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ABSTRACT 

 

Personalized medicine is emerging in both clinical practice and clinical trials. “Precision” 

medicine not only promises improved safety and efficacy but also lowered cost in clinical 

practice and clinical trials. In 2015, President Obama launched the Precision Medicine Initiative. 

This initiative requires close collaboration among clinicians, researchers, and biostatisticians.  

Enrichment design is an important strategy for increasing study efficiency in personalized 

medicine. Enrichment clinical trial designs involve identifying high-risk patients and choosing 

patients most likely to respond to treatment. In this dissertation, we have developed and applied 

parametric and non-parametric models to the following specific problems:  1) identifying high 

risk patients using Classification and Regression Trees (CART) model; 2) using Bayesian 

distributional approach and finite mixture normal model to improve trial efficiency in a rare 

endpoint scenario; 3) using dynamic linear normal model in enrichment trial designs with ordinal 

risk subgroups. The topics we discussed in this dissertation form a self-contained system within 

the enrichment clinical trial design structure. Identifying high risk patients and efficient 

statistical models are two major components in enrichment designs. However, the application of 

the models we discussed is far beyond the scope in this dissertation. Using CART to identify 

high risk subpopulations can overcome the incapacity of logistic regression models in revealing 

unknown interaction effects. A distributional approach using finite mixture normal model 

provides a flexible model design to fit strongly skewed data. Dynamic linear normal model in the 

enrichment trial design shows to be more efficient and robust compared to previously studied 

designs because it locally smoothes the trend. All these methods help us to accurately identify 

target patients and treat patients efficiently.  
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Modern medicine has evolved from broad-spectrum medical care to targeted therapeutics. 

Patient populations are heterogeneous. Characteristics vary between individuals, such as 

demographics, life style, environments, genetic variants, and etc. These varied characteristics can 

potentially modify the treatment effects on different individuals or subsets of patient populations. 

On one hand, people with some characteristics are more susceptible to certain disease. It is 

important to identify the target populations. The first step of quality care is to clearly define the 

target population according to variables such as age, gender, genetics, specific medical data, and 

etc. Identification of patients at higher risk of a certain disease or disease stage can help us to use 

resources efficiently and improve patients’ quality of life. On the other hand, quality care 

requires identifying the most appropriate treatment strategies for the different populations. 

Personalized medicine, which aims to match patient subpopulation to the most beneficial 

treatment, is more ethical and efficient. FDA has been pushing for personalized medicine for a 

long time. In January 2015, President Obama launched the Precision Medicine Initiative, 

including establishing a national database of the genetic and other data of one million people in 

the United Sates. This is a new research effort to tailor treatment and prevention strategies to 

individuals’ unique characteristics (White House, 2015). Targeted therapeutics enables 

physicians to select treatments that improve patients’ health status and reduce exposure to 

adverse effects. 

The concept of personalized medicine not only promises to improve safety and efficacy 

in clinical practice, but also to lower health care cost through early-detection, prevention, 

accurate risk assessments and efficient care delivery (Jakka & Rossbach, 2013). Personalized 

medicine also has a potential to lower costs in clinical trials. Cost containment in clinical trials is 

another prominent concern in both private and public sectors. The average cost of clinical trials 
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across all therapeutic areas was around $4 million for Phase I trials, $13 million for Phase II 

trials, and $20 million for Phase III trials (U.S. Department of Health and Human Services, 

2014). Phase III trials is the most expensive component among the pre-approval trial stages, yet 

the combined success rate at Phase III and submission has fallen to about 50% in recently years 

(Arrowsmith, 2011). Enrichment on subpopulations that may be more responsive to treatments 

can improve the chance of trial success. In 2012 FDA issued a draft guidance to facilitate 

enrichment designs (U.S. Food and Drug Administration, 2012). The purposes of enrichment 

designs include:1) decreasing heterogeneity; 2) identifying high-risk patients; and 3) choosing 

patients most likely to respond to treatment (U.S. Food and Drug Administration, 2012).
 

Statistical model choice in the health care arena need to accommodate the evolution of 

personalized medicine. By definition, a statistical model is generated from observed or 

experimental data and is a simplification of reality. Statistical models can be used for description, 

prediction, or causal analysis (Maathuis, 2007). These usages are not necessarily mutually 

exclusive (Maathuis, 2007). What good are models and what models are good (Schnerider, 

1993)? These are two fundamental questions in statistical research. Does the model describe the 

reality concisely? Does the model make predictions accurately? Does the model have strong 

capability to identify causal relationships? These naturally become the criteria to determine 

whether the model is good or not. 

This dissertation is trying to explore statistical models, using both parametric and non-

parametric approaches, under the personalized medicine framework. This dissertation is 

composed of three individual studies: the first study discussed methods to identify high-risk 

subpopulations; the second study focused on selecting efficient statistical models in clinical trials 

using a fixed Bayesian design; and the third study explored methods to identify the most 
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beneficial subpopulation in clinical trials, under a Bayesian enrichment design framework. These 

three studies form a self-contained research topic within the personalized medicine paradigm. 

The intrinsic relationship of these three studies can be described by the following vendor 

diagram: 

 

Figure 1.1: The relationship of the three individual studies 

 

In the following chapters, parametric or non-parametric models will be developed and 

evaluated. In chapter 2, traditional logistic regression model and classification and regression 

tree (CART) model are compared, and applied to a study to identify high-risk populations in 

alternative tobacco products use. Logistic regression models are the most commonly used 

method to identify important factors for binary responding variables. Logistic regression model 

was developed by David Cox in 1958 (Cox, 1958). Dr. Frank E. Harrell’s book “Regression 

Modeling Strategies: with Application to Linear Models, Logistic Regression, and Survival 

Enrichment Trial 
Designs 

Clinical Trial 
Models 

Subgroup 
Identification 
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Analysis” (Harrell, 2001) is the mostly cited book in logistic regression model selection. In 

Chapter 2, a model selection strategy recommended by Dr. Harrell is applied to narrow down 

potential models and then AIC is used as the criterion to determine the final model. Data is 

divided into independent training and validation samples. The final model is built upon the 

training data. A hold-out validation is performed to analyze the goodness-of-fit of the final 

regression model, and to check whether the model’s predictive ability deteriorates substantially 

when applies to the validation data. Classification and regression trees (CART) model is another 

strategy to identify target subpopulations. CART is a data-driven, machine learning method that 

does not assume any specific form of the model such as individual variables, interaction 

relationships, and etc. In problems that no priori specified interaction term exists, CART is 

informative, efficient, and straightforward. This chapter compares and discusses the 

characteristics of these two methods. All analysis is done using SAS version 9.3 and SAS 

Enterprise Miner version 12.3. 

In the third chapter, a model selection problem is discussed in a fixed Bayesian clinical 

trial design framework. The specific issue is that clinicians are interested in a binary outcome 

while the data is collected in a continuous form. Preterm birth (gestation age <37 weeks) and 

earliest preterm birth (gestation age <34 weeks) are clinically important outcomes while 

gestation age is collected in a continuous form. Docosahexaenoic acid (DHA) supplementation is 

a provocative strategy to reduce early preterm delivery (Carlson et al., 2013). Preterm birth and 

earliest preterm birth are rare events so the distribution of gestational age has substantially 

negative skewness. The traditional method is dichotomizing gestational age and then using 

binomial distribution for the dichotomized outcomes. It is widely accepted that pre-

dichotomizing loses information and results in reduced power. Distributional method is another 
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way to gain inference on dichotomized outcomes while retaining statistical power from a 

continuous distribution (Peacock, Sauzet, Ewings, & Kerry, 2012). Gestational age data has 

substantially negative skewness therefore a transformation as log(C-x), where x is gestational 

age data and C is a constant great than x, is a reasonable transformation that normalizes the data 

(Hoaglin, Mosteller, & Tukey, 1983). However, this transformation could introduce a big bias. A 

three-component finite mixture normal model is proposed in this chapter because this 

distribution fits the gestational age data well. In this chapter, dichotomized model, logarithmic 

transformation model, and finite mixture normal model are compared through simulations. In 

simulation studies, we can tune and obtain desirable operating characteristics such as Type I 

Error rate, and evaluate models through Mean Squared Error (MSE) and power. The three 

models are applied to two completed clinical trials and the results are compared by checking 

their bias and standard deviations. In this chapter, simulations and analysis are done using 

Openbugs and R 3.1.1.  

Chapter 4 discusses a topic that is a combination of identifying target populations and 

efficient clinical trial designs, namely enrichment trial designs. Classifying patient populations 

into different risk levels not only helps us to understand the target population, but also introduces 

opportunities to improve the trial efficiency, thus lower the costs of clinical trials. This chapter 

starts with a scenario that subgroup populations can be classified and ordered by their risk levels. 

This chapter continues to examine the effect of DHA supplementation on preterm birth rate, with 

subgroup effects specifically discussed. To improve the power in enrichment clinical trials, this 

chapter applies two approaches: using informative priors and selecting powerful models. 

Informative priors are obtained through meta-analysis that includes nine clinical trials across the 

world. This chapter compares four different statistical models: 1) logistic model which is not 
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flexible and assumes a constant relationship between log odds and risk levels; 2) independent 

model in which no information borrowing across subgroups but the model still borrows 

information from the informative prior distribution; 3) hierarchical model which borrows 

information from informative priors and across groups, assuming exchangeability; and 4) 

dynamic linear model which borrows information from informative priors and across groups, not 

assuming exchangeability. Overall Type I error rate is calibrated in simulations and then 

subgroups’ Type I error rate and power, including the power to capture the most benefited group, 

are compared. Simulations are done using R 3.2.2 and Openbugs. 

The dissertation concludes in Chapter 5 with summary and future work. 
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Abstract  

Background: Other forms of tobacco use are increasing in prevalence, yet most tobacco control 

efforts are aimed at cigarettes. In light of this, it is important to identify individuals who are 

using both cigarettes and alternative tobacco products (ATPs). Most previous studies have used 

regression models. We conducted a traditional logistic regression model and a classification and 

regression tree (CART) model to illustrate and discuss the added advantages of using CART in 

the setting of identifying high-risk subgroups of ATP users among cigarettes smokers. 

Methods: The data were collected from an online cross-sectional survey administered by Survey 

Sampling International between July 5, 2012 and August 15, 2012. Eligible participants self-

identified as current smokers, African American, White, or Latino (of any race), were English-

speaking, and were at least 25 years old. The study sample included 2,376 participants and was 

divided into independent training and validation samples for a hold out validation. Logistic 

regression and CART models were used to examine the important predictors of cigarettes + ATP 

users.  

Results: The logistic regression model identified nine important factors: gender, age, race, 

nicotine dependence, buying cigarettes or borrowing, whether the price of cigarettes influences 

the brand purchased, whether the participants set limits on cigarettes per day, alcohol use scores, 

and discrimination frequencies. The C-index of the logistic regression model was 0.74, 

indicating good discriminatory capability. The model performed well in the validation cohort 

also with good discrimination (c-index=0.73) and excellent calibration (R-square=0.96 in the 

calibration regression). The parsimonious CART model identified gender, age, alcohol use score, 

race, and discrimination frequencies to be the most important factors. It also revealed interesting 
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partial interactions. The c-index is 0.70 for the training sample and 0.69 for the validation 

sample. The misclassification rate was 0.342 for the training sample and 0.346 for the validation 

sample. The CART model was easier to interpret and discovered target populations that possess 

clinical significance.  

Conclusion: This study suggests that the non-parametric CART model is parsimonious, 

potentially easier to interpret, and provides additional information in identifying the subgroups at 

high risk of ATP use among cigarette smokers.  

 

Keywords: Survey sampling, stratified samples, logistic regression, CART, partial interaction 
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2.1 Background  

Recent years have witnessed increased tobacco control policies at both the state and 

national level (American Nonsmokers' Rights Foundation, 2013; Congress, 2009; Orzechowski 

& Walker, 2011). Most of these efforts are aimed at cigarette smoking (American Nonsmokers' 

Rights Foundation, 2013). The net effects of these policies include decreased cigarettes 

consumption, as well as a shift in the type of tobacco products used (CDC, 2012; Kasza, Bandal-

Travers, & O'Connor, 2014). 
 
The use of alternative forms of tobacco products (ATPs), such as 

large cigars, little cigars, cigarillos, pipes, hand-rolled cigarettes, smokeless tobacco, and 

hookahs, are increasing in prevalence (Campbell, Bozec, McGrath, & Barrett, 2012; McGrath, 

Temporale, Bozec, & Barrett, 2011). About 8%-38% of U.S. daily smokers and as many as 44% 

of non-daily smokers (smoke on some but not all days) are ATP users (Backinger et al., 2008; 

Bombard, Pederson, Nelson, & Malarcher, 2007; Campbell et al., 2012; Kasza et al., 2014; 

McGrath et al., 2011; Popova & Ling, 2013), defined as anyone who uses cigarettes and 

alternative forms of tobacco. These tobacco products have been promoted as less addictive and 

less harmful than cigarettes (Jolly, 2008; Page & Evans, 2003). Nevertheless, data suggest that 

use of these products could be associated with higher nicotine dependence and may contribute to 

increased risks for diseases caused by tobacco, such as cancer and heart disease (Djordjevic & 

Doran, 2009). 

 It is of utmost importance to identify individuals who are at high risk of using both 

cigarettes and ATPs. Research subjects in previous studies have been predominately White 

(Backinger et al., 2008; Bombard, Pederson, Koval, & O'Hegarty, 2009; Bombard et al., 2007; 

Richardson, Xiao, & Vallone, 2012) and most existing studies have used traditional regression 
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approaches to identify important factors associated with ATP use. Although regression methods 

can test a priori specified interaction effects, it lacks the ability to capture unspecified, complex 

inter-relationships across factors. Classification and Regression Trees model (CART) can 

address these limitations by revealing unspecified inter-relationships through an easily 

interpretable tree diagram. Few studies have applied CART modeling to tobacco research (Piper, 

Loh, Smith, Japuntich, & Baker, 2011; Swan, Javitz, Jack, Curry, & McAfee, 2004). In this 

paper we used data from a cross-sectional survey of smokers and conducted the most commonly 

used logistic regression method and relatively underused CART method, and described the 

strength and limitations of these two statistical approaches in identifying cigarette smokers at 

highest-risk for ATP use.  

2.2 Methods  

2.2.1 Study population   

The data was collected through a cross-sectional survey administered through an online 

panel survey service, Survey Sampling International (SSI), between July 5, 2012 and August 15, 

2012. Ethical approval was granted by the University of Minnesota Institutional Review Board. 

Participants were presented with a written informed consent page prior to completing the 

screener. Only participants who indicated their consent were directed to the study 

questions. Eligible participants self-identified as current smokers, African American, White, or 

Latino (of any race), were English-speaking, and were at least 25 years old. The study sample 

contained 2,376 participants balanced by the three racial/ethnic groups across smoking 

frequencies (daily and nondaily smoking): 794 African Americans, 786 Latinos, and 796 whites. 

Among them, 1,220 participants (51.35%) were cigarettes + ATP users who used both cigarettes 
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and other tobacco products and 1,156 (48.65%) were cigarettes-only users. Variable domains in 

this study included: demographics, tobacco characteristics, cost concerns, harm reduction efforts, 

and psychosocial variables. There was minimal missing data, about 4.3% subjects were missing 

one variable (income), and therefore imputation was not necessary. Chi-square tests were used to 

test the unadjusted effects of categorical variables and T-tests were used to test continuous 

variables (Table 2.1). 

2.2.2 Training and validation data sets  

The large sample size allowed for the use of a hold-out validation to obtain independent 

training and validation data sets (Harrell, 2001; Larson, 1931; Mosteller & Wallace, 1963; 

Refaeilzadeh, Tang, & H., 2008; Ruggeri, Kenett, & Faltin, 2008 ). The data was partitioned by 

random sampling, stratifying by cigarettes + ATP use and race/ethnicity to ensure the balance we 

designed. Training sample contained 1,584 participants (two thirds of the sample) and was used 

to derive the model. The remaining data contained 792 participants (one third of the sample) and 

were used to evaluate the predictive ability of the final model. The training and validation 

samples were compared to ensure the differences between the two were negligible (Table 2.2). 

2.2.3 Analysis  

Logistic regression.  Logistic regression is a traditional way to identify important factors 

for binary outcomes. The Akaike Information Criterion (AIC) is widely recommended as a 

model selection criterion (Harrell, 2001). To avoid the technical difficulty of comparing AICs 

from all possible variable combinations, we followed a model selection strategy recommended 

by Frank E. Harrell to trim the potential models
 
(Harrell, 2001) and then picked the minimal AIC 

model from the potential models as the final model. The selection process started with all 
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potential factors. Predicted values from the logistic regression were then regressed on all 

covariates, with the model explaining 100% of the variance. Backward selection based on 𝑅2 

was used to select a parsimonious set of variables. The contribution of each covariate in the 

multivariable model was ranked, and variables with the smallest contribution to the model were 

sequentially eliminated. This iterative process continued until further variable elimination led to 

a greater than 5% loss in model prediction, as compared with the initial model. The remaining 

covariates comprised the parsimonious model and explained over 95% of the variance of the full 

model. Finally, we compared AIC values of neighborhood models around the model we obtained 

in the last step and the minimum AIC model was selected as the final model. This selection 

strategy supports inclusion of only variables that provide incremental prognostic value, avoids 

over-fitting, and maximizes the potential usefulness of the model. Besides this model selection 

strategy, we examined backward selections based on p-value with 0.15 as the threshold to enter 

and 0.05 as the threshold to stay in the model. Both approaches identified the same model.  

Predicted values using the model estimates from the training cohort were generated for 

the validation cohort and the c-index was then calculated based on the proportion of 

concordance.  The predicted values were ranked and cut into deciles. The calibration plot was 

graphed comparing the average predicted probabilities with the observed average probabilities. A 

calibration regression on observed mean probabilities was performed using predicted mean 

probabilities to check the strength of correlation between the predicted and the observed average 

probabilities across deciles. 

Classification and Regression Tree (CART) Model. Although the logistic regression 

model provides knowledge of important profile characteristics, it lacks the ability to identify 

unknown, and therefore, unspecified interaction effects. The interpretation of parameter 
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estimates is based on the fact of controlling for all other covariates.  To address these problems, 

we built Classification and Regression Tree models (CART) in SAS Enterprise Miner version 

12.3 (Gordon, 2013; Loh, 2011). CART is a nonparametric method that identifies mutually 

exclusive and exhaustive subgroups. Members within each subgroup share the same 

characteristics that influence the probability of belonging to the interested response group 

(Lemon, Roy, Clark, Friedmann, & Rakowski, 2003).
 
CART produces a model structure that 

resembles an upside-down tree. The tree starts with the parent node, and the parent node contains 

the entire population. The CART algorithm examines all possible independent variables 

according to a predetermined splitting rule and divides the parent node into two child nodes; the 

child nodes can be further divided into more child nodes. There are many splitting rules, and they 

all begin with defining the impurity of a node (Lemon et al., 2003). The impurity function 

measures the extent of difference/similarity for a node containing data points from possible 

different classes. A node that has no impurity would have no variability (e.g. all cigarettes-only 

smokers, or all cigarettes + ATP smokers). The highest impurity is achieved when p(k|t)=0.5, 

where p(k|t) is defined as the conditional probability of belonging to class k given in node t.  

Although the impurity functions may vary, all splitting rules select the split that has the largest 

difference between the impurity of the parent node and a weighted average of the impurity of the 

two child nodes (Lemon et al., 2003). The Gini splitting rule was recommended most for binary 

outcomes (Gordon, 2013).
 
This rule maximizes the following improvement of impurity function 

(Timofeev, 2004): 

arg 𝑚𝑎𝑥

𝑥𝑗 ≤ 𝑥𝑗
𝑅 , 𝑗 = 1, … , 𝑀 [− ∑ 𝑝2(𝑘|𝑡𝑝

𝐾

𝑘=1

) + 𝑃𝑙 ∑ 𝑝2(𝑘|𝑡𝑙) + 𝑃𝑟 ∑ 𝑝2

𝐾

𝑘=1

𝐾

𝑘=1

(𝑘|𝑡𝑟)] 

p(k|t): conditional probability of dependent variable= k given node t 
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subscript p: parent node 

subscript r: child right node 

subscript l: child left node 

𝑃𝑙: probability in the left child node 

𝑃𝑟: probability in the right child node (note: 𝑃𝑙 + 𝑃𝑟 = 1) 

𝑥𝑗
𝑅: best splitting value of variable 𝑥𝑗 

M: number of potential independent variables 

K:  level of dependent variables. For binary outcomes, K=2 

The larger the value of the improvement in impurity function, the greater difference 

between the two child nodes with respect to the prevalence of the dependent measure. The 

CART procedure selects the independent variable and the splitting cutoff of the continuous 

independent variable to maximize the improvement at each step. The tree grows as child nodes 

are divided into more child nodes. The terminal nodes are where predictions and inferences are 

made.  

It is clear that different samples would produce different trees. One common way to 

assess how different the trees could be is using training and validation samples. To facilitate 

comparisons, the same set of training and validation samples were used in logistic regression 

model and CART model. In CART model, misclassification rates from both the training sample 

and the validation sample were compared to ensure the model is stable. 
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The maximum tree with the minimum misclassification error was examined and the 

misclassification error graph showed that it contained insignificant nodes, which reduced the 

misclassification error marginally but increased the complexity greatly.  A popular stopping 

strategy was applied by predefining the minimum number of points in the terminal node to 

control the size of the tree (Lemon et al., 2003). The minimum node size was set to be 10% of 

the training sample size or about 150 subjects in our study. Models were assessed to identify a 

parsimonious tree that produces non-trivial results with acceptable misclassification rates. 

2.3 Results  

2.3.1 Logistic regression model.   

The final model consisted of nine variables (Table 2.3). Males had the strongest 

association with being a cigarettes + ATP user vs. cigarettes-only user (adjusted OR 2.66, 95% 

CI 2.12 – 3.33). African Americans and Latino were more likely to be cigarettes + ATP users 

compared to whites (adjusted OR 1.58, 95% CI 1.21 – 2.07 and adjusted OR 1.52, 95% CI 1.16 – 

1.99, respectively). Individuals with higher nicotine dependence were more likely to be 

cigarettes + ATP users (adjusted OR 1.51, 95% CI 1.20 – 1.90). Participants who buy their 

cigarettes were less likely to be cigarettes + ATP users compared to those who borrow cigarettes 

from others (adjusted OR 0.617, 95% CI 0.49 – 0.78).  Individuals who were more sensitive to 

the price of cigarettes were more likely to be cigarettes + ATP users (adjusted OR 1.43, 95% CI 

1.14 -1.79). Individuals who set limit on cigarettes per day were more likely to be cigarettes + 

ATP users (adjusted OR 1.30, 95% CI 1.04 – 1.62). Individuals with higher alcohol scores were 

more likely to be cigarettes + ATP users (adjusted OR 1.10, 95% CI 1.064-1.145). Older people 

were less likely to use cigarettes + ATPs (adjusted OR 0.97, 95% CI 0.96-0.98). Higher 
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discrimination scores were associated with higher probability of using cigarettes + ATPs 

(adjusted OR 1.03, 95% CI 1.01 – 1.05).  The C-index of the final model was 0.74, indicating 

good discriminatory capacity (Figure 2.1). 

 

Figure 2.1: Results from logistic regression on the training sample: ROC curve 

 

2.3.2 Model validation   

Participants were similar in terms of all profile characteristics (Table 2.2), except that 

participants in the validation cohort smoked about 1 cigarette per day less than the training 

cohort (10 vs. 9, p=0.009).The model performed well in the validation cohort with good 

discrimination (c-index=0.73) and excellent calibration with an intercept of 0.018 (p-value for 

difference from 0 = 0.65) and a slope=0.96 (p-value for difference from 1= 0.58). The R-square 

for the calibration regression was 0.96 and the Pearson correlation coefficient was 0.98 (p-

value<0.0001) (Figure 2.2). 
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Figure 2.2: Results of calibration from validation sample: calibration plot 

2.3.3 Classification and Regression Tree (CART) Model.    

Figure 3 shows the final tree results using the stopping rule of minimum node size no less 

than 150. The same independent training and validation samples were used as in the logistic 

regression. The misclassification rate was 0.342 for the training sample and 0.346 for the 

validation sample. The C-index was 0.70 for the training sample and 0.69 for the validation 

sample.  

Males were more likely to be cigarettes + ATP users, especially when they were 

moderate to heavy drinkers (alcohol use score> 2). A male with a 3 or higher alcohol score had 

73.5% probability of being a cigarettes + ATP user. Females were less likely to be cigarettes + 

ATP users, especially when they were older. Female participants aged 46 or older had a 29.0% 
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probability of being cigarettes + ATP users. Among females age 45 years or younger, Latino and 

African Americans were more likely to be cigarettes + ATP users compared to whites. 37.2% of 

White females aged 45 years or younger were cigarettes + ATP users. Latino and African 

American females aged 45 or younger, who also experienced greater discrimination were more 

likely to be cigarettes + ATP users, about 62.2% probability if their discrimination score was 

greater than 6 (Figure 2.3). Interestingly, age, race, and discrimination effects that impacted 

female participants did not play important roles for males. Alcohol scores increased the risk of 

cigarettes + ATP use for males but were not important for females. These indicated informative 

interaction patterns to examine the profile characteristics of cigarettes + ATP users.

 

Figure 2.3: Classification and Regression Tree model for predicting Cig + ATP users 
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2.4 Limitations  

A hold-out validation strategy was used in this study to obtain independent training and 

validation datasets. The reduced data can result in an enlarged variance. Although this method is 

reasonable in this study because the sample size is large, other validation strategies, such as k-

fold cross validation, which uses overlapped training data, may achieve more accurate 

performance estimation. We used a method suggested by Harrell (2001)
 
(Harrell, 2001) to trim 

potential models and then compared AIC of these potential models to obtain the final model. 

Other model selection strategies, such as LASSO and ridge regression were not compared with 

this method.  

2.5 Discussion  

The CART model identified the five most important factors: gender, alcohol scores, age, 

race, and discrimination scores. The logistic regression model identified nine variables: the same 

five as the CART model, and additionally, whether the participant buys or borrows cigarettes 

from others, whether the participant limits cigarettes per day, price influences, and nicotine 

dependence. Therefore, the logistic regression model expanded the variable pool from the CART 

model. 

The logistic regression model results in higher C-index than the CART model (0.74 

versus 0.70 for the training sample and 0.73 versus 0.69 for the validation sample). However, the 

C-index from the CART model was not directly comparable to that in the logistic regression 

model because the classifiers varied across different subgroups in the CART model due to partial 

interaction effects.  On the other hand, logistic regression models lack the ability to identify 

unspecified, complex inter-relationships between factors. In studies where interaction effects are 
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unclear, it is impractical to test all potential interaction effects in logistic regression models. 

However, there might be potential inter-relationships, especially among demographic, 

psychosocial, and economic factors. Even if the logistic regression model achieves good model 

fit, we could still miss interaction effects that are significant to clinical practice. CART analysis 

is efficient to address these problems and it is easy to perform with available statistical software. 

It has great flexibility of building a model that can be easily interpreted through pictorial 

illustration, without pulling in too much complexity. CART can be considered as complementary 

to logistic regression models and the result from CART revealed clearly classified high-risk 

populations of ATP use among cigarette smokers. 

2.6 Conclusions  

The growing trend of ATP use could ultimately cut down the effect of tobacco control 

efforts that we have seen in recent years. Compared to the traditional logistic regression model, 

our CART model is more straightforward in classifying individuals at high risk of using 

cigarettes + ATPs. This model identified fewer factors associated with cigarettes + ATP use and 

revealed partial interactions that are not easy to find in logistic regression, thus provided clearer 

direction for identification and treatment in clinical practice. In general, the CART methodology 

can be used to classify high risk or at need groups for identification for treatment protocols 

including behavioral interventions.    
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Table 2.1: Univariate Differences between Smokers who Use Cigarettes in Combination with 

Alternative Tobacco Product (Cigarettes + ATP) Compared to those who use Cigarettes Only 

 Cigarettes + 

ATP 

(n=1,220) 

Cigarettes 

Only 

(n=1,156) 

p value 

Demographics    

Male 662 (27.9%) 332 (14.0%) < 0.001 

Age (±SD) 40.24 ± 11.64 45.85 ± 12.62 < 0.001 

Race 

  African American 

  Latino 

  White 

 

436 (18.4%) 

455 (19.1%) 

329 (13.8%) 

 

358 (15.1%) 

331 (13.9%) 

467 (19.7%) 

< 0.001 

Education, % college graduate or higher 474 (19.9%) 364 (15.3%) < 0.001 

Income, % < $1800/month 480 (20.2%) 463 (19.5%) 0.725 

Tobacco Characteristics    

Smoking status (%) 

  Nondaily 

  Daily light (1-10 cpd) 

  Daily heavy (11+ cpd) 

 

673 (28.3%) 

259 (10.9%) 

288 (12.1%) 

 

528 (22.2%) 

319 (13.4%) 

309 (13.0%) 

< 0.001 

Menthol smoker 737 (31.0%) 623 (26.2%) 0.001 

Cigarettes per day, mean (±SD) 9.30 ± 8.70 10.14 ± 8.52 0.017 

Time to first cigarette, % within 30 minutes of 

waking 

720 (30.3%) 629 (26.5%) 0.024 

24 hour quit attempts in last 12 months, mean (±SD) 5.50 ± 9.53 5.94 ± 11.79 0.451 

Cost    

Price of cigs influenced them to smoke less, % yes 726 (30.6%) 644 (27.1%) 0.061 

Price of cigs influenced where they buy cigs, % yes 840 (35.4%) 826 (34.8%) 0.166 

Price of cigs influenced the brand they buy, % yes 590 (24.8%) 455 (19.1%) < 0.001 
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 Cigarettes + 

ATP 

(n=1,220) 

Cigarettes 

Only 

(n=1,156) 

p value 

Buy versus borrow cigs, % buy all cigs they smoke 683 (28.7%) 824 (34.7%) < 0.001 

Harm Reduction    

Trying to cut down on cigs smoke, % yes 862 (36.3%) 818 (34.4%) 0.955 

Limit cpd to decrease health risk, % yes 596 (25.1%) 505 (21.3%) 0.012 

Limit smoking in last year to decrease health risks, % 

always or often 

360 (15.2%) 356 (15.0%) 0.494 

Psychosocial    

Depression score, mean (±SD)a 2.14 ± 1.83 1.80 ± 1.84 < 0.001 

Alcohol score, mean (±SD)
b
 4.64 ± 3.10 3.30 ± 2.98 < 0.001 

Discrimination score, mean (±SD)
c
 8.28 ± 6.72 5.85 ± 5.66 < 0.001 

a
 Scores range from 0-6 with scores of 3 or higher indicating possible depressive symptoms  

b 
Scores range from 0-12 with scores of >4 for men and >3 for women indicating possible alcohol misuse 

c 
Scores range from 0-25 with higher scores indicating greater frequency of discrimination in daily life 
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Table 2.2: Univariate Differences between training sample and validation sample 

 Training 

(n = 1584) 

Validation 

(n = 792) 
P value 

Demographics    

Male 657 (27.7%) 337 (14.2%) 0.617 

Age (±SD) 42.94 ± 12.39 43.03 ± 12.5 0.880 

Race 

  African American 

  Latino 

  White 

 

530 (22.3%) 

524 (22.1%) 

530 (22.3%) 

 

264 (11.1%) 

262 (11.0%) 

266 (11.2%) 

0.997 

Education, % college graduate or higher 550 (23.1%) 288 (12.1%) 0.430 

Income, % < $1800/month 614 (25.8%) 329 (13.8%) 0.192 

Tobacco Characteristics    

Smoking status (%) 

  Nondaily 

  Daily light (1-10 cpd) 

  Daily heavy (11+ cpd) 

 

799 (33.6%) 

373 (15.7%) 

412 (17.3 ) 

 

402 (16.9%) 

205 (8.6%) 

185 (7.8%) 

0.263 

Menthol smoker 899 (37.8%) 461 (19.4%) 0.500 

Cigarettes per day, mean (±SD) 10.03 ± 9.03 9.06 ± 7.69 0.009 

Time to first cigarette, % within 30 minutes of 

waking 

900 (37.9%) 449 (18.9%) 0.953 

24 hour quit attempts in last 12 months, mean 

(±SD) 

5.54 ± 9.87 6.00 ± 11.93 0.454 

Cost    

Price of cigs influenced them to smoke less, % yes 920 (38.7%) 450 (18.9%) 0.557 

Price of cigs influenced where they buy cigs, % yes 1100 (46.3%) 566 (23.8%) 0.311 

Price of cigs influenced the brand they buy, % yes 685 (28.8%) 360 (15.2%) 0.306 

Buy versus borrow cigs, % buy all cigs they smoke 1004 (42.3%) 503 (21.2%) 0.952 
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 Training 

(n = 1584) 

Validation 

(n = 792) 
P value 

Harm Reduction    

Trying to cut down on cigs smoke, % yes 1119 (47.1%) 561 (23.6%) 0.924 

Limit cpd to decrease health risk, % yes 730 (30.7%) 371 (15.6%) 0.727 

Limit smoking in last year to decrease health risks, 

% always or often 

476 (20.0%) 240 (10.1%) 0.899 

Psychosocial    

Depression score, mean (±SD)
a
 1.99 ± 1.86 1.96 ± 1.82 0.683 

Alcohol score, mean (±SD)
b
 4.02 ± 3.16 3.93 ± 3.03 0.494 

Discrimination score, mean (±SD)
c
 7.03 ± 6.30 7.23 ± 6.44 0.460 

a
 Scores range from 0-6 with scores of 3 or higher indicating possible depressive symptoms  

b 
Scores range from 0-12 with scores of >4 for men and >3 for women indicating possible alcohol misuse 

c 
Scores range from 0-25 with higher scores indicating greater frequency of discrimination in daily life 
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Table 2.3: Results from logistic regression on the training cohort: estimates and Odds Ratios 

Parameter Estimate 

Odds 

Ratio 

95% CL for 

OR P-value 

Intercept -0.2617 NA NA 0.3497 

Age -0.0265 0.974  (0.964, 0.983)  <.0001 

Male 0.9766 2.655  (2.118, 3.329)  <.0001 

Buy vs. Borrow -0.4832 0.617  (0.486, 0.783)  <.0001 

Alcohol 0.0986 1.104  (1.064, 1.145)  <.0001 

Price influenced the brand they buy 0.3579 1.430  (1.144, 1.788)  0.0017 

African American vs. white 0.4576 1.580  (1.208, 2.066)  0.0008 

Latino vs. white 0.4170 1.517  (1.155, 1.994)  0.0028 

Discrimination 0.0259 1.026  (1.007, 1.045)  0.0065 

Time to first cig less than 30 min 0.4100 1.507  (1.197, 1.897)  0.0005 

Limit cigarettes per day 0.2612 1.299 (1.041, 1.619) 0.0203 

 

  



28 
 

 

 

 

 

 

 

 

Chapter 3 : Comparison of Dichotomized and Distributional 

approaches in a DHA Supplementation Clinical Trial Design: a 

Fixed Bayesian Design  

Yang Lei, Susan Carlson, Lisa Yelland, Maria Makrides, Robert Gibson, & Byron J. Gajewski 

 

(Submitted to Journal of Applied Statistics) 

  



29 
 

Abstract  

This research was motivated by our goal to design an efficient clinical trial to compare two doses 

of docosahexaenoic acid supplementation for reducing the rate of earliest preterm births and/or 

preterm births in a fixed Bayesian design framework. Dichotomizing continuous gestational age 

data and analyzing the data using a classic binomial distribution will result in a loss of 

information and reduced power. A distributional approach is an improved strategy for 

dichotomizing continuous data while retaining statistical power from the continuous distribution. 

However, appropriate distributions that fit the data properly, particularly in the tails, must be 

chosen, especially when the data are skewed. A recent study proposed log transformation and use 

of a normal distribution for the transformed gestational age data. We propose a three-component 

normal mixture model and introduce separate treatment effects at different components of 

gestational age. We evaluate operating characteristics of clinical trial designs comparing this 

mixture model with a beta-binomial model and a normal model applied to the log transformed 

data through simulation. We also apply these three methods to data from two completed clinical 

trials from the USA and Australia. Finite mixture models are shown to have favorable properties 

in preterm births analysis but limited benefit for earliest preterm births analysis. Normal models 

on log transformed data have the largest bias and are not as efficient as finite mixture models. 

Therefore we recommend finite mixture model for preterm births study.  Either finite mixture 

model or beta-binomial model is acceptable for earliest preterm births study. 

 

Keyword: Bayesian, Normal mixture model, simulation, Dichotomization, preterm birth 
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3.1Introduction  

In many circumstances, clinical researchers are interested in studying categorized 

outcomes using cutoff points despite continuous measurements being collected. It has been 

widely accepted that dichotomizing continuous data prior to analysis results in a loss of 

information and reduced power (Altman & Royston, 2006; Deyi, Kosinski, & Snapinn, 1998; 

Peacock et al., 2012).
 
 A distributional approach can be used to dichotomize continuous data 

while retaining the statistical power from the continuous distribution (Peacock et al., 2012). 

Peacock et al. (2012) described the use of the distributional method and showed the good 

performance of this parametric approach under standard normal distributional assumptions 

(Peacock et al., 2012).  Sauzet et al. (2015) further discussed the distributional approach when 

the outcome is skewed and proposed a skew-normal distributional method for dichotomization 

(Sauzet, Ofuya, & Peacock, 2015).
 
They used a logarithm transformation to normalize negatively 

skewed gestational age data and then applied the skew-normal distributional method under the 

Frequentist framework. They acknowledged that no satisfactory transformation is available for 

gestational age data (Sauzet et al., 2015).
 
Mixture models with different components might be a 

better choice for skewed outcomes such as gestational age, because they allow for greater 

flexibility in modeling heterogeneous populations (McLachlan & Peel, 2000),
 
which largely 

explains the skewness of gestational age data.  

Our research was motivated by our goal to design an efficient clinical trial to compare 

two doses of docosahexaenoic acid (DHA) supplementation for reducing the rate of earliest 

preterm births (ePTB, gestation age<34 weeks) and/or preterm births (PTB, gestational age<37 

weeks). Both endpoints have been evaluated in past studies (Makrides et al., 2010).
  
The United 

States currently has a PTB rate of 11.4% (House, 2014) and babies born preterm are at increased 
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risk of immediate life-threatening health problems, as well as long-term complications and 

developmental delays (Gajewski, Reese, Colombo, & Carlson, 2016).
 
Among preterm infants, 

those babies who are born the earliest (<34 weeks) are at greatest risk of complications. 

Although the overall PTB rates have decreased over time, the ePTB rates in the U.S. have 

decreased little since 1990 and the overall ePTB rates in the US for 2012 were 3.4% (Martin, 

Hamilton, Osterman, Curtin, & Mathers, 2013).
 
 These births impact overall infant mortality the 

most and result in much higher hospital costs than uncomplicated births (Russell et al., 2007).
 
 

Docosahexaenoic acid (DHA) supplementation potentially provides a high yield, low risk 

provocative strategy to reduce early preterm delivery (Gajewski et al., 2016).
 
We designed a 

Phase III clinical trial (randomized to low or high dose DHA, double-blind) to examine the 

efficacy of 1000 mg/day DHA supplementation to reduce the probability of earliest preterm 

births and/or preterm births compared to 200 mg/day, an amount recommended by the 

FAO/WHO for pregnant and lactating women and currently in many prenatal supplements. Our 

goal was to identify a powerful design that would provide an efficient estimate of the treatment 

effect. 

Gestational age (GA) data will be measured in completed weeks/days and collected in a 

continuous form. The two clinically important endpoints of interest are: ePTB (GA<34 weeks) 

and PTB (GA<37 weeks). The traditional analysis approach is to dichotomize the continuous 

gestational age data using these cutoff points and to compare the probabilities of binary 

outcomes, using a chi-square test for example. Distributional methods compare the proportions 

below the cutoff points in continuous distributions (Gajewski et al., 2016; Peacock et al., 2012).
 
 

Sauzet et al. (2015) proposed a skew-normal method and used normal distribution on the 

logarithmic transformed data (Sauzet et al., 2015).
 
We propose a three-component normal 
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mixture model and apply the distributional approach directly. The aim of this study is to compare 

these three statistical methods under a fixed Bayesian design framework for a very rare endpoint 

(ePTB) and a less rare endpoint (PTB).  

The remainder of this article is arranged as follows. In section 2, we describe three 

statistical models using the pre-dichotomizing and distributional methods separately. In section 

3, we provide the simulation details under a fixed Bayesian clinical trial design framework and 

compare these three statistical methods in several realistic outcome scenarios. In section 4, we 

apply these three methods to data from two completed clinical trials, one in the USA and one in 

Australia. The results from the real data analysis are examined and compared. In section 5, we 

discuss the observations from the simulations and real data analysis and further investigate the 

rationale of these observations. In section 6, we discuss the limitations of this study. In section 7, 

we draw conclusions from our analysis and give suggestions to future studies. 

3.2 Statistical models  

Let Yj = (Yj1,…, Yjnj
) denote the continuous data of gestational age, where j denotes the 

treatment group assignment (j=c for participants in the control group and j=t for participants in 

the treatment group) and nj denotes the sample size in the jth treatment group in a two-armed 

randomized clinical trial design. Let pj denote the probability of ePTB or PTB in the jth 

treatment group. 

The first method considered involves dichotomizing the data prior to modeling. We 

propose a beta-binomial model to simplify a Bayesian inference of P(pc > pt|data), denoting 

the posterior probability that control has a higher ePTB/PTB rate than treatment. Because the 

endpoints considered are rare, using a uniform prior or a beta (1,1) prior might induce non-
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negligible bias. We therefore assume a very weak prior of pj as beta (0.01, 0.01). Furthermore, 

the posterior mode is close to a classical Frequentist approach (i.e., Maximum Likelihood 

Estimator). Let Xj = ∑ I(Yji < 34 𝑜𝑟 37), where I(x < 𝑦) = {
1, x < 𝑦
0, x ≥ y

nj

i=1
 and nj is the sample 

size in the jth treatment group (i=1,..., nj). The distribution of Xj is assumed to follow a binomial 

distribution: Xj|pj~binomial(nj, pj). The posterior distribution of pj|Xj~ beta (Xj + 0.01, nj −

Xj + 0.01  ).  

The second method considered is a distributional approach, where we will apply the 

transformation recommended by Sauzet et al. (2015) (Sauzet et al., 2015).
 
First we take a 

logarithmic transformation of (45-GA) to normalize the data because we expect GA in weeks to 

be <45 and is negatively skewed, Zji = log(45 − Yji) , i = 1, … , nj , and then assume 

Zji
i. i. d

~
N(μj, σj

2). Since the logarithmic transformation is a continuous and monotonic 

transformation, this does not affect the proportion below a cut-point (Sauzet et al., 2015).
 
The 

proportions of GA below 34 and 37 are translated into the proportions greater than log(45-34) 

=2.3979 and log(45-37) =2.0794 in the normal distribution N(μj, σj
2).  We use non-informative 

conjugate priors for the parameters in the normal distribution: N(0, 1002) for μj and Gamma 

(0.001, 0.001) for 
1

σj
2. The posterior probability of ePTB or PTB (pj|Zj) is calculated as pj|Zj =

∫ ɸ(y|μj, σj
2)

∞

2.3979 or 2.0794 
 dy, where ɸ(y|μj, σj

2) is a normal density function with posterior 

variance σj
2|Zj~IG(0.001 +

nj

2
−

1

2
, 0.001 +

1

2
∑ (Zji − Zj̅)

2nj

i=1
), and posterior mean 

μj|Zj,σj
2~Normal (

1002njZ̅j

1002nj+σj
2 ,

1002σj
2

1002nj+σj
2).  
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The third method considered is another distributional approach using the finite normal 

mixture model. Peacock et al. (2012) showed the good performance of the parametric approach 

under traditional normal distributions (Peacock et al., 2012).
 
We extend this approach here and 

propose a finite mixture normal model to allow for population heterogeneity. In this method, we 

apply a three-component normal mixture model derived from the North Carolina Detailed Birth 

Record (NCDBR) database with 336,129 observations in the final analysis: a three-component 

mixture of N(39.59, 0.96), N(38.26, 2.48), and N(33.29, 13.23) (Schwartz, Gelfand, & Miranda, 

2010).  The 95% CIs for the parameter estimates in this model show these estimates are reliable 

in this registry data. The first component has a mean of 39.59 (39.58, 39.61), and variance of 

0.96 (0.95, 0.97). The second component has a mean of 38.26 (38.20, 38.32) and variance of 

2.48 (2.42, 2.54). The third component has a mean of 33.29 (33.07, 33.51) and variance of 13.23 

(12.78, 13.67) (Schwartz et al., 2010).
 
Although we used fixed parameter estimates from a U.S. 

registry data, this model has unprecedented advantages in gestational age data analysis or clinical 

trial design, even for a different population. Firstly, the parameter estimates are derived from a 

huge registry data thus is representative and has generalizablility. Secondly, a three-component 

mixture normal model has its own flexibility to model similar but not exactly the same 

gestational age data from a different population by allowing various component weights. Thirdly, 

the three components are realistic and interpretable. The three components represent low, 

medium, and high-risk groups for PTB separately. We assume a unity prior for ∆j (j=c,t), the 

mixture weights in the jth treatment group, and the three-component normal mixture model can 

be written as: f(Yji|∆j)=∆1jɸ(Yji|39.59, 0.96) + ∆2jɸ(Yji|38.26, 2.48)+∆3jɸ(Yji|33.29, 13.23), 

where ɸ (y|μ, σ2) denotes the density of y in a normal distribution with mean μ and variance σ2, 

and  ∆1j, ∆2j, and ∆3j denote the mixture weights in the jth treatment group, with ∆1j +  ∆2j +



35 
 

∆3j= 1. In this method, the posterior probability of ePTB or PTB (pj|Yj) is calculated as: 

pj|Yj = ∫ f(y|∆j)
34 or 37

−∞
 dy. A more general approach would be to let each component’s mean 

and variance be freely modeled. However, we found our approach was flexible and appropriate 

for our focus on the lower tail. Furthermore, fixing the components avoids some of the 

identifiability issues found in general mixture models (McLachlan & Peel, 2000).
  

3.3 Fixed Bayesian clinical trial design and simulation study  

A previous Phase III trial comparing 600 mg DHA per day and placebo, Kansas 

University DHA Outcome Study [KUDOS], found an 85% reduction in ePTB with DHA 

supplementation (Carlson et al., 2013). Another Australian trial, DHA to Optimize Mother Infant 

Outcome [DOMInO] trial, which compared 800 mg DHA per day and placebo, found a 50% 

reduction in ePTB with DHA supplementation (Makrides et al., 2010). In both trials, ePTB was a 

secondary outcome (Carlson et al., 2013; Makrides et al., 2010). The primary aim of the current 

proposed Phase III randomized, double-blind trial is to test the hypothesis that ePTB and/or PTB 

is reduced by 1000 mg of DHA per day compared to 200 mg DHA per day. We performed a 

simulation study based on realistic response scenarios to investigate the operating characteristics 

of this fixed Bayesian clinical trial design. 

3.3.1 Simulation methods  

We simulated gestational age data using different true values of mixture weights (∆0) 

with resulting probabilities of ePTB or PTB close to probability scenarios we observed from our 

clinical trials (Carlson et al., 2013). In the beta-binomial model, we used simulation to generate 

the posterior distribution of  pj|Xj~ beta (Xj + 0.01, n − Xj + 0.01  ) for both treatment and 

control groups and calculated the probability of pc|Xc > pt|Xt. In the finite mixture model, we 
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used Markov Chain Monte Carlo (MCMC) to generate posterior distributions of ∆j and the 

posterior probability pj|Yj was calculated as: pj|Yj = ∫ f(y|∆j)
34 or 37

−∞
 dy. In the logarithmic 

transformation method, we used Gibbs sampling to generate posterior distributions of 

μjp and σjp
2 . The posterior probability pj|Zj was calculated as ∫ ɸ(y|μjp, σjp

2 )
∞

2.3979 or 2.0794 
 dy. If 

Pr(pc > pt|data) > 𝛿, we counted this as a trial success. The posterior mean of pj|data, 

pĵ = E(pj|data), was saved for each simulation in each of the three models. In all models, the 

expected estimated probability of ePTB or PTB, E(pĵ) was calculated as the average of pĵ across 

simulations. Vj, the sample variance of pĵ, was calculated as  
∑ (pĵ−E(pĵ))2S

j=1

S−1
  for each treatment 

group, where S was the number of simulations. The MSE of E(pĵ) was calculated as bias2 +

 sample variance = (E(pĵ)  − Pj,0)2 + Vj, with Pj,0 denoting the true probability of ePTB or PTB 

in the jth treatment group.  

To mimic situations for ePTB in future trials, we simulated 5 scenarios with varying 

treatment effects: no effect (3 vs. 3%, difference=0), very small (3 vs. 2%, difference=1%), small 

(3 vs. 1%, difference=2%), medium (3 vs. 0.5%, difference=2.5%) and large (4 vs. 1%, 

difference=3%) based on our previous clinical trial results (Carlson et al., 2013). To mimic 

situations for PTB in future trials, we simulated another 5 scenarios: no treatment effect (8 vs. 

8%, difference=0), very small (8 vs. 7%, difference=1%), small (8 vs. 6%, difference=2%), 

medium (8 vs. 5%, difference=3%) and large (8 vs. 4%, difference=4%) based on results from 

our previous clinical trial (Carlson et al., 2013).
 
In the null scenarios where the treatment effect 

was 0, we identified the δ values which made the average success rate across simulations 

approximately equal to 0.05, P(Pr(pc > pt|data) > 𝛿)  ≈ 0.05. δ values can vary in different 



37 
 

statistical methods. This ensured the type I error rate was about 5%. In other scenarios, 

P(Pr(pc > pt|data) > 𝛿) was used to calculate the power of the tests. 

We compared the simulated trial operating characteristics, (bias, power and MSE) across 

the three models for both ePTB and PTB. These were based upon 1000 simulations and 600 

subjects in each group because our designed trial has a sample size around 1200.  The δ value 

was 0.95 for both ePTB and PTB simulations, in the beta-binomial model and the finite mixture 

model. In the logarithmic transformation model, δ was 0.999 for ePTB simulations and 0.997 for 

PTB simulations. All methods were implemented in R 3.1.1 and Openbugs. 

3.3.2 Simulation results  

In the simulation study of probability of ePTB (<34 weeks), the beta-binomial model had 

lower bias compared to the finite mixture model and the logarithmic transformation model in all 

scenarios. The MSE in the finite mixture model was consistently lower than in the beta-binomial 

model and logarithmic transformation model in the control group and slightly higher than in the 

beta-binomial model in the last three scenarios in the treatment group (Table 3.1).  Figure 3.1 

shows the comparisons of bias, variance, MSE and power across the three models. In the null 

scenario, the type I error rate was 0.048 in the beta-binomial model, 0.054 in the finite mixture 

normal model, and 0.053 in the logarithmic transformation model (Table 3.1). The power for the 

finite mixture model was slightly higher than the beta-binomial model in other scenarios, but the 

difference was small (Figure 3.1). The logarithmic transformation model had the largest bias and 

lowest power (Table 3.1). 
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Figure 3.1: Simulated Trial Operating Characteristics for Probability of ePTB (GA<34 weeks) 

 

In the simulation study of probability of PTB (<37 weeks), the beta-binomial model 

continued to have lower bias compared to the finite mixture normal model and the logarithmic 

transformation model. The difference in MSE between the finite normal mixture model and the 
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beta-binomial model was larger than that in the ePTB simulations (Table 3.1 and Table 3.2). The 

logarithmic transformation model again had the largest bias and largest MSE (Table 3.2).  In the 

null treatment effect scenario, the type I error rate was 0.054 in the beta-binomial model, 0.05 in 

the finite mixture normal model, and 0.051 in the logarithmic transformation model (Table 3.2). 

The power for the finite mixture model was higher than the beta-binomial model in other 

scenarios, with differences as large as 7.5% when the true effect was likely (8 vs. 5%)  (Table 

3.2). Figure 3.2 shows the comparisons of bias, variance, MSE and power across the three 

models. 

These simulation results demonstrated that although the bias from the finite mixture 

method was slightly larger than that from the pre-dichotomizing method, the parameter estimates 

from the finite mixture method had desirable properties such as lower MSE and lower variance. 

In ePTB simulation, the finite mixture model did not appear to be more desirable than the beta-

binomial model. However, the advantages of the finite mixture model became apparent in PTB 

analysis. The logarithmic transformation method has the largest bias and highest MSE. In a 

word, the logarithmic transformation model appeared to be inferior to the finite mixture model. 

3.4 Application to real data  

To illustrate the use of the three models in real data, we reanalyzed the gestational age 

data from an Australia based clinical trial and a USA based clinical trial.  
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Figure 3.2: Simulated Trial Operating Characteristics for Probability of PTB (GA<37 weeks) 

 

3.4.1 DOMInO trial  

The DOMInO trial was a double-blind, multicenter, randomized controlled trial 

conducted in five Australian maternity hospitals. The trial included 2399 women who were less 

than 21 weeks' gestation with singleton pregnancies and who were recruited between October 31, 
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2005, and January 11, 2008 (Makrides et al., 2010).
 
This study compared fish oil capsules 

(providing 800 mg/d of DHA) or matched vegetable oil capsules without DHA. Gestational age 

data were available for 2367 (1183 in control and 1184 in treatment) participants in this study. 

We looked at the posterior summary statistics of the posterior component probabilities in 

the control and treatment groups from the finite mixture model (Table 3.3). Compared to the 

control group, the posterior probability of the first component (low risk of PTB) increased from 

0.783 to 0.813 and the posterior probability of the third component (high risk of PTB) decreased 

from 0.04 to 0.022. The posterior probability of the second component decreased a little from 

0.177 to 0.165. Convergence diagnostics were checked to ensure the convergence of posterior 

samples. 

In Table 3.4, we show the calculated and estimated probability of ePTB and PTB and the 

standard deviation of the estimated probabilities. In this analysis, we found the benefits of the 

finite mixture model were not clear in ePTB but the standard deviation was slightly smaller in 

the finite mixture model in PTB analysis. The estimated proportions for the log transformation 

model are quite different to the raw data (Table 3.4). 

3.4.2 KUDOS trial  

KUDOS was a Phase III, randomized, double-blind, placebo-controlled clinical trial 

involving 299 women (Carlson et al., 2013). This study compared participants in the placebo 

group (n1 = 145) and participants who received 600 mg/day DHA (n2 = 154) in the second and 

third trimester during pregnancy from 2001 to 2006 in the University of Kansas Hospital 

(Carlson et al., 2013).
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The posterior summary statistics of the mixture weights were summarized in Table 5. 

Compared to the DOMInO trial, the difference in the three component probabilities between 

treatment and control groups was much larger (Table 3.3 and Table 3.5). The mixture weight of 

the third component (high risk of PTB) decreased dramatically from 0.089 in the control group to 

0.029 in the intervention group. Convergence diagnostics were checked to ensure the 

convergence of posterior samples. 

In Table 3.6, we show the calculated and estimated probability of ePTB and PTB and the 

standard deviation of the estimated probabilities. Again in this analysis, we found the advantages 

of the finite mixture model compared to beta-binomial model were not very clear for ePTB but 

the standard deviation was smaller in the finite mixture model for PTB. Both the DOMInO and 

KUDOS data were consistent with the simulation studies and show that the benefits of the finite 

mixture model are evident for PTB but questionable for ePTB. The logarithmic transformation 

model produced quite different results compared to the other two models, which may be due to 

the bias in this method observed in the simulation study. 

3.5 Discussion  

We aimed to investigate the properties of pre-dichotomizing and distributional 

approaches using a three-component normal mixture model and a logarithmic transformation 

model. The three-component normal mixture model has been demonstrated to be identifiable and 

superior to two-component mixture models while avoiding the poor mixing in models with four 

or more components (Schwartz et al., 2010).
 
The Bayesian framework provides us with a 

convenient tool to compare distributional approaches and the pre-dichotomizing method.  
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In the simulation study, we used a weak beta prior for the beta-binomial model to ensure 

the bias was negligible and the estimates were close to the Frequentist approach. As a result, the 

bias from the finite mixture model was greater than that from the beta-binomial model. However, 

the finite mixture model had lower variance in all scenarios. In the ePTB analysis where the 

endpoint was very rare, the power of the finite mixture model was only slightly higher than the 

beta-binomial model and the benefits of the finite mixture model were relatively small. The 

benefits of the finite mixture model were more apparent in the PTB analysis where the endpoint 

was less rare. In this case, the variance and hence the MSE were much lower and the power was 

higher in the finite mixture model compared with the other methods. The logarithmic 

transformation model had the largest bias and MSE. 

In real data analysis, both DOMInO and KUDOS trial data demonstrated the advantages 

of the finite mixture model in PTB analysis. The finite mixture model had lower standard 

deviation compared to the beta-binomial model for PTB in both datasets. The logarithmic 

transformation model produced quite different results in both analyses. These findings confirmed 

previous findings that the logarithmic transformation was not satisfactory for GA data (Sauzet et 

al., 2015).
 
 

Further investigating the three-component mixture model facilitates understanding of our 

observations in the simulation study and real data analysis. The three mixture components are: 

N(39.59, 0.96), N(38.26, 2.48), and N(33.29, 13.23). The mixture weights are about 70-80% for 

the first component, 10-20% for the second component, and less than 10% for the third 

component. The three components have different means and standard deviations 

(heteroscedastic). Therefore it is not straightforward to describe the exhibition of the mixture 

distribution. However, we can still speculate the mixture exhibition from the three mixture 
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components and the mixture weights. The first two components have close means and different 

standard deviations. Distribution mixing these two will display high kurtosis with a sharper peak 

and heavier tails than a single distribution (Gridgman, 1970).
 
The third component is sufficiently 

separated from the first two components. The difference in the means between the second and 

third components is greater than two times the standard deviation of the second component. 

Mixing of these two could form a bimodal distribution (Schilling, Watkins, & Watkins, 2002).
 
 

Since the mixture weights of the first two components are dominant and the standard deviation 

of the third component is large, the exhibition could have a long left tail with a small peak on the 

tail.  

Based on the exploration of the finite mixture model, we can obtain an intuitive 

explanation of our observations. In the ePTB analysis we used GA<34 as a cutoff. Given the 

exhibition of the mixture model, the area below 34 was mainly captured by the third component 

of the distribution. In the PTB analysis we used GA<37 as a cutoff and the area below 37 was 

comprised of the second and the third components, while the influence of the first component 

was trivial. Therefore in the ePTB analysis, the finite mixture model did not appear to be much 

better than the beta-binomial model in terms of power because most of the information we 

needed to make inference on the probability of ePTB was captured by one mode in a bimodal 

exhibition. In the PTB analysis, the information to make inference on the probability of PTB was 

captured by two components and the finite mixture model captured the information from the 

trend of the two components and retained the power from the continuous distribution. Gestation 

age analysis is a single example in real life where we care about dichotomized outcomes while 

continuous data are collected. This study showed the cutoff value and the exhibition of the 

distribution were important to understand the mechanism of gaining power from a continuous 
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distribution.  This conclusion can be generalized to other studies in which the outcome is 

dichotomized while data are collected in a continuous form. 

3.6 Limitations  

There are a few assumptions we have made to pursue this study. Firstly, we used the 

parameter estimates of the normal components from the North Carolina Detailed Birth Record 

(NCDBR) database and applied them to different populations. We assumed these component 

parameters were valid in different populations and they appeared to be fine in this study as the 

estimated probabilities are quite close to the true data. Although the finite mixture model has 

certain flexibility to allow component weights to vary, the parameter estimates or even the 

formation of the mixture model could change in other populations if the population is extremely 

different. Secondly, we assumed there was no measurement error in the gestational age data. 

Gestational age data were obtained from medical records but we do not have a technique to test 

the measurement error in the current study. If the measurement error was large, it could blur the 

boundary of ePTB and PTB.  

3.7 Conclusion  

In studies where endpoints are collected as continuous variables but clinicians are 

interested in studying dichotomized outcomes, a pre-dichotomizing or distributional approach 

could be used for analysis. In general, a distributional approach that fits the data well retains 

information and power from the continuous distribution, while a dichotomizing method is close 

to the traditional Frequentist approach and may result in less bias. The benefits of a distributional 

method depend on model fit, cutoff values, and the exhibition of the continuous distribution. 

Meticulous investigation of the distributions is necessary, especially in rare endpoint analysis 
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where retaining statistical power is more important. In our clinical trial designs for gestational 

age data, we recommend the finite mixture normal model if the endpoint is PTB (<37 weeks) 

since this is a more powerful design and think either finite mixture normal model or beta-

binomial model is acceptable if the endpoint is ePTB (<34 weeks) since the power from these 

two designs are close. 
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Table 3.1: Simulated Trial Operating Characteristics for Probability of ePTB (GA<34 weeks) 

 

Scenarios  Bias MSE×10
5
 Power 

 Method Control Tx Control Tx  

No 

difference  

(3 vs. 3%) 

B-B .00009 .00006 4.62 4.78 .048 

F-M .00144 .00119 4.02 4.17 .054 

L-T .01983 .01954 58.56 59.21 .053 

Very Small 

(3 vs. 2%) 

B-B .00037 .00005 4.53 3.39 .275 

F-M .00099 .00123 4.08 3.13 .286 

L-T .02051 .01493 53.46 28.14 .164 

Small 

(3 vs. 1%) 

B-B .00034 .00028 5.03 1.69 .845 

F-M .00160 .00171 4.63 1.82 .857 

L-T .02051 .00713 53.46 7.19 .58 

Medium 

(3 vs. 0.5%) 

B-B .00043 .00004 4.69 0.89 .983 

F-M .00156 .00160 4.20 1.00 .985 

L-T .01983 .00347 58.58 2.51 .794 

Large 

(4 vs. 1%) 

B-B .00010 .00010 6.57 1.51 .984 

F-M .00120 .00143 5.47 1.55 .989 

L-T .02554 .00667 89.75 10.72 .863 

Power: average success rate across simulations, P(Pr(𝑝𝑐 > 𝑝𝑡|𝑑𝑎𝑡𝑎) > 𝛿), 𝛿 = 0.95 for Beta-

binomial and finite mixture model, 𝛿 = 0.999 for logarithmic transformation model 

B-B: Beta-Binomial model 

F-M: Finite Mixture model 

L-T: Logarithmic Transformation model 
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Table 3.2: Simulated Trial Operating Characteristics for Probability of PTB (GA<37 weeks) 

 

Scenarios  Bias MSE×10
5
 Power 

 Method Control Tx Control Tx  

No 

difference  

(8 vs. 8%) 

B-B .00056 .00003 12.3 11.6 .054 

F-M .00235 .00224 10.3 10.1 .05 

L-T .03265 .03286 175 178 .051 

Very Small 

(8 vs. 7%) 

B-B .00002 .00016 12.6 11.4 .164 

F-M .00184 .00239 10.4 9.59 .163 

L-T .03266 .02859 175 151 .129 

Small 

(8 vs. 6%) 

B-B .00070 .00024 12.1 9.05 .378 

F-M .00149 .00218 9.90 7.47 .418 

L-T .03266 .02134 175 98 .343 

Medium 

(8 vs. 5%) 

B-B .00051 .00006 12.2 7.86 .693 

F-M .00224 .00225 10.8 6.33 .768 

L-T .03266 .01439 175 56 .687 

Large 

(8 vs. 4%) 

B-B .00025 .00008 12.9 6.64 .908 

F-M .00224 .00246 11.5 4.98 .952 

L-T .03223 .00789 157 19 .94 

Power: average success rate across simulations, P(Pr(𝑝𝑐 > 𝑝𝑡|𝑑𝑎𝑡𝑎) > 𝛿), 𝛿 = 0.95 for Beta-

binomial and finite mixture model, 𝛿 = 0.997 for logarithmic transformation model 

B-B: Beta-Binomial model 

F-M: Finite Mixture model 

L-T: Logarithmic Transformation model 
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Table 3.3: Posterior statistics for mixture weights in finite mixture model in DOMInO trial  

(10000 simulations) 

 Control  Treatment 

 mean std  mean std 

∆1 .783 .022  .813 .021 

∆2 .177 .023  .165 .021 

∆3 .040 .007  .022 .006 

∆1: posterior probability of component 1, N(39.59, 0.96) 

∆2: posterior probability of component 2, N(38.26, 2.48) 

∆3: posterior probability of component 3, N(33.29, 13.23) 
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Table 3.4: Domino Data analysis: calculated and estimated probability and standard deviation 

(10000 simulations) 

 Outcome Data Estimated Prob. And SD 

   Pc0 Pt0 Pc Pt SDc SDt 

B-B <34 wks .023 .011 .023 .011 .004 .003 

 <37 wks .072 .055 .072 .055 .008 .007 

F-M <34 wks .023 .011 .024 .013 .004 .003 

 <37 wks .072 .055 .075 .057 .007 .006 

L-T <34 wks .023 .011 .009 .004 .001 .001 

 <37 wks .072 .055 .099 .068 .007 .007 

B-B: Beta-Binomial model 

F-M: Finite Mixture model 

L-T: Logarithmic Transformation model 

Outcome: probability of GA less than a certain amount of time 

Pc0: the calculated probability in the data in control group 

Pt0: the calculated probability in the data in treatment group 

Pc:  the estimated probability in the control group 

Pt: the estimated probability in the treatment group 

SDc: standard deviation in the control group 

SDt: standard deviation in the treatment group 
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Table 3.5: Posterior statistics for mixture weights in finite mixture model in KUDOS trial  

(10000 simulations) 

 Control  Treatment 

 mean std  mean std 

∆1 .838 .048  .775 .060 

∆2 .073 .048  .196 .063 

∆3 .089 .027  .029 .018 

∆1: posterior probability of component 1, N(39.59, 0.96) 

∆2: posterior probability of component 2, N(38.26, 2.48) 

∆3: posterior probability of component 3, N(33.29, 13.23) 
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Table 3.6: KUDOS Data analysis: calculated and estimated probability and standard deviation 

(10000 simulations) 

 Outcome Data Beta-Binomial Model 

   Pc0 Pt0 Pc Pt SDc SDt 

B-B <34 wks .048 .007 .048 .007 .018 .007 

 <37 wks .09 .065 .09 .065 .024 .02 

F-M <34 wks .048 .007 .052 .018 .016 .011 

 <37 wks .09 .065 .094 .069 .022 .017 

L-T <34 wks .048 .007 .016 .004 .006 .002 

 <37 wks .09 .065 .136 .069 .023 .016 

B-B: Beta-Binomial model 

F-M: Finite Mixture model 

L-T: Logarithmic Transformation model 

Outcome: probability of GA less than a certain amount of time 

Pc0: the calculated probability in the data in control group 

Pt0: the calculated probability in the data in treatment group 

Pc:  the estimated probability in the control group 

Pt: the estimated probability in the treatment group 

SDc: standard deviation in the control group 

SDt: standard deviation in the treatment group 
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Abstract  

Background   Personalized medicine aims to match patient subpopulation to the most beneficial 

treatment. The purpose of this study is to design a prospective clinical trial in which we hope to 

achieve the highest level of confirmation in identifying and making treatment recommendations 

for subgroups. This study was motivated by our goal to identify subgroups in a DHA 

(docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational age<37 weeks) 

rate.  

Methods  We used four subgroups with 250 subjects in each group as an example and ordered 

the subgroups’ risk levels in the control arm (placebo or current standard of care). The 

experimental arm had four groups of same sample sizes with changed risks. We simulated 

operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with 

four different models: naïve logistic, independent, hierarchical, and dynamic linear models.  We 

obtained an informative prior distribution through a meta-analysis that included nine clinical trial 

studies across the world. We then carried out simulations and sensitivity analysis to examine the 

subgroup power of the four models and compared the results to a chi-square test. 

Results  We examined a large overall effect scenario and a small overall effect scenario, and 

within each scenario, three situations in which the resulting rates in experimental arm were 

linear, flat, or nonlinear, to mimic situations that subgroups benefited differently. The logistic 

model was excluded because it was not flexible and induced large Type I error rate in certain 

subgroup analysis. In the large overall effect setting, dynamic linear model increased the power 

of the most affected group by 2.9% - 3.3% compared to hierarchical model, 4.3% - 8.6 % 

compared to independent model, and 7% - 10% compared to chi-square test. Dynamic linear 

model outperformed the other models in most other subgroup analysis. In the small overall effect 
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setting, dynamic linear model increased the power of the most affected group by 2% compared to 

hierarchical model, 1.6 % compared to independent model, and 14.2% compared to chi-square 

test when the resulting rates are linear. It increased the power of the most affected group by 14% 

compared to hierarchical model, 13.2 % compared to independent model, and 16.1% compared 

to chi-square test when the resulting rates are flat. It was outperformed by hierarchical model or 

chi-square test when the resulting rates are non-linear. Dynamic linear model remained robust 

and powerful in other subgroup analysis. 

Conclusions  Compared to independent and hierarchical models, dynamic linear model tends to 

be relatively robust and powerful when the control arm has ordinal risk groups.  

 

Keywords: enrichment design, subgroup analysis, overall Type I error, power 
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4.1 Introduction  

An important trend in treatment paradigm is personalized medicine, which is aimed to match 

patients to the most beneficial treatments. Patient populations are heterogeneous even in the 

same study. Characteristics vary between individuals, such as demographics, life style, genetic 

variants, etc. These varied characteristics can potentially modify the treatment effects on 

different individuals or subsets of patient populations. It is important to distinguish the subgroups 

that benefit the most and subgroups that don’t benefit or might even unnecessarily be exposed to 

a hazardous side effect (Simon & Simon, 2013)
 
.
 
Our research was motivated by our goal to 

design a clinical trial to identify subgroups in a trial to supplement pregnant women with 

docosahexaenoic acid (DHA) to reduce the rate of preterm births (PTB, gestational age<37 

weeks). This is the first step in an enrichment design where a certain subgroup will be identified 

and the succeeding steps will distinguish the treatment effect within the selected (enriched) 

subpopulation 
 
(Fedorov & Liu, 2007).  

Berry et al. (2013) discussed three clinical trial designs assuming four groups of patients 

under an adaptive framework: Simon’s Optimal Two-Stage design, a Bayesian independent 

design, and a Bayesian hierarchical design (Berry, Broglio, Groshen, & Berry, 2013). They 

showed that the hierarchical model could provide additional power and reduction in sample size 

compared to other two methods but acknowledged that hierarchical modeling could make finding 

a single effective group more difficult, if there was only one (Berry et al., 2013). We followed 

their four-group design in this study. The four-group design is an example for illustration and can 

be generalized to different settings. The hierarchical model does not require the entities to be 

related  (Berry et al., 2013). In practice it is common to classify subjects into different risk levels 

of subpopulations. We classified the four groups according to their risk levels assuming they are 
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receiving placebo or standard of care (control arm). Our study extended Berry et al. (2013) and 

aimed to identify a more efficient design from a prospective perspective to achieve the highest 

level of confirmation in identifying and making recommendations for subgroups  (Ruberg & 

Shen, 2015), given the fact that the risk groups can be ordered in the control arm.  

Two major considerations on subgroup analysis in clinical trial designs are: preserving Type 

I error and improving power (Simon & Simon, 2013). Testing each hypothesis in a multi-group 

study inflates the overall Type I error rate. Multiplicity adjustment is required to preserve the 

overall Type I error rate (Alosh et al., 2015). We calibrated the operating characteristics in 

simulations to ensure the overall Type I error rate was close to 0.05 (one-sided) in all designs 

that used different statistical models. Approaches to improve statistical power in subgroup 

analysis include: using available information from previous studies
 
(Alosh et al., 2015) and 

borrowing information across subgroups (Berry et al., 2013). We did a meta-analysis that 

contained data from nine DHA supplementation trials across the world to obtain informative 

priors. Then informative priors were applied to three different models: independent model, 

hierarchical model, and dynamic linear model. A naïve logistic model was studied but 

uninformative priors were used because no prior information was available for the parameters in 

this model. All methods were compared to the chi-square test to see the benefit of each model in 

the trial design. 

The remainder of this article is arranged as follows. In section 2, we obtained informative 

prior distributions through meta-analysis based upon nine previous clinical trials across the 

world. In section 3, we described the four statistical models in trial designs. In section 4, we 

explained the computation methods and software we used. In section 5, we discussed the results 

from the simulations. In section 6, we performed a sensitivity analysis and discussed potential 
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concerns. In section 7, we draw conclusions from our analysis and give suggestions to future 

studies. 

4.2 Prior Distributions  

In subgroup analysis, a prior distribution is assumed for subgroup-specific treatment effect 

(Alosh et al., 2015). There are advantages and disadvantages of using both non-informative and 

informative priors. When historical data for the control arm are consistent with current study 

data, using informative priors constructed from previous complete trials can improve testing 

power and generate robust results (Chen et al., 2015). We performed a meta-analysis based on 

nine completed DHA supplementation trials that contain preterm birth data across the world. 

Five of them were included in a review study conducted by the Cochrane Collaboration: 

Denmark 1992, England 1995, Europe 2000, Netherlands 1994, and USA 2003 (Makrides, 

Duley, & Olsen, 2006). Besides these we included four other trials: KUDOS (Kansas University 

Hospital) 2013 (Carlson et al., 2013), DOMInO (Australia) 2010  (Makrides et al., 2010), 

Mexico 2015 (Ramakrishnan et al., 2015), and NICHD (USA) 2010 (Harper et al., 2010). The 

data from these studies are summarized in Table 4.1. 

We used a hierarchical model with relatively weak priors to obtain future prior distributions. 

Let 𝑃𝑖𝑗 denote proportion of preterm birth in the 𝑖𝑡ℎ study (i=1,…9) and 𝑗𝑡ℎ arm (j=0,1; 

0=control, 1= experimental). We modeled 𝜃𝑖𝑗 = log (
𝑃𝑖𝑗

1−𝑃𝑖𝑗
) ~ 𝑁(𝜇, 𝜏), where 𝜏 is the precision 

(1/variance), with relatively weak hyper priors: 𝜇~ 𝑁(−2, 0.5) and 𝜏~𝐺𝑎𝑚𝑚𝑎 (1, 1). Future 

priors for 𝜇 and 𝜏 were derived from the averaged methods of moment estimators in the posterior 

distributions from the experimental arm and control arm. The posterior mean for 𝜇 is -1.872 in 

the control arm and -1.944 in the experimental arm. The posterior mean for 𝜏 is 1.273 in the 
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control arm and 1.287 in the experimental arm. The standard deviation for 𝜏 is 0.5874 in the 

control arm, and 0.6015 in the experimental arm. The methods of moment estimator for 𝜇 is 

calculated as 
(−1.872−1.944)

2
= −1.91.  The estimator for 𝜏 is calculated as 

1.273+1.287

2
= 1.28. The 

𝛼 and 𝛽 estimators in the distribution of 𝜏~ 𝐺𝑎𝑚𝑚𝑎 (𝛼, 𝛽) are derived from equations: 
𝛼

𝛽
=

1.28 and 
𝛼

𝛽2
=

0.58742+0.60152

2
= 0.3534. In this way we obtained informative priors 

𝜇~𝑁(−1.91, 1.28) and 𝜏~ 𝐺𝑎𝑚𝑚𝑎(4.6361, 3.622). Based on these prior distributions, the 

median of the proportion is 12.8%. This estimation is reasonable and consistent, as the current 

preterm birth rate in the US is about 11.4%  (House, 2014). We applied these informative priors 

to simulations in the following trial designs. 

4.3 Statistical Models in Trial Designs  

We used four risk groups for illustration but the conclusion applies more generally.  We 

assumed equal sample size of 250 subjects in each subgroup in both control and experimental 

arm. Two scenario settings were considered. The first scenario represents large overall treatment 

effect. The overall PTB rates are 8% vs. 4% in control and experimental arm respectively. The 

second scenario represents small overall treatment effect. The overall PTB rates are 8% vs. 6% 

in control and experimental arm respectively. These percentages are consistent with the results 

from our previous DHA supplementation trial (Carlson et al., 2013). The control arm in both 

scenarios has the same structure with ordinal PTB rates in the four subgroups (4%, 6%, 10%, 

and, 12% respectively). Within each scenario, we designed three different situations where the 

resulting rates in the experimental arm are linear, flat, or nonlinear (Table 4.2). We compared 

four trial designs and a chi-square test with Bonferroni correction for Type I error rate.  
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4.3.1 Naïve logistic Model  

This design was originated from a naïve assumption that the PTB proportions can be 

modeled by a logistic regression based on their baseline risk level.  

log (
𝑃𝑖𝑗

1 − 𝑃𝑖𝑗
) =  𝛽0 + 𝛽1 × 𝑗, 𝑖 = 0,1; 𝑗 = 1,2,3,4  

This model assumed the difference between one risk level and the next level is a constant at 

the logit scale. Since no previous research studied the relationship between the preterm birth 

rates and risk levels, we used non-informative priors for 𝛽0 and 𝛽1. 

𝛽0~𝑁(0, 1002) 

𝛽1~𝑁(0, 1002) 

4.3.2 Independent Model  

We followed Berry et al. (2013) and examined an independent model (Berry et al., 2013). In 

this design, we presented a Bayesian model with no borrowing from subgroups but we did 

borrow information from previous studies by applying the informative priors obtained through 

meta-analysis. We modeled the rate in each subgroup within each arm separately through: 

𝜃𝑖𝑗 = log (
𝑃𝑖𝑗

1 − 𝑃𝑖𝑗
) , 𝑖 = 0,1; 𝑗 = 1,2,3,4 

The prior distribution for 𝜃𝑖𝑗 is: 

𝜃𝑖𝑗~ 𝑁(−1.91, 1.28) 

This informative prior results in mean proportion close to 12.8% but it can generate a 

proportion ranges from about 0.8% to 60%.  
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4.3.3 Hierarchical Model  

This is another design that was examined in Berry et al. (2013) (Berry et al., 2013). This 

design integrates the heterogeneous information from each subgroup. The hierarchical model 

assumes the four groups are exchangeable and allowed borrowing information across the four 

groups. In this design we model 𝜃𝑖𝑗 with a normal distribution with unknown mean and precision 

𝜃𝑖𝑗~𝑁(𝜇𝑖 , 𝜏𝑖) 𝑖 = 0,1; 𝑗 = 1,2,3,4 

By introducing a hierarchy to model the unknown mean and precision, the design borrows 

information from previous studies and the current data across the four groups. 

𝜇𝑖~𝑁(−1.91, 1.28) 

𝜏𝑖~ 𝐺𝑎𝑚𝑚𝑎 (4.6361, 3.622) 

Bigger 𝜏 indicates more pooling and information borrowing across the groups and smaller 𝜏 

represents less pooling, or more heterogeneity across the groups. Our priors from meta-analysis 

show significant heterogeneity from the data in previously conducted clinical trials and we think 

it is reasonable to remain the heterogeneity in our simulation analysis to apply to a general 

population.  

4.3.4 Dynamic Linear Model  

Dynamic linear model is another model that has an intrinsic hierarchical structure. Unlike 

the hierarchical model that we discussed in the previous section, the dynamic linear model does 

not assume exchangeability of the four groups and borrows more information from adjacent 

groups. The motivation is that this model might be more efficient since the four groups have 

ordinal risk levels at baseline so the correlation between adjacent groups might be larger. 

Therefore the dynamic linear model might capture the locally smooth trend better. In this design, 

the first group has a prior we obtained through meta-analysis, and the other groups have a 
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hierarchical structure, with a common precision and a mean related to the neighborhood means 

(Leininger, Reese, FEllingham, & Grimshaw, 2010).  

For the first group, we have: 

𝜃𝑖1~𝑁(−1.91, 1.28); 𝑖 = 0,1 

For the other groups, 

𝜃𝑖𝑗~𝑁(𝜃𝑖,𝑗−1, 𝜏𝑖);  𝑖 = 0,1;  𝑗 = 2,3,4 

and  

𝜏𝑖~ 𝐺𝑎𝑚𝑚𝑎 (4.6361, 3.622). 

The second group directly borrows information from the first and the third. The third group 

directly borrows information from the second and the fourth. The first group directly borrows 

information from previous studies and the second group. However, since the borrowing process 

is dynamic, the groups not adjacent directly impact each other through an indirect borrowing 

mechanism. This structure allows groups to borrow more information from adjacent groups 

which locally smoothes the trend. 

4.4 Computation  

In each scenario, 1000 simulated trials were used. We assumed the experimental and control 

arms each had four subgroups and each subgroup had 250 patients. The PTB rates in the four 

groups under the control arm were ordered and represented the risk levels assuming subjects 

were receiving placebo or standard of care. The PTB rates in the four groups under the 

experimental arm represented the risk levels after treatment, e.g., DHA supplementation. Data 

were simulated from binomial distribution based upon the proportions in each scenario using R 

3.2.2. All Bayesian computations were performed using OpenBUGS from within R 3.2.2. 
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OpenBUGS is powerful and flexible because it includes a system that determines an appropriate 

MCMC for analyzing a specified model without requiring a closed analytic form. 

4.5 Results  

Trial success was defined as the posterior probability that the PTB rate in the control arm is 

bigger than that in the experimental arm is greater than a cutoff value 𝛿: Pr(𝑃𝑐 > 𝑃𝑡|𝑑𝑎𝑡𝑎) > 𝛿. 

In simulations the power function is defined as the average trial success rate across simulations. 

In the null scenario both the control arm and the experimental arm have overall PTB rates of 8% 

and the average success rate is the Type I error rate. Since we have four subgroups, the overall 

Type I error rate is 1 − ∏ (1 − 𝛼𝑖
4
𝑖=1 ), where 𝛼𝑖 is the Type I error rate for the 𝑖𝑡ℎ group. In the 

null scenario, both the control and experimental arms have the same structure in their subgroups. 

The four risk groups have PTB rates of 4%, 6%, 10%, and 12% in both arms. We tuned the 𝛿 

value in each method separately to ensure the overall Type I error rate is close to 0.05. The 𝛿 

values for the logistic model, independent model, hierarchical model, and dynamic model are 

0.993, 0.985, 0.985, and 0.98 respectively.  

In the first scenario we examined the situation where the overall PTB rate is 8% in the 

control arm and 4% in the experimental arm, indicating a large overall treatment effect. Within 

this setting, we tried different structure of PTB rates in the experimental arm to mimic different 

subgroup effects (Table 4.2). First we simulated a situation where the resulting rate in the 

experimental arm is quite linear in four subgroups: 2%, 3%, 5%, and 6% correspondingly. In this 

situation, each subgroup experienced a 50% reduction in PTB rate. Second we simulated a 

situation where the resulting rate in the experimental arm is flat in all four subgroups: all 4%. In 

this situation, there is no effect in the first subgroup and the last group has the biggest treatment 

effect. Since the first group has no effect at all, the average success rate we obtained for this 
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subgroup is a Type I error rate for this subgroup analysis. Thirdly we simulated a situation where 

the resulting rates in subgroups in the experimental arm are non-linear: 1%, 6%, 3%, and 6% 

correspondingly. We created a situation where the second subgroup has no treatment effect while 

the other three groups have treatment effects. Therefore the average success rate we obtained 

from the second subgroup is the Type I error rate for this group. We noticed that the naïve 

logistic model introduced exploded Type I error rate in this situation while the other three 

models had reasonable Type I error rates. The Type I error rates in the second subgroup under 

this situation for logistic, independent, hierarchical, and dynamic linear models are 0.732, 0.006, 

0.011, and 0.055 respectively. This shows the logistic model is not flexible in modeling 

situations where subgroup effects are not linear. We excluded logistic model in our following 

comparisons due to this inflexibility and the unintended explosion in Type I error rate in 

subgroup analysis.  

In the comparison of the other three models, we focused on power in subgroup analysis. 

Dynamic linear model has the highest power in subgroup analysis in all situations except for the 

first subgroup in the non-linear situation (Table 4.3). In the non-linear scenario, the proportions 

in the second group are 0.06 for both control and treatment arm. In this case, dynamic linear 

model has a slightly higher Type I error rate than other models but the error rate is still 

acceptable (Table 4.3). The dynamic linear model has the highest power in capturing the most 

affected group in all three situations. This is important because it represents the capability to 

identify or confirm the most beneficial subgroup. In the situation where the rates in the four 

groups of the experimental arm are linear, the power to capture the most affected subgroup in 

independent, hierarchical, and dynamic linear models is 0.548, 0.578, and 0.595 respectively. A 

regular chi-square test with Bonferroni adjustment has a power of 0.541 to capture the most 
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affected subgroup. In the situation where the rates in the four groups in the experimental arm are 

flat, the power to capture the most affected subgroup in independent, hierarchical, and dynamic 

linear models is 0.879, 0.891, and 0.917 respectively. The chi-square test has a power of 0.857 to 

capture the most affected subgroup. In the situation where the rates in the four groups in the 

experimental arm are non-linear, the power to capture the most affected subgroup in 

independent, hierarchical, and dynamic linear models is 0.848, 0.861, and 0.889 respectively. 

The chi-square test has a power of 0.827 in capturing the most affected subgroup. In a nutshell, 

the dynamic linear model increases power to capture the most affected subgroup compared to the 

other three methods where the overall treatment effect is large (Table 4.3). In addition to 

providing the power to capture the most affected group, the dynamic linear model appears to be 

powerful and robust in other subgroup analysis (Figure 4.1- Figure 4.3). 

 

 

Figure 4.1: Power analysis for linear subgroup effects in treatment arm in scenario 1 
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Figure 4.2: Power analysis for flat subgroup effects in treatment arm in scenario 1 

 

Figure 4.3: Power analysis for nonlinear subgroup effects in treatment arm in scenario 1 
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In the second scenario setting we examined the situations where the overall PTB rate is 8% 

in the control arm and 6% in the experimental, indicating a small overall treatment effect. Again, 

we tried different structure of PTB rates in the experimental arm to mimic different subgroup 

effects (Table 4.2). In the first situation the rates in the four groups in the experimental arm are 

linear or ordinal: 4%, 5%, 7%, and 8% respectively. In the second situation the rates in the four 

groups in the experimental arm are flat:  all 6%. In this situation, there is no effect in the second 

subgroup and a negative effect in the first subgroup. In the last situation the rates in the four 

groups in the experimental arm are non-linear: 1%, 6%, 6%, and 11% respectively. We created a 

situation where the second subgroup had no treatment effect while the other three groups had 

treatment effects, but the effects varied among the three groups. Therefore the average success 

rate we obtained from the second subgroup is the Type I error rate for this group. The Type I 

error rates in the second subgroup under this situation for logistic, independent, hierarchical, and 

dynamic linear models are 0.487, 0.009, 0.013, and 0.031 respectively. The naïve logistic model 

exploded the Type I error rate in this situation while the other three models had reasonable Type 

I error rate. Again this shows the inflexibility of the logistic model when the group rates are not 

linear. 

The results of subgroup power analysis were summarized in Table 4.4. In the situation 

where the experimental arm subgroup rates are linear, the power to capture the most affected 

subgroup in independent, hierarchical, and dynamic linear models is 0.254, 0.253, and 0.258 

respectively. A regular chi-square test with Bonferroni adjustment has a power of 0.226 to 

capture the most affected subgroup. In the situation where the treatment arm group rates are flat, 

the power to capture the most affected subgroup in independent, hierarchical, and dynamic linear 

models is 0.555, 0.551, and 0.628 respectively. The chi-square test has a power of 0.541 to 
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capture the most affected subgroup. In the second group analysis in the flat situation, the 

experimental effect is negative. Independent, hierarchical, and dynamic linear models perform 

well but the chi-square test cannot capture this trend unless we discern the results from 

comparing the control and experimental arms (Table 4.4). In the situation where the 

experimental arm group rates are non-linear, the power to capture the most affected subgroup in 

independent, hierarchical, and dynamic linear models is 0.32, 0.461, and 0.304 respectively. The 

chi-square test has a power of 0.462 to capture the most effected subgroup. Therefore the chi-

square test and the hierarchical model perform well to capture the most affected group when the 

resulting subgroup rates are nonlinear (Table 4.4). When the resulting subgroup rates are quite 

linear or flat, the dynamic linear model still outperforms the other three methods. In other 

subgroup analysis, the dynamic linear model appears to be robust and powerful (Figure 4.4 – 

Figure 4.6 ).  

 

Figure 4.4: Power analysis for linear subgroup effects in treatment arm in scenario 2 
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Figure 4.5: Power analysis for flat subgroup effects in treatment arm in scenario 2 

 

Figure 4.6: Power analysis for nonlinear subgroup effects in treatment arm in scenario 2 
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4.6 Sensitivity Analysis and Discussion  

We did a sensitivity analysis using 500 subjects per group. The comparisons between the 

statistical models remained similar with increased capability to confirm futility or success of 

subgroups (Table 4.3 and Table 4.4). We assumed ordinal risk subgroups in the control arm have 

equal sample sizes. The general population may have unequal-sized strata for similar ordinal risk 

levels. However, in clinical trial designs, it is still possible to selectively include participants to 

create balanced numbers in each subgroup. The main advantage is that when sample size is 

predetermined and equal in subgroups, the most affected subgroups have the highest treatment 

effects. Predetermined subgroup sample sizes decrease the risk of insufficient statistical power at 

the end of study (Padmanabhan, 2014). At the current stage of subgroup analysis, it is not 

necessary to meet the power requirement in general statistical analysis.  Once the most affected 

subgroups are identified through efficient designs, we can “enrich” the interested subgroups, i.e., 

recruit more subjects from the interested subgroup populations and stop recruiting certain 

subgroups that are futile. The final statistical analysis will be based upon all stages’ recruitment. 

We used unanimous informative priors in our statistical models. It is desirable to use 

subgroup specific priors if previous data are available. If the subgroup data are not consistent 

with the informative priors, the result could be decreased power. 

4.7 Conclusions  

In clinical trial designs with subgroup analysis, it is important to preserve a low Type I error 

rate and improve power to capture the most affected group. Informative priors are one way to 

increase power. When informative priors from historical data are consistent with current study 

data, they represent a more powerful mechanism. Another way to increase power is through 

design selection. Designs that used independent and hierarchical models have been discussed in 
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previous studies (Berry et al., 2013). Other efficient models may exist if we have ordinal risk 

groups. We compared the dynamic linear model, independent model, hierarchical model and 

logistic model. All these models can be tuned to have desirable operating characteristics in terms 

of overall Type I error rate. When we performed subgroup analysis, the logistic model turned out 

to be inflexible and exploded the Type I error in certain subgroups analysis. The main 

comparisons were executed among the other three methods. The dynamic linear model 

outperformed the other models in most situations with various structures of subgroup effects. We 

conclude that the dynamic linear model is relatively robust and efficient. This study shows that 

when the subgroups have certain structure, more efficient designs may exist and can lead to cost 

savings in clinical trials. 
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Table 4.1: Number of preterm babies and sample sizes in completed trials 

 

  Treatment Control 

Study preterm birth Total preterm birth Total 

Denmark 1992 9 266 15 267 

England 1995 22 113 19 119 

Europe 2000 152 394 167 403 

Netherlands 1994 8 32 10 31 

USA 2003 14 142 17 149 

KUDOS 2013 12 154 13 147 

DOMINO 2010 88 1202 67 1197 

Mexico 2015 32 365 30 365 

NICHD 2010 82 434 83 418 
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Table 4.2: Preterm birth rates in subgroups in simulated scenarios 

Scenario/risk group  Group 1 Group 2 Group 3 Group 4 

Control arm 

8% (control arm)  4% 6% 10% 12% 

Scenario 1: Treatment arm 

4% (linear)  2% 3% 5% 6% 

4% (flat)  4% 4% 4% 4% 

4% (nonlinear)  1% 6% 3% 6% 

Scenario 2: Treatment arm 

6% (linear)  4% 5% 7% 8% 

6% (flat)  6% 6% 6% 6% 

6% (nonlinear)  1% 6% 6% 11% 
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Table 4.3: Power in subgroup analysis when the overall treatment effect is large (8% vs. 4%) 

     Control  Treatment Power  

 Scenarios  Group True P True P DLM IM HM Chi-sq 

2
5
0
 s

u
b
je

ct
s/

g
ro

u
p

 

Linear 

Group1 4% 2% 0.169 0.097 0.188 0.176 

Group2 6% 3% 0.462 0.211 0.283 0.266 

Group3 10% 5% 0.599 0.458 0.475 0.452 

Group4 12% 6% 0.595 0.548 0.578 0.541 

Flat 

Group1 4% 4% 0.017 0.007 0.019 0.013 

Group2 6% 4% 0.227 0.095 0.132 0.112 

Group3 10% 4% 0.823 0.692 0.708 0.652 

Group4 12% 4% 0.917 0.879 0.891 0.857 

Non-linear 

Group1 4% 1% 0.316 0.31 0.515 0.463 

Group2 6% 6% 0.055 0.006 0.011 0.013 

Group3 10% 3% 0.889 0.848 0.861 0.827 

Group4 12% 6% 0.702 0.592 0.624 0.541 

 

Linear 

Group1 4% 2% 0.401 0.3 0.426 0.349 

5
0
0
 s

u
b
je

ct
s/

g
ro

u
p

 

Group2 6% 3% 0.681 0.496 0.596 0.519 

Group3 10% 5% 0.878 0.811 0.823 0.777 

Group4 12% 6% 0.889 0.866 0.887 0.860 

Flat 

Group1 4% 4% 0.023 0.012 0.029 0.013 

Group2 6% 4% 0.323 0.188 0.272 0.214 

Group3 10% 4% 0.98 0.958 0.962 0.932 

Group4 12% 4% 0.997 0.997 0.997 0.993 

Non-linear 

Group1 4% 1% 0.769 0.753 0.867 0.788 

Group2 6% 6% 0.039 0.015 0.026 0.013 

Group3 10% 3% 0.998 0.995 0.995 0.988 

Group4 12% 6% 0.916 0.883 0.903 0.860 

 

  



75 
 

Table 4.4: Power in subgroup analysis when the overall treatment effect is small (8% vs. 6%) 

     Control  Treatment Power (250 subjects/group) 

    True P True P DLM IM HM Chi-sq 

2
5
0
 s

u
b
je

ct
s/

g
ro

u
p

 

Linear 

Group1 4% 4% 0.007 0.005 0.012 0.0125 

Group2 6% 5% 0.06 0.021 0.034 0.0399 

Group3 10% 7% 0.19 0.161 0.147 0.1491 

Group4 12% 8% 0.258 0.254 0.253 0.2259 

Flat 

Group1 4% 6% 0 0 0 0.112* 

Group2 6% 6% 0.025 0.017 0.023 0.0125 

Group3 10% 6% 0.354 0.291 0.266 0.276 

Group4 12% 6% 0.628 0.555 0.551 0.541 

Non-linear 

Group1 4% 1% 0.304 0.32 0.461 0.462 

Group2 6% 6% 0.031 0.009 0.013 0.0125 

Group3 10% 6% 0.307 0.296 0.281 0.2761 

Group4 12% 11% 0.052 0.039 0.037 0.0293 

 

Linear 

Group1 4% 4% 0.019 0.014 0.024 0.013 

5
0
0
 s

u
b
je

ct
s/

g
ro

u
p

 

Group2 6% 5% 0.085 0.055 0.08 0.061 

Group3 10% 7% 0.385 0.342 0.337 0.294 

Group4 12% 8% 0.528 0.481 0.512 0.447 

Flat 

Group1 4% 6% 0 0 0 0.214* 

Group2 6% 6% 0.013 0.012 0.017 0.013 

Group3 10% 6% 0.635 0.565 0.559 0.536 

Group4 12% 6% 0.902 0.876 0.886 0.86 

Non-linear 

Group1 4% 1% 0.764 0.748 0.84 0.788 

Group2 6% 6% 0.031 0.009 0.019 0.013 

Group3 10% 6% 0.593 0.584 0.585 0.536 

Group4 12% 11% 0.06 0.052 0.056 0.04 

* The power calculated from the one-sided Chi-square test cannot distinguish the direction of 

treatment effect 
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Chapter 5 : Summary and Future Directions  
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Personalized medicine is emerging in both clinical practice and clinical trials. 

Recognition that individual variability needs to be taken into account has driven the huge interest 

in ‘precision’ medicine.  The motive is to identify the individuals who benefit from the treatment 

and who do not benefit from the treatment or even suffer from hazardous effects. On the other 

hand, personalized medicine has a potential to lower the skyrocketing health care cost by 

reducing unnecessary treatment and harmful effects. This initiative requires close collaboration 

among clinicians, researchers and biostatisticians.  In 2015, President Obama launched the 

Precision Medicine Initiative, including establishing a national database of the genetic and other 

data of one million people in the United Sates. We are in the era of “big data”. The contributions 

that biostatisticians can make in the health care arena are far beyond what we have witnessed in 

the past decades.  

Personalized medicine contains efforts from the following aspects: identify the target 

population and direct the most beneficial treatment to the individuals.  This dissertation provides 

statistical suggestions in pursuing these goals.  In contrast to traditional logistic regression, this 

dissertation discussed the use of machine learning strategies and application in identifying target 

population in a binary responding variable setting. Given the fast development of computing 

power, data driven and machine learning methods are more feasible than before. With the 

establishment of gigantic databases, we can expect the rising use of data mining methods. CART 

model is one of the data mining methods. It is user-friendly and can provide straightforward 

interpretations in health care research. Clinical trials are a key research tool for advancing 

medical knowledge as well as patient care, yet they come with a staggering price tag. Efficient 

clinical trial designs help to lower the costs. This dissertation discussed statistical methods to 

improve the trial design efficiency. In many situations, clinicians are interested in a rare binary 
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event while continuous data are collected. To avoid losing power in pre-dichotomizing, this 

dissertation proposes distributional method. This dissertation further explores different 

distributional methods to identify a less biased and more powerful method to accommodate the 

rare event circumstance. For gestational age data, we proposed a three-component mixture 

normal model. Although this model increases the bias a little bit compared to binomial model, it 

promises lower variance, lower MSE and higher power in simulation studies. This model also 

outperformed the distributional model that uses logarithmic transformation. In personalized 

medicine, subgroup variation is the focus of the research. An efficient clinical trial design not 

only recognizes the subgroup differences, but also utilizes statistical models that borrow 

information across groups. Through borrowing information from previous studies and across 

groups, this dissertation discussed methods to increase the power to capture the most affected 

group as well as the power of other subgroups. We propose a dynamic linear normal model in 

this dissertation which promises a reliable and efficient design when we have ordinal risk groups.  

This dissertation has motivated some topics for future research. In this dissertation, the 

methods used to classify target population and the methods to improve statistical power in trials 

with classified subgroups are discussed in two different application studies. It is very nature to 

use the methods we discussed in Chapter 2, i.e., logistic regression models and CART to classify 

subgroups in clinical trial designs. In DHA supplementation trials, we could use existing data, 

including clinical trials data or registry data to classify patient subpopulations. The classification 

based on real data may inspire different subgroups, e.g., different risk levels etc. It will be 

interesting to see whether these will impact on our model selection. Secondly, what we have 

discussed in Chapter 4 is the first stage in an adaptive enrichment trial design. After the interim 

analysis, we can adaptively enrich certain groups with potential to succeed and drop groups with 
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no potential to succeed in next stage recruitment. If the design involves multiple stages, we will 

reconsider how to preserve Type I error rate in the clinical trial designs.  We will also consider 

sample size calculation to ensure power is guaranteed at the final stage analysis. Thirdly, we 

could consider distributional approaches in enrichment trials designs to see if it further boosts the 

power of subgroup analysis.
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