1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

éPL "VS)))\

NIH Public Access

Y (A
] a2 & Author Manuscript

o
R s

Published in final edited form as:
Curr Opin Otolaryngol Head Neck Surg. 2009 June ; 17(3): 187-193. doi:10.1097/MQO.
0b013e32832b312a

Central pattern generation involved in oral and respiratory control
for feeding in the term infant

Steven M. Barlow
Department of Speech-Language-Hearing: Sciences and Disorders, Neuroscience, Human
Biology, and Bioengineering Programs, University of Kansas, Lawrence, Kansas, USA

Abstract

Purpose of review—Drinking and eating are essential skills for survival and benefit from the
coordination of several pattern generating networks and their musculoskeletal effectors to achieve
safe swallows. Oral-pharyngo-esophageal motility develops during infancy and early childhood, and
is influenced by various factors, including neuromuscular maturation, dietary and postural habits,
arousal state, ongoing illnesses, congenital anomalies, and the effects of medical or surgical
interventions. Gastroesophageal reflux is frequent in neonates and infants, and its role in neonatal
morbidity including dysphagia, chronic lung disease, or apparent life-threatening events is not well
understood. This review highlights recent studies aimed at understanding the development of oral
feeding skills, and cross-system interactions among the brainstem, spinal, and cerebral networks
involved in feeding.

Recent Findings—Functional linkages between suck-swallow and swallow-respiration manifest
transitional forms during late gestation through the first year of life which can be delayed or modified
by sensory experience and/or disease processes. Relevant central pattern generator (CPG) networks
and their neuromuscular targets attain functional status at different rates, which ultimately influences
cross-system CPG interactions. Entrainment of trigeminal primary afferents accelerates pattern
genesis for the suck CPG and transition-to-oral feed in the RDS preterm infant.

Summary—The genesis of within-system CPG control for rate and amplitude scaling matures
differentially for suck, mastication, swallow, and respiration. Cross-system interactions among these
CPGs represent targets of opportunity for new interventions which optimize experience-dependent
mechanisms to promote safe swallows among newborn and pediatric patients.
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Introduction

In the mature organism, the processing of ingested food and liquid material occurs in a
seemingly stereotyped manner. Upon closer inspection, the dynamics of feeding reveal
enormous complexity and coordination among at least 26 pairs of muscles and 5 cranial nerve
systems, including trigeminal, facial, glossopharyngeal, vagus, hypoglossal, and the cervical
and thoracic spinal cord segments involved in chest wall movements for coordination of
respiration with feeding [1,2]. The central patterning of aeroingestive behaviors include
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volitional and reflexive control mechanisms, and benefit from sensory feedback to modify the
spatiotemporal organization of the feed sequence to ensure safe swallow [3-5]. Variation in
bolus type (liquid or solid), hardness, homogeneity, volume, viscosity, texture, moisture
content, and other sensory characteristics of the bolus (taste) serve to modulate the timing and
patterning of motor components which constitute the overall feed sequence.

Central pattern generation for suck, lick, mastication, swallow, respiration

Central pattern generators (CPGs) are primarily composed of adaptive networks of
interneurons that activate groups of motor neurons to generate task-specific motor patterns
[6]. CPGs modulate cycle duration and the duration and intensity of motoneuron bursts in
response to CNS and sensory inputs [7]. The development of an in vitro isolated mammalian
brainstem preparation [8] was essential for the study of the perinatal rhythmical motor patterns
in cranial nerves. In the resting state, rhythmical respiratory activity can be recorded from
trigeminal (V), facial (VII) and hypoglossal (XII) motoneurons of neonatal rats [8,9], but a
second much faster rhythm appears if the glutamate agonist N-methy-D,L-aspartate (NMDA)
is added to the bath, with or without other neurotransmitters or their antagonists [8-13]. Since
all neonatal mammals begin to feed on milk, it is presumed that the rhythmic non-respiratory
oromotor patterns are related to suckling. Indeed, mastication is not seen in young rats before
P12 [14].

The isolated sections of the brainstem of neonates containing the cranial V, V11 and XII motor
nuclei are each capable of generating the sucking rhythm when isolated from the others [15],
as are the left and right halves of the trigeminal section [12]. These observations suggest that
there could be at least six separate rhythm generators (two V, two VII, two XII) that are coupled
together to coordinate suckling during late gestation and infancy. Exactly how these are
coordinated, and whether they all persist into adulthood is not known. However, it is possible
that the caudal pair is dominant by birth, because the V pair is tonically inhibited by the caudal
brainstem [12]. As shown in Figure 1 [16], CPGs are also modulated by descending inputs
from the “sucking area” of the motor cortex [17,18].

The gross licking motor pattern is controlled by a brainstem CPG distributed within several
subdivisions of the medullary reticular formation (RF) [19]. Descending inputs from cerebral
cortex and forebrain to the lick CPG project to widely distributed targets of both the medial
and lateral reticular formation. Most projections originating from brainstem orosensory nuclei
terminate within the lateral reticular formation. Pre-oromotor neurons appear concentrated in
the intermediate zone of the reticular formation and receive convergent inputs from the lateral
and medial RF sites to control lick [2]. Sensory feedback from intraoral gustatory and
somatosensory afferents modulate the motor pattern for lick, suck, mastication and swallow.

The transition from suckling to chewing occurs gradually over a period that can vary
enormously between species. In rats, the first masticatory movements appear around post-natal
(P) day 12, and the adult patternis established between P18-21 [14]. Human infants begin to
chew after several months, and mastication continues to evolve until the secondary dentition
is in place. Mastication and suckling both involve jaw opening and closing, but the power
stroke for the suction phase is provided by the jaw depressors during suckling and by the
elevators during mastication. Nutritive suckling also includes an expression phase that typically
lags the suction phase by 100 milliseconds or more. This involves a stripping ‘peristaltic’
motion of the tongue tip along the length of the nipple or teat and requires activation of the
intrinsic tongue muscles via the hypoglossal nerve [20,21]. Clearly, many motoneurons are
active during all of the oromotor patterns, but it is unclear if the sucking CPG evolves to
eventually control mastication, or if the mastication CPG emerges separately during the
weaning period. There is evidence that some neurons located in the antero-dorsal region of the
trigeminal principal sensory nucleus (NVsnpr) may form the core of the masticatory CPG in
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rats undergo a rapid maturation during weaning and eventually exhibit pacemaker properties
[22].

The essential components of the masticatory CPG are found between the rostral poles of the
Vth and VIIth motor nuclei, and each hemisection side can generate a rhythm, although they
are normally synchronized by commissural axons [16,23,24]. Many neurons among several
nuclei in this region project to V motoneurons, but also to the VIl and XII nuclei, and they are
strongly and reciprocally interconnected [25-27]. Furthermore, many of them fire bursts during
fictive mastication in phase with either the jaw closing or jaw opening motoneurons [28,29].
The majority of these ‘masticatory’ neurons are activated at very short latency from the
masticatory area of sensorimotor cortex, and by sensory inputs.

Mastication patterns vary greatly between foods, and change systematically during a chewing
sequence based on sensory feedback. Unlike locomotion, rhythmic orofacial movements
including the basic patterns of mastication are represented in the cerebral cortex. Coordinated
movements of the jaw, tongue, lips and cheeks can be evoked in anesthetized animals by
repetitive electrical stimulation of a large region of the sensorimotor cortex, and other forebrain
and midbrain structures. Some of these movements, which strongly resemble natural
mastication, including different patterns such as incisal gnawing and left and right molar
chewing are represented at specific cortical sites [30]. For example, in rabbit, small rapid
vertical movements powered by the digastrics (sucking) are located rostrally; vertical
mastication behind these, and patterns with strong lateral swings in the postero-lateral zone of
the “masticatory” cortex [30].

Interneurons, which have been identified in the brainstem, are capable of generating a basic
swallow pattern in the absence of peripheral or descending cortical inputs [31]. Swallowing is
observable in the developing fetus by the 11™ week of gestation which is essential for the
regulation of amniotic fluid [32]. Swallowing skills develop progressively during fetal and
neonatal maturation [33]. At birth, the neonate must transition from swallowing in a liquid
environment to integrating swallowing with airway-protective mechanisms. McFarland and
Tremblay [31] emphasized that sensory experience is crucial to optimize pattern formation and
brain development during the presumed critical period for attainment of swallowing
proficiency. Driving intraoral and pharyngeal sensory afferents mediated by the trigeminal and
glossopharyngeal system during suck can initiate or modulate a swallow [4,34].

Functional imaging in mature systems has revealed that swallowing is controlled through a
network of cortical areas that is considerably more distributed than previously thought, and
this network shares loci with other ororhythmic movements including speech. For example,
an extensive network of overlapping and distinct BOLD activations for tongue movements and
swallowing, including SMA, anterior cingulated area, Brodmann’s areas 3 and 4, cuneus,
precuneus, supramarginal gyrus, and cerebellum have been observed [35]. A subsequent meta-
analysis, based on 10 published studies and a total of 121 subjects, resulted in the identification
of distributed and partly overlapping cortical networks involved in the sensorimotor control of
water and saliva swallowing [36]. A between-condition meta-analysis revealed clusters with
higher activation likelihood for water than saliva swallowing in the right inferior parietal lobule,
right postcentral gyrus, and right anterior insula. VVoxel clusters with higher activation
likelihood for saliva than for water swallows were found in the bilateral SMA, bilateral ACG,
and bilateral precentral gyrus. Therefore, swallowing is not a simple reflex, but rather a
complex coordinated sensorimotor process generated by multiple levels of neural control
distributed among several physiological systems [31]. The swallowing network is adaptive and
subject to modification by experience-dependent plasticity [37].
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Whole-cell patch-clamp recording techniques were used to study the isolated respiratory
pattern generator located in the pre-Botzinger complex (pre-BotC) of the ventrolateral medulla
in rats [38-41]. Spatially distributed populations of interneurons, premotoneurons (preMNs),
and motoneurons (MNS) in the brainstem and spinal cord serve distinct functional roles in
mammalian respiration [42]. Interacting populations of interneurons generate temporal features
of the motor pattern including network rhythms, preMNs (defined as cells with axonal
connections to MNs) function as pattern formation elements and substrates for rhythmic drive
transmission, whereas MNs generate motor output. Inspiratory rhythm, generated by
interneurons in the pre-BotC of the ventrolateral medulla [39,43,44], propagates through
preMN transmission circuits to spinal and cranial MNs.

Drinking, eating, swallowing, and breathing are tightly coupled motor behaviors, with
swallowing dominant to respiration in normal individuals [31,45,46]. Swallowing always
interrupts the breathing of infants and children [45,47-49]. The cessation or interruption of
respiration during swallowing is known as swallowing apnea and is duein part to the closure
of the airway and neural suppression of the respiratory pattern generator in the brainstem
[45]. Breathing-swallowing coordination is defined by the point in the respiratory phase cycle
where swallowing apnea occurs [49]. Swallowing usually begins during the expiratory phase
of breathing when drinking. In adults, approximately 75-95% of swallows are initiated during
the expiratory phase [46,50] compared to just 39% in newborns [51]. The pause in respiration
continues for 0.5 to 1.5 seconds to accommodate the swallow, and respiration resumes with an
expiratory cycle to help prevent aspiration of residual food in the pharynx post-swallow [52,
53]. Conversely, respiration can resume with an inspiratory cycle when performing sequential
swallows while drinking from a cup [54]. The respiratory rhythm is also perturbed during the
onset of mastication, with respiratory cycle duration decreased during mastication but
increased during swallowing. The ‘exhale-swallow-exhale’ sequence is manifest during eating.

Term infants through the first year of life

Nutritive swallows of healthy term infants occur predominantly at the inspiratory-expiratory
cusp, followed by mid-expiration, and occasionally at the expiratory-inspiratory transition
[51,55,56]. Infants whose swallow-respiration coordination during feeding deviates from this
pattern could be considered “disordered.” For instance, premature infants (33 weeks post-
conception), unlike full term infants, swallow predominantly during respiratory pauses [57].
Recently, the maturation of breathing-swallowing coordination was examined during feeding
in ten healthy term human infants through the first year of life [48]. More than 15,000 swallows
were sampled across ten assessments between 48 hours and 12 months of age. Mid-expiratory
swallows represented the dominant pattern of breathing-swallowing coordination within the
first 48 h (mean = 45.4%), but the prevalence of this pattern declined rapidly in the first week
to 29.1%. Inspiratory-expiratory swallows increased significantly with age, particularly
between 9 months (37.0%) and 12 months (50.4%). Nearly 75% of swallows were followed
by expiration in the latter 6 months, which is an adult-like characteristic. Post-swallow
expiration is a robust feature of breathing-swallowing coordination from birth, with two major
shifts in the precise patterns occurring (1)after 1 week of postnatal feeding experience, and (2)
between 6 and 12 months, attributed to neural and anatomical maturation [48].

The coordination of nutritive and non-nutritive swallowing with breathing was assessed
longitudinally in 10 healthy term infants from birth to 1 year of age [49]. Swallows were
classified into five respiratory-phase categories, including mid-inspiration (I1), mid-expiration
(EE), inspiratory-expiratory cusp (IE), expiratory-inspiratory cusp (El), and mid-pause (P).
Breathing-swallowing coordination differed markedly between the two swallowing conditions,
especially between 2 weeks and 2 months. Significant condition effects were found in up to
four respiratory-phase categories (1, IE, El, and P). The condition effect was minimal from 9
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months with only IE swallow proportions differing between conditions. A “critical period’ is
implicated for the genesis and modulation of the neural response to oropharyngeal stimulation
during feeding. Interruption of this developmental process may significantly impact infants
with neurological and/or respiratory disorders and requires further investigation.

The impact of bolus ingestion and level of consciousness on swallowing apnea duration (SAD)
was studied in 10 healthy term infants [58]. SAD during wakefulness, sleep, and feeding (breast
or bottle) was measured 10 times from birth to 1 year of age. Based on 19,402 swallows, SAD
during feeding was significantly shorter than SAD of non-nutritive swallowing (during
wakefulness and sleep) regardless of age. SAD did not change significantly within the first
year of life in any of the three conditions and there was no change in the relative durations of
nutritive, wake and sleep conditions with age. The absence of an age effect suggests that the
neural mechanisms controlling SAD are fundamentally brainstem-mediated and largely
determined at birth in healthy term neonates.

Given the known decrease in global cerebral activity during sleep, the sleep-wake paradigm
was used to elucidate suprabulbar influences [59]. Non-nutritive breathing-swallow control
(BSC)of 10 healthy human infants was monitored longitudinally during wakefulness and sleep
from birth to 1 year of age. Digitized recordings of submental muscle activity, nasal airflow,
and thyroid acoustics enabled the categorization of swallows as a function of respiratory phase.
In contrast to the change in the overall pattern of BSC with age, and despite postnatal cortical
proliferation and development over this time, no arousal-related differences were observed
during the first year of life. Thus, the non-nutritive BSC in infants appears to be under complete
brainstem control.

Advanced swallow assessment technologies

The use of microphones permit detection of swallow sounds in adults [60] and infants [55,
61,62]. Cervical auscultation (CA) utilizing an accelerometer placed over an infant’s throat
was developed to include more objective, quantitative parameters that are reproducible among
clinical populations to evaluate dysphagia in adults, children, and infants [63,64]. CA was
performed recently with an accelerometer and microphone to describe the stability of initial
discrete swallow-associated sounds (IDS) of adult and infant feeding [65]. A variance index
(V1) was calculated to quantify the stability of IDS. The VI of adults swallowing liquid did not
differ from that of preterm infants older than 36 weeks PMA, but was lower than the VI of
preterm infants younger than 36 weeks PMA. The authors suggest that stability measurements
of swallow-associated sounds may provide a biomarker for neurologic integrity.

Motor evoked potentials (MEPSs) recorded from pharyngeal and anterior hyomandibular
(submental) muscles at rest have been used to evaluate treatment effects on neural pathways
underlying swallowing. A recent study documents a novel method for recording reliable intra-
and inter-session MEPs at the submental muscle group during task-related volitional
swallowing [66]. MEPs were elicited by single-pulse transcranial magnetic stimulation (TMS),
triggered when a pre-set threshold of surface electromyographic activity was attained. Results
indicate that surface electromyography-triggered TMS allows reliable measurement of MEP
amplitude at the submental muscle group within and across sessions when muscles are pre-
activated during volitional swallowing. This methodology will be useful for future
investigations on the effects of pathology and modulation of the neural network for swallowing.

A promising approach to the study of pharyngoesophageal motility in infants and children
involves the application of pharyngo-UES-esophageal micromanometry [3,5,67-72]. The
micromanometric method has been validated and new applications developed to measure the
reflexes of interest pertinent to swallowing and primary peristalsis. Recently, Jadcherla and
colleagues have defined the maturational changes in enteric nervous system and quantified
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related motility measures in premature infants. Pharyngeal-upper esophageal sphincter-
esophageal body motility characteristics were defined across maturation during infancy.
Additionally, this work included a characterization of the sensory motor aspects of the vago-
vagal reflex modulation during peristalsis. Pharyngeal reflexive swallowing (PRS) is more
frequent than pharyngo-UES-contractile reflex(PUCR). Each reflex type manifests distinctive
characteristics in air and water stimuli, and both PRS and PUCR have implications for the
evaluation of swallowing in infants [72].

Entrainment of oromotor CPGs to promote the transition to oral feed

Conclusion

Sensorimotor entrainment as a habilitation strategy(i.e., utilizing natural mechanical
stimulation, or other modality such as olfactory, vestibular, acoustic), has ecological validity
in assisting the infant to produce functional ororhythmic behavior and enhance the transition
to oral feeding. This approach is consistent with contemporary ideas on the role of sensory-
driven neural activity and critical periods [73,74] during late gestation and early infancy in the
formation of functional ororhythmic and deglutition networks. Use of a mechanical
entrainment stimulus also has the distinct advantage of being safe, pleasurable, and salient to
developing brainstem ororhythmic CPGs [75,76].

Altering the stiffness of the pacifier is also effective in reorganizing the ‘burst-pause’ structure
of the NNS CPG in neonates [77]. Infants who were born prematurely were offered the
Soothie™ and SuperSoothie™ silicone pacifiers at their3-month follow-up clinical evaluation
of feeding skills, health, and development. Even though bulb and cylinder displacement volume
and surface geometry of these two widely used pacifiers are virtually identical, their mechanical
stiffness profiles differ by a factor of 7x due to the increased wall thickness of the
SuperSoothie™ pacifier. The elevated mechanical impedance of the SuperSoothie™ presents
a significant challenge to infants and resulted in shorter NNS bursts, reduced numbers of NNS
bursts, and modified suck cycle frequency within-burst. These observations provide additional
evidence of the sensitivity of the suck CPG to changes in local environment.

Information threads from neuroscience, neonatology, gastroenterology, pediatrics, pulmonary
physiology, developmental speech physiology, speech pathology, and medical physics are
converging rapidly on the mechanisms underlying the development of aeroingestive functions
and the highly adaptive and distributed cortical and brainstem neural networks responsible for
central pattern generation. These multidisciplinary information streams will enhance our
understanding of cross-system interactions, plasticity, adaptive control, and issues related to
neurodevelopmental outcomes, which in turn will facilitate new methods of assessment and
novel entrainment including multimodal stimulus interventions for the prohabilitation of the
late gestation infant, or rehabilitation of the child with a feeding disorder.
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Figure 1.

Ororhythmic central pattern generators. An adaptation of a model proposed by Dr. James Lund
and colleagues [16], and extended to include modulatory inputs from the peripheral afferents
and the cerebellum.
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