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Since these lanthanide borides will be studied with Knudsen effu-

sion techniques, porosity of the crucible material. with respect to the 

vapor species is precluded. The fourth, fifth, sixth and seventh consid-

erations require the crucible to withstand large rapid temperature changes, 

to be readily fabricated, to be readily available and preferably to be a 

metallic conductor to allow direct heating by induction. 

3. 2 Exclusion of Unsuitable Materials 

On the basis of thermochemical arguments and material compatibility 

studies, many possible crucible materials can be shown to be unsuitable 

for use as crucibles for the lanthanide boride study. Arc melted mixtures 

of each of tantalum, zirconium, tungsten and molybdenum with Gd.B4 and 

X-ray analysis of the product demonstrated the reduction of Gd.B4 to form 

metal borides by all of these metals. Limits on the heats of formation 

of the lanthanide borides can be estimated from such ternary studies. 
. ) 

These ternary studies a.re discussed in detail in Chapter 14. Graphite or 

B4C cannot be used as crucible materials in view of the ternary Ln-B-C 

phases discussed in Pa.rt I. If a metal crucible is to be used, the heat 

of formation per gram atom of boron of its lowest boride must be less 

than that of the lanthanide borides. Tb.is requirement may be met by metals 

in Group VIIB and Group VIII of the Periodic Table. However, the melting 

points of these metals a.re generally too low. Lanthanide metal or boron 

crucibles a.re excluded because of low melting points, air oxidation and 

oxidation of·the sample. 

Oxide crucibles a.re generally unsatisfactory because the high heats 

of formation of lanthanide oxides and B203 cause contamination of the 
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crucible, and because of the thermai and porosity characteristics of 

alumina, beryllia, cermets, etc. A crucible of BN is a possible choice • . 
This material has been used in a study of the vaporization of samarium 

borides by Galloway and Eick (117). However, the volatility of BN is too 

high at the temperatures of interest. 

3. 3. 1 Th~rmodynamic Compatibility 

A crucible.choice of overwhelmingly obvious advantages is a re-

fractory metal boride, such as HfB2 or ZrB2 • These are very high melting, 

3250 (128) and 30400c. (129), have high heats of vaporization per gaseous 

atom, 177 kcal. (130) and 156 kcal. (13~), and large heats of formation 

per boron atom, -40 kcal. (130) and -36.5 kcal. (132), respectively. 

Lanthanide tetra- and hexaborides have heats of formation per boron atom 

estimated by Leitnaker (133) as -15 t 3 kcal. ~d -12 t 2 kcal., respec-

tively. The largest heat of vaporization per gaseous atom would occur 

for congruent vaporization of LaB6 and is estimated at 136 kcal.at 298°K. 

In general, a difference in the heat of vaporization per total gas atom 

of 9 kcal. at 2000°K. will produce a pressure change of a factor of ten·. 

The smallest difference between AH~ap. of 1/3 ZrB2 and AH~ap. of 1/7 

LnB6 occurs for La and is 156 kcal. less 136 kcal. or 20 kcal. Therefore, 

the lanthanide borides exhibit a volatility larger by at least a factor 

of 100 than ZrB2, which satisfactorily labels ZrB2 and HfB2 as involatile 

compared to the lanthanide borides. Further, since the heat of formation 

of ZrB2 per boron atom is much more negative than that of the lanthanide 

borides per boron atom, lanthanide gas or _metal will not reduce ZrB2• 



Zirconium dibor1de over 1650°c. has been reported as being unstable 

with respect to the formation of ZrB12 in the presence of boron (134). 

Searcy and Myers (135) felt that a couple·of kilocalories favoring ZrB12 

formation over 1650°c. did not preclude their :rreasurement of the heat of 

vaporization of boron in a ZrB2 crucible up to 24oo°K. Thus, the pressure 

of boron o!er a ZrB12-B or a ZrB2-ZrB12 mixture is not much less than the 

boron vapor pressure over a ZrB2-B mixture. The boron pressures over two-

phase mixtures of lanthanide borides generally should be much less than 

the boron vapor pressure. Thus, lanthanide borides should not oxidize 

ZrB2 to ZrB12 at the expense of the lanthanide boride richer in boron. 

These preliminary thermodynamic estimations suggest that ZrB2 or HfB2 

might be suitable crucible materials. 

3. 3. 2 Arc Melter Test 

Arc melted mixtures of ZrB2 with Gd, Dy and Nd tetra- and hexa-

borides (Table 3) and the ternary studies of Ch~pter 14 confirm the predic-

tion above that both LnB4 and LnB6 exist in equilibrium with ZrB2• 

,Zirconium diboride has a hexagonal structure of the AJ..B2-type. 

The lanthanide borides are tetragonal _and cubic. Therefore, solid solu~ 

tion between ZrB2 and the lanthanide borides is not expected to be sig-

nificant. This expectation is confirmed by the arc meltings, summarized 

in Table 3, for meltings at both ends of the ZrB2/Gd.B4 and Zr~/Gd.B6 

joins. The Gd.:86 sample (50GdAM) used in these investigations contained 

some Gd.B4, which explains the appearance of Gd.B4 in the GdB6-ZrB2 meltings. 

Duplicate X-ray patterns of the reaction products were taken, one at normal 

exposure times to examine the possible expansion or contraction of the 
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TABLE 3 

Extent of Zr~ Reaction wi~h Ln.B4 and~. 

X-ray GdB4, mg. Gd%, mg. Zr~, mg. 
Sample Composition FiJJn Phases Present 51Gd.AM 50Gd.AM 

8Nd.AM (NdB6)0.5(Zr~)o.5 c-2869 Nd% Equal mixture of NdB(;(7NdAM) and 
Zr~, eqc. . Zr~. 

84GdAM (Gd.B4)0.05(ZrB2)0.95 D-1446 Zr% only 25.62 274.38 

85Gd.AM (Gd.J36)0.05(Zr~)o.95 D-1445 Zr~, mjr. 28.12 271.88 
GdB4, tr. 

~ 89Gd.AM (Gd.B6)0.05(Zr%)0.95 D-1475 Zr%, mjr. 28.12 271.88 
1---J D-1553 Gd]6, mnr. 

91GdAM (GdB6)0.1o(Zr~)Oo.90 D-1478 Zr~, mjr. 53.77 245.23 
D-1551 GdB6, mnr. 

GdB4, tr. 

92Gd.AM (Gdl36)0.90(Zr~)o.10 D-1572 GdB6, mjr. mech. 18.53 286.56 
GdB4, mnr. mix. Zr~, mnr. 

D-1573 GdJ36, mjr. 
D-1550 GdB6, tr. melt 

Zr~, tr. 



Sample 

93GdAM 

4DyAM 

TABLE 3, continued 

Extent of Zr~- Reaction with LnB4 and Ln:86• 

X-ray 
Composition Film 

(GdJ36)0.95(Zr~)o.05 J?-1574 

D-1575 
D-1546 

(DyB4,6)0.5(ZrB2)0.5 c-2868 

Phases Present 

GdB6, mjr. mecb. 
Zr~., tr. mix. 

Gd%, mjr. 
Zr~, tr. melt 
GdB4, tr. 

Zr~, mjr. 
DyB£,, mnr. 
DyB4, mnr. 

Gd136, mg. 

50GdAM 

7.98 

Zr~, mg. 

291. 77 

Equal amounts of ZrB:2 and 3D.YAM 
(DyB6 and DyB4, eqc.) 



structure as manifested by a shift in the d-spacings, and one with twice 

the normal exposure to emphasize any minor phase present. The investiga-

tion of the minor phase was not done in experiment 84Gd.AM, which explains 

the failure to find Gd.B4 in that sample although it was observed in others. 

From the results in Table 3 and the observations that the ZrB2 structure 

contracts somewhat on Gd.B4 and Gd.B6 addition, it is concluded that the 

solid solution of Gd.B4 in ZrB2 at high temperature is greater than that 

of Gd.B6 in,ZrB2 but both are soluble to less than five mole percent. 

Further, the solubility of Zr~ in Gd.B6 and Gd.B4 is considerably less 

than five mole percent. 

3. 3. 3 ZrB2 Sol~d Solution Ef.fe~ts 

Some consideration ought to be given to the effect of a solid solu-

tion range in ~B2 on the vaporization of LnB4 or LnB6• If considerable 

solid solution exists, LnB6 might be in equilibrium with boron-deficient 

ZrB2• This behavior is shown diagrammatically in Figure 3 · in an isother-

mal ternary phase diagram. Suppose LnB6 were heated in a boron-rich ZrB2 

crucible of composition x' shown in the figw;e. Suppose further that 

LnB6 vaporizes according to equation 1. 6 and LnB4 vaporizes according to 

the reaction in equation· l. 2. Then, if the boron pressure over ZrB2 of 

composition x' should be greater than the boron pressure in the equilib-

rium of process 1. 6, the crucible will lose boron preferentially until 

a Zr~ composition of x'' is reached. As the activity of boron decreases 

in this two condensed phase region, the gadolinium activity ma;y increase 

appreciably. Only at this ZrB2 composition can the boron pressure be fixed 

and its measurement characteri·ze the process in equation 1. 6. If the 
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ZrB2 SOLID SOLUTION EFFECTS 

f'IGURE 3 
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difference between x' and x'' is large, the system may not have time to 

lose boron to the univariant equilibrium of interest before a pressure 

measurement is made. 

If the same crucible of ZrB2 composition, x' ', is now used in an 

investigation of the process in equation 1. 2, ·the same problem occurs. 

The boron pressure in process 1. 2 is lower than that in process 1. 6, so 

that ZrB2 must again lose boron to a composition, x''', before meaningful 

pressure me~surements can be made. If x 11 - x''' is large.and the tempera-

ture so low that evaporation is slow, one might measure a boron or gado-

linium pressure widely different from those values at the univariant com-

positions. Of course, if both boron and gadolinium pressures are meas-

ured, the equilibrium constant for the lanthanide boride vaporization can 

still be obtained. However, to assume the boron pressure is four times 

the gadolinium pressure in process lo 2 might lea.cl to serious error. 

In actual practice the attainment of a univariant condition can 

be determined from a plot of weight loss or gadolinium pressure ,versus 

·time. When the weight loss is a constant with time at contant temperature, 

the system has equilibrated with the crucible·. 

However, ZrB2 is thought to have a narrow range of homogeneity. 

Leitnaker (136) and Epel 1baum and Gurevich (137) found no change in lattice 

parameters for compositions in the two-phase regions on either side of ZrB2• 

Leitnaker 1 s boron analyses indicated a pomogeneity range no greater than 

ZrB1 •90 to ZrB1 •97 .. Consequently, ZrB2 solid solution should be no pro-

blem in the lanthanide boride vaporization studies. 
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J. 3. 4 ZrB2 Characterization 

Finally, ZrB2 was chosen as a crucible material,'rather than HfB2, 

because ZrB2 Knudsen crucibles could be purchased (Borolite Corporation, 

Pittsburgh, Pa.) in a variety of sizes. These ZrB2 crucibles required 

outgassing perio.ds of 20 hours at 2250°c. in vacuum to reduce the vacuum 

line pressure to 5 x 10-6mm. Heavy vapor deposits of what was probably a 

paraffin binding material appeared •. An X-r9¥ diffractometer scan (c-2758) 

revealed ZrB2 with a small amount of ZrC or ZrB. In C-2762, an X-ray 

spec~rographic analysis, the presence of small amounts of hafnium was 

revealed. Before these crucibles were used in lanthanide boride vaporiza-

tion studies, small amounts of elemental boron were totally vaporized from 

the crucible to establish a uniform ZrB2 composition. Never was diffusion 

of the crucible contents through the walls or between the lid and base of 

the crucible observed in any of the vaporization experiments. 
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CHAPI'ER 4 

VAPORIZATION PROCESSES 

4. 1 Free ·Evaporation Experiments 

4. 1. 1 Scope of the E?£Periments 

Af'ter the solid phases existing in the lanthanide-boron systems 

have been established, the principal vaporization processes exhibited by 

these borides must be .established. For tpis purpose a series of Langmuir 

free evaporation experiments was made. With the use of an edey-current 

concentrator furnace described in Chapter 8. 1, a survey of the general . .. ) 

vaporization behavior of La, .Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb and Y borides 

was made. 

4. 1. 2 Experimental 

Powder compacts of the borides, prepared according to the techniques 

described in Chapter 2. 2. 2, were prepared by pressing 325 mesh powders 

in 1/4", 3/811 or 1/211 hard steel dies at 2000, 6ooo or 12,000 lbs./in~2, 

respectively~ These resulting cylinders,.varying in height from.1/4° to 

3/4", were mounted on a water-cooled copper hearth in the arc melting 

apparatus. Under an argon atmosphere purged of oxygen, the upper surfaces 

of these cylindrical compacts were glazed over by the arc. This partial 

melting provided a conducting region through which induced rf current 

could flow and initiate the heating of the compact by the induction 
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furnace. After a 1/16" black-body hole had been drilled into the top of 

the cylinder for temperature measurement, the sample was mounted into the 

current concentrator (cf. ~apter8. 1) on a cylindrical ZrB2 mounting 

stand. This ZrB2 stand had a 1/4" diameter and was just tall enough to 

insure that the sample sat entirely.within the core of the current con-

centrator without having the ZrB2 penetrate the core (cf. Figuxes 8. 1 

and 8. 2). This arrangement tended to decouple the ZrB2 stand from the 

rf field. .Consequently, the ZrB2 stand normally was several hundred 

degrees cooler than the sample during heating. 

After the current concentrator- was placed in a vacuum line, the sys-

tem was pumped to 10-5mm. pressure. Sufficient rf power was applied to 

heat the sample to l200-14oooc. and until the entire boride cylinder was 

heating uniformly. Then the power was increased until obvious vaporiza-

tion occurred. Af'ter the walls of the apparatus were heavily laden with 

vapor deposits, the sample was cooled, removed from the furnace and ex-

amined visually and by X-ray diffraction for the phases present • .An X-ray 

di~fractometric analysis of the base of the sample cylinder and the top 

of the ZrB2 stand was made in each case to reveal any ZrB2-LnB4 or 

ZrB2-LnB6 interaction. -X-ray analysis of vapor deposits served only to 

demonstrate that both metal and boron were vaporizing. 

4. 1. 3 Results 

Table 4. l contains a summary of the experimental conditions and 

observations for the free evaporation of borides. of La, Ce, Pr, Nd, Gd, 

Tb, Dy, Yb, and Y. No melting was observed in any of these heatings. 



TABLE 4. l 

Free Evaporation Ex:periments; Zr~ stand. 

Initial Weight 
Phase Temp. Time Pressure Loss 

Sample Content Film (DC.) (min.) (10-6 mm.) ( '/o) Final Phase· Content Film 

6:La.AM La.%, mjr. C-2897 18oo- 25 200 Zr~/La.J3G interface---Zr~, La.B6 c-28o7a 
La.B4, mnr. 1950 Outer surface---------La.J36 only C-28o7b 

6La.AM1 Ia:J36, mjr. c-28o7c (2200) 6 100 La.J3G, ~o3 (air oxid. product) D-1586 
IaB4, mnr. 

ice.AM Ce:8(5, mjr. C-2896 2100- 60 4o Inner core-----Ce:8(5, mjr.; CeB4, mnr. C-3120 
CeB4, mnr. 2300 Outer surface--CeBG, mjr.; Ce2o3, tr. C-2906 

Vapor deposit--CeBG C-2907 

~ lPr.AM Pr:86; mjr. C-2902 2250- 60 30 Inner core-----Pr:86, mjr.; PrB4, mnr. C-3210 

'° PrB4, mnr. 2350 Outer surface--Pr:86 only C-2909 
Vapor deposit--PrBG, mjr.; PrB4, mnr. C-2910 

6Nd.AM Nclli6 C-2048 1950- 30 4o Zr~/N<iB6 interface--Zr~, mjr.; Nd%, mnr.; 
2050 NdB4, mnr. C-2805a 

Outer surface--------NdJ36, mjr.; ZrB2, tr. C-2805b 

6Nd.AM1 Nd% c-28o5 1950- 34 30 9 Inner core-----------NdB6 only C-3201 
2000 Outer surface--------NdJ36 only C-2817 

Zr~/Nc1B6 interface--Zr~, mjr.; Nd%, mnr.; 
NdB4, tr.; ZrB12, tr. c-2818 

Zr~ stand core------Zr~ only C-3211 

7Nd.AMa NdB6 c-2867 1950- l4o 50 Inner core-----NdBE;, mjr.; NdB4, tr. C-3206a 
2150 Outer scale----Nd:136 only C-3206b 

8lGd.AMl Gd.B4, mjr. c-2859 18oo- 535 50 20 Inner core-----GdB4 only C-2861 
to alO Gd.B6, tr. 2100 Outer scale----Gd.B4 only C-286la 



TABLE 4. l, continued 

Initial Temp. Time Pressure Weight 
Phase Loss 

Sample Content Fihn (CC.) ·(min.) (10-6 mm-.) (%) Final Phase Content fihn 

T{OGd.AM GdB4 1450- . 20 lOO Melted pellet-----GdB4, ·Gd, Gd203 C-2864 
Gd, eqc. 1550 c-2865 

l5-50GdAM Gd.136, mjr. D-1193 2000- 60 3 3 Inner core-----Gd:8(5, mjr.; Gd.B4, mnr. D-14o7 
( 59GdJ\M2) GdB4, tr. C-2215 2150 Outer scale----GdJ34 only visual 

Vapor deposit--Gd:136, mjr.; Gd.B4, tr. D-14o8 

l5-50Gd.AM2 Gd.136, - D-14o7 2050- 50 6 18 Inner core-----GdJ36 only visual mjr. 
GdB4, mnr. 2300 Outer scale_----GdB4, mjr.; Gd.136, tr. · D-1409 

8oGd.AMl Gd.B4 D-ll94 1500- 65 6 6 Outer scale----GdJ34 only C-2706 
1970 Vapor deposit--GdB6 and GdB4, eqc. C-2705 

1-1 
(X) 
0 8oGd.AM2 GdB4 C-2706 1900- 285 5 5 Inner core-----GdB4 only visual 

2100 to Outer scale----GdB4 only D-1400 
10 D-1402 

Vapor deposit--GdB6 a.nd GdB4, eqc. D-1399 
D-14ol 

lTbAM2 TbB4, mjr. visual 2000- Bo 4o 7 Inner core-----TbB4 only C-2814 
TbB6, mnr. 2100 Outer.scale----TbB4 only c-2813a 

Zr~/TbB4 interface--TbB4 and Zr~, eqc. C-2813b 

2Tb.AM Tb% c-2894 2100- 50 50 Inner core-----TbB6 and TbB4, eqc. C-2904 
TbB4, eqc. 2300 C-3220 

Outer scale----TbB4 only C-2903 
C-2814 

Vapor deposit--Tb%, mjr.; · TbB4, mnr. C-2905 



Initial 
Phase Temp. Time 

Sample Content Film ( 0 c • .) (min.) 

741Tb.AM TbB4 visual l600- 60 
2000 

3DY.AMa DyB6, mjr. C-2866 l950- 38 
DyB4, mnr .. 2090 

3Yb.AMa. YbB6, mjr. C-2895 (2000) 6o 
Yb:Bi2, mnr. 

t,..i 
co 
t,..i 

lY.AM 'YB6, mjr. C-2898 (2250) 108 
YB4, mnr. 
YB12, tr. 

TABLE 4. l, continued 

Weight 
Pressure Loss 

(io-6 mm.) ·('/o) Final Phase Content 

lOO Outer scale-----~----TbB4 only 
Zr~/TbB4 interface--TbB4 and Zr~, eqc. 

50 Inner core-----DyB6, mjr.; DyB4, mnr. 
Outer surface--DyB4, mjr.; DyB6, tr. 
Vapor deposit--DyB(S, -mjr.; DyB4, mnr. 

10 Inner core-----Yb:86, mjr.; YbB12, tr. 
Outer scale----YbB6, mjr.; YbBioo, mnr. ; 

YbB12, mnr. 
Vapor deposit--YbB6, mjr.; YbB4, mnr. 

20 Inner core-----YB6 and YB4, eqc. 
Outer scale----YB4, mjr.; YJ36, mnr. 

Vapor deposit--YB6, mjr.; YB4, mnr. 

Film 

C-28o6 
c-2813 -
c-2815 
c-2816 

c-2881 
c-2880 
C-3190 

C-3191 
c-3187 

C-3196 

C-3200 
C-2911 
C-3205 
D-169() 



In the case of La, Ce, Pr and Nd, the vaporization of samples 

containing tetraborides produced sample cylinders with outer scales of 

hexaboride from which single crystals of hexaboride of about 0.5mm. length 

protruded. The inner cores of the pellets either had increased somewhat 

in hexaboride content or had remained unchanged in composition from the . 

starting material. Mixtures of Gd, Tb, Dy and Y tetra- and hexaborides, 

when heated until appreciable vaporization had occurred, produced a layer 

of the tetraboride phase on each pellet. Protruding from this layer were 

small single crystals of tetraboride •. Again the pellet core was either 

unchanged in composition or richer in ·tetraboride. For a YbB6-YbB12 ini-

tial composition the ~esulting layer contained a phase mixture of YbB6 

and YbB100 with a trace of YbB12 present. Even though the hexaborides 

are ten to twenty percent more dense than the tetraborides, there was no 

visible evidence of spalling of the hexaboride layers or cracks in the 

tetraboride layers. The thickness of these insulating layers varied from 

one percent of the cylinder cross section to half the cross section radius, 

depending on the length of time and the temperature of the heating and on 

the lanthanide. The layer boundaries were quite apparent from the change 

in color from blue to gray. 

4. 1. 4 Interpretation 

4. 1. 4. 1 General·Considerations. The formation of a product 

layer of different composition from that of the bulk of the sample; a 

layer which completely covers the vaporizing solid as is found in the 

present work, could significantly retard the rate of vaporization. Even 

in congruent evaporation, where layer formation is absent, the rate of 
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free evaporation could be less than the rate of vaporization under closed-

crucible or saturated-vapor conditions. A discussion of the associated 

kinetic problems is worthwhile. 

Under equilibrium conditions in a Knudsen crucible, the rate limit-

ing process in vaporization is the1impingement on and escape through the 

crucible orifice (cf. Chapter 6. 3. 3) of the gaseous species in equilib-

rium with the solid. However, in the case of an infinitely large orifice, 

as in free ~vaporation experiments, the gas phase might be removed faster 

.than.it can be regenerated by decomposition of the solid. Then the rate 

limiting step may be any of a variety of processes in the mechanism by 

which the condensed structure decomposes on vaporization. It is clear 

that the rate limiting step in these Langmuir experiments is a process 

other than simple evaporation of gaseous species from the surface. 

In the Langmuir theory, discussed in Chapter 6. 3. 1, one of the 

factors which has to be determined or a value of unity assumed is the 

evaporation coefficient. This coefficient is the manifestation of a non-

equilibrium rate of escape of potential vapor species into the gas phase. 

Studies of the factors which contribute to a coefficient value different 

from unity are fundamental to appreciating the problems in determining 

equilibrium quantities from kinetic.processes and to appreciating the 

general problems of surface chemistry. 

There are at least two processes which could account for the be-

havior of La,.Ce, Pr, Nd and Yb borides. The observation of hexaboride 

layers forming on the pelle~.the boundaries of which move inward in the 

pellet, could be explained by a vaporization process limited by migration 

of metal to the surface or by movement of boron atoms toward the center of 
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the pellet. Similarly, the behavior of Gd, Tb, Dy and Y borides could be 

explained by rate limiting steps of metal movement toward the center of 

the pellet or by boron movement to the pellet surface. 

It is not the intention of this work to define the vaporization 

mechanism, but to define the processes by which these borides vaporize 

under equilibrium conditions. It is sufficient to note that the product 

boride on vaporizing mixtures of hexaboride and tetraboride for the metals, 

La, Ce, Pr .and Nd, was- hexaboride; and that the product boride for similar 

mixtures of Gd,. Tb, Dy and Y was the tetraboride. The product in the 

YbB6J'YbB12 mixture was.YbB100• Thus, even though these experiments are 

not equilibrium vaporization experiments, the interpretation of the vapori-

zation processes is reliable. 

The clear definition of phase boundaries, the absence of solid 

solution, the absence of spalling or cracking of layers, the availability 

of seventeen Group IIIB metals of widely different size and volatility, 

and the convenience of the experimental techniques, should provide a won-

derful.opportunity for future investigation to establish the factors in-

fluencing the vaporization mechanism and the vaporization kinetics for 

these borides. 

4. 1. 4. 2 La and Ce. The final product in both the La and Ce 

boride vaporizations was the hexaboride (cf. Table 4. 1). While the dis-

appearance of tetraboride in favor of a hexaboride product implies pref-

erential loss of metal to the gas from the tetraboride, another explana-

tion must also be considered because metal apparently.was formed in two 

of the three experimentso 
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The X-ray pattern from experiments 6LaAml and lCeAm showed small 

amounts of sesquioxide along with the hexaboride taken from the surface. 

Thus, lanthanum or cerium metal was probably present with the hexaboride 

in the vaporization residue. The metals are quite reactive with oxygen in 

the atmosphere at room temperatures. Indeed, the product of 6LaAml was 

observed to change texture from a purple-gray coherent body to a finely-

divided low-density powder in a matter of a few hours on exposure to air. 

The. presence of metal in the product could be explained by the 

incongruent melting of LaB4 or CeB4 to the hexaboride and liquid metal 

followed by quenching and slow ~ack reaction to tetraboride. Johnson and 

Daane (25) demonstrated incongruent melting of LaB4 at 1800°c. Brewer, 

Sawyer, Tem:pleton and Dauben (138) believe CeB4 melts incongruently above 

2000°c. The experimental temperatures in 6LaAM1 and lCeAM were above the 

tetraboride melting temperatures. The presence of CeB4 in the core of 

lCeAM after heating above the CeB4 incongruent melting temperature can be 

explained by a slower tem:perature drop on quenching in the pellet core 

than at the surface, allowing back reaction of metal and hexaboride to 

CeB4 to occur. 

While the incongruent melting of LaB4 and CeB4 does explain the 

presence of metal, it does not account for the appreciable weight loss 

during the vaporization experiment. The presence of CeB6 in the vapor 

deposit of lCe.AM indicates vaporization of both metal and boron. While 

preferential loss of metal gas from the tetraboride is not precluded, the 

vaporization process in these two experiments is not clear. However, the 

disappearance of LaB4 in favQr of LaB6 and the absence of metal in the 

product in experiment 6LaAM indicate preferential loss of lanthanum gas 
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from. LaB4 to a hexaboride product, and probably imply a congruently vapor-

izing hexaboride. The behavior of cerium is probably identical to that 

of lanthanum. 

4. I. 4. 3 Pr and Nd. The starting material in !Pr.AM, Table 4. 1, 

was a mixture of PrB6 and PrB4. · The· final product after vaporization was 

PrB6• Thus, PrB4 loses metal to the gas to form a PrB6 residue, which 

vaporizes congruently. 

In the three Nd experiments of Table 4. 1 the initial and final 

product was hexaboride. This observation implies congruent vaporization 

of NdB6 •. The observation. reported in Tabl~ 4. 1 of the coexistence of 

ZrB2, ZrB12, Nd.B6 and NdB4 at the ZrB2/Nd.B6 interface. would lead one to 

believe that NdB6 reacts with ZrB2 to form NdB4 and ZrB12• However, in 

Table 3, an unsuccessful attempt to cause reaction.between NdB6 .~d ZrB2 

in the arc .. melter was reported. In view of this interaction test and the 

failure to observe ZrB2 interaction in any other experiment, the observa-

tion in Table 4. 1 is not given much weight. 

4. 1. 4. 4 Yb. The starting material in the ytterbium. -free· evapo-

ration study (3Yb.AMa) was a mixture of YbB6 and YbB12• The final product 

on the surface of the PE?llet was a mixture of YbB6, YbB12 and YbB100• 

This observation implies preferential loss of metal from YbB6 and YbB12 
to form a YbB100 residue. 

The coexistence of three condensed phases in the product is dif-

ficult to interpret. No melting was.observed. Microscopic examination 

of the pellet cross section did not define separate la:yers of YbB6, YbB12 
and YbB100 because of the infinitesimal thickness of the outer scale. 
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. Certainly a kinetic explanation of the presence of three condensed phases 

must be involved. 

One reasonable explanation can be found in the following scheme. 

Initially, the process in equation.l. 4 (loss of Yb(g) from YbB6) occurred 

at the surface •. As more ytterbium was required, the .YbB12 layer increased· 

until the surfac~ activity of Yb was decreased to that in the process, 

(4) 

At the YbB12 critical thiclme·ss, YbB12 de~omposed to YbB100 at the surface. 

In the steady state, the outer layer was·YbB100• Just under this was a 

YbB12 layer, then.the core of the cylinder, which contained YbB6 in major 

amounts with smaller amounts of YbB12. Material scraped from the surface 

of such as.ample would show YbB100, YbB12 and YbB6 on X-ray analysis. Since 
/\ 

the metal content of YbB6 is high r~lative to YbB12 and YbB100, its enhanced 

X-ray scattering would make the apparent YbB6 content seem higher than it 

actually was. The critical thickness of YbB12 was probably quite small, 

explaining its low concentration in the layered structure. 

4. 1. 4. 5 Gd, Tb, Dy and Y. Mixtures of hexaboride and tetra-

boride in samples 81Gd.AMal to alO, 15-50GdAM, 15~50GdAM2, 1TbAM2, 2TbAM, 

and 3DyAMa (cf •. Table 4. 1) were the starting materials in all these ex-

periments. In every case the residue was tetraboride, indicating pref-

erential loss of boron gas from the hexaboride and probable congruent tetra-

boride vaporization. In samples 8oGdAMl, 80GdAM2 and 741TbAM the initial 

and final products both were tetraborides, confirming congruence of tetra-

boride vaporization. 

Experiment 770GdAM was an attempt to approach Gd.B4 by vaporiza- · 

tion of excess metal from a metal-rich starting material. The temperature 
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of the experiment exceeded the gadolinium melting point. At this relatively 

low temperature, vaporization was not appreciable. On exposure .to the 

atmosphere, the metal reacted partially with oxygen to form aa.2o3. 'I'he 

experiment demonstrated that Gd.B2 does not exist at these temperatures. 

Sample IY.AM contained a mixture of YB4, YB6 and YB12 initially and 

a final product .of YB4 and YB6 with the concentration of YB4 much higher 

than in the starting mixture. No YB12 was observed in the product. These 

observationp imply preferential loss of boron gas from
0

YB12 and YB6 to 

YB4, which probably vaporizes congruently. 

4. 1. 4. 6 General Conclusions. With the assumption of the 

absence of gaseous molecules (cf. Chapter 5), the conclusions reached 

from this free evaporation survey a.re these: First, La, Ce, Pr and Nd 

borides vaporize according to the processes defined in equations 1. 1 

(loss of Ln(g) from LnB4) and 1. 5 (congruency of LnB6). Second, Gd, Tb, 

Dy and Y borides vaporize according to the processes of equations 1. 2 

(congruency of LnB4) and 1. 6 (loss of B(g) from LnB6). Finally, ytterbium 

probably exhibits the behavior of equations 1. 1 (loss of Ln(g) from 

LnB4), 1. 4 (loss of Ln(g) from LnB6) and 4 (~oss of Ln(g) from LnB12) with 

the hectoboride vaporizing congruently. 

4. 2 Knudsen Evaporation Experiments 

4. 2. 1 Scope of the Experiments 

In order to confirm the validity of the conclusions of the free 

evaporation experiments, Knudsen evaporation experiments (cf. Chapter 8. 2) 

in ZrB2 crucibles were performed ~n selected portions of the boride residues 
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of the free evaporation studies. Hexaborides bf lanthanum, cerium and 

gadolinium and hexaboride/tetraboride mixtures of praseodymium and neo-

dymium were vaporized. GdB4 was investigated in many Knudsen experiments. 

4. 2. 2 Experimental 

Lanthanum, cerium, praseodym.ium·and neodymium hexaboride-contain-

ing samples were obtained from the outer surfaces of the pellets resulting I . 

from the free evaporation experiments of Table 4. 1. The GdB4 samples 

were portions of the residue of 81Gd.AMalO in Table 4. 1. Gadolinium hexa-

boride, 83Gd.AM, was prepared according to.the technique described in 

Chapter 2. 2. 2. 

The boride powders were placed into a 5/811 diameter, outgassed, 

tared, ZrB2 crucible fitted with a tared ZrB2 lid, in which a 1mm. cylin-

.drical orifice had been drilled. This crucible (cf. Figure 8. 4) was 

enclosed in a graphite outer crucible, mounted on a tantalum tripod on a 

quartz semi-kinematic table, surrounded by a tantalum heat shield and 

encased in a glass vacuum asse~bly similar to Figure 8. · 3 and capable ~f 

evacuation to.a pressure of 5 x 10-7nnn. The crucible was heated by in-

duction and the temperature determined from a calibrated optical pyromet~ic 

sighting of a black-body hole in the bottom of the graphite crucible. The 

lid was a few degrees cooler than the base of the crucible. Thus, lid 

deposits. could be examined. After appreciable material was thought to 

have vaporized, the apparatus was disassembled and the deposits on the 

ZrB2 lid and the residues were analyzed by X-ray diffraction and microscopy 

for the phases present. Melting of the crucible or contents was not ob-

served in any of these experiments. 



These experiments are summarized in Table 4. 2. The columns in 

Table 4. 2 are self-explanatory except for columns four and seven. Column 

four lists the initial total weight in milligrams of the sample in the 

crucible of coltunn three. Column seven contains the sample weight loss 

in milligrams. The difference in the weight of the ZrB2 crucible base 

with its contents before and after the experiment was corrected for the 

weight loss on vaporization of the ZrB2 base during the experiment, which 

was obtaine~ by the difference in initial and final empty crucible weights. 

Thus, the weight loss of col~ seven represents the weight of lanthanide 

boride lost from the base of the ZrB2 crucible to the ZrB2 lid, the graphite 

outer crucible, or the vacuum apparatus during the heating period. 

4. 2. 3. Results 

None of the kinetic problems noted in Chapter 4. 1 was observed 

in these experiments. No layered structures were observed on the sample 

granules after appreciable vaporization had occurred. In addition, no 

lattice parameter variation was observed for any of the borides involved, 

implying univariant vaporization conditions. 

Initial samples of LaB6, CeB6 and PrB6 did not change solid compqsi-

tion while producing appreciable lid deposits _of hexaboride. The NdB4/NdB6-

mixture heating was inconclusive because of insufficient material trans-

port. In many experiments, Gd.B4 was observed to vaporize congruently with 

very large weight losses. Experiment 769Gd.AM demonstrated that Gd.B6 lost 

boron to the gas phase preferentially on heating, leaving a Gd.B4 residue. 

No interaction of these samples with the ZrB2 crucibles was ob-

served. In the lanthanum hexaboride heating, a deposit of LaB6 was ob-
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TABLE 4. 2 

Knudsen Evaporation Experiments in ZrB2 Crucibles 

Initial Initial Weight 
Phase Cru- Weight Temp. Time Loss Residue 

Sample Content cible (g.) (OC •) (min.) (g.) Phases Film Lid Deposit Film 

6LaAM2 LaB6 ZrB2-4 0.17990 2070 63 0.05723 LaB6 only D-1913 LaB6 only C-3115 
(6LaAM) 

863ceAM CeB6 ZrB2-4 0.10178 2000 8o 0.01848 CeB6 only C-3119 CeB6 only C-3112 
(lCeAM). 

lPrAMb PrB6, mjr. _ ZrB2-l 0.03790 208o 16 0.01553 PrB6 only C-3014 PrB6, mjr. C-3012 
PrB4,,,tr. Zr~, mnr . ..... 

\D (lPrAM) PrB4, tr. ..... 

7NdAMb NdB6, mjr. ZrB2-l 0.05030 :> 1850 15 0.00121 NdB6, mjr. C-2939 no identi-
NdB4, tr. NdB4, tr. fication 

(7NdAMa) 

835GdAM GdB4 
(81GdAMa10) 

ZrB2-4 1720 27 Gd.B4 only visual Gd.B4 only visual 

Slf3GdAM GdB4 ZrB2-4 1820 283 Gd.B4 only visual Gd.B4 only visual 
(81GdAMa10) 

923GdAM GdB4 ZrB2-2 0.59295 1700- hours o.48472 Gd.B4 only visual GdB4 and C-3211 
(81GdAMa10) 2200 ZrB2 C-3215 

Knu~sen effusion sample C-3215a 

937GdAM GdB4 ZrB2-4 1.41175 1700- hours 0.66547 GdB4 only visual Gd.B4 only C-3214 
(81GdAMa10) 2200 

Knudsen effusion sample 



...... 
\0 
(\) 

Sample 

759GdAM 

Initial 
Phase 

Content 

GdB6 
(83GdAM) 

Initial 
Cru- Weight 
cible (g.) 

ZrB2-l 0.24657 

TABLE 4. 2, continued 

Weight 
Temp. Time Loss Residue 
(oc.) (min.) (g.) Phases Film Lid Deposit Film 

16oo 70 GdB6 and C-2863 no identi-
Gd.B4 fication 



served on the bottom of the graphite lid of the outer crucible at the 

periphery of its orifice. Apparently, the solubility limit of carbon in 

LaB6 was not exceeded under these conditions; otherwise LaB2C2 would have 

been observed (cf. Figure 3. 2, Part I). On the other hand, a similar 

deposit of Gd.B4 on the graphite outer crucible resulted in Gd.B2C2, as 

expected (cf, Part I). 

4. 2. 4 Confirmation of Free Evaporation Observations 

All of these equilibrium observations confirm the interpretation 

of the Langmuir free evaporation heatings above. Because of the square 

root dependence on the molecular weight in a vaporization experiment (cf. 

Chapter 6. 3), the rate of escape of boron atoms into the gas is much 

faster than that of the much· . heavier metal atoms. It is possible that 

the boron loss is so highly preferred that a solid phase, which would 

vaporize congruently under equilibrium conq.itions, might show a preferen-

tial loss of boron to the gas and force the appearance of the next lower 

solid boride. Further, a solid, which would normally lose metal to the 

gas preferentially, might be constrained to vaporize congruently. These 

Knudsen experiments deny that the component activities in the free evapora-

tion experiments have changed sufficiently from equilibrium values for 

the systems to vaporize by processes different from the equilibrium proc-

ess. 

4. 2. 5 Previously Observed Vaporization Behaviors 

The literature contains evidence for the vaporization behavior of 

these and other lanthanide borides. Eick, in a communication. to Leitnaker 

(133), stated that LaB6 vaporizes congruently. This behavior is contrary 
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to the observation by Lafferty (103), who found that LaB6 loses lanthanum 

gas preferentially. However, Lafferty's experiments involved vaporization 

from reactive graphite, tantalum and tantalum carbide substrates, which 

abstracted boron and released metal gas (133). 

Galloway and Eick (117) have studied the vaporization of samarium · 

borides in various Knudsen cells. They concluded that SmB4, which is dif-

ficult to prepare, vaporizes to lose samarium gas and form SmB6 solid. 

They furthe.r concluded. that SmB6 vaporizes congruently. 

As noted above in Chapter 2. 1. 4, EuB4 apparently cannot be made. 

Efforts to prepare EuB4 result in EuB6, indicating the decomposition of 

Eu.B4 to EuB6 solid and europium gas in vacuum. 

Eick and Gilles (02), on attempting YbB4 preparation, found only 

ytterbium and YbB6• Post, et al. (113), noted difficulty in preparing 

single-phase YbB4 •. _This research could not produce YbB4 without YbB6 

present. These observations indicate that YbB4 also decomposes to ytter-

bium gas and YbB6 solid in vacuum. 

Eick and Gilles (139) prepared holmium and erbium borides in 

molybdenum and tungsten crucibles. They presented evidence for the pref-

erential loss of boron to the gas phase from DyB6, HoB6 and "ErB6." Fur-

ther, an ErB4 preparation in this work produced a two-phase mixture of 

ErB4 and ErB12, not ErB4 and ErB6. Eick and Gille.s (02) could not prepare 

ErB6 in any manner. Sturgeon and Eick have noted difficulty in preparing 

ErB6 (101). These observations indicate that ErB6 is unstable with.respect 
/ 

to ErB12 and ErB4 solids. ErB12 probably loses boron to ErB4 solid. 

The uranium-boron system is similar to the erbium-boron system. 

The phase, UB6, has not been prepared. Brewer, Sawyer, Templeton and 
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Dauben (74), Bertaut and Blum (109) and Andrieux and Blum (110) reported 

that UB12 decomposes to UB4 because of the high boron pressure over UB12 
above 1500°c. 

Magnesium, which has a metal volatility a little higher than that 

of ytterbium, is lost preferentially from MgB2 and MgB6 leaving a final 

product of MgB12 according to Markovsk.y, Kondrashev and Kaputovska.ya (140) 

and Wright and Walsh. 

In surnm.a.ry, the free evaporation experiments, the Knudsen evapora-

tion experiments and the boride preparation experiments indicate congruent 

vaporization of LnB6 and preferential. loss of metal from the tetraborides 

for the five lanthan:J,.de metals,·La, Ce, Pr, Nd and Sm. For four of the 

metals, aa., Tb! Dy and Y, the opposite behavior, i.e., loss of boron gas 

from the hexaboride, is exhibited. The tetraboride, EuB4, loses europium 

and has either a congruently vaporizing hexaboride or a hexaboride which 

loses metal preferentially. The phases HoB6 and ErB12 appear to lose 

boron gas to tetraboride residues. Their tetraborides probably vaporize 

congruently. The tetraboride of ytterbium vaporizes with loss of metal 

gas to YbB6; and, also, YbB6 loses ytterbium preferentially to form a 

YbB12 residue. YbB12, in turn, appears to lose ytterbium to YbB100, which 

either vaporizes congruently or loses ytterbium to elemental boron. These 

vaporization processes a.re summarized in Figure 4. 
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CHAPI'ER 5 

GASEOUS SPECIES 

5. 1 Background on Gaseous Species Identification 

After establishing the vapor and solid composition changes on 

vaporization of these borides, it is then necessary to identify the gaseous 

species in order to establish the vaporization reaction. Molecular gas 

species strongly influence the way that a system vaporizes. Equilibrium 

pressure measurements cannot be interpreted unless the species exhibiting 

the pressure are known. For instance, Gd.B4 may vaporize congruently in 

many ways: 

Gd.B4(s) = Gd(g) + 4B(g) 

GdB4(s) = GdB2(g) + 2B(g) 

GdB4(s) = GdB(g) + 3B(g) 

Gd.B4(s) = GdB4(g) 

GdB4(s) = GdB(g) + 3/2 B2(g) 

GdB4(s) = 1/2 Gd2B2(g).+ 3B(g) 

Which of these processes is most important? 

(5. 1) 

(5 .. 2) 

(5. 3) 

(5. 4) 

(5. 5) 

(5. 6) 

Many indirect methods available for establishing the vapor species 

are discussed by Gilles (142). Among these methods are the coupling of 

the pressures measued by transpiration, torsion effusion or Knudsen effu-

sion techniques on the same system to define the average molecular weight 
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of the gas. Enthalpy changes .for each of the possible processes may be 

estimated and pressures predicted. If the predicted pressures differ 

widely from the observed pressures, the process suspected may be ruled 

out. Discrepancy between a Third and a Second Law treatment of pressure 

data and any unreasonable thermodynamic quantities might imply an errone-

ously assigned process. Further, emission spectrographic analysis might 

indicate molecular species. There are, of course, many more methods. But 

the most direct method to identify gaseous species is with mass spectro-

metry. 

No metal boride gaseous molecule has yet been discovered. The 

molecule, B2, was reported by Ch11pka (143), but is not very import.ant 

with respect to monatomic boron gas over solid boron at 2500°K • .Also, 

Ln2 gas is unimportant over lanthanide metal (144, 49). In order to con-

firm that atomic species alone exist in the gas phase, samples of terbium 

and gadolinium borides were vaporized in a mass spectrometer and the prin-

cipal ion currents were determined. 

5. 2 Experimental 

The mass spectrometer employed in this study.was a 1211 radius, 

,magnetic, 60° sector, first-order, direction-focusing instrument of the 

Inghram design (145-6) and was custom built by Nuclide Analysis Associates, 

State College, Pa. Mixtures of TbB4 and TbB6 and of Gd.B4 and Gd.B6 were va-

porized :in tungsten effusion cells heated by electron bombardment. Samples 

of Gd.B4 were vaporized from a ZrB2/C crucible (cf. Figure 8. 4). Tempera-

ture was determined by a pyrometric sighting on a black-body hole in the 

side or base of the crucible. By moving a shutter between the orifice of 



the crucible. and the ionization region, any mass escaping from the cruci-

ble can be distinguished from background at that mass. This procedure is 

called a shutter check. The temperature range investigated was 1300 to 

5. 3 Results 

+ + + + + + + + w Shutter checks of B2, Tb2, Gd2, TbB, Gd13, TbB2, Gd.B2, Gd.B3, GdBLJ., 
+ + + + ~ ·+ . Gd.B6, Tb2B2, Gd2B2, aa.3, Tb2" and Gd2B were all negative. Excellent 

positive shutter checks on Tb+, aa.+, :sr, Tb++ and aa.++ were obtained. No 

other appreciable ion currents were observed except those which represent 

the normal background in a typical mass- spectrum. The limit of detection· 

with the electron multiplier and low background was about 1/1000 of the 

principal sample peak intensity. Therefore, the lanthanide borides vapor-

ize according to net processes involving gaseous atomic species only. 
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CHAPrER 6 

THEORETICAL BACKGROUND FOR MEASUREMENT AND TREA'IMENT OF PRESSURES 

6. 1 Phase Rule 

When the numbers of phases and components present fix the variance 

of the system at one, at each temperature there will be a unique pressure 

and composition. For example, univariant conditions exist for the loss 

of boron from Gd.B6 to form GdB4. There are three phases and.two components. 

Thus, there is only one degree of freedom for the system. Then the boron 

pressure is fixed when the temperature is fixed. In the case of congruent 

vaporization, the vapor composition and the solid composition are the same. 

Thus, even though there are only two phases and two components, the addi-

tional composition restraint still ~stablishes unit variance. Consequentl:>5 

pressure is a function of temperature only. Measurement of the pressure 

as a function of temperature under univariant conditions will provide 

thermodynamic information about the equilibrium studied (cf. Chapter 6. 

4). 

6.-2 Temperature Measurement 

By matching the brightness of a filament in a temperature-calib-

rated potentiometer circuit with the brightness of a black-body hole 

drilled into the crucible, a precise temperature may be ascertained. Tem-

peratures in these experiments were determined by Leeds and Northrup 
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vanishing-filament optical pyrometer, P-3, serial number 1157029. The 

background principles in optical pyrometry are discussed by Kostkowski 

and Lee (147). 

The pyrometer used in these experiments was calibrated by the 

National Bureau of Standards, test no. G-24953b, and also cali~rated 

against another NBS-calibrated pyrometer (ser.' no. 723042, test no. 

G-26364) by the observation of .the brightness of a tungsten band lamp 

with both pyrometers •. The calibrat'.1on temperature range was 900 to 

2200°c. The differences in the two calibrations were usually less than 

three degrees and never more than six ,degrees. 

When a sighting was made through a prism and window in the vacuum 

assembly, a correction for the brightness attenuation may be made with the· 

relation, 

(6. 1) 

where T0 is the true temperature in the black-body hole, Tt is the apparent 

temperature oi:i the pyrometer sea.le 1 __ El.~c:l C J.f?. a ~onstan~ d,etermined experi--· -·--· .. - ·-··· ·- .. .... ··- -- -··· ... - - -- - . - . -

mentally by sighting on a tungsten band lamp. with and without optics at 

several temperatures. 

It is believed that the error in pyrometer calibration, compounded 

by the error in calibration of optics and the error in the actual experi-

mental observations, would not exceed a total temperature error of about 

ten degrees. While temperature observations were taken often and were. 

reproducible to two or three degrees during the vaporization experiments, 

drifts in the power output· of the induction furnace caused a slow 
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temperature drop with time, which was corrected after an average three 

degree drop by increasing the power output of the induction heater. 

6. 3 Pressure Measurement 

Pressure measurement in the range 10-ll to 10-3mm. is discussed 

briefly by Bockris, White and Mackenzie (148). The techniques employed 

in this work all depend on the measurement of a kinetic property of ideal 

gas flow, 'Wtlicll can be. interpreted in terms of equilibrium pressures in 

equilibrium systems. The three experimental methods employed to measure 

pressures in this work are the Langmuir effusion, the mass spectrometric 

apd the Knudsen effusion te.cllniques. 

6 •. 3 •. 1 Langmuir 

The Langmuir technique (149) involves the measurement of the rate 

of evaporation into a vacuum and uses the expression, 

(6. 2) 

where Wis the weight loss from the sa.m,ple in grams, Mis the molecular 

weight of the eff'µsing species, a is the total surface area of the sample 

in cm2., tis the total time in seconds, Tis the absolute temperature of 

the experiment, PL is the pressure in atmospheres and o( is the evaporation 

coefficient. 

The evaporation coefficient is defined as the ratio of the actual 

evaporation rate to the absolute evaporation rate ·characteristic of the 

material under equilibrium ·conditions. It is normally assumed'that this 

'coefficient ~s unity and the rate·limiting step on vaporization is deter-
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mined by the simple desorption from the solid surface of activated potential 

gaseous species into the vacuum. Since the sample is not enclosed in a 

crucible in Langmuir experiments and since vaporization occurs into a 

vacuum., it is possible for other processes to be rate ·limiting, as in 

Chapter 4-. 1. 4. Then this coefficient is not unity and usually is not 

known •. Further, the temperature dependence of 0( is not known. There-

fore, neither Second Law nor Third Law treatments (cf. Chapter 7. 4) can 

be applied ~o the measured evaporation rate if ex is not unity • 
.. 

The definition of the temperature in equation 6. 2 is difficult. 

The temperature required is the surface temperature. Without a knowledge 

of the characteristic emissivity for the sample, temperature must be ob-

served from a black-body hole below the surface. This temperature may be 

quite different from the surface temperature. Further, the energy ex-

change on interaction of gases with condensed surfaces has led Knudsen 

(15.9-1) to postulate a thermal acconnnodation coefficient, which accounts 

for a temperature difference between the condensed surface and the gas. 

A definition of surface area strictly is not composed simply of 

the flat area calculated from the gross dimensions of the sa.Irg?le. The 

evaporating area is composed of all the microscopic topographic area. 

Congruent evaporation in a Langmuir experiment requires that the 

composition of the escaping gas be the same as the condensed phase com-

position. Since the rate of escape of a particular species varies in-

versely with Ml/2, the pressure (calculated .from equation 6. 2) of metal 

and of boron will not be in the same ratio as the evaporating condensed 

phase, but will exhibit a ratio adjusted by their M1/ 2 values. 
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In the weight loss measurements on Gd.B4 in Chapter 9 the Langmuir 

equation 6. 2·was used with the asstunption of unity for the evaporation 

coefficient. To interpret weight loss data in terms of gadolinium and 

boron pressures, the following relations are derived on the basis of the 

congruent vaporization of one mole of Gd.B4. 

Waa. = ffiao_/(Mao_ + 4.00M:a)J W, ( 6. 3) 

and 

(6. 4) 

Subst1itution· of equations 6. 3 and 6. 4 into 6. 2 produces the relations, 

( 6. 5) 

and 

(6. 6) 

The solution of equations 6. 5 and 6. 6 for PB reveals the relation be-

tween PB and PGd for this process: 

(6. 7) 

If the evaporation coefficient, o( , is not unity, the boron and 

gadolinium pressures calculated from this treatment will be lower than 

the equilibrium pressures •. A non-unity evaporation coefficient was indeed 

observed in this work (c~. Figure 13). 
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6. 3. 2. Mass Spectrometer 

Mass spectrometry provides a tool for analyzing the vapor from a 

Knudsen ce.11 for both its mass and intensity distributions. One asks 

the question, "What is the relation between the ion current produced at a 

mass spectrometer detector and the equilibrium pressure of a species in 

a Knudsen cell below the mass analyzer? 11 From electron impact and kinetid 

principles, Ii oC ci ti tr i at constant ionizing electron energy. The ion 

current for· the ith species is given by I!; Ci is the number of i mole-

cules passing through the ionizing region per unit time per unit area; 

ti is the average residence time of the molecules in the ionizing region; 

and <r i is the fraction ionized. Th id t . ' ' b t· l e res ence ime is given y i = v·' 
l 

where vi is the velocity of the neutral molecules and 1 is the length of 

the ionizing region. Kinetic energy is given by 1/~vf = A k T, for 
rn 1 + ~i .!. thermal energies. Thus, vioC (ii'ir)2 • Hence, I 1 oC ci (,T)2, where m1 is 

the mass of an i molecule. Now from the Knudsen theory, the rate of 

escape of species i from a Knudsen crucible is given by 
I ~ .!_ 

c. = pi/(21Tm.kT) 2 oC p./(m.T)2, where c! is the number of i molecules 1 l 1 l 1 · · 

leaving the crucible per unit time per unit orifice area; pi is the equi-

librium pressure ove~ the condensed phase in the crucible; and illj_ is the 

mass of an i molecule. The fraction of effusate passing through the 

ionizing region is defined by the geometry of the system and is a con-
, + .!. .1. 

stant. Hence, c1· of:. c1·• Therefore, I. ot. a-1 p./(m1T) 2 • (m./T) 2 c£ er. p. /T. l 1 l . 1 1 

Finally, p1 = k 1 ~:· it T, defines the desired relation between ion cur: 

rent and Knudsen pressure. Similar derivations are presented by Inghram 

and Drowa.rt (152), by Chupka and Inghram (153) and by Drowart and Gold-

finger ( 154) • 
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This relation is described in its more usual form in equation 6. 8. 

(6. 8) 

+ The quantity, Ii, is the measured ion current for t~e ith species; Tis 

the absolute temperature o~ the sample; <:r 1, ~he cross section, is the 

fraction of vapor species, i, ionized from a particular charged state or 

a neutral state to another particular charge on passing across the electron 

gun; r i'. th~ multiplier efficiency, is the number of secondary electrons 

formed on the first d.ynode stage of the electron multiplier on impact of 

each ith species ion at a particular accelerating potential; n1 is the 

fractional abundance of the particular isotope to all isotopes of the ith 

species; Pi is the pressure of the ith species; and K is a machine constant 
, .. 

characteristic of the magnet radius, source and collector defining slit 

widths, Clausing and distribution corrections on the effusion from the 

Knudsen crucible, Knudsen cell orientation wi_th respect to the source 

slit and other geometric considerations. 

Absolute values for ("1 have not been determined, but relative 

values are available or can be estimated from the data of Otvos and 

Stevenson (155). Since there is no theoretical or experimental deter-

mination of ·absolute cross sections, unknown pressures must be deter-

mined by comparing intensity measurements on the ith species to the in-

tensity of a species, s, of known pressure, for which relative values of 

(f i and <rs are known. Th us, 

(6. 9) 
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Dividing equation 6. 8 by equation 6. 9 and rearranging, one derives the 

relation, 

(6.10) 

Implicit in equation 6.10 is the assumption that the ionizing potential, 

machine constant, electron gun current, ionization region temperature, 

focusing voltages and multiJ)lier characteristics are constant for both 

sets of measurements. For observations at different electron gun voltages, 

a correction must be made on Pi according to the expression, 

where Eis the electron gun voltage and A is the extrapolated-slope appear-

ance potential determined from a plot of ion current versus electron gurr 

voltage. Changes in the intensities are linear with the regulated electron 

gun current ·and can easily be corrected to th.e same gun current. 

If one defines an effective sensitivity constant, which represents 

the collected charge per effused neutral particle, as 

equation 6.11 may be simplified to 

.P = 
(E-Ah 
(E-A) 8 

(6.12) 

(6.13) 

* The quantity, 8
8

, is determined experimentally from any convenient well 

known pressure-temperature relationship, e.g., the vaporization of silver. 

The ratio, gel r1, may be determined experimentally as the ratio of mul-
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tiplier gains for the sth and ith species at constant accelerating poten-

tial and multip~ier characteristicsn 

.Another calibrating procedure, which has the advantage of not re-

quiring an estimate of the relative ionization cross sections and the 

multiplier efficiency, arises from the relation (156) 5 

and the Kn1.1:dsen expression for pressure of equation 6.17. 

8 = a Miio.0585 Jt. I! dt 
i w Ti J i . .' .2 

0 . . 

and 

(6.14) 

(6.15) 

(6.16) 

The quantity, Si, is the sensitivity of the machine in amperes per atmos-

1phere · for the species, L In practice, s1 is determined [py vaporizing 

to dryness a known weight, Wi, of solid, i, through a Knudsen orifice of 

area, a. During the total evaporation the temperature may be varied, but 

the.intensity and length of time during which a particular temperature was 

held are measured. If for some reason it is difficult to determine the 

total weight vaporized of the species whose pressur~ is to b~ measured, 

Ss for some standard such as silver might be determined as in equation 

6.16~ However, a knowledge of the relative cross sections of specie~ s 

and i~ would then be required •. One must be careful to include Clausing 

and effusion-distribution geometric corrections in equations 6.15 and 6.16,, 

if vaporization occurs through a non-ideal orifice. The simultaneous meas-
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urement of the temperature coefficient on the sample species while deter-

mining the ion current-time-temperature sensitivity relationship is an-

other, advantage of the calibration procedure of equation 6.16. Thus, Third 

Law as well as Second Law treatment· of the pressure data can be performed 

(cf. Chapter 6. 4). 

The ad.vantages mass spectrometry affords include direct measurement 

of the vapor composition, continuous partial pressure measurement, very 

high sensi t.i vi ty, ionization potential determination, appearance potential 

l;!Jld dissociation energy measurement, wide range of pressure, temperature 

and mass applicability, an understanding of the effect of background gases 

and crucible,materials on mass transport, rapid discovery of ~et vapori-

zation process, discovery of solid solution effects and recognition of 

equilibrium conditions. 

The principal. difficulty in the use of a mass spectrometer for 

thermodynamic measurements lies in relating the observed ion currents to 

the partial pressures. Aside from the problem of determining the ioniza-

tion cross section for a particular species, parent and fragment ions must 

be recognized and the source of the observed ions characterized. Further, 

with the electron bombardment heating technique used in most high tempera-

ture mass spectrometers (cf. Chapter 8. ·,3), temperature gradients are 

quite large and temperature measurement is difficult. 

6. 3. 3 Knudsen 

From the kinetic theory of ideal'gases, Knudsen (150-1, 157-8) 
derived the following expression relating the rate of effusion of gaseous 
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species through a small area knife-edge orifice in a crucible to the equi-

librium pressure inside the crucible. 

(6.17) 

The quantities, PK, t, W, T and M have the same significance and dimen-

sions as in the Langmuir expression (cf.· Chapter 6. 3, 1), However, a 

is the area of the orifice and not the sample area. 

For orifices which are not knife-edged, a geometric correction 

to PK must be made because of channeling of the effusate, This correc-

tion is called the Clausing correct1on., W
0 

(159-60), Further, if the 

orifice is so large compared to the sample area that the condensed sa.m;ple 

cannot vaporize as fast as the vapor leaves the .. orifice, rate measure-

ments will not indicate the eq_uilibrium pressures. Thus, under these 

conditions a correction, called the condensation coefficient, must be 

made on·the observed pressures, The form of this correction has been dis-

cussed by Motzfeldt (161) and by Carlson, Gilles and Thorn (162). 

If one is collecting the effusate on a target rather than deter-

mining the weight loss of the sample, a correction must be made which 

relates the fraction of the total effusate intercepted by the target to 

the total flux of effusate from.the orifice (148). This correction was 

applied in the Knudsen data and is discussed in Chapter 11- 3 and in 

Chapter 12. 7. The theot"etical significance o'f the condensation coeffi-

cient and of the evaporation and acconnnodation coefficient is discussed 

by Knacke and Stranski (163) and by Hirth and Pound (164), 
Congruent evaporation in a Knudsen experiment requires that the 

rate of escape of the components through the crucible orifice be in the 
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same ratio as that i.n the conde·nsed phase in the crucible.. Necessarily, 

then, the equilibrium partial pressures in the.Knudsen crucible will not 

be in this ratio, but will deviate by the.ratio of M1/ 2 of the species (cf. 

Chapter 6. 3. 1). In particular, the ratio of the boron pressure to the 

gadolinium pressure over congruently vaporizing GdB4. 00 in a Knudsen cell 

will not be four but 4/3.8. 

6. 4 Thermodynamics 

6. 4. 1 Second Law 

For a system containing a condensed substance and its vapor at 

equilibrimn with each other, the standard Gibbs free energy change is 

given by 

l:lF0 = -RT ln K = AH0 -T AS0 • 

Rearrangement of equation 6.18 leads to 

In the process, 

Further, 

1n K = -AH0 /RT +~S0 /R. 

Gd.B4(s) = Gd(g) + 4 B(g), 

4 K = Paa.PB 

for pure GdB4(s) and ideal gases. 
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(6.19) 

(6.20) 

(6.21) 
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Substituting equation 6. 7 into equation 6.22, one derives the relation, 

(6.23) 

Substitution of equation 6.23 into equation 6.19 yields the relation, 

(6.24) 

It is apparent that a plot ·of ln Paa. versus 1/T will produce a straight 

line, if .6.C~ for the process is zero in the temperature range of interest. 

The slope of such a curve is proportional to the standard heat of vapori-

zation of Gd.B4(s), and the ordinate intercept is proportional to the stand-

ard entropy change for the process, both in the temperature range studied, 

From a knowledge of heat capacity as a function of temperature, these 

thermodynamic quantities ma;y be obtained at other temperatures. This 

method of reducing observed temperature coefficient data to thermodynamic 

entities is called the Second Law Method. 

6. 4. 2. Third Law 

By definition, 

FTO B H~ TS0 
-... .c - T• (6.25) 

By subtracting a standard enthalpy at some reference temperature, Q, from 

both sides of equation 6.25 and dividing by th~ absolute temperature, the 

relation, 

(6.26) 

is established. This relation defines the free-energy-function for a 
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reactant or product. The coupling of the sum of the free-energy-function 

for reactants and products-produces the relation, 

(~F~ -AH~)/T = I ., (fef~) j - . I. (fef~)i =ll,fef0 
e 

prode. react·. 
. i i 

(6.2'7) 

Substitution of equation 6.18 into equation 6.27 and rearrangement produces 

equation 6.28. 

A~ = T ( -R 1n K - Afef0
) • (6.28) 

Substitution for K in terms of the gadolinium pressure produces the re.-

lation, 

(6.29) 

The quantity calculated from the measured pressures in the vapori-

zation experiments is the standard free energy change for the vaporiza-

tion at the temperature of the experiment, as indicated by equation 6.18. 

If data are available for calculating or estimating absolute.entropies for 

all reactants and products in the process at the tem:perature of the meas-

urement, th~n the standard heat of vaporization may be calculated at the 

temperature of the experiment by equation 6.18. If standard free-energy-

functions for the reactants and products may be determined from standard 

heat capacity and entropy data or from statist~cal mechanical methods, 

then the standard enthalphy change for the vaporization may be determined 

at some reference temperature for each experimental pressure-temperature 

measurement, as is indicated by equation 6.29. This treatment of experi-

mental data is called the Third Law Method. 
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These methods and their reliabilities a.re discussed by Lewis and 

Randall ( 70), by Car lsoi, Gilles and Thorn ( 162), by Brewer ( 165 ) and by 

Ackermann and Thorn (166). Generally the Third Law treatment is preferred 

because of the inherent temperature-dependent errors of the Second Law 

method. Estimates of entropies a.re often quite good and the free-energy-

function lends itself to extrapolation without serious error into tem-

perature regions where heat capacity data are unavailable. Comparison 

of Second an9- Third Law enthalpies and entropies and variations of Third 

La.:w enthalpies with temperature will provide insight into the errors 

involved in the experimental measurements, 
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CHAPrER 7 

GdB4 AND Gd.B6 CHEMICAL ANALYSES 

Chemical analyses of gadolinium boride·samples for both boron and 

gadolinium were performed on Gd.B4 (81Gd.AM) and GdB6 (83Gd.AM) samples after 

arc nelter preparation (cf •. Chapters 2. 2. ·1 and 2. 2. 2), on the Langmuir 

Gd.B4 residue (81Gd.AMalO), and on the mass spectrometric GdB4 residue 

(81Gd.AMall). These analyses were intended to confirm the stoichiometry 

of these borides, to establish solid solution effects, to confirm the 

constancy of the vaporizing GdB4 composition, and to reveal serious re-

action, if any, with background gases or crucible. 

The analytical technique employed in analysis of the vaporiza-

tion residues is described in Part I, Chapter 4. 2. The theoretical 

· Gd.B4,00 analysis should be 21.58~_B and 78.42"/, Gd and for GdB6•00 should 

be 71.10% Gd and 28.90% boron. -Analyses of the gadolinium boride materials 

employed in this work ai~e summarized in Table 7 ~ Column one denotes the 

samples with its analysis number. The digit before the decimal indicates 

the 100 ml. solution containing the dissolved weight of sample of column 

two. The digit after the decimal indicates the analysis performed on 

different aliquots taken from this particular dissolved sample. Lower 

case letters after this digit indicate multiple boron analyses on the 

filtrate after precipitating gadolinium from a particular aliquot. Columns 

three and four contain the weight percent of gadolinium and boron, respec-
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TABLE 7 

GdB4 and GdB6 Chemical Analysis 

Weight 
Sample (g.) % Gd 'foB % Total Compos it ion. 

Initial Gd.B4 Products 

81GdAM-l.2 o.46o97 75.24 17.75 92.99 GdB3.43 
-2.1 .82034 77.92 17.23 95.15 GdB3.22 
-2.2 .82034 76.46 17.30 93.76 GdB3.29 ...... -1.1 .46o97 77.14 

76.69 ± 1.20 17.43 ± 0.20 GdB3.31 ± 0.07 

Initial GdB6 Product 

83GdAM-l.l .39960 69.11 28.00 97.11 GdB5.90 
-1.2 .39960 70.42 28.72 98.14 GdB5.94 
-2.1 .36285 70.23 28.97 99.20 GdB6.oo 
-2.2 ~36285 68.20 29.18 97.38 GdB6.23 

69.49 :!: 0.90 28.72 ± o.44 + GdB6.o2 - 0,13 

Final Langmuir GdB4 Residue 

81GdAMalO-l.la .626o8 77.36 18.16 95 .52 GdB3.42 
-l.2a .62608 78.12 18.30 96.42 GdB3.41 
-2.la .64562 78.33 18.30 96.63 GdB3.4o 
-2.2a .64562 78.25 18.31 96.56 GdB3.4o 

-1.lb .62608 77.36 
-1.2b .62608 78.12 18.08 96.20 GdB3.37 
-2.lb .64562 78.33 18.06 96.39 GdB3.35 
-2.2b .64562 78.25 18.89 97.14 GdB3.51· 
-1.2 .626o8 78.37 

78.05 t 0.26 18.30 ± 0.26 GdB3.41 ± 0,05 

Final Mass Spectrometer GdB4 Residue 

81GdAMall-2,l .10625 85.98 26.50 112.48 GdB4,43 
-2.2 .10625 83.15 29.16 .112.31 GdB5.10 
-2 ... la .10625 33.17 
-2.2a .10625 32.01 

-3,1 .21104 82.04 25.28 107.32 GdB4,43 
-3,2 .• 21104 81.30 24.10 105.40 GdB4,31 
-3,la .21104 31.07 
-3.2a .21104 32.04 
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TABLE 7, continued 

·we·tght 
Sample (g.) '/o Gd 

81GdAMai1-4 .1 · o • 23200 81. 48i 
-4.2 .23200 79.27 
-4: ... ).a .23200 
-4.2a .23200 

23.·56 
24.45 
3.1.44 
31.35 

82. 20 ± J.. 90 25 .5,1 t> 1. 77* 

99,5% Amorphous Boron. 
Boron-1.l 

-1.2 
-1.3 
-1.4 
-1.5 
-1.6 
-1.7 
-1.8 

-2.1 
-2.2 

*Low analyses (< 30'/o) only. 

94.9 
97.9 
86.3 
89.8 
96.4 
95.3 
92.9 
95.7 
98.2 
98.5 
94.6 :!: 2.5 
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195.02. =4.21 
103. 72 · 4.49 
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ti vel.y, with their standard deviations. The total sample accounted for 

is listed in column five. The atomic composition is contained in column 

six. These atomic fractions were calculated from the metal and boron 

weight percents on the same row of the table. 

It is obvious from the analyses of the Gd.B4 sample before the 

free evaporation experiment (81Gd.AM) and after the free evaporation studies 

(81Gd.AMa10) that the sample did not change in composition du.ring the ten 

Langmuir he.atings and a 23% weight loss. This constancy of composition 

supports congruence of Gd.B4 vaporization. 

One should wonder why the analyses for the 81GdAM and 81GdAMalO 

samples display apparent rton-stoichiometry'Z Further, does a total gado-. 

linium and boron content 6n only 96 to 97% of· the samples in 81Gd.AM and 

81Gd.AMalO imply a 3 or 4% impurity content? 'lllese di~crepancies are re-

solved by low boron analyses. Evidence for the low boron analysis was 

indicated by analyses performed on the amorphous boron reagent with a 

manufacturer's assay of 99.5% boron shown in Table 7. 
While the average percent return on the boron analyses was 94,&/o, 

analyses as low as 14% were noted. Hence, 'While the boride analyses 

were of good precision, the boron weight percent was low. The sum of the 

average gadolinium and boron weight percents in 81Gd.AMalO was 96.35%. 

This leaves 3.65% of the sample weight unaccounted for. If this deficiency 

were boron, the atomic ratio of gadolinium to.boron would be GdB4 •0 rather 

than Ga.B3 .4. Hence, the tetraborides in these experiments were assumed 

pure and stoichiometriQ. 

An analysis of the GdB4 mass spectrometer residu~ 81GdAMall, is 

illustrated in Table 7. These analyses were prolonged over a period of 
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thirty or forty days, during which time the standard NaOH solution and 

sample solutions were allowed to stand. Obviously, the boron analyses, 

which vary from 23 to 2gfo, were too high. More than 100°/o of the sample 

was accounted for. These apparently large boron contents a.rose from the 

decrease in the NaOH normality bec~use of ,CO2 absorption and because of 

co2 entering the sample filtrates after gadolinium removal. However, the 

gadolinium analyses are thought to be accurate to t2% in these particular 

· analyses. ,The generally high gadolinium contents could indicate Gd.203 

content before analysis. Gd2o3 was observed in trace amounts in this 

particular·mass spectrometer residue •. In consideration of the errors .in 

the titrating solution standardization and the aa~p3 content, the composi-

tion of the boride really had not changed significantly from the initial 

composition of the 81GdJ\M:alO sample used in the mass spectrometric studies. 

Hence, congruence is again suspected. 

While considerable effort was made to establish the variables in 

the analytical procedure, especially the influence of co2, the effect of 

gadolinium ion on the boron analysis, and the effect of varying the analyst, 

the boron analyses could not be improved beyond a precision of 0.25% and. 

an accuracy of about ±1% for boron in the boride. The gadolinium analysis 

was precise and accurate to to.5% for gadolinium in the boride. Allowing 

for the inherent boron deficiency in the tetraboride and in the elemental 

boron analyses, one concludes that there was rto evidence of non-stoichiometcy-

for Gd.B4. Therefore, in writing the net process occurring on vaporization, 

stoichiometry was assumed. 

A sample of GdB6 from an arc melter preparation ( 83Gd.AM) was 

. analyzed for. gadolinium and boron With the results of Table 7. No vacuum 
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distillation of oxide materials was performed with this material. The 

analytical technique was varied somewhat, in that the end-point of the 

,borate-mannitol complex titration with NaOH was determined potentiometri~ 

cally, rather than with a phenophthalein indicator. Therefore, the higher 

pH end-point required more standard base and eliminated the necessity to 

perform a control analysis on a pure boron sample, as was required in the 

tetraboride analyses. The arc melter preparation showed stoichiometric 

Gd.B6 withi~ the analytical errors with 97 to 99% of the sample accounted 

for. 

The Gd.B6 (83GdAM) analyses and Gd.B4 (81GdAM) analyses established 

the ability of the arc melter preparative techniques to prepare pure 

single-phase boride materials with the X-ray diffraction analysis as the 

indicating control on the preparation. Further, all these analypes sup-

ported the assumption of stoichiometry in gadolinium tetra- and hexaborides 

and the assumption of fairly narrow solid solution limits. 
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CHAP.rE.R 8 

HEA'I'ING·APPARATUS 

8. 1 Langmuir 

Vacuum line number 14, employed in the experiments of Chapter 4. 1 

and in the Langmuir pressure measurements on GdB4 of Chapter 9, is shown 

in Figure 8 •. 1. The vacuum train consisted of a liquid nitrogen cold trap 

below the furnace chamber, behind which was a three stage mercury diffu-

sion pump (GHG-15, Consolidated Electrodynamics Corporation). Backing the 

diffusion pump was a Welch, Duo_-Seal, model 114B, mechanical pump. Low 

pressure was monitored with a cold cathode ionization gauge (control cir-

cuit 3) just above the trap, and forepressure was measured behind the dif-

fusion pump with a thermocouple gauge. 

Water-cooled current concentrators, de.scribed. by Northrop (167) 

and by Babat and Losinsky (168), a.re devices to increase the coupling be-

tween the sample and the rf work coils, which are outside the vacuum 

housing. The particular designs used here are adaptations of a design 

used at the Los Alamos Scientific Laboratory, Los Ala.mos, New Mexico. 

Depending on the dimensions of the cylindrical specimen to be heated, con-

centrators were designed with different bore diameters and heights to heat 

the specimen as uniformly as possible. A cutaway drawing of a typical 

current concentrator is shown in Figure 8. 2. 
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After the pellet had been positioned on the copper support plate 

under the concentrator b9re, the concentrator was lowered into the Pyrex 

sheath. This glass envelope was ground at both ends and· sat against 1/8" 

Silastic gaskets (Silastic 50, fully cured, Dow Corning Corporation) in 

gasket slots in the base plate and in the current concentrator upper 

flange. Before. the assembly operation, Lubriseal Improved Formula grease 

was applied to the gaskets and the ground ends of the glass to effect a 

vacuum seal. With this procedure the apparatus could be routinely evacuated 

to pressures of 10-6mm. 

Power·was delivered from a 7.5 kw., 400kc., Scientific Electric 

Company, thyratron-controlled, rf generator to the 4-1/2" diameter, seven-

turn work coil, fabricated .from !11 copper tubing and surrounding the glass 

sheath opposite the sample. Temperature was measured by observing with the 

calibrated optical pyrometer a black-body hole in the sample through a 

calibrated optical window and prism above the concentrator. A shutter, 

operable from outside the vacuum assembly, prevented vapor deposit from 

covering the window between temperature measurements. Temperatures up to 

2500°c. could be ach.ieved and regulated manually to within 15°c. 

8. 2 Knudsen 

Knudsen vapor collection experiments were made on the vapor over 

Gd.B4:In .zrB2 crucibles with the apparatus of F~gure 8. 3, line 11. The 

Knudsen experiments of Chapter 4. 2 were also performed in this vacuum 

assembly. 

Vacuum was achieved by pumping through a liquid-nitrogen cold trap 

with a single-stage, divergent-nozzle, mercury diffusion pump of .the 
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"Phipps" type. The sy~tem was design~d by Dr. Po G. Wahlbeck in this 

Laboratory. ·The diffusion pump was backed by a Cenco Megavac forepump. 

Foreline pressure was measured with a McLeod gauge, and a h.ot cathode 

VG-lA ionization gauge.in conjunction with circuit DPA-38 was used for 

measuring high vacuum. With ten hours pumping a pressure of 2 x 10-7mm. 

could be attained. 

The crucible assembl~ illustrated in Figure 8. 4, was employed 

in all the.Knudsen experiments·in this work. The characterization of the 

ZrB2 material appeared in Chapter 3o 3. 4. Because of the low electrical 

conductivity of ZrB2, the power that could be introduced into the ZrB2 
crucible from the indu~tion heater was insufficient to achieve temperatures 

over 8oo0 c. Hence, a graphite outer crucible was needed to increase the 

coupling to the induction coil and allow. temperatures up to 2100°c. to 

be achieved. Nowotny, Rudy and Benesovsky (08) have demonstrated that 
( 

graphite and ZrB2 will not react with each other. The graphite crucible 

was machined from 3/4" graphite rod, grade UF-4-s, United Carbon Products 

Company. The tungsten radiation shield helped decrease the temperature 

difference bet-ween the ZrB2 orifice and the black-body hole in the graphite 

base. A tantalum radiation shield enveloping the crucible assembly allowed 

temperatures up to 24oo0 c. and improved temperature uniformity in the 

crucible. 

The crucible assembly was placed on a tantalum tripod, surrounded 

by a tantalum radiation shield and the entire assembly mounted on a quartz 

semi-kinematic table supported by Vycor glass tubing •. Above the crucible 

was a copper target magazine previously used by Robson (1781 cooled by 

dry ice and acetone, and containing eight to twelve aluminum target disks. 
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A magetically-actuated rod ejected exposed targets from the magazine and 

into a glass target receiver, exposing a fresh target. Effusate was 

b1ocked from the target with a magnetically-actuated shutter. All 55/50 
joints in Figure 8. 3 were sealed with bla1ck wax except that joining the 

I 

condenser to the base of the vacuum lin~. This joint, the 102/75 joint 

and the 29/42 joint were sealed with Lubriseal High Vacuum formula grease. 

During the heating~ an. air.stream, directed through a circle of perforated 

copper tubi.ng, was passed over the joint over t~e target magazine to pre-

vent blac~ wax from receding from the warm jOint. Temperature was observed 

through a calibrated optical window and prism with the calibrated pyro-

meter sighted on a black-body hole in the base of the graphite outer 

crucible. 

Surrounding the Pyrex condenser was a Pyrex water jacket through 

which cooling water flowed upward; surrounding·this was a work coil of 

thirteen turns, three inches in diameter and four inches long and made of 

i" copper tubing •. Rf power was delivered to the coil from a General Elec-

tric Company, thyratron-controlled, 450 kc., 20 kw. generator. The cru-

cible was heated by induction to temperatures up to 24oo0 c. with manual 

control always within ten degrees. 

8. 3 Mass Spectrometer 

In the study of the gas phase over Gd~4, the same graphite-ZrB2 
crucible arrangement as used for th~ Knudsen experiments was employed (cf. 

Figure 8. 4). The Nuclide Analysis Associates mass spectrometer, described 

in Chapter 5. 2, was employed. After the crucible had been mounted onto 

three tungsten support rods, two 0.003 :x: 0.03011 tungsten filaments were 



spot welded through tantalum onto tungsten rods in such a position as to 

be concentric with the crucible and positioned at one-third and two-thirds 

the heighth of the crucible. A stack of five concentric tantalum radia-

tion shield cans enclosed the crucible and its heating filaments. 

With the use of an alignment jig, the crucible orifice and the 

hole in the shield cans were aligned with respect to the a.xis of the mass 

spectrometer. When this Knudsen assembly had been bolted and sealed 

through go~d gaskets to the mass spectrometer and the system evacuated, 

AC power (up to.18 amp. at 25 volts) was applied to the tungsten filaments. 

By radiation alone the cruc.ible could be h~ated to 1100°c. Temperatures 

up to 2300°c. could be achieved by applyiQ.g a positive. DC,.:volt§.ge:..µp··~.,to 

1000 volts to the crucible and heating by electron bombardment. Tempera,-

ture was measured.1with• the·:calibrated-~·optical· pyrometer~l>Y ·s;i_,'ghtirm .. throygh. 

a shutterable, calibrated, optical glass window below the crucible onto a 

black-body hole drilled into the bottom of the crucible. By varying the 

filament power or crucible voltage, temperature could be. regulated to 

within 1090. 

Af'ter leaving·the furnace region,. the molecular,beam passed through 

the.Jaws of a variable width shutter,. through collimating slits and high 

positive potential fields into the ionization region. Bombardment by 

electrons with energies up to 70 ev., moving perpen~icula.rly to the mole-

cular beam path, produced ions which were expelled from· the ionization 

region by small positive repeller voltages below the ionization region 

and by slightly negative drawing out p9tentials aoove the ionization region. 

The ion beam was accelerated through 4500 volts, collimated, and ·rocused 

before passing through a 0.00811 source slit into the magnetic mass arm ... 
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lyzer •.. .Af'ter the ion beam passed through the O. 010" collector slit, ion 

current was detected with either a Faraday cup collector or a sixteen 

stage Be-Cu electron multiplier. Both currents were amplified with Cary 

vibrating-reed electrometers whose output was traced on a recorder. Dif-

ferent masses could be observed by changing the magnet current 1·or the 

accelerating potential. 
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CHAPI1ER 9 

LANGMUIR PRESSURE MEASUREMENTS ON Gd.B4 

9. 1 Introduction and Scope of the Experiment 

While observations of the principal vaporization processes exhib-

ited by the lanthanide borides provide insight into the relative stabilities 

of the lanthanide borides with respect to gaseous atoms, it is of interest 

to determine the actual volatilities of these borides. To simplify this 

prodigious task the volatility of only one particular boride need be meas-

ured. 

The heats of vaporization and entropies of the lanthanide metals 

and of boron are available or can be estimated. A systematic variation 

in the heats of formation and entropies of corresponding lanthanide borides 

may be assumed. Hence, a· measurement of ~F° for vaporization of the ref-

erence boride to gaseous atoms (volatility) will allow one to determine 

the absolute s.tabilities of other corresponding lanthanide borides. The 

observed principal vaporization processes exhibited by different lanthanide 

borides, then, provide insight into the absolute stabilities of non-

corresponding borides and define the nature of the systematic variation 

in the heats of formation of the lanthanide borides. These considerations 

are discussed in detail in Chapter l5. 
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The compound, Gd.B4, was selected for decomposition pressure meas-

urements for four principal reasons. ·First, it was shown in Chapters 4 

and 7 that Gd.B4 vaporizes congruently. All lanthanide tetraborides of the 

lighter lanthanides decompose with preferential loss of metal gas rather 

than vaporizing congruently. Hence, the vaporization behavior exhibited 

by Gd.B4 represents the point in the lanthanide series where transition 

to congruence of tetraboride vaporization occurs. Therefore, if one 

assumes a systematic variation of LnB4 heat of formation with atomic num-

ber, the free energy measured for the congruent process (equation 1. 2) 

should .not be much smaller than that for preferential loss of Gd(g) from 

Gd.B4(s) (equation 1. 1). Thus, the decomposition pressure of GdB4 to 

form GdB6(s) can also be fairly well defined. 

Sec9nd, the volatility of gadolinium metal.represents an inter-

mediate value for lanthanide metals. Third, the metal pressure over the 

tetraboride is greater than over the hexaboride, 'providing a higher rate 

of metal transport on vaporization. ~essure measurement techniques, 

which monitor the rate of metal transport, are, therefore, more sensitive 

for tetraboride congruent vaporization than for hexaboride vaporiza~ion. 

,Finally, a tetraboride was chosen because of the absence of a complicating 

solid solution effect. In Chapter 2 it was stated that hexaborides were 

believed by some authors to show some range of solid solution, whereas 

tetraboride solid solution was not detectable. 

In order to ascertain the volatility of a lanthanide boride, it 

is necessary to determine the equilibrium metal and boron pressures as 

functions of temperature under the univariant condition of congruent vapori-

zation (cf. Chapter 6. 1). The methods for determining these pressures 
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used in this work are the Langmuir effusion technique, the mass spectro-

metric technique, and the Knudsen effusion technique (cf. Chapter 6. 3). 

This chapter describes the measurement of gadolinium pressures 

over GdB4(s) by Langmuir weight loss experiments. The gadolinium tempera-

ture-coefficient calculation, the equilibrium constants measured and a 

Third Law treatment of the gadolinium pressure data (cf. Chapter 6. 4) 

define the standard enthalpy and free energy changes for the congruent 

vaporization of GdB4. · 

9. 2 Experimental 

A compacted pellet of'GdB4 (81Gd.AM), 1/2" diameter by 3/4" high, 

was mounted on a ZrB2 stand, 1/211 diameter by 1/4" high, and heated in a 

5/8" diameter current concentrator, described in Chapter 8.land shown 

in Figures 8. 1 and 8 •. 2, for one-half hour at 2100 to 2200°c. to purge 

the boride of oxides, borates and hexaboride that might be present in trace 

amounts .. The analysis of this material is discussed in Chapter 7,, The 

resulting gra:y pellet was sintered, very hard and, although it had shrunk, 

retained its right-cylinder geometrye Weight.loss experiments on this 

tared pellet, weighing 7 .39221 ge initially, were performed, _the time,tem-

perature, weight and d~mensions of the pel_let. being recorded before and 

after each heating. A total weight loss of 23% to a final weight of 5.68549 

g. was observed. Temperature was determined by sighting on a 1/16" black-

body hole drilled into the top of the pellet. The vaporizing area was 

taken as the cylinder area, exc~uding that lower surface in contact with 

the ZrB2 stand. Time was recorded with precision Time-It second meter 

(Precision Scientific Company, Chicago, Illinois). Timing began when the 
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. power was increased from that power which achieved 1400 to 15000c. to an 

arbitrary leveLat which the experiment was conducted. The time required 

to achieve the experimental value from a warm-up level was one minute or 

less~ Weight of the Gd.B4 pellet was determined with a Mettler Gram-Atic 

balance (Fisher Scientific Co.) to a precision of 50 micrograms. 

9. 3 Results 

Assumed in these experiments were the following: First, the vapori-

zation coefficient was unity; second, the black-body temperature was the 

surface temperature and the ~hermal accormnodation coefficient was unity; 

third, the vaporizing area was the smooth cylinder area; finally, the 

vapori~ing composition was GdB4.oo· The actual analyses of the initial 

and final material in these experiments were identical and not distinguish-

able from Gd.B4. 00 within the experimental accuracy of the analysis. These 

analyses are shown in Chapter 7, Table 7. 
·Table 9 contains a summary of: the observations in these experi-

ments. Column one identifies the individual successive weight loss deter-

minations on sa.m;ple 81Gd.AMa, with the order of the experiments indicated 

by the final number in the sample designation. Experiment 81GdAMa.1 was a 

sintering to remove residual oxides and shrink the pellet. Experiment 

81Gd.AMa3 was omitted because of poor·tempera.ture control. The vaporizing 

area in all experiments was 2.6o cm. 2 except for 81GdAMa.2, for which the 

area. was 3.80 cm.2 Coltunn four lists. the black-body hole temperatures 

corrected for pyrometer calibration and transmission of the optics. Sample 

weight loss data. and the time at the experimental temperature are contained 

in column two and three, respe~tively. 
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TABLE 9 

Langmuir Effusion Data and Thermodynamic Quantities for GdB4 Vaporization 

~FT 6S~ .6HT -~fef0 . Lil!~98 
Wt. Loss Time Temp. Paa. -RlnK (kcal./ (kcal./ (kcal./ 

Sample (mg.) (sec.) (°K.) (10-7 atm.) (eu.) l/5mole) 1/5(eu.) l/5mole) 1/5(eu.) l/5mole) 

8lGd.AMa4 

81Gcl.AMa7 

81Gd.AMa.8 

. 81Gd.AMal0 

81GdAMa6 

81Gd.AMa9 

52.57 

30.48 

76.81 

54.76 

106.55 

88.86 

81GdAMa5 203.56 

81Gd.AMa2 375.16 

8856 2ll2 

3000 -2:I.3 5 

l.48o 156.65 66.17 32.48 

2.547 151.25 .64.$8 32.45 

3244 2233 6.070 _ 142.62 63.69 32.33 

3300 2234 4.255 146.15 65.30 32.32 

3000 

218o 

1415 

1653 

2240 9.119 

2300 l0.60 

2349 37.84 

24o3. 41.30 

138.58 62.08 32.31 

137.08 63.06 30.63 

124.44 58.46 

123.57 59.39 

30.60 

30.56 

134.77 

:133.85 

135.86 

137.50 

134.45 

133.59 

130.25 

132. 84 

33.93 

33.92 

33.84 

33.85 

33.86 

33.81 

33 .. 76 

33.66 

137.85 

137.02 

139:26 

14o.91 

137.37 

14o.83 

137.75 

140.28 

· avr. 134.2 ± 1. 5 avr. 138.9 ± 1.6 

~ ~ (")T,,- (Second La~= 116.4 ~ 8.3 kcal./l/5mole 
-~250-.n... 

~s~250oK. (Second La~= 23.9 t 3.7 eu. 

-RlnK = i.987 1n ( (4.o0)4 (~) 
2 Pfu J 

.Area= 2.60 cm.2 for 81Gd.AMa4-lO 

Area= 3.8o cm.2 for 81Gd.AMa2 



The gadolinium pressures were calculated according to equation 

6. 5 and are listed in Table 9; column five. These data were fitted to 

a two-parameter least squares reduction process, according to the Second 

Law discussion in Chapter 6. 4. 1, with an IBM 1620 computer •. From the 

slope of this curve, the Second Law standard heat of vaporization to form 

one total mole of gaseous atoms according to the process in equation 1 •. 2 

is 116.4 t 8.3 kcal.-at 2250°K. The Second Law temperature coefficient 

of the gadolinium pressure is graphed in Figure 9. · From the ordinate 

intercept ~S~2500K. for the vaporization ?f 1/5 mole of Gd.B4 to the 

gaseous elements is 23.9·t 3.7 eu. 

Columns six and seven of Table 9 conta:bn -RlnK and tl F~ calculated 

from the gadolinium pressures of column five.· In view of the absence of 

heat capacity and entropy ·data for Gd.B4(s), the standard entropy of forma-

tion of GdB4(s) is taken to be zero at the temperatures of the experi-

ments. Using entropies taken from interpolations of the values.given in 

JANAF (69) for B(s) and B(g) and in Stull and Sinke (65) for Gd.(1) and 

Gd(g), and listed in column eight of Table 9, one calculates the heat of 

vaporization values listed in column nine from the Third Law treatment 

described in equation 6.18. ·The average of these values produces a value 

for the standar.d heat of vaporization of 1/5 mole of.Gd.B4 at 2250°K. of 

134.2 t 1.5 kcal. 

A Third Law. treatment of these data, ·according to equation 6.29, 

results in a value of 138.9 t 1.6 kcal. for 6.H~98oK. (column ten). This 

value assumes that 6s~98oK. and AC~ at all temperatures for formation 

of GdB4 are zero. -The standard free-energy-functions for the elements 
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were interpolated from graphs of the-data in JANAF (69) and in Stull and 

Sink.e (65). 



CHAPTER 10 

MASS SPECTROMETRIC INVESTIGATION OF GdB4 

10. 1 Scope of the Experiments 

The mass spectrometric investigation of the vaporization of 

GdB4 was performed for several reasons. First, the previous assumption 

that only atomic species exist in the gas phase over GdB4 must be con-

firmed (cf. Chapter 5). Second, the stoichiometry of the gas and the 

invaria~ce of the vaporization process must be confirmed. Third, the 

influence on sample transport because of reactive background gases and 

crucible interference should be ascertained. Finally, the volatility of 

GdB4 can be determined from either gadolinium or boron ion current-

temperature coefficient data. Gadolinium or boron pressures also can be 

determined from a calibration of the mass spectrometer (cf. Chapter 

6. 3. 2). 

It should be emphasized at the outset of this chapter that the 

work contained herein was performed only to survey the chemical behavior 

during GdB4 evaporation in order to confirm the treatment and interpre-

tation of the results of the Knudsen and Langmuir experiments on GdB4 • 

Hence, only the results pertaining to the f.irst three of the above reasons 

are useful. The temperature coefficient of the ion current for gadolinium 

and the gadolinium pressures, estimated from a rough silver calibration of 

the mass spectrometer, ·were determined. However, these data were not 
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intended to be precise·, but were intended only as guide lines to reveal 

the nature of the vaporization process. 

·Shutter profiles, anomalous peak.characteristics, fragmentation 

patterns and appearance potentials were determined to define the source 

of the observed masses in the mass spectrum of the vapor over GdB4 (s) 

in a ZrB2/c crucible. The influence of high background pressures on the 

transport of sample was partially characterized. Finally, rough gadolinium 

pressure data were collected, ·from which the "l.olatility and free energies 

of vaporization of GdB4 to gaseous elements were computed. The boron and 

zirconium temperature coefficients over the ZrB2 crucible were determined. 

10. 2· Materials, Crucible and Apparatus 

The GdB4 product ·(81GdAMal0) from the Langmuir experiments de-· 

scribed in Chapter 9 was crushed and ground to a 325 mesh.powder. A 

total of two grams of this sample was employed in this mass spectrometric 

investigation. The results of chemical analysis of this material and a 

Gd2o3 contaminated residue (81GdAMall) from one of the high background 

pressure mass spectrometer experiments are shown in Table 7 and discussed 

in Chapter 7. Within the analytical accuracy, deviation from t~e stoi-

chiometric composition, GdB4 •0, was. not detectable. 

Granular silver (99.9+%), filed from silver rod and freed from 

the iron filings with a magnet, was added to the crucible for calibration 

of the mass spectrometer. 

The crucible in all the experiments in the mass spectrometric 

study of GdB4 was ZrB/C-2. The tapered orifice channel through the 

ZrB2 lid was 0.0851 cm. in diameter at the under-surface of the lid and 
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0.0672 cm. in diameter at· the topside of the lid. The channel length 

was 0.658 cm. Chapter 3. 3. 4 characterizes the ZrB2 crucible for use 

in vaporization experiments with GdB4, and Figure 8. 4 shows the crucible 

assembly discussed in Chapter 8. 2. The mounting and geometrical ar-

rangement of the crucible in the mass spectrometer are described in 

Chapter 8. 3 •. 

The principles, apparatus, and procedures are discussed in 

Chapters 6. 3. 2 and .8. 3. Temperatures were measured with the cali-

brated optical pyrometer, P-3. The heating arrangement described in 

Chapter 8. 3 necessarily.allows severe crucible temperature gradients, 
( 

0 particularly at tanperatures below 1500 C. When electron emission from 

the heated shield cans becomes comparable to the emission from the heat-

ing filaments, temperature gradients are not so severe. Temperatures in 
,0 these experiments were above 1500 C. and shield emission current was 

greater than filament emission current. Further, the absence of vapor 

deposits at cold spots inside the crucible implied small gradients. 

Temperature errors, liberally estimated, are discussed in Chapter 12 .. 5. 

10. 3 Shutter Profiles 

By moving a 0.025" shutter slit, located between the crucible 

and the ionization region, across the molecular beam path and determining 

the variation in ion current as a function of shutter position for a 

particular mass, a shutter profile is generated. The shape of this curve 

reveals the crucible orientation and distinguishes between crucible gases 

and background gases or anomalous masses. The use of the shutter profile 

in defining the origin of the ion current is discussed by Drowart (1.52). 
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Figure 10. 1 illustrates the shutter profiles of Ag+, Gd+, GdO+, 
+ + Gd02 , and B for a properly aligned crucible. If the molecular beam was 

emanating directly from the crucible orifice through the shield can ori-

fice and into the mass analyzer, its shutter profile should peak sharply 

and symmetrically with a half-height peak width of about 0.025", as 

Figure 10. 1 indicates. A small wing on the left side of the Gd+,.Ag+, 
+ + GdO and Gd02 ~rofiles was noticed in .Figure 10. i. This wing intensity· 

resulted from background gas at that mass inside the radiation shield can. 

The presence of such a wing indicated that the crucible orifice, on·pro-

jection along the axis of the mass spectrometer onto the shield can ori-

fice, was not concentric with the orifice.in the shield cans, but was 

nearly tangent to the shield can orifice. Thus, wing formation resulted 

when the shutter was aligned with respect to the shi.~ld, can orifice, but 

not aligned with respect to both the shield can orifice and the crucible 

orifice. When the shutter slit passed to the right in Figure 10. 1 

through the molecular beam, the shutter position was not over the crucible 

orifice or the shield can orifice, thus blocking any molecular beam from 

the c~cible region. It is readily seen, then, that one must take care 

to define the intensity of a particular mass coming from the crucible as 

that intensity difference between the shutter positioned at maximum 

intensity and the shutter positioned_ on the wing. 

In each experiment in which temperature coefficient information 

was collected, only shutter profiles, such.as those of Figure 10. 1, were 

demonstrated. In some cases the shutter position for maximum intensity 
0 . . was observed to shift downwards by about 0.020" with a 1000 temperature 

increase, probably because of cr.ucibl_e sagging. 
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Th + . 1 e wide B shutter profi e of Figure 10. 1 demonstrated boron 

emanating from two sources -- from the ZrB2 crucible lid and through the 

orifice .from the GdB4 sample. Peaks from Zr+, Zr++~ ZrO+ and zro; were 

also observed in the mass spectrum with the order of relative intensities, 

0.5, 0.1, 3.5 to 0.3 compared to relative intensities of boron and gado-

linium of 3.0 and 0.4. Even though congruently vaporizing ZrB2 develops 

a volatility ten to one-hundred times less than GdB4 (cf. Chapter 3. 3. 1) 

at 2000°K., the ratio of the ZrB2 lid area to the orifice area emphasized 

the boron vaporizing from the ZrB2 crucible lid to the point where it was 

impossible to distinguish these sources of boron. Therefore, the boron 

pressure must be determined from the gadolinium pressure and the stoi-

chiometry of the process. 

10. 4 Anomalous Masses 

Anomalous masses exhibiting behavior exactly as described by 
; + + + Hildenbrand and Theard(169) were observed for the species Gd, GdO, B, 

+ ++ + + . Gd02, Gd , GdB2o3 and (Gd0) 2, arranged in decreasing order of their in-

tensities. Inghram (170)and Hildenbrand and Theard explained anomalous 

peaks by a "photo effect," wherein neutral gaseous species of low ioni-

zation potential in the furnace region are activated, proceed beyond the 

high positive potentials below the ionization region, strike the edge of 

or condense on a focusing or repeller plate,'~ose ~n electron into the 

lower Fermi levels of the plate material, reflect or desorb as positive 

:ims and then continue in the ion beam with an accelerating potential 

greater than that of·a nonnal ion by the voltage difference between the 

positive plate at which the anomalous ion was formed and that voltage of 
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the ionization region. The anomalous character of these ions was 

completely eliminated by setting the trap voltage to zero and setting 

the repeller and drawing out potentials as small as possible. After 

these voltages were adjusted, ion currents for GdB2o; and (GdO);. 

disappeared. 

Six additional low intensity anomalous or metastable masses were 

observed in the mass region~ to 11 early in these mass spectrometric 

heatings, but disappeared with proper· focusing conditions for normal 

masses. These masses were 9.18 (Chart·No. 3017), 9.8 (Chart No. 3023), 

10.0 (3023), 10.23 (3017), 10.8 (3023) and 11.0 (3023). The 9.18 and 

10.23 masses could be metastable peaks arising from the decomposition of 

BR+ into B+ and H. The 9.8 and 10.8 masses probably arise from metastable 

decomposition of boron oxides. 

10. 5 Fragmentation and Appearance Potentials 

The normal masses emanating from the crucible that were detected 

were Gd+, Gd-I+, B+, GdO+ and Gdo;,- in decreasing order of their importance 

depending on the temperature and background pressure. To about 1/10 per-

cent of the gadolinium intensity, no other crucible species were detected 

(cf. Chapter 5. ~). Oxygen-bearing species were present as background 

gases in the mass spectrometer, and their influence on the gadolinium 

pressure is discussed later in this chapter. 

Fragmentation effects must be characterized to be certain the 

gadolinium or boron ions observedl-.Bre not being produced by the dissoci-

ation of some molecule by the high energy electron beam. This phenomenon 

is discussed by Inghram and Drow~rt (152). Plots of ion inten~ity versus 
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the energy of the ionizing electrons in electron volts for particular 

species are called ionization efficiency curves. + Such curves for Gd, 
+t ++ + + . Gd , Ag, B, GdO and Gdo2 are illustrated in Figure 10. 2. The 

abscissa in these graphs represents an electron voltage calibrated with 

a voltmeter for the emission current used in the efficiency curve 

determination. Any abrupt discontinuities in these curves would be 

indicative of a second process taking place. For instance, if on in-

creasing the energy of the ionizing electrons a critical value is reached 
+ + . at which destruction of GdO into Gd and O occurs, the ionization ef• 

ficiency curve for GdO+ ought to deviate markedly from a smooth curve 

toward lower ion currents; and the Gd+ curve ought to rise markedly at 

this electron voltage. No abrupt deviations from expected behavior were 

observed in Figure 10. 2 for any of the species. 

Another test for fragmentation effects is the value of the 

appearance potential (152), By the method of linear extrapolation, the 

abscissa intercept of the linear portion of the ionization ~fficiency 

curve is called the "appearance potential." This energy is the sum of 

the adiabatic ionization potential of the species, the dissociation 

energy, the electron affinity, the kinetic energies, the electronic 

energies, the vibrational-rotational energies and the emitted photon 

energy. By far the two largest terms are the ionization potential and 

the dissociation energy. Should the graphically determined appearance 

potential be in good agreement with the known ionization potential, one 

can be fairly certain that the species originates from simple ionization 

of the neutral species, rather than from ionization and dissociation of 

a parent molecule. 
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The appearance potentials determined in these experiments are 

given in Table 10. 1. The agreement between observed and literature 
.+ + +t- . + values for Ag, Gd, Gd and B was quite within the precision afforde~ 

by the scatter in the data used to define the ionization efficiency curves. 
+ + No literature data for GdO and Gd02 were available; however, the shapes 

of the curves and the small appearance potential values indicated that 
+ + GdO and Gd02 were parent molecules. It is concluded that all species 

in this work, arising from the crucible, were parent ions. 

Since there were no fragmentation effects, in order to measure 

consistent intensities and to avoid corrections to the observed inten-

sities of the form (E-A) (cf. equation 6 .11), all data were taken with 

56.0 ev.·electrons. The electronic settings of the ionization and de-

tection instruments were not varied for an experiment once calibration 

was performed. Temperature coefficients of pressure were determined by 

setting the accelerating voltage and magnet currents for a particular 

mass and determining intensities at the two shutter positions discussed 

above for each of several temperatures. 

10. 6 Silver Calibration 

In order to calculate absolute gadolinium pressures from measured 

gadolinium ion currents, the mas·s spec·trometer must be calibrated with a 

material of known vapor pressure. The calibration of the mass spectro-

meter with silver according to equation 6.28 was not achieved. Figure 

10. 3 is a plot of ion current versus time at·a constant temperature of 
0 1026 C. for the total vaporization of 1.75 mg. of silver metal. The 

very large decrease in intensity-with time can only be explained by 
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TABLE 10. 1 

Appearance Potentials Obtained from Linear Extrapolation 

Temp. Observed Ao P. Literature A. P. 
Species (OC.) (ev.) ( ev.) . Chart Ret'erence 

Ag+ 967 + 7.7 - 0.2 7.574 5/5/63 1036 
Gd+ 1836 + .5.9 - 0.5 6.16 5/1/63 1036 
Gd++ 1841 24 ! 1 (21) 5/1/63 1036 
B+ 1778 9-:!: 2 8.3 4/5-6/63 1147 
aao+ 1844 + 5.0 - 0.3 5/1/63 
GdO + 2 1842 8.4 :t 0.5 5/1/63 

252 



orifice plugging. This same problem arose on other occasions and at 

lower temperature. Therefore, the sensitivity of the instrument was 

determined from ~emperature coefficient of pressure data on silver ion. 

Samples of silver metal were added to the crucible before each 
. experiment and the sensitivity redetennined to detect any drift in the 

characteristics of the mass spectrometer. The particular silver-109 

temperature coefficient data taken in the same experiment as the measure-
+ ments on Gd over GdB4 are shown in Table·10. 2 (MS - 5/7/63)e Colunms 

+ one and two contain the measured temperature and Ag109 ion currents. 
+ . Colunm three lists -log (IT) values. Pressures in atmospheres, listed 

iri colunm four, were taken from Stull and Sinke (65). Colulllll five con-

tains the machine sensitivities in amp./atm. determined from these data 

by dividing the values in colunm two by those in colunm four to define 

the sensitivity in colunm five. By dividing the product of the values 

in colunms one and two by the.data of column four, one determines the 

se~sitivities in colunm six. These latter sensitivity data represent 

the collected charge per effused neutral particle and should be constant 

with varying temperature (cf. Chapter 6. 3. 2). 

The values of SA+ were calculated from equation 6.14. A plot 
g109 

of SA+ versus 1/T was fitted visually with the curve of Figure 10. 4. 
g109 

From this graph an SA+ value was taken as 7.35 x 10-4 amp./atm., when 
+ -10 g109 -7 
~ = 5.71 x 10 amp. at 1176°K. and a silver pressure of 7.76 x 10 

gl09 
atm., and with 56.0 ev. electron energy and 0.3 ma. electron emission 

current. These calibration specifications were used in all the gadolinium 

pressure calculations in conjunction with equation 6.10. 
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TABLE 10. 2 

Mass Spectrometer Sensitivity Determination with Silver 

Chart MS - 5/7 /63 

T.emp. r+ PAg s + s* + Agl09 Ag109 Agl09 
(OK.) Q10-10amp. ) -log(It T) (10-7 atm.) (lo-4amp./atm.) (amp.deg./atm.) gl09 

1143 2.72 6.5q80 3.4~3 7.81 .893 

1176 . 5. 70 6.1737 7.763 7;34 .863 

1209 11.79 5.8460 17.7q 6.66 .805 

1247 22.89 5.5498 41.50 5.52 .688 

1262 39.0 5.3078 56.75 6.87 .867 

1266 34.7 5.3572 60.53 5.73 .726 

1272 42.92 5.2605 68.87 6.23 .793 

1292a 55.1 4.7935 128.8 4.28 1.25 

1334a 61.8 5.0839 216.8 2.85 .380 

1337a 81.8 4.9613 229.1 3.57 .477 

P.Ag :from 1045 

8Agio9 = rAg109/PAg; equation 6.26 

+ 
*+ IAg.109T 

= c,onstant; equation 6.24 8Agl09 = PAg 

a, Data taken much later in time 
I 
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A Second Law (Chapter 6. 4. 1) treatment of the Ag;09 temperature 

coefficient data of Table 10. 2 is graphed in Figure 10. 5. From the 

slope and intercept, 6H~250oK. for liquid silver vaporization is 58.1:4.2 

kcalJg.at.to be compared to values· of 60 to 68 kcal.Jg.at. determined 

from Second Law mass spectrometer data taken by Buchler and Berkowitz-

Mattuck (l.71) and a Third Law value of 67.ot 0.2 kcal.Jg.at. found by 

Knudsen effusion by Panish (172). In view of the few experimental points 

and the variance in the last three highest-temperature experimental 

points, this agreement is acceptable. 

10. 7 Cross Section and Multiplier Efficiency 

In order to use equation 6.10 to calculate the pressure of 

gadolinium, a knowledge of <rA t tr + and PA -h -V.: + is needed. The 
g UGd g/ pGd 

relative ionization cross section for silver was taken from Otvos and 

Stevenson Q.55) as 34.8 and estimated for gadolinium from Otvos and 

Stevenson's data as 71. The ratio of the secondary electron yields was 

determined experimentally from a ratio of electron nn.1ltiplier gains as 

1.5 t 0.5 and est~mated from an assumed inverse square root mass depend-

ence, specified by Inghram(i73), as 1.2. The value 1.3~0.3 was chosen 

for the calculations. 

10. 8 Results 

10. 8. 1 Gadolinium Pressures 

As demonstrated in Chapter 5 and in this chapter, only atomic 

gadolinium ~nd boron were found in the vapor over GdB4(s). Temperature-

+ coefficient data collected on Gd158 over GdB4 (s) from experiments 
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MS-5/6-9/63 and MS-5/10/63 are summarized in Table 10. 3. While the 

measured ion currents of column three are listed in the order of the 

temperatures of column two, the order in which each datum was taken is 

indicated in column one. Thus, any hysteresis effect on going up and 

down in temperature or drifts in the machine characteristics may be re-

vealed (cf. Figure 10. 6). \Column four contains the gadolinium pressures 

calculated from equation 6.10 with the calibration data in the above 

section. Column five contains, -log PGd values for temperature-coef-

ficient determination. 
0 The Third Law values for AH2980K. for the congruent vaporization 

of one mole of GdB4 (~) are listed in column six. These enthalpies were 

calculated with the assumption 0 0 that As2980K. and ACP at all tempera-

tures for formation of GdB4 (s) from the condensed elements were both 

zero. Free-energy-functions for elemental boron were taken from JANAF 

(69) and for elemental gadolinium were taken from Stull and Sinke (65). 

Graphs of log pGd vs.1/T and of AH~gaoK. vs.Tin Figures 10. 6 

and 10. 7, respectively, reveal a fairly abrupt decrease in slope for 

the Second Law temperature coefficient graph and an abrupt increase in 

AH~gaoK. above 1800°K. The deviation from a linear temperature-coefficient 
. 0 

slope and the change from a constant value of AH2980K. with temperature 

to a value increasing with temperature indicate ·a second chemical pro-

cess becoming important. 

10. 8. 2 Influence of Background Gases 

The relative decrease in the gadolinium pressure above 1800°K. 

can be explained by reaction with the background gases, CO and H20, in the 
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TABLE 10. 3 

Collected Data, Pressures, and ~H~98oK. from Mass Spectrometric 
Measurements on Gdi58 over GdB4 

Charts MS - 5/6-9/63 and MS - 5/10/63 

+ Chro- IGd158 PGd 6~980K. nology Temp. 
of Data (OK.) (10-lO amp.) (10-7 ·atm.) -logPGd (kcal./mole) 

41 1599 .092 \ .0555 9.744 578 

40 .1643 .188 .117 8.068 581 

42 1650 .218 .136 8.1335 581 

23 1666 .411 .259 8.413 576 

43 ;i.702 .505 .324 8. 5100 584 

39 17,13 .970 .627 8.797 576 

46 1745 3.11 2.05 7. 3115 567 

22 1760 2.10 1.39 7.143 579 

38 .1761 1.65 1.10 7.0413 583 

45 1797 2.15 1.46 7.1642 589 

10 1807 2.16 1.47 7.167 593 

24 18.11 4.38 3.00 7.477 581 

37 1818 2.71 1.86 7.2695 592 

44 1839 3.42 2.37 7.3745 .594 

21 1854 7.26 5.07 7.705 585 

36 1868 3.86 2.71 7.4330 600 

25 1869 6.94 4.90 7.690 590 

20 1888 10.92 7.78 7.891 588 

48 1904 3.74 2.69 7.4295 612 
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TABLE lO. 3, continued 

Chro- ~&158 ~H~980K. nology Temp. PGd 
of Data (OK.) (10-10 amp.) (10-7 atm.) -logPGd (kcal. /mole) 

35 1914 4.98 3.60 7.5560 610 

26 1916 8.19 5.91 7.7715 601 

47 1936 5.13 3.75 7.574 616 

9 1942 3.20 2.34 7.369 628 

49 1945 4.54 3.34 7 .·5235 621 

34 .1955 6.45 4.76 7.6775 618 

12 1963 5.21 3.87 7.5875 624 

27 1970 9.81 7.30 7.8632 614 

50 .1984. 5.30 3.96 7.5976 630 

51 .1984 5.47 4.08 7 .6105 629 

33 1995 7.98 6.01 7.779 625 

7 1996 6.72 5.07 7.705 629 

8 2013 5.03 3.82 7.582 640 

11 2017 4.66 3.56 7. 5515 643 

52 2021 6.·41 4.88 7 .6884 638 

28 2023 11.82 9.03 7.9558 626 

32 2027 9.42 7.21 7.858 632 

13 2028 6.60 5.04 7.7025 639 

6 2040 9.45 7.29 7.865 635 

29 2062 13.92 10.8 6.0335 633 

14 2066 7.8o 6.08 7.784 646 

31 2075 12.84 10.1 6.0042 639 
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TABLE 10. 3, continued 

+ Chro- 1Gd158 Paa 
0 

nology Temp. ~~98°K. 
of Data (OK.) (10-10 amp.) (10-7 atm.) -logPGd (kcal./mole) 

5 2097 13.80 10.9 6.0373 644 

1 2097 11.43 9.03 7.9558 648 

4 2108 15.45 12.3 6.0900 645 

15 2113 9.09 7.25 7.8605 658 

30 2122 16.95 13.6 6.1337 647 

2 2128 14.22 11.4 6.0567 652 

16 2.141 11.76 9.49 7.977 660 

3 2148 16.11 · 13.1 6.1173 655 

17 2187 18.33 15.1 6.179 663 

18 2200 21.15 17.6 6.2455 663 

19 2200 22.26 18.5 6.2670 663 

. + -4 
SAg = 7.35 x 10 amp./atm. 

109 

I+ = 5. 706 X 10-lO amp. 
Agl09 

PAg = 7.763 x 10-7 atm. 

TAg+ = 1176°K. 109 

Paa calculated from equation 6.10 
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mass spectrometer, which become more abundant with increasing temperature 

of the apparatus. Considerable GdO and some Gd02 were observed in in-

creasing importance relative to atomic gadolinium as the temperature was 

raised {cf. Figures 10. 6 and 10. 8). The source of "oxygen" apparently 

arises from the increasing rate of desorption of water, CO or co2 from 

the large area metal walls of the vacuum assembly as these walls were 

heated by radiation from the crucible. Carbon monoxide was by far the 

most important species above 1800°K. in the mass spectrum except for 

mercury (cf. Table 10. 6). Water and co2 were the second most important 

gases in the background. It is probable that the CO(g) arises from re-

action of H20{g) with the graphite outer crucible of the crucible assembly. 

After the experiment, the water cooling the vacuum housing was 

found to be blocked, accounting for the warming of the walls of the 

apparatus. Generally, the background pressure in .the mass spectrometer 
-7 -8 furnace when cold was of the order of 10 to 10 mm., as indicated by 

an ionization gauge above a liquid nitrogen trap located about two feet 

from the crucible. The conductance of the vacuum line from the crucible 

to the diffusion pump was quite low because of the shield cans, support 

apparatus and slits through which the pumped gases must flow. At crucible 
0 temperatures of the order of 1590 K., the pressure indicated by the 

-7 ionization gauge was 2.8 x 10 mm.; while at crucible temperatures of 
0 -5 2170 K., the background gas pressure had risen to 7 x 10 mm. at the 

gauge. Clearly, the background gas pressure depended on the temperature 

of the apparatus. -5 The crucible had been outgassed to 5 x 10 mm. at 

2470°K. The pressure inside the ·furnace region may have been as much 
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as two orders of magnitude larger than that indicated a~ the gauge, or 

10-3 nnn. in the furnace region. 

+ + From a magnetic scan across the Gd and GdO peaks at several 

temperatures and background pressures, the effect of increasing tempera-

ture and increasing background pressure could be noted. These data are 

listed in Table 10. 4. The Gd-158 and Gd0-174 ion currents listed in 

colunms three and four were measured in experiments MB-5/1/63, MS-5/6-9/63 

and MS-5/10/63, at the temperatures indicated in colunm one and the ioni-

zation gauge background pressures in column two. All ion current data 

were taken with 56.0 ev. ionizing electrons at 0.3 ma. emission current 

and with all other electrical parameters identical in each experiment. 

Midway through experiment MB-5/10/63, the liquid nitrogen cold traps were 

replenished with additional _liquid. However, no appreciable effect on 

the background gas pressure was noted. Columns five and six contain 

-log I+T data for Gd-158 and Gd0-174, respectively. Colunm seven lists 

values for the log of the Gd-158 to Gd0-174 ion current ratio. 

Figure 10. 8 graphs log [I;d+/I!do+] as a function of 1/T. 
+ + Figure 10. 8 also shows the change in log [ IGd+/IGdO+] as a function 

of background pressure {ndicated by the ionization gauge. Clearly, the 

pressure of Gd and of GdO were dependent on both the crucible tempera-

ture and the background pressure, as well as on 'each other. From Table 

10. 4 at 2200°K. a rather dramatic demonstration of the influence of 

background "oxygen" was observed when a five or ten degree temperature 

increase produced a sharp decrease in the Gd+ ion current with a sinrul-

+ taneous increase in IGdO" 



TABLE 10. 4 

Variation of I~ and r+Gd.O over GdB4 with Background Pressure and Crucible Temperature 
Mass Spectrometer . Charts MS - 5/1/63, MS - 5/6-9/63, MS - 5/10/63 

Knudsen Region r+ - r+ r+ 
Gd158 Temp. Gauge Pressure Gd.158 Gd0174 -log(Ik158) -log(r~0 t logr+ 

(OK.) (10-6 mm.) (10-lO amp.) (10-10 amp.) 17 Gd0174 

MS - 5/1/63 
1830 . 70 i.335 .055 6.61208 7.9970 1.3851 

- 2150 24. 9.54 3.13 5.688o3 6.1720 .4843 

MS~ 5/6-9/63 
I\) 1912 3.0 6.03 .360 5.93817 7.1625 1.2240 
0\ 2000 7.3 9.66 .900 5.71399 6.7448 1.0306 0\ 

2088 20 15.87 2.13 5.47965 6.3520 .8722 
2096 4o 5.64 1.695 5.92738 6.4494 .5224 
2146 37 21.06 3.36 5.34496 I 6.1420 .7973 
2200 70 8.97 4.32. 5.70487 6.0310 .3263 
2200 70 11.49 4.83 5.59422 5.9737 .3766 
2229 88 9.84 5.19 5.65896 5.9368 .2788 

MS - 5/10/63 
2029 4.4 2.12 .530 6.36643 6.9685 .6021 
2070 8.5 2.73 .790 6.24787 6.7865 .5391 
2113 16 3.43 1.43 6.13978 6.5198 .38o2 
2142 24 4.52 1.83 6.01403 6.4070 .3927 
2196 46 8.25 3.45 5.74184 6. 1210 .3784 
2221 67 8.l2 4.20 5.74400 6.0305 .2856 
2245 94 7.00 4.73 5.8o369 5.9740 .1703 
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Temp. 
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1834 
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ll 
19 
23 
66 

TABLE 10. 4, continued 

-log(I~ T) 
l58 

- liquid nitrogen traps filled -
1.291 .015 6.62562 
2.583 .129 6.30777 
4.78 .88o 6.00648 
7.18 1.37 5.81759 
7.55 2.34 5.78542 
9.33 3.15 5.68256 

-log(r~0 T) 
l74 

8.5590 
7.6110 
6.7418 
6.5360 
6.2940 
6.1542 

1. 9355 
1.3015 

.7348 

.7193 

.5092 
.. 4713 
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No shutterable oxygen-containing masses corresponding too+, o;, 
+ + + + + + + + + + CO, CO2, H20, BO, HBO, (B0) 2, HB02, B203, H3Bo3 or OH were observed. 

The conclusion that oxygen in some fonn was entering the crucible is 

supported by the shutterable GdO+ and Gdo; species and by the observation 

of trace amounts of Gd2o3 (from X-ray diff:action analysis) in the GdB4 
residue obtained after shutting off the power to the furnace with the 

crucible at 2200°K. and with a high background pressure. 

Table 10. 5 is an ordered listing of the intensity of the princi-

pal background molecule ions and unknown masses under two widely different 

temperatures and background pressures. Colunm three contains ion currents 

as a percent of the lOV VRE scale at 1935°c. and 1.2 x 10-4 nm. back-

ground pressure (MS-5/9/63). Similar data are listed in colunm four at 

1740°c. and 5 x 10-5nnn. background pre.ssure (MS-5/10/63). Colunm one 

lists the mass and column two defines the molecular species at this mass. 

Shutter checks perfonned on the unassigned masses were absent, indicating 

that these masses did not originate from the crucible. 
·+ + From experience the H20 -18 and OH -17 ion intensities always 

greatly exceed o+-16, o;-32 and co;-44 intensities in a typical mass 

spectral background scan. Water intensity is always difficult to remove 

even with long pumping times. But in Table 10. 5 ion currents of CO+ and 

co;were much more imp~rtant than wa~er at the higher temperature and 

background pressure. The H2o+-18 intensity was more import~nt than co; 

at the lower background pressure. The high CO and CO2 pressures possibly 

arose from H20 interaction ~ith the graphite crucible (cf. Chapter 12. 2). 

While various processes for the reaction of water or co2 or 

oxygen with GdB4 may be tested by predicting oxygen intensities or B202 
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TABLE 10. 5 

Principal Background Masses and Relative Intensities of Effusing 
Species in Mass Spectrometric Stuqy of GdB4 Vaporization 

MS-5/9/63 MS-5/10/63 
Mass Species % Scale % Scale 

28 

44 

29 

158 

18 

43 
16 

174 

69 

17 

27 

79, 

70 
68 

53 
54 

32 

26 
52 

190 

11 

61 

62 

aa.++ 

600 

18o 

150 

100 

96 
61 

57 
47 

35.5 
31 
24 

24 

18 

11 

10.5 

10 

10 

8.4 

5.5 
4.o 

4 
LO 

1.0 

400 

.110 

208 

0.5 

18o 

20 

51 
n.d. 

9.0 
110 

13.5 
n.d. 

5.0 

3.0 

2.5 
2.5 

27 

6.5 

0.5 

n.d. 

n.d. 

0.5 

MS-5/9/63 

1935°c., lOV scale, .3ma. emis-
sion/ 56ev., 1.2 x 10-4mm. line 
pressure, multiplier gain= 

7 X 105 

MS-5/10/63 
174o0 c., lOV scale, .3ma. emis-

mission, 56ev., 5 x 10-5mm. line 
pressure, multiplier gain= 

7 X 105 

0.25 

270 



intensities from a properly plotted function of the logaritluns of the 

Gd and GdO ion currents versus 1/T, the variance in the data and the 

lack of thermochemical information preclude the significance of this 

effort. + ' Log (IGdOT) versus 1/T from Table 10. 4 is graphed in Figure 

10. 6 for comparison with the gadolinium temperature coefficient. It 

is sufficient to note that oxygen interaction is important at tempera-
o tures above 1800 K. and when the background pressure at the ionization 

' -6 
gauge exceeds 1 x 10 nun. 

10. 8. 3 Gd02.{gl 

The possibility of Gd02 molecule is interesting. The mass 

spectrometer had been used to study sulfides prior to this investigation. 

+ + Since Gd02 and GdS would appear at the same masses and have the same 

metal isotope distribution, the possibility that Gd02 is really GdS nrust 

be considered. However, below the magnet the mass spectrometer was 

entirely cleaned of past deposits prior to these studies. Further, the 

+ + IGd! IGdO + ratio showed the same dependence on background pressure 
2 

and temperature of the apparatus as did r;d+/I;do+ and could be repro-

duced with the same intensity ratios between experiments. Thus, this 

mass has been assigned as Gd02. 

+ + No Gd02 or Tb02 was observed when TbB4; 6 and GdB4 , 6 were 

vaporized in the mass spectrometer from tungsten cells with low back-

ground pressure in the mass spectrometer. White, Walsh, Ames and 

Goldstein (52) looked at the vaporization of lanthanide sesquioxides 

mass spectrometrically in tungsten crucibles without finding Ln02 (g). 

White did observe Ceo2 (g) over Ceo2(s), Pro2 (g) over Pr6o11 (s) and 
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Tb02 (g) over Tb4o7(s). Perhaps the reducing condition in the presence 

of tungsten prevents Lno2 (g) fonnation in those cases where the molecule 

was not observed. Certainly the ZrB2 crucible in this work is less re-

ducing than tungsten. 

10. 8. 4 Boron and Zirconium Temperature Coefficients 

Zirconium, coming from the crucible lid, was observed in the mass 

spectrum. A Second Law treatment of the zirconium ion current is graphed 
0 > 

in the range 2048 to 2268 K. in Figure 10. 9. From the slope, a value 

of 117.6 ~ 1.2 kcal. for the heat of vaporization of 1/2.91 ZrB1 . 91 (s) 

in the process established by Leitnaker (l31), ZrB1 •91 (s) = Zr(g) + 
1. 91B(g), was obtained. A similar Second Law slope from + the Bll inten-

sities in the range 2021 to 2199°K. is shown in the same figure. From 

the boron slope, a value of 118.9 ± 6.7 kcal./g~at. boron was obtained 

for the vaporization of boron from the crucible region. 

The heat of congruent vaporization of GdB4 at 2100°K. was esti-

mated at 133 kcal./total gas atom, which is larger than the boron 

temperature-coefficient value above. However, the· Second Law values for 

boron and zirconium are in excellent agreement. This observation further 

indicates that the large vaporizing area of the ZrB2 crucible lid is the 

principal source of boron and prevents a determination of the boron 

pressures over GdB4 (s). While these entha~py values for zirconium and 

boron are lower than the Third Law heat of vaporization of 1/3 ZrB2(s) 

determined by Leitnaker (131) as 150 kcal., they do overlap the error 

(127 ± 6 kcal.) in one series of Second Law experiments perfonned by 

Leitnaker. 
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During the course of the mass spectrometer experiments, the upper 

side of the ZrB2 lid became coated with a pale blue material which had 

no structure lines on X-ray diffraction analysis •. + + + No Zr, ZrO or zro2 
was observed in the mass spectra af.ter the coating appeared. Further, 

the boron intensities were considerably lower after the lid became coated. 

This coating may have consisted of Ta borides. 

10. 8. 5 Thermodynamic Values 

In view of the transport of gadolinilllll from GdB4 as GdO and Gd02 
at high background pressures, only the low background pressure data below 

1890°K. of Table 10. 3 were used in the thermochemical calculations for 

the.congruent vaporization of GdB4 to the gaseous elements. Under these 

conditions the GdO+ ion current was less than 5% of the gadolinium ion 

current. These gadolinium pressures are listed with increasing tempera-

ture in Table 10. 6, columns two and one, respectively. Column three 

contains values of -RlnK per mole of GdB4 (s). Column four lists the 

measured free energies of vaporization per one mole of gas formed. The 
· 0 0 ·values of Alf.i. ~nd A~980K. calculated by the Third Law for formation of 

one mole of gas are listed in columns six and eight, using.~s; and 

6fef0 values of columns five and seven •. 

Log pGd in the range 1599 to 1888°K. is graphed in Figure 10. 6. 

A least squares treatment of these data defines.A~7500K. as 99.1± 5.8 

kcal. for the vaporization of ~/5 mole of GdB4 to the gaseous elements. 

The value of AS~7500K. from the ordinate intercept is 24.4± 3.4 eu. 
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TABLE lO. 6 

Calculated Thermodyna'!Ilic Quantities from Low Background Pressure Data of Mass Spectrometric 
Measurements on Gd(g) over GdB4. 

Temp .. PGd. -RlnK 6~ 6.so 
T 6.~ -6fef0 6~980K. 

(OK.) (io-7 atm.J (eu.) (kcal./! mole) 
5 

(l/5 eu.) (kcal./! mole) 
5 

(1/5 eu.) (kcal./!. mole) 
5 

1599 · 0.0555 188.50 60.28 33.03 113.09 34.32 115.16 

1643 O.ll7 181.13 59.50 32 .. 99 113.70 34.27 115.83 

1650. 0.136 179.61 59.27 32.98 113.69 34.27 115.81 
I\) 1666 0.259 173.18 57.70 32.96 112.61 34.28 114.82 -.;J 
V1 

1702 0.327 170.96 58.19 ·32.91 ll4.20 34.24 116.47 

1713 0.627 164.41 56.33 32.90 112.69 34.24 114.98 

1745 2.05 152.66 53.28 32.87 ll0.64 34.21 112.97 

1760 1.39 156.47 55.08 32.86 112.91 34.20 115.26 

1761 l.lO 158.86 55.95 32.85 113.SO 34.20 116.17 

1797 1.46 156.03 56.08 32.74 114.91 34.16 117.47 

18o7 l.47 155.93 56.35 32.79 u5.60 34.17 118.11 

1811 3.00 148.85 53.91 32.79 ll3.29 34.17 115. 8o 



Temp. 
- (OK.) 

.1818 

1839 

1854 

1868 

.1869 
~· 1888 0\ 

TABLE lO. 6, continued 

Paa. -RlnK .6F~ 6S~ .6~ 
(io-7 atm.) (eu.) (kcal./} mole) (l/5 eu.) (kcal./!mole) 

1.86 153.61 55_. 85 32.78 

2.37 151.17 55.60 32.67 

5.07 143.63 53.26 32.73 

2.71 149.85 55.98 32.73 
· 4.90 143.98 53.82 32.73 

7.78 139;37 52.63 32.70 

avr . 

.6.Hf750oK. (Second La.w) = 99.l ± 5.8 kcal./!mole 

.6sf7500K. (Second Law)= 24.4 ~ 3.4 eu. 

-RlnK = 1.987 1n [ (4.oo )4 (~) 
2 Pfu J 

ll5.44 

115.68 

113.94 

ll7.12 

114.99 

114.37 

+ 114.o - 1.4 

-/:lfef0 0 
.6H298°K. 

(l/5 eu.) (kcal. J! mole) 

34.15 117.93 

34.l3 118.36 

34.13 116.54 

34.l2 119.72 

34.12 117.60 

34.10 117.00 

avr. 116.4 ~ 1.5 



0 With the use of equation 6.18 61I.r was calculated for each 

measurement in Table 10. 6 by the Third Law. The average 8H~7500K. is 

114.0± 1.5 kcal. for the vaporization of 1/5 mole of GdB4(s). The Third 
. 0 Law treatment assumes that 6ST for fonnation of GdB4(s) from the con-

densed elements is zero. From equation 6.29 and the further assumption 
0 that 8Cp = 0 for formation of GdB4 (s) at all temperatures, the average 

8H~980K. was found to. be 116.4± 1.5 kcal. per one total mole of gas 

formed. Entropy and free-energy-function data for B(s) and B(g) were 

taken from JANAF (69) and for Gd(l) and Gd(g) from Stull and Sinke (65) . 
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CHAPTER 11 

KNUDSEN PRESSURE MEASUREMENTS ON GdB4 

11. 1 Scope of the Experiment 

Pressure measurement by the Langmuir method suffers from 

indefinite specification of temperature and surface area as well as 

possible kinetic effects which retard the rate of vaporization and, 

thus, predict lower pressures than the vapor saturation pressures. 

While the mass spectrometric investigation of GdB4 demonstrated atomic 

gaseous species and·described. the tolerable levels of background pressure, 

the pressure data taken from the mass spectrometer are subject to large 

errors arising from calibration, temperature and background pressure 

problems. On the other hand, the Knudsen experiments in this chapter 

were performed with better definitions of the fa'ctors ent~ring into the 

pres.sure determinations than in the Langmuir and mass. spectrometric 

studies. Of the three methods used to determine GdB4 volatility the 

Knudsen experiments were intended and expected to provide the most re-

liable gadolinium pressure data, and they ,did·. 

In the experiments· of this chapter, .. gadolinium pressures were 

determined by measuring the rate of collection of.gadolinium on a target 

over the ZrB2/c crucible as ·a portion of the vapor in equilibrium with 

GdB4 (s) effused through the crucible orifice. Second and Third Law 
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treatment of these fourteen pressure measurements in.the 2047 to 2362°K. 

temperature range defined the volatility of GdB4 (s) •. 

11. 2 Experimental 

The Knudsen. effusion experiments were performed in three s.eries. 

Series 1 was performed with 500 mg. of the 325 mesh GdB4 sample 

(81GdAMalO) remaining from the Langmuir measurements and analyzed for 

boron and gadolinium in Chapter 7. Crucible ZrB2/c -4 with a tapered 

orifice, 0.1273 cm. in diameter at the top·of the ZrB2 lid, 0.1503 cm. 

diameter at the under-surface of the ZrB2 lid, and a channel length of 

0.689 cm., was used. Series 2 experiments were performed in crucible 

ZrB2/C-2, the same crucible used and described in the mass spectrometer 

experiments, with another 500 mg. portion of the GdB4 sample, 81GdAMalO. 

This crucible contained 100 mg. of a GdB4 deposit on the side of the 

ZrB2 base, deposited during the mass spectrometer experiments of Chapter 

10. With the use of crucible ZrB2/c-4 again and 1.41175g. of the GdB4 
sample (81GdAMalO), Series 3 experiments were performed. 

In these experiments no attempt'was made to correct the orifice 

area for the expansion of ZrB2 as. a functi.o:n of temperature, in view of 
-6 . 

the small correction (5 .• 5 x 10 / 0 c·.,(136)),and the precision of the 

experiment. The apparatus ·described. in .. Figure·"8·. 3 and in Figure 8. 4 

was used for all experiments. 

Aluminum disks, 1-1/8" in diameter and cleaned with dilute nitric 

acid and distilled water, were stacked in the target holder in individual 

spring-loaded mounting rings; The coi1.densation coefficient for the 
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gadolinium component of the effusate was assmned unity. Distances 

between the upper surface of the ZrB2 lid and the target were measured 

with a cathetometer (Gaertner Scientific·corp.). 

There was some inherent temperature gradient in the design of 

this crucible arrangement, as evidenced by the transport of significant 

quantities of GdB4 to. the underside of the lid during long heatings. 

However, the orifice channel was never blocked. All temperatures were· 

observed by sighting onto a black-body hole in the base of the crucible 

with the calibrated optical pyrometer, P-3. The black-body hole had 

been calibrated in terms of the temperature observed through the orifice 

and for the optics in the apparatus. The orifice-blackh>dy hole tempera-

ture differences are graphed in Figure 11. 1. These differences were 
. 0 0 0 generally less than 40 and narrowed to 10 at 2300 K. 

Background pressures during target exposures generally were less 
-5 than 5 x 10 mm., as indicated by the ionization gauge. Because of the 

conductance of the vacumn system, the glass construction rather than 

metal, and the high pumping speed compared to the mass spectrometer, it 

was believed that the oxygen-bearing components in the background gas 

were less a problem than they were in the mass spectrometer experiments. 

Significant sample transport by interaction with the background gases 

was discounted by the absence of variation of 'the Third Law enthalpy 

changes with temperature. 
0 After initial outgassing of the sample at 2400-2500 K. for about 

sixty minutes, the power was adjusted to a low~r temperature. When 

several successive temperature observations at one-minute-intervals were 

constant within two degrees· of each other, the target was exposed and 
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timing begun. Temperature was measured every five minutes and the power 

adjusted to maintain constant temperature. Generally, the experiments 

were isothermal within five degrees. The shadow on the apparatus, cast 

by the effusing beam intercepting the radiation shield and shutter, 

indicated material coming only from the orifice and gave no indication 

of re-evaporation from the glass condenser walls towards the cold target. 

11. 3 Target Analysis 

The aluminum disks were colored from yellow through reds and 

blues to nearly black depending on the thickness of the sublimate. These 

targets were analyzed for the weight of gadolinium in a defined area by 

X-ray spectrographic analysis (X-ray Spectrograph Attachment, type number 

52260, Philips Electronics, Inc.). Tungsten radiation stinrulated Lo< 

emission from the gadolinium on the target disks, whicq on separation 

from other characteristic radiation by· a LiF analyzing crystal, appeared 

at a goniometer setting of 61.05°. Counting was perfonned with a P-10/He 

flow proportional counter at 1650 V. The counter was coupled to a 

Philips binary scaler and rate meter, operating at a time constant of 

2 sec. and a multiplier setting of 1.0. The number of seconds for 1000 

counts was the experimentally measured quantity. 

Because of the geometry of the tungsten X-ray tube with respect 

to the sample, the intensity of the incident radiation was not uniform 

in the trapezoidal area covered by the incident radiation on the target 

disk. It was necessary to optimize the fluorescent intensity and then 

to reproduce the same position· in the· incident beam for every target • 
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This was accomplished by overlapping the target with a 1/32" thick 

aluminum disk with a 0.550 cm. center hole positioned over the sublimate 

on the sample target and in the optimum position with respect to the 

incident X-ray beam. The positions of these two disks were reproduced 

between analyses by defining the optimum position with paraffin wax slots 

on the sample mounting plate. Repeated analyses and target rotation 

demonstrated a precision well within that of the standard sample pre-

paration. 

A goniometer scan of blank targets indicated no other elements 

were present near the 61.05°, Lo{ line of gadolinium with the sensi-, 
tivity used for the gadolinium analysis. A blank target covering a 

target on which appreciable gadolinium had been deposited prevented any 

gadolinium emission detection. Hence, the area investigated for gado-

linium was indeed that within the 0.550 cm. radius hole in the target 

overlay disk. 

· A calibration curve was determined from several standard aluminum 

targets. These standard samples were prepared from a standard solution 

~f Gd203 in dilute HCl. This standard solution was prepared in desired 

concentrations of gadolinium such that one to two hundred micrograms of 

gadolinium could be delivered from a 1.00 cc. tuberculin syringe onto 

the cleaned aluminum target within an area of0.550 cm. While the white 

Gd2o3 crust left on evaporation was not uniform, several standards of 

the same concentration produced the s~me fluorescent intensity within 

the five percent precision of the delivered volume. Targets and stan-

dards were not analyzed until the electronics had warmed for two. hours. 

All standards and samples were a~alyzed in the same experiment. 



Generally, the intensity in counts per second is proportional 

to the concentration, or the product of concentration and seconds per 

fixed count is a constant. Therefore, to develop a nearly linear cali-

bration curve, a plot of log WGd versus log t/1000 counts was used for 

the calibration. Figures 11. 2 and 11. 3 illustrate this calibration 

curve and its non-logarithmic analog. The deviation from linearity at 

low concentrations is inherent in the counting circuits at low counting 

rates. 

11. 4 Clausing and Distribution Correction 

The gadolinium pressures were determined from equation 6.17 

with a Clausing factor and cosine correction specified by Freeman and 

Searcy (114) of the form, 

n = sin2e - [ 0.0815 (L/r)(sin 29 - 29 cos 29) ] , (11. 1) 

where n is the correction to the pressure. More speci;Eically, n is the 

fraction of molecules striking the target compared to the total number 

entering the cylindrical orifice. The angle, 9, is the angle in radians 

between the normal from the target to the orifice and the side of the 

cone whose apex is at the top of the orifice and whose base is the 0.550 

cm. collector radius. The length of a Zr~2 cylindrical orifice in cen-

timeters is denoted by L, and r is the radius of the orifice in centi-

meters. The r value used in these experiments was the average of the 

top and bottom radii of the tapei;ed channels in the ZrB2 lids. 
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For crucibles ZrB/C-2 and ZrB/C-4, the average r values were 

0.0694 and 0.0381 cm., respectively. The channel lengths were 0.689 and 

0.658 cm., respectively. Target distances for Series 1, Series 2 and 

Series 3 experiments were 13.99, 13.27 and 13.45 cm., respectively. In 
. . 

all experiments, the target radius was fi~ed on target analysis as 

0.550 cm. The collection angles, 9~.were calculated as 0.0393, 0.0414 

and 0.0409 radians.for the three series;· From these measurements the 

Clausing-distribution corrections were calculated as 1.41, 1.45 and 1.52 

x 10-3, respectively. 

11. 5 Results 

Table 11 contains the collected Knudsen data and the calculated 

thermodynamic quantities in order·of increasing temperature. Column 

one lists the series and target designation. The first number defines 

the series and the second.number designates the chronology of the 

measurements over the three series. Columns two, three and four list 

the exposure time, weight of gadolinium on the target ana"'temperature 

for each Knudsen measurement. The computed gadolinium pressures defined 

by equation 6.17 and.including the correction factors of Chapter 11. 4 

are listed in column five. Column six cqntains· values of -RlnK per mole 

of GdB4(s).· The _meas~red free,energy change on formation of one total 

mole of gas at each temperature is listed in colunm seven. Third Law 
0 0 . · values of AII.r and A'lii 980K. per mole of gas we~e calculated from equations 

6.18 and 6.29 and are listed in columns nine and eleven. Columns eight 
·O O . ' and ten contain the values of AST and Afef in eu./1/5 mole GdB4 used 



TABLE_ ll 

Calcul_ated Thermodynamic Quantities for GdB4 Vaporization from Knudsen Effusion. Data~*·- --·-- -- -- -- -

Series Gd on 
PGd -RlnK 6F~ 6.So .6Ho -6.fef0 

6.H~98°K. and Time Target Temp. T T 
(kcal./~ole) 

l ~ l l 1 Target (sec.) (g.) (OK.) (10-7 atm.) (eu.) (~u.) (kcal./~ole) (~u.) (kcal./~ole) 

l-2S 9426 2.09_ 2047'' 8.2.8 138.76 56.81 32.56 123.45 33.98 126.36 

l-1S 7074 l.91 2128 _ 10.02 140.76 59.91 32.45 128.96 33.93 132.11 

2- tt3 fl 13122 l.377 2169 13.2 138.0l 59.87 32.60 130.58 33.91 133.42 

3-13S · - 2276 4.074 2269 _97.9 114.21 49.54 32.60 120.25 33.91 123.09 .. 
(\) 

··86.9 124.31 co 3-7S 9575 15.17 2182 ll5.4l 50.36 32.38 l2l.Ol 33.89 co 

3-12S 4329 15.10 2216 192.9 107.46 47.62 32.34 119.29 33.89 122.72 

3-8S 9048 30.41 2237 186.7 107.81 48.23 32.33 120.55 33.86 123.97 

3-llS 3000 20.28 2242 376.0 100.81 45.20 32.31 117.64 33.85 121.09 

2-3S 6854 7.603 2258 142.7 110.46 49.88 32.30 122. 82 33.85 126.31 

3-9S 9477 51.76 2264 305.2 102.91 46.60 32.28 119.67 33.83 123.18 

3-lOS 2156 l0.64 2299 277.9 103.86 47.75 32.64 122.75 33.81 125.48 

2-5S 12741 19.68 2318 201.3 107.06 49.63 30.65 120.68 33.79 127.95 

2-4S 7790 27.SO 2355 468.9 98.66 46.49 30.62 118.59 33.74 -125.92 



TABLE ll, continued 

Series Gd on PGd 6F~ ~so ~Ho -6fef0 
6~98°K. and Time Target Temp. -RlnK T T 

Target (sec.) (g.) (OK.) (10-7atm.) (eu) (kcal./~ole) l (kcal./~ole) l (kcal. /~ole) (~u.) (~u.) 

2-6S 7428 7.709 2362 136.7 ll0.86 52.37 30.60 124.64 33.74 132.06 

avr. . + 122.2 - 3.6 avr. 126.3 ":!: 3.7 

. 1 
~~200oK. (Second Law)= 121.2 ± 16.6 kca1./5 mole 

· · ~~200oK. ( Second Law) = Jl. 6 ± 7. 4 eu. 

-RlnK = 1..987 1n [ (4.oo)4 (::a_) 2 P6cJ) 
* Crucibles ?.ir:~/C-2 for Series 2 and ?.ir:~/C-4 for Series land Series 3 had upper orifiee diameters of 

· 0.0672 and 0.01273 cm., respectively; lower orifice diameter~ 0.0851 and 0.1503 cm., respectively; and 

channel lengths of 0.658 and 0.689 cm., respectively. The target distance was 13.99, 13.·27 and 13.45 

cm. for Series l, Series 2 and Series 3, respectively. The target diameter was 0.550 cm. in all experi-

ments. 



in calculating A~ and A~980K.' respectively. 

A two-parameter least squares treatment of these data, pre-

scribed by the Second Law technique of Chapter 6. 4. 1, was performed 

with the IBM 1620 computer. From the slope A~2000K. is 121.2 ~ 16-~6 

kcal. for the vaporization of 1/5 mole of GdB4 to the gaseous elements. 

The value of 6S~2000K. from the intercept is 31.6 ~ 7.4 eu. for the same 

process. Figure 11. 4 is a graph of log pGd versus 1/T. 

With the same assumptions regarding the use of the Third Law as 

were used in the Langmuir experiments (cf. Chapter 9. 3) and the employ-

ment of entropy data on elemental boron and gadolinium taken from JANAF 

(69) and Stull and Sinke (65), respectively, the average Third Law 

standard heat of vaporization at 2200°K. is 122.2 ± 3.6 kcal. for 1/5 

mole of GdB4 • The average A~980K. was calculated as 126.3 t 3.7 kcal. 

for the same vaporization process. 
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CHAPTER 12 

ERRORS IN PRESSURE MEASUREMENTS ON GdB4 

12. 1 Kinds of Errors 

Any discussion of the influence of errors on the heat of 

vaporization of G?B4 (s) would include the foll0v1ing factors: 

1. The influence of oxygen, water, carbon monoxide and carbon 

dioxide in the background on the transport of gadolinium and boron. 

2. The errors in the entropies and free-energy-functions used 

in the Third Law treatments. 

3. The stoichiometry error of the process. 

4. The error in the temperature. 

5. The cross section and multiplier efficiency errors and the 

silver calibration error in the mass spectrometric data. 

6. The influence of orifice and sample areas, the Clausing-

distribution correction and the possibility of non-unity condensation 

or evaporation coefficients. 

7. Target analysis in the Knudsen experiments. 

8. Equilibration with ZrB2 , contamination, sample history and 

mechanical measurements. 

9. The sparsity of experimental points. 
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12. 2 Influence of Background Pressure 

Perhaps the best method of demonstrating the importance of 

background gases is to study the rate of transport of gadolinium from 

the crucible as a function of the background pressure of H20, o2 and 

co2 on being admitted from a controlled leak. In essence, this was the 

case with the mass spectrometer experiments. In Figure 10. 6 it was 

clear that ~Gd fell off from the linear temperature-coefficient slope 

-6 as the background gauge pressure exceeded a pressure of 10 nun. How-

ever, because of the location of the pressure gauge and the problem of 

determining the conductance of the vacuum system, no reliable determina-

tion of the background pressure in the furnace itself was available. 

It was noted in the mass spectrometer experiments that the 

Second and Third Law heats began to vary from constancy at background 
-6 pressures at the ionization gauge exceeding 1 x 10 nnn. It was further 

noted that the pressure in the furnace region could have been two orders 

of magnitude higher than the pressure at the ionization gauge. From the 
\ + 

relative ion currents, CO -28 was by far the most important background 

gas. Historically, when non-graphitic crucibles were used in the mass 

spectrometer, water was by far the most important gas. Water can be 

absorbed quite easily on cold metal surfaces. in large concentrations and 

with great tenacity. A plausible hypothesis, then, is the desorption 

of water from the apparatus walls as they are warmed and the reaction 

of water vapor with the graphite outer.crucible to form CO{g) and hydro-

gen. While this reaction is not favored at room temperature, at ·the 

high crucible temperatures of the experiment the TAS factor becomes 
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quite large, and the reaction is favored. 

In the glass vacuum apparatus of the Langmuir and Knudsen 

experiments a graphitic crucible effect similar to that of the mass 

spectrometer was noticed. Metal crucibles could be heated at high tem-

peratures with background pressures two orders of magnitude below that 

achieved when graphite crucibles were heated to high temperature. Carbon 

monoxide or gaseous species absorbed by the graphite probably were the 

principal contributors to the background pressure. 

However, within the limits of experimental error there was no 

pronounced deviation from constant values of the Third Law enthalpies 

of vaporization for either the Knudsen or the Langmuir experiments. 

These experiments were performed with background gauge pressures below 
-5 0 5 x 10 nun. Further,As22000K. from the Second Law Knudsen data is· 

31.6 ~ 7.4 eu., which compares favorably with an estimated value of 

32.4 eu. for the vaporization process to form one mole of gaseous 

species (cf. Chapter 13). 

Further, still, the Second and Third Law enthalpies of the Knudsen 

study are in good agreement, which would indicate confirmation of the 

congruent vaporization process used to calculate the Third Law values. 

Thus, GdO(g) is not considered important within the limits of error in 

the Knudsen or Langmuir experiments. 

In order to estimate the extent of reaction of CO, H20 or o2 

with GdB4 at high temperatures, one should examine suitable interaction 

processes. Consider the reacti~ns of CO(g) with GdB4 . 

(12. l} 
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White, Walsh, Ames and Goldstein estimate D0(Gd0) at -160 kcal./mole 
0 

0 
and s22000K. for GdO at 75.9 eu. (52). JANAF (69) gives·AH~ for forma-

tion of and s~200oK. for CO(g) and O(g). The heats of formation of GdB4, 

GdB6, and GdB2c2 were esti~ted as -45, -50 and -50 kcal./mole; re-

spectively. The entropy for the solids was estimated from AS~= O. 
-8 Then, for a CO(g) pressure of 5 x 10 atm., the.GdO(g) pressure is about 

5 X 10- 14 atm. at 2200°K.· H CO()· ·11 ence, g wi not appreciably react with 

Gd~4 in this process. 

Carbon monoxide may react with.qdB4 by process (12. 2): 

(12. 2) 

0 0 0 With AH£ and s22000K. data for GdB4, CO and GdB2c2 indicated above, AH£ 
0 of B2o2 (g) at 2200°K. -116 kcal./mole and s22000K. for B202(g) 92.1 eu., 

according to JANAF (69), the equ.ilibrium I consta~t for reaction 12. 2 can 
-8 'j 

be estimated. Again assuming Pco to be 5 x 10 · atm., one calculates a 
· -16 corresponding B2o2 pressure of 3 x 10 atm. Hence, CO(g) does not 

transport GdB4 in any way. The possibility of sample transport by co2 (g) 

is even more remote. 

Consider now the process,. 

(12. 3) 

-8 With background oxygen pressures of 10 atm., it is estimated that the 

GdO(g) pressure would be nearly·~tmospheric. Hence, Gd203(s) and B2o3(1) 

or possibly borates will be.the products at.this pressure of oxygen. 
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This observation implies that every oxygen molecule which enters the 

crucible will react to transport gadolinium and boron as gaseous oxides. 

However, at this oxygen pressure, the rate of entrance of oxygen through 

the orifice is small compared to the rate of congruent vaporization of 

GdB4(s) through the orifice. Evidence for the negligible influence of 

oxygen is the relatively low ion current of the M-32 and M-16 peaks in 

the mass spectrometer, their constancy with r!d+ variation, and the 

inability to detect. B202 (g) or BO(g) in the mass spectrometer. There-

fore, this process is not thought important. 

Assuming that water is the principal oxygen-containing absorbed 

molecule in the vacuum system, one nrust consider the following reaction: 

(12 ·• 4) 

While the poor thermochemical information available for GdO(g), HB02 (g) 

and GdB4 (s) pre.elude a reasonable estimate of the pressures expected, 

the estimates by Leitnaker (136) on the reaction of water with ZrB2 (s) 

and a realization that GdO is more stable than ZrO (52) and tha't GdB4 
per boron atom is nruch less stable than ZrB2 per boron atom, it is 

-8 obvious that water would be a serious problem at pressures over 10 atm. 

This interfering process was especially applicable in the mass spectro-

meter experiments, where the vacuum apparatus had a large metal surface 

area ·and where.. the·line conductance was low. The water partial pressure 

should become noticeable with GdO(g} appearance in the mass spectrum as 

the walls of the apparatus became hot. The species, H20+-18, was cer-

tainly the second most important·species (next to CO(g)) at 1740°c. in 



the mass spectrometer (cf. Table 10. 5); however, the water intensity 

was decreased relative to GdO+ as the temperature was increased. At 

room temperature water was the most important oxygen-bearing species in 

the mass spectrum. Perhaps water was reacting with the sample to a 

+ + greater extent at higher· temperat~res. _Some HB02-44 _and HB02-43 could 

have existed in the mass spectrum in view of the large ion currents at 

these masses. However, shutter checks were absent; and considerable 

background normally is found at these masses. 

In conclusion, the principal background gas species was CO(g). 

The effect on transport of gadolinium and boron by 'CO(g) at the CO 

pressures of the Knudsen and Langmuir experiments was negligibly small. 

Oxygen would have been a serious contaminant, but its background pressure 

was too low compared to the rate of GdB4 vaporization. Water was also 

a serious contaminant and probably accounts for the GdO(g) observed in 

the mass spectrometer. However, at- the background water pressures in 

the experiments performed in the glass vacuum systems, the water or 

oxygen entered the crucible to react with GdB4 at a rate less than that 

for congruent vaporization of GdB4 by a factor of 100. 

12. 3 Free-Energy-Function Errors 

While the pressures, equilibrium constants,and free energy 

changes on vaporization of GdB4 (s) can be, determined as precisely as 

experimental effort is warranted by interest, in order to determine the 

heat of vaporization from Third. Law treatments of these measured pres-

sures, entropies and free-energy-functions for B(g), Gd(g) and GdB4(s) 
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are needed up to 2500°K. Such data for GdB4(s) are disappointingly 

absent, necessitating approximations and thereby introducing errors. 

While entropy and free-energy-function data have been measured for B(g), 

data for 1Gd(g) have not been collected at these temperatures; however, 

reasonable estimates do exist. The magnitude of the collective errors 

in these quantities is discussed in this section. 

The free-ene~gy-functions and enthalpy functions for boron (s), 

boron (g)', gadolinium (s,l) and gadolinium (g) are tabulated at 100° 

intervals in the temperature range of interest in Table 12. 1. For 

B(s,1) and B(g) the first two data columns are taken from Stull and 

Sinke (65), while the last two columns are taken from the JANAF Tables 

(69). The data for gadolinium (s,l) and gadolinium (g) were taken from 

Stull and Sinke (65). 

There is some difference in the two sets of data of Table 12. 1 

for elemental boron. The values of JANAF (69) are those accepted in a 

recent critical review on the thermochemical data of boron by Schick 

(13i). The data on boron were taken from JANAF throughout this work. 

Gadolinium 

The enthalpy, free-energy-functions and entropy data for monatom-

ic, ideal, gadolinium gas are based on the spectroscopic data of 

Russell (1.)5) in Stull and Sinke (65). Similar data for gadolinium, 

solid and liquid, were estimated. by Stull and Sinke from measured en-
. 0 f tropy and heat capacity data below 355 K. and an estimated heat o 

fusion. These data were used throughout this work. 



TABLE 12 .. 1 

Enthalpy and Free-Energy-Function Data for Boron and Gadolinium 

( cal. /g .• -at.) 
T 

(cal./deg./g.-at.) 

· Stull and Sinke (65) 

H0 -H0 o (F~-H~98°K.) 
T 298 K. - ---------

T 
(cal./g.-at.) (cal./deg./g.-at) 

JANAF (69) 
Boron (s): 

1500 6409 4. 88. 6759 5 .152 
16oo 7082 5.17 7454 5.448 
1700 7765. 5 .44 8158 5. 735 
1800 8460 5.70 8870 6.013 
1900 9165 5 • 96 9590 6. 283 
2000 9880 6.21 10315 6.544 
2l00 10605 6. 45 1104 7 6. 798 
2200 ___ 113.40 ______ ~.69 ___ .· __ 11783. _____ 7 .0~5- ___ . · 
2300 17380 " 0.92 · 17121+ 7 .2o5 

· ·. 2400 18l30 · 7. 24 17874 7. 6o2 
2500 1888o 7 . 5 5 18624 7 . 906 

Boron (g): 
1500 5971 40.70 5972 40.696 
1600 6468 40. 96 6468 40. 955 
1700 6965 41.21 6965 41.202 
18oo 7462 41.44 7462 41.437 
1900 7959 41.67 7959 41.662 
2000 8455 41.89 8456 41.878 
2100 8952 42 .09 8953 42 .085 
.2200 9449 42. 29 . ·. 9449 42. 285 . 2300- - - 994b - - - - -. 42.48 - - - - - - -9946 - - - - - ~2:4t6 - - -
2400 10443 42.66 10443 42.661 
2500 10939 42.84 10940 42.839 

, Stulli and Sinke (65) Stull and Sinke (69) 
Gadolinium (g): Gadolinium (s): 
. 1500 - _7g96 - - - - - _51.2_7 - - - - - ' _9486 - - - - - 21.91 - - - -1600 7885 51.89 14070 22.32 

1700 8481 52.19 14870 22.86 
1800 9087 52.48 15670 23.36 
1900 9703 52.75 16470 23.83 
2000 10330 53.01 17270 24.27 
2100 10970 53.27 18o70 24.69 
2200 11622 53.51_ 18870 25.09 
2300 12286 5 3 . 74 19670 25 • 4 7 
2400 12963 53.97' 20470 25.84 
2500 13652 54.19 21270 26.18 
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GdB4.0~ 

In the absence of any heat capacity data at any temperature for 

GdB4 •00 (s), no experimental free-energy-functions could be calculated 

or extrapolated. A reasonable estimate of the heat capacity of a pliase 

of the alloy type or of compounds with a coordination type structure 

can be made with the use of the Neumann-Kopp Rule. This correlation 
0 assumes that AC of formation of the phase from the elements is zero at p 

all temperatures. In other words, the heat capacity and, therefore, the 

free-energy-·function, entropy function and enthalpy function for GdB
4

•
00

(s) 

may be estimated by adding the heat capacities or appropriate functions 

of the elements. This assumption was employed in all calculations of 

the thermodynamic values for GdB4 vaporization. 

The second assumption used in the GdB4 thermodynamic calculations 
0 was that As2980K. for the formation of GdB4 was zero. From this assump-

tion and the assumption that AC0 of formation at all temperatures is p 

zero, standard state free-energy-functions and entropies for GdB4 •00 (s) 

are given by the sum of the stoichiometric proportions of the elemental 

free-energy-functions or entropies in their standard states. 

The error arising from these assumptions for GdB4 (s) is difficult 

to evaluate. However, Swift and White(l76) measured the heat capacity 
() of MgB4 (s) from 17.34 to 299.53 K. and estimated the heat capacity above 

that temperature. A comparison of the Swift and White data as inter-

preted by JANAF · (69) with the above assumptions is made in Table 12. 2 

0 at 298 K. (136). 
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TABLE 12. 2 

Comparison of Measured Thermodynamic Data for Magnesium Boride 
and Lanthanum Hexaboride with Estimated Values at 298°K. 

co so p (~9g-H~)/T -(F~98-~)/T 
Substance (cal./mole) (eu) (cal./deg./mole) (cal./deg./mole) 

Mg 5.96 7.81 4.008 3.80 

4B 10.52 5.60 3.918 1.68 

MgB4 ( calc.) 16.48 13 .41 . 7 .93' 5.48 

MgB4 ( expt • ) 16.858 12.410 7.63 4.78 

La 6.65 13.64 

6B 15.78 · 8.34 

LaB6(calc.) 22.45 21.98 

LaB6 ( expt . ) 23.17 19.88 8.700 
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Swift and White's chemical analysis for MgB4 described the 

composition as MgB3 •86 ; however, the data they reported were for MgB
4

• 

If the entropy and free-energy-functions of GdB4 are related to the 

entropy of the component elements in the same fashion as for MgB4, then 

the entropy or free-energy-function calculated from the elemental data 

for GdB4 should be decreased by 12.8 percent at 298°K. 

With the assumption that this 12.8% variation exists at all tem-
o peratures, 6H2980K. from the Third Law for 1/5 GdB4(s) vaporization will 

be increased by 2.6 kcal. over the value calculated from the assumption. 
0 0 that 6Cp and 6S2980K.for formation of GdB4 are zero. An error of 10% in 

the free-energy-function or entropy of gadolinium solid or gas would affect 

this heat of vaporization about one kcal. Any errors in the free-energy-

functions of elemental boron are negligible compared to those for gadolinium. 

Therefore, the errors in the heat of vaporization of GdB4 with the free-

energy-functions used should not.exceed 3.5 kcal. of which 2.6 kcal. is 

systematic error. 

12. 4 Composition Error 

Since no deviation from a stoichiometric tetraboride composition 

has been observed for the lanthanides, the actinides and MgB4, the assump-

tion of a·stoichiometric vaporization process seems appropriate. However, in 

view of the quality of the boron analyses, the precise four to one ratio of 

boron to lanthanide cannot be verified (cf. Chapter 1). While in this work no 

error for deviation from a stoichiometric process was used in the error 
0 . analysis, it is :interesting to calculate what the error in the 'lhird lJiv:r 6H2980K. 

for the vaporization would be, if the boron to lanthanide ratio were 3.950. 

Consider the process: 
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GdBy (s) = Gd(g) + Y B(g). 

',t 
K = PGd PB 

PB= PGd Y (~: )112 
from equation 6. 7, 

From equation 6.29, 

On differentiation with respect to Y, 

- fef~(g) d v> + fef~(s) d ~ . 

(12. 5) 

(12. 6) 

(12. 7) 

For Y = 4.00 and d V = 0.05, d(l\H~980K_) will be 13.64 kcal./mole at 

0 2182 K., or an error of 2.7 kcal.lone total gaseous atom. 

12. 5 Temperature Error 

12. 5. 1 Langmuir 

The difficulty in estimating the error here lies in the question 

of surface temperature discussed. in Chapter 6. 3. 1. Assuming that the 

black-body temperature was the same as the surface temperature, one can 

estimate the temperature error ·fr·om the equations developed below. 
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From Chapter 6. 2 an error of ten degrees was considered 

reasonable in the use of the pyrometer and calibrations for the optics 

involved. What error in the Third Law A~ will such a temperature error 

produce? Substitution of equation 6. 5 into equation 6.29 provides 

equation 12. 8. 

5/2 o J - RlnT - Afef • 

1 5 
44.33at) 

(12. 8) 

Differentiation of equation 12. 8 with respect to temperature gives 

equation 12. 9. 

- RlnT512-t,fef0
) - 5/2 Rt,T. 

1 5 
44.33at) 

(12. 9) 

0 Therefore, a 10 temperature error produces an error of 0.6 kcal. in 

·the Third Law value for th~ heat of vaporization of 1/5 mole of GdB4 (s?. 

12. 5. 2 Mass Spectrometer 

The temperature error in the mass spectrometer data was probably 

nruch larger than in the Knudsen or Langnruir cases. The heating arrange-

ment with two tungsten electron bombardment ribbons around the crucible 

described earlier necessarily allows temperature s,radients. It is esti-

mated that the gradient at the temperatures of the gadolinium measurements 
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0 might be as much as 30; and at the temperatures of the silver cali-
o bration, about 15 • Coupling equation 6.10 with equation 6.29, substi-

-6F0 /RT + tuting e Ag Ag for the pressure of silver, and arranging the 

temperature terms in an easily differentiable fashion, one derives the 

relation in equation 12.10. 

(12 .10) 

Differentiation with respect to temperature produces the result, 

(12 .11) 

With an error in TGd+ of 30° at 2000°K. and an error in TAg+ of 15° at 
0 0 · 1200 K., an error of 2 .2 kcaL in the Third Law ~H2980K. for the vapo-

rization of 1/5 GdB4 (s) is calculated. 

12. 5. 3 Knudsen 

The temperature in the Knudsen experiments does not depend on 

the assumption that surface temperature and black-body hole temperature 

are the same, as in the Langmuir expesiments. Thus, the temperature error 

is that derived for the Langmuir case in Chapter 12. 5. 1 without this 
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assumption. Hence, an error of at most 0.6 kcal. in the Third Law A~ 

for Yaporization of GdB4 to a mole of gaseous elements is estimated. 

12. 6 Mass Spectrometer Calibration Error 

As discussed in Chapter 6. 3. 2, the most accurate calibration 

method in mass spectrometry is the total vaporization of a known weight 

of the species, whose pressure is to be measured as a function of tempera-

ture, under the same geometry and electrical conditions as in the 

vaporizing system whose pressures are unknown. Because of the inability 

to distinguish ion current arising from sample boron from that of cru-

cible boron, such a calibration could not be carried out for boron. The 

gadolinium ion current could have been interpreted in terms of gadolinium 

pressure by vaporizing a known weight of gadolinium metal., However, the 

behavior of gadolinium in ZrB2 was not well characterized. 

Therefore, a calibration of the mass spectrometer with silver 

was performed in each experiment prior to the collection of data generat-

ing the gadolinium temperature coefficient. This procedure necessitated 

an estimation of the relative ion cross sections and the nrultiplier ef-

ficiencies for gadolinium to silver. The gadolinium to silver cross 

section ratio was estimated in Chapter 10. 7 at 71/34.8 with an error 

certainly less than a factor of 1.3. And the multiplier efficiencies 

were determined in the same chapter to an accuracy of a factor of 1.3. 

Therefore, the error introduced into the gadolinium pressures from these 

estimates is generously estimated at a factor of 1.6. 
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While the calibration prior to each experiment was done both by 

determining the silver temperature coefficient and by monitoring the ion 

current as a function of time for the total vaporization of a weighed 

quantity of silver, in the particular experiments where the gadolinium 

temperature coefficients were considered reliable the latter calibrating 

scheme gave too low a sensitivity because of orifice clogging (cf. Figure 

10. 3). With the use of equation 6.16 and a Clausing factor of 0.09, 

as defined by Iczkowski, Margrave and Robinson (198), for the cylindrical 

orifice in crucible ZrB2/c-2, the sensitivity of the mass spectrometer 

for silver from the total weight loss method was 1.4 x l0-4amp./atm. at 

1302°K. This value is too low by the fraction of the orifice plugged 

and the error in the Clausing factor. 

The sensitivity determined by temperature coefficient measure-

ments taken immediately prior to noticeable orifice clogging resulted in 

-4 0 a silver sensitivity of 5.5 x 10 amp./atm. at 1248 K. This sensitivity 

is to be compared with temperature coefficient ·silver sensitivities of 

4.8 x l0-4amp./atm. at 1244°K. and 2.5 x 10-4 amp./atm. at 1248°K. from 

two earlier experiments. Therefore, it is believed that the reliability 

of the sensitivity is within a factor of 1.8. 

An interesting method of roughly determining Clausing factors 

for poorly defined orifice geometries is available. The Clausing factor 

for the orifice would be the ratio of the sensitivity determined from 

the temperature coefficient data to that determined from equation 6.16. 

The measured gadolinium pressures in the mass spectrometer, in 

view of the above considerations, would be correct within a factor of 2.5. 
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An error in the pressure of this magnitude would be 'manifested as an 

error of 1.1 kcal. in the Third Law heat of vaporization of 1/5 GdB4 at 

1761°K. 

12. 7 Condensation and Evaporation Coefficients; 
Clausing Factors; Angular Distribution 
Errors 

It is difficult to interpret whether or not the GdB4 vaporization 

experiments suffered from low non-equilibrium pressure measurements, 

arising from non-ideal conditions for Knudsen or Langmuir vaporization. 

Usually, one studies the effect of varying orifice size on the pressures 

inside the crucible. In essence, this study was accomplished in this 

work by comparing measured pressures between the limits of a very small 

orifice in the Knudsen experiments and the infinitely large orifice of 

the Langmuir experiments. If the measured pressures in the Langmuir 

case were too low because of failure to achieve equilibrium, the Third 

Law enthalpy calculated from Langmuir data will be higher than that of 

the Knudsen experiments. Within the statistical errors reported above, 

the Langmuir Third Law enthalpy does exceed that of the Knudsen and mass 

spectrometric values by 10 to 15 kcal. However, in view of the unknown 

temperature error of the Langmuir experiments and the meager volume of 1 

data, the actual size of this discrepancy cannot be defined. Therefore, 

condensation coefficients cannot be realistically evaluated. 

There were two orifices used in the Knudsen experi~ents, one 

about one-fourth the area of the other. If a saturated vapor did not 

exist with the larger orifice, lower pressures arid higher Third-Law 

enthalpies should be observed on comparison to the data with the smaller 
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orifice. However, quite the opposite was observed. The smaller orifice 

produced slightly lCMer pressures. In view of the large area of the 

massive powdered sample, the small orifice used, and the above considera-

tion, it is believed that a saturated vapor existed in the Knudsen 

crucible. 

Having demonstrated that vapor saturation existed in the Knudsen 

crucible, one must now consider the effect of orifice and target g~ometry 

on the rate of escape and on the collection of gas effusing from the. 

orifice, i.e., the Clausing and the molecular distribution factors. 
j 

The L/r ratio for the ZrB2 orifices in the.Knudsen work were 10.0 for 

crucible ZrB2/c·4 and 17.3 for crucible ZrB2/c-2 (cf. Chapter 11). The 

conical angles, T'., of these orifices, were 0.0137 rad. (0°47') for 

crucible ZrB2/c-2, and 0.0166 rad. (0°57') for crucible ZrB2/c-4. The 

solid angle, 9, between the normal to the orifice from the target and 

the target perimeter was 2°23', for the Series 1 experiments and very 

slightly greater for the Series 2 and 3 experiments. 

Should the convergent orifice, i.e., the diameter of the 

cylinder orifice at the vacuum end less than that opening into the 

crucible, have a value of'f 2: 9 where 7'- is the angle between the normal 

through the orifice and the conical wall of the orifice channel, then, 

according to Edwards and Freeman (177), there is no Clausing factor but 

only a cosine correction for the angular distribution of the effusing 

gas. This restriction is apparent if one realizes that under these 

conditions only a molecule passing through the orifice without striking 

the walls of the orifice could·strike the target. 
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The fonnula, N9 = f'- TI r 2sin2e, defines the number of particles 

passing through the solid angle, 9, per second. The quantity,f<- , is 

the number of particles striking the orifice,funit are8j'sec. in the cell; 

and r is the smallest orifice radius. 

Hence, 

m ( 
M t' 2 

2TI RT} from kinetic theory. r p =--

( 2~Rt: 
1/2 

. 2 
mN9 =~=Pa sin 9 (2TT~J = mass/ sec. 

collected by the· target. 

Then, 

and 

11\r p = ----
. 29 a sin 

( 2uRT ) 1/2 
M 

(2nRT)l/2 
m 

(12 .12) 

(12.13) 

(12 .14) 

(12 .15) 

(12.16) 

However, the smallest 9 in the three sets of Knudsen experiments per-

formed was 2°23 1 which is greater than / • Therefore, some error would 

arise from the use of the simple cosine correction of equation (12.16) 

because of the enhanced channeling of effusate onto the target area from 

theraarly cylindrical orifice. The use of equation (12.16) would produce 

gadolinium pressures which are too high. 
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At the other extreme, with the assumption of a cylindrical 

orifice one observes that molecules striking the walls of the orifice 

could reach the target. The combined Clausing factor and fraction-of-

effusate-collected correction on the pressure was given by equation 11. 

According to Freeman.and Searcy (174), this expression holds within 

+ 1 percent for O < L/r < 2.0 and for values of O < 9 < 0.35 radians, - - .... ... -
where 9 is the angle between the normal through the orifice and the 

sloped walls of the orifice. For 2.0 .:5. L/r .:5. 8.0 and O .:5. 9 .:5. 0.18 rad. 

the error is! 5 percent. The values of 9 in these experiments were 

less than 0.18 rad., but L/r was greater than 8.0. If one assumes the 

decrease in error for such a small 9 balances the increased error for 

L/r > 8.0, the error in the use of this correction fornrula is~ 5 percent. 

Table 12. 3 shows the corrections for the three series of Knudsen 

arrangements with the ideal cosine distribution only and with the Searcy-

Freeman formula. The corrections agree with 15 percent. The best cor-

rection would be an intermediate correction. Therefore, since the 

Searcy-Freeman values were used here, the random error in the correction 

is 5 percent, but a systematic error of about 7 percent too small a 

correction is applicable. Hence, the apparent gadolinium pressures 

will be from 2 to 12 percent too high. This effect will produce errors 

in the heat of vaporization of 1/5 GdB4 of 0.02 to 0.12 kcal. in the 

Knudsen determinations. 
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TABLE 12. 3 

Knudsen Effusion Correction Constant for Clausing 
Factor, Angular Distribution and Fraction Collected 

on Target 

Series 

1 

2 

3 

Cosine Law 
(10 -_3) 

1.54 
1. 72 
1.67 

Searcy-Fr~eman 
(10 -3) 

1.41 
1.45 
1.52 

12. 8 Target ~nalysis Error 

By far the largest error in the quantitative analysis of 

gadolinium on the aluminum targets from the Knudsen vapor collection 

experiments was in .the delivery of a precise volume of gadolinium con-

taining solution from a one ml. syringe onto the standard gadolinium 

plates. This error varied from 4.5 percent at one microgram of gadolinium 

to 15 percent at 175 micrograms of gadolinium on the standard targets. 

The scatter in the standards at low concentrations arose solely from 

the 5 percent error in delivering an accurate volume from a microsyringe. 

At high concentrations the error arose from the inaccuracy of the syringe 

delivery and from the uneven and thick layers of Gd 2o3 that resulted on 

evapora~ion of such concentrate~ solutions. 

Data scattering due to target alignment or rotation in the 

spectrograph, detector variations and reflection or blocking of gadolinium 

emission by the edge of the aluminum target overlay was insignificant. 

312 



Since the target analyses were in the one to 50 microgram range, the 

error in the analysis is assumed to be about eight percent. This error 

in the pressure of gadolinium would be realized as an error of ± 0.06 kcal. 

in the Third Law heat of vaporization of .1/5 GdB4 at 2200°K., an insig-

nificant error compared to other sources of error. 

12. 9 Miscellaneous Errors 

Errors left to be dealt with might arise from failure of the. 

sample to equilibrate with the ZrB2 crucible, errors in the geometry 

measurements, non-unity condensation ·coefficient on the target in the 

Knudsen experiments, the influence of possible contaminants in the sample, 

sample history, timing accuracy and weight measurement. There was no 

indication that these errors were large compared to those discussed 

above. Contamination might have been a serious problem, but cannot be 

effectively evaluated. The area error in the Langmuir measurements is 

estimated liberally at 10 percent. 

The sparsity of experimental points was a large source of error. 

These random errors were evaluated statistically by the computer and are 

given with the calculated values in the appropriate chapters. 

12.10 Sununary 

12.10. 1 Langmuir 
( 

The total root mean square error in the equilibrium constants 

of the Langmuir experiments equals the square· root~£ the sum of the mean 
1/2 square errors in the weight, loss, in the pellet area, in T , in the 
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time and, further, in the stoichiometry and the condensation coefficient, 

each weighted by the partial derivative of Kwith respect to the vari-

&ble. From the above discussion, then, the error in the equilibrium 

constant is 11 percent. This deviation produces an error of 0.1 kcal. 

at 2200°K. in 1/5 RlnK which is quite within the experimental standard 

deviation of 1.5 kcal. The random error in the entropy or free-energy-

functions and the temperature and the error from random scatter of experi-

mental data fix the total error at 2.6 kcal. in the Third Law heat of 

vaporization of 1/5 GdB4 at 2250°K. This error assumes no stoichiometry 

error, a unit condensation coefficient, no competing transpor: process, 
0 0 and tCP and ~s 2980K. of formation of GdB4 equal to zero. Therefore, 

~H~2500K. is 134.2 ± 2.6 kcal. for 1/5 GdB4 . 00 . This value is probably 

low by 2.6 kcal. because of the systematic entropy error in GdB4 (s). 

12.10. 2 Mass Spectrometer 

Accumulation of.the estimated errors in the mass spectrometer 

experiments gives ~H~7500K. from Third Law analysis a value of 114.0 + 

4.6 kcal./1/5 mole. Again the systematic 2.6 kcal. error in the heat of 

vaporization, arising from the systematic error in the entropy of GdB4 , 

would tend to raise this value by that amount. The assumptions here are 
0 0 vapor saturation, no competing process, ~CP and ~s2980K. of formation 

for GdB
4

(s) are zero, no stoichiometry error, and no geometry change be-

tween the temperature of silver calibration and the highest experimental 

temperature. 
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12.10.3 Knudsen 

0 The errors in the Third Law heat of vaporization at 2200 K. from 

the Knudsen experiments are those of the Langmuir case less the area 

error but adding the error arising fro~ the correction for effusion geo-

metry and adding the error in target analysis. However, these errors 

produce an error in the equilibrium constant considerably less than the 

0 1.· s experimental deviation in K. Therefore, 6H22000K. from the Third Law 

122.2 "±' 3.6 kcai". for 1/5GdB4 . 00 • Again, the systematic error of 2.6 kcal., 

arising from the error in the entropy,would increase this value for the 

heat and reduce the error accordingly. The assumptions here are unit 

target condensation coefficient, vapor saturation in the crucible, no 

stoichiometry error, no other competing transport process and 6C0 and p 
0 6S2980K. of formation for GdB4(s) are zero. 
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CHAPrER 13 

SUMMARY OF THERMODYNAMIC DATA ON Gd.B4 

Table 13 contains a summary of the enthalpies and entropies cal-

culated from the pressure measurements over Gd.B4(s) from Langmuir, mass 

spectrometric and Knudsen measurements. The errors in the Second Law data 

are the computed least squares errors. The errors in the Third Law values 

are those d"iscussed in Chapter 12. 
/\ 

For comparison purposes, it is useful to estimate [}.H~2000K. for 

the vaporization of 1/5 mole of Gd.B4. The heat of formation of Gd.B4 lies 

between -27.7 and -88 kcal./mole (cf. Chapter 14). The heat of vaporiza-

tion of boron at 2200°K. is 133.9 t 0.7 kcal./g.-at.,according to Robson 

and Gilles (178), and the heat of vaporization of gadolinium at 2200°K. 

given in Stull and Sinke (65) is 75.3 kcal./g.-at. Therefore, the esti-

mated heat of vaporization of 1/5 mole of Gd.B4 vaporizing to give atoms 

at 2200°K.is between 127.6 and 139.8 kcal. From the assumption that 

· ~s~98oK. and .6.C~ for formation of Gd.B4(s) are zero at all temperatures, 

b. s~2000K. per l/5 mole is estimated at 32 .4 eu. The Third Law enthalpy 

change for the vaporization at 298°K. would be 3.8 kcal. larger than 

.l\H~200°K. 

From the low Second Law entropy and.from the high Third Law heats 

determined in the Langmuir experiments, it is obvious that the gadolinium 

pressures were too low. Thus, one must postulate a non-unity evaporation 
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TABLE 13 

Summary of Thermodynamic Values for Gd.B4 Vaporization 
in Langmuir, Mass Spectrometric and Knudsen Experiments. 

Mass 
Quantity Langmuir Spectrometer Knudsen 

Temp. range (°K. ) 21J2-2403 1599-.1888 204 7-2362 

Temp. at which thermo. quantity 2250 1750 2200 
measured ( °K. ) 

6.~(Second. Law, kcal./! mole) ll6.4 ± 8.3 99.1 ± 5.8 12l.2 ± 16.6 

~s~(Second Law, eu. for t mole) 23. 9 :: 3. 7 24.4 :: 3.4 3.1.6 ± 7 .4 

6~(Third Law, kca.1./t mo.le) 134.2 ± 2.6 114.o ! 4.6 122.2 ± 3.6 

6H~98oK. (Third Law, kcal./t mo.le) 138.9 ± 2.7 116.4 ± 4. 7 126.3 ± 3. 7 
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coefficient for free evaporation of ~4· If the evaporation coefficient 

is not strongly temperature dependent, some reliance may be placed on the 

Second Law enthalpy. The Second Law value at 2250°K. agrees with the 

estimated values for the process within the errors involved. 

From a comparison of measured gadolinium pressures in Tables <;J, 

10. 6 and 11 (cf. Figure 13), it is clear that the mass spectrometer 

measurements demonstrated the highest pressures. This is reflected in 

the Third Law value for ~H~750oK.of Table 13, which is lower than the 

Langmuir'and Knudsen counterparts and considerably lower than the esti-

mated values. The temperature coefficient value for the heat of GdB4 

vaporization is less than the Third Law value in the mass spectrometric 

measurements. If a process other than congruent Gd.B4 vaporization were 

accounting for the gadolinium transport, the Third Law calculations, which 

employ free-energy-functions for the congruent process, would suppress the 

effect on the Third Law enthalpy change. On the other hand, the enthalpy 

determined from a slope of log PGd versus 1/T would bear no relation to 

the congruent process. Therefore, the Third Law value would be expected 

to be ~ifferent from the Second Law value, if some other process were 

accounting for gadolinium or boron transport. 

Recall from Chapter 10 that trace amounts of aa.203 were found in 

the mass spectrometer sample after the vaporization experiment. From the 

discussion of Chapter 10 and Chapter 12. 2, the presence of Gd2o3 is 
. . 

expected at sufficiently high background pressures of H20(g) or 02(g). 

One may s~spect, then, that gadolinium is being transported by the process, 

Ga.2o3 ( s) = 2Gd.O(g) + O(g) • 
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Using the heats of formation and free-energy-functions for Gd.2o3 and Gd.O 

estimated by White, Walsh, Ames and Goldstein (52) and similar data for 

O(g) from Stull and Sinke (65), one finds pGdO at 2000°K. is of the order 

of 10-7 atm. when the background oxygen pressure is 5 x 10-8 atm. Further, 

White, et al. (52), indicated that Gd.O is much more important over aa.2o3(s) 

than Gd(g). This GdO pressure compares with an observed Gd pressure of 

5 x 10-7 atm. at 2200°K. 

when aa.2o3 is present. 

Hence, gadolinimn transport as Gd.O(g) is important 

Thus, in view of the influence of background gases on GdB4 vapori-

zation, the thermodynamic data determined from the mass spectrometric study 

are not very useful in fixing the heat of vaporizatio~ of GdB4. The value 

of the mass spectrometric studies lies in the confirmation of the vapor 

species, in the insight derived regarding the influence of background gases 

on material transport, in the confirmation of the principal vaporization 

process and the demonstration of equilibrimn, and in the discovery of the 

possibility of Gd.02 molecules existing under reducing conditions. 

The Knudsen experiments provided the most consistent set of thermo-

chemical data. An examination of the Third Law calculations in Table 11 

reveals no systematic variatiOn with terp.perature. Thus, within the limits 

of error, no competing process was important. The agreement between the 

temperature coefficient intercept value of ~s~200oK. ~ 31.6 eu. and the 

estimated value of 32.4 eu. is quite good, implying that the pressures a.re 

_of the correct magnitude. In view of the large error limits, the remark-

able agree~ent betwe~n Knudsen Third Law and Second Law heats of vaporiza-

tion is, perhaps, fortuitous, but quite s~tisfying. These enthalpy·values 

are low compared to the estimated 6H~2oooK. of 127 .6 to 139.8 kcal. per 
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1/5 mole Gd.B4. Some of the difference can be accounted for when the system-

atic error of 2.6 kcal., or the assumption that ~ ~ is zero for Gd.B4 for-

mation, is added to the Knudsen enthalpy values (cf. Chapter 12. 3)o 

The best value for the heat of vaporization of 1/5 mole of GdB4 

is taken as the Third Law value of the Knudsen experiments, on the basis 

of the assumptions listed be.low: 

1.) The stoichiometry of the vaporization process is assumed that 

in equation 1. 2. 

2.) The entropies and the free-energy-functions for boron solid, 

liquid and gas are those of JAN.AF (69). 

3.) The entropies and the free-energy-functions for gadolinium 

solid, liquid and gas are those given in Stull and Sinke (65). 

4.) The value of LlS~980K. for formation of Gd.B4.00 differs from 

zero by the same extent as does that for MgB4, as discussed in Chapter 

12. 3. 

5.) The quantity, fl. ci is zero at all temperatures above 298°K. 
for the formation of Ga.B4(s). 

With these assumptions ~H~200oK. is 124.8 t 3.6 kcal. for the vaporiza-

tion of 1/5 mole of GdB4(s). For the same process, ,6H~98oK. is 

128.9 t 3.7 kcal.; 6,S0 is 31.6 t 7.4 eu., and the pressure of gadolinium 

over Gd.B4 at 2200°K. from equation 6.24 is 3.2 x 10-6 atm. The value of 

~F~200oK. is 55.3 kcal. 

Within the framework of the above assumptions, and assuming 

6H~
98
oK. for the vaporization of boron is 135.0 kcal./g.-at., according 

to Robson and Gilles (178) and that .6.H~9soK. for the vaporization of 

gadolinium is 82 kcal./g.-at. (cf. Table 1.2), one finds that the heat of 
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formation of GdB4.00 at. 298°K. is -22.5 kcal./mole or -5.6 kcal./g.-at~ 

boron. While this value is slightly outside the limits established in 

Chapter 14, the difference could easily b~ accounted for in the assump-

tion either that ~ ~ for formation of GdB4 is zero at all temperatures 

or that errors in the heats of vaporization of the component elements exist. 

If Paa. over GdB4 at 2200°K. is 3.2 x 10-
6 
atm., then in the Knudsen 

-6 ( 6 ) cell pB should be 3-~.x 10 atm. cf. equation • 7. The vapor pressure 1 

,,,,- ( 8) 4 -6 of boron at 2200°K., according to Robson and Gilles 17 , is 3~ x 10 

atm. The vapor pressure of gadolinium is 1.04 x 10-2 atm. at 2200°K. (65). 

If the boron pressure over GdB4(s) were, indeed, nearly equal to the boron 

vapor pressure, then the stabilities of GdB6 and GdB100 are very severely 

restricted. In order for GdB6 and GdB100 to exist, the boron pressures 

over both GdB6 and GdB100 must be between 3.2 and 3.4 x 10-6 atm. with 

'pB over Gd.B6 le~~: than PB over Ga.B100. 

This extremely restrictive stability requirement for GdB6 and 

GdB100, the low heat of formation of GdB4, the low heat of congruent evapo-

ration compared to estimated values, and the proximity of the boron pres-

sure over Gd.B4 to that over B(s), all indicate too high a gadolinium 

pressure in the Knudsen experiments on GdB4. This apparent anomaly can 

best be shown in the composite log pGd versus 1/T graph of Figure 13. 

Clearly the Knudsen gadolinium pressures are a factor of ten greater than 

the Langmuir pressures. The Knudsen gadolinium pressures also represent 

the corresponding boron press~es in the Knudsen cell. The vapor pressure 

of boron ~ersus 1/T is indicated on the graph, showing that at sufficiently 

low temperatures PB over GdB4 actually is .greater than PB over B(s). This 

apparent result, of course, cannot be correct. 

321 



Another inconsistency is found in the comparison of PB over GdB4 

to PB over B4C. From the ternary Gd-B-C studies of Part I, it was estab-

lished that Gd.B4 will react with B4C to form Gd.B6 and graphite. Hence, 

PB over the Gd.B4-Gd.B6 pair must be less than PB over the B4C-C pair. Then 

it follows that PB over GdB4 must be less than PB over the B4C-C mixture. 

The boron pressures over B4C-C were measured by Robson and Gilles (178) 
and are shown in Figure 13. Clearly, the boron pressures over Gd.B4 cor-

responding to the measured gadolin.ium pressures are greater than the boron 

pressure over B4C, in violation of the Gd-B-C equilibria observed in 

Part I. 

While the error analysis on the Knudsen experiments and the spread 

in the experimental data allow an error of a factor of two in Paa. and, 

hence, in PB, the decrease of a factor of ten in Paa. needed to satisfy the 

above inconsistencies cannot be explained by errors in the Knudsen experi-

ments. A chemical phenomenon must explain the apparent high gadolinium 

and boron pressures. 

A very plausible explanation is available. Leitnaker (136) reported 

that ZrB1 •96 vaporizes congruently with a boron partial pressure of 

1.5 x 10-8 atm. at 2200°K. Hence, the boron pressure at the outer surface 

of the ZrB2 cell is two decades lower than the boron pressure inside the 

cell estimated from the measured gadolinium pressures. This activity 

gradient of boron through the crucible walls invites boron to move from 

inside the cell to the large vaporizing area of the ZrB2 outer surface. 

The amount of boron transport through the crucible, compared to the amount 

of boron l~aving the cell through the orif~ce, depends on the diffusion 

constant for boron in ZrB2 • Certainly the boron pressure inside the 
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crucible will be lower than PB calculated from Pad for an inert Knudsen 

cell. If PB inside the cell is lowered, then Pad will increase. However, 

since no Gd(l,s) was observed in the cell with Gd.B4, Paa. did not increase 

to the gadolinium vapor pressure. 

The free energy of congruent vaporization of Gd.B4 at 2200°K. was 

estimated from the entropy and heat of sublimation data of Table 1. 2 with 

the heat of formation of Gd.B4 taken as -45 kcal./mole. Setting the gado-

linium pressure equal :to the vapor pressure of gadolinium at 2200°K., as 

given by Stull and Sinke (65), one establishes a lower limit on PB inside 

the cell as 4 x 10-7 atm. Since pB over Gd.B4 must be less than PB over 

B4 C, an upper limit of 8 x 10-7 atm. is e.stablished. Hence, the boron 

pressure corresponding to the measured gadolinium pressure in the reactive 

ZrB2 crucible is bet~en 4 and 8 x 10-7 atm., which is less than a decade 

lower than the apparent PB. 

Thus, al.1 the inconsistencies in the partial pressures are com-

fortably explained. While the decreased boron pressure over GdB4 will 

produce higher heats of vaporization for Gd.B4, since the pressure changes 

are less than a decade, the change will be less than 10 kcal./total gas 

atom at 2200°K. Further, the stabilities of Gd.B6 and Gd.B100 with respect 

to gaseous elements are still fairly restricted. 
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CHAPTER 14 

TERNARY COMPATIBILITY STUDIES 

14. 1 Thermodynamic Basis 

In order to determine the relative stability of the lanthanide 

borides.and to select a crucible material in which to study the vaporiza-~· 
tion of lanthanide borides, compatibility tests between various lanthanide 

tetra- and hexaborides and the metals W, Zr and Ta were made. Compatibility 

studies with graphite were discussed in Part I, Chapter 3. The equilibria 

_observed in these ternary systems, coupled with a knowledge of the heats 

of formation of the non-lanthanide metal borides, define the range on the 

heats of formation of the lanthanide borides. This same technique was 

used by Brewer and Heraldsen (2~) to determine the relative stabilities of 

transition metal borides, carbides and nitrides. A more sophisticated 

discussion of this technique is given by Rudy (19). 

The thermochemical basis for this study lies in the following con-

siderations: Consider the process in equation 14. 1. 

ABx (s) + A' (s) == AB:x:-y (s) + A'By(s). (14. 1) 
The free energy change for this process a~ any tempera~ure is given by 

equation 6.18. The Neumann-Kopp Rule states that for the formation from 

the constituent elements of alloys of the metallic type and compounds with 

a co-ordination lattice, _ACp at all temperatures is essentially zero (179). 
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With the assumption of this Rule, the free energy change for process 

14. l is 

(14. 2) 

Since the reactants and products a.re all condensed phases, the entropy 

change for the process is assumed zero. Thus, the free energy for this 

process, to a first approximation, is determined by the heat of the reac-

tion at 298°K. Observation of ternary equilibria in the A'-A-B system 

from compatibility studies defines a set of reactions which will or will 

not proceed. Then· the sign of 6 FT for these processes. and, thus, of 

~ H29soK. is established. A knowledge of the heats of formation of the 

borides in the A~B system coupled with the determination of the direction 

of the reaction in equation 14. l, would, th~refore, prescribe,. a limit 

on the heat of formation of. A I By-( s). Judiciously chosen reference systems, 

A-B, can define the limits on the heat of formation of a boride, A'By, 

fairly closely from observation of ternary equilibria. 

The validity of.these assumptions for boride materials is dis-

cussed in Chapters 12. 3 and 15. l. 3. In these studies equilibrium was 
., 

assumed in the arc melting. Further, it was assumed that the equilibrium 

observed in the quenched samples is the same at all temperatures. Solid 

solution effects were considered second order. Ternary compounds were 

not observed in the equili~rium triangles used to derive- heats of forma-

tion. 

14; 2 Experimental 

With the use of the reagents of CJ::).apter 2. 2. 1, compacted mixtures 

of 325 mesh powdered samples, in proportions such that the synthetic 
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compositions were in the center of suspected ternary equilibrium triangles, 

were melted in an argon atmosphere purged of o.xygen in the arc melting 

furnace described in Chapter 2. 2. 2. The quenched "buttons" were crushed 

in a hardened steel mortar, ground in an agate mortar to 325 mesh and 

analyzed with a Guinier or Debye-Scherrer powder X-ray diffraction tech-
o nique (Cu-Ko( , 1.54178A, radiation) to reveal the resultant phases. u 

In addition to the arc melter experiments in Table 14. ~· involving 

principally ·gadolinium, several lanthanide borides were heated in tungsten 

or graphite crucibles in the temperature range 1300 to 2200°K. The resi-

dues were examined by X-ray powder diffraction techniques for the phases 

present. While it was the intention of these studies to examine the vapori-

zation process for the lanthanide boride, the presence of tungsten borides 

or a LnB2c2 phase demonstrated the reaction of tungsten or graphite cruci-

bles with the lanthanide boride. 

· 14. 3 Results 

Table 14. 1 contains all of the information relating to the inter-

actions between lanthanide borides and C, Zr, Ta or W. Columns one and 

two list the lanthanide and the experiment number. The initial phase con-

tent, conditions and synthetic compositions (where determined) are contained 

in column three. The phases present after reaction and the accompanying 

X-ray film number are listed in columns four and five. Column six describes 

whether the experiments were performed with arc melting techniques or are 

vaporization experiments using Knudsen crucibles. - It should be noted that 

most of the observations regarding the interactions of the lanthanides 

other than gadolinium are taken from Tables 3. 1, Part I (graphite inter-
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Ln 

:La 

Ce 

Pr 

Nd 

TABLE 14. l 

Ternary;Compatibility Observations Involving Lanthanide Borides 

Ex:peri-
Initial Phases ment Final Phases 

lLa.AMal La.B6 in W cruc. La.B4 layer on La.% 
lLa.AMbl La.B4 on La.B6 in W La.B4 layer thicker 

2La.AM (cf. Table 3. 1, Part I) 

6La.AM (cf. Table 4. 1) 
6La.AM2 (cf. Tab.le 4. 2) 

7La.AM LaB6, Ta Ta2• 4B,. mj r. t 

Ta, mnr. 
TaB and ~o3, mnr. 

lCeAM (cf. Table 4. 1) 
863CeAM (cf. Table 4. 2) 

lPrAM (cf. Tab.le 4. 1) 

lPr.AMb (cf. Table 4. 2) 

ONdIH NdB6, mjr. NdB6, mjr. 
NdB4, mnr. in W cruc. NdB4, mnr. 

S°-WB, mnr. r-w2B, mnr. 

2Nd.AM1 NdB6 and NdB4 NdB6 and Con lid 
in C cruc. 

6Nd.AM (~f. Table 4. i) 
6NdAMl (cf. Table 4. 2) 

7Nd.AM (cf. Table 3 . .1) 

7Nd.AMa (cf. Table 4. 1) 

8NdAM . (cf~:: Table· 3. l,. Part I) 

763Nd.AM NdBt5 and ZrB2 NdB6 and·ZrB2 
328 

Film Method 

C-2297 Knudsen 

C-2301 Knudsen 

c-2629 .Arc Melt 

to tr. 

C-1503 Knudsen 

c-1683 Knudsen 

c-2869 .Arc Melt 



Ln 

Sm 

Experi-
Ment 

2SmAM 

TABLE 14. 1, continued 

Initial Phases Final Phases Film Method 

(cf. Table 3. 1, Part I) 

Gd (Several compatibilities are noted in each of the Tables 3. 1 (Part I), 4. l, 4. 2 and 3.) 
4GdAMa2 Gd.B4 in W cruc. 

39Gd.AM Gd.B4 and W 

40'Gd.AM GdB6 and Win W cruc. 

41Gd.AMb GdB4 and C in W cruc. 

1-W2B and unknown 

Gd.B4 and {3 -WB, mjr. 
[-WB, ~nr. 

{3 -WB, injr. 
S -WB, mnr. 
Gd.B4, tr. 

f3 -WB and GdB2c2, eqc. 
I -WB, mnr. 
we, tr. 

41IHa4 Gd.B4 and C in W cruc. GdB6 and [ -WB 

60GdAM · W and GdB6 
(W.035Gd.138B.828) 

61GdAM W2B5and GdB4 

(W.213Gd.06~.718) 
62Gd.AM W and GdB6 

( W. 300 Gd .. lOOB. 600) 
63Gd.AM W and GdB6 

(W. 327Gd. 096B, 577) 
64Gd.AM Ta, B and GdB6 

(Ta.182Gd.091B. 727) 
65Gd.AM Ta, B, GdB6 and GdB4 

(Ta .071 Gd. i43B. 785) 

GdB6, mjr. 
Gd.B4, mnr. 
w2B5, mnr. 

w2B5, mjr. 
Gd.B4, GdB6, fP -WB and 

I-WB, mnr. 

/f3 -WB, mjr. 
I -WB, mnr. 
unknown, mnr. 

f3 -WB, mjr. 
i -WB, mnr. 
unknown, mnr. 

TaB2, mjr. 
GdB4, mnr. 
unknown, mnr. 

TaB2, mjr .. 
Gd.B4 and ~B6, mnr. 
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C-2049 Knudsen 

C-2376 A:rc Melt 

C-2445 Knudsen 

D-1170 Knudsen. 

D-1090 Knudsen 

C-2657 Arc Melt 

C-2657 Arc Melt 

C-2666 Arc Melt 

C-2676 Arc Melt 

C-2675 Arc Melt 

C-2678 Arc Melt 



TABLE 14. 1, continued 

Ex:peri-
Ln ment Initial Phases Final Phases Film Method 

Gd 66Gd.AM Ta, B and GdB4 Ta, TaB2 and Ta3B4, mjr. c-2674 .Arc Melt 

(Ta.271Gd..104B.625) 
Gd.B4, tr. 

67Gd.AM Ta and Gd.B4 TaB2, mjr. C-2679 Arc Melt 

(Ta .138Gd .172B .690) 
Gd.B4, mnr. 
unknown, mnr. 

68Gd.AM Ta and Gd.B4 Ta~. 4B, mjr. c-2673 Arc Melt 

(Ta. 615Gd. 077B. 308) 
Ta, mnr. 
unknown, mnr. 

69GdAM Gd.B6, Zr and B Gd.B6, ZrB12 and Zr~, eq_c. C-2690 .Arc Melt 

(Zr .087Gd·.044B. 869) 
70Gd.AM Gd.B6 and Zr Gd.B6, Gd.B4 and ZrB2, eqc. C-2692 Arc Melt 

(Zr;o67Gd.134B.8Qo) 

71Gd.AM Gd.B6 and. Zr 
~' 

mjr. C-2691 .Arc Melt 
tr. 

(Zr Gd B ) 
4, 

. · .222 .lll .666 
Tb 1TbAM2 (cf. Tab.le 4. 1) 

lTbAMa.MS TbB6 in W cruc. TbB4 and TbB6 visual Knudsen 

2TbAM (cf. Table 4. 1) 

3Tb.AM (cf. Tab.le 3. 1, Part I) 

741TbAM (cf. Tab.le 4. 1) 
Dy lDyAMd DyB6 and DyB4 · Unidentified C-2.172 Knudsen 

in W cruc. Visible crucible inter-
action 

2Dy.AM (cf~· Table 3. 1, Part I) 

3Dy.AMa (cf, Table 4. 1) 
4Dy.AM (cf. Table 3. .1) 
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TABLE 14. l, continued 

E,cperi-
Ln ment Initial Phases Final Phases Film Method 

Ho 2Ho.AM (cf. Table 3. l, Part I) 

Er 2Er.AM (cf. Table 3. 1, Part I) 

Yb lYbAMal YbB6 in W cruc. YbB6, mjr. C-2347 Knudsen 
YbB4, mnr. C-2350 

2YbAM (cf. Table 3. 1, Part I) 

3YbAMa (cf. Table 4. 1) 

5YbAM (cf. Table 3. 1, Part I) 

5YbAMa (cf. Table 3. l, Part I) 

y lY.AM (cf. Table 4. 1) 
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action), 4. l (ZrB2 interaction) and 4. 2 (ZrB2 interacti~n). 

The vaporization behavior of lanthanide borides either in tungsten 

or in graphite Knudsen crucibles was quite different from the behavior in 

the inert ZrB2 crucibles. Hexaborides of all lanthanides studied (La, Nd, 

Gd, Tb, Dy, Yb) were reduced by tungsten with tetraboride layers appearing 

on hexaboride-tetraboride pelleted mixtures or on granule cores. The 

vaporizing area for the boron was the reactive wall and lid area of the 

tungsten crucible, while the metal vaporized through the area of the orifice. 

This observation accounts for the apparent preferential loss of boron from 

LaB6 ( lLaAMal, bl), NdB6 ( ONdIH) and YbB6 ( lYbAMal) (cf. Table 14. 1), which 

is contrary to the Langmuir observations and Knudsen observations on these 

borides in ZrB2 crucibles (cf. Chapter 4). Vaporization from graphite 

crucibles showed reaction of tetraboride with graphite to form LnB2c2 in 

several cases, leading to preliminary interpretations that Gd.B4 and TbB4 

lost metal preferentially; this conclusion was contradicted by the observa-

tions of congruent vaporization of Gd.B4 and TbB4 in Chapter 4. 

Lanthanum: The equilibrium between graphite and LaB6 was demon-

strated in Pa.rt I and again in Table 14. 1, where, in experiment 6LaAM2, 

the graphite outer crucible lid did not react with an LaB6 deposit from 

a ZrB2 crucible containing LaB6• In view of the formation of a tetraboride 

layer on LaB6 granules after reaction in tungsten Knudsen crucibles and 

from the realization that this loss of boron from LaB6 in lLa.AMal and 

lLaAMbl is contrary to the congruent vaporization of LaB6 demonstrated in 

Chapter 4, the tungsten reduction of LaB6 to La.1;34 is concluded. X-ray 

analysis of lid deposits of LaB6 heated in ZrB2 crucibles and analysis of 
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the ZrB2/LaB4,6 interface in Langnmir heatings indicated ~aB6 and LaB4 

exist in equilibrium with ZrB2 (cf. Chapter 4, Tables 4. 1 and 4. 2). 

In the arc melting of an arbitrary. mixture of tantalum metal and 

LaB6 (7LaAM), the presence of Ta2 .4B, T~TaB and La2o3 in the product 

indicated that tantalum metal reduces LaB6 and LaB4 to lanthanum metal 

and TaB. The presence of small amounts of tantalum is attributed to 

incomplete reaction. La2o3 would result on exposure of lanthanum metal 

to air after melting. Below 204o0 c. Ta and Ta1.6o exist in equilibrium; 

however, according to Leitnak.er (541 above 2180°C.Ta1 •60B disproportionates 

into Ta2.4B and TaB, as was observed in this arc melting experiment. Thus, 

tantalum reduces LaB6 and LaB4 to lanthanum metal with the formation of 

TaB, Ta1 .6B or Ta2 .4B, depending on the temperature and stoichiometry. 

Cerium: The equilibrium between CeB4, CeB6 and ZrB2 was demon-

strated in Chapter 4, Tables 4. 1 and 4. 2. 

Praseodymium: As in the case of lanthanum and cerium, PrB6 and 

PrB4 were found to exist in equilibrium with ZrB2 (cf. Tables 4. 1 and 

4. 2). 

Neodymium: · From the free evaporation experiments in Table 4 •. l 

the ZrB2/NdB6 interface did show some reaction to NdB4 and ZrB12 on one 

occasion; however, on another occasion, no reaction was observed. In 

763Nd.AM, Table 14. 1, an arc melting of Nd.B6 with ZrB2 failed to show any 

interaction. In Part I, Table 3. l, and in Table 14. l for sample 2NdAMl, 

evidence for the reaction of graphite with NdB4 to form NdB2c2 and the 

NdB6-C equilibrium was presented. The walls ~fa tungsten crucible re-
l 

vealed t-WB and 7-W2B,' after extensive heating of NdB6 and NdB4 mixtures 

in the crucible (ONdIH). From this observation and the observations of 
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gray tetraboride layers on hexaboride/tetraboride pellet cores that appear 

from heatings in tungsten crucibles, it is concluded that tungsten reduces 

NdB6 to Nd.B4 with the formation of ~-WB. 

Promethium: Promethium was not investigated. 

Samarium: The eg_uilibrium between SmB6 and graphite was demon-

strated in Part .I, Table 3. 1. 

Europium: Europium was not investigated. 

Gadolinium: Most of these ternary studies were performed with 

Gd.B6 and GdB4. To a first approximation, the heats of formation of the 

lanthanide tetraborides are all nearly the srune, and the heats of forma-

tion of the lanthanide hexaborides are all nearly the srune. Thus, the 

eg_uilibria observed in the gadolinium systems will probably_reflect the 

behavior of all lanthanide tetra- and hexaborides in ternary behavior 

with C, Zr, Ta or W except in some specific instances discussed later in 

this chapter. 

Reaction of graphite with Gd.B4 to form Gd.B2c2 and the Gd.B6-graphite 

eg_uilibrium were reported in Part I. While some Knudsen and Langmuir vapori-

zations in tungsten and ZrB2 crucibles and the studies of Chapter 5 indi-

cated tungsten does reduce Gd.B6 and GdB4 and that ZrB2 does not, the arc 

melting experiments of Table 14. 1 were designed specifically to define 

the equilibria in the W-, Zr- and Ta-Gd-B systems. 

Sample 6oGd.AM was a reac-'Jion product of tungsten. and GdB6 w.i. th a 

synthetic stoichiometry within the ternary triangle, W2B5-GdB4-GdB6• The 

observation of only these three phases in the arc melted product confirmed 

this equilibrium triangle. In the reaction of W2B5 with GdB4 in experi-

ment 61Gd.AM, the presence of GdB6 in the product is inexplicable in view 
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of the results for experiment 6oGdAM. However, the presence of high-and 

low-temperature WB. in the residue of experiment 61Gd.AM and in tungsten 

crucibles in which GdB4 was vaporized and, alsc, the observation -of the 

W2B5-Gd.B4 join in experiment 6oGdAM force the conclusion of the equilibrium 

triangle,W2B5-GdB4-WB. Finally, in two experiments, 62- and 63Gd.AM, tung-
/ 

sten and GdB6 were allowed to react in proportions such that the synthetic 

composition was on the metal-rich side of the WB-GdB4 join. It was the 

intention here to demonstrate WB-Gd-Gd.B4 equilibrium. In both cases high-

and low-temperature WB were observed. Further, a complex pattern of an· 

unidentified phase or phases was present in the diffraction record. These 

diffraction lines could have represented a mixture of aa.2o3 and Gd.B4, but 

the pattern was too poor to allow firm interpretation. At any rate, the 

Knudsen heatings of Gd.B4 in tungsten crucibles (excess tungsten) do reveal 

WB formation. Therefore, the WB-Gd join does exist. 

In the Zr-Gd-B system, the binary joins ZrB2aa.B4 and ZrB2-GdB6 

were demonstrated in Chapter 4. Experiment 69Gd.AM with synthetic composi-

tion in the GdB6-Zr~-ZrBJ.2· triangle did, in fact, demonstrate this three-

phase equilibrium. The arc melting experiment, 70Gd.AM, confirmed the GdB4-

Gd.B6-ZrB2 ternary equilibrium. Finally, ··a synthetic composition in the 

Gd-Gd.B4-ZrB2 region revealed Gd.B4 and ZrB2 on examination. Gadolinium 

could have been present in small amounts as aa.2o3 and, therefore, not ob-

served; or gadolinium metal could have distilled out. If zirconium were 

the third phase, it would not oxidize on exposure to air and should be 

detectable by X-ray diffraction methods. ~us, the ternary equilibrium, 

Gd-GdB4-ZrB2, exists. The absence of ZrB, as pointed out by Glaser and 
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Post (129), is explained by instability with respect to Zr and ZrB2, 

except over a narrow range of temperature. 

The TaB2-GdB4-GdB6 equilibrium was demonstrated by experiments 

64- and 65Gd.AM, although in the latter experiment the low concentration 

of Gd.B6 precluded its observation in the diffraction pattern. An attempt 

in experiment 66Gd.AM to determine 1he equilibria in the TaB2-Gd-GdB4 re-
I 

gion revealed Ta3B4, TaB2, Ta and Gd.B4 present in.the product. The pres-

ence of tantalum metal lines in the X-ray pattern is explained by the 

adherence of unreacted metal to the bottom of the arc melted button. The 

presence of Ta3B4 or TaB2 eliminates the possibility of a TaB-Gd.B4 join. 

Gadolinium could have been present below the limits of detection as Gd.203 

or could have been distilled out. 

In the TaB2-GdB4-Gd region, the reduction of GdB4 by Ta in experi-

ment 67Gd.AM revealed TaB2 and Gd.B4 plus a phase with a complicated and. 

poor X-ray pattern, a phase which probably was·aa.203 and certainly was 

not a boride or Ta metal. The presence of TaB2 in this experiment is in 

conflict with the observations of experiment 66Gd..AM, if the Ta3B4-Gd.B4 

join is assumed established in that experiment. 

A more satisfactory interpretation which satisfies both experiments 

66- and 67Gd.AM is that the ternary triangles, GdB4-Ta3B4-Gd and, by implica-

tion, Ta3B4-TaB-Gd, exist at low temperatures. Schwarzkopf and Glaser 

(134) reported that the only borides in the Ta-B system that exist up to 

their melting points are TaB and TaB2• Thus, at some as yet undefined 

temperature, Ta3B4 would disproportionate to Ta.J3 and TaB2• At a suffi-, .. 
ciently high temperature such that Ta3B4 does not exist, the observed equi-

librium triangles would be GdB4-TaB2-Gd and TaB2-TaB-Gd. Such a high 

336 



temperature was achieved in the 67GdAM melting and the eq~ilibrium quenched 

in. Therefore, the most probable high temperature equilibrium triangles 

are Gd.B4-TaB2-Gd and TaB2-Gd-TaB. Assuming that the temperature in the 

66Gd.AM experiment was not uniform or that the back reaction for the cooling 

rate in experiment 66Gd..AM was not negligible, then one can explain the pres-

ence of both TaB2 and Ta3B4 with Gd.B4 and Gd. 

Reaction of tantalum with Gd.B4 in a synthetic composition in the 

Tai. 6oB-Gd-Ta2 .40B triangle (68Gd.AM) revealed on X-ray diffraction analysis 

Ta2.4oB, TaB and weak lines which again probably were from Gd2o3 • The 

absence of Ta1 .6oB was explained by its disproportionation above 2180°c. 

to TaB and Ta2 .40B, as· demonstrated by Leitnaker (54)0 No gadolinium 

boride was observed. Thus, above 2180°c. the triangle Ta2 .4B-TaB-Gd exists. 

This observation implies the·Ta-Ta2 .4B-Gd triangle. 

Terbium: The equilibrium between ZrB2 and TbB4 and between ZrB2 
and TbB6 was demonstrated in Table 4. 1. The reaction of graphite with 

TbB4 to form TbB2c2 was revealed in Part I, Table 3. 1. Finally, evidence 
' + 

for the reduction of TbB6 by tungsten was found in the low B+ /Tb inten-

sity ratios in a mass spectrometric study of TbB6 in a tungsten crucible. 

Dysprosium: The equilibrium of DyB4 and DyB6 with ZrB2 and graph-

ite was summarized in preceding sections. Further, a mixture of DyB6 and 

DyB4 heated in a tungst~n cell was observed to interact with the tungsten, 

forming a gray DyB4 layer on a DyB4/DyB6 pellet. No such kinetic problem 

arose in the use of a ZrB2 cell. 

Holmium and Erbium: The reaction of Ho~4 and ErB4 with graphite 

to form HoB2c2 and ErB2c2 was discusse& in Part. I. 

Thulium: The behavior of Tm was not investigated. 
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Ytterbium: The equilibrium between YbB6 and ZrB2 and between 

YbB12 and ZrB2 was implied in Table 4. 1. The behavior of YbBgYbB4 with 

graphite also was discussed in Part I, Table 3. 1. When a YbB6 sample 

was heated in a tungsten crucible, YbB4 layers formed on a YbB6 pellet, 

which was contrary to the observed vaporization processes of Chapter 4, 

and indicated reaction of W with YbB6. 

Lutetium: Lu was not investigated. 

Yttrium: Finally, the YB6-ZrB2 and YB4-ZrB2 equilibria were ob-

served in Table 4. 1. 

14. 4 Other Compatibility Information 

Brewer and Heraldseh (20) found that CeB6 did not react with graph-

ite while CeB4 did react to form some unidentified ternary borocarbides, 

This fact agrees with the observations in this work on other lanthanides 

(Part I). Nowotny, et al. (17), found that graphite did not react with 

UB4 or UB12 • Further, Glaser (06) and Nowotny, et al. (18), reported that 

graphite would not reduce ThB6 or ThB4. Lafferty (103) demonstrated equi-

librium between LaB6 and graphite. In their investigation of the La-B 

system, Johnson and Daane reported no serious attack on the crucible when 

lanthanum and boron were melted in a tantalum crucible to prepare LaB4, 

unless the La contained appreciable carbon. However, this investigation 

demonstrated that tantalum metal will reduce both LaB6 and LaB4 if intimate 

contact is achieved. Galloway and Eick (117) reported the reaction of 

molybdenum crucibles wit~ SmB4 and SmB6 samples indicated by the appearance 

of S -MoB on the crucible walls. Since tungsten is more reducing than 

molybdenum, certainly tungsten reduces these borides. 
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14. 5 Schematic Ternary Diagrams 

The equilibria observed in this investigation may be catalogued 

into ternary diagrams, which do not represent isotherms or isobars, but 

do illustrate the reactions that can occur. at high temperatures. Within 

each triangle in the diagrams only those condensed phases representing 

the corners of that triangle may be in equilibrium. Similarly, along the 

two condensed phase joins, only those phases at the ends of the join may 

exist together at equilibrium. These diagrams are illustrated in Figures 

14 •. 1 to 14.14. 

In Figures 14. 1 to 14.14 the lanthanides are divided into three 

groups according to the borides existing in the particular lanthanide-boron 

binary system (cf. Chapter 2). The first group contains La, Ce, Pr, Nd, 

Sm, Eu, Gd and Sc borides. These boride systems contain a well character-

ized tetra- and hexaboride and, apparently, no dodecaboride. Europium 

and scandium were included in this group for _convenience, even though EuB4 

and ScB4 have not been made. The second group, consisting of Tb, Dy, Ho, 

Yb and Y, exhibits tetra-, hexa- and dodecaborides. Finally, the third 

group, Er, Tm and Lu, do not form hexaborides but do exhibit tetra- and 

dodecaborides. Lanthanide diborides are omitted from these diagrams since 

they probably disproportionate to Ln(l) and Ln:B4 at the.temperatures of .the 

arc melting experiments. It is believed that all lanthanides will be 

proved to exhibit a hectoboride. Thus, LnB100 is included in all groups. 

Discussions of the existence of these borides are found in Chapters 2 and 
I 

15. 1. 7. 2. 
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LANTl-tANIDE TERNARY COMPATIBILITY D1A<3RAMS 

La,C e, Pr, Nd, Sm,Eu,Gd,Sc 

FIGURE 14. I 

Er, Tm, Lu 

Fl~URE 14. 3 
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There are several ternary phases in the Ln-B-C and 'Ih-B-C systems 

(cf. Part I). In view of their poor definition, undefined phase relations 

and their failure to contribute, as yet, to the understanding of lanthanide 

boride stability, the portions of Figures 14. 1 to 14. 4 in which these 

ternary phases occur are left blank. The U-B-C diagram is taken from 

Nowotny's work (17). 

In the Ln-B-C system of.Figure 14. 1, the triangles 

LnB4-LnB6-LnB2C2, LnB6-C-LnB2c2, LnB6·B4C-LnB100 and LnB2c2-LnC2-c have 

been observed for gadolinium. The other joins are fixed by inference. 

The LnB6-C, LnB6-LnB2C2, LnB4-LnB2C2 joins were observed for several other 

metals in the group· of Figure 14. 1 as well as for the lanthanides in 

Figure 14. 2. While the LnB100-B4C and LnB12-B4C joins must exist by 

inference in Figure 14. 2, no experiments on the Figure 14. 2 group lan-

thanides were performed to decide whether there is a B4C-LnB6 or a LnB12-c 
join. The LnB6-B4C join is chosen for this group. This choice assumes 

that LnB12 is not sufficiently stable, with respect to the condensed ele-

ments, to prevent the reaction, 

(14.3) 

from occurring. While this assumption is risky, some evidence on the sta-

bility of these borides with respect to solid elements is presented to 

support this assumption in Chapter 15. 1. 7. 2. 

There a.re two joins to be established in Figure 14. 3. A decision 

as to which equilibria exist must await further arc melter experiments 

attempting to prepare LnB2C2 from C and LnB4 (equation 14. 4) and to 
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(14. 4) 

effect the reaction of graphite with LnB12. (equation 14. 5). The thermo-

chemical implications of this choice are discussed in Chapter 14. 7. 
\'. 

The equilibria in Figures 14. 6 thr~ugh 14. 8 f'or the Ln-Ta-B sys-

tems are fairly well established. Both GdB4 and GdB6 exist in equilibrium 

with TaB2 • Since TaB2 is the highest tantalum boride, its equilibrium 

with other lanthanide group higher borides is implied. The TaB2-Gd join 

was established at a sufficiently high temperature such that Ta314 decom-

poses to TaB2 and TaB. The TaB-Gd-TaB2 triangle exists by inference. 

From the experimentally determined triangle, TaB-Gd-Ta2.4B, the triangle, 

Ta2 .4B-Gd-Ta,exists by implication at temperatures over 2180°c. The phase, 

Ta2.4B, disproportionates into Ta1.6B and Ta below 2180°c. Figures 14. 6 

to 14. 8 are drawn arbitrarily f'or a temperature greater than 2180°c. with 

the additional requirement that the temperature be above the Ta3B4 decom-

position temperature. 

Ternary behavior in the Ln-Zr-B system needs further characteriza-

lished, as well as tlk Zr-Gd-ZrB2 triangle by inference. However, the 

joins, oth~r than the implied LnB100-ZrB12 join, ·that exist in the boron-

rich corner have yet to be defined. Solid solution between ZrB12 and 

LnB12 will be a problem. The use of this region to delineate the stability 

of the 'lanthanide borides is _discussed in Chapter 14. 7. 



Figures 14.12 through 14.14 "illustrate the Ln-W-B systems. All 

equilibria are unequivocably assigned. The boron-rich joins are estab-

lished by implication, as in the Ln-Ta-B systems. Presumably the Ln-Mo-B 

equilibria would be identical to the Ln-W-B system. 

14. 6 Thermodynamic Implications 

Table 14. 2 contains a listing of available heats pf formation 

pertinent to this investigation. The data are listed on a per gram-atom 

of boron (or per metal for carbides) basis, since the reactions to be 

considered will involve the competition between two different metals for 

boron. Which metal is more reducing in a bimetal competition for boron 

may be simply determined by finding which of two metal borides in equi-

librium has the more negative heat of formation per gram-atom of boron. 

Reactions involving three or more metal borides are not so simply predicted 

from Table 14. 2. Balanced reactions must be considered in order to weight 

properly the influence of the stability of each boride on the sign of6H 

for the reaction (cf. Chapter 14. 8). 

Using the available data of Table 14. 2 and a judicious selection 

of reactants and products in the ternary equilibria of.Figures 14. 1 to 

14.14, one may place limits on the heats of formation of the lanthanide 

borides within the limits of the assumptions in Chapter 14. 1 and the 

accuracy of the data in Table 14. 2. Table 14. 3 lists all the possible 

reactions which will proceed as written as indicated in Figures 14. l·to 

14.14. Of all the possible processes in Table 14. 3, those providing the 

best limits on the heats of formation are illustrated below. 
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TABLE 14. 2 

Sunnna.ry of ~Hof Formation of Metal Borides, Gd.C2, ThC2, and UC. 

Boride 

.l/2Mg~ 

.l/4MgB4 

.1/6caB6 
1/6SrB6 
1/6BaB6 

1/4LnB4 

1/6LnB6 

1/6LaB6 

1/4CeB4 

1/6CeB6 

l/4ThB4 

1/6ThB6 

1/2~ 

l/4UB4 

l/l2U:Bi2 

TiB 

l/2TiB:2 

1/2Ti~ 

'6 
(kcal./g~at. B) 

-8. 95 ! .1. 5 (298°K.) 

-5.25 ± 1.25 (298°K.) 

:> .l/6SrB6 
-8.4o 

< l/6SrB6 

-4 . 

-15 :t 3 

-.12 ± 2 

-1.l. 7 ± l. 7 

> -2.1 

(-13.5 ! 2.5) 

<-13 

<-ll 
-19. 7 + L5T, (AF) 

-15.1 + .00.llT, (6F) 

-8.83 + .00090T, (~F) 

-4.1. 0 :!: 9 (298°K.) 

-33.43 :!: 1,5 (298°K.) 

<-25 

Reference 

104, 18o, 105 

181 

104, 180, 105 

182 

133 

133 

.133 

20 · 

20 

20 

184 

184 

184 

132 

20 



Boride 

l/2Ti~ 

1/5Ti2B5 

ZrB . 

· l/2ZrB2 

.l/2ZrB2 

l/2ZrB2 
l/12ZrB12 
l/2HfB2 

1/xNbB ,x<2 
X 

l/2NbB2 
TaB 

Ta1. 6B 

Ta2 •4B 

1/xTaBx,x< 2 

l/2TaB 
2 

l/2TaB2 

l/2TaB2 

1/xCrB , x<2 
X 

l/2CrB2 

Mo2B 

l/2Mo3~ 

TABLE 14. 2, continued 

(kcal.~~at. B) 

(-36) 

< -21 

<-39/2 

-36.5 

-38.4 ! 
<-39/2 

>.;.10 

-40 

,-18 

<-18 

.8 

-64.9 to -38.4 

-64.9 to -38.4 

-64.9 to ~38.4 

<-26 

<-26 

<-45 

-51. 7 to -22. 7 

<-15 

<-15 

-25. 5 (298°K. ) 

-21 
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Reference 

20 

20 

20 

.132 

54 

20 

20 

30 

20 

20 

20 

20 

20 

20 

20 



TABLE 14. 2, cont:inued 

~Hf 
B) Boride (kcal.jg. -at. Reference 

MoB -16.3 (298°K.) 185 

l/2MoB2 -11.5 (298°K.) 185 

1/5Mo2B5 -10 (298°K.) 185 

W2B -26.o to -20 20, 54 

WB -22 to -12 20 

l/5W2B5 -9 to -5 20 

l/4B4C -3.45 t .675 186 

J/6SiB6 -1.17 (298°K.) 187 

Carbide (kcal./g.-at. metal) 

GdC2 -22.5 to -29.9 (2045°K.) 49 

ThC2 -46.1 to -51.1 (298°K.) 49 

UC -18 "!: 4 (298°K.) 49 



Metal 

Ta 

TABLE 14. 3 

Reactions Implied by Ternary Compatibilities Observed in Figures 15. 1 
to 15 .14. 6F0 < 0 for Each Reaction Written. All Reactants 

and Products are in the Condensed State. 

Reaction Process 

Ta-1 2 Ta + GdB = 2 TaB2 + Gd High 4 Temperatures'.. 
Ta-2 4 Ta + GdB4 = 4 TaB + Gd 

Ta-3 3 Ta + GdB6 = 3 TaB2 + Gd 

Ta-4 Ta + GdB6 = GdB4 + TaB2 
Ta-5 9.6 Ta + GdB4 =, 4 Ta2 .4B + Gd 

Ta-6 6 Ta + GdB6 = 6 TaB + Gd 

Ta-7 14.4 Ta + GdB6 = 6 Ta2 .4B + Gd 

Ta-8 28.8 Ta2 .4B + 7 .57 GdB4 =·, 69.2 TaB + 7.57 Gd 

Ta-9 Ta2 .4B + GdB6 ~ TaB2 + Gd 

Ta-10 Ta2 .4B + GdB6 = TaB + GdB4 2 
Ta-11 Ta2 .4B + GdB = TaB + Gd 4 2 
Ta-12 2 TaB + GdB6 = 2 TaB + GdB4 2 
Ta-13 4 TaB + GdB4 = 4 TaB + Gd 

2 

Ta-14 3 Ta + 2 GdB6 = Ta3B4 + 2 GdB4 
I.ow 

Temperatures 
Ta-15 Ta + GdB4 = Tal.6B + Gd 

Ta;..16 Ta + GdB6 = Ta ! + Gd 
1. 

Ta-17 Tal.6B + GdB = 6 TaB2 + GdB4 
Ta-18 30 Ta 6B + 11 GdB6 = 48 TaB2 + 11 Gd 1. 

Ta-19 30 Ta 6B + 3 GdB6 = 48 TaB + 3 Gd 1. . 
Ta-20 10 Tal. 6B + 3/2 GdB4 = 16 TaB + 3/2 Gd 

Ta-21 20 Tal.6B + 11 GdB4 ~ 32· TaB2 + 11 Gd 
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TABLE 14. 3, continued 

Metal Reaction Process 

C C-1 2 Gd + 3 B4C i?= 2 ~B6 + 3 C 
I 
I 

C-2 2 aa.c2 + 3 B4C '= 2 GdB6 + 7 C 
C-3 GdC + 14 B = 2 B4c + GdB6 2 
C-4 2 GdB4 + B4c = 2 GdB6 + C 
C-5 GdC2 + 6 B = GdB6 + 2 C 

Zr Zr-1 Zr + GdB6 = ZrB2 ·+ GdB4 
Zr-2 3 Zr + GdB6 = 3 ZrB2 + Gd 

Zr-3 2 Zr + GdB4 = 2 ZrB2 + Gd 

Zr-4 5 Gd + 2 ZrB12= 2 ZrB2 + 5 Gd.B4 
Zr-5 5 Gd + 3 ZrB12= 3 ZrB2 + 5 GdB6 
Zr-6 5 GdB4 + ZrB12:::: ZrB2 + 5 GdB6 

w W-1 4w + GdB4 = 4 WB + Gd 

W-2 8W + GdB4 = 4 W2B + Gd 

W-3 4w + 5 GdB6 = 2 W2B5 + 5 GdB4 
W-4 2W + GdB6 = 2 WB + Ga.B4 
W-5 12 W + GdB6 = 6 W'B 2 + Gd 

W-6 6w + GdB6 = 6 WB + Gd 

W-7 3 Gd + 4 W2B5 = 3 GdB4 + 8 WB 

W-8 4 WB + 3 GdB6 = 3 GdB4 + 2 W2B5 
W-9 W2B + 2 GdB6 = 2 aa.B4 + W2B5 
W-10 2 W2B + Gd.B6 = GdB4 + 4 WB 

W-11 6 W2B + Gd.B6 = Gd + 12 WB 

W-12 ·4 W2B + Gd.B4 = Gd + 8 WB 
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TABLE 14. 3, continued 

Metal Reaction Process 

Mo Mo-1 2 Mo + SmB6 ::: SmB4 + 2 MoB 

Mo-2 Sm + 4 MoB = 2 4 MoB + SrnB4 
Mo-3 3 Sm + 4 Mo2B5= 8 MoB + 3 SmB4 
Mo-4 2 Mo2B + SmB6 = 4 MoB + SmB4 
Mo-5 2 M:>3B2 + SmB6 = 6 MoB + SrnB4 
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Hence, 

<:: 2(-22.5 to -29.9) + 3(-11.1 to -16.5) 

.'. ~Hf < -39.2 kcal./mole GdB6 

2(.6Hf -~Hf ) < 6Hfw B-llHf GdB4 GdB6 2 W2B5 

<:: (-20 to -26) - (25 to -45) 

< - 20 + 45 

< 25 kcal./mole 

(C-3) 

(W-9) 

ReaJ.izing that W2B must be less stable per mole thar:i WB in order for WB 

and W to react, one can further restrict the limit in process W-9 to: 
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Hence, 

~Hf - .6Hf < 11.5 kcal./mole e 

GdB4 GdB6 

Further, 

from the above considered process C-3. Thus, 

Further, 

~Hf < - 39.2 + 11.5 
Gd.B4 

< - 27. 7 kcal./mole. 

.6Hf < .6Hf •. W B . WB 2 
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Hence, 

2(-22) - (-22) < 1/4 6Hf , 
GdB4 

- 22 < 1/4 ~ Hf , 
GdB4 

-88 kcal. /mole < ~ Hf · • 
Gd.B4 

And, 

-88 kcal./mole < ~Hf <. 11.5 + 6Hf • 
GdB4 Gd.B6 

Thus, 

-99.5 kcal./mole <~Hf • 
GdB

6 

(c-4) 

< -11.1. 
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Hence, 

From the gadolinium reactions of Table 14. 4 the following series 

of inequality relations among the gadolinium boride stabilities exists: 

o. (14.6) 

Therefore, 6Hf of Gd.B4 lies between -22 and -6.9 kcal/g.-at. B; ~Hf of 

Ga.B6 lies between -16.6 and -6.5 kcal./g.-at. B; and the difference between 

the heats of formation of Gd.B4 and GdB6 lies between 5.6 and 11.5 kcal./ 

mole. These limits are the least upper and greatest lower bounds on the 

heats of formation of GdB4 and GdB6 and their difference that can be ob-

tained from the set of possible equations in Table 14. 3. 

Using the molydenum reactions in Table 14. 3, one may estabtish 

an upper limit on .6Hfs and the difference between the heats of forma-
mB4 

tion of Sni84 and SmB6• 

Sm (s,l) + 4MoB2(s) = 4MoB(s) + SmB4(s) (Mo-2) 
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<: 4(-23.0) + 4(16.3), 

<. -26.8. 

Hence, 

6Hf < -26.8 kcal./mole. 
SrnB4 

(Mo-5) 

< 2(-42) + 6(16.3). 

Thus, 

~Hf -~Hf < 13.8 kcal./molee 
SmB4 SrriB6 

From the behavior of Er, Tm and Lu borides, discussed by Eick and 

Sturgeon (101), the processes written in Table 14.4will proceed as written. 

From these processes the following relation among the heats of formation 

may be concluded: 

357 



TABLE 14. 4 
' Reactions with ~egative Free Energies Within the Binary Lanthanide-Boron 

Systems. All Reactants and Products are in the Condensed State. 

Lanthanide Reaction Process 

Gd Gd-1 GdB4 + 2 B ::;:: GdB6 
Gd-2 ? GdB6 + Gd ::;:: 3 GdB4 
Gd-3 Gd + 6 B ::;:: GdB6 
aa....;4 Gd + 4 B ::;:: GdB4 
Gd-5 GdB12 ::;:: GdB6 + 6B 

Gd-6 GdB12 ::;:: GdB4 + 8B 

Gd-7 GdB12 + 3 GdB4 ::;:: 4 GdB6 
Gd-8 GdB + 12 2 Gd ::;:: 3 GdB4 
Gd-9 GdB12 + Gd ::;:: 2 GdB6 

Er, Tm, Lu Ln-1 2 LnB6 + Ln ::;:: 3 LnB4 
Ln-2 LnB4 + 8 B ::;:: LnB12 
Ln-3 4 LnB6 ::;:: 3 LnB4 + LnB · 12 
Ln-4 LnB + 2 Ln = 3 LnB4 12 
Ln-5 Ln + 6 B = LnB6 
Ln-6 LnB6 + 6 B = LnB12 

Ln-7 Ln + 12 B = LnB12 
Ln-8 Ln + 4 B = LnB4 

358 



(14. 7) 

A consideration of the many possible processes that may be written 

for th.e ternary behavior of Er, Tm and Lu borides from Figures 14. 3, 

14. 8, 14.11 and 14.14 provides some information about the stability o~ 

the dodecaboride with respect to the solid elements. 

.12w( s ) + LnB12 ( s) = 12WB( s) + Ln ( s) , (14. 8) 

12~Hr < .6HfL B. ' WB n 12 

12(-12 to -22)<: 

Hence, 

-244 kcal./mole<6Hf • 
LnB12 
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< 2( -20 to -26) -2 ( -25 to -45), 

< -40 + 90. 

Hence, 

6Hf - 6Hf < 50 kcal./mole. 
LnB4 LnB12 

The stabi.li ty limits obtained for Gd.B4 and GdB6 are applicable in the 

case of Er, Tm and Lu tetra- and hexaborides except for the lower bound 

on the LnB4-LnB6 difference and for the upper bound on the LnB6 stability. 

No information concerning the former limit is available, since one cannot 

be certain that process Zr-6 will proceed as written for these lanthanide 

borides. Similarly, in the latter case reaction C-3 may not proceed as 

written. 

Thus, a combination of the stabilities of process 14. 9 with the 

lower limit on the LnB4 stability allows the following statement to be 

made: 

-88 < 6HfL < 50 + 6HfL B • nB4 n 12 

Hence, 

-138 kcal./mole <.6HfL • 
nB12 

Further, since 



then 

6Hf < -27. 7 kcal. /mole. 
LnB12 

In summary, the lanthanide tetraborides are less stable than -88 

kcal./mole, since the tetraborides will react with W2B to form lanthanide 

metal and WB. Lanthanide hexaborides from La to Ho and also Yb are more 

stable than -39.2 kcal./mole, established by their formation with graphite 

from Lnc2 and B4C. Further, from the reaction of W2B and Gd.B6 to form 

W2B5 and Gd.B4 and from the reaction of Gd.B4 with B4C to form GdB6 and 

graphite, the relation -11.5 kcal. < 6Hf < 6.Hf -5.6 kcal. was 
Gd.B6 Gd.B4 

established. Therefore, GdB4 is more stable than -27.7 kcal./mole and 

Gd.B6 is less stable than -99.5 kc!tl./mole. Since W2B reacts with LnB12 
to form LnB4 and W2B5, 6Hf - ~Hf < 50 kcal. Then from the LnB4 LnB4 LnBi_2 

stability limits and from ~HfLnB < 
· 12 

kcal./mole. 

6HfLnB4' -138 < ~HfLnB < -27 .7 
12 

No attempt has been made to determine the stability range for 

LnB100 in view of its indefinite composition and the large limit values 

that would arise from the large coefficients in the balanced processes. 

In the ternary systems in which Ln:Bioo exists, LnB100 would be in equi-

librium with ZrB2, W2B5, B4C and TaB2 in each respective ternary diagram. 

The stability of LnB2 may be determined. The diborides would be 

in equilibrium with WB, ZrB2 and TaB2 at low temperature. The graphite 

and molybdenum systems need further clarification. Should LnB2 exist, then 



and· 

will proceed as written, Thus, 

Consider the reaction, 

W(s) + LnB4(s) = 2WB(s) + LnB2(s). (14.10) 

Hence, 

~Hf -.6Hf < 24 kcal./mole. 
LnB2 LnB4 

In addition, 

2W2B(s) + LnB2(s) = Ln(l,s) + 4WB(s). (14.11) 



4(-22) -2 (-20) <( 

-48 <: 

Hence, 

-48 kcal./mole < 6Hf • 
LnB2 

With the use of the limits on ~H from above, 
fLnB4 

and 

or 

0 < ~Hf - 6Hf < 24 kcal./mole; LnB2 LnB4 

-48 < ~Hf < -26.7 kcal./mole, 
LnB2 

-24 < 1/26.Hf < -13.4 kcal.jg. -at. boron. 
LnB2 ' 

It is interesting to establish limits on the stability of GdB2c2 • 

From the reaction of GdC2 and B4C to form Ga.B2c2 and graphite, 6Hf 
Gd.B2C2 

<-28.0 kcal./mole. Further, the reaction of W2B with GdB2c2 to form 

Gd.C2 and WB fixes the GdB2c2 stability as greater than -78 kcal./mole. A 

more restrictive definition of.the Ga.B2c2 stability and the trend of LnB2c2 
stability with lanthanide can be found by combining WB and LnB2c2 to note 



if W~5 and Lnc2 are formed. The borocarbide, GdB2c2, then, is comparable 

in stability to the lanthanide tetraboride. 

14. 7 Other Restricting Compatibility Tests 

It was hoped that the equilibria observed in these ternary systems 

might distinguish the variation in the stability of the lanthanide borides 

with respect to their solid components as a function of the lanthanide. 

However, the wide limits on the heats of formation of the reference transi-

tion metal borides, the large coefficients in the inequalities, the small 

differences in stability between the lanthanide borides and the large dif-

ferences in stability between the reference metal borides preclude this 

distinction. 

A simpler method to determine the variation in the stability of 

lanthanide borides as a function of atomic number would seem to be available 

in the reaction of borides of different lanthanide metals and the observa-

tion of the ternary equilibria. However, the isomorphic character of lan-

thanide borides of the same stoichiometry allows for continuous solid solu-

tions. Further, by X-ray diffraction, one could not distinguish between 

different lanthanide borides of the same composition. The same problems 

occur if the relative stabilities with respect to the gaseous elements 

are studied_ in a vapor phase equilibrium between physically separated dif-

ferent lanthanide borides. Therefore, 011e is limited to studying the 

relative stabilities indirectly through some reference system, as in the 

case of the ternary studies above, or to determining the relative vola-

tilities, absolute heats of formation or some property.for each lanthanide 

boride (cf. Chapter 17). 
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Considerable information conce~ning the variation of stability 

with atomic number could be obtained from the following disproportionation 

processes: 

4LnB6(s) = 3LnB4(s) + LnB12(s) 

2LnB2(s) = Ln(s,1) + LnB4(s) 

LnB12(s) = LnB6(s) + LnB100(s) 

Apparently, from Eick and Galloway's observations (101) at Er or Ho, LnB6 
becomes unstable with respect to LnB4 and LnB12• A definition of where in 

the lanthanides disproportionation of LnB6 occurs and does not occur, 

coupled with a knowledge of the heats of formation of LnB4 and LnB12, 

would provide a very good value for the heat of formation of LnB6. Simi-

larly, a determination of where in the lanthanides LnB2 becomes unstable 

with respect to Ln and LnB4 would provide information on the stability of 

LnB2 or LnB4 if the stability of either LnB4 or LnB2 were known. The heat 

for this process is near zero somewhere early in the lanthanides, i.e., 

at NdB2 or PrB2 • Further, disproportionation of the dodecaboride becomes 

important at gadolinium. Establishing these points of appearance or dis-

appearance of borides in the lanthanide series could provide information 

about the stability of all lanthanide borides. 

Other ternary systems might provide a sufficient test for varia-

tions in the stability of the_lanthide borides. For instance, if LnB4 

were in equilibrium with MBx for some of the lanthanides,.but at one point 

Ln 1B4 could no longer be in equilibrium with MBx because of the change 

in heat of formation of lanthanide tetraborides as a function of lanthanide, 
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then, if the heats of formation of the MBx compounds were known, the heat 

of formation of Ln 1B4 at the transition lanthanide could be determineda 

This observation would aid in establishing the trend for the lanthanide 

tetraboride stabilities as a function of lanthanide. 

For instance, consider process Mo-2 (Table 14. 3). In the case 

of samarium, the process is exothermic. Thus, the heat of formation of 

SmB4 was less than -27.7 kcal./mole. Now consider a tetraboride not as 

stable with respect to condensed elements as SmB4. The process above 

might become endothermic, thus precluding the MoB-LnB4 equilibrium and 

demanding the Ln-MoB2 and LnB4-MoB2 equilibria. Then the heat of forma-

tion of this LnB4 would be greater than -27.7 kcal./mole. At the lan-

thanide where this change of behavior occurs the heat of formation is 

very nearly -27.7 kcal./mole. 

Another significant process to determine the relative stability 

of LnB4 and LnB12 can be found in equation (14.12). 

(14.12) 

Whether this process is endothermic or exothermic will allow one to predict 

whether 6H -~H 
fLnB4 fLnB 12 

is greater or less than 4/5(6Hf -6Hf ) 
ZrB12 ZrB2 

and to note the trend of divergence or convergence of this difference be-

tween Er, Tm and Lu. If the heat of formation of LnB4 is about -40kcal./ 

mole and that of LnB12 is about -80kcal./mole, this test is very useful. 

Note that these binary joins are omitted from Figures 14. 9 through 14.11. 

Another sensitive test for 6Hf - .6Hf limits, where Ln is 
LnB4 LnB12 

Er, Tm or Lu, may be found in process 14.13. 
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(14.13) 

Depending on whether the process is endo- or exothermic, this difference 

will be less than or greater than 22.2 kcal./mole, again a sensitive test. 

14. 8 General Thermodynamic Considerations 

In the development of the use of ternary compatibility studies for 

gaining information about binary phase stability by examining the phase's 

compatibility with reference system borides, it became apparent that, while 

a table such as Table 14. 2 would serve to catalogue the stability of metal 

borides with respect to the solid elements, it is not very useful in pre-

dicting the equilibria in ternary or higher component fields. For in-

stance, if LnB12 were less stable per boron atom than ZrB12, Zr metal 

would certainly reduce LnB12, but not necessarily to ZrB12 and Ln metal. 

Further, if one wishes to make a judicious choice of a reference system 

to determine as closely as possible the stabilities in an unknown system, 

such a method of tabulation is not very fruitful. 

It is not sufficient to select a test boride comparable in stability 

to the unknown metal boride. The best choice would be a reference system 

which contained two borides whose stabilities per boron atom and whose stoi-

chiometries were close together, and yet ~hose stabilities bracketed the 

stability of the unknown boride. For instance, the most valuable reference 

borides in the above study were the tungsten borides and B4C. W2B5 is less 

stable per boron atom than Gd.B4>but WB is more stable tha.r:1 Gd.B4 per boron 

atom. The difference in stability per boron atom between w2B5 and WB is 

small and brackets that of Gd.B4. Further, the fairly ·close stoichiometry 



allows one to write balanced equations for processes with small coefficients 

which will not amplify the ranges of reference boride stability into too 

wide a set of bounds on the heat of formation of aa.;s4 • The high stability 

and the extreme gap in stability per boron atom and in composition between 

ZrB2 and ZrB12 rendere~ the use of the Zr-B system as a·reference set fairly/ 

limited. The high stability of the tantalum borides compared to the lan-

thanide borides precluded the utility of tantalum borides as a reference 

system. 

A more revealing organization of boride stability data appears 

in Table 14. 5. This table organizes reaction couples according to their 

potential for formation of one mole of elemental boron. Those couples 

showing the lowest potential are at the bottom with increasing potential 

going up the table. The ordering of the potentials was established from 

the ternary compatibility studies of this chapter. For instance, the 

B4C-C couple is higher in the table than the LnB6-LnB4 couple. Hence, 

B4c should react with LnB4 to form LnB6 and C, as was indeed observed to 

be the case in this work. Clearly the most useful couples in establishing 

the relative position of the lanthanide boride potentials are the closest-

lying couples, i.e., W-B and C-B couples. 

Hence, boride stabilities can be organized, just as are reduction 

potentials of metals, into an electromotive displacement series involving 

boron instead of electrons. All borides and boron-containing compounds could 

be placed into such an organization, as well as other compounds in other 

series related by a connnon element. This kind of a series· not only defines 

boride stability, but predicts the equilibrium phases in multi-component 

systems. 
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TABLE 14. 5 

Boron Potential Series in Order of Decreasing Potential. 

Brackets Imply the Inability to Assign Relative Position. 

1/88 LnB100 = 1/88 LnB12 + B 

1/94 LnB100 ·= 1/94 LnB6 + B 
\ 

G/16 LnB12 = 1/16 LnB6 
+~ 

1/6 ZrB12 = 1/6 ZrB2 + B 

1/4 B4C = 1/4 C + B 

1/2 C + 1/4 LnB6 = 1/4 LnB2c2 + B 

1/2 LnB6 = 1/2 LnB4 + B 

~/3 W2B5 = 2/3 WB 
+~ 

1/2 LnB2c2 = 1/2 ~nc2 + B 

1/4 LnB4 = 1/4 Ln + B 

2 WB = W2B + B 

W2B = 2 W + B 

3/2 TaB2 = 1/2 Ta3B4 + B 

~IB2 
= TiB 

+~ 
TaB2 = TaB + B 

Ta3B4 = 3 TaB + B 

ZrB = Zr + B 

1/2 ZrB2 = 1/2 Zr + B 

rrB2 = ZrB 
+~ 

TiB = Ti + B 

J TaB = Ta3B2 + B 

2 Ta3B2 = 3 Ta2B + B 

Ta2B = 2 Ta + B 
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There is a more revealing way to express the above considerations. 

At equilibrium the chemical potential of each of the components is the 

same in each phase in the system •. In particular, in systems involving 

borides at equilibrium, the chemical potential of boron in each phase is 

the same. Consider Figure 14.15. 1. This is a schematic diagram of boron 

chemical potential normalized to range between zero and 1.00 referred to 

solid elemental boron at the same temperature of the isothermal diagram, 

versus the mole fraction or any composition units in the tungsten-boron 

system. Also included is a similar possible schematic in the lanthanide-

boron system with the same ordinate scale and at the same temperature. 
/ . 

Horizontal lines in such diagrams definethe chemical potential of boron 

in the equilibrium between the two solid phases 'Whose compositions are 

specified by the ends of the line. A vertical line shows the variation of 

chemical potential across the infinitely~narrow solid solution range of 

the single solid phase at that composition. A sloped line represents 

the chemical potential change across a single solid phase of detectable 

solid solution range. 

In order to determine the ternary equilibria in the Ln-W-B system, 

the two diagrams are superimposed and shifted horizontally. The inter-

section of lines defines a chemical potential cormnon to all phases at the 

ends of the horizontal lines and in the vertical line. Therefore, as.noted, 

in Figure 14.15~1,the boron chemical potential in w2B5 can be the same as 

that in the B-LnB100, LnB100-LnB12, LnB12-LnB6 and LnB6-LnB4 equilibria, 

if one shifts the diagrams to ·the respective intersections. Thus, a 

ternary diagram would contain the W2B5-B-LnB100, _W2B5-LnB100-LnB12, 

W2B5-LnB12-LnB6, and W2B5-LnB6-LnB4 equilibrium triangles at thi.s temperature. 
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Figure 14.15. 2 demonstrates schematically the relation of the binary 

chemical potential systems to the ternary equilibria. 

Since chemical potential data of boron in solid boride systems 

are totally lacking and extremely difficult to obtain, a more practical 

use of this technique would be to consider the stability of these solid 

borides with respect to boron gas whose pressure can be experimentally 

determined as a function of composition. Instead of boron chemical 

potential in the solid, the pressure of boron over the boride systems at 

constant temperature could be graphed. As in the chemical potential con-

sideration, whenever the pressure of boron over different boride systems 

is the same, those borides will exist together in equilibrium. 

Such a technique is not limited to the prediction of the three 

solid phase equilibria in three component systems. If vertical lines 

representing single solid phases from two binary systems can be made to 

superimpose, those two solid phases will exist together in equilibrium 

with d gas phase in which the boron pressure may vary over the range of 

common overlap at that temperature. In other words, an insufficient num-

ber of phases areJ>resent to fix the system. The system still contains 

three components. If the composition of the gas can be expressed from 

the compositions of the solid phases, the system reduces to two components 

and the range of pressure overlap would be limited to a single point. 

Two superimposed horizontal lines represent an invariant system 

of four solid phases and a gas phase containing three components. Only 

at one particular temperature .can this situation occur. 

Quaternary and higher component systems may be treated in like 

fashion simply by overlaying the binary pressure-composition schematics 
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all at the same temperature • One must be careful in using the Phase Rule 

in these considerations. Solid solutions and multicomponent compounds may 

exist which would complicate matters. 

One should realize that the composition axis is totally artificiale 

The diagrams are equally useful if projected onto the boron-pressure a.xise 

Two solid phase equilibrium would then be represented as a point, and 

single solid phases represented by a vertical line. The points and lines 

could be labeled for the phases they represent. Thus, one could use the 

abscissa to determine the variation of boron pressure with temperature 

in the particular two solid phase equilibrium by generating a plot of 

-RTlnpB versus 1/T. This kind of graph is discussed for metal oxides 

and sulfides by Darken and Gurry ( 68). The slopes of such plots a.re de.-

fined by the heats of vaporization of the higher boride to the lower 

boride with the loss of one mole of boron gas. Invariant points would be 

determined by the intersection of two lines in the same or different binary 

systems. 

In such a way, all boride systems could be charted on the same 

diagram, although the cha.rt would be cumbersome if all single solid phase 

bands were included with the two solid phase equilibria lines. In order 

to construct such diagrams, one would need to know the heats and entropies 

of formation of the solid phases and of gaseous boron at sone temperature 

and the associated free-energy-functions. The pressure of boron can then 

be calculated from the Third Law. 

Thus, with the diagram~ discussed above, ternary equilibria could 

be predicted barring solid solution effects. However, in this work the 

ternary equilibria are established by experiment and one binary diagram 
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known. In particular, from Figure 14.15. 2 the pressure of boron at 

this temperature over a two solid phase mixture of LnB4 and LnB6 must be 

greater than that over WB-W2B5, but less than that over w2B5-B, both of 

which are known. If the reference system were judiciously chosen, this 

would prescribe the boron pressure over LnB4-LnB6 fairly precisely. Thus, 

limits on the free energy of the reaction 

(14.14) 

may be set. Subtracting out the free energy of formation of B(g) at this 

temperature, assuming the entropy change for solid reactants is zero, 

assuming Llc~ of formation of the solid compounds is also zero, one may 

set limits on the difference between the heats of formation of LnB4 and 

LnB6 at 298°K. This is precisely how the limits on the stabilities of 

the lanthanide borides were obtained in the preceding observations. 

The thermochemical data available on boride systems are extremely 

meager and not very precise. As more boride systems are described in de-

tail, this tool to determine stabilities of other borides will become more 

·powerful. In fact, heats of formation of borides determined in this wa:y 

may be as good as those determined from absolute pressure measurements at 

high temperatures. The technique is certainly much easier and considerably 

shorter than a high temperature vaporization rate study. Further, this 

technique is independent of errors in the heats of sublimation and free-

energy-functions of boron, since pressures are matched with comparison 

systems and the contribution of B(g) is removed with the same error that 

was engendered in the reference system. In the determination of the heat 

of formation from the measured heat of vaporization, any errors in the 
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thermochemical data on boron gas or solid are included, and, possibly, 

those for the metal also. One should be critical of the quality of the 

thermochemical data used to construct the reference system. 
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CHAPTER 15 

INTERPRETATION 

15. 1 Significance of Vaporization Processes 

15. 1. 1 Review of Hypothesis 

As suspected in Chapter 1~ the vaporization processes illustrated 

in Figure 4 should be explicable from a consideration of the variation 

in the ~olatility of the metal. This hypothesis assumed the absence 

of significant variation in the stability of corresponding borides with 

respect to the condensed elements as the lanthanide is varied. It was 

further assumed that the entropy change is the same for each possible 

reaction written to form one total mole of gas. Finally, it was assumed 

that all processes were studied at the same temperature or that, as a 

function of temperature, differences in free-energy-functions are negli-

gibly small for different metal gases or compounds of different metals. 

Recall from Chapter 1 the processes being considered (cf. Fig-

ure 15. 2): 

3 LnB4 (s) = 2 LnB6(s) + Ln(g) 

1/5 LnB4 (s) = 1/5 Ln(g) + 4/5 B(g) 

1/4 LnB4 (s) = 1/4 Ln(l) + B(g) 
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2 LnB6(s) = LnB12 (s) + Ln(g) 

1/7 LnB6 (s) = 1/7 Ln(g)+ 6/7 B(g) 

1/2 LnB6 (s) = 1/2 LnB4 (s) + B,(g) 

15. 1. 2 Influence of Metal Volatility 

(1. 4) 

(1. 5) 

(1. 6) 

It is clear from the observations described in Figure 4 that the 

variation in the metal volatility alone cannot explain the observed vapori-

zation behavior of LnB4 and LnB6 . For example, lanthanum, tne most invola-

tile of the lanthanide metals, would be expected to lose boron gas from the 

hexaboride to form LaB4 , if GdB6 loses boron gas preferentially. Howev~r, 

it was observed to lose La(g) preferentially with LaB6 (s) vaporizing 

congruently. 

This apparent anomaly may be demonstrated more effectively by 

considering the enthalpies of vaporization at 2200°K. for the processes 

in equations 1. 1 to 1. 6 for different lanthanide metals. Since the 

principal process, i.e., the one with the smallest free energy change, 

was postulated to be dependent only on the metal volatility, the heat of 

formation of LnB4 may be assumed constant at, say, -45 kcal./mole for 

every lanthanide, in order to estimate enthalpies for the six possible 

vaporization processes. Similarly, the heat of formation of LnB6 may be 

assumed constant at -55 kcal./mole for every lanthanide and the heat of 

fonnation of LnB12 assumed constant at -50 kcal./mole for every lantha-

nide. The heat of vaporization of boron at 2200°K. from JANAF (69) is 

130.3 kcal.Jg.at. The heats of vaporization of the lanthanide metals 

are taken from Table 1. 2. Figure 15. 1 describes the estimated 

enthalpy variation. 
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It is obvious that the processes with the smallest enthalpy 

change, i.e., requiring the least amount of heat to fonn a mole of gaseous 

atoms, do not confonn to the experimental observations. In particular, 

this scheme predicts that GdB4(s) will lose Gd(g)(equation 1. 1) rather 

than vaporize congruently (equation 1. 2) as is observed experimentally. 

One may attempt to make the process in equation 1. 2 more important than 

that in equation 1. 1 by reassigning the heats of formation of LnB4 and 

LnB6 to account for the 30 kcal. difference in the two processes for GdB4 
vaporization. However, with the above assumption of constant heats of 

corresponding boride formation this reassignment would affect the LaB4 
behavior by the same 30 kcal. and allow the prediction that LaB4 would 

vaporize congruently instead of losing La(g) as is observed experimentally. 

Similarly, any attempt to force congruent vaporization of SmB6 over pre-

ferential loss of Sm(g) from SmB6 by redefining the heats of formation 

of LnB6 and LnB12 would force a contradiction of the observed loss of 

B(g) from Gd, Tb, Dy and Ho hexaborides. 

Other similar anomalies in the scheme of Figure 15. 1 force the 

conclusion that there is no set of constant values for the heats of for-

mation of LnB4 , LnB6 and LnB12 , respectively, that can be chosen which 

will allow a match of the observed principal vaporization processes with 

the calculated principal processes within the limits of error in the 

metal volatilities. Thus, the conclusion that metal volatility alone 

does not determine the process by which the lanthanide borides vaporize 

is reached. This conclusion disproves the original hypothesis of this 

thesis. Possible variation in the heats of fonnation of the metal 
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borides and a reconsideration of the assumption of constant entropy 

change for the processes must be examined. 

15. 1. 3 Entropy Estimation and Importance 

15. 1. 3. 1 Entropy of Gaseous Atoms. Realizing that the 

principal vaporization process for a particular boride is that process 

with the smallest free energy change per mole of gas, i.e., the process 

which develops the largest total pressure, one must examine the entropy 

contribution to the free energy of vaporization for these processes and 

·test the validity of the constant entropy assumption. 

Consider as a first approximation that the entropy contribution 

to the processes from condensed phases is negligible compared to that of 

the gas. The composition of the gas varies from pure Ln(g) in processes 

1. 1 and 1. 4 to pure B(g) in processes 1. 3 and 1. 6. Therefore, for 

the entropy change to be identical for the six processes, and for the 

free energy changes to be ordered according to the enthalpy changes, the 

entropies of the gaseous lanthanide metals must be equal to each other 

and equal to that of boron gas at the same temperature. However, an 
· 0 0 examination of Table 1. 2 reveals that at 2200 K. SYb(g) differs from 

0 
SGd(g) by 7.5 eu. At 2200°K. this difference leads to an effect of 

16.5 kcal. in the free energy. This wide variation in entropy of Ln(g) 

arises from the multiplicity of the ground state of the gaseous lantha-

nide atoms as discussed by Herzberg (188). Further, the entropy differ-
o ' ence between B(g) and Ln(g) ~t 2200 K. may be as large as. 12.2 eu. or 

26.8 kcal./gas atom contribution to the free energy. Obviously, the 



assumption of equal entropy for the six processes for all lanthanides 

is incorrect. The effect of 26.8 kcal. difference between a process 

involving pure boron gas and a process forming only lanthanide gas is 

quite appreciable compared to the enthalpy changes of the order of 

100 kcal. estimated in Figure 15. 1. 

15. 1. 3. 2 Entropy of Condensed Phases. It is necessary to 

examine to what extent the entropy contribution of the condensed phases 

may be ignored compared to the entropy of the gaseous atoms in the vapor-. 

ization processes. Essentially no heat capacity data exist for the 

lanthanide borides. Therefore, the entropies of these borides must be 

estimated. There are three questions which must be considered in the 

estimation. 
0 ' 

First, how precise is s2980K. for the lanthanide borides calcu-

lated by assuming the standard entropy of formation at 298°K. to be zero, 
0 and in what way does s2980K. deviate from this assumption? Fairly re-

liable estimates, by Mezaki, Tilleux, Barnes and Margrave {189), of 
0 s2980K. for transition metal borides, based on the empirical scheme of 

elemental contribution to the entropy presented by Latimer and on the 
0 measured value of s2980K. for ZrB2 , have been made and are listed in 

Table 15. 1, colunm two. Also included are the measured value by Swift 

(69) on MgB4 and the measured value on LaB6 by Westrum (190). It is 

clear from these data that the energy state of metal and boron atoms in 

the borides is significantly different from the pure elements. In partic-

ular, as the boron content increases, the entropy of the boride,deter-
o mined from the asslllllption that 6S298 of formation is zero (colunm three), 



TABLE 15. 1 
A Comparison of Literature Values of Entropies of Various Borides witb those F.stimated by Assuming /J.S~ and 6.c~ Are Zero. 

a '/o. Devia- a ( ~-s~98 (lit)} % Devia-
s~980K. (lit) s~980K. (est) (B°(lit)-s0(est))2; 8 tion :from s~~s~98(iit) s~-s~98(est) tion from 

Boride · (eu.) (eu.) (eu.) lit ('lo) {eu.) (eu.) -( s~-s~98 (est~ lit (%) 
(eu.) 

Mo2B 22.8 ] + 15.05 - 7.7 -34 18.83 16.34 + 2.49 +13.3 - 2 W2B 28.2 17.47 -10,7 -38 25.35 24.05 + 1.30 + 5.13 

TaB 13.1 11.29 - 1.8 -14 16.53 15.74 + 0.79 + 4.78 
CrB 8.4 ± 1 7.09 - l.3 -16 i6.28 16.02 + -0.26 + 1.60 
MoB 10.5 8.22 - 2.3 -23 15.79 L5.5J. + 0.28 + L 78 

w WB 13.2 9.43 - 3.8 -29 15.99 15.41 + 0.58 + 3.63 co w 

T~ 6.2 10.ll 3.9 63 21.61 23.89 - 2.28 -10.55 
ZrB:2 8.5 10.07 l.6 19 23.94 24.n - 0.17 - 0.71 
Hf~ 11.2 13.69 2.5 23 23.64 22.62· + 1.02 + 4.31 

~~ 8.6 "± 1 ll.51 l.9 22 22.85 22.29 + 0.56 + 2.45 
·~ .ll.3 12.68 l.4 12 23.75 22.51 + 1.24 + 5.22 
Cr~ 6.6 8.48 l.9 29 23.05 22.79 + 0.26 + 1.13 
Mo~ 8.7 9.61 0.9 10 23.50 22.28 + 1.22 + 5.19 

W2B5 
21 J 23.04 2 10 47.73 51.13 - 3.4o - 7.12 

MgB4 12.41 ± 2 13.41 1.00 8.1 

Ia% 19.88 21.98 2_.10 10.5 

a, Transition metal borides, 189; MgB4, 69; La.%, 190. 



becomes larger than the estimated values of column two. This difference 

is listed in column four. A rough extrapolation of the percent devia-

tion of the entropy from this assumption, listed in column five, into 

the MB4/MB6 boron compositions indicates that s~980K. for LnB4 and LnB6 
may be estimated within 15 percent by correcting the value calculated 

from the assumption of zero entropy of formation downwards by 20 percent. 

A further test of this assumption lies in a comparison of experi-
o mental data on s2980K. for LaB6 with the estimated entropy. Westrum, 

Clever, An~rews and Feick (190) have determined s~980K. for LaB6 as 

19.88 eu. The value derived from assuming a zero entropy of formation 

is 22.0 eu. With a downwards correction of 20 percent, or 4.4 eu., the 

estimated value is 17.6 eu., which is 2.3 eu. smaller than the measured 

value, but within the estimated 15 percent error. 

The second question to be answered is this: What is the value 

of s~2000K.- s~98oK.? Measured heat capacity data in the range 298 to 

1200°K. for transition metal borides by Mezaki, et al. (189), reveal the 
0 0 ST-s2980K. data listed in Table 15. 1, column six. These measured data 

a~e compared with data calculated from the assumption of the Neumann-

Kopp Rule at 1200 and 298°K. with elemental heat capacities taken from 

Stull and Sinke (65) for the metals and from JANAE' (69) for elemental 

boron (column seven). Notice the TiB2-ZrB2-HfB2, CrB2-MoB2, CrB--MoB-WB 

and NbB2-'raB2 trends (column eight). These differences indicate that 

the assumption 0 0 0 values increasingly of AC equal to zero gives ST-s2980K. p 
too low as one goes down the groups in the Periodic Table .. There is no 

significant trend with boron content. 
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The difference between calculated and observed values for s; -
0 0 s2980K. at 1000 K. revealed that this difference was the same as the 

difference observed at 1200°K. Thus, it is believed that the deviation 

observed at 1200°K. may be assumed identical with that at 2200°K., even 

through the melting points of the metals. From a consideration of the 

position of the lanthanides in the Periodic Table, it would appear that 
0 0 the s22000K.- s298oK. values, calculated from the assumption of zero for 

AC; for formation at any temperature, are five percent lower than the 

actual values. 

From a combination of the 20 percent correction downwards on 

s~980K. determined from 6S~98 = 0 with the 5 percent correction upwards 
0 0 0 on s22000K.- s2980K. determined from ACP = O, the formula used for ob-

taining the entropy of LnB4 (s) and LnB6 (s) and for LnB12 , as well, is: 

0 0 
= 0 ·88 (AS2200oK.,B(s) + 82200°K.,Ln(l)) (15. 1) 

where A is four, six or twelve for LnB4 , LnB6 or LnB12 , respectively. 

The error in the accuracy of these entropies is estimated liberally at 

20 percent. 

A third question remains to be answered. How systematic is the 

error in the entropy estimates of equation 15. 1? In other words, does 

the variation in entropy of the lanthanide borides with metal show the 

same trend as the variation in entropy of the pure condensed metal with 

atomic number? This observat;on is vitally important in ~stablishing 

the trends of the free energies of the vaporization processes with 

lanthanide metal. If the large errors in the estimated entropies of the 



borides can be shown to be systematic with varying metal, the influence 

of changes in the entropy from metal to metal for a particular vapori-

zation process may be evaluated within the errors of the elemental 

lanthanide entropy only. 

Borides of the same composition are isostructural as a function 

of lanthanide; and, therefore, the boron field into which metal ions must 

go is the same for each metal. Thus, it seems reasonable to suspect 

that, except for small size differences, the change in the entropy for 

metals going from isostructural solids or liquids into isostructural 

boride structures is influenced to the same extent by the boron matrix 

and is, therefore, constant with varying lanthanide metal. In other words, 
0 AS22000K. for formation of lanthanide borides of the same composition is 

a constant as a function of lanthanide. 

It is important to consider the change in the ground states of 

the metals on going into the boron field. The lanthanide metals are 

complicated by Rln(2J+l) magnetic entropy contributions from close-lying 

energy levels arising from unpaired 4f and 5d electrons. While it is 

certain that the boron field will influence these energy levels to a 

different extent for different lanthanides, any such changes should be 
0 small at 2200 K., even though the magnetic entropy of the lanthanides 

can be as much as 30 percent of the total entropy. 

Further, the entropy due to the metal vibrations in the boride 

and due to conduction electrons might be influenced by the boron field 

to different extents for different metals. For lnstance,.while other 

lanthanides show plus three valency, Sm, Eu and Yb retain quite a bit of 
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their alkaline earth character in alloys, but do not show divalency in 

ionic compounds such as .oxides. Does this varied behavior imply varied 

entropy of formation with lanthanide metal, depending on whether the 

boride is ionic or metallic in nature? 

It would appear that the most severe test of the constancy of 
0 6Sf would be found by examining the experimental data for·a highly ionic 

compound such·as the sesquioxid,e where severe restrictions are imposed on 

the metal valency in the oxide. Magnetic data, low electrical conduc-

tivity values, and linear lattice-parameter graphs, reported by 

Gschneidner (30), indicate that in every lanthanide sesquioxide the metal 

is constrained to a trivalent oxidation state. On the .other hand, the 

lanthanide metals show significant metal divalency at Eu and Yb and 

tetravalency at Ce. Further, the metallic radius varies considerably 

from a linear function of atomic number at pe, Eu and Yb. In view of 

the valency constriction on Ce, Eu and Yb in sesquioxide formation, per-

haps deviation from a constant AS~980K. for formation will be revealed. 

Westrum and Granvold (61) have considered these factors and 

determined AS~980K. for formation of Ln2o3 (s) from a large amount of 

experimental data and some empirical estimations. These data are shown 

in Table 15. 2. Colunm two lists the entropy of the lanthanide metals 

taken from Stull and Sinke (65). Experimental values for the entropy of 

Ln2o3 are contained in colunm three.· These are to ·be compared with 

values estimated by Gronvold and Westrum in column four. The entropy 

of formation of Ln2o3 is list.ed in column five. Column six tests the 
0 O· constancy of S (Ln2o3) - 2 S (Ln), where only experimental data are 



TABLE l5. 2 

Variation of the Standard Entropy of Formation of Lanthanide Sesquioxides with Lanthanide (61) 

Metal Sesquioxide Sesquioxide Sesquioxide 
s~98oK. ( expt. ) s~98oK. ( expt. ) s~980K. (est. ) - 6S~98oK. (form.) 8~98°K. (~o3)-s~98°K. (2M) 

Metal (eu.) (eu.) (eu.) . (eu.) (eu.) 

Sc ( 8.5) 19.4 (35.6) 
y 10.63 23.69 22.4 35.54 2.43 
La. 13.64 30 .43, 30.58 30.4 35.18 3.15 
Ce 16.68 36.4 (35.2) 
Pr 17.49 37.9 (35.4) 

Nd 17.54 37-9, 36.92 38.0 (35.3) 2.8 

Pm (17.2) (35.4) 
w Sm 16.64 36.1 35.4 (35 .. 4) 2.8 o:> 
o:> 

Eu (17.0) 35 (36) 

Gd 15.77 36.0 36.3 (34.4) 4.5 

Tb 17.48 37.5 (35.8) 

Dy 17.87 35.8 38.1 (35.7) .1 

Ho 18.00 37.8 38.2 (35.7) 1.8 

Er 17.52 36.6 37.6 (35.5) 1.6 

Tm 17.37 36.5 (35.7) 

Yb (15.0) 31.8 34.5 (34.5) 1.8 

Lu 12.19 26.0 (35.6) 



available. Parentheses imply estimated values or poor experimental data. 
0 Their work concludes that AS2980K. for fonnation of Ln2o3 (column five) 

is a constant within~ 0.6 eu., even for'Eu and Yb. Experimental data 

support this conclusion, showing a variance of± 1.5 eu. from constancy 

at 298°K. 

While lanthanide ion in tetraborides is trivalent and ionic 

rather than metallic,. some alkaline earth character, typical of the 

lanthanide metals, is observed at Yb and Eu {cf. Chapter 2). The valence 

of the metal in hexaborides is very close to that of the metals them-

selves, as shown by the lattice parameter variation, conductivity and 

magnetic measurements in Gschneidner (30). Considerably le~s is known 

about dodecaborides; however, the metal bonding in dodecaborides is 

probably similar to that in the tetraborides. Then, since the bonding 

in lanthanide borides is between the ionic bonding in Ln2o3 and the 

bonding in the metals, it appears reasonable to assume that AS~ at 298°K. 

and 2200°K. is a constant with lanthanide for corresponding lanthanide 

borides. Thus, a large step is taken in rendering the percentage errors 

in the boride entropy estimates constant. 
0 The entropies for tetra-, hexa-·. and dodecaborides at 2200 K., 

estimated by equation 15. 1, are listed in Table 15. 3. With the use 

of the boride entropies in Table 15. 3, .the heats of vaporization of 

lanthanide metals and boron,and the entropies of the elemental species 
0 at 2200 K, as listed in Table 1. 2, the standard free energies of vapori-

zation for the six vaporizat!on processes in equations 1 •. 1 to 1. 6 were 

calculated with equation 6.18 for the various lanthanides, excluding the 



Ln 

La 

Ce 

Pr 

Nd 

Pm 

Sm* 

Eu* 

Gd 

Tb 

Dy 

Ho 

Er 

llil 

Yb* 

Lu 

TABLE .15. 3 

Estimated Entropies of So.lid Lanthanide Tetra-, Hexa- and 
Dodecaborides at 2200°K. 

S~B4 sinB6 
(eu.) (eu.) 

70.8 92.6 

74.5 96.2 

74.5 86.2 

76.1 98.1 

74.2 96.0 

73.6 95.4 

74.o 95.8 

73.3 95.1 

74.3 96.1 

74.6 96.3 

74.5 96.2 

74.4 96.2 

73.7 95.5 

71.4 92.8 

69.0 91. 7 

* Liquid metal reference state 
,,. 
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go 
LnB12 

(eu.) 

158.0 

161.6 

161.6 

163.5 

161.4 

160.8 

161.2 

160.5 

161.5 

161. 7 

161.6 

161.6 

160.9 

158.2 

157.1 



terms involving the heats of formation of the borides at this temperature. 

The estimated free energies, exclusive of the heats of formation of the 

borides, are tabulated in'Table 15. 4 for all the lanthanide metals. 

15. 1. 4 Systematic and Random Errors 

In order to determine what reliance can be placed on the esti-

mated data of Table 15. 4 for use in the following arguments, it is neces-

sary to discuss the magnitude of the errors involved in these estimations. 

In view of the lack of spectroscopic data and the ambiguity in interpre-

tation of the spectra (Landolt and Bornstein (191)), entropy data on Ce, 

Pr, Tb, Dy, Ho, Er and Tm are not available. Based on the range of 

entropies in Table 1. 2, the entropy values for these gaseous elements 

at 2200°K. have been taken as 57 eu. with an uncertainty of± 2 eu. The 

random error in the gaseous entropies of the other lanthanides and in 

the entropies of the liquid lanthanides at 2200°K.,taken from Stull and 

Sinke (65),is liberally estimated at~ 0.5 eu. For Sm, Eu and Yb a 

liquid reference state has been taken by extrapolating the liquid stan-

dard state data to 2200°K., which is above the normal boiling point for 

these lanthanides. The entropy error in B(g) and B(s) at, 2200°K. is 

taken as t 0.1 eu. with the data taken ·from JAN.AF (69). The error in 

6H0 for boron at 2200°K. is taken as ± 4 kcal./ g.-at .-, according to vap. 
Schick (132). Standard heats of sublimation of the lanthanide metals 

at 2200°K. were taken from Stull and Sinke (65) or estimated from more 

recent data (cf. Table 1. 2) •. These data are reliable to.± 2 kcal./ g.-at. 

random error. The uncertainties in the boride entropies were previously 

estimated as 20%. All these uncertainties are Hsted ·in Table 15. 5. 
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TABLE l5. 4 

Free Energy Changes;_Exclusive of Heats of Boride Formation, for the Six Possible 

Vaporization Processes of LnB4 and LnEE; at 22000K. 

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Tm Yb Lu 

LnB4 1.1 6F°-(26H°LnB
6

-3~H°LnB
4

) 29.9 34.o 23.0 13.0 -16.2 -18.7 11.3 27.1 9.24 12.6 12.4 -1.2-13.9 24.4 

wss of Ln(g) 

1.2 6F°--(-1/5L.\HLnB4) 

Congruent 

1. 3 /:lF°-( .:1/4~H°LnB4) 

wss of B(g) 

47.2 48.o 45.8 44.1 38.1 37.6 43.8 46.8 43.0 43.8 43.8 39~8 38.4 47.1 

Lnl36 1.4 ~F0 -(~H°LnB
12

-2flHLnB
6

) 29.9 33.4 22.4 14.3 -16.2 -18.7 ll.3 27.1 8.6 12.4 12.4 -7.0 -16.6 30.3 

Loss of Ln(g) 

1.5 ~F0 -(-1/7~HLnB6) 42.1 41.8 46.4 48.3 45.6 46.2 46.2 43.4 42.0 48.7 

Congruent 

1.6 ~F°-( l/26~B -
1/2~H°LnB6) 4 

51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 

Loss of B(g) -

For these calculations 6~980K. for boron vaporization was taken from JAN.AF ( 69) as 132. 6 kcal./ g. -at. If 6 ~980K. 
for boron vaporization were 135.0 kcal./g.-at., reported by Robson and Gilles (178), then the values for processes 
1. 2, 1. 3, 1. 5 and l. 6 would be increased by 2.0, 2.4, 2.0 and 2.4 kcal., respectively. See Table 16. 6 for the 
uncertainties. 



Collecting these errors,weighted for their contribution to the 

free energies, one obtains the total uncertainty in the free energies of 

vaporization for each of the six processes under consideration, exclu-

sive of errors in the heats of fonnation of the boride. These uncertain-

ties are contained in Table 15. 5. It is obvious that these uncertainties 

are too large to .allow the prediction of behavior trends as the thenno-

chemical properties of the lanthanides change. However, a great portion 

of these errors is systematic. with atomic number, especially when compar-

ing free energies for a particular vaporization process with varying 

lanthanide. Since the entropy of the borides varies with lanthanide in 

the same fashion as the entropy of the liquid lanthanide metal, the error 

from the estimation of s0 for LnB4 , LnB6 and LnB12 is systematic and. 

cancels in corresponding processes with different metals. The errors in 

AH~ap. of boron and in S~(g) and S~(s) are also systematic and cancel as 

two different lanthanides are compared in the same process. The sums of 

the remaining uncertainties between any two lanthanides for the six vapor-

ization. processes are shown in Table 15. 5. Since these uncertainties 

are smaller than the variations in AS 0 and AH0 of the lanthanide u vap. u vap. 
0 metal at 2200 K., a test of the influence of variation in these contri-

butions with atomic number is quite possibl~; the trend of stabilities 

af tBtra- and hexaboride with respect to the gaseous elements may also be 

described. 

It is also necessary to determine the uncertainties involved on 

intercomparing each of the six different processes all involving the same 

lanthanide. This determination is~·necessary in deciding the process of 
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TABLE 15. 5 

Uncertainties in Estimated Free Energies of Vaporization 

Uncertainties in component terms for the estimated free energies for the six 
LnB4 and LnB6 vaporization processes at 22000K. 

s£nB4 8LnB6 8£nB12 
.6Ho ~H~ap.B sf.n(g) 8En(l) s~(s) 

0 
vap.Ln 

8B(1) 

( eu.) (eu.)  (eu.) (kcal./gat.) (kcal./ gat.) (eu.)  (eu.) (eu.) (eu.) 

16.0 20.2 34.o 2 4 2 0.5 0.1 

Uncertainty, exclusive of errors in heats of boride formation, in the 
estimated free energies of the possible vaporization processes 

of LnB6 and LnB4 at 2200°K. 

0.1 

~F~. 2 ~Ft 3 ~F~. 5 ~F~. 6 

20.0 11.3 13.3 8.8 kcal. 

Uncertainty in the difference in estimated free energies, exclusive of 
heats of boride formation, between any two lanthanides vaporizing 

by one of the six possible processes at 2200°K. 

~~  3 

3.0 3.1 0 kcal. 
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smallest free energy, i.e., the principal vaporization process. It is 

clear that while any errors in the entropies and heats of vaporization of 

a particular lanthanide are certainly systematic in their contribution 

to the different vaporization processes, tenns with systematic errors, how-

ever, because of the varied stoichiometry for the processes, occur to 

different extents for different processes and do not cancel in general. 

Thus, the errors between free energies of different processes with the 

same lanthanides are larger than errors between free energies for the 

same process with different lanthanides. The errors remaining after elimi-

.nation of systematic contributions are shown in Figure 15. 2. 

While these uncertainties are generally large relative to the 

variation in the free energy of vaporization between processes, the total 

result on fitting the observed principal vaporization processes of 

Chapter 4 to estimated free energies affords a much more reliable inter-

pretation than these uncertainties would indicate. 

15. 1. 5 Condensed Phase Entropy Influence 

While the entropies of the gaseous atoms are the principal con-

tributions to the total entropy of vaporization, the entropies of the 

condensed phases and their variation with lanthanide and with process 

are certainly not negligible contributions to the free energies, but 

represent an appreciable contribution to the variation in free energy 

between the vaporization processes for different lanthanides. More 

specifically, the vaporization process for the tetra- and hexaboride is 

not determined by the variation in the heat of vaporization of the 

lanthanide metal alone, but also by the variation in entropy of lanthanide 
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1.1 3LnB4 ( s) - 2LnBs( s) + Ln(g) 

1.2 l/5LnB4 ( s) - 1/5Ln (g) + 4/5B (g)· 

1. 3 l/4LnB4( s) - l/4Ln(s,1) + B.: (g) 

1. 4 2LnB6 ('1) ;:: LnB12 ( s) + Ln(g) 

1. 5 1/7LnB6 ( s) 1/7Ln ( g) + 6/7B (g) 

1. 6 1/2LnB0 ( s) - 1/2LnB4 ( s) + B ( g) 

l t' 15.5 tt t }- 3.a::::f-1-4.4_J 
4.0 

16. 8 

kcal· ... 19.4 
Non-Systematic 0 Errors . Be·tweenAF2200 oK Values For Vaporization 

Processes of LnB4 and LnB6 

FIGURE 15. 2 
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gas and lanthanide borides. 

15. 1. 6 Influence of Boride Heat of Formation 

If the metal volatilities and entropy considerations alone are 

sufficient to interpret the observed principal vaporization processes, 

then within the framework of assumptions and errors above one should 

find a value for the heat of formation of the solid tetraboride, a 

value for the solid hexaboride and a value for the solid dodecaboride, 

which, when considered as constants for all lanthanides, will allow the 

experimentally observed principal vaporization processes to match the 

predicted minimum free energy process in all lanthanide systems. Con-

sider, as an example, the free energies of vaporization listed in 

Table 15. 6. These data were calculated assuming that AH~ , AH~ 
LnB4 LnB6 

and AH~ all are -50 kcal./mole at 2200°K. Notice that while some 
LnB12 

of the predicted minimum free energies match the observed processes 

for vaporization of tetra- and hexaborid~, others fail to match by 

as much as 20 kcal. per total gas atom, which ~s beyond the estimated 

non-systematic errors. 

It can be demonstrated that no such set of constant values for 

the heats of formation of the borides can be assigned, even outside the 

stability limits established in Chapter 14 for these borides, that will 
I 

allow an agreement between observed and predicted minimum free energies 

in all cases. Consider processes 1. 1 and 1. 2. The heat of formation 
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TABLE 15. 6 

Free Energies of LnB4 and LnB6 Possible Vaporization Processes at 2200°K., 
Heats of Formation of the Borides Assumed to be -50 kcal./mole 

Ln ~F~. 1 ~F~. 2 AF~. 3 ~F~. 4 6F~. 5 ~F~. 6 
(kcal.) (kcal.) (kcal.) (kcal.) (kcal.) (kcal.) 

La 79.9 * 57.2 # 62.3 79.9 55.8 * 51.8 # 
Ce 84.o * 58.0 # 62.1 83.4 56.3 * 51.8 # 
Pr 73.0 * 55.8 # 62.1 72.4 54.7 * 51.8 # 
Pm 

Sm 33.8 *# 48.1 62.1 33.8 # 49.2 * 51.8 
Eu 31.3(*)# 47.6 62.1 31.3 # 48.9 51.8 

Gd 61.3 53.8 *# 62.1 61.3 53.4 51.8 *# 
':Pb 77.1 56.8 *# 62.1 77.1 57.4 51.8 *# 
Dy 59.2 53.0 *# 62.1 58.6 52.7 51.8 *# 
Ho 62.6 53.8(*)# 62.1 62.4 53.3 51.8( * )# 
Er 62.4 53.8(*)# 62.1 62.4 53.3 51.8(*)# 
Tm 42.8 # 49.8 62.1 43.0 # 50.5 51.8 
Yb 36.1 *# 48.4 62.3 33.4 *# 49.1 51.8 
Lu 74.4 57.1 # 62.5 8o.3 55.8 51.8 # 

#, Calculated principal process 

*, Observed principal process 

.398 



term which must be added to complete the free energy expression in 
0 0 process 1. 1 is (2 AHf -3AHf ). To process 1. 2 must be added 

LnB6 LnB4 
the term (-1/5 AH~ ). In order for LaB4 to lose La(g) preferentially 

LnB4 
(cf. Table 15. 4), 

0 0 · 0 29.9 kcal.+ (2AHf -3AHf ) < 47.2 kcal .. +(-1/SAHf ). 
~~ ~~ ~~ 

(15. 2) 

And for, say, dysprosium tetraboride to vaporize congruently, as is 

experimentally observed, 

43.0+(-1/5 AH~ ) < 9.2 +(2AH~ -3AH~ ) 
DyB4 DyB6 DyB4 

(15. 3) 

After collecting terms, one observes that (2 AH~ -14/5 AH~ ) 
LnB6 LnB4 

must be greater than 33.8 kcal. for dysprosium, yet less than 17.3 kcal. 

for lanthanum. Clearly, no constant value for AH0 

f LnB6 
and for AH0 

f LnB4 

as a function of lanthanide will satisfy both requirements. Recalling 

from Figure 15. 2 that the random error for the difference in free 

energies between processes 1. 1 and 1. 2 is 15.6 kcal., one notes that 

the ~iscrepancy in the above relation, 16.5 kcal., is· outside this error. 

Further, as noted above, the existence of such a large collection of 

experimental observations and thermochemical data has the effect of 

reducing this particular error estimate, thus ren~ering. the observation 
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more reliable. Clearly, then, a variation in the heats of formation of 

the lanthanide boridesis a .necessary criterion in the interpretation of 

the observed vaporization processes. 

15. 1. 7 Variation in Boride Heat of Formation 

15. 1. 7. 1 Background. While there are no precise data in 

the literature on the stability of the lanthanide borides with respect 

to solid elements, much less the variation with lanthanide, some idea of 

how these heats of fonnation will vary may be conceived from a considera-

tion of other properties of these borides and of related materials. 

It is apparent that the stability of metal borides, particularly 

those with high boron content, is principally due to the covalently-

bound chains, nets and cages of boron atoms. This view is s~pported by 

the high melting points, extreme hardness, low thermal expansion, and 

low volatilities exhibited by metal borides. While the metal ions are 

necessary in these structures to meet the electronic demands for boron-

boron bonds, the percentage contribution of boron-metal bonds to the 

stability of the boride is small compared to that of the boron-boron 

covalent bonds. Thus, the variations in· stability of these borides be-

tween different lanthanides will be small because of the low metal con-

centration and the many boron-boron covalent bonds. However, variations 

must exist in order to explain the vaporization trends and other trends 

noted later for lanthanide borides. 

Brewer and Engel (192) have described a correlation between 

electronic and crystal structure, and bond character and thermodynamic 

400 



stability of metallic and intermetallic phases. From their interpreta-

tion s and p-orbital electrons are structure determining, while the d'-

orbital electrons, which are restricted to nearest neighbor interactions, 

do not influence structure. However, the d-orbital electrons do contri-

bute importantly to the binding energy in transition metals and inter-

metallic compounds. The d-orbital contribution increases with atomic 

number, whiles and p-orbital contributions decrease with atomic number. 

The bond energy or stability is generally determined by the average 

number of unpaired electrons per atom available for bonding. The effects 

of size, internal pressure and promotion energies to higher electronic 

states must also be considered, but are second order. 

Brewer {193) pointed out that in the lanthanides the 5d unpaired 

electrons do extensively contribute to bonding in lanthanide alloys. 

However, these 5d orbitals generally become less available for bonding 

as atomic number increases because of the increasing divergence between 

the 4f and 5d energy levels. Therefore, with the assumption that the s 

and p-orbital conditions are essentially the same as atomic number in-

creases through the lanthanides, the contribution of 5d electrons to the 

compound stability should decrease. Thus, all borides might be expected 

to show a decrease in stability as z increases, with the most rapidly 

decreasing stability being exhibited by the boride with highest metal 

content. This argument would be the same for stabilities with respect 

to gaseous elements or to solid elements. The boron contribution to 

stability in a particular boride should be the same for each lanthanide. 

Some size effects might interfere with this argument. 
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Many research workers have discussed the electron configurations, 

bond types, structures and electrical or metallic properties of the MB2 , 

MB4, MB6 and MB12 borides and boron (104, 73, 105, 194, 106, 107, 108). 

These papers support the existence of covalently-bound boron atoms in-

volving s, p and d-orbitals with two electrons per metal atom needed to 

satisfy the electron requirements of the boron-boron bonds. The third 

valence electron in the case of the lanthanide borides is not needed in 

the boron structure and accounts for the metallic properties of the lan-

thanide borides. The divalent nature of the alkaline earth hexaborides 

accounts for their semiconductor properties. 
/) 

Flodmark (105,104) in a valence bond treatment of MB6 crystals 

found that the stability of the hexaboride phase increases with decreas-

ing ionization potential for the two electrons required per metal atom. 

Thus, the stability of the alkaline earth hexaborides increases going down 

the alkaline earth group. In trivalent metal hexaborides, there is a 

sufficiently large bonding energy for the third electron to compensate 

the larger ionization energy and Coulomb repulsion energy so that lan-

thanide hexaborides meet the requirements of Flodmark's valence bond 

model. This view of the existence and stability of the hexaboride de-

pending on ionization potential is supported by Samsonov (195). The lack 

of ionization potential information (cf. Table 1. 2) and the small varia-

tion of ionization potential between lanthanides preclude any interpreta-

tion prescribing the variation of lanthanide hexaboride stability with 

lanthanide. 

Russian authors (195) believe that La, Pr, Sm and Eu hexaborides 

are the most stable of the lanthaniaes, since the first ionization 
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potentials are low for these metals (5.6-5.7 ev.). The stability of 

Ce, Nd, Gd, Tb, Dy and YbB6 is thought by these authors to be lower in 

view of the high ionization potentials of these metals (6.2-6.7 ev.). 

They further state that hexaboride phases are always more stable than 

tetra- and diboride phases, as demonstrated by their observations of 

loss of metal preferentially from iower borides to hexaborides (196). 

However, their observations ignore the second ionization potential, size 

effects, metal volatility variations and entropy effects. It is not 

clear whether their intention is to predict boride stability with respect 

to gaseous atoms or with respect to solid elements. 

In sum.nary, then, the lack of thermochemical data on specific 

borides and the inability of theory and of measured physical properties 

related to stability to distinguish the small variations in bond strengths 

between corresponding borides of different lanthanide metals preclude 

reaching any firm conclusion regarding the variation of the heat of 

formation of lanthanide borides as a function of atomic number. 

15. 1. 7. 2 Empirical Evidence for Variations in Boride Stability. 

There are certain relationships between lanthanide borides established in 

this research and in others, which, when considered by themselves, do not 

establish the relative stability of lanthanide borides. However, a con-

sideration of these relationships as a whole indicates how the heats of 

formation of lanthanide borides probably vary with atomic number. 

Consider Figure 15. 3. This graph illustrates the heat of for-

mation at 298°K. of lanthanide sesquioxides, trichlorides and aluminides 

versus lanthanide (30). Notice the trend of decreasing stability of the 
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trichlorides with increasing atomic number. While there is a decreasing 

stability of sesquioxide in the first half of the lanthanide series, the 

second half does not show a similar trend. It is interesting to note 

that the heat of formation of thesesquioxides varies only very little 

with lanthanide, i.e.,! 10 kcal./mole in 450 kcal./mole or 2 percent. 

Recall from Part I, Chapter i that the lattice parameters for these 

sesquioxides vary strictly linearly with atomic number, even through Sm, 

Eu and Yb. Therefore, the sesquioxides are strictly ionic compounds. 

Notice further, that the aluminides exhibit an increasing stability with 

Z, a variation in the heats of formation of! 12 percent, and metallic 

like deviations in lattice parameter at Sm (cf. Gschneidner, (30)). This 

correlation indicates that lanthanide compounds of metallic character 

exhibit wider fluctuations in stability with lanthanide than do ionic 

compounds. 

The lanthanide tetraborides, dodecaborides and probably the hecto-. 

borides show linear behavior of their lattice parameters with lanthanide 

even through Tm and Yb (cf. Table 2.1). These phases, then, are fairly 

ionic. On the other hand, hexaboride lattice parameter variation is 

metallic in nature. Thus, perhaps hexaborides would have stabilities 

which would exhibit a greater variation from lanthanide to lanthanide 

than would the other lanthanide borides. Further, these variations may 

show decreasing boride stabilities with increasing z·. 
Consider the requirements of equations 15. 2 and 15. 3. The 

quantity, (26H~ -14/SAH~ ), must be less than 17.3 kpal. at La 
LnB6 LnB4 

and greater than 33.8 kcal. at Dy. Therefore, (2A.H~ . -14/S~H~ ) 
LnB6 LnB4 
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must get larger with increasing atomic number. 

If it is assumed that the variations in the tetra- and hexa-

boride stabilities are in the same direction, there exist two possible 

interpretations. First, if LnB4 is getti~g more stable across the lantha-

nides, then LnB6 must get more stable at a slower rate with increasing 

atomic number (weighted for the coefficients). However, the idea of in-

creasing stability with Z seems improbable in view of Brewer's remarks 

above and other observations later. Further, between the two borides 

the tetraborides should show the slowest variation in stability because 

of their ionic character. The second possibility, and the more acceptable, 

requires. the stability of hexaboride to decrease faster with increasing 

atomic number than that of the tetraboride. 

Recall from Chapter 2 which borides exist in the lanthanide-

boron systems.· The diborides of Gd, Tb, Dy, Ho and Er have been made. 

Others certainly exist, e.g., Nordine reports the existence of SmB2 {197). 

All tetraborides except EuB4 have been observed. All hexaborides except 

those at the end of the series (Er, Tm and Lu) have been made. While 

hectoborides of only Sm, Gd, Tb, Ho, Yb and perhaps La have been found, 

they will all probably be found in time. 

Post·has indicated dodecaborides involving metal radii greater 

than that of Tb probably do not exist be·cause the ionic size of the 

lanthanide is too large. Such a radius dependence implies that the 

dodecaborides are getting more stable as the ionic radius decreases or 

as Z increases. While size effects are important, the idea of increasing 
~. ' , 

stability with Z is not appealing on the basis of the above discussion and 

because another more plausible explanation is available. 
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Consider the process, 

(15. 4) 

The free energy for this process early in the lanthanide series is 

negative, i.e., LnB12 cannot be prepared. At Gd or Tb the free energy 

becomes positive and LnB12 is stable with respect to LnB100 and LnB6 . 
0 The value ~f AST for thi~ condensed phase process is assumed zero, and 

then the behavior can be explained by an increasingdodecaboride stability 

(decreasing AH~ · ) with Z as Post's size restriction suggests. However, 
LnB12 

another possibility would be that the heat of fonnation of LnB6 becomes 

less negative (less stable) faster than that of LnB12 . The heat of for-

mation of LnB100 is not going to change much with lanthanide, simply 

because of the low metal concentration; but AH~ of LnB6 might be expected 

to vary faster than the LnB12 stability, in view of the above discussion 

relating bonding to stability variation. 

Consider further the process, 

(15. 5) 

This process· has a positive free energy for most of the lanthanide series 

so that LnB6 is stable relative to LnB12 and LnB4 • However, the free 

. energy of this process approaches zero at Ho where HoB6 preparations 

contain all of the three phases in process 15. 5, and becomes negative 

for Er, Tm and Lu. This observation explains the inability· to prepare 

hexaborides of Er,· Tm and Lu. Here again an explanation based on an 



increasing stability of dodecaboride with Z could explain this observation. 

However, LnB12 with its ionic character and low metal content should not 

influence the variation of free energy for this process nearly as much 

as should LnB4 and LnB6 . Again, the satisfying choice is a more rapidly 

decreasing stability of LnB6 with increasing atomic numbe~. 

These criteria are illustrate~ in the free energy diagram of 

Figure 15. 4. These five isothennal·diagrams showschematically the borides 

existing in the Sc, Y and lanthanide systems. The ordinate defines the 

free energy (or enthalpy) of fonnation of a mole of boride from the con-

densed elements. These values are thought accurate to± 10 kcal. Compo-

sition is indicated in weight percent boron rather than mole percent in 

order to separate the free energy curves on the diagram conveniently. 
. . 

The extent of solid solution indicated in the figure is, of course, un-

realistic, but serves to define the tangents to the free energy curves 

and the influence of the shape of the free energy curve more clearly. 

The temperature is assumed to be below the melting points of the borides 

and above the disproportionation temperatures of L~B2. for the lighter 

lanthanides. These diagrams are not the usual free·energy diagrams which 

plot kcal./g~at., nor do the ordinate intercepts bear the usual signifi-

cance as partial molal quantities. 

The phases in equilibrium at this temperature for a particular 

synthetic composition are the two boride compositions defined by the 

tangent line to the free energy curves. These tangent lines represent 

the lowest free energy or most stable condition for that synthetic compo-

sition. For example, a mixture of CeB6 and CeB12 on heating to this 
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temperature will show CeB6 and CeB100 in the product, rather than a CeB6-
. Ce13t.2: · mixture. The tangent line between the CeB6 and CeB12 free energy 

curves does not represent the smallest free energy of the mixture; rather, 

the CeB6-CeB100 · ta'ngent curve has a lower free energy. Therefore, CeB12 
is unstable with respect to CeB6 and CeB100 . In general, these diagrams 

assume that the. depths of the free energy curves decrease for increasing 

atomic number of the metal. The decrease in LnB6 free energy at a rate 

relatively faster with Z than for the other borides explains the boride 

behaviors· noted in the above discussion. 

Another indication of the higher stability of LnB6 relative to 

LnB4 at La is manifested by the difficulty of preparing LaB4 from a mixture 

of La and boron, as reported by Felten, Binder and· Post (· 76). The product~ 

invariably contains considerable LaB6 indicating loss of La(g). The 

higher stability of LaB6 accounts for the disproport:iatation of LaB4 (s) 

into La{l) and LaB6 (s). The free energy for this melting process must 

be close to zero and varies with temperature sufficiently to allow for 

LaB4 preparation from La ~nd LaB6 at lower temperatures. 

The inability to·prepare EuB4, where all attempts produce EuB6~ 

is a matter ·of high europium metal volatility and a more stable hexaboride 

than tetraboride. In the case of Yb where YbB4 can be prepared, but is . 

difficult to prepare free of YbB6, the Yb volatility certainly is influ-

encing the loss of Yb(g) from YbB4 preferentially. However, the stability 

difference between YbB6 and YbB4 is not as large as the EuB6-EuB4 relative 

stability difference.· Therefore, the free energy of the process, 

(15. 6) 
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is larger for the Yb case than for the Eu case, even though Yb metal is 

more volatile than Eu metal (cf. Table 1. 2). Hence, again a more rapidly 

decreasing stability of LnB
6 
relative to LnB

4 
is indicated. 

.  . 
While the conclusions above are not binding when each point is 

made separately, the combination of the heat of fonnation"lattice 

parameter correlation, Brewer's discussion, the restrictions from observed· 

vaporization pr?cesses, the two boride disproportionation reactions, and 

the LaB4, EuB4, and YbB4 behaviors all indicate a larger decrease in LnB6 

stability with respect to the solid elements, as a function of Z, compared 

to the decrease in stabilities of the other lanthanide borides with z. 

It is not implied that the variation of stabilities with respect 

to condensed elements is strictly.linear with atomic number. The ability 

to prepare YbB
6 
and not TmB

6 
or LuB

6 
on either side of YbB

6 
is indicative 

of a deviation from linearity at Yb. This same variation probably exists 

at Ce, Sm and Eu. The extent of the double periodicity effect, noted in 

the. heats of vaporization of the lanthanide metals, Figure.1. 1, is not 

known. However, the double periodicity effect is not as large in the 

stabilities of the borides with respect to condensed elements as it is 

in the stability of ~he solid borides with respect to the gaseous elements •. 

In general, the conclusion is reached that the stability of the lanthanide 

borides with respect to solid elements decreases as atomic number increases 

with AH~ of LnB
6 
increasing with Z more rapidly per mole than ~ ~ for the 

other lanthanide borides. 

15. 1. 7. 3 Matching Calculated and Observed Vaporization 

Processes. In Chapter 15. l. 6, it was demonstrated that variation in 

411 



the heat of formation of LnB4 and LnB6 was .necessary to explain the ob-

served vaporization processes. Chapter 15. 1. 7. 2 prescribed how this 

variation goes with lanthanide. This section describes how the observed 

·and calculated principal vaporiza~ion processes can be matched by properly 

assigning ·boride heats of formation. The severe limitation on the boride 

stabilities is also emphasized. 

In order to get. some idea of the·variation in the free energies 

of the six vaporization processes in equations 1. 1 to 1. 6?~a linear 
0 decrease in the stability, i.e., increase towards zero in 6Hf, of LnB6 

0 with a constant value for 6Hf of LnB4 and LnB12 might be chosen. Such a 

choice for the heats of formation of LnB4, LnB6 and LnB12 can be made 

that does, indeed, match the minimum estimated free energies with the 

observed principal vaporization processes. Imposing the restriction that 

the heats of fonnation must not deviate outside the limits established in 

the metal-lanthanide-boron studies of Chapter 14,, assuming constant values 
0 for AHf of LnB4 and LnB12 and assuming the previously discussed errors in 

the components of the free energies, one can calculate the free energies 

for all the six vaporization processes for all the lanthanides. Such 

calculated free energies, representing typical stabilities with the above 

restrictions, are shown in Table 15. 7. The heat of formation of LnB4 
is assumed constant at -48.5 kcal./mole and that. of LnB12 at -43. 7 kcal./ 

mole. The assumed hexaboride stabilities are shown in.column eight of 

the table •. In every ·case the calculated principal process matches the 

observed principal vaporization process. 

various attempts to fit other heats of~formation values to this 

scheme with the above assumptions and restrictions fail for variations 
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TABLE 15. 7 

Free Energies of LnB4 and.LnB6 Possible Vaporization Processes at 2200°K., 
Based on the Assumptions that 6HinB4 = - 48.5 kcal./mole and 

.6HZnB =-43. 7 kcal. /mole 12 

0 6Fi. 2 6Fi. 3 0 .6F~. 5 6Ft 6 -6H~(LnB6) ~Fl. 1 6F1. 4 
Ln (kcal.) (kcal.) (kcal.) (kcal.) (kcal.) (kcal.) (kcal./mole) 

La 51.4 *I/= 56.9 61.9 110.2 57.6 *# 58.7 62.0 

Ce 57.5 *# 57.7 61.7 111.7 58 .o *I/= 58.0 61.0 

Pr 50.5 *I/= 55.5 61.7 96.7 56.0 *# 57.3 59.0 

Nd 43.5 *I/= 53.8 61.7 85.6 54.7 *# 56.3 57.5 

Pm 

Sm 19.3 *# 47.8 61.7 50.1 50.0 *# 55.0 55.0 

Eu 19.8(-Y.·)# 47.3 61.7 44.6 # 49.4 54.3 53.5 

Gd 53.0 53 .o *# 61.7 ,.; ,· ,•, 71.6 53.8 53 .5 *# 52.0 

Tb 70.6 56.5 ·'k/1 61.7 85.4 55.6 53.0 *# 51.0 

Dy 56.7 52.7 *# 61.7 62.9 52.6 52.0 *# 49.0 

Ho 63.1 53 .5 (-¥.·)# 61.7 63.7 53.0 51.3(*)# 47.5 

Er 65.9 53.5(*)# 61.7 60.7 52.8 50,5(*)# 46.o 

Tm 49.3 47.5 # 61.7 38.3 # 49.7' 49.8 44.5 

Yb 45.6 *# 48.1 61.9 25 .7 *#. 48.l 49.0 43.0 

Lu 86.9 56.8 # 62.1 69.6 54.6 48.3 # 41.5 

#, Calculated principal process 

*, Observed principal process 
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10 kcal./mole on either side of the values given in Table 15. 7 for the 

heats of formation of the tetra- and hexaboride. Attempts to fit.calcu-

lated and observed processes with less stable tetra- and hexaborides 

reduces the required stability of LnB12 rapidly to the lowest possible 

limit determined from ternary studies. However, as noted in Figure 15. 2, 

the error between process~:~ 1. 4 and 1. 5 · or 1. 6 is of the order of 15 

kcal., which could allow for a higher dodecaboride stability· by 15 kcal./ 

mole. Changes in LnB4 a~d LnB6 .stabilities affect process 1. 1 considerably 

more than processes 1. 2 or 1. 3 because of the stoichiometry. Thus, 

boride stabilities greater by 10 kcal~ than those in Table 15. 7 prevent 

.the assignment of the lowest free energy to process 1. 1 for the lighter 

lanthanides. Therefore, within this framework the heatsof formation at 

2200°K. of these borides are those used in Table 15; 7 within 10 kcal./ 

mole. 

Notice that under these assumptions hexaboride becomes less 

stable per mole than tetraboride at Ho. This observation is in contra-

diction to the Russian statement (cf. Chapter 15. 1. 7. 1) that hexa-

borides are always more stable than tetraborides. 

Notice.too, _that the free energy change for the congruent vapori-

zation of GdB4 estimated in Table 15. 7 is 53.0 kcal. per 1/5 mole. With 

consideration for the errors involved in this estimate, the a·greement 

with the measured value of 55.3 kcal. per 1/5 mole at 2200°K. (cf. Chapter 

13) is really remarkable. This satisfying agreement provides more confi~ 

dence in the estimations of Table 15. 7. 

A graphical sunnnary of the estimated free energy changes of 
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Table 15. 7, shown i~ Figure 15. 5, also orders the total pressures 

developed in each of the three possible vaporization processes either for 

tetraboride or for hexaboride for each lanthanide system. Total pres-

sure. increas.es up· the ordinate with decreasing free energy_. The principal 

processes are those with the smallest free energy change or developing 

the highest total pressure or appearing the highest on the graph for a 

particular boride. 

This graph does not necessarily order the component partial 

pressures. For instance, the·total pressure of process 1. 2 for Dy is 

larger than that of process 1. 1 •. However, the Dy partial pressure may 

be higher in process 1. 1 than in process 1. 2. The variation with 

lanthanide in the free energies for each process in Figure 15. 5 is 

generally the same as the variation in free energy change in vaporization 

of the metal (cf. Figure 15. 6), with the damping of the variation in-

creasing with boron content of the gas. 

15. 1. 8 Boride Stability With Respect to Gaseous 
Elements; Relation to Vaporization Process 

The stability of LnB4 and of LnB6 with respect to the gaseous 

elements is indicated in Table 15. 7 by processes 1. 2 and 1. 5, the 

congruent processes. The variations with lanthanide of the boride 

stabilities wit~ respect to gas atoms are shown graphically in Figure 

15. 6. The variations in metal pressures over pure metal, as determined 

by ordering the heat of vaporization on the right-hand ordinate, are 

included. Also, from the free energy of vaporization at 2200°K. for the 

metals, the actual metal pressures are given. Not.ice that the variation 
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in stability of the borides goes as the variation in the free energy of 

vaporization of the metal, as expected. 

An ordering of the free energy changes, as in Figure 15. 6, also 

orders the total pressure exhibited.by corresponding borides in different 

lanthanide systems. Borides or metals developing the highest pressure 

among corresponding compounds have the largest equilibrium constant, and, 

hence, the smallest free.energy in Figure 15. 6. Thus, the most volatile 

metals at this temperature are Sm, Eu and Yb. Of ~he tetraborides, EuB4 
is the least stable and CeB4 is the most stable with respect to gaseous 

elements. Similarly, YbB6 and CeB6 are,respectively, the least and most 

stable hexaborides with respect to gaseous elements. Comparison of 

tetraboride to hexaboride stability nru.st include consideration for the 

difference in.equilibritnn constants for the two vaporization processes. 

However, hexaborides are ~ore stable than tetraborides for the light 

lanthanides. For the heavy lanthanides there is a tendency for tetra-

borides to show greater stability except at Yb. 

·It is interesting to examine the observed vaporization processes 

for the lanthanide borides in terms of free energy diagrams similar to 

those for boride stability with respect to the solids (cf. Figure 15. 4). 
0 Such a diagram at 2200 K. is Figure 15. 7. The abscissa defines increas-

ing boron composition in atomic percent. The gas phase is taken as the 

separated ideal gases, boron and lanthanide metal, at a total pressure 

of one atmosphere. The ordinate defines the free energies of formation 

of one total mole of gas atoms from the condensed phases •. In other words, 

the figure describes .the standard free energy change on congruent vapori-

zation to the elements (the stability). 
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At the temperature of the figure, 2200°K., a 10 kcal. increase 

in the free energy corresponds fairly closely to a pressure drop of one 

decade. Thus, in addition to a free energy ordinate the ordinate may be 

labeled with pressure decreasing as free energy increases. Therefore, 

tangent~ representing minimum free energy, drawn to the solid free energy 

curves have intercepts on either side of the diagram which define the 

pressures of lanthanide and boron in equilibrium with the solid boride 

or borides at this temperature. 

The principal problem in this work is to determine the relative 

depths of the boride free energy curves below the free energy of the gas. 

In order to correlate the observed vaporization processes with the stabili-

ties, consider the vaporization behavior of the gadolinium-boron system 

as an example, as shown schematically in Figure 15. 7. 

The boride, GdB4, has been observed to vaporize congruently to 

gaseous elements with a measured standard free energy change of 55.3 kcal. 

per 1/5 mole at 2200°K. {cf. Chapter 13). The partial pressures of _gado-

linium and boron are defined by the ordinate intersections of a tangent, 

A, to the GdB4 free energy curve restricted to a slope with the ratio of 

boron to gadolinium pressure equal to four. Since GdB6 has been observed 

to lose boron preferentially on vaporization, the free energy curve for 

solid GdB6 has_ a closely restricted depth in relation to the free energy 

of the gaseous elements. In particular, the tangent line, C, to both the 

GdB4 (s) free energy curve and the GdB6(s) free energy curve must inter-

sect the elemental pressure scale in such a way that the boron pressure 

is less than the vapor pressure of boron, but greater than the partial 
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pressure of boron over GdB4, tangent A. 

Similarly, the gadolinium pressure over GdB6-GdB4 is less than 

the partial pressure of gadolinium over GdB4 . If the boron partial pres-

. sure over the GdB4-GdB6 two-condensed-phase mixture, defined by tangent C, 

were greater than the vapor pressure of pure boron, then GdB6 would be 

unstable at this temperature with respect to GdB4 and boron solid. 

Similarly, a pressure of gadolinium over the GdB4-GdBfrmixture greater 

than the pressure of Gd over GdB4 would predict that GdB4 would lose 

Gd(g) preferentially to form GdB6, which contradicts experiment. A 

boron partial pressure below that of the boron pressure over GdB4 would 

indicate that GdB4 is unstable with respect to loss of Gd(g) to form 

GdB6 (s). 

The above discussion must be qualified somewhat. It is not 

strictly true that the partial pressures interact as depicted. The vapor-

ization process for a particular boride developing the largest total 

pressure is the important process •. Because of the different expressions 

for the equilibrium constants for the three possible processes by which 

a boride may v~porize, the partial pressures of lanthanide or boron may, 

in fact, be slightly larger in a process that is not the principal process, 

and yet the total pressure still be less. 

The phase, GdB100 , as well as GdB6, exists at this temperature. 

Therefore, the limitation on the boron pressure over a. GdB4-GdB6 mixt.ure 

is more restrictive than indicated above. This boron partial pressure 

llUlSt be greater than the boron partial pressure over GdB4 (weighted for 

the equilibrium constant differences) but less than the boron pressure 
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over GdB6~GdB100 mixtures, tangent D. Similarly, the pressure of boron 

over a GdB6-GdB100 mi~ture nn.ist be less than the pressure of boron over 

a GdB100-B mixture, tangent C. Only with these restrictions will all 

borides with more boron content than GdB4 lose boron preferentially. 

Thus, the observed vaporization processes in the Gd-B system establish 

restricting limits on the relative stability of all the gadolinium.borides 

with respect to the gaseous elements. 

As can be seen from the proximity of the GdB4 free energy curve 

to that of pure boron, the stabilities of higher borides than GdB4 with 

respect to gaseous elements are restricted to a narrow range. Thus, the 

relative volatilities of these borides are close together, separated only 

by a few kcal. per gas atom (cf. Chapter 13). 

-The phases, GdB2 and GdB12 , cannot be prepared at this temperature' 

and pressure. Thus, tangents between either Gd(l) and GdB2 or GdB4 and 

GdB2 define higher free energies than,the GdB4-Gd tangent curve, B. 

Hence, GdB2 is unst'able with respect to Gd (1) and GdB4 • Similar arguments . 

establish the instability of GdB12 with respect to GdB6 and GdB100 • 

Therefore, lower limits on the stability of GdB2 and GdB12 can be estab-
o lished. For GdB2, f::.F of formation of one total gram atom of boride must 

be greater than -45 kcal. at 2200°K. And for· G.dB12 the stability of one 

gram atom of boride with respect to gaseous elements is greater than -55 

kcal. at 2200°K. This same scheme holds fo+ the other.lanthanide borides. 
0 With the measured value for t::.F 22000K. for congruent GdB4 vaporization as 

a reference point, with a knowledge of the free energies of.vaporization 

of the elements at this temperature, s.~d with the free energy variations 
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of Table 15. 7 established from the observed vaporization processes, 

significant definitions of the limits on the stabilities of all the 

lanthanide borides with respect to their'gaseous elements have been 

established, In particular, if the standard free energy of vaporization 

of boron at 2200°K. is taken from JANAF. (69) as 55.09 kcal./g~at., the 

standard free energies of vaporization.of GdB6, GdB12 {if it exists) 

and GdB100 to the gaseous elements at 2200°K. must lie in decreasing 

order of free energies between 55.3 and 55.1 kcal./one total gas atom. 

However, the errors in AF 0 for boron vaporization and for GdB4 va~oriza-

tion expand this limiting range. Accepting the postulated free energies 

in Table 15. 7, one can make similar more or less restrictive statements 

concerning other lanthanide borides. 

In conclusion,. the free energies of the LnB4 and LnB6 vaporiza-

tion processes, contained in Table. 15. 7and· shown schematically_ in 

Figures 15. 5 and 15. 6, are required 1by the observed vaporization pro-. 

cesses. To establish the absolute values of these free energies one 

nrust consider not only the metal volatility, but also the entropy of the 

lanthanide gas, the entropy of the lanthanide borides and the variations 

in the stability of the borides with respect to the condensed elements, 

all of which are important. 

15. 2 Ancillary Vaporization Observations 

15. 2. 1 Temperature Effect on Vaporization Process 

It is interesting to note that the difference in fr~e energies 

· between two possible vaporization processes involving the same lanthanide 
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boride is sometimes small (cf. Table 15. 7). · If the free energy functions 

for two processes, which proceed nearly to the same extent, are not the 

same as a function of.temperature, at a temperature different from 2200°K. 

the observed principal vaporization process might change. In other words, 

while the conditions required to observe two congruently-vaporizing 

single-phase compositions in the same lanthanide-boron system are very 

restrictive, two such phases could be observed to vaporize congruently 

at a different temperature. 
. 0 Consider the vaporization of SmB6 at 2200 K. According to Table 

15. 7, congruent vaporization is the. dominant process by only 0.1 kcal. 

over preferential loss of Sm(g) into the vapor. From free-energy-functions, 

estimated in the same fashion as the data employed in the calculations of 

Chapter 15. 2. 4, one predicts that SmB6 will change from congruent 
0 vaporization to a preferential loss of Sm(g) at a temperature near 1000 K. 

Then SmB12 . or SmB100 will vaporize congruently below this temperature. 

This temperature may .be high enough to allow observation of this change 

of process with a mass spectrometer. 

The explanation of this behavior lies in the implication that 

the partial molal entropy change on vaporization of samarium from the con-

gruently vaporizing SmB6 is different from that of boron vaporizing from 

SmB6 •. Hence, the par.tial molal heats of yaporiz~tion of Sm and of B from 

SmB6 are slightly different. The Clapeyron plot of log p versus 1/T 

will show slightly different slopes for samarium gas and for boron gas. 

The boron partial pressure decreases with temperature at a rate less than 

that of samarium until the ratio of boron partial pressure to samarium 

partial pre.ssure is twelve at some particular temperature. At this 
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invariant temperature, solid SmB6 and SmB12 are in equilibrium with a 

vapor of composition twelve parts boron to one part samarium. Below this 

temperature SmB6 vaporizes with such a relatively high samarium partial 

. pressure that samarium is lost preferentially from SmB6 to form SmB12 
solid, which will vaporize congruently. 

Similar transitions to different vaporization processes with 

v~rying temperature might be ·observed for CeB4 , GdB4 , CeB6, GdB6. or DyB6• 

15. 2. 2 Vaporization of Sc and Y Borides 

All the boride phases found in the lanthanide-boron systems have 

been found-in the Y-B system. The heat of vaporization of yttrium metal 

is comparable to that of lanthan~m metal, while the entropy of gaseous 
0 ' yttrium at 2200 K. is almost exactly that of lanthanum gas (cf. Table 1. 2). 

In the absence of data on the heat of fonnation of the yttrium borides, 

one is tempted to assume stabilities comparable to lanthanmn borides. 

If so, the vaporization of the yttrium borides should show loss of metal 

preferentially from YB2 and YB4, congruent vaporization of YB6 , and pre-

ferential loss of boron from all higher borides, just as in the lanthanum-

boron system. 

However, the experiments in Chapter 4 reveal a net loss of boron 

from YB6 to YB4 . In view of the entropy and volatility agreement between 

yttrium and lanthanum metals, the explanationaf the contrasting vaporiza-

tion behavior of YB6 probably lies in a relatively higrer stability of Y_B4 
with respect to the solid elements compared to YB6 stability. This be-

havior is typical of the boride stabilities in the last half of the 
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lanthanide series. Considering the free energies for LaB4 vaporization 

listed in Table 15. 7, one notes that to bring process 1. 2 (congruence) 

into predominance over process 1. 1 (loss of metal) requires only an in-

crease in the stability of LaB4 over LaB6 by 2 kcal. or more per mole. 

At the same time this would make process 1. 6 (loss of boron) more impor-

tant than process 1. 5 (congruence) for LaB6 , thus explaining the observed 

vaporization processes for YB4 and YB6 . 

In the Sc-B system only ScB2 and ScB6 have been reported. Post, 

et al. (113), were unable to make ScB12 . The higher volatility of Sc 

metal over Y metal with the entropy of vaporization of the metals nearly 

the same would lead one to suspect that the congruently vaporizing single-

phase composition in this system is ScB6 • This observation is supported 

by Samsonov, Markovskii, Zhigach and Valyashko (195), who observed the 

formation of ScB6 as ScB2 was allowed to vaporize from a hot tantalum 

wire. 

15. 2. 3. Vaporization of Alkaline Earth Borides 

Apparently,very little effort has been made to prepare borides in 

alkaline earth systems. As noted in Chapter 2, the hexaboride is known to 

exist for Be, Mg, Ca, Sr and Ba. Only the hexaboride has been found in 

the case of Sr and Ba. CaB4 and CaB6 are known to exist. More recently 

the Mg-Band Be-B systems have been investigated in greater detail with 

the discovery of MgB2 , MgB4 , MgB6 and MgB12 by Samsonav, et al. (195) and 

by Post (46). Many Be borides exist but will be excluded from this dis-

cussion in view of the singular chemical character of Be. One wonders if 
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the borides in the Mg-B system cannot be prepared ·for the other alkaline 

earths. 

Some infonnation is available concerning the stabilities of these 

borides with respect to the solid elements. Wright and Walsh (69) 

measured the heats of formation, entropies and heat capacities for MgB2 
and MgB4 up to 300°K. The heats of fonnation (Table 14. 2) are -17.9±3.0 

and -21.0_: 5.0 kcal./mole, respectively, at 298°K. Samsonov, Serebryakova 

and Bolgar {181) 

-50.4 kcal./mole. 

0 measured the heat of formation of SrB6 at 298 K. as 

A previous discussion in Chapter 15. 2. 7. 1 suggested 

that the.stability of the alkaline earth hexaborides decreases in the 

order BaB6 > SrB6 > CaB6 > MgB6, according to the· difficulty in removal of 

two electrons from the metal. 
0 Consider the vaporization of the magnesium borides below 1200 K., 

which is below the melting points of the magnesium borides. The possible 

vaporization modes.for MgB2 are: 

1/2 MgB2 (s) = 1/2 Mg(s,1) + B(g), {15. 7) 

1/3 MgB2(s) = 1/3 Mg(g) + 2/3 B(g), {15. 8) 

and = + Mg(g) •. (15. 9) 

With the use of thermochemical data for B, MgB2 and MgB4 from 

JANAF (69) and data on magnesium from Stull and Sinke (65), the standard 

free energy changes for these processes were calculated as 96.2, 53.7 and 

14.3 kcal., respectively. By far the predominant process is the loss of 

magnesium from MgB2(s) to form MgB4 (s). 
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Next consider the vaporization of MgB4(s). 

3 MgB4(s) = 2 MgB6(s) + Mg(g). 

l/5MgB4 (s) = 1/5 Mg(g) + 4/5 B(g). 

1/2MgB4 (s) = 1/2 MgB2(s) + B(g). 

(15.10) 

(15 .11) 

(15.12) 

In order to calculate the free energy of the first possible process the 

entropy of.MgB6 is assumed to be 0.88 times the entropy determined from 
' ' 0 the assumption that 6Sf(MgB6) is zero (cf. Chapter 15. L 3. 2). Further, 

0 ' ' 
6Hf of MgB6 is taken as -40 kcaL/mole, less than that of SrB6 • Then the 

free energy values calculated for reactions 15.10, 15.11 and 15.12 are 

-25.5, 76.5 and 91.2 kcal., respectively. Again the loss of metal from 

MgB4 is by far the most important process, even if MgB6 has a zero heat 

. of formation. 

In thecons:i.deratim. of MgB6 vaporization, the possible processes 

are: 

and 

l/7MgB6(s)= 1/7 Mg(g) + 6/7 B(g) 

l/2MgB6 (s)= 1/2 MgB4 (s) + B(g). 

(15 .13) 

(15 .14) 

(15 .15) 

Making the same assumptions for s0 as for s; B and.assuming 6H~-
MgB12 g 6 - ~gB12 

is -100 kcal./mole, one calculates the respective free ene~gies to be 11.4, 

124 and 139 kcal. Even if MgB12 had a heat of fonnation of zero, loss of 

metal from MgB6 to form MgB12 would .still predomin'ate. 



Because of the absence of stability data on MgB12 , no calculations 

to predict its vaporization behavior are worthwhile. It is probable that 

MgB12 will also lose magnesium pr~ferentially. However, it is certain 

that all magnes~um borides on the metal .side of MgB12 will lose Mg(g) 

preferentially. Indeed, this statement is supported by Samsonov's obser-

vation that MgB2 loses Mg to fonn MgB6 on heating at 1200°c. in vacuo; and 

MgB12 continues to lose Mg to pure elemental boron at 1700PC. in vacuo 

(195). 

Clearly the overwhelming volatility of Mg metal (AH0 

298oK = vap. . 
35.60 kcal./g~at.) accounts for the vaporization behavior. In addition, 

the magnesium borides are not as stable with respect to the solid elements 

as are the lanthanide borides. Further, there is no unusual entropy effect 

on the free energies of vaporization, since the entropy of magnesium gas 

is within one entropy unit of that of boron gas (cf. Table 1. 2). 

Now consider the behavior of Ca, Sr and Ba hexaborides·on vapor-

ization. In the absence of evidence for the existence of other borides 

in these systems, except CaB4 , the pertinent processes to be considered, 
0 again at 1200 K., are: 

and 

MB6 (s) = 6B(s) +M(g), 

1/7MB6 (s) = l/7M(g) + 6/7 B(g) 

1/6MB6 (s) = l/6M(l) + B(g). 

(15 .16) 

(15.17) 

(15 .18) 

Assuming heats of formation comparable to SrB6 and estimating the entropy 

of MB6 just as above for MgB6 , one calculates the standard f!ee energy 

changes for these processes to be 65 to 85 kcal., 120 to 130 kcal. and 139 

429 



kcal.; respectively. Consequently, hexaborides of Ca, ~r or Ba will lose 

metal gas prefe~entially to boron solid. 

Samsonov, et al. (181), determined the heat of vaporization of 

SrB6 by a Langmuir method. They interpreted their temperature-coefficient 

data in terms of,vaporization to SrB6 molecules and implied the vaporiza-

tion was congruent. Their Second Law value was 97.2 :!: 3.0 kcal./mole in 
0 the range 1400-2ioo K. However, this heat of vaporization is not even 

sufficient to vaporize a gram atom of boron~ much less a mole of SrB6. 

Consequently, Samsonov's data are severely in question. 

The discussion ind:i.cptes clearly that all known alkaline earth 

borides lose metal to form boron solid. Metal volatility alone apparently 

governs the vaporization behavior of alkaline earth borides, in contrast 

to the lanthanide borides, where entropy variations and boride heats of 

formation are important. 

15. 2. 4 Vaporization of Uranium Borides 

It is interesting to examine the vaporization processes exhibited 

in the uranium-boron system in comparison to the lanthanide behaviors 

found in this work. The borides in the ·uranium-boron system are UB2, UB4 
and UB12 . 

Recently, Alcock and Grieveson (184) have determined free energies 

of formation as a function of temperature for UB2, UB4 and UB12 based on 

a Knudsen effusion ·technique. They detennined the U(g) and B(g) pressures 

over a UB4-uB12 mixture in tungsten.crucibles. Uranium boride entropies 

were calculated as for the lanthanide l;orides (cf. Chapter 15. 1. 3. 2) 



from the elemental entropy data listed in Table 1. 2. With these entropies 

and the uranium volatility of Table 1. 2 the heat of formation of UB4 at 
0 . 

2200 K. was determined from Alcock and Grieveson's free energy of forma-

tion as -72.7 kcal./mole. The heat of fonnation of UB12 was estimated at 

-127 kcql./mole from its reported free energy of formation. However, a 

calcufation of the free energy change with these heats and entropies for 

the process, 

3/2 UB4 (s) = l/2UB12 (s) + U(g) , (15.19) 

failed to duplicate Alcock and Grieveson's free energy change for this 

process (84.0 kcal.) by 4.8 kcal. (88.8 kcal. on back calculation). While 

this small disagreement reflects a fundamental inconsistency in ~heir data, 

the observation that UB4 and UB12 are much more stable with respect to the 

condensed elements than'their lanthanide counterparts is secure. The high 

stability of UB4 and UB12 explains why 1 attempts to prepare UB6 produce 

only UB4 and UB12 • , 

Another anomaly in Alcock and Grieveson's measurements arises in 

using their data to define the principal vaporization process for UB12 • 

By adding the appropriate reactions, and,hence,the free ene:rgies, one may 
0 calculate from their data the free energy changes at 2200 K. for the 

processes, 

and 

l/13UB12 (s) = l/13U(g) + 12/13B(g), AF 0 = 61.0 kcal., 

1/8 UB12 (s) = 1/8 UB4 (s) + B(g), /lF 0 = 66.7 kcal., 

UB12 (s) = 12 B(s) + U(g), AF 0 = 132.3 kcal. 
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Since process 15.20 proceeds with the smallest free energy, one predicts 
I 

from their data that UB12 will vaporize congruently. However, Brewer, 

et al. · (74), , · indicated that UB12 probabl}'.' loses B(g) preferentially on 

sintering compositions o~ UB12 synthetic composition to form UB4(s) •. In 

view of the small difference tn free energies between processes 15.20 and 

15.21, a simple vaporization experiment.to define the principal vappriza-

tion process for UB12 should define the heat of formation of UB12 fairly 

precisely. 
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CHAPI'ER 16 

SUMMARY AND CONCLUSIONS 

.The phases of the rare earth-boron systems are presented in Table 

2. 1. In the course of a cursory investigation of the rare-earth borides, 

cubic dodecaborides of Ho, Er and Yb were found. Gadolinium dodecaboride 

could not be made. An extremely boron-rich phase with composition LnB100 

was identified for Gd .and Yb. The primitive cubic unit cell for this 

hectoboride has edges of 16.50 t 0.02 and 16.56 t 0.01 i, respectively. 

The failure to observe Gd.B2 and the many tetraborides and hexa~orides found' 

generally confirmed the results of previous research in the field. 

The high temperature vaporization processes for La, Ce, Pr, Nd, 

Sm, Gd, Tb, Dy, !h, and Y borides were established and are depicted in 

Figure 4. Free evaporation experiments and Knudsen effusion experiments 

using ZrB2 crucibles demonstrated the preferential loss of lanthanide metal 

to the gas phase from the tetraborides of La, Ce, Pr, Nd and Sm and demon-

strated the congruent vaporization of hexaborides for these Ianthanides. 

Hexaborides of Gd, Tb, Dy and Y were found to lose boron gas preferentially 

to form tetraborid~s, which then vaporized congruently. Ytterbium tetra-, 

hexa- and dodecaboride all lost ytterbium preferentially on vaporization· 

with YbB100 probably the congruently vaporizing phase. 

A mass spectrometric study of the vaporization of a Ga.B4/Gd.B6 mix-

ture and a TbB4/TbB6 mixture in tungsten and ZrB2 crucibles demonstrated 
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that the vapor phase over these borides contained only the gaseous elements. 

When background pressures in the mass spectrome~er were high at crucible 

temperature~ :--0yer ,1900°K., aa.o+ (and Tbo+) and aa.o; ion currents in appre-
,\ 

ciable proportions to aa.+ were observed. From this demonstration of only 

atomic species in the vapor·'over lanthanide borides, the vaporization re-

actions of the lanthanide borides may be written. 

The stability of GdB4 with respect to the gaseous elements was 

determined. Gadolinium and boron pressures over congruently vaporizing 

Gd.B4 were determined in the temperature range 16oO to 2500°K. by Langmuir, 

mass spectrometric and Knudsen effusion techniques. The temperature 

coefficient graphs are shown in Figure 13. These data were treated by 

Second and Third.Law techniques in each of the three kinds of experiments. 

The low gadolinium pressures found in the Langmuir free evaporation experi- · 

ments demonstrated a vaporization coefficient of about o. 1. The~mass 

spectrometric st~dies suffered from re~ction of background water or oxygen 

gas with the sample, forming Gd.O(g) and possibly aa.2o3(s), and effecting 

high apparent gadolinium pressures. Consequently, the mass spectrometri-

cally-determined gadolinium pressures were not reliable. 

The Knudsen experiments provided the most reliable measure of 

GdB4 stability. From the Knudsen experimental data in the range 2047 to 

2362°K., 6H0 from the temperature coefficient i~ 121.2 t 16.6 kcal. for 

the vaporization of 1/5 mole of Gd.B4 to gaseous elements. The value of 

~s2200°K. from the intercept is 31.6 t 7.4 eu. An s~98oK. was obtained 

for GdB4 by taking the sum of the elemental values and· ·corre6t:Lng d t-=-as 

indicated from a consideration of MgB4 for which me~sure~nts have been 

made. From this value together with the assumption that 6ci =, 0 at each 



temperature for the formation of Gd.B4 and with the entropies of the gaseous 

elements, the Third Law .6H~2000K. is 124.8 t 3.6 kcal.; and the Third Law 

,D.H~980K. is· 128.9 ± 3.7 kcal., both for formation of a total mole of gase 

The gadolinium pressure over GdB4.oo is 3.2 x 10-6 atm. within a factor of 

2.2 at 2200°K. The agreement between the Second and Third Law values for 

the heat of vaporization of 1/5 mole of GdB4 from Knudsen effusion data is 

very good, and also the agreement between these values and the value of 

127.6 to 139.8 estimated from ternary equilibrium'studies is good. The 

agreement of the Second Law entropy with the value of 32.4 eu., deter-

mined above from the estimated s0 for GdB4(s),is good. The high pressure 

of boron over Gd.J34(s) compared to the vapor pressure of boron fixes the 

stability of GdB6, and Gd.B100 with respect to the gaseous elements fairly 

closely, i.e., between -55.3 and 
. 0 . 

-55.1 kcal. for l'.1F2200oK. per total 

mole of gas atoms. However, a lower boron pressure over Gd.B4 than that 

corresponding to the measured gadolinium pressure can be expected from 

reaction of boron with the ZrB2 crucible. 

Within the analytical experimental accuracy of t l atomic percent 

boron and t 0.5 atomic percent gadolinium in the boride, chemical anal-

yses for gadolinium and boron in GdB6 and GdB4 samples supported the 

congruence of GdB4 vaporization, the stoichiometry of the borides, and 

the existence of a narrow solid solution range. 

Ternary compatibility studies involving lanthanide borides arc 

melted with the metals, Zr, Ta, W, or their borides and with graphite es-

tablished the ternary equilibria in these systems. These equilibria are 

shown in Figures 14. 1 to 14.14. From a knowledge of the equilibria and 

the heats of formation of the non-lanthanide boride~the following limits 
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on the heats of for~tion of lanthanide borides were established. 

For all Ln, 

and 

-24 < l/2L\HfLnB
2
< -13.4 kcal./g.-at. boron, 

-22 f l/4.6HfLnBf O kcal.jg. -at. boron, 
) 

0 < b.Hf - .6Hf < 24 kcal./mole, 
LnB

2 
LnB4 

-11.5<1/12 6Hr1 B < -2.2 kcal./g.-at. boron. 
n 12 

More specifically, for al],. lanthanides exc~pt Er, Tm and Lu, 

-22<1/4~Hf < -6.9 kcal./g.-at. boron 
LnB4 . 

and 



And for Er, Tm and Lu, 

At a temperature above that for disproportionation of GdB2 into Gd and 

GdB4, with no consideration of Gd.B100, the heats of formatiori of the 

gadolinium borides a.re related in the following manner: 

Similar series of inequalities can be written for other lanthanide sys-

tems, depending on which borides exist. 

T.he heat of formation of Gd.B2C2 must lie between -78 and -28 

kcal./mole, according to its reaction with W2B to form WB and Gd.C2 and 

its formation with graphite from B4C and GdC2• Hence, Gd.B2c2 is comparable 

in stability to lanthanide tetraborides. 

The~e limits compare favorably with a broader limit o~ 6Hf(CeB4) 

>-21 kcal./g.-at. B established by Brewer and Heraldsen (20), with an 

estimate for ~Hf(CeB6) of -81 t 15 kcal./mole by Samsonov and Grodshtein 

(183), with estimates by Leit~aker (133) of -15 t 3 and -12 t' 2 kcal./g.-at. 

of boron for 6Hf of lanthanide tetra- and hexaborides, respectively, and 

with Leitnaker's estimate for 6Hf(LaB6) as -70 t 10 kcal./mole. 

Considerable discussion on the use of metal boride reference sys-

tems to establish heats of formation for borides in other metal-boron 
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systems was presented. The concept of a boron potential series consisting 

of metal boride couples, which would catalogue the stability of metal 

borides and predict equilibria in multicomponent boride diagrams, was 

expounded. The series is given in Table 14. 5. 

The factors influencing the vaporization behavior of the lanthanide 

borides were established. The principal vaporization processes exhibited 

by the lanthanide tetra- and hexaborides cannot be explained solely on 

the bas~s of metal volatility as was supposed at the outset of this work. 

Of the three processes by which a boride may vaporize, i. e, loss of metal 
' 

gas, congruent vaporization, or loss of boron gas, the principal process 

cannot be established by choice of the vaporization process with'the small-

est enthalpy change. Because of the large differences in the entropy 

among the lanthanide metal gases and the larger entropy differences be-

tween the metal gas entropies and that of boron gas, the T~S0 contribu-

tion to the free energies of vaporization. is different for different 

lanthanides, for different borides, and for different vaporization pro-

cesses. This factor influences the vaporization behavior exhibited by 

the various lanthanide borides quite markedly. Further, the variation 

with lanthanide in the entropy of the solid borides, and the contribu-

tion of the boride entropy to the free energies.of vaporization are also 

important in defining the principal vaporization process. These boride 

entropies have been estimated at 2200°K. for Ln~4, LnB6 and LnB12• 

Totaling these three contributions to the free energy of·vaporiza-

tion for the possible vaporization process~s of LnB4 and LnB6 still does 

not allow the calculated principal vaporization processes to match the ob-

served processes. Variation with lanthanide in the heats of formation of 



the tetra- and hexaborides must be prescribed such that LlHf -~Hf 
LnB4 LnB6 

becomes smaller, in general, across the lanthanide serieso .Arguments 
I. 

supporting the decrease in stability of Ln~6 with respect to condensed 

elements at a rate faster than that of LnB4 as a function of atomic num-

ber were presented. The calculated and observed principal vaporization 

processes could be made to agree (cf. Table 15. 7) by restricting the heat 

of formation of LnB4 between -55 to -40 kcal./mole and of LnB6 between 

-65 to -40 kcal./mole with LnB6 becoming less stable with Z faster than 

LnB4 • These limits on the heats of formation for LnB4 and LnB6 ar~ not 

independent, but are subject to the inequalities which arise from the 

existence of the various phases for the particular metal. 

A more rapidly decreasing stability of LnB6 than LnB4 stability 

would explain the instability of Er, Tm and LuB6 with respect to the 

tetra- and dodecaborides. Further, the inability to prep~e EuB4, the 
) 

difficulty in preparing LaB4, and the ability to prepare YbB4 when Yb has 

a higher metal volatility than Eu, can all be explained by a decreasing 

hexaboride stability across the lanthanides relative to LnB4 stability. A 

more rapidly decreasing stability of LnB6 than that of LnB12 would exp~ain 

the instability of dodecaborides of the lighter lanthanide metals with 

respect to LnB6 and LnB100 (or boron) formation~ 

The stabilities of the tetra~ and hexaborides with respect to 

gaseous elements were described by the free energies for the congruent 

vaporization processes, calculated in the fitting of calculated to ob-

served principal vaporization processes. These stabilities are shown in 

Figure 15. 6. The stabilities ·were found to vary with the same double 
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periodicity over the lanthanides as does the stability of the lanthanide 

metaJ.s with respect to lanthanide metal gas. However, this variation was 

considerably damped compared to the metal variation. 

The agreement of the predicted stability of Gd.B4 at 2200°K. of 

53.0 kcal./per total mole of gas formed with the measured value of 55.3 

kcal. from the Knudsen pressure measurements supports the analysis of the 

tetra- and hexaboride vaporization behavior in this work. Further, with 

the measured Gd.B4 stability as a reference, the absolute stabilities of 

other lanthanide hexa- and tetraborides, rather than their relative sta-

bilities as defined by the observed vaporization processes, are defined. 

The stabilities of the lanthanide tetra- and hexaboride s with 

respect to the gaseous elements lie between -45 and -60 kcal. for forma-

tion of one total gram atom of the boride at 2200°K. Hexaborides are 

two or three kcal. more stable with respect to gaseous elements than 
I 

tetraborides per gram atom of gas.for the lighter lanthanide metals. 

However, in general the tetraborides a.re more stable with respect to 

gaseous atoms by one or two kcal. per gram atom of gas than are the hexa-

borides for the heavier lanthanides. The most stable hexaboride and tetra-

boride with respect to the gaseous elements are CeB6 and CeB4 or LuB4, 

respectively, reflecting principally the high heats of sublimation of Ce 

and Lu metals. The least stable corresponding borides are EuB4 or YbB4 

and YbB6, reflecting the low heat of vaporization of Eu and Yb metals. 

To predict the vaporization process .from these stabilities the 

appropriate vaporization equations must be written and the free energies 

calculated. Then the process.with the smallest free energy per gram atom 

of gas will predominate. 
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·The vaporization processes for Sc, Y and the alkaline earth and 

uranitun borides were described. Agreement with reported vaporization 

behaviors lends even more confidence in the interpretation of the factors 

influencing boride vaporization processes discussed above. 
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CHAPrER 17 

RELATED FUTURE RESEARCH 

The overwhelming limitation of any discussion of boride behavior 

is the absence of thermochemical data such as heats of formation, heat 

capacities, entropies and decomposition pressures. While the need for 

thermochemical information has been recognized, as indicated by the in-

creased effort in this direction in the past fifteen years, data are still 

woefully lacking. 

This deficiency is particularly true in the lanthanide systems. 

Lanthanide borides are still .,to be discovered, much less to be charac-

terized thermochemically. Even the heats of vaporization of the lanthanide 

metals are not well established. Further, the ground states of several of 

the lanthanide gaseous metals have not been interpreted, making entropy 

· factors only roughly estimable. 

Several people have measured boron pressures over elemental boron 

to determine its heat of vaporization. Yet, currently, scientists disagree 

about the heat of vaporization of boron. For the most part, ·the disagree-

ment lies in a controversy between mass spectrometric interpretations and 

Knudsen effusion measurements. Values for AH29goK. (vap.) of boron have-: __ 

been proposed'in the range.133 t 4 k~al./g.-at. 

Certainly one large limiting factor in determining thermochemical 

data on boron and its metal compounds is the purity of materials. The 
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purity of reagent-grade boron, until recently, .was only 95 to 98% at best. 

The large stability and low volatility of boron oxides precludes removal 

of all oxygen by ordinary vacuum distillation techniques. Future studies 

must be done on materials prepared in extremely-deficient oxygen.atmospheres, 
/\ 

i, e., ultra-high vacuum. The ability to analyze boron precisely is needed 
I 

to confirm phase compositions, solid solution effects and establish net 

reactions • 

. Attempt~ to prepare the diborides and dodecaborides of the lan .. 

thanides early in the lanthanide series should be made. The recent work 

in this area has been done with a.re melting·preparations or with vacuum 

firings above 14oo0 c. At such high temperatures these borides are prob-
J 

ably unstable with respect to adjacent borides. If the free-energy-function 
• j 

of the disproportionation reaction changes with temperature, the diborides 
I\ 

and -dodecaborides of the lighter · lanthanides ·1might.lweli be observed at .. ,lower 

preparation temperatures. 

In view of the discussion of hectoborides contained above, it is 

believed that all lanthanides will exhibit a LnB100 phase. In the past, 

the complex diffraction recor.ds for both boron and LnB100 and the high 

boron content of this phase led research workers to postulate boron allo-

tropes rather than a boride. On close examination of boron-rich prepara-

tions with lopger wavelength X-radiation and X-ray focusing cameras_or 

with metallographic analysis, other LnB100 ph.ases may be distinguished. 

In view of the very high boron content of LnB100, .a single crystal analy-

si~ possibly can locate both metal and boron atoms in the crystal struc-

ture. When electrical and thermochemical properties of these materials 

become available, quantum mechanics can be applied to a new series of 
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similar borides to sharpen the interpretation of bonding in the solid 

state. This phase may exist for other transition metals, 'Whose rad.ii are 

comparable to the radii of the lanthanide metals. 

Considerable effort should be made to develop the temperature-

composition phase diagrams in these systems, Variations of mel~ing points, 

e~tectic temperatures and eutectoid temperatures :with lanthanide .. ,would. pro-

vide valuable insight into the relative stabilities of these borides. , 

Solid solution effects should be characterized to establish the precise 

stoichiometry of net chemical processes. 

While this work described the general vaporization behavior in 

most of the lanthanide boride and other metal-boron systems, there is 

much to be done establishing the pressure-composition·diagrams in more 

detail. In particular, consider the estimations of the free energies for 

the possible vaporization processes of LnB4 and LnB6 in Table 15. 7. 

Where the free energies ·for two possibie vaporization processes are nearly 

the same, establishing the principal vaporization process for these borides 

will further define the limits on the stability of the lanthanide borides. 

Judicious choices a.re EuB6, HoB6, ErB12, TmB4 and LuB12 • These studies 

are simple, rapid experiments with a large leverage towards understanding 

the variations in boride relative stability with lanthanide. 

In view of the close competition between possible vaporization 

processes for some borides and in view of the difference in free-energy-
) 

~unctions between gaseous boron and gaseous lanthanide, it is possible 

that the differences in free-energy-functions for the competing vaporiza-

tion processes are sufficient to allow two different single-phase congru-

ently-vaporizing compositions in the &ame system but at different tempera-

444 



tures •. As discussed in the samarium-boron system, these temperatures may 

be within 1000° of each other, and both congruently vaporizing borides 

may develop pressures detectable with a mass spectrometer. 

It does not seem practical to continue Knudsen effusion pressure 

measurements on these borides in order to distinguish the small variations 

in stability of these borides with respeot. to solid or gaseous elements 

as a function of lanthanide. The free energy differences between the con-

gruent vaporization process of a lanthanide boride and the same process 

for the corresponding boride of an adjacent lanthanide a.re usually of the 

order of 2 kcal. at most. At 2000°K. this is a difference in the equi-

librium constants and the pressures of a factor of 1.7, which is not easily 

measureable in these boride systems with Knudsen effusion techniques and 

ZrB2 crucibles. Further, the Knudsen experiments may define the pressures,· 

but the current lack of thermochemical data for the borides, in particular, 

entropies and heat capacities, prevents the precise determination of the 

heat of formation of the boride. However, Knudsen experiments, judiciously 

chosen to establish the limits in which these boride stab~lities must vary, 

are advantageous, e.g., Yb pressures over YbB6-YbB12 mixtures and congru-

ent vaporization of CeB6• 

An isopiestic method for establishing relative boride volatilities 

seems inviting in principle. In this technique, two corresponding borides 

of different lanthanide metals would be physically separated in an isother-

mal, evacuated, sealed system. .When. the boron pressures have equilibrated, 

the boride phases would be identified to discover which borid~ developed 

the higher boron pressure. However, large metal partial pressures and 
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solid solutions between isomorphic corresponding borides of the different 

lanthanides would prevent boride identification. 

If the difference in total pressures developed by corresponding 

lanthanide borides of different lanthanides could be determined, relative 

stabilities: of the borides with respect to gas atoms would be established. 

Perhaps the simplest means of determining relative volatility of the 

lanthanide borides would be found in the torsion effusion technique., 

A ZrB2 or HfB2 torsion cell, whose null point had been determined by load-

ing both sides with one of the materials to be intercompa.red and heating 

to the temperature of interest, could be loaded with, say, CeB6 on one 

side and LaB6 on the other side. When the cell is heated to the same 

temperature useciin null point determination, a deviation from the null 

point would be exhibited. The direction and magnitude of this. deflec-

tion would be determined by the difference in the total pressures ex-

hibited by the borides. Hence, differ~nces in equilibrium constants 

and free energies of vaporization would be directly determined. Ca.re 

should be used in determining the relative volatility of non-corresponding 

borides of different lanthanides, e.g., GdJ34 w.ith La.B6· While the dis-

parity in total pressures can be fixed, because of the different equilib-

ritun constant expressions the relative free energies may not be fixed. 

In order to distinguish the relative stabilities of the borides 

with respect to the condensed elements, there are many more simple ternary 

compatibility experiments that can be done. The·use of this technique 

was discussed in detail in Chapter 14. Judiciously chosen reference metal-

boron systems might be chosen, which would separate the stabilities of 

the lanthanide borides into groups and ~oint out the trends for variation 
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of Cl Hf of the borides with atomic number. As· noted, in Chapter 14. 7, 

immediately obvious experiments involve the use of B4C as a reference to 

set limits on the difference in LnB4 and LnB12 stabilities for Er, Tm. and 

Lu systems. A second set· of experiments to define the same limits involves 

the r.eaction of ZrB2 and LnB12 and noting if ZrB12 and LnB4 are formed or 

not. Finally, MoB-LnB4 or MoB2-Ln equilibria might distinguish stabilities 

of lanthanide tetraborideso Of course, as additional and more precise, 

heats of formation are determined for metal borides, additional compati-

bility studies can be made to establish closer limits on the lanthanide 

boride heats of formation. 

Mass spectrometer ion current ratio mea~urements, coupled with 

the boron pressure over Gd.B4 deduced from the measured Paa. in this work 

and the vapor pressure of boron, ·can yield the pressure of boron over 

Gd.B4-GdB6, GdB6-GdB100 and Gd.B100-B.two-phase regions. The ratios ·of·boron 

ion currents, arising from the two-ph~se condensed systems, would describe 

the boron partial pressure ratios over these systems. A mixture of Gd.B1oo 

and boron could be vaporized by· loss of boron to produce the GdB100-B, 

Gd.B100-Gd.B6 and Gd.B6-GdB4 i0n currents. These pressure determinations 

could establish the stabilities of these borides with respect to the gase-

ous elements. 

Other experiments, more remotely related to the central effort of 

describing the influence of different lanthanides on boride stability, 

might be interesting. First,a quantitative kinetic. study of the free 

evaporation rates as a function of temperature f.or different-sized lan-

thanide ions in corresponding borides may lead to an understanding of the 

mechanism of vaporization of these materials and explain the variation of 
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evaporation coefficient.with temperature, These experiments would be quite 

easily performed and would be very significant in understanding gas-solid 

interactions, 

Second, the inability to observe BO+, B2ot or other boron-oxygen 

species in the mass spectrum of an ox.iding atmosphere over Gd.B4, when aa.o+ 

and TbO+ have bee~ observed, is baffling, How is the boron transported? 

Third, a stud.y.of 1 the Lno2 and Zr02 molecules by mass spectrometry would 

be interesting in view of their importance relative to LnO and ZrO, .Pre-

vious workers failed to obser~e these molecules because studies were per-

formed under the reducing conditions of a metal crucible. 

In conclusion, a11' of the experiments described in.this work are 

· bent towards understanding boride behaviors at high temperature" Hopef'ully, 

this effort and future contributions will eventually lead to a clearer 

interpretation of the chemical binding in the solid state. The fourteen 

lanthanides and lanthanum provide a wonderful opportunity to study the 

influence of small variations in size, valence and electronic configura-

tion of metals in borides with generally the same gross properties of the 

metals and the bar.ides, Hopefully, clari.fication of the influence of these 

variations on chemical behavior will lead to theories or correlations which· 

will allow the prediction of such thermochemical properties as entropy, 

heat capacity and heat of formation and the prediction of such physical 

properties as electrical and thermal conductance, structure, hardness, ther-

mal expansion and non-stoichiometry for borides or refractories in general. 
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