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Abstract

Resin chemistries for dental composite are evolving as noted by the introduction of silorane-based 

composites in 2007. This shift in the landscape from methacrylate-based composites has fueled the 

quest for versatile methacrylate-silorane adhesives. The objective of this study was to evaluate the 

polymerization behavior and structure/property relationships of methacrylate-silorane hybrid 

systems. Amine compound ethyl-4-(dimethylamino) benzoate (EDMAB) or silane compound 

tris(trimethylsilyl) silane (TTMSS) was selected as coinitiators. The mechanical properties of the 

copolymer were improved significantly at low concentrations (15, 25, or 35 wt %) of silorane 

when EDMAB was used as coinitiator. The rubbery moduli of these experimental copolymers 

were increased by up to 260%, compared with that of the control (30.8 ± 1.9 MPa). Visible phase 

separation appeared in these formulations if the silorane concentrations in the formulations were 

50–75 wt %. The use of TTMSS as coinitiator decreased the phase separation, but there was a 

concomitant decrease in mechanical properties. In the neat methacrylate formulations, the 

maximum rates of free-radical polymerization with EDMAB or TTMSS were 0.28 or 0.06 s−1, 

respectively. In the neat silorane resin, the maximum rates of cationic ring-opening polymerization 

with EDMAB or TTMSS were 0.056 or 0.087 s−1, respectively. The phase separation phenomenon 

may be attributed to differences in the rates of free-radical polymerization of methacrylates and 

cationic ring-opening polymerization of silorane. In the hybrid systems, free-radical 

polymerization initiated with EDMAB led to higher crosslink density and better mechanical 

properties under dry/wet conditions. These beneficial effects were, however, associated with an 

increase in heterogeneity in the network structure.
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INTRODUCTION

The traditional methacrylate-based dental composites were first developed in the 

mid-1960s.1 The properties and handling characteristics have improved greatly since the first 

introduction of these materials. During the last 20 years, the primary motivation for 

changing the resin chemistry of restorative composites was to reduce the polymerization 

shrinkage.2,3 Recently, the silicone-epoxy monomers (or “silorane”) restorative system 

represents a relatively new category of restorative materials; these materials are marketed 

commercially as a low shrinkage composite with improved clinical performance.4,5

The silorane is formed by joining siloxane and oxirane, resulting in a monomer that 

combines the two key advantages of its individual components, that is, low polymerization 

shrinkage and increased hydrophobicity and stability. These monomers have low toxicity, 

high reactivity, and the ability to undergo facile and rapid cationic polymerization. 

Compared to the methacrylate-based composites, the silorane-based composites exhibit 

lower polymerization shrinkage, higher flexural strength and fracture toughness.6–10 

However, silorane composites have relatively lower compressive strength and 

microhardness.7

In contrast to the promising mechanical properties, contradictory results have been reported 

with marginal gap formation at the interface between the tooth and silorane composite. An 

in vitro study11 reported that the silorane restorative systems showed statistically equivalent 

gap formation compared to a methacrylate-based composite. When marginal adaptation in 

cylindrical cavities was compared, the silorane-based composites performed better than 

methacrylate-based materials.12 In contrast to these in vitro investigations, in clinical studies 

methacrylate-based composites provided better marginal adaptation than silorane-based 

composites.13 A recent 5 years clinical study showed no clinical advantage to silorane-based 

composite over the methacrylate-based composite, the clinical results suggest that the low-

shrinkage may not be a determinant factor for clinical success in class II cavity.14

Due to the incompatibility between methacrylate and silorane,15 a dedicated adhesive system 

is required for the silorane restorative composite. D’Alpino et al.15 reported that the 

dedicated adhesive system exhibited signs of degradation immediately after application. This 

immediate degradation may be attributed to the hydrophilic composition of the primer. The 

results suggested that the hydrophilic nature of the dentin adhesive represented the weakest 

link, despite the hydrophobic nature of the silorane-based composites. The poorer marginal 

adaptation of the silorane restorative composite was linked to the adhesive system.13 Our 

interest lies in the development of a hybrid methacrylate/silorane polymer that offers 

compatibility and hydrolytic stability.

Song et al. Page 2

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The hybrid resin that contains (meth)acrylates and epoxide monomers undergoes 

simultaneous free radical polymerization (FRP) and cationic ring-opening polymerization 

(CROP), respectively. The hybrid system has been shown to reduce the atmospheric16 and/or 

water/alcohol sensitivity.17 This could be a very attractive benefit for adhesives or coatings 

that must polymerize under hostile environmental conditions. Phase separation is, however, 

an inevitable phenomenon in these hybrid resin formulations due to the low conversion and 

polymerization rate of epoxides and/or chemical incompatibility. To control phase 

separation, most of the techniques have focused on enhancing the conversion and rate of 

cationic polymerization by hybrid monomers,17,18 chain transfer agents,19 and 

accelerators.20–22 The most common approach to decrease phase separation in the hybrid 

methacrylate-epoxide system is to accelerate the CROP.18,19,21 It is well known that the 

liquid resin can form a network structure in just a few seconds of light irradiation. The 

polymerization rate will undergo a significant decrease as the polymer transitions from a 

viscous to glassy state (vitrification point). It is unclear how to balance the rate of 

polymerization and mechanical properties in the hybrid system. Considerable effort has been 

devoted throughout the material science community to quantifying the polymerization 

process with the goal of predicting the final properties of the polymer network by combining 

simulations and experimental swelling data.23 In spite of these efforts, a comprehensive 

description of the relationship between polymerization kinetics and final crosslink structure 

remains a challenging problem. The complexity of this problem is increased in the 

methacrylate-silorane hybrid formulations by variables such as polymerization-induced 

phase separation.

The aim of this research was to study the polymerization behavior of a methacrylate/silorane 

hybrid system, and to determine the relationship between polymerization behavior and final 

properties of the network. This is the first step in our efforts to optimize the properties of the 

hybrid resin. In the present investigation, methacrylate monomers (HEMA and BisGMA) 

and silorane monomer were chosen to be consistent with the current chemistry used in 

commercial dentin adhesive/composites. The polymerization behavior, mechanical 

properties, and network structure of the hybrid formulations prepared by different 

coinitiators (amine or silane) were compared. Here, we compared the effect of amine and 

silane coinitiator on the polymerization behavior of methacrylate/silorane hybrid 

formulations and the mechanical properties of the formed hybrid polymers. The overall 

research hypotheses were (1) the polymerization-induced phase separation can be depressed 

by matching the polymerization rates between free radical and cationic ring-opening 

polymerization, (2) the crosslink density of the hybrid resin can be improved with the 

addition of silorane, and (3) the free radical polymerization rate will not affect the 

mechanical properties of the hybrid resin.

MATERIALS AND METHODS

Materials

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA, Polysciences, 

Warrington, PA) and 2-hydroxyethyl methacrylate (HEMA, Acros Organics, NJ) were used 

as received without further purification. 2,4,6,8-tetramethyl-2,4,6,8-tetrakis[2-(7-
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oxabicyclo[4.1.0]hept-3-yl)ethyl]-1,3,5,7-tetraoxa-2,4,6,8-tetrasilacyclooxtane (ES-4) was 

synthesized in-house. Camphoroquinone (CQ), ethyl-4-(dimethyl amino) benzoate 

(EDMAB), tris(trimethylsilyl)silane (TTMSS), 2,4,6,8-tetramethylcyclotetrasiloxane, 

tris(triphenylphosphine)rhodium(I) chloride (Wilkinson’s catalyst), and 4-vinyl-1-

cyclohexene 1,2-epoxide were obtained from Sigma-Aldrich (St. Louis, MO). p-Octyloxy-

phenylphenyl iodonium hexafluoroantimonate (OPPIH) was purchased from Gelest Inc., 

(Morrisville, PA). All other chemicals were reagent grade and used without further 

purification.

Synthesis of ES-4

The silorane monomer ES-4 was synthesized following the procedure described by Crivello 

and coworkers24 with slight modification.25 Briefly, to a 250-mL, round bottom flask, fitted 

with a magnetic stirrer and reflux condenser, were added 2,4,6,8-

tetramethylcyclotetrasiloxane 12.02 g (0.05 mol), 30 mg Wilkinson’s catalyst, and 40 mL 

dry toluene. After the solution was heated to 60°C, 26.08 g (0.41 mol) 4-vinyl-1-

cyclohexene 1,2-epoxide mixed with 40 mL dry hexane was added stepwise over a 2 h 

period. Next, the reaction mixture was raised to 80°C for another 20 h. The progress of the 

hydrosilation was followed by FTIR (Spectrum 400 Fourier transform infrared 

spectrophotometer, Perkin-Elmer, Waltham, MA) by monitoring the disappearance of Si-H 

at 2165 cm−1. When the reaction was terminated, about 2 g activated carbon was added to 

remove the catalyst. The unreacted starting materials and solvent were removed by rotary 

evaporation. ES-4 (35 g, 95% theory) was obtained as viscous, pale yellow oil.

The structure was confirmed using 1H NMR spectroscopy. 1H NMR (CDCl3, FT-400 MHz 

Bruker Spectrometer, δ ppm): 0.04 (12H, CH3—Si—), 0.46 (8H, —CH2—Si—), 0.86–2.16 

(36H, –CH2–cyclohexane ring), and 3.14 (8H, —CH—O epoxy ring).

Preparation of resin formulations

Neat methacrylate monomer mixture was made by mixing 45 wt % HEMA and 55 wt % 

BisGMA.26–28 Neat methacrylate and neat silorane formulations containing the 

photoinitiators (PIs) CQ (1 wt %), OPPIH (2 wt %), and EDMAB (1 wt %) were used as the 

controls (C0-EDMAB, ES-EDMAB), respectively. The hybrid formulations consisted of 

HEMA, BisGMA, PIs (CQ 1 wt %, OPPIH 2 wt %, EDMAB 1 wt %, or TTMSS 3%), and 

contained varying concentrations of ES-4. The chemical structures of monomers and PIs are 

shown in Scheme 1. The composition of the neat resin and hybrid formulations are listed in 

Tables I and II, respectively. Mixtures of monomers/PIs were prepared in brown glass vials 

under amber light.

The preparation of polymer beams for mechanical property characterization using dynamic 

mechanical analysis (DMA) has been reported.29–31 Briefly, the solutions containing the 

monomers/PIs were mixed overnight at 25°C to promote complete dissolution and formation 

of a homogeneous solution. The prepared resins were injected into a glass-tubing mold 

(Fiber Optic Center, Inc., part no.: ST8100, New Bedford, MA) and light-cured for 40 s at 

25°C with an LED light curing unit (LED Curebox, 100 mW cm−2 irradiance; Proto-tech, 

Portland, OR). The polymerized samples were stored in the dark at 25°C for at least 48 h 
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before being used. The rectangular beam specimens, with a dimension of 1 mm × 1 mm and 

length 15 mm, were used to determine dynamic mechanical properties.

For thermal behavior analysis, approximately 20 μL of resin was injected into a hermetic lid 

(900794.90, TA Instruments, New Castle), covered with mylar film, and light-cured for 40 s 

at 25°C with a commercial visible-light-polymerization unit (Spectrum® 800; Dentsply, 

Milford, DE), at an intensity of 550 mW cm−2. The polymerized samples were then stored in 

the dark at 25°C for at least 48 h and thereafter kept in a vacuum oven at 25°C prior to 

thermal measurement.

Real-time conversion and maximal polymerization rate

The degree of conversion (DC) and polymerization behavior were determined by FTIR as 

described previously.27,32 Real-time, in situ monitoring of the photopolymerization behavior 

of the resin formulations was performed using an infrared spectrometer (Spectrum 400 

Fourier transform infrared spectrophotometer; Perkin-Elmer) at a resolution of 4 cm−1.

One drop of the resin was placed on the diamond crystal top plate of an attenuated total 

reflectance (ATR) accessory (PIKE Technologies Gladi-ATR, Madison, WI) and covered 

with a mylar film to prevent oxygen exposure. Exposure to the commercial visible-light-

polymerization unit (Spectrum® 800; Dentsply) at an intensity of 550 mW cm−2 was 

initiated after 50 infrared spectra had been recorded. The light exposure time was 40 s. Real-

time IR spectra were continuously recorded for 600 s after light activation began. A time-

based spectrum collector (Spectrum TimeBase; Perkin-Elmer) was used for continuous and 

automatic collection of spectra during polymerization. A minimum of three measurements 

(n = 3) were carried out for each formulation. Methacrylic double bond conversion was 

monitored by the band ratio profile-1637 cm−1 (C=C)/1608 cm−1 (phenyl), and epoxy group 

conversion was followed by monitoring the decrease in the absorbance of the epoxy group at 

884 cm−1. The calculation for epoxy group conversion was based on the published 

article.16,17,33,34 The degree of conversion (DC) of C=C bond and epoxy were calculated 

using the following equations.

(1)

(2)

The average of the last 50 values of the time-based spectra is reported as the DC value. The 

maximum polymerization rate was determined using the maximum slope of the linear region 

of the DC versus time plots.26
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Dynamic mechanical analysis

In dynamic mechanical tests, a sinusoidal stress is applied, and the resultant strain is 

measured to obtain the storage and loss moduli and tan δ. The storage modulus (E′) 

represents the amount of energy recovered during the cyclic loading, and this value is 

proportional to the elasticity of a viscoelastic solid. The loss modulus (E′′) represents 

viscous dissipation in the cyclic process. The ratio of loss modulus (E′′) to storage modulus 

(E′) is referred to as the mechanical damping, or tan δ (that is, tan δ = E′/E′′). The tan δ 
value reaches a maximum as the polymer undergoes the transition from the glassy state to 

the rubbery state. The intensity of the maximum tan δ peak reflects the extent of the mobility 

of the copolymer chain segments. In the current work, DMA tests were performed using a 

TA instruments Q800 DMA (TA Instruments, New Castle) with a three-point bending 

clamp. The dynamic mechanical properties of methacrylate-based adhesive formulations 

have been described previously.32 A sinusoidal stress is applied, and the resultant strain is 

measured. Rectangular beam specimens (1 mm × 1 mm × 15 mm) were used for DMA 

measurements and minimum of three specimens were tested for each material. The 

following testing parameters were used: displacement amplitude of 15 μm, frequency of 1 

Hz and preload force of 0.01 N.30,35 In addition to this, temperature was ramped at the rate 

of 3°C min−1 from 10 to 200°C. The glass transition temperature (Tg) is determined as the 

position of the maximum on the derivative storage modulus versus temperature plots. For 

wet testing, specimens were submerged in water at 37°C for 5 days for complete saturation, 

and tests were obtained using the three-point submersion clamp.36 The test temperature was 

varied from 10 to 80°C with a ramping rate of 1.5°C min−1.

Modulated differential scanning calorimetry test

The thermal behavior in the Tg region was measured with a TA instruments model Q200 

modulated differential scanning calorimetry (MDSC; New Castle, DE). The specimens were 

weighed (~20 mg) in aluminum DSC pans. The DSC cell was purged with nitrogen gas at 50 

mL min−1, and the specimens were heated under nitrogen purge from 220 to 200°C at 3°C 

min−1, with a modulation period of 60 s and amplitude of ±2°C. The second scans were 

consistent with the first scan. Only the first cycle of heating was taken into account, and the 

results are shown as differential reversible heat flow versus temperature graphs. The Tg 

values were reported as the temperature of the peaks, that is, inflection points of the heat 

flow curves.

Statistical analysis

The results were analyzed statistically using one-way analysis of variance, together with 

Tukey’s test at α = 0.05 (Microcal Origin Version 8.0; Microcal Software, Northampton, 

MA) to identify significant differences in the means.

RESULTS

Real-time photopolymerization kinetic behavior of the neat methacrylate and neat silorane 

formulations are shown in Figure 1. In neat methacrylate resin, with the increase in TTMSS 

concentration from 1 to 5%, the degree of conversion of the double bond (at 600s) increased 

slightly from ~58 to ~65%, which is significantly (p < 0.05) lower than the control (C0-
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EDMAB 1%). Compared to the control, the maximum polymerization rate (P.R. or Rp(max)/

[M]) of the free radical polymerization (FRP) decreased from 0.28 to 0.06 s−1. In the neat 

silorane resin, with the increase in TTMSS concentration from 1 to 3%, the degree of 

conversion of the epoxy group is over 50% and is significantly higher (p < 0.05) than the 

control (ES-EDMAB 1%). At the same time, the P.R. of cationic ring-opening 

polymerization (CROP) increased from 0.056 ± 0.001 to ~0.087 ± 0.008 s−1. However, the 

DC of epoxy and P.R. of CROP were not significantly different (p < 0.05) when TTMSS 

concentration was 1 or 3 wt %.

The DC and P.R. of methacrylate-silorane hybrid formulations obtained from the real-time 

photopolymerization kinetic study are listed in Table III. When the silorane concentration 

was kept below 35%, the polymerization rates and degree of conversion of silorane were not 

easy to determine by FTIR due to the characteristic peak overlap. Using EDMAB as 

coinitiator, the P.R. of FRP was obviously higher than that of CROP, and phase separation 

was visible in the sample beams (white spots or translucent). Using TTMSS as coinitiator, 

the difference between the P.R. of FRP and CROP was reduced, and the polymer beams 

became transparent.

The dynamic mechanical properties of hybrid formulations in the dry condition at various 

temperatures are shown in Figure 2. When EDMAB was used as coinitiator, the storage 

modulus values at 25 or 37°C were not significantly different from the control (C0-EDMAB, 

p < 0.05), except for the ES-4 35 wt % concentration. The rubbery modulus and tan δ for the 

experimental copolymers were significantly different from the control (C0-EDMAB, p < 

0.05). With the increase in ES-4 content from 0 to 35 wt %, the difference between the two 

transition temperatures obtained from the derivative storage modulus versus temperature 

profiles increased from 56.0 ± 0.7 to 74.1 ± 1.8°C. Additionally, the intensity of the 

maximum tan δ peaks decreased accordingly.

When TTMSS was used as coinitiator, both the storage moduli (25 and 37°C) and the 

intensity of tan δ were significantly different from the control (C0-TTMSS, p < 0.05). The 

rubbery modulus values were similar in spite of the change in concentration of the ES-4 

monomer. From the derivative storage modulus versus temperature profiles, two transition 

peaks merge gradually with the increase in ES-4 concentration [Figure 2(D)]. The maximum 

values of the tan δ peaks move toward lower temperatures, and the peaks become broad with 

the increase in ES-4 content. The storage moduli of methacrylate formulations (C0-EDMAB 

and C0-TTMSS) were similar at 25 and 37°C. The rubbery modulus of C0-TTMSS (20.4 

± 0.4 MPa) was significantly lower than that of C0-EDMAB (26.8 ± 0.5 MPa).

The dynamic mechanical properties of the copolymers in the wet condition are shown in 

Figure 3. When EDMAB was used as coinitiator, the storage modulus at 70°C of the 

experimental formulation (ES-4 35%) was significantly higher than the control (C0-

EDMAB, p < 0.05). When TTMSS was used to replace EDMAB as coinitiator, the storage 

moduli of the experimental formulations were significantly lower than the control (C0-

TTMSS, p < 0.05). The storage moduli at 25, 37, and 70°C of methacrylate formulations of 

C0-EDMAB were significantly higher than that of C0-TTMSS.
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Figure 4 shows the reversible heat flow signals and derivative reversing heat flow of neat 

resin or hybrid formulations with EDMAB or TTMSS as coinitiator. In neat methacrylate 

resin, the difference between the two peaks became smaller with the increase in TTMSS 

concentration. In neat silorane, the glass transition temperatures of polyether were similar 

(~64°C) whether EDMAB or TTMSS was used as coinitiator. In the hybrid formulations, 

there were two transition temperatures for EDMAB and one for TTMSS.

DISCUSSION

Polymerization behavior

Amines have been widely used as coinitiators in dental adhesives due to their high reactivity 

and efficiency. Recently, there has been strong interest in the photopolymerization reaction 

of silanes. Silane is reported to be more efficient than an amine in FRP or free radical 

promoted cationic polymerization (FRPCP).37–40 For the TTMSS silyl radical, a high 

reactivity with addition rate constant (kadd ~ 2:2×107 M−1 s−1) to methylacrylate was 

noted38. For the EDMAB generated radical, this value was 5 × 105 M−1 s−1.41 These results 

demonstrate the high potential of the silyl radicals to act as photoinitiating species. In the 

present work, the maximum polymerization rate of neat methacrylate resin using TTMSS 

(P.R. ~0.060 s−1) as coinitiator was slower than that of EDMAB (P.R. ~0.287 s−1). It was 

reported that the hydrogen abstraction rate constants of PI/amines 

are substantially higher than that of PI/silane (kH ~106–108 M−1 s−1).38 This difference was 

mainly attributed to a different mechanism, that is, electron/proton transfer for amine versus 

hydrogen atom transfer for silane.42 The slow CQ/TTMSS hydrogen abstraction could limit 

the concentration of silyl free radical, which is the crucial step to determine the rate of FRP. 

In neat methacrylate resin, the polymerization rates were not significantly different when the 

TTMSS content was varied from 1 to 5 wt %.

In neat silorane formulations, the cationic polymerization rates increased with the addition 

of TTMSS. This is due to the silyl radicals being reduced efficiently by the iodonium salt 

(the oxidation rate constant 2.6 × 106 M−1 s−1), and the silylium cation is a particularly 

accommodating polymerization-initiating structure.43 The FRPCP mechanism was adopted 

to meet the visible light irradiation in dental adhesive application. The FRPCP is an elegant 

and fairly flexible way to generate cationic species, and the overall mechanism involves 

oxidation of photochemically formed radicals by onium salt.44–48 Compared with EDMAB, 

although the generation of silyl free radical is slower, the generated silylium cation is more 

efficient in promoting cationic polymerization. At the same time, by increasing TTMSS 

from 1 to 3 wt %, the DC of the epoxy group can only reach about 50% (measured at t = 600 

s after irradiation). This is due to the high functionality of ES-4 (four epoxy groups), that is, 

the transition from the liquid to vitrified state occurs sooner in this formulation and about 

50% of the epoxy groups remain unreacted, presumably leaving the unreacted epoxy groups 

on the polymer chain as pendent groups.

In the hybrid formulations (methacrylate/silorane), when ES-4 content is below 50 wt %, 

due to the characteristic peak (884 cm−1) overlap of epoxy with methacrylate, it was difficult 

to accurately determine the DC and P.R. of epoxy groups by FTIR. When ES-4 content is 
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between 50 and 75 wt % and EDMAB is used as coinitiator, phase separation can be 

observed visibly after photopolymerization. This phenomenon could be attributed to 

polymerization-induced phase separation as a result of the chemical thermodynamic 

incompatibility between methacrylate and siloxane and the significant difference in the 

polymerization rate using EDMAB as coinitiator (see Table III). After irradiation, 

methacrylate monomers polymerize quickly and higher crosslink regions can be obtained. 

Meanwhile, the silorane will polymerize slowly, and polyether-rich regions are formed in the 

final structure. When the ES-4 concentration is over 50%, the polyether-rich region grows 

and becomes large enough to allow the phase separation to be observed. When TTMSS was 

used as coinitiator, the polymerization rate difference between FRP and CROP became 

smaller, and the polymer specimens were transparent. Thus, the results support the 

Hypothesis (1) that the polymerization-induced phase separation could be depressed by 

matching the polymerization rates.

In the hybrid formulations, the free radical centers (EDMAB, TTMSS, or phenyl free 

radicals) generated during visible-light irradiation are suitable for initiating the FRP. 

Meanwhile, the generated cations via FRPCP mechanism initiate the CROP of silorane 

monomers (ES-4). It has been reported that the activated monomer mechanism of cationic 

polymerization occurs in the presence of a nucleophilic species, such as alcohol.19,49 In our 

hybrid formulations, the epoxy groups could react with the hydroxyl groups of HEMA or 

BisGMA and covalently bond the epoxide network to the polymethacrylate network; this 

reaction would be beneficial in terms of reducing the phase separation and enhancing the 

crosslink density of the network structure. When using EDMAB as coinitiator, the much 

faster free radical polymerization created the polymethacrylate domain first, thereby 

preventing the silorane from achieving high conversion. Therefore, the phase separation 

phenomenon was observed when the silorane concentration was over 50 wt %. When 

TTMSS was used as coinitiator, the gap between the rate of polymerization for free radical 

and cationic ring-opening polymerization was smaller. This decrease in the difference of 

polymerization rates facilitated the cationic polymerization through the activated monomer 

mechanism, and the phase separation was depressed. This result indicated that the cationic 

polymerization mechanism (activated monomer mechanism) and the matching 

polymerization rates between FRP and CROP can reduce the phase separation in the hybrid 

formulations. It should be noted that the phase separation phenomenon, especially 

nanophase separation, is a general feature of crosslinked polymethacrylate-based dentin 

adhesive.50,51 In the present work, with the addition of TTMSS, only the microphase 

separation phenomenon was retarded.

Dynamical mechanism analysis

The DMA data can be used to interpret properties of polymer networks because it gives 

information on the relaxation of molecular motions, which are sensitive to structure. In this 

study, the DMA tests were carried out using both standard 3-point bending and 3-point 

bending submersion methods. It was anticipated that the results acquired with the water-

submersion clamp would be more representative of the behavior of the polymer in a wet 

environment.
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The polymer specimens of hybrid formulations (ES-4 concentration > 35 wt %) were very 

brittle and could not be cast into rectangular beam specimens for DMA measurements. 

Therefore, only specimens cured with lower ES-4 concentration (<35 wt %) were used for 

the DMA measurements.

Methacrylate polymers containing either EDMAB or TTMSS have similar storage moduli, 

as shown in Figure 2(A,B). The rubbery modulus of polymer beams with EDMAB (26.8 

± 0.5 MPa) was higher than that of TTMSS (20.4 ± 0.4 MPa), which suggested a lower 

crosslink density structure with TTMSS. Although the degree of conversion of the double 

bond is similar (~68% for 1 wt % EDMAB and 65% for 3 wt % TTMSS), the 

polymerization rates are significantly different (~0.28 s−1 for EDMAB and 0.055 s−1 for 

TTMSS). Work published by Bowman’s group52–54 has indicated that in highly crosslinked 

polymers formed by polymerization of multifunctional monomers containing primary and 

secondary cycles, the primary cyclization can lead to a reduction in the effective crosslink 

density. The chain flexibility of monomers and the rate of initiation can also affect the 

primary and secondary cyclization. It was reported that higher initiation rates can decrease 

the rate of primary cyclization because at high initiation rates radicals have shorter lifetimes 

and less time to cycle.55 In the current study, the rate of initiation of CQ-TTMSS was slower 

than that of CQ-EDMAB due to the slow generation of free radicals. This difference may 

increase the primary cyclization rate in the CQ-TTMSS system which could lead to loosely 

crosslinked structure.53

When EDMAB was used as coinitiator, an increase in the rubbery modulus was observed as 

the silorane monomer concentration was increased [Figure 2(A)]. From the derivative 

storage modulus versus temperature profiles [Figure 2(C)], with the increase in silorane 

concentration from 15 to 35 wt %, the glass transition temperature increased from 121.9 

± 3.7 to 133.5 ± 0.6°C, and the first transition temperature decreased from 63.9 ± 1.1 to 59.4 

± 1.3°C. A more heterogeneous structure was formed when EDMAB was used as coinitiator. 

As stated previously, in the hybrid formulations, the silorane monomers prefer to polymerize 

via the activated monomer mechanism and covalently bond to the polymethacrylate polymer 

chains. The fast methacrylate polymerization rate and low ES-4 concentration inhibit 

substantial growth of the polyether phase, and most of the ES-4 monomer acts as a 

crosslinker, reacting with the hydroxyl groups to increase the crosslink density (see Figure 

5). Therefore, the Hypothesis (2), which proposed that the crosslink density of hybrid resins 

could be improved with the addition of ES-4, was accepted.

When TTMSS was used as coinitiator, the storage moduli of hybrid formulations at 25 and 

37°C [Figure 2(B)] were lower than that of the control (C0-TTMSS). The Tg decreased to 

115.7 ± 2.1°C when the ES-4 concentration was 15 wt %, and eventually the Tg peak 

merged with the first transition peak when ES-4 concentration was over 25 wt % [Figure 

2(D)]. With the decrease in FRP rate, the primary cyclization was dominant, and a loosely 

crosslinked structure of polymethacrylate was formed. Even though the rate of CROP 

increased by using TTMSS, it was still slower than that of FRP, and a loosely networked 

polymethacrylate (lower crosslink density, see Figure 5) might be the dominant structure. 

Therefore, the Hypothesis (3), which proposed that the free radical polymerization rates will 

not affect the mechanical properties of the hybrid resin, was rejected.
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It is reported that the heterogeneity will increase as the crosslink agent concentration 

increases within a copolymer system.56 When EDMAB was used as coinitiator, an increase 

in ES-4 concentration corresponded to a decrease in the intensity of the maximum tan δ 
peak [Figure 2(E)]. Additionally, a shoulder peak appeared, which may be attributed to the 

polyether-rich phase. When TTMSS was used as coinitiator, the control (C0-TTMSS) 

showed two peaks. As discussed previously, the primary cycle became the dominant reaction 

with the slow initiation rate, and formation of the loosely crosslink region. In contrast, the 

hybrid formulations showed only one broad peak. With the addition of TTMSS, the rate of 

CROP increased from 0.056 to 0.087 s−1, and ES-4 not only could bond onto the 

polymethacrylate main chains via the activated monomer polymerization mechanism 

through reaction with hydroxyl groups but also the molecular weight of polyether chains 

could gradually increase. With the increase in ES-4 concentration, the intensity of the tan δ 
peak decreased, which suggested that a higher crosslink density structure was formed. At the 

same time, due to the flexibility of polyether chains, the peaks became broad, and the 

maximum peaks moved toward a lower temperature.

The moduli of the controls (C0-EDMAB and C0-TTMSS) and experimental samples 

measured by the water-submersion method were significantly lower than those of the dry 

samples as shown in our previous work.57 The difference is attributed to the plasticization of 

the copolymer in the water. Water can be attracted to the polar functional groups (such as 

hydroxyl and ester) of the copolymer to form hydrogen bonds. Water attracted to these 

functional groups will decrease the intermolecular interaction of the copolymers. 

Simultaneous water diffusion and mechanical loading can lead to anomalously high creep 

strain or lower strength in some polymers.58,59 Using EDMAB as a coinitiator, the modulus 

of the hybrid formulations with ES-4 content up to 35% was significantly higher than that of 

the control (C0-EDMAB, p < 0.05) at 70°C. This means that with the increase in ES-4 

content, the highly crosslinked structure can counteract the effect of water plasticization. 

Using TTMSS as a coinitiator, the storage moduli of the hybrid formulations at 37 and 70°C 

are significantly lower than that of the control (C0-TTMSS, p < 0.05). This indicates a 

loosely crosslinked structure formed with the reduced polymerization rate noted by the 

inclusion of TTMSS. In our formulation, the storage modulus at 70°C increased according 

to the increase in ES-4 content. This is because the ES-4 acts as a crosslinker during the 

photopolymerization.

Thermal analysis

The modulated temperature DSC (MDSC) method has been used to obtain the thermal 

properties and to provide related information on the degree of crosslinking of polymers.60 

Figure 4 shows the results obtained in the MDSC analysis for the neat and hybrid resin 

formulations cured with different coinitiators. Prior to measurement by MDSC, the samples 

of neat methacrylate formulation were only partly cured, with the DC at about 60%. As the 

sample is heated, it could reach the glass transition region, and the thermal energy provides 

sufficient molecular mobility to facilitate continuation of the curing process, causing a shift 

in the transition region. The non-reversible components showed an exothermic peak arising 

from the simultaneous thermal curing (not shown). As the temperature was increased still 

further, the reaction finally ceased as the system reached full cure. The first transition 
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temperature could be attributed to the side-chains while the second transition temperature 

could be due to the movement of segments of the main chains (Tg). In neat methacrylate 

resin, the derivative reversible heat flow could be used to show the glass transition. It was 

seen that with the increase in TTMSS content from 1 to 3 wt %, the Tg of the formulations 

decreased about 10°C, and the Tg width became smaller than that of the control (C0-

EDMAB). At the same time, the difference between the two temperatures decreased 

accordingly. This behavior could be attributed to the less heterogeneous structure. As stated 

before, with the increase in TTMSS content from 1 to 5 wt %, the P.R. of FRP was slightly 

reduced from 0.069 to 0.057 s−1. The slow initiation rates may promote the primary 

cyclization, causing a delay in gel point, and reducing the heterogeneity. Thus, the gradual 

narrowing of the glass transition with increase in TTMSS content may be attributed to a 

decrease in the heterogeneity of the polymer network.

In neat silorane formulations, the glass transition temperatures were similar (~64°C) whether 

EDMAB or TTMSS was used as a coinitiator. Because the ES-4 monomer has four epoxy 

groups, a higher crosslink network formed immediately after the visible-light irradiation, 

and the lower degree of conversion (<50%). In the hybrid formulations (ES-4 50 wt %–

EDMAB 1%), two peaks appeared when EDMAB was used as coinitiator [Figure 4(D)]. 

The lower temperature peak belonged to a side-chain transition associated with loosely 

crosslinked region, and a higher temperature peak indicated the main chain transition (higher 

crosslink region). When using TTMSS as a coinitiator, the higher temperature peak almost 

disappeared and only one peak (~60°C) could be observed. By decreasing the rate of FRP, 

the crosslink density of the hybrid polymer decreased and the structure became more 

homogenous. To clarify the correlations between network structure and physical properties, 

further experiments with different silorane monomers (varied epoxy functionality), solvents 

and coinitiators are ongoing.

CONCLUSION

The polymerization behavior of methacrylate/silorane hybrid resins when irradiated with 

visible light, as well as the mechanical properties of the hybrid formulations using either 

EDMAB or TTMSS as a coinitiator, were studied. Using EDMAB as a coinitiator, the 

crosslink density of the resulting polymer was enhanced with the increase in the silorane 

monomer content from 15 to 35 wt %. Additionally, the polymer showed good performance 

in dry and wet conditions. The network structure became more heterogeneous with the 

addition of silorane monomer. Polymerization-induced phase separation appeared when the 

silorane content exceeded 50 wt %. When using TTMSS as a coinitiator, the cationic ring-

opening polymerization rate of silorane was improved and the free radical polymerization 

rate of methacrylate was decreased. The phase separation was depressed due to the matching 

of polymerization rates. The mechanical properties of the hybrid resin deteriorated with the 

increase in ES-4 content due to a loosely crosslinked structure and lower Tg of the hybrid 

polymer.
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FIGURE 1. 
Real-time conversion and polymerization rate of controls (C0-EDMAB 1%, ES-EDMAB 

1%) and experimental adhesive formulations. A and B, Neat methacrylate resin, (C and 

D):neat silorane resin. The adhesives were light-cured for 40 s at 25°C using a commercial 

visible light lamp (Spectrum® 800; Dentsply, Milford, DE. Intensity is 550 mW cm−2). * 

Significantly (p < 0.05) different from the control (C0-EDMAB 1%). # Significantly (p 
<0.05) different from the control (ES-EDMAB 1%). [Color figure can be viewed in the 

online issue, which is available at wileyonli-nelibrary.com.]
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FIGURE 2. 
Representative storage modulus, derivative storage modulus, and tan δ versus temperature 

curves of the controls (C0-EDMAB and C0-TTMSS) and experimental adhesive copolymers 

in dry conditions using EDMAB (left, A, C, and E) and TTMSS (right, B, D, and F) as 

coinitiator. [Color figure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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FIGURE 3. 
Representative storage modulus and derivative storage modulus versus temperature curves of 

the controls (C0-EDMAB and C0-TTMSS) and experimental adhesive copolymers in wet 

conditions using EDMAB or TTMSS as coinitiator. (C0-EDMAB: EDMAB 1 wt %, C0-

TTMSS: TTMSS 3 wt %). [Color figure can be viewed in the online issue, which is 

available at wileyonli-nelibrary.com.]
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FIGURE 4. 
Reversible heat flow signals and derivative reversible heat flow versus temperature of neat 

methacrylate resin (A and C), methacrylate/silorane hybrid resin (B and D) using EDMAB 

or TTMSS as coinitiator. [Color figure can be viewed in the online issue, which is available 

at wileyonli-nelibrary.com.]
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FIGURE 5. 
Schematic illustration of the network structure of methacrylate/silorane hybrid dentin 

adhesive using EDMAB or TTMSS as coinitiator. [Color figure can be viewed in the online 

issue, which is available at wileyonli-nelibrary.com.]
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SCHEME 1. 
Chemical structures of components used in the hybrid formulations.
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TABLE II

The Composition of Hybrid Resin Formulations

Runa

Monomers (g) Coinitiators (%)

C0b ES-4 EDMAB TTMSS

ES 15%-EDMAB 0.85 0.15 1 –

ES 25%-EDMAB 0.75 0.25 1 –

ES 35%-EDMAB 0.65 0.35 1 –

ES 50%-EDMAB 0.50 0.50 1 –

ES 75%-EDMAB 0.25 0.75 1 –

ES 15%-TTMSS 0.85 0.15 – 3

ES 25%-TTMSS 0.75 0.25 – 3

ES 35%-TTMSS 0.65 0.35 – 3

ES 50%-TTMSS 0.50 0.50 – 3

ES 75%-TTMSS 0.25 0.75 – 3

a
In all formulations, the weight percent of CQ and OPPIH is 1 wt % and 2 wt %, respectively.

b
C0 is made by mixing 45 wt % HEMA and 55 wt % BisGMA.
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