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ABSTRACT 
  

 
Osteosarcoma (OS) is the second leading cause of cancer-related death in 

children and young adults. Despite advances in the treatment for OS, the survival rate 

of high-grade OS has reached a plateau and remains at 50-80% for the past three 

decades due to its highly metastatic and drug resistant nature. However, the crucial 

players that regulate malignant properties of OS and the underlying mechanisms are 

unclear. Towards this goal we attempted to identify factors whose knockdown could 

overcome cell death and proliferation arrest induced by anchorage-independence, 

serum-free conditions, leading to sphere formation. Thus, we screened a human whole-

genome shRNA library using SJSA-1 OS cells harboring poor sphere forming potential. 

This screening led to the identification of an uncharacterized gene, namely 

“transmembrane and immunoglobulin domain containing 3 (TMIGD3)”. Our in vitro and 

in vivo experiments successfully revealed that downregulation of TMIGD3 using two 

independent shRNAs significantly increased sphere formation, cell migration, tumor 

formation, and metastases of multiple OS cells. Interestingly, overexpression of 

TMIGD3 isoform1 (i1) significantly suppressed cell proliferation, sphere formation and 

tumor formation, whereas its isoform 3 (i3) sharing the C-terminal region with i1 failed to 

do so. Since the N-terminal region consisting of 117 amino acids of TMIGD3 i1 is 

shared with the N-terminal region of adenosine A3 receptor (A3AR), we also 

overexpressed A3AR in OS cells and found that A3AR overexpression suppressed 

proliferation, migration, and tumor formation of OS cells as well. These results suggest 

that the N-terminal region plays a crucial role in the suppression of OS malignancy. We 

furthermore found that TMIGD3 downregulation, similar to A3AR knockdown led to an 
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increase in the activity of NF-κB, a well-characterized downstream signaling of A3AR. 

Subsequent knockdown of NF-κB in cells downregulated for TMIGD3 abrogated their 

enhanced malignant properties. Analysis of human OS tissues revealed low expression 

of both TMIGD3 and A3AR when compared to normal bone and lung tissues. 

Additionally, we questioned the role of TMIGD3 in influencing stem-like properties of 

OS, since TMIGD3 knockdown in OS cells increased sphere formation, a hallmark of 

stem-like properties in vitro. We found that downregulation of TMIGD3 increased stem 

cell transcription factor expression, tumor initiation potential, and activity of aldehyde 

dehydrogenase (ALDH). These data suggest the potential role of TMIGD3 as a novel 

regulator of stem-like properties of OS.  

In summary, our study identified TMIGD3 i1 and A3AR as novel suppressors of 

OS malignancy and suggests that signaling regulated by TMIGD3 i1 and A3AR could 

serve as a potential targets for treatment of high grade OS.  
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BACKGROUND AND INTRODUCTION  
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1.1 Osteosarcoma- An unsolved deadly malignancy  

Sarcomas account for ~1% of all malignancies, however they occur with a high 

frequency in children, comprising of ~15% of all childhood cancers1. Osteosarcoma 

(OS) is a primary mesenchymal tumor characterized by the production of osteoid by 

malignant cells2. French surgeon Alexis Boyer coined the term OS as early as 1805. It 

is a relatively rare malignancy with approximately 800 cases diagnosed per year in the 

US3. Despite the rarity, OS is the most common primary malignancy of the bone that 

accounts for approximately 3.4% of all childhood cancers and 56% of malignant bone 

tumors in children4,5. The mainstay of treatment includes primary tumor surgical 

resection and/or radiation therapy combined with systemic chemotherapy (doxorubicin 

and cisplatin with or without methotrexate). Many patients develop resistance to the 

treatment and relapse. While the five-year survival rates for localized disease have 

stayed at 70%, patients who manifest micrometastases, which are observed in 80% of 

cases and those who have disease relapse, continue to have dismal outcomes with 

survival rates of about 20%6. Targeted therapy that aims at developing treatments 

directed towards molecular anomalies essential for tumorigenesis is an exciting and 

hopeful development in cancer treatment for the past 10 years. However, as of now, no 

such targeted therapy is available for OS, and there is a great need for developing new 

therapies, to improve the prognosis of patients with high grade OS.  
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1.2 Epidemiology 

OS represents occurrence at two distinct stages in life: an initial peak at 

adolescent age and the second peak during or after the 6th decade of life7. An 

association between rapid bone growth and occurrence of the disease is debated, 

owing to the tumor’s typical metaphyseal location and the peak incidence during 

adolescence and early childhood. The observation that large breed canines have a 185-

fold risk compared to small breed canines supports this theory8. In humans, as well, OS 

does occur in patients significantly taller than the general population9,10. The incidence 

is slightly higher in men when compared to women (male/female ratio, ~1.6), but peaks 

earlier among females (age 12 years / age 16 years), which may be attributed to 

differences in growth spurt between the two sexes10.  The incidence rates for OS for all 

races and both sexes, in children and adolescents in the US are 4.5 cases per million 

people per year11. Age standardized incidence rates for OS in both males and females 

does not appear to differ significantly between Asian countries and the US1. Overall, the 

incidence rates for OS seem to be quite comparable throughout the world. However, 

there are some reports of notable differences such as the increase in incidence rates 

observed amongst Japanese males living in the state of California (1.3 per 100,000 

males), which is considered to be relatively high compared to rates throughout the 

world, and in Japan in particular12. Similarly, high incidence rates are also observed in 

Japanese males living in Hawaii, suggesting that Japanese migrants may be subjected 

to a higher risk of OS due to environmental influences or lifestyle12. These data suggest 

that there might be a geographic or ethnic influence on OS incidence.  
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1.3 Clinical presentation 

Patients present with localized pain at rest and swelling of the affected area. 

Diagnostic lab values are not very useful with the exception of alkaline phosphatase 

(ALP)13, which is elevated in approximately 40% of cases, and lactate dehydrogenase 

(LDH)14, which is elevated in 30% of cases. Although, these markers have some 

prognostic information15, their significance as biomarkers for OS is questionable. 

Metastatic disease is presented as macrometastases in 10-20% of patients and 

micrometastases in 80% of patients at the time of diagnosis. The most common sites 

include lungs followed by other bones. The presence of metastases is considered to be 

the most potent and reliable prognostic indicator that reduces survival from 70% to less 

than 20%.  

 

1.4 Pathogenesis 

1.4.1 Bone growth and tumorigenesis  

Development of OS has been associated with a preference for rapidly growing 

bone. Rapid bone growth observed during puberty is well correlated with OS growth. 

There is a slightly higher incidence in boys (57%) when compared with girls (44%)11, 

though the peak age for OS development is slightly earlier in females than in males, 

owing to the differences in their respective skeletal growth16. Bone is composed of two 

cell types, which are responsible for bone formation (osteoblast) or resorption 

(osteoclast). Osteoblasts, the bone forming cells, arise from mesenchymal stem cells 

expressing markers such as RUNX-related transcription factor 1 (RUNX2), Osterix 

(OSX), Osteopontin, Bone sialoprotein and Ostecalcin17. These cells synthesize type I 
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collagen which comprises 95% of the bone matrix, called osteoid. OS share many 

characteristics of immature osteoblasts18. The other type of cells present in the bone is 

the osteoclasts that are responsible for bone resorption, hence considered to be highly 

specialized macrophages. Osteoclasts are derived from the monocyte lineage, and 

have phagocytic-like mechanisms like macrophages19. Osteoclast differentiation and 

function are tightly regulated by osteoblasts that secrete local signals, of which the most 

important are receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegin 

(OPG). RANKL mediates differentiation of osteoclasts and activity through binding to its 

receptor RANK, present on the surface of osteoclasts 20. On the other hand, OPG is a 

decoy receptor for RANKL, and inhibits the differentiation of osteoclasts 21. Increased 

osteoclast activity is directly correlated with enhanced osteolytic activity of bone matrix 

exhibited by OS, aiding in the process of invasion 22.  

 

1.4.2 Environmental factors  

Many physical, chemical, and biological factors have been suggested as 

carcinogens for OS. Ionizing radiation and UV exposure are very well correlated with 

OS development. Most of the secondary OS cases are attributed to ionizing radiation 

regardless of chemotherapy treatment. Radiation-induced OS account for 3%, 

appearance of which is reported almost 30 years following radiation exposure 23. OS 

caused by radiation is dose-dependent and its incidence is increasing in patients 

following irradiation for the treatment of other primary tumors 24. Chemical agents such 

as methylchlanthrene and chromium salts25, beryllium oxide 26 and asbestos 27 may also 

be associated with OS development.   
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1.4.3 Bone diseases 

Paget’s disease of the bone is characterized by abnormal bone turnover, 

associated with extensive bone remodeling resulting in weakened bone tissue and 

affects patients generally over 40 years of life 28,29. This disease was discovered in 1877 

by Sir James Paget and has been associated with defects in the genes PDB2 (18q) and 

SQSTM1 (5q) 30. This disease is associated with high level of osteoclastic bone 

resorption, resulting in increase in osteoblast proliferation thus accelerating OS 

development. Approximately, 1% of individuals with Paget’s disease develop OS 31.  

 Heritable multiple osteochondromas are characterized by multiple 

osteochondromas that are bone tumors comprised of cartilage and bone. The age of 

diagnosis is 3 years, and almost all individuals affected by this disease are diagnosed 

by age 12. The two most prominent gene mutations linked to this disease are EXT1 and 

EXT2 ; mutations are detected in almost 70-95% of affected individuals 32. These 

patients carry a low risk of developing sarcomas of the bone- most frequently 

chondrosarcoma (0.5-20%) than OS. The risk of developing a sarcoma is directly 

related to the number of osteochondrosarcomas present in the individual 32.   

 

1.4.4 Heritable syndromes linked to OS 

Patients with Li-Fraumeni syndrome, a rare autosomal dominant disorder carry a 

germline mutation in the tumor suppressor TP53, of which 12% develop OS 33. The 

strongest incidence of genetic predisposition to OS exists in patients carrying germline 

mutations in the retinoblastoma gene (RB), a key regulator of cell cycle progression 34. 

The incidence of OS in patients with retinoblastoma is increased several hundred-fold 
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35. Patients with rare autosomal recessive disorders caused by mutations in the RecQ 

DNA helicase family members, which are necessary to maintain genome integrity, also 

have predisposition to OS. One such syndrome, the Rothmund-Thomson syndrome 

(RTS), is caused by mutations in the helicase RecQ protein like-4 (RECQL4) which is 

the most strongly associated with OS (32% of individuals develop OS) amongst other 

syndromes associated with RecQ helicases 36,37. Another syndrome which has 

mutations in the RECQL4 is RAPADILINO syndrome, a very rare disorder, of which 

approximately 10% of cases develop OS 38. Werner’s syndrome (WRN; progeria) is also 

caused by mutations in the WRN helicase RECQL2 which is characterized by abnormal 

telomere maintenance and chromosomal rearrangements 39. Approximately 10% of 

these patients diagnosed with WRN develop OS40. Bloom’s syndrome patients have 

mutations in the BLM DNA helicase, also belonging to the RecQ family41. These 

patients have extremely short stature, and approximately 3% of the patients develop 

OS.  

 

1.5 Genetics of OS 

A variety of alterations including several complex chromosomal rearrangements 

have been detected using molecular and cytogenetic analyses in OS42. However, none 

of these pathways has been implicated as hallmarks of OS development43. Genomic 

hybridization studies comparing human OS tumors to human osteoblasts identified 

several areas of DNA gain or loss, and mutations of oncogenes such as MYC, FOS, 

MDM2 as well as RECQ helicase mutations were found to be associated with a small 

proportion of OS. Some of these recurrent alterations may have prognostic value 44. 
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Despite the extensive analyses, the common underlying genetic alterations responsible 

for disease development and progression still remain obscure 45. The retinoblastoma 

(RB) and the TP53 tumor suppressor pathways are the only known strongest genetic 

associations for sporadic and hereditary OS.  As previously stated, Li Fraumeni 

syndrome patients with a hereditary TP53 mutation are predisposed to OS while 

patients with RB mutations have a 500-fold increase in the incidence of OS. 

Genetic alterations of RB1 are found in 70% of sporadic OS. Loss of 

heterozygosity (LOH) of the RB locus occurs in 60-70% of OS tumors, which also 

serves as a poor prognostic factor. RB1 regulates the G1/S transition of the cell cycle, 

which is hyperphosphorylated, thereby leading to E2F activation and cell cycle 

progression46. The phosphorylation of RB1 is regulated by cyclin dependent kinase 4 

(CDK4). The CDKs are in turn regulated by a series of inhibitory proteins, including 

p16INK4a. Loss of p16INK4a is also observed in OS with RB1 alterations 47.  

TP53 encodes a transcription factor that regulates genes involved in cell cycle, 

apoptosis and DNA damage response. Genetic alterations in TP53 observed in OS 

accounts for 22%48. It is observed that inactivation of RB and TP53 in conditional 

knockout mice leads to spontaneous metastatic OS, in which cells are disrupted in their 

differentiation processes49,50. However, TP53 mutation is not correlated with prognosis 

of human OS development and/or metastasis 33.  

Thus, it is surprising that only few predisposing mutations have been identified 

for OS progression. Also, the disease processes and key players involved in the 

malignant properties including metastasis and chemoresistance are not well 
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established. These concerns need to be addressed towards development of novel 

promising therapeutic strategies for OS.   

 

1.6 Tumor initiating cells (TICs) and cancer 

It is a well-accepted view that tumors comprise a heterogeneous mass 

comprising a hierarchy of cells. Human OS tumors exhibit osteoblast-like features, and 

are arrested at different stages of differentiation ranging from highly differentiated to 

poorly differentiated or undifferentiated subtypes51. Increasing evidence suggests that 

the heterogeneous composition of the tumor may be one of the reasons for the 

ineffectiveness of the standard radiation and chemotherapeutic regimens 52,53. Most of 

these treatments are based on the view that all cancer cells are fast dividing and are 

tumorigenic, and all cells have the ability to regenerate the entire tumor54. This model 

called the clonal evolution or stochastic model is based on initial studies on the clonal 

origin of leukemia and oncogenic viruses 55,56. In contrast, the cancer stem cell (CSC) 

model proposes that within the heterogeneous tumor mass, there exists a small 

subpopulation of cells called CSCs that are responsible for the most aggressive 

properties of the tumor including drug resistance and metastasis 54. This subpopulation 

also referred to as tumor initiating cells (TICs), maintains the unique and exclusive 

capacity to regenerate the bulk of the tumor after chemotherapy or at secondary sites 

57(Fig 1.1). A number of studies suggest that OS conforms to a hierarchical CSC model 

rather than a stochastic model 58-61.  Accumulating evidence has supported the 

CSC/TIC hypothesis and shown that CSCs/TICs have biological and molecular 

similarities to somatic stem cells that maintain normal tissues. Numerous reports have 
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demonstrated that CSCs/TICs possess high tumor initiating potential, as well as other 

stem-like properties, including high metastatic potential, multi-lineage differentiation, 

high expression levels of ABC transporters or stem cell transcription factors (e.g. Oct-4, 

Sox-2, Nanog), stem cell surface markers (e.g. CD133, CD44), aldehyde 

dehydrogenase (ALDH) activity, and drug resistant properties 62-65. However, the most 

important property of CSCs/TICs is the capability of self-renewal, just like normal stem 

cells, which can be assessed by serial transplantability of selected cellular population. A 

deeper understanding of the mechanisms underlying generation, maintenance, and 

enhancement of these CSC/TIC-like properties would help in developing targeted 

cancer therapy that could aim at the deadly attributes of cancer, such as metastasis and 

drug resistance.  

The first proof of concept study of CSC model came in 1994 in hematologic 

malignancies conducted by Dick and colleagues who showed that rare CD34+/CD38- 

cells derived from a leukemia patient gave rise to successful acute myeloid leukemia in 

transgenic immunocompromised mice demonstrating the ability of regeneration of a 

tumor from a single cell in vivo 66. CSCs of solid cancers with epithelial, neuro-

ectodermal, and mesenchymal origins are also identified as a subpopulation with high 

ALDH activity, present as side population (SP), or express stem cell surface markers 67. 

Their properties are evaluated based on their abilities to grow clonally as spheres in 

serum- and anchorage-independent conditions, to initiate tumors from low numbers of 

cells in immunocompromised mice, to regenerate tumors following serial 

transplantation, and to differentiate into multiple lineages 67,68.  
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1.6.1 CSCs/TICs in OS 

The first evidence of CSCs/TICs in OS was demonstrated by Gibbs and 

colleagues who showed that sarcospheres from OS cell lines and primary OS cells that 

were capable of growing in serum- and anchorage- independent conditions to form 

spheres, possessed the properties of self-renewal and multipotency 69. Cells isolated 

from OS sarcospheres show high tumor initiating potential and drug-resistant properties 

70. Also, high expression of Oct-4 is observed in OS spheres, and cells engineered with 

an Oct-4 driven GFP reporter are capable of self-renewal of GFP positive population in 

xenografted tumors. The Oct-4 positive GFP cells are highly tumorigenic and 

successfully metastasized to the lungs and also express other mesenchymal stem cell 

markers 71.  Another important pluripotency factor associated with OS TICs is 

transcription factor Sox-2. Previous reports show enhanced expression of Sox-2 in 

human OS cell lines and patient tissue samples. Also sphere-forming ability relies on 

expression of Sox-2 while loss of Sox-2 leads to inhibition of sphere formation as well 

as tumorigenic potential 72.  

 Apart from that several studies have also isolated cells with stem-like properties 

in OS using stem cell surface markers such as CD133 (prominin), CD117 (c-kit), and 

Stro-1 73,74. Specifically, cells doubly positive for CD117 and Stro-1 (CD117+Stro-1+) 

successfully give rise to tumors exhibiting higher metastatic potential in 

immunocompromised mice. CD117+Stro-1+ cells also show increased drug resistance 

when compared to CD117-Stro-1- cells. These malignant properties are due to 

enrichment of subcellular population of OS cells expressing a metastasis associated 

marker CXCR4 and a drug transporter marker ABCG2 73. Other methods to identify OS 
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CSCs/TICs include use of mouse stem cell surface antigen Sca-1, ability to efflux 

rhodamine 123 or Hoechst 33342 dyes, or high ALDH activity 49,72,75,76. In particular, 

ALDHs comprise a group of cytosolic enzymes that convert intracellular aldehydes into 

carboxylic acids through oxidation and increased expression of ALDH1, which is a drug 

detoxification enzyme, is a property associated with normal stem cells including 

hematopoietic stem cells and neural progenitors77. Not surprisingly though, CSCs/TICs 

in different types of cancer are associated with high expression of ALDH1, as it is well 

known that TICs adapt several properties from normal stem cells 78. Cells sorted for 

ALDH1 from OS99-1, based on the Aldeflour assay, from tumor xenografts, show 

enhanced proliferation, colony formation, and express stem cell related transcription 

factors including Oct-4, Nanog and Sox-2 79. These ALDHhigh cells are capable of self-

renewal when serially transplanted in mice and successfully reforms the bulk of the 

tumor. Honoki et al show that MG63 OS cells exhibits a high percentage of cells positive 

for ALDH, and the spheres from these cells are also enriched for ALDH1 expression 76.  

However, even though the presence of OS CSCs/TICs is well corroborated with 

many reports, the mechanisms behind their regulation or maintenance remain largely 

unknown.  
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1.7 Objective of our research 

The molecular mechanisms that contribute to the most aggressive properties of 

OS, such as metastasis and drug resistance, remain to be elucidated. Since the 

prognosis for OS patients who manifest metastases are bleak, and the current 

chemotherapeutic regimen is not efficient against metastatic and recurrent OS, there is 

an urgent need for discovering new therapies. The key to these therapies may lie at a 

detailed and precise understanding of the molecular determinants governing the 

malignant properties of OS, since they can be crucial targets of OS therapy. Given that 

the ability of cancer cells to form spheres in anchorage- and serum-independent 

conditions is well correlated to malignant properties, our study which identifies and 

characterizes factors regulating sphere formation of OS cells would greatly improve our 

understanding of the mechanistic process of OS progression and hence ultimately 

accelerate the development of novel therapeutic strategies that target the most 

malignant properties of OS.  
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1.8 Specific Aims 

  OS, the most common bone cancer, is the second highest cause of cancer-

related death in children and adolescents80. Despite major advances in the treatments 

of this disease, the long-term survival rates for patients with high-grade OS have 

reached a plateau for the past three decades and remain at approximately 50-80% 

72,81,82. The major reasons for the stagnation of the survival rates are attributed to its 

highly metastatic and drug resistant nature 83. The long-term goal of this study aims 

at understanding the molecular mechanisms behind the malignant properties of high-

grade OS and discovering novel therapeutic targets to improve the prognosis of patients 

suffering from high-grade OS. 

 The ability to survive and proliferate in serum-deprived and anchorage-

independent conditions to form spheres is considered to be a hallmark of malignant 

properties.  However, the underlying molecular framework contributing towards sphere 

formation is unclear. Identification and characterization of factors that contribute to 

sphere formation of OS cells would greatly help us understand the mechanistic process 

through which OS cells gain or enhance malignant properties.  

 Our central hypothesis is that genes that suppress sphere formation inhibit 

malignant properties of OS. The objective of this study is to identify and characterize 

factors that regulate sphere forming potential of OS cells. Towards this goal and to test 

our hypothesis, we screened a human whole-genome shRNA library using SJSA-1 OS 

cells harboring poor sphere forming potential. Our screening identified a novel gene 

“transmembrane and immunoglobulin containing domain 3 (TMIGD3)” whose 

knockdown enhanced sphere formation of OS cells. TMIGD3 is located on chromosome 
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1p13.2 (Gene ID: 57413, NCBI), and is found to be deleted in some malignancies 

including pheochromocytoma, OS, and meningioma. Intriguingly, the N-terminal region 

of 117 amino acids of TMIGD3 is shared with the N-terminal region of adenosine A3 

receptor (A3AR) located on the same chromosome locus 1p13.2 (Gene ID: 140, NCBI), 

a Gi-protein that is well established to suppress inflammation and cancer through the 

NF-κB and β-catenin pathways. We hypothesize that TMIGD3 suppresses malignant 

properties of OS via overlapping pathways with A3AR. To test this hypothesis, we have 

achieved the following Specific Aims.   

Aim 1: Identify factors that suppress sphere formation using a human whole- 

genome shRNA library. 

Aim 2: Determine the roles of TMIGD3 in malignant properties of OS, in 

comparison with A3AR. 

Aim 3: Determine the mechanisms behind TMIGD3 mediated OS suppression, and 

identify overlapping pathways altered by TMIGD3 in comparison with A3AR. 

Aim 4: Determine the roles of TMIGD3 in stem-like properties of OS. 

Results for Aims 1, 2, 3, and 4 are presented in Chapter 2, 3, 4, and 5 respectively. 

 This study has delineated the novel suppressive roles of TMIGD3 and A3AR in 

the regulation of malignant properties of OS, which would significantly increase our 

understanding of the mechanisms underlying malignant progression of OS. Therefore, 

TMIGD3 and A3AR could become potential pharmaceutical targets for therapy-resistant 

malignant OS, which might contribute to the improvement of the survival and quality of 

life in patients with OS. 
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1.9 Significance 

 This study is significant because it is has identified TMIGD3 and A3AR as novel 

factors crucial to the suppression of malignant properties of OS, including proliferation, 

migration, tumor formation, and metastasis. Detailed analyses identified the TMIGD3 

isoform 1 (i1), but not TMIGD3 i3, as the important factor involved in the suppression of 

OS malignancy. This is the first study demonstrating the biological function of TMIGD3. 

We also further elucidated the underlying mechanisms by which TMIGD3 keeps a check 

on the aggressive properties of OS via the suppression of the NF-κB activity. 

Additionally, we delineated the role of A3AR, in OS malignancy which was not 

previously characterized. Our immunohistochemistry analyses using human OS tissues 

revealed decreased expression of both TMIGD3 and A3AR, compared to normal bone 

and lung tissues raising the question of the significance of the usage of A3AR agonists 

for the treatment of OS. Meanwhile, this leads the way for exploring the mechanisms 

underlying the reduced expression levels of TMIGD3 and A3AR.  

 Our data further suggests the role of TMIGD3 in stem-like properties of OS, 

which are also partly attributed to impart malignant characteristics to the tumor. Thus, 

the dissection of TMIGD3 as a novel regulator of OS progression would help us target 

the most lethal characteristics of this disease, metastasis and chemoresistance. It is 

also possible that TMIGD3 may be responsible for the malignant and stem cell-like 

properties not only of OS, but also of other types of sarcomas, since all sarcomas are of 

mesenchymal origin 84-86. Therefore, TMIGD3 could become a potential biomarker or a 

pharmaceutical target for many types of sarcomas, and hence our study might have a 

significant impact on the survival and quality of life in these sarcoma patients. 
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1.10 Innovation 

• Our study is the first to perform a whole-genome shRNA library screening to identify 

novel regulators that influence sphere forming potential of OS using an unbiased 

approach. 

• This is the first study examining the clinical significance of TMIGD3 and A3AR in OS, as 

well as their functions as crucial players that suppress OS tumorigenesis. 

• Our study is also the first to describe the differential roles of isoforms of TMIGD3 in 

cancer or A3AR in OS.  

• Our study is the first to delineate the role of TMIGD3 in the NF-κB pathway, hence 

opening up avenues for the use of NF-κB inhibitors to target OS malignancy.  

• We are the first to study the potential significance of TMIGD3 as a novel regulator of 

stem-like properties of OS. 

• Our study delineating the roles of TMIGD3 and A3AR as novel tumor suppressors in OS 

thus providing new therapeutic interventions to target OS malignancy. 
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CHAPTER 2 

GENOME-WIDE SCREENING TO IDENTIFY FACTORS THAT 
REGULATE SPHERE FORMATION OF OS CELLS 
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2.1 Introduction 

The survival rate for metastatic OS remains at 20% for the past 30 years87,88. 

This is mainly because the factors and mechanisms by which aggressive characteristics 

of OS are regulated remain unclear. A deeper understanding of the molecular 

mechanisms behind the malignant properties and discovering novel therapeutic 

regimens to target these malignant properties are required to improve the prognosis of 

patients suffering from high-grade OS. 

Cancer cells which can grow in serum- and anchorage-independent conditions to 

form spheres must have the abilities to overcome cell death (anoikis: anchorage-

dependent cell death) and proliferation arrest induced by low-attachment and nutrition 

deprived conditions, and hence sphere forming potential is well correlated with high 

malignant properties of cancer cells 89,90. Indeed, cells within spheres derived from 

primary and established cancer cells including OS frequently show high tumor initiating 

and metastatic potential, as well as resistance to chemotherapeutic drugs, with high 

expression of factors associated with self-renewability, thus possessing stem-like 

properties 69,73,91-94.  We hypothesized that factors that suppress sphere forming 

potential of OS cells inhibit the aggressive characteristics of this disease.  

To test this hypothesis, we first tested several OS cell lines for their inherent 

abilities of sphere forming potential. We chose SJSA-1 OS cell line, since it had low 

sphere forming potential (in size and in percentage). We infected SJSA-1 cells with a 

human whole-genome short hairpin RNA (shRNA) lentiviral library at a low (0.2) 

multiplicity of infection (MOI) and performed sphere formation assays. After validation, 9 

clone-derived cells showed the abilities to form spheres with sizes greater than 75μm at 
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more than 2% of frequency. Genomic sequencing identified candidate shRNAs in these 

clones, and 7 shRNAs for 7 genes were present in these clones since 3 were for the 

same gene: a novel uncharacterized protein, called transmembrane and 

immunoglobulin containing domain 3 (TMIGD3). Since 3 clones contained shRNAs for 

TMIGD3 and because infection of parental SJSA-1 cells with a lentiviral vector encoding 

the identified shRNA for TMIGD3 consistently increased sphere forming potential, we 

pursued TMIGD3 for our further analysis of its roles in OS malignancy. The reason we 

think that relatively higher number of clones had the shRNA for TMIGD3 is because, 

during the selection process before performing sphere assays, the knockdown of 

TMIGD3 may provide with a growth advantage that may increase the number of cells 

that express the shRNA for TMIGD3, Thus, our screening strategy identified a potential 

novel player that could play a crucial role in the suppression of aggressive properties of 

OS.  
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2.2 Materials and Methods 

shRNA library 

The human whole-genome shRNA library was purchased from Open Biosystems Inc. 

The library consists of 21,416 genes in total, 75,000 shRNAs (approximately 3.5 

shRNAs per gene) divided into 7 pools of lentiviral particles. The cells were infected at a 

low multiplicity of infection (0.2 MOI) to ensure that a single cell did not have more than 

a single copy of virus. 

 

Sphere formation assays  

Sphere formation assays were performed as previously described 73. Briefly, cells (20 

cells per well) were plated on 96-well ultra-low attachment plates. (Corning Inc., 

Corning)  (without the presence of extracellular matrix components, thus leading to 

formation of spheres in free floating conditions) in DMEM F12 serum free medium 

containing 10mM HEPES, 50 µM of putrescine, 20nM of progesterone, ITS (insulin 25 

mg/ml, sodium selenite 25 µg/ml, transferrin 25 mg/ml), EGF (10 ng/ml), and FGF (10 

ng/ml) for 10-14 days and numbers of spheres with sizes over 30 µm were counted. 

Sphere forming potential was calculated as the percentage of # of spheres formed/# of 

cells seeded.  
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2.3 Results 

2.3.1 Identification of a suitable OS cell line to perform screening  

Sphere forming ability is considered to be a hallmark of aggressive properties of 

cancer cells in vitro. We hence hypothesized that factors that regulate sphere formation 

would play roles in malignant properties of OS. To test this hypothesis, we performed 

sphere formation assays by screening a human whole-genome shRNA lentiviral vector 

library. First, to determine the appropriate cell lines to be used for the screening where 

downregulation of a gene would allow a single OS cell to form a sphere, we tested 

sphere forming potential of several OS cell lines, including U2OS, SJSA-1, Saos2, and 

MG63, in anchorage- and serum-independent sphere specific conditions in ultra-low 

attachment 96-well plates (Table 1). We seeded 20 cells per well so that single spheres 

were derived from single cells without forming aggregates. To measure the sphere 

forming potential, we only counted spheres with sizes >30 μm in diameter and 

categorized the formed spheres into two groups by sizes: 30-75 μm and >75 μm. We 

observed no sphere formation from U2OS and Saos2 cells, low potential in SJSA-1 

cells, and high potential in MG63 cells. We chose SJSA-1 cells for further screening 

purposes, since it retained its sphere forming potential even though it was considerably 

low.  
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Table 1. Sphere forming potential of OS cell lines.  

Different OS cell lines including U2OS, SJSA-1, Saos2, and MG63 were examined for 

their sphere forming potential (% sphere formation= percentage of # of spheres 

formed/# of cells seeded) for two weeks in sphere specific conditions. The sphere 

forming potential was classified into two different categories based on their diameters: 

30-75 μm and >75 μm. Spheres with less than 30 μm in diameter were not counted as 

spheres. Data are presented as average +/- standard deviation (S.D.) from at least four 

independent experiments.  
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2.3.2 TMIGD3 as a factor that suppresses sphere formation of OS cells 

SJSA-1 cells were infected with the shRNA library at 0.2 MOI, so that single 

shRNA was present per cell. After selection with puromycin, the infected cells were 

subjected to sphere assays (1st screening, Fig 2.1A). Spheres formed with sizes >75 μm 

in diameter were isolated, cultured for expansion, and then subjected to secondary 

sphere assays to further confirm their increased sphere forming potential (2nd sphere 

assays, Fig. 2.1A). Nine (9) clones were selected, since they formed spheres greater 

than 75 μm in diameters at more than 2% of frequency. These 9 clones were expanded, 

followed by genomic DNA isolation. PCR was performed using specific PCR primers 

flanking the shRNA site, and the PCR products were further sequenced to identify the 

target sequences within the shRNAs (Fig. 2.1A). Out of the 9 clones, 7 target 

sequences for 7 genes were identified (Table 2), since 3 of the 9 clones were identical, 

which was for transmembrane and immunoglobulin domain containing 3 (TMIGD3) (the 

same shRNA for TMIGD3 was present in each of the 3 clones). To further validate the 

effects of these 7 shRNAs on sphere forming potential of SJSA-1 cells, we infected 

SJSA-1 cells with lentiviral vectors encoding each shRNA identified for these 7 genes 

(Fig. 2.2A). Of these 7 genes, SJSA-1 cells infected with lentiviral vectors encoding 

shRNAs for TMIGD3 and spermatogenesis and centriole associated 1 (SPATC1) 

showed higher sphere forming abilities (Fig. 2.2B). We decided to pursue TMIGD3 for 

further characterization due to the following reasons: 1) 3 of the 9 clones contained the 

shRNA for TMIGD3 targeting the 3’UTR. 2) It had a higher frequency of sphere 
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formation (both primary and secondary sphere assay) than all clones. 3) The sizes of 

the spheres were bigger than all the clones. 

 

Figure 2.1 Screening strategy and results 

(A) SJSA-1 cells infected with a human whole-genome shRNA library at 0.2 MOI were 

selected with puromycin for 48 hours and subjected to sphere formation assays  

(1st screening) in sphere specific conditions where 20 cells/well were plated in 96-well 

ultra-low attachment plates with serum-free sphere media. Sizes of spheres were 

determined 2 weeks later, and spheres with sizes greater than 75 μm in diameter were 

isolated and expanded in monolayer culture. These sphere-derived cells were further 

subjected to 2nd sphere assays, where spheres with sizes greater than 75 μm at >2% of 

frequency were further analyzed for identification of the respective shRNA using 

genomic PCR and sequencing.  

(B) Summary of screening results is presented below the schematic strategy. Of the 9 

sphere-derived clones, 7 genes were identified, since 3 clones contained the same 

shRNA for TMIGD3.  
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Figure 2.2 Validation of candidate genes  

(A) The pGIPZ lentiviral vectors containing each identified shRNA for 7 genes were 

infected into SJSA-1 cells, followed by puromycin selection and sphere formation 

assays.  

(B) Results of sphere assays. Total number of cells examined was 2,000 per clone. 

Graph showing percentage of sphere formation (percentage of # of sphere formed/# of 

cells seeded) from at least 3 independent experiments.  
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Table 2 Functions of candidates.   

Candidate genes identified in the screening and their known functions.  
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2.4 Discussion 

One of the hallmarks of malignant properties of cancer cells is the ability to 

survive in serum- and anchorage-independent conditions to form spheres. Our sphere 

assays involve culture of cells in 3 dimensional conditions, similar to other assays 

including 3D organoid cultures however the differences include: 1. low numbers of cells 

that prevent cell to cell contact and adhesion 2. Anchorage–independence that prevents 

cell-matrix attachment. Thus, these strict conditions wherein most of normal cells as 

well as most of cancer cells die, could be considered to be a true test for the survival of 

the most transformed or aggressive population of cells.   

 Our screening identified a novel uncharacterized protein, TMIGD3, whose 

downregulation increased sphere formation of OS cells. This has opened up new 

avenues to further expand the role of TMIGD3 in malignancy of OS, which is further 

illustrated in Chapters 3, 4 and 5. Sphere forming potential is considered to be a 

hallmark of malignancy as well as stem-like properties. Hence, we have elaborated on 

the role of TMIGD3 as a crucial player in the regulation of malignant properties and 

stem-like properties of OS. . Also, TMIGD3 shares its N-terminal region with adenosine 

A3 receptor (A3AR). Though the role of TMIGD3 in cancer is completely unknown, the 

role of A3AR as a suppressor of cancer progression is well established. Additionally, 

this study can be further extended to examine the roles of TMIGD3 in other sarcomas of 

mesenchymal origin as OS.  

Cell density is considered to be the most crucial and determining factor in the 

efficiency of the sphere formation assay. The maintenance of clonality of the spheres is 
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the central tenet of these assays, meaning every sphere is derived from a single cell. 

We performed preliminary sphere formation assays with varying number of cells/well to 

determine an ideal condition, where the cells were well distributed, to avoid clusters of 

cells that could eventually give rise to aggregate based spheres, one of the major 

drawbacks associated with the sphere formation assay. Our conditions wherein 20 

cells/well were seeded minimized aggregate formation and allowed spheres to be 

formed from a single cell. We confirmed this by performing preliminary experiments 

where we seeded one RFP-positive cell with high sphere forming potential and 19 GFP-

positive cells with low sphere forming potential in a single well and we found that at the 

end of 2 weeks, only RFP-positive spheres with no contamination of GFP cells were 

present (data not shown). Indeed, the results of our screening analyses elucidated that 

the clonality of spheres was maintained, since only a single shRNA was identified in 

each of the 9 clones.  

Amongst the other genes identified, knockdown of SPATC1 (also known as 

speriolin) gave rise to a significant increase in sphere forming potential. However, its 

role in cancer malignancy is unclear. Interestingly, protein expression studies in different 

malignancies show moderate to high staining intensities in multiple cancer tissues 

(http://www.proteinatlas.org/ENSG00000186583-SPATC1/cancer). It would be 

interesting to characterize the role of SPATC1 in malignant properties of OS in the 

future. It would also be interesting to study if there is a correlation between the other 

candidates identified through the screening and TMIGD3 and their combined effects on 

OS malignancy.  
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CHAPTER 3 

ROLES OF TMIGD3 AND A3AR IN MALIGNANT PROPERTIES OF OS 
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3.1 Introduction 

The mechanisms by which aggressive characteristics of OS are regulated are 

poorly understood. The ability of cells to survive under nutrient-deprived, anchorage- 

independent conditions, defines a symbol of malignant properties. We identified an 

uncharacterized protein, namely transmembrane and immunoglobulin domain 

containing 3 (TMIGD3), as a factor that suppressed sphere formation of SJSA-1 cell line 

through screening of a human whole-genome short hairpin RNA (shRNA) lentiviral 

library. 

TMIGD3 knockdown enhanced other malignant properties including proliferation, 

migration, tumor formation, and metastases of multiple OS cells. TMIGD3 has mainly 

two isoforms: i1 and i3 which have unique first exons but share the rest of the exons 

and the 3’ untranslated region (UTR). Interestingly, the first exon of TMIGD3 i1 gene, 

consisting of 117 amino acids (aa), is shared with the first exon of A3AR, and hence 

TMIGD3 i1 is like a fusion protein of A3AR and TMIGD3 i3 (Fig 3.2) 95. A3AR is a Gi 

protein associated G-protein coupled receptor (GPCR) and implicated in the 

suppression of immunological response and tumorigenesis of multiple cancers including  

hepatocellular carcinoma, prostate cancer, pancreatic carcinoma via inhibition of 

adenylyl cyclase and cyclic adenosine monophosphate (cAMP) signaling and hence 

downregulation of the  activities of NF-κB and β-catenin 96-99. Elevated cAMP levels is 

well correlated with increased malignancy of different cancers including brain and 

thyroid tumorigenesis100  101. However, opposite effects of cAMP on hematologic 

malignancies have been reported in some rare cases wherein inhibition of cAMP 

through decrease in expression of adenylyl cyclase could provide growth advantage 
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and hence promote tumorigenesis 102. Interestingly, overexpression of TMIGD3 i1 

suppressed sphere formation, proliferation, and tumor formation of OS cells, similar to 

A3AR, whereas TMIGD3 i3 did not alter these phenotypes. The expression of both 

TMIGD3 and A3AR was lower in human OS tissues when compared to normal bone 

and lung tissues. This is the first report demonstrating the roles of TMIGD3 i1 in cancer 

suppression, and A3AR, specifically in the suppression of OS progression, thus opening 

new avenues as therapeutic targets for multiple cancers as well as OS. 

 

3.1.1 A3AR, a G-protein coupled receptor and its role in tumor malignancy 

3.1.1.1 G protein coupled receptors  

 G protein coupled receptors (GPCRs) comprise of a significant class of 

transmembrane proteins, which consist of seven transmembrane domains hence 

referred to as 7TM or heptahelical receptors. The transmembrane sequences are 

spread across the plasma membrane in the form of α-helices forming the receptor unit 

103. These receptors are a superfamily of receptors that have been a focus of drug 

intervention accounting for 50% of all modern-day medicine targets 104. Hence, GPCR’s 

are of great interest in pharmaceutical and academic research, focused on their function 

and malfunction in various human systems.  

 GPCRs are activated by a wide variety of ligands including photons, amines, 

hormones, neurotransmitters, and proteins. They have single polypeptide chains with 

seven hydrophobic transmembrane–spanning segments that couple with an intracellular 

effector molecule through a trimeric G protein complex 105. The G protein name 
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originates from its interaction with guanine nucleotide binding proteins (α, β, γ subunits), 

which then initiate crucial signaling pathways in the cell 103,106.  

 GPCRs follow a simple, yet elegant mechanism of linking the presence of an 

extracellular signaling molecule to an intracellular cascade of responses, which has 

been well conserved through evolution. Hence, through repeated gene duplication, 

recombination and gene mutations over time, GPCRs are present in abundance in most 

animal organisms. Based on degree of sequence homology and functional similarity, 

GPCRs are divided into different subfamilies: Family A receptors are related to the 

rhodopsin and the β2-adrenergic receptor, family B are related to glucagon receptors, 

family C receptors are related to the metabotropic glutamate receptors, family D and 

family E receptors (STE2 and STE3 receptors) are related to yeast pheromone 

receptors, and family F includes four different cAMP receptors.  

 The signal transduction pathway of GPCR is performed through activation of 

heterotrimeric G proteins comprised of α, β, and γ subunit. In an inactive state, the Gα 

subunit is bound with guanosine diphosphate (GDP), and the Gαβγ heterotrimer is not 

associated with a GPCR 107. Upon ligand activation, a subsequent conformational 

change occurs in the GPCR that increases its affinity for G proteins 107. The G-proteins 

interact with the C terminus of the GPCR, which then catalyzes the release of GDP from 

the Gα subunit in exchange for GTP thereby destabilizing the trimeric complex 106,107.  

The Gα (GTP) complex and the dimeric Gβγ once activated will interact with 

intracellular downstream effector proteins. The activation of the Gα (GTP) complex and 

the Gβγ are completed with subsequent hydrolysis of GTP into GDP and the 
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reassociation of the subunits into an inactive Gαβγ heterotrimer regulated by the RGS 

(Regulators of G-protein signaling) proteins 108,109.   

 There are four main classes of Gα proteins, Gαs, Gαi, Gαq and Gα12. Each class 

has its own downstream effector. Gαs class of proteins couple with adenylyl cyclase to 

stimulate an increase in cAMP 108. The Gαi family primarily acts through inhibition of 

adenylyl cyclase and hence cAMP, however its known to trigger other signaling events 

as well 107,108. The Gαq subfamily uses phospholipase Cβ (PLCβ) as its primary effector 

110. Active PLCβ catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate 

(PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG), both of which act as 

secondary messengers causing the release of Ca2+ from intracellular stores and hence 

activating protein kinase C (PKC) 108. The Gα12 subfamily regulates the activation of 

Rho-guanine nucleotide exchange factors (GEFs)108,111.  

 Apart from the Gα (GTP) subunits, the Gβγ subunit also acts as an effector by 

activating a number of downstream targets including ion channels, G-protein regulated 

inward rectifying K+ channels (GIRKs), phosphatidylinositol 3-kinase (PI3K), 

phospholipases and adenylyl cyclase 107.  

  Once activated, the desensitization of the GPCR occurs through two families of 

proteins, the G-protein coupled receptor kinases (GRKs) and the arrestins. GRKs 

phosphorylate the agonist-bound activated GPCRs, thus leading to the binding of the 

inhibitory proteins, the arrestins 112. There are currently seven known GRKs (GRK 1-7) 

113.  The primary function of arrestins is to bind phosphorylated GPCRs, blocking further 

G protein binding, and hence blocking signaling through steric inhibition 114. There are 

four members of the arrestin family; cone arrestin, rod arrestin (exclusively found in 
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retinal cells), and β-arrestin-1 (arrestin-2) and β-arrestin-2 (arrestin-3) ubiquitously 

present in all cells 115. In addition to their roles in GPCR desensitization, GRKs and 

arrestins also play a roles in receptor internalization (endocytosis) 116.  
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3.1.1.2 Adenosine receptors and physiology of adenosine signaling 

 Adenosine receptors are a part of the superfamily of GPCRs that have their 

effects on a wide range of responses, and have been classified based on their 

stimulatory or inhibitory actions on adenylyl cyclase and on selectivity of agonists and 

antagonists. The physiological ligand for these receptors is adenosine, the universal 

energy molecule. Adenosine acts as a signal molecule through these receptors thus 

eliciting a broad spectrum of physiological effects. Adenosine receptors belong to the 

subfamily of rhodopsin-like receptors, with its typical heptahelical structure.  

 There are four membrane spanning adenosine receptors that bind to extracellular 

adenosine; these include the A1 and A3 receptor subtypes, which couple to a Gαi thus 

inhibiting the intracellular adenylyl cyclase (AC) activity and thus leading to decrease of 

cAMP, and the A2a and A2b receptors, which couple with a Gαs thus stimulating the AC 

activity increasing levels of intracellular cAMP concentrations 117. In addition to this A1 

receptors have been shown to activate phospholipase C to open KATP channels 118-120. 

On the other hand, A3 receptors are known to couple possibly with Gαq
121

 and are 

involved with activation of phospholipase C and D 119.  

 Adenosine receptor signaling depends on the level of extracellular adenosine 122. 

Extracellular concentrations of adenosine are sensed by complex ectoenzyme 

machinery, which includes CD39 and CD73. These ectoenzymes metabolize ATP and 

ADP to AMP, and AMP to adenosine, respectively, and hence form the sources of 

extracellular adenosine 122. The catabolic enzyme adenosine deaminase (ADA) 

degrades extracellular adenosine, thereby decreasing the activity of the adenosine 

receptors and hence maintaining homeostasis 123. Nucleoside transporters present on 
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the cell membrane including equilibrative nucleoside transporters (ENTs) and 

concentrative nucleoside transporters (CNTs), move extracellular adenosine into the 

intracellular space terminating the AR signaling 124. ENTs are classified into four 

subtypes: ENT1, ENT2, ENT3, and ENT4, which carry nucleosides along their 

concentration gradients. On the other hand, CNTs namely, CNT1, CNT2, and CNT3, 

facilitate the intracellular influx of nucleosides against their concentration gradient 

across the cell membrane (Fig 3.1).  

 The four-adenosine receptors have been cloned from seven mammalian species, 

including human. There are extensive sequence similarities across species for the A1, 

A2a, and A2b, whereas the A3 receptors are more variable 125.  Each of the receptor 

has different yet overlapping functions. Each of these receptors has a different affinity 

for adenosine; and hence these receptor subtypes can also be characterized based on 

their potency for binding to adenosine A1>A2A>>A3=A2B, thus meaning that the A1 

and A2A subtypes are high affinity receptors activated by nanomolar concentrations of 

adenosine, while the A2B and the A3 receptors are low affinity activated by micromolar 

concentrations of adenosine 126. Adenosine receptors are widely expressed; however, 

their distribution and expression are species-dependent 127,128. For example, the rat 

adenosine A1 receptor is widely expressed in the brain, heart, aorta, liver, kidney, eye, 

and bladder 127. The same group has also illustrated that A3AR is widely expressed in 

the heart, central nervous system, lung, uterus, and testis. A2A receptor subtypes were 

expressed in the lung, brain, and uterus, while the A2B are present in the jejunum and 

colon. The receptors were all localized to the plasma membrane. Evidence also 

suggests their presence specifically in lipid rafts of the plasma membrane 129.  

 40 



 The adenosine receptors consist of the classical seven transmembrane helices 

as any other GPCRs, forming the binding site for ligands. Three extracellular and three 

intracellular loops of unequal size of amino acids connect the helices. The N-terminal of 

the protein is extracellular, and the C-terminal side is intracellular (cytoplasmic) 128.  

 Adenosine receptors play important roles in several physiological processes. 

Some of these include their well-studied roles in the heart and the brain. The roles of all 

four receptor subtypes are implicated in regulating coronary flow in the heart. A2AR 

subtype, is mostly responsible for coronary vasodilation, A1AR and A3AR are 

responsible for restriction of coronary vasodilation. A1 and A3 receptors are also known 

to provide cardioprotection following cardiac ischemia130.   

 A1AR stimulation is also associated with suppression of neuronal activity through 

inhibition of PKA signaling pathway at the pre-synaptic and post-synaptic sites. On the 

other hand, A2AR coupled to Gs- protein, stimulates the PKA signaling in postsynaptic 

neurons.  Heterodimerization of A2AR receptors with other receptors including A1AR, 

dopamine D2 receptors, and group I metabotropic glutamate 5 receptors for signaling 

purposes have also been reported.  A3AR found in the hippocampus, are known to 

signal through coupling with Gi protein thus, inhibiting adenylyl cyclase activity and 

reducing cAMP concentrations. However, Gq coupling related activation of 

phospholipase C that regulates calcium status is also reported as a potential signaling 

mechanism for A3AR in the brain. Thus, the roles of adenosine receptors are varied and 

are influenced through control of signaling pathways downstream of these receptors131.  
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Figure 3.1 Adenosine receptors and physiology of adenosine signaling.  

Adenosine is released from metabolically active cells and the signaling depends on 

extracellular levels of adenosine. Extracellular concentrations of adenosine are sensed 

by ectoenzymes CD39 and CD73. These ectoenzymes metabolize Adenosine 

triphosphate (ATP) and Adenosine diphosphate (ADP) to Adenosine monophosphate 

(AMP), and AMP to adenosine respectively; which then binds to four adenosine 

receptors A1 and A3 (inhibit levels of cAMP), and the A2a and A2b (increase levels of 

cAMP) localized on the membrane. The catabolic enzyme adenosine deaminase (ADA) 

degrades extracellular adenosine. Nucleoside transporters including equilibrative 

nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs), 

move extracellular adenosine into the intracellular space thus terminating adenosine 

receptor signaling.  
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3.1.1.3 Adenosine receptors in cancer  

 Adenosine as a metabolite is released from metabolically active cells and is 

generated by degradation of ATP. The released adenosine binds to the four-adenosine 

receptors (ARs): A1, A2A, A2B, or A3 and causes effects that are widespread and 

pleiotropic. The cellular responses to adenosine depend on the expression of the 

particular receptor subtypes and serve as active modulators of signal transduction. 

Recent report shows that adenosine is a crucial factor in determining the cellular 

survival pathway towards the apoptotic or cytostatic state 132. It is very well established 

that adenosine and ATP (i) are abundant in the tumor microenvironment, (ii) form potent 

modulators of the immune response and (iii) play key roles in host-tumor interaction. As 

adenosine receptors control cell survival pathways as a normal physiologic process, this 

mechanism is well adapted to directly affect tumor growth as well. Hence, ARs are 

becoming important drug targets for the treatment of various pathophysiological states 

including Parkinson’s disease, schizophrenia, ischemia, asthma, and kidney failure. 

Several ligands (agonist and antagonists) are available for all four AR subtypes; 

however, few of these candidates are used in the fight against cancer. 

 ATP and adenosine accumulate in the tumor microenvironment, as a crucial 

autocrine and paracrine factor 133. The levels of adenosine can rise to very high levels in 

response to pathophysiological conditions, such as hypoxia, inflammation, and trauma 

134. This increase in the levels of adenosine is suggested to be not just a mere 

coincidence, but is proven to be an active modulator of tumor progression. Adenosine 

activates the adenosine receptors and regulates proliferation, differentiation, and 

apoptosis of cancer cells, directly affecting neoplastic development, progression, and 
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metastasis. Adenosine receptors have been reported to directly affect angiogenesis 

(increase or decrease), which is of great importance for the survival of the tumor during 

hypoxic conditions 135. Evidence suggests that several solid tumors express high levels 

of adenosine-sensing ectoenzymes, CD39 and CD73 122. These high levels regulate 

cancer cell proliferation and apoptosis by intratumoral adenosine generation136. It is also 

shown that genetic or pharmacological ablation of these ectoenzymes leads to defects 

in the tumor neovascularization137,138.  Also, levels of ecto-ADA and its cofactor CD26 

are deregulated in several cancers 122. In addition to this, the expression of nucleoside 

transporters is also decreased in neoplastic tissues, thus causing deregulation of the 

adenosine signaling139.  

 The role of adenosine on tumor growth is like a double-edged sword as both 

promotion and inhibition of proliferation have been reported. This complex mechanistic 

interplay of response is attributed to the engagement of different ARs, although these 

effects are not completely understood 140.  
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A1 receptors 

 The role of A1 receptors in tumor development is controversial. A1 receptors 

have been shown to regulate growth of breast cancer cells. Quantitative reverse 

transcription (qRT-PCR) analyses and western blot analyses reveal an increase in 

receptor expression in various cancer cell lines as well as primary tumor specimens of 

the breast141. Overexpression of these receptors has also been detected in colorectal 

adenocarcinoma and peritoneal colon tissues 142.  Activation of A1 receptors promotes 

cell proliferation by downregulating p27, a cyclin dependent kinase (CDK) inhibitor, and 

upregulating CDK4141. It has also been reported that estrogen receptor (ER)-mediated 

proliferation of breast cancer may also involve the A1 receptor, compounding the tumor-

promoting role of ER independently143. Inhibition of A1 receptor attenuates MCF7 breast 

cancer cell proliferation143. However, anti-proliferative effects of A1 receptors have also 

been described.  Following A1 stimulation, proliferation arrest is reported in human 

leukemic MOLT-4 cells, as well as breast cancer cell lines, T47D and HS578T 144. 

Physiologically, high levels of A1 receptor are present in microglia and neurons in the 

central nervous system 145. It is noted that A1AR- deficient mice show neuronal damage 

and lower survival rates when exposed to pathological states, such as hypoxia, whereas 

these mice show no obvious physiological deficiency in normal states 145 suggesting the 

importance of A1AR during pathophysiological conditions 145,146. In fact, deletion of 

A1AR results in increased glioblastoma tumor growth147, thus implying the anti-tumor 

effects of this receptor in brain tumors. The role of A1 receptors in tumor apoptosis is 

also controversial. It has also been reported that in rat astrocytoma cells caspase 9 

followed by caspase 3 is activated through the A1AR pathway in the presence of 
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extracellular adenosine. This study presents a novel mechanism of cell death through 

caspase activation in response to adenosine148. More relevantly, apoptosis through 

activation of caspase-3, -8, and -9 in CW2 human colonic cancer cells can be inhibited 

by an A1AR antagonist both in vitro and in vivo149. However, in MDA-MB-431 cells, 

depletion of A1AR causes substantial cell death and apoptosis 148.  

 

A2A receptors 

 A2A receptors have been detected on cell membranes of different tumor cells: 

SH-SY5Y neuroblastoma, NG108-15 neuroblastoma, U937 monocytic lymphoma, A375 

melanoma, HT29 colon carcinoma, and human breast cancer MCF-7 150-153. The 

activation of A2A receptors following agonist stimulation increases proliferation of MCF-

7 cells. Activation of A2A receptors inhibits apoptosis through alterations in the anti-

apoptotic Bcl-2 and pro-apoptotic Bax proteins during reperfusion of the heart154. Also, 

activation of A2A using an agonist results in reduction in neuronal apoptosis during 

spinal cord reperfusion 155.  

 Though anti-apoptotic role of A2AR is seen in normal tissues, cell death by A2AR 

is observed in human A375 human melanoma cells156. Also, activation of caspase-9 and 

-3 is observed through A2AR in Caco-2 human colonic cancer cells157.  
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A2B receptors 

 As previously stated, A2B receptor has the least affinity for adenosine, hence 

being activated only at exceptionally high levels of adenosine which is a phenomenon 

seen in pathological states rather than in normal physiological conditions158. 

Immunohistochemical analyses shows increased expression of A2B receptors in human 

colorectal carcinoma tissues and colon cancer cell lines when compared with normal 

colonic mucosa. Also, inhibition of A2B receptors using a specific antagonist 

(MRS1754) leads to reduced cell growth in a dose-responsive manner159, suggesting 

cancer-favoring roles of A2B receptors. Real time qRT-PCR and western blot analyses 

also reveal high levels of this receptor subtype in both androgen-sensitive and 

androgen-insensitive prostate cancer cell lines, in which activation of A2B receptors 

leads to further increase in cellular proliferation, thus suggesting the use of A2B-specific 

antagonists for therapeutic intervention. However, the exact mechanisms underlying 

augmented proliferation by A2B receptors have to be investigated in detail before their 

translation into clinic.  

 

A3 receptors 

 Tumor cell proliferation is also controlled through the A3 receptors156,160-163. . 

A3AR a Gi protein associated (GPCR) causes inhibition of adenylyl cyclase and cAMP 

signaling and hence activities of NF-κB and β-catenin, pErk pathways. Activation of A3 

receptors inhibits growth of lymphoma cells, through inhibition of telomerase activity 

leading to G0 or G1 cell cycle arrest 163. This mechanism is further confirmed in prostate 

cancer cell lines where A3 receptor activation induces G0-G1 cell cycle arrest 164 due to 
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downregulation of CDK4 and cyclin D1. Additionally, A3 receptor stimulation prevents 

entry of human melanoma cells into the G1 phase of cell cycle, thus inhibiting 

proliferation156. Activation of A3 receptor also suppresses proliferation of melanoma and 

colon cancer cell lines through downregulation of the β-catenin pathway. In both the 

cancers, activation of A3 receptor is followed by decreased expression of AKT (protein 

kinase B) leading to increase in levels of unphosphorylated glycogen synthase kinase 3 

β (GSK3β)–which is the stable form of GSK3β thus leading to phosphorylation and 

subsequent degradation of β-catenin, and subsequent inhibition of gene expression of 

downstream targets, cyclin D1 and cMyc 161,162,165.  Treatment of breast cancer cell lines 

with A3AR agonists inhibits cell proliferation due to reduced expression of tyrosine 

kinase ERBB2 that leads to decrease in levels of its downstream effector Erk166. 

Furthermore, A3AR stimulation suppresses proliferation of human papillary carcinoma 

cells through reduced phospho-Erk (pErk) levels, causing G1 cell cycle arrest that is 

attributed to decreased expression of cyclin D1 and cyclin E2167. Activation of A3AR is 

also associated with reduction in the ability of prostate cancer cells to migrate in vitro 

and metastasize in vivo through inhibition of PKA-mediated ERK phosphorylation168.  
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3.2 Materials and Methods 

Cell lines  

All the following human osteosarcoma cell lines including SJSA-1, U2OS, KHOS/NP, 

MG63, and Saos2 were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) or 

Roswell Park Memorial Institute (RPMI) medium with 10% fetal bovine serum (FBS) and 

1% penicillin-streptomycin in a humidified incubator at 370C with 5% CO2.  

 

shRNAs 

The shRNAs used are as follows:  

TMIGD3: T6U: AAGAACTAAGATCTTGAGATG (Catalog #: VGH5518-200202459, GE 

Healthcare, Dharmacon Inc), T3: TAGTTGCAGATGGCAGAAG (Catalog #: 

HSH003091-3-HIVmH1, Genecopoeia, Inc.), A3AR: A2a: TTCTTCTGTGAGTGGTGAC 

(Catalog #: VGH5518-200180351), A2b: TGATGATAGATAAAGGCAG (Catalog #: 

VGH5518-200176914, GE Healthcare, Dharmacon Inc.). 

 

Western blotting 

Cells were directly lysed in 1.5X SDS sample buffer and heated at 95°C for 10 minutes, 

followed by loading onto 4-12% tris-glycine gel (Bio-Rad Laboratories), separated by 

electrophoresis and transferred to polyvinylidene fluoride (PVDF) membrane (GE 

Healthcare Life Sciences). Blots were incubated with primary antibodies for A3AR (H-

80, Santa Cruz Biotechnology), TMIGD3 (Pab128, generated against aa. 235 to aa.248 

CGIQRDFARDDMDF by GenScript), FLAG (M2, Sigma-Aldrich), IκB (4814S, Cell 

Signaling), p65 (8242S, Cell Signaling), and GAPDH (H-12, Santa Cruz Biotechnology) 
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at 4°C overnight. After washing with TBS plus 0.1% Tween 20 (TBST), blots were 

incubated with appropriate secondary antibodies conjugated with fluorescence (IRDye 

650CW goat anti-rabbit IgG, 800CW goat anti-mouse IgG, Li-COR), followed by 

analysis with the Li-COR Odyssey infra-red imaging systems (Lincoln, Nebraska). 

 

Sphere formation assays  

Sphere formation assays were performed as previously described 73. Briefly, cells 

(20 cells per well) were plated on 96-well ultra-low attachment plates (Corning Inc., 

Corning) in DMEM/F12 medium containing 10mM HEPES, 50 µM of putrescine,  20 nM 

of progesterone, ITS (insulin 25 mg/ml,  sodium selenite 25 µg/ml,  transferrin 25mg/ml) 

, EGF (10 ng/ml), and FGF (10 ng/ml) for 10-14 days, and numbers of spheres with 

sizes over 30 µm were counted. Sphere forming potential was calculated as percentage 

of total # of spheres formed/ total # of cells seeded. 

 

Cell proliferation assays 

 Cells (1x104) were seeded onto each well of 6-well plates (day 0). Live cell 

numbers were counted at days 2, 4, 6, and 8 following trypan-blue staining.  

 

Transwell migration assays  

Migration assays were performed with 24-well Transwell chambers (6.5 mm 

diameter, 8µm pore size, Corning) as previously described169,170. Cells (1x104) in 100 µl 

of 0.5% FBS-containing DMEM were seeded on the upper chamber, while 10% FBS-

containing DMEM was added in the lower chamber as a chemoattractant. Cells were 
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allowed to migrate through the membrane for 10 hours. The non-migrating cells were 

removed from the upper face of the filters, and migrating cells to the lower face were 

stained with Diff-Quik Stain Set (Dade Behring, Newark, DE). Stained cells in the entire 

fields were counted under an inverted microscope. 

 

In vivo tumor formations assays 

For subcutaneous tumor growth assays, cells were dissociated into single-cell 

suspensions using nonenzymatic cell dissociation solution (Sigma Biochemicals), and 

numbers of live cells were counted following trypan blue staining (Thermo Fisher 

Scientific). Cell suspension in 50μl of 4.5 mg/mL Matrigel (BD Biosciences) in Hank’s 

balanced salt solution (HBSS) was subcutaneously injected into flanks of NIH-III nude 

mice (Charles River). Tumors were measured three dimensionally 2-3 times a week for 

18-21 days. For tail vein assays, 150 μl of cell suspension (5x104) was injected into the 

lateral veins of nude mice. Mice were monitored for labored breathing, and the numbers 

of pulmonary tumor nodules were evaluated 6 weeks after injections. For orthotopic 

injections, 15μl of cell suspension (1x105) was injected into femoral bone marrow space 

of anesthetized NOD-scid IL2Rγnull (NSG) mice (The Jackson Laboratories) 171. When 

the tumors reached ~2 cm in thigh diameter, the mice were euthanized. The weight of 

the primary tumors and numbers of tumor nodules in the lungs and liver (>0.5mm) were 

measured. All mice were maintained under specific pathogen free conditions, and 

experimental procedures were performed according to the protocol approved by 

Institutional Animal Care and Use Committee. 
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Immunohistochemistry (IHC) for human tissues 

Formalin fixed paraffin-embedded tissues of 16 primary, 17 metastatic OS, as 

well as 10 normal lung tissues, were provided by Dr. Ossama Tawfik. All the samples 

were anonymous, and no patient information was given. All samples were collected 

during surgery for biopsy from patients admitted at the University of Kansas Medical 

Center 172. We also purchased a tissue microarray (OS804a, US Biomax,) consisting of 

38 primary OS and 10 normal bone tissues.  

Sections (4 μm thick) from the aforementioned tissues were deparaffinized in 

xylene, rehydrated in grades of alcohol, rinsed in tap water, and blocked with 0.3 % 

hydrogen peroxide for 30 minutes. Antigen retrieval was performed in a steamer with 

sodium citrate buffer (10 mM sodium citrate, pH 6.0) for 20 minutes. After blocking in 

2.5% normal horse serum for 30 minutes, sections were incubated with rabbit anti-

human TMIGD3 (Ab128) and A3AR (A3R32-A, Alpha Diagnostics) antibodies for 30 

minutes at room temperature. After washing in PBS, sections were incubated in anti-

rabbit biotinylated secondary antibody for 30 minutes. The signal was detected using 

the Vectastain Elite ABC kit (Vector Laboratories). Pre-immune serum and/or normal 

rabbit immunoglobulin G (IgG, Vector Laboratories) were used as negative controls. 

Two independent investigators blindly evaluated all stained sections. Two independent 

investigators were blinded prior to evaluation of all stained sections. Scoring was based 

on intensity and extensity. The scoring was determined by assessing the whole tumor 

section, and each sample was scored on a scale of 0–3 for extensity with 0 

corresponding to less than 25 % of positive tumor cells; 1 for 26–50 %; 2 for 51–75 %; 

and 3 for 76–100 %. The intensity of immunostaining was determined as 0 (negative 
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staining), 1 (weakly positive staining), 2 (moderately positive staining), and 3 (strongly 

positive staining). The immunoreactive score of each section was calculated by the sum 

of these two parameters and presented as a score ranging between 0-6 as described 

previously173. 
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3.3 Results 

3.3.1   Gene structure of TMIGD3 and A3AR 

Our screening analyses of a human whole-genome shRNA-screening library identified 

TMIGD3 as a protein whose knockdown increased sphere formation of SJSA-1 OS cell 

line. TMIGD proteins are a group of proteins that contain an “immunoglobulin (Ig)-like 

fold”. TMIGD1 is implicated in cancer differentiation and adhesion 174,175, while TMIGD2 

is implicated in cancer immunosuppression as a receptor of HHLA2, a B7 family 

member 176. However, there is no report about TMIGD3. The TMIGD3 gene has two 

splicing isoforms of i1 and i3 (Fig. 3.1). The C-terminal regions (exons T2-T6) of 

TMIGD3 i1 and i3 are overlapped. Intriguingly, the first exon (consists of three 

transmembrane helices) of the TMIGD3 i1 gene is shared with the adenosine A3 

receptor (A3AR) gene, one of the four adenosine G protein-coupled receptors, and 

hence TMIGD3 i1 is also called A3AR i1, while A3AR is precisely A3AR i2 95. On the 

other hand, TMIGD3 i3 does not have any overlapping region with A3AR, but it is still 

occasionally referred to as A3AR i3, likely because these genes are present in the same 

chromosomal locus (Fig. 3.2). To avoid confusion, we followed TMIGD3 i1 and i3 

nomenclature, instead of using A3AR i1 and i3, since these proteins share an Ig-like 

domain in the common C-terminal region and their functions as adenosine receptors are 

unknown.  
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Figure 3.2 Structure of TMIGD3 and A3AR. 

(A) Human TMIGD3 and A3AR gene locus on chromosome 1. Gene structures of 

human TMIGD3 i1, i3, and A3AR. TMIGD3 comprises of two identified isoforms: i1 and 

i3, with exclusive first exons (A1/T1), while their C-terminal region (exons T2-T6) is 

overlapped. The first exon (A1) of TMIGD3 i1 is shared with the first exon of adenosine 

A3 receptor isoform2 (A3AR i2-also commonly called A3AR). Thus, TMIGD3 i1 and 

A3AR are splicing variants. Black bars indicate: locations of the different shRNAs: T6U, 

T3 (targeting TMIGD3 i1 and i3); A2a, A2b (targeting A3AR). Green bar: 

Immunoglobulin (Ig)-like fold. 
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3.3.2   Knockdown of TMIGD3 increases malignant properties of multiple OS cell lines 

Our identified shRNA is located in the 3’ UTR region of TMIGD3 (T6U) which 

could target both TMIGD3 i1 and i3. To further confirm that TMIGD3 plays a role in the 

malignant properties of OS, we used another shRNA to downregulate the expression of 

TMIGD3 (T3). Knockdown of TMIGD3 with both shRNAs increased sphere formation of 

SJSA-1 and Saos2 OS cells (Fig. 3.3A). Since, TMIGD3 shares its N-terminal region 

with A3AR, we wanted to query the importance of A3AR in the sphere forming ability of 

OS cells. In fact, knockdown of A3AR with two different shRNAs (A2a, A2b) increased 

sphere forming ability of SJSA-1 OS cells (Fig. 3.3B). Moreover, knockdown of TMIGD3 

and A3AR using different shRNAs increased cell proliferation (Fig. 3.3C) of SJSA-1 and 

migration of SJSA-1 and Saos2 cells (Fig. 3.4).These results suggest that both TMIGD3 

and A3AR could be novel suppressors of malignant progression of OS cells.  
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Figure 3.3 Knockdown of TMIGD3 and A3AR increases sphere formation of 

multiple OS cells.  

(A) Sphere formation assays using SJSA-1 (left) and Saos2 (right) cells with different 

shRNAs for TMIGD3. Error bars: means ± S.D. from 3 independent experiments. * 

p<0.05, ** p<0.01; Student’s t-test. 

(B) Sphere formation assays using SJSA-1 with different shRNAs for A3AR. Graphs 

showing percentage of sphere formation. Error bars: means ± S.D. from 3 independent 

experiments (n=1440). * p<0.05, ** p<0.01; Student’s t-test. 

(C) Proliferation assays following knockdown of TMIGD3 (T6U, T3) and A3AR (A2a, 

A2b) in SJSA-1 cells. Cells (1x104) were seeded on 6-well plates and numbers of cells 

were counted every 2 days following trypan blue staining.  

 

  

 58 



  

 59 



Figure 3.4   Knockdown of TMIGD3 and A3AR increases migratory potential of OS 

cells. 

(A) Migration assays for 10 hours using cells downregulated for TMIGD3 in SJSA-1 

(left) and Saos2 (right) cells.  

(B) Migration assays using SJSA-1 cells downregulated for A3AR. Graphs showing the 

relative migration (top) compared with control and representative images (below). Error 

bars: means ± S.D. from 3 independent experiments. * p<0.05, ** p<0.01; Student’s t-

test. 
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3.3.3 Knockdown of TMIGD3 and A3AR promote tumor formation and metastasis 

To further address the effects of TMIGD3 and A3AR on OS malignancy in vivo, 

we performed subcutaneous tumor growth assays following knockdown of TMIGD3 and 

A3AR. We observed that downregulation of TMIGD3 and A3AR both led to increase in 

tumor growth in SJSA-1 (Fig. 3.5A). We also performed tail vein injection assays using 

SJSA-1 cells with or without knockdown of TMIGD3 by T6U and T3 shRNAs. TMIGD3 

knockdown by both shRNAs dramatically increased lung metastases of SJSA-1 cells 

(Fig. 3.5B).  

For orthotopic injection assays, we directly injected SJSA-1 or Saos2 cells with or 

without knockdown of TMIGD3 into the femurs of mice. Knockdown of TMIGD3 

significantly enhanced tumor establishment in femurs and metastases formation in the 

lungs or liver respectively (Fig. 3.6A). Similarly, knockdown of A3AR in SJSA-1 cells 

enhanced tumor establishment and lung metastases in orthotopic injection assays (Fig. 

3.6B).  

To further address the clinical significance of TMIGD3 and A3AR in OS, we 

wanted to examine protein expression of these proteins in human tissues. However, 

there was no available antibody for immunohistochemistry (IHC) that could discriminate 

TMIGD3 from A3AR. Hence, we generated a peptide antibody recognizing TMIGD3, 

namely Ab128 (located in exon T3, thus recognizing both TMIGD3 i1 and i3), and 

validated it for the use of IHC using tissues derived from tumors with or without 

knockdown of TMIGD3 (Fig. 3.7). Membrane distribution of the protein TMIGD3 was 

observed in the control tumor whereas in the TMIGD3-knockdown tumor (T6U), the 

staining intensity was low, thus confirming the specificity of the generated Ab128 
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antibody. Using this antibody, we performed IHC for these proteins in primary and 

metastatic human OS tissues, as well as normal lung and bone tissues as controls (Fig. 

3.8). We observed that expression of TMIGD3 and A3AR in both primary and metastatic 

human OS was significantly lower than that in normal bone and lungs. We did not see 

any significant differences between primary and metastatic tissues. It should be noted 

that this antibody detects both TMIGD3 i1 and i3 and cannot discriminate these 

isoforms. Nonetheless, our data suggest that reduced expression of TMIGD3 and A3AR 

is associated with malignant properties of OS in vivo and clinically.  
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Figure 3.5 Knockdown of TMIGD3 is associated with OS malignancy in vivo- 

subcutaneous and tail vein assays.  

(A) Subcutaneous tumor formation assays using SJSA-1 cells (5x105) downregulated 

for TMIGD3 (T6U) and A3AR (A2a), or with non-silencing shRNA (Control). Tumors 

were measured twice a week until day 20 after injections. Error bars: means ± S.D. 

(n=5). ** p<0.01; Two-way ANOVA.  

(B) Tail vein injection assays using SJSA-1 cells (5x104) infected with non-silencing 

(control: GFP+, green), T6U (GFP+, green), or T3 (DsRed+, red) shRNAs. Mice 

(Control: n=7, T6U: n=7, T3: n=4) were euthanized 6 weeks later. Representative 

pictures of lungs (top) and images from a fluorescence dissecting stereo-microscope 

(bottom). Table represents average number of nodules observed.   
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Figure 3.6 Knockdown of TMIGD3 and A3AR is associated with OS malignancy in 

vivo orthotopic injection assays.  

(A) Primary tumor and metastasis formation following orthotopic injections of SJSA-1 

and Saos2 cells with (T6U) or without (C) TMIGD3 knockdown. Cells (1x105) were 

injected into femurs of NSG mice and mice were euthanized approximately 2 months 

(SJSA-1) and 5 months (Saos2) later when thigh diameter became ~2 cm in mice with 

TMIGD3 knockdown cells. Graphs showing primary tumor weight and number of 

metastatic nodules in the lungs (SJSA-1) or liver (Saos2) on the side of the graphs.  

(B) Primary tumor and metastasis formation following orthotopic injections of SJSA-1 

cells (1x105) with (A2a) or without (C) A3AR knockdown. Mice were monitored as 

described above. Representative images of the primary tumor and metastatic nodules 

on the side of the graphs. Arrows indicate metastatic nodules. Error bars: means ± S.D. 

* p<0.05, ** p<0.01; Student t-test.  
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Figure 3.7   Generation of a peptide antibody for TMIGD3 and its validation.   

(A) Structure of TMIGD3 i1 protein and location of peptides (aa. 235- aa. 248) of 

TMIGD3 i1 to generate a peptide antibody (Ab128).  

(B) IHC for TMIGD3 with Ab128 using SJSA-1-derived tumors infected with lentiviral 

vectors encoding non-silencing control (C) or TMIGD3 (T6U) shRNAs. 
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Figure 3.8 Clinical significance of TMIGD3 and A3AR. 

IHC for TMIGD3 (A) and A3AR (B) in human OS and normal tissues. IHC analyses 

were performed using OS tissues (54 primary tissues and 17 metastases), as well as 

normal lung (n=10) and bone (n=10) tissues. Two independent investigators blinded 

prior to evaluation scored these samples. Scoring was based on intensity and extensity. 

The immunoreactive score of each section was calculated by the sum of these two 

parameters and presented as a score ranging between 0-6 (average of two reads). 

Representative images of IHC below the graphs. The horizontal lines in the plots 

represent the median. ** p<0.01; One way ANOVA. 
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3.3.4 TMIGD3 i1 and A3AR, but not TMIGD3 i3, suppress malignant properties of OS 

TMIGD3 gene has two splicing isoforms (Fig 3.2). We have demonstrated that 

knockdown of TMIGD3 plays roles in the suppression of OS progression. Since the 

used shRNAs (T6U and T3) target both TMIGD3 i1 and i3, our data does not delineate 

the isoform(s) that contributes to phenotypes associated with OS malignancy. To 

determine which isoforms of TMIGD3 suppress OS progression and compare their 

biological phenotypes with those of A3AR, we stably infected lentiviral vectors encoding 

the cDNA for empty vector (V), TMIGD3 i1 (cTi1), TMIGD3 i3 (cTi3), and A3AR (cA3) in 

SJSA-1 and KHOS/NP OS cell lines. Overexpression of TMIGD3 i1 and A3AR, but not 

TMIGD3 i3, significantly inhibited proliferation of both the cell lines (Fig. 3.9A). We 

further performed sphere formation assays using SJSA-1 and KHOS/NP cells with 

overexpression of TMIGD3 i1, i3, and A3AR. As expected, TMIGD3 i1 and A3AR, but 

not TMIGD3 i3, suppressed sphere formation of both cells (Fig. 3.9 B). These results 

suggest that TMIGD3 i1, but not i3, suppresses malignant properties of OS, similar to 

A3AR.  

Intriguingly, western blotting for these proteins revealed that both TMIGD3 i1 and 

TMIGD3 i3 ran at almost the same size at ~54 kDa, higher than their predicted sizes of 

~40 kDa and ~30 kDa, respectively (Fig. 3.9A). To confirm that, we performed western 

blotting using cells transfected with a FLAG tagged-TMIGD3 i3, together with non-

tagged TMIGD3 i1 and i3, and found that even FLAG-tagged TMIGD3 i3 ran at similar 

size to TMIGD3 i1 and i3 (Fig 3.10). It should be noted that similar differences in 

predicted size vs actual size have been observed previously for TMIGD1 and TMIGD2, 

due to their post-translational modifications linked with N- glycosylation 174,177. 
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Nonetheless, these results suggest that TMIGD3 i1, but not i3 suppresses OS 

proliferation and sphere formation similar to A3AR, and the overlapping N-terminal 

region (consisting of the first 117 aa) may play a role in OS suppression. 

We also performed rescue experiments to confirm whether overexpression of 

TMIGD3 i1 or TMIGD3 i3 could nullify increased sphere formation by TMIGD3 

knockdown and to mitigate possible off-target effects of used shRNAs. Sphere 

formation assays using cells downregulated for TMIGD3 or A3AR by their shRNAs with 

or without overexpression of corresponding cDNAs for these proteins revealed that 

overexpression of TMIGD3 i1 rescued the increased sphere formation by TMIGD3 T6U 

and T3 shRNAs, whereas TMIGD3 i3 overexpression failed to do so (Fig. 3.11A). Also, 

A3AR overexpression canceled the increased sphere formation by the A2a shRNA (Fig. 

3.11B). Thus, sphere suppression effects by these shRNAs are not due to their off-

target effects. 

Also, the importance of TMIGD3 i1, TMIGD3 i3, and A3AR was questioned in 

other OS malignant properties including migration and tumor growth. Overexpression of 

TMIGD3 i1 and A3AR inhibited migratory potential (Fig. 3.12A) in SJSA-1 and 

KHOS/NP cells, as well as tumor formation of SJSA-1 cells (Fig. 3.12B). However, 

TMIGD3 i3 did not cause suppression of migration and tumor formation of OS cells. 

Thus, these data suggest that TMIGD3 i1, but not i3, suppresses malignant properties 

of OS cells in vitro and in vivo, similar to A3AR.  
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Figure 3.9 TMIGD3 i1, but not TMIGD3 i3, inhibits growth and sphere formation of 

OS, similar to A3AR.  

(A) Proliferation assays using SJSA-1 (left) and KHOS/NP (right) cells overexpressing 

vector control (V), TMIGD3 i1 (cTi1), i3 (cTi3), and A3AR (cA3). Graphs represent data 

from 3 independent experiments, and representative immunoblots showing 

overexpression of each protein are present below the graphs. Error bars: means ± S.D. 

from 3 independent experiments.* p<0.05, ** p<0.01; Two-way ANOVA.  

(B) Sphere formation assays using SJSA-1 and KHOS/NP cells overexpressing V, cTi1, 

cTi3, and cA3 as above. Graph showing % of sphere formation. Error bars: means ± 

S.D. * p<0.05, **p<0.01, n.s.: not significant; Student’s t-test.  
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Figure 3.10   TMIGD3 i1 and i3 run at almost the same size.  

Representative images of western blotting using SJSA-1 cells expressing V, cTi1, cTi3, 

and FLAG-tagged cTi3 (Fl-cTi3) for indicated proteins. To note, although the predicted 

size for TMIGD3 i1 is 54 kDa and that for TMIGD3 is 36 kDa, bands for these two 

isoforms were detected at almost the same size.  
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Figure 3.11 TMIGD3i1, but not TMIGD3i3, rescues increased sphere formation 

following knockdown of TMIGD3, similar to A3AR. 

(A) Sphere formation assays using SJSA-1 cells with or without knockdown of TMIGD3 

(T6U, T3) along with overexpression of TMIGD3 i1 (cTi1) or i3 (cTi3). Representative 

western blotting results below the graphs.  

(B) Sphere formation assays using SJSA-1 cells with or without knockdown of A3AR 

along with overexpression of A3AR. Representative western blotting results below the 

graphs 
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Figure 3.12 TMIGD3 i1, but not TMIGD3 i3, inhibits migration and tumor formation 

of OS, similar to A3AR.  

(A) Transwell migration assays for 10 hours using SJSA-1 (left) and KHOS/NP (right) 

cells overexpressing V, cTi1, cTi3, and cA3. Graphs showing the relative migration to 

cell with vector control (top) and representative images (below). Error bars: means ± 

S.D. from 3 independent experiments. * p<0.05, ** p<0.01; Student’s t-test 

(B) Tumor growth assays in mice injected with SJSA-1 cells overexpressing V, cTi1, 

cTi3, and cA3 (n=5). Cells (1x106) were subcutaneously injected into nude mice, and 

tumor sizes were monitored twice a week for 18 days. Representative images of tumors 

next to the graph. ** p<0.01, n.s.: not significant; Two way-ANOVA. 
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3.4 Discussion 

Our study has shown that TMIGD3 and A3AR inhibit aggressive properties of OS 

including migration, proliferation, tumor formation, and metastasis. This is the first report 

illustrating a tumor suppressive role for the novel TMIGD3 protein. Also, this is the first 

study elucidating tumor inhibitory roles for A3AR in OS. Of the two isoforms for 

TMIGD3, TMIGD3 i1 and TMIGD3 i3, TMIGD3 i1 is crucial in the suppression of OS 

aggressive properties including proliferation, migration, and tumor formation. TMIGD3 i3 

has a distinct N-terminal region and shares its C-terminal region with TMIGD3 i1, thus 

sharing no similarity with A3AR (Fig 3.2). Our web-based domain analyses using protein 

structure prediction sites, including PridictProtein server 

(https://www.predictprotein.org/) and SOSUI (http://harrier.nagahama-i-

bio.ac.jp/sosui/sosui_submit.html) identified two transmembrane helices at the C-

terminal region of TMIGD3 i1 (aa129-151 and aa291-313), in addition to 3 

transmembrane helices within the first 117 amino acids sharing with A3AR, as well as a 

known Ig-like fold at the C-terminal region (aa167-256) (Fig. 4.1). Since TMIGD3 I1 and 

A3AR are involved in OS suppression, and not TMIGD3 i3, this postulates the 

hypothesis that the common N-terminal region between TMIGD3 i1 and A3AR plays an 

important role in the OS suppression. Future detailed domain mapping and mutational 

studies in the N-terminal region are required to address this hypothesis.  

Since no commercially available antibody could discriminate between A3AR and 

TMIGD3, our study is the first one to examine the expression levels of TMIGD3 in 

normal and tumor tissues. We have generated a peptide antibody (PAb128) in exon T3 

of TMIGD3, which recognizes both isoforms of i1 and i3. It should be noted that it is very 
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difficult to generate an antibody, which detects only TMIGD3 i1, since its N-terminal 

region is identical with A3AR, while its C-terminal region is identical with TMIGD3 i3. 

Moreover, despite the differences of predicted sizes of TMIGD3 i1 and i3 proteins, both 

run at almost the same size in SDS PAGE (Fig. 3.9). Even when using overexpression 

of TMIGD3 i3 tagged with FLAG, it runs at the same size as TMIGD3 i1 and non-tagged 

TMIGD3 i3 (Fig 3.10). Similar changes in predicted size vs actual size have been 

observed previously for TMIGD1 and TMIGD2, due to post-translational modifications 

linked with N- glycosylation 174,177. Generation of an antibody detecting a specific region 

of TMIGD3 i3 (first exon) would be necessary to discriminate between these two 

isoforms. Nonetheless, protein expression of TMIGD3 in OS tissues is significantly 

lower than that in normal bone and lungs, similar to A3AR. Indeed, A3AR expression 

appears low in many types of cancer in the Human Protein ATLAS database 

(http://www.proteinatlas.org/ENSG00000121933-ADORA3/cancer). Since both A3AR 

and TMIGD3 i1 genes are likely to be driven by the same promoter, expression of these 

proteins may be attenuated at the transcriptional levels. It would be important to 

determine how mRNA expression of these genes is regulated and the possible 

mechanisms behind its gene silencing. Interestingly, no significant differences in the 

expression of TMIGD3 and A3AR between primary and metastatic OS are found. This 

could be because TMIGD3 and A3AR expression may be lost during early stages of OS 

genesis. It is unfortunate that we could not obtain detailed patients’ information; 

correlation studies between expression of TMIGD3 or A3AR with patient’s prognosis or 

clinical stages need to be elucidated as a future study. Also, it should be noted that 

A3AR knockout mice are not tumor-prone, rather show increased inflammatory 
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response 178. In order to examine the in vivo significance of TMIGD3 i1 and A3AR on 

tumor development, generating compound knockout mice of TMIGD3 i1 and A3AR and 

a mouse model of cancer would be necessary. 
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CHAPTER 4 

TMIGD3 AND A3AR SUPPRESS OS PROGRESSION THROUGH THE 

NF-κB PATHWAY 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 83 



4.1 Introduction 

4.1.1 Signaling pathways regulated by A3AR and their roles in pathogenesis of OS  

 A3ARs are associated with classic G-protein coupled secondary messenger 

pathways signaling through both Gi and Gq family of G proteins121,179,180. A3AR inhibits 

cAMP accumulation through the inhibition of adenylyl cyclase activity through the Gi 

protein and stimulate phospholipase C (PLC) through Gq protein coupling181,182. It 

should be noted that the potency of a GPCR to activate different signaling pathways 

depends on the physiological conditions prevalent in the cells 183.  

 

4.1.1.1 The NF-κB pathway 

  The NF-κB pathway is involved in multiple malignancies 184 including OS 185,186,  

NF-κB regulates transcripts of a number of genes crucial for tumorigenesis including 

PDGF-1, TIMP 1 & 2, Bcl-2, Bax, XIAP, cyclin D1 and cMyc 187-193.  NF-κB is also 

associated with metastasis and prognosis in several types of sarcomas including  

OS194-196. Inhibition of the NF-κB pathway decreases cell growth, increases apoptosis, 

and increases sensitivity to radiation197,198 

 The NF-κB pathway is involved in proliferation and differentiation of OS 

cells191,197,198. Indeed, the NF-κB pathway is reported to have an antagonistic effect on 

the bone morphogenetic protein (BMP-2)-mediated osteoblast differentiation of 

mesenchymal stem cells199-201. Hyperactivation of NF-κB causes incomplete 

differentiation and hence causes the maintenance of a stem-like population, with the 

ability to give rise to a heterogeneous OS tumor 202,203. It is shown that inhibition of  
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NF-κB, decreases the CSC population in culture 204. Hence, targeting the NF-κB axis to 

diminish the most malignant subpopulation in the tumor could be a promising strategy.  

However, the mechanism behind how NF-κB regulates the stem-like population is still 

unexplored.  

 Well-characterized anti-inflammatory activity of A3AR is mediated through the 

NF-κB signaling pathway (Fig 4.2). A3AR activation suppresses TNFα production 

through the NF-κB pathway 205,206. Also, activation of A3AR by its specific agonists 

induce apoptosis or growth suppression of several types of cancer, such as leukemia, 

lung cancer, bladder cancer, and melanoma, via inhibition of the β-catenin and NF-κB 

pathways 165,207-209. Mechanistically, the activation of A3AR inhibits the activities of 

protein kinase A (PKA) and protein kinase B (PKB/Akt) 210,211 leading to decreased 

nuclear translocation of NF-κB. The A3AR-NF-κB axis is implicated in the suppression 

of tumor growth both in vitro and in vivo 207. Also A3AR is a direct transcriptional target 

of NF-κB 212 which might explain the high expression of A3AR in certain tumors 213. 

However, the physiological levels of adenosine are not adequate enough to activate 

A3AR in tumors since the affinity of A3AR for adenosine is very low214. Hence, 

activation of A3AR by its specific agonists and subsequent inhibition of NF-κB activity 

can be considered to be a potential anti-cancer therapy215. 

 

4.1.1.2 β-catenin pathway 

 The β-catenin pathway, a major player of cell survival and growth, is a target for 

mutations known to promote neoplastic transformation in humans and in mouse models 

216. Accumulation of nuclear and/or cytoplasmic β-catenin is observed in 70% of patient 
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OS samples 217. Iwaya et al. also observe that LM8, highly metastatic OS cells, show 

stronger staining intensity of β-catenin compared to non-metastatic Dunn OS cells, 

suggesting the use of β-catenin as a biological marker for metastasis of OS 218. The β-

catenin pathway is associated with stem cell renewal and mesenchymal stem cell 

differentiation 219. Treatment of OS cell lines and primary OS culture, with salinomycin 

causes inhibition of the stem–like population through this pathway. CSCs/TICs derived 

from OS cell lines treated with salinomycin, show decreased expression of β-catenin, 

activation of GSK-3β and subsequent downregulation of cyclinD1, a downstream target 

of this pathway 220,221 

 However, the role of the β-catenin pathway in OS stem cells is ambiguous. As 

observed with the NF-κB pathway, the importance of the β-catenin pathway in 

osteoblast differentiation and proliferation is precedent and is required for maintenance 

of mesenchymal progenitor cells 222,223.  

 The connection between A3AR and the β-catenin pathway is also suggested in 

mediating the inhibitory effect of A3AR on tumor growth. The activation of A3AR 

decreases activities of PKA and PKB/Akt which leads to decrease in the 

phosphorylation and subsequent activation of GSK-3β. GSK-3β controls mammalian 

cell proliferation and survival by phosphorylating β-catenin, and prevents it from 

translocating to the nucleus, hence activating its downstream effectors such as cyclin 

D1 and cMyc and leading to tumor inhibition of colon carcinoma and prostate cancer 

162,207. Thus β-catenin activity is crucial for aggressive properties of OS and could play a 

role in the mechanism behind A3AR-mediated suppression of OS malignancy.  
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4.1.1.3 Erk pathway 

 Extracellular Receptor Kinase (Erk) proteins comprise a family of 

serine/threonine kinases that respond to growth stimuli, such as insulin and nerve 

growth factor (NGF) that cause their subsequent tyrosine phosphorylation. The role of 

Erk in inflammation and oncology is well established, which is also known more 

commonly as Mitogen-Activated Protein Kinase (MAPK). Erk activation by 

phosphorylation is orchestrated from Ras/Raf followed by MAPK/Erk Kinase (MEK) 

through a variety of stimuli including growth factors and cytokine receptors. MAPK/Erk 

signaling is associated with many characteristics of malignancy such as high mitotic 

index, increased matrix metalloproteinase production, Warburg effect, angiogenesis, 

and cytokine production224-228. Increased activity of MAPK signaling is correlated with 

poor prognosis and has therapeutic implications in different types of cancer229-231.  

 The role of MAPK/Erk pathway in OS is not clearly understood. Higher 

expression levels of MAPK/Erk in OS, Ewing’s sarcoma, and high-grade 

chondrosarcoma are reported 80,232,233; hence several studies unveiling the potential 

therapeutic implication of this pathway in bone sarcomas are underway.  Inhibition of 

the Erk activity leads to increased OS apoptosis, increased doxorubicin sensitivity, and 

inhibits migration and invasion in OS80,232-234. Erk inhibitors alone or in combination with 

other chemotherapeutic drugs inhibit OS growth showing prolonged survival in mice233.  

 A3AR also influences the MAPK pathway. A3AR is shown to signal to Erk1/2 

through the phophoinositide 3- kinase (PI3K) and MAP kinase (MEK) in human fetal 

astrocytes214. A3AR also mediates Erk1/2 phosphorylation in primary mouse microglia 

cells, as well as in pathological conditions such as colon carcinoma and glioblastoma 235 
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236,237. However, in prostate cancer cells, A3AR appears to inhibit the Erk1/2 activity 

through adenylyl cyclase and PKA. Indeed, treatment of glioma cells with A3AR agonist, 

Cl-IB-MECA, inhibits Erk1/2 activities and induces caspase-dependent cell death. 

Similarly, in melanoma cells, A3AR fails to activate Erk through phosphorylation and in 

fact A3AR antagonists cause activation of the MEK activity. The activation of MEK 

activity through Ras/Raf pathway, could lead to increase in Erk activity, though the 

mechanism behind how A3AR directly causes activation of Ras/Raf pathway is not 

clear. Thus, the effects of A3AR on Erk 1/2 activities are controversial and cellular 

context dependent.  

 Our results demonstrate that knockdown of TMIGD3 or A3AR activates mainly 

the NF-κB pathway with minimal effects on the cellular localization of β-catenin and p-

Erk1/2. TMIGD3 knockdown results in degradation of IκB followed by nuclear 

translocation of NF-κB, and increased expression of downstream targets cyclin D1 and 

cMyc as A3AR knockdown. Overexpression of TMIGD3 i1 or A3AR in cells 

downregulated for TMIGD3 or A3AR respectively, nullifies NF-κB nuclear translocation. 

These results suggest that both TMIGD3 i1 and A3AR may suppress malignant 

properties of OS by inhibiting NF-κB activity.  

 This is the first report demonstrating the roles of TMIGD3 i1, as well as A3AR, in 

the suppression of OS progression through the NF-κB pathway, thus opening new 

avenues as therapeutic targets for high grade OS. 
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4.2 Materials and Methods 

Immunofluorescence 

The cells were grown on poly-D-lysine/laminin-coated glass coverslips (BD 

Biosciences) in 24-well plates. Cells were fixed with 4% paraformaldehyde for 20 

minutes and permeabilized with 0.3% Triton X-100 for 5 minutes. Following blocking in 

1% BSA  in PBS plus 0.3% Triton-X  for 30 minutes at room temperature, cells were 

incubated with the following primary antibodies: p65 (8242S, Cell Signaling)), β-catenin 

(sc1496-R, Santa Cruz Biotechnology), p-Erk1/2 (4695S, Cell Signaling), IκB (4814S, 

Cell Signaling), GAPDH (H-12, Santa Cruz Biotechnology)  at 4 °C overnight. After 

washing with PBS, cells were incubated with fluorescence-conjugated secondary 

antibodies at room temperature for 1 hour. Cells were mounted in the ProLong Gold 

Antifade Reagent with DAPI (Invitrogen) and analyzed using a Nikon epifluorescence 

microscope.  

 

Quantitative Reverse Transcription PCR (qRT-PCR) 

RNAs isolated using the RNA-Quick MiniPrep (Zymo Research) was reversed 

transcribed to cDNA using M-MLV reverse transcriptase (Amresco), followed by 

TaqMan assays with ViiA7 (Life Technologies). TaqMan assay primers and probes were 

purchased from Life Technologies or Integrated DNA Technologies. The following assay 

numbers were used for probes: Cyclin D1 (HS00277039_m1, Life Technologies), cMyc 

(HS00153408_m1, Life Technologies). The mRNA levels were normalized to those of 

GAPDH (Hs.PT.39a.22214836, IDT).  
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Signal analysis and luciferase assays 

Cells were transfected with a NF-κB promoter-luciferase reporter plasmid 

(E849A, Promega) and luciferase assays were performed according to the 

manufacture’s protocol using the Dual-Luciferase Reporter Assay System (Promega).  

Cignal 45-Pathway Reporter Array was purchased from SABiosciences (CCA-

901L) and luciferase assays were performed according to the manufacturer’s protocol. 

Briefly, 50 μl Opti-MEM® was added to each well of the Cignal Finder Array plate 

coated with reporter assay constructs. Subsequently, 50 μl of Opti-MEM® containing 

0.3 μl of Attractene Transfection Reagent (QIAGEN) was used for each individual 

transfection. Following a 20-minute incubation, 50 μl of a cell suspension containing 1-3 

× 104 cells in Opti-MEM® with 10% of fetal bovine serum and 1% NEAA was added to 

each well. After 16 hours of transfection, the medium was changed to complete growth 

medium and further incubated for 36 hours, followed by luciferase assays using the 

Dual-Luciferase Reporter Assay System (Promega). 

 

Western Blotting 

Western Blotting was performed as described in Chapter 2 using the following 

antibodies: IκB (4814S, Cell Signaling), TMIGD3 (Pab128, generated against aa. 235 to 

aa. 248 CGIQRDFARDDMDF by GenScript), p65 (8242S, Cell Signaling), Lamin B (C-

20, Santa Cruz Biotechnology), GAPDH (H-12, Santa Cruz Biotechnology) and Vinculin 

(10R-C105a, Fitzgerald) 
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Sphere formation assays and in vivo subcutaneous tumor formation assays were 

performed as described in Chapters 2 & 3.  
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4.3 Results 

4.3.1 TMIGD3 knockdown induces nuclear translocation of NF-κB with minimal effects 

on β-catenin, and p-ERK1/2 as A3AR in OS 

Our results demonstrated similar biological profiles between TMIGD3 i1 and 

A3AR. To mechanistically understand functional similarity of TMIGD3 i1 with A3AR, we 

first performed web-based domain analyses using protein structure prediction sites, 

including PridictProtein server (https://www.predictprotein.org/) and SOSUI 

(http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html), which identified two 

transmembrane helices at the C-terminal region of TMIGD3 i1 (aa129-151 and aa291-

313), in addition to 3 transmembrane helices within the first 117 amino acids sharing 

with A3AR, as well as a known Ig-like fold at the C-terminal region (aa167-256, Fig.  

4.1). Given that A3AR is a GPCR with 7 transmembrane helices 238 and TMIGD3 i1 

preserves a part of the A3AR structure, we questioned if TMIGD3 i1 could regulate 

signaling similar to A3AR, which is known to inhibit three major cancer-associated 

signaling including the NF-κB, β-catenin, and MAPK-Erk pathways (Fig. 4.2) 239,240 

To address this, we examined cellular localization of NF-κB (p65), β -catenin, and 

p-Erk1/2, since nuclear localization of these proteins is well correlated with their 

activities. We observed that knockdown of TMIGD3 (T6U) significantly increased 

nuclear localization of p65 with minimal effects on β-catenin and p-Erk1/2 localization in 

SJSA-1 cells, similar to A3AR knockdown by the A2a shRNA (Fig. 4.3A). We also 

confirmed increased NF-κB activity by p65 accumulation in the nuclear fraction (Fig. 

4.3B).Overexpression of TMIGD3 i1 or A3AR nullified the increased nuclear localization 

of NF-κB (p65) by TMIGD3 or A3AR knockdown, respectively, suggesting that increase 
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in the NF-κB activities by the T6U and A2a shRNAs were not due to their off-target 

effects. (Fig. 4.4).  

 

Figure 4.1 Predicted structure of TMIGD3 i1 and its comparison with A3AR.  

Blue filled boxes indicate reported transmembrane helices. Blue boxes with oblique 

lines indicate predicted transmembrane helices. Three N-terminal transmembrane 

helices are common between TMIGD3 i1 and A3AR. Numbers indicate amino acid 

locatio

ns. 
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Figure 4.2 Cancer associated-signaling pathways regulated by A3AR. A3AR is 

previously known to regulate three major pathways including the NF-κB, β-catenin, and 

Erk pathways.  
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Figure 4.3 Knockdown of TMIGD3 causes nuclear translocation of NF-κB similar 

to A3AR.  

(A) Immunofluorescence for NF-κB (p65), β-catenin, and p-Erk1/2 using SJSA-1 cells 

infected with lentiviral vectors encoding non-silencing control (C), T6U, or A2a shRNAs. 

Original magnification, x40. 

(B) Immunoblots for p65, Lamin B and GAPDH, using nuclear and cytoplasmic extracts 

of SJSA-1 cells with or without downregulation of TMIGD3 (T6U) or A3AR (A2a).  
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Figure 4.4 Overexpression of TMIGD3 i1 and A3AR nullifies the nuclear 

translocation of NF-κB induced by knockdown of TMIGD3 and A3AR, 

respectively.  

Immunofluorescence for p65 using SJSA-1 cells downregulated for TMIGD3 (T6U) or 

A3AR (A2a) with or without overexpression of TMIGD3 i1 (cTi1) or A3AR (cA3), 

respectively.  

 

.  
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4.3.2 TMIGD3 knockdown results in degradation of IκB and increases activity of NF-κB 

as A3AR in OS cells 

Knockdown of TMIGD3 and A3AR, both reduced levels of IκB, an inhibitor of NF-κB, as 

assessed by immunofluorescence (Fig. 4.5A, up) and western blotting (Fig. 4.5A, 

down). Knockdown of TMIGD3 also increased the transcriptional activity of NF-κB, 

similar to A3AR knockdown (Fig. 4.5B). To furthermore ensure increased NF-κB activity 

by knockdown of TMIGD3 or A3AR, we examined mRNA expression of NF-κB 

downstream targets, cyclin D1 and cMyc, in SJSA-1 cells and found increase in the 

mRNA expression of these genes, as compared to the control cells (Fig. 4.6). These 

results suggest that both TMIGD3 i1 and A3AR may suppress malignant properties of 

OS by inhibiting NF-κB activity. 

 

 

  

 98 



Figure 4.5 TMIGD3 knockdown results in degradation of IκB and increases 

activity of NF-κB, as A3AR, in OS cells. 

(A) Immunofluorescence (up) and western blotting (below) for IκB in SJSA-1 cells: 

control (C), knockdown of TMIGD3 (T6U, T3U), A3AR (A2a). IκB levels were decreased 

following TMIGD3 and A3AR knockdown. 

(B) Relative luciferase activity of NF-κB response element using SJSA-1 cells 

downregulated for TMIGD3 or A3AR. Graph showing relative luciferase activity (firefly/ 

renilla) normalized to that of SJSA-1 cells infected with non-silencing control lentiviral 

vector (C). Error bars: means ± S.D. ** p<0.01; Student’s t-test.  
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Figure 4.6 Knockdown of TMIGD3 and A3AR increases transcription of NF-κB 

downstream targets, cyclin D1 and cMyc. 

Quantitative RT-PCR for cyclin D1 and cMyc using SJSA-1 downregulated for TMIGD3 

(T6U, T3) or A3AR (A2a). Relative mRNA expression was standardized by that of 

GAPDH and normalized by values in non-silencing vector-infected cells (C). Data 

represents results from 3 independent experiments. Error bars: means ± S.D. * p<0.05; 

Student’s t-test.   
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4.3.3 Malignant properties including sphere formation and tumor growth enhanced by 

TMIGD3 knockdown can be rescued by simultaneous knockdown of NF-κB (p65) 

We therefore determined whether enhanced malignancy associated with 

TMIGD3 knockdown could be rescued by simultaneous knockdown of NF-κB/p65. 

Indeed, concomitant knockdown of p65 attenuated sphere formation and subcutaneous 

tumor growth of SJSA-1 cells enhanced by TMIGD3 knockdown (Fig .4.7A and B). It 

should be noted that the observed effects of p65 knockdown were partial, and not 

complete. These data suggest that suppressive effects of TMIGD3 i1 on the malignant 

properties of OS cells are regulated mainly, but not solely, through inhibition of NF-κB 

activity. 
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Figure 4.7 Sphere formation and tumor growth enhanced by TMIGD3 knockdown 

can be rescued by simultaneous knockdown of NF-κB. 

(A) Sphere formation assays using SJSA-1 cells with or without knockdown of TMIGD3 

(T6U) and/or NF-κB/p65 (NF3, NF4). Graph represents sphere forming potential from 3 

independent experiments and representative western blotting for p65 and TMIGD3. * 

p<0.05; Student’s t-test.  

(B) Subcutaneous tumor formation assays using SJSA-1 cells with or without 

knockdown of TMIGD3 (T6U) and/or p65 (NF4). Graph showing tumor weight (g) and 

representative images of tumors at day 21,  
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4.3.4 TMIGD3 i1 regulates both overlapping and non-overlapping pathways with A3AR. 

Our data suggest that there is a possibility that suppressive effects of TMIGD3 and 

A3AR on the malignant properties of OS cells could be regulated by differential 

pathways other than the NF-κB pathway. We compared signaling pathways altered by 

knockdown of either TMIGD3 or A3AR through an unbiased luciferase-based signal 

array experiment in SJSA-1 cells (Fig. 4.8). Firstly, we noted that knockdown of 

TMIGD3 and A3AR consistently showed increase in the NF-κB activity. Secondly, the 

activities of TCF/LEF (transcription factors for Wnt signaling) and Elk-1 (downstream of 

MAPK/Erk signaling) were either undetectable or unaffected by knockdown of TMIGD3 

and A3AR, supporting the results in Fig. 4.3. And finally, there were distinct pathways 

altered by knockdown of these proteins (Fig. 4.8).  
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Figure 4.8 TMIGD3 i1 regulates both overlapping and non-overlapping pathways 

with A3AR. 

 Luciferase-based signal array experiments using SJSA-1 cells downregulated for 

TMIGD3 (T6U) or A3AR (A2a). Graph showing average of relative luciferase activity 

normalized to that of SJSA-1 cells infected with non-silencing control lentiviral vector 

from 2 independent experiments. Ud. Undetectable. 
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4.4 Discussion 

TMIGD3 function is completely unknown. Based on the observation that it shares 

the N-terminal 117 aa with A3AR, and thus preserves part of the GPCR structure, we 

hypothesized that TMIGD3 signals through similar pathways as A3AR. Our data show 

that TMIGD3 i1 inhibits NF-κB activity, similar to A3AR. TMIGD3 knockdown does not 

alter activities of β-catenin and p-Erk1/2, similarly with A3AR. It remains unsolved 

whether TMIGD3 i1 plays roles in tumor suppression in other types of cancer or 

immune-inflammatory diseases, similar to A3AR.  

Additionally, our unbiased luciferase-based pathway analyses indicate distinct 

signaling pathways regulated by TMIGD3 from A3AR that may further contribute 

towards OS suppression. These include retinoic acid X receptor, AhR (aryl hydrocarbon 

receptor), GLI and progesterone receptor. The detailed studies questioning the 

significance of these pathways in OS progression and their relationship to TMIGD3 i1 or 

A3AR should be further elaborated on in the near future.  

Agonists for A3AR are currently under clinical trials for several diseases including 

hepatocellular carcinoma and rheumatoid arthritis96,207,241. Success of clinical trials may 

rely on the expression levels of A3AR and TMIGD3 i1 in OS tumors. Since our study 

suggests low expression of both A3AR and TMIGD3 in OS tissues, studies to restore 

the expression levels of A3AR and TMIGD3 i1 in tumors are required before treating 

tumors with agonists.  

Deregulation in NF-κB pathway is a common event in many cancers, including 

solid and hematologic malignancies. NF-κB through its transcriptional activity increases 
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expression of genes that contribute toward increased cell proliferation, angiogenesis, 

metastasis, and tumor formation, some of the hallmarks of cancer. Genetic ablation in 

the NF-κB pathway in mouse models of cancer that leads to block in NF-κB activity, 

have clearly highlighted the role of NF-κB in the promotion of inflammation-influenced 

cancer. The roles of NF-κB in anti-apoptotic machinery thus promoting cell survival, 

chemotherapy resistance are well documented. Thus, inhibition of NF-κB pathway, may 

serve as a promising therapeutic target in multiple cancers to improve the efficacy of 

current conventional therapies. One of the clinically relevant examples is the use of 

Bortezomib, a proteasome inhibitor, in the treatment of multiple myeloma. Even though 

multiple signaling pathways may be affected by Bortezomib, decrease in cancer cell 

growth may be in due to inhibition of NF-κB activity. Thalidomide and its analogues, also 

active against multiple myeloma, induce apoptosis and growth arrest, in these cells 

through inhibition of IKK activity, and thus NF-κB activity. Proteasome mediated 

inhibition that led to suppression of NF-κB activity was also observed in T-cell leukemia. 

Specifically, small molecule inhibitor against IKK (PS-1145) was toxic for large B-cell 

lymphoma cells through suppression of NF-κB dependent genes. IKK inhibitors, BAY 

11-7082 and AS602868 have also shown promising effects in leukemia via increased 

apoptosis. Another drug, sulfasalazine, NSAID, which is known to block NF-κB 

activation, shows inhibition of growth and apoptosis in glioblastoma cell lines.  

NF-κB activity is associated with increased chemoresistance and progression of 

OS 191,197,198,242,243.NF-κB specific inhibitors, including pyrrolidine dithiocarbamate 

(PDTC), parthenolide (PARTH), and Bay 11-7085 (BAY) induced apoptosis and 

inhibited tumor growth of OS cells 244. Moreover, enhanced anti-tumorigenic effects 
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were observed when NF-κB inhibitors were combined with a commonly used 

chemotherapeutic drug in OS, doxorubicin (also known as adriamycin, ADM) 244. 

Kishida et al. also showed that parthenolide, inhibited lung metastases of a highly 

metastatic OS cell line, through inhibition of NF-κB activity245. Thus, targeting the NF-κB 

signaling could be a promising strategy for OS having low expression of A3AR or 

TMIGD3 i1.  
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CHAPTER 5: 

PRELIMINARY RESULTS ELUCIDATING THE 

ROLE OF TMIGD3 IN STEM-LIKE PROPERTIES OF OS 
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5.1 Introduction 

Tumors are comprised of a heterogeneous cell population 246. Accumulating 

evidence indicates that a small subset of cancer cells within a tumor possess similar 

characteristics to normal stem cells and can generate phenotypically diverse cancer 

cells and form the bulk of the tumor  246. This small subset of tumor cells are called 

cancer stem cells (CSCs) or tumor initiating cells (TICs) which have been demonstrated  

in different types of cancer, including breast cancer, central nervous system tumors, 

colon cancer, prostate cancer, pancreatic cancer, and hepatic cancer 247-255. CSCs/TICs 

have high abilities of tumor initiation, multi-lineage differentiation, and sphere formation, 

as well as express stem cell-related transcription factors and cell surface markers 91, 

thereby being considered to be responsible for tumor recurrence, metastasis, and drug 

resistance 93,256. Thus, it is important to discover strategies to target CSCs/TICs, which 

the current conventional therapies fail to do52,53. 

The manifestation of metastases at diagnosis is significantly associated with a 

poorer prognosis in patients 16. Recent studies suggest that the molecular machinery 

responsible for cancer invasion and metastasis is similar to that involved in the 

activation, mobilization, and homing of normal stem cells 71,72,86,257,258. Since non-

CSCs/TICs cannot efficiently initiate tumors at secondary sites 73,75,257 and because 

CSCs/TICs share several molecular and biological properties with normal stem cells, 

CSCs/TICs have been proposed to be responsible for metastasis 257,259. 

In many types of cancer, CSCs/TICs are enriched within spheres, which grow in 

serum- and anchorage-independent conditions73,248,249,260,261. Thus, sphere-forming 

ability is a hallmark of cancer cells possessing stem cell-like properties. Our lab and 
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others have demonstrated that both primary and established cells from OS, as well as 

other types of sarcomas, have the ability to grow in serum- and anchorage-independent 

conditions and form spheres 69,73,262.  As few as 200 cells from mouse OS spheres can 

efficiently initiate tumors in immunocompromised mice73,257. These spheres are also 

enriched with cells positive for stem cell transcription factors such as Oct-4 and also 

positive for mesenchymal stem cell markers Stro-1, CD117, CXCR4, and ABCG2 263 

69,73,264. Furthermore, CD117+Stro-1+ cells from both primary and established human OS 

cell lines show high metastatic and doxorubicin resistance, in addition to enrichment of 

cells positive for CXCR4 and ABCG2, each associated with metastasis and drug 

resistance, respectively 69,73. These results suggest that spheres as well as 

CD117+Stro-1+ cells, are enriched in OS CSCs/TICs.  

In Chapters 2 & 3, we identified a novel uncharacterized gene TMIGD3, whose 

knockdown increased the sphere forming ability of multiple OS cells. Interestingly, 

TMIGD3 i1 shares its N-terminal region with A3AR, a Gi-associated GPCR. 

Downregulation of TMIGD3 enhances OS malignancy in vitro as shown by increased 

proliferation and migration. Also, cells downregulated for TMIGD3 efficiently enhances 

primary tumor formation and metastasis of OS cells in vivo. We hence hypothesized 

that TMIGD3 regulates OS malignancy by influencing their stem-like properties. We 

show that downregulation of TMIGD3 increases stem cell transcription factor expression 

and tumor initiation efficiency, some of the key properties defining CSCs/TICs. 

Downregulation of TMIGD3 increases ALDH activity of OS cells. Thus, we have 

identified TMIGD3 as a novel regulator of stem-like properties of OS and could 

potentially serve as therapeutic target for treatment of high grade OS. 
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5.2 Materials and Methods 

Quantitative RT-PCR for stem-related transcription factors 

Methods of RNA isolation, cDNA synthesis, and RT-PCR were described in 

Chapter 4. The following Taqman assay primers and probes are used: Oct-4 (Catalog 

#HS0999632_g1, Applied Biosystems), Sox-2 (Catalog # HS01053049_S1, Applied 

Biosystems), TMIGD3 (Catalog # Hs.PT.56a.2147158.9, Integrated DNA Technologies). 

The levels of mRNA were normalized with those of GAPDH.  

 

Limited dilution tumor formation assay 

Cells were dissociated using nonenzymatic cell dissociation solution (Sigma 

Biochemicals) into single-cell suspensions. Cells were counted (200 cells) using trypan 

blue staining (Thermo Fisher Scientific) and then suspended in 4.5 mg/ml of Matrigel 

(Corning) in HBSS. These cells were injected subcutaneously into flanks of NIH-III nude 

mice (Charles River). For orthotopic injections, cells were directly injected into the 

femurs of NOD-SCID IL2Rγnull (NSG) mice (The Jackson Laboratories) as previously 

described 171. For subcutaneous tumor formation, tumors were measured three 

dimensionally twice a week until day 50. For orthotopic injections, mice were monitored 

for ~4 months following injections or when the tumors reached ~2 cm in thigh diameter. 

The numbers of metastatic nodules in the lungs were counted and the weights of the 

primary tumors were measured.  
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ALDEFLUOR assay and collection of positive population for ALDH using fluorescence 

activated cell sorting (FACS)  

The ALDEFLUOR assays were performed using the ALDEFLUOR kit (Stem Cell 

Technologies). Briefly, cells were dissociated into single suspensions following which 

they were suspended in ALDFLUOR assay buffer containing the ALDH substrate 

(BAAA) and efflux inhibitor, and incubated at 37oC for 30 minutes. For every sample, as 

a negative control, an equal proportion of cells were treated with 1.5 mM of 

diethylaminobenzaldehyde (DEAB), an ALDH inhibitor. The gates for sorting were 

based on the negative control after which ALDEFLUOR positive cells were collected 

and the percentages were measured265.  

 

 

 

 

 

 

  

 116 



5.3 Results 

5.3.1 Knockdown of TMIGD3 efficiently initiated tumors in vivo   

 Our previous results (Fig. 3.5 & 3.6) showed that TMIGD3 knockdown 

significantly enhanced tumor growth and metastasis. We hypothesized that TMIGD3 

knockdown increases stem-like properties of OS cells, thereby initiating tumors in vivo. 

To test this hypothesis, we subcutaneously injected 200 SJSA-1 cells infected with 

lentiviral vectors encoding non-silencing control (C) or TMIGD3 (T6U) into flanks of 

nude mice. Indeed, only 200 SJSA-1 cells with TMIGD3 knockdown successfully gave 

rise to tumors, whereas control cells failed to do so (Fig. 5.1A). To test if TMIGD3 

knockdown initiated tumor formation when placed in a bone microenvironment and to 

examine the metastatic potential of formed tumors, we also performed orthotropic tumor 

formation assays by injecting control or TMIGD3-downregulated SJSA-1 cells (200) into 

the femurs of NSG mice. All mice injected with cells with TMIGD3 knockdown gave rise 

to tumors whereas only 1 mouse with control cells formed a tumor. Moreover, the OS 

tumors formed with TMIGD3 knockdown metastasized to the lungs, but control OS 

tumors failed to do so (Fig. 5.1B).  
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Figure 5.1 Knockdown of TMIGD3 enhances tumor initiation. 

(A) Subcutaneous tumor formation assays were performed using SJSA-1 cells (200 

cells/mouse) expressing non-silencing shRNA (C) or TMIGD3 shRNA (T6U) (n=7). 

Tumors were measured three-dimensionally twice a week until day 50.  

(B) Orthotopic (intrafemoral) tumor cell injection assays using SJSA-1 cells (200 

cells/mouse) expressing non-silencing shRNA (C) or TMIGD3 shRNA (T6U) in NSG 

mice. Mice were monitored for tumor formation and were euthanized when thigh 

diameter reached ~2 cm or became moribund. Graph showing weights of primary 

tumors (left) and numbers of metastatic nodules (right). Representative images of 

primary tumors and lungs with metastatic nodules below the graphs and a table 

representing the numbers of tumor-bearing mice/numbers of mice examined.  
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5.3.2 Downregulation of TMIGD3 increases expression of stem-cell transcription factors  

 High expression of Oct-4 and Sox-2, important pluripotent stem cell transcription 

factors, is well associated with stem-like properties of OS including self-renewability, 

sphere formation, and metastasis 71,72. Our results showed that knockdown of TMIGD3 

increased expression of Oct-4 mRNA in SJSA-1 and Saos2 OS cells (Fig. 5.2A). 

Knockdown of TMIGD3 also enhanced expression of Sox-2 when compared to control 

(C) cells with non-silencing shRNA in SJSA-1 and Saos2 OS cells (Fig. 5.2 B). These 

results suggest that knockdown of TMIGD3 enhances expression of two crucial stem 

cell transcription factors, thus possibly could enhance stem-like properties in OS cells.  
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Figure 5.2 Knockdown of TMIGD3 increased mRNA expression of stem cell 

transcription factors.  

(A, B) Quantitative RT-PCR for Oct-4 and Sox-2 using SJSA-1 and Saos2 cells with or 

without downregulation of TMIGD3 (T6U, T3). Relative mRNA expression was 

standardized by that of GAPDH and normalized by values in cells infected with a non-

silencing control shRNA-encoding lentivirus (C). Data are from 3 independent 

experiments. Error bars: means ± S.D. * p<0.05, **p<0.01; Student’s t-test 
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5.3.3 Decreased TMIGD3 expression is correlated with increased ALDH activity 

 Increased activity of aldehyde dehydrogenases (ALDHs), a group of enzymes 

that catalyze the oxidation of aldehydes and play roles in drug detoxification 266, is a 

property associated with normal stem cells including hematopoietic stem cells and 

neural progenitors. Hence, ALDH activity is associated with drug resistance and stem-

like properties of cancer cells. Cancer cells possessing high ALDH activity (ALDHHigh) 

frequently show enhanced tumor formation and sphere formation, and also express 

stem cell transcription factors including Oct-4, Nanog, and Sox-2267.  

 To test if TMIGD3 knockdown was associated with increased ALDH activity, we 

performed ALDEFLUOR assays using SJSA-1, U2OS, and Saos2 OS cells with or 

without knockdown of TMIGD3. Knockdown of TMIGD3 increased the percentage of 

ALDEFLUOR-positive cells correlating with increased ALDH activity (Fig. 5.3A).   

 We also examined whether ALDH activity was negatively correlated with 

TMIGD3 expression. We hence examined TMIGD3 mRNA expression in flow-sorted 

ALDHLow and ALDHHigh SJSA-1 and MG63 cells. As expected, ALDHHigh population had 

lower mRNA expression of TMIGD3 than that in ALDHLow population in both the cell 

lines (Fig. 5.3B). Thus, these results suggest that decreased TMIGD3 expression is 

associated with increased ALDH activity, hence contributing towards the malignant and 

stem-like properties of OS cells.   
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Figure 5.3 Decreased TMIGD3 expression is correlated with increased ALDH 

activity.  

(A) ALDEFLOUR assays measuring the ALDH activity. SJSA-1, U2OS, and Saos2 cells 

infected with lentiviral vectors encoding non-silencing (C) or TMIGD3 (T3) shRNAs were 

subjected to ALDEFLOUR assays, followed by flow cytometric analyses. Results were 

presented as percentage of cells positive for the substrate ALDEFLOUR.   

(B) Quantitative RT-PCR for TMIGD3 using ALDHLow and ALDHHigh SJSA-1 and MG63 

cells. 
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5.4 Discussion 

Given that TMIGD3 inhibits sphere forming potential of OS cells, TMIGD3 could 

also regulate stem-like properties of OS. Indeed, knockdown of TMIGD3 results in 

increase in ALDH activity and the expression of stem cell transcription factors of Oct-4 

and Sox-2, makers for OS CSCs/TICs 72.  Moreover, TMIGD3 knockdown cells show 

increase in tumor initiation and metastasis of OS cells. These preliminary results 

suggest the involvement of TMIGD3 in the stem-like properties of OS. Detailed 

examinations of self-renewability and multi-lineage differentiation potential are 

necessary to define the roles of TMIGD3 in the regulation of stemness of OS cells.  

It would be interesting to examine whether TMIGD3 knockdown could increase 

the expression of other OS stem cell surface markers CD117, Stro-1, CD133, and Sca-

1, as well as a metastasis-associated chemokine receptor CXCR4 and a drug-

resistance associated drug transporter ABCG2. Co-expression analyses of TMIGD3 

and stem cell markers in human OS tissues should be performed in future. Furthermore, 

it will be important to examine if high ALDH activity is associated with low expression of 

TMIGD3 and if TMIGD3 Low OS cell population has high tumor initiating potential or self-

renewability from fresh OS biopsies.  Toward this, it is crucial to have an antibody that 

detects extracellular region of TMIGD3 and hence allows for sorting of live cells. We can 

explore if our generated antibody for TMIGD3 could serve this purpose. 

Since A3AR also inhibits sphere forming potential, it would be important to 

determine whether A3AR could also regulate stemness in OS, similar to TMIGD3 in the 

future. 
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OS is the most common non-hematologic deadly malignancy affecting children 

and adolescents with a dismal survival rate especially for patients who manifest 

metastases and disease relapse 268,87,88. Even though certain molecular pathways are 

associated with OS development and progression, the exact mechanisms underlying 

the full spectrum of the disease remain elusive. Also, there is a great paucity in the 

availability of directed therapies for OS that could target the most aggressive properties 

of the disease including chemoresistance and metastases. Hence, a detailed 

understanding of the molecular mechanisms underlying these aggressive properties, as 

well as discovery of novel therapies that target these mechanisms, are an absolute 

requirement for the cure of OS.  

Sphere formation assay was first described in 1992 when Reynolds et al cultured 

cells with stem-like properties from the adult brain as free floating spheres called 

neurospheres 269. This technique was further adapted to study adult stem cells including 

the nerve, prostate, and mammary stem cells261,270,271. Then, it finally paved its way as a 

functional assay to study malignant properties of cancer cells57,272. The ability of cells to 

survive under nutrient-deprived, anchorage-independent conditions and form spheres 

defines a symbol of malignant properties of cancer cells. To understand the regulatory 

mechanisms underlying malignant properties of OS, we screened a human whole-

genome shRNA library using SJSA-1 OS cells harboring poor sphere forming potential 

and identified a novel uncharacterized protein, TMIGD3, as a factor whose 

downregulation increased sphere forming potential of these cells.  

TMIGD3 shares its N-terminal region with A3AR, hence referred to as an isoform 

of A3AR (A3AR i1). However, the function of TMIGD3 is not described in literature, 
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whereas the functional importance of A3AR (precisely A3AR i2) in inflammatory 

response and cancer progression is well established. Specifically, A3AR is a Gi/Gq 

protein-associated G-protein coupled receptor and it belongs to a family of adenosine 

receptors including A1 and A2AR that regulate a variety of cellular functions120,273. 

Activation of A3AR by its agonist leads to inhibition of adenylyl cyclase and cyclic AMP 

formation, which then converges into various signaling pathways in context-dependent 

manners 214.   

Our study is the first to elucidate the roles of TMIGD3 and A3AR in aggressive 

properties of OS. We found that knockdown of TMIGD3 and A3AR enhanced sphere 

formation, migration, proliferation, tumor formation, and metastasis of OS cells. Also, 

detailed analyses of the isoforms of TMIGD3 revealed that of the two isoforms, TMIGD3 

i1 and TMIGD3 i3, TMIGD3 i1 was crucial in the suppression of aggressive properties of 

OS including proliferation, migration, and tumor formation. Our data suggests the 

significance of the N-terminal region, the common region between TMIGD3 i1 and 

A3AR, in the regulation of malignant properties of OS. Detailed mapping of the N-

terminal domain and subsequent functional assays to test the malignancy will help us 

identify the region crucial for suppression of OS malignancy.   

We performed expression analyses of TMIGD3 and A3AR using human OS 

tissues with a newly generated peptide antibody for TMIGD3 and commercially 

available antibody for A3AR. Our generated TMIGD3 antibody against exon T3 does not 

discriminate the two isoforms. The expression levels of TMIGD3 (both i1 and i3) and 

A3AR were lower in primary and metastatic OS tissues when compared to normal bone 

and normal lung tissues. This is the first study describing the protein expression of 

 129 



TMIGD3 and A3AR in OS. Correlation of TMIGD3 and A3AR expression with OS 

prognosis or other clinical factors should be performed in the future.  

We suspect that there might be certain post-translational modifications present in 

TMIGD3 since we detected both the isoforms i1 and i3 it at levels higher than their 

predicted sizes.  Similar differences in predicted size vs actual size have been observed 

previously for TMIGD1 and TMIGD2, due to their post-translational modifications linked 

with N- glycosylation174,177. We are aware that in future a TMIGD3 i3 specific antibody 

should be generated, since it has a unique N-terminal region. This could help us further 

delineate the differences between TMIGD3 i1 and i3 in clinical samples.  

A3AR was previously demonstrated to suppress tumor progression through the 

inhibition of major signaling pathways including the β-catenin, NF-κB and Erk 

pathways162. We queried the involvement of TMIGD3 through these pathways to inhibit 

OS malignancy. Indeed, TMIGD3 inhibited NF-κB activation, similar to A3AR. We did 

not observe any obvious effects of TMIGD3 knockdown on the β-catenin and Erk 

activities, similarly with A3AR. This suggests that both TMIGD3 and A3AR may 

influence malignant properties of OS mainly via the NF-κB but not β-catenin and Erk 

activities in OS and indicates that an overlapping function of TMIGD3 with A3AR is 

present for inhibition of OS malignancy. The deregulation of NF-κB pathway is linked 

with several pathologies including cancer progression 274-276. Given the low expression 

of TMIGD3 and A3AR in human OS tissues, targeting the NF-κB activity associated with 

increased chemoresistance and progression of OS could be a promising strategy for OS 

191,197,198,242,243. 
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Additionally, since TMIGD3 inhibited sphere forming potential, a hallmark of 

stem-like properties, we explored the role of TMIGD3 in stem-like properties of OS. Our 

preliminary results demonstrated that knockdown of TMIGD3 resulted in increase in 

ALDH activity and the expression of stem cell transcription factors Oct-4 and Sox-2, as 

well as tumor initiation and metastasis. These results suggest the involvement of 

TMIGD3 in the stem-like properties of OS.  

In summary, our study delineated the roles of TMIGD3, as well as A3AR, as 

novel players involved in the suppression of OS progression. Most importantly reduced 

expression of these proteins enhanced OS metastasis in orthotopic mouse models, one 

of the deadly characteristics responsible for the poor prognosis of OS patients. Hence, 

targeted therapies aiming at these two proteins could greatly improve the life of OS 

patients in the future.  
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CHAPTER 7 

FUTURE DIRECTIONS 
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Our IHC analyses using OS tissues revealed low expression levels of TMIGD3 

and A3AR in both primary and metastatic OS tissues, suggesting that TMIGD3 and 

A3AR expression might be silenced during early stage of OS genesis. Indeed, A3AR 

expression appears low in many types of cancer in the Human Protein ATLAS database 

(http://www.proteinatlas.org/ENSG00000121933-ADORA3/cancer). Correlation studies 

between expression of these proteins and patient’s prognosis or clinical stages need to 

be elucidated as a future study.  

 Since TMIGD3 and A3AR share the first exon, these two genes are most likely 

driven by the same promoter. This could explain why both protein levels are reduced in 

OS, which could be due to promoter silencing. Hence, studies examining epigenetic 

modifications of these genes including DNA methylation and histone modifications will 

help us address the possible mechanisms behind silencing of the expression of these 

genes. Interestingly, our  preliminary studies suggest that treatment of aggressive OS 

cell lines that have low  TMIGD3 and A3AR expression at basal levels (Saos2-LM7, 

MG63, KHOS/NP) with a DNA methylation inhibitor 5-aza-2-deoxycytidine and a histone 

deacetylase inhibitor Trichostatin A increases mRNA expression of both TMIGD3 and 

A3AR (data not shown). Additionally, it is possible that some physiological stress 

including hypoxia and nutrition deprivation in the tumor milieu could cause epigenetic 

silencing of TMIGD3 and A3AR. Although A3AR agonists are under clinical trials for 

hepatocellular carcinoma241, efficacy of A3AR agonists could be dependent on the 

expression levels of A3AR in tumors. Hence, it would be important to find strategies to 

restore the expression levels of A3AR before treatment with its agonists. More 
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importantly, methods or agonists that efficiently activate the TMIGD3 signaling and its 

expression should be looked into in the future.   

 Another important remaining question is whether TMIGD3 i1 plays roles in tumor 

suppression of different types of cancer or immune-inflammatory diseases, similar to 

A3AR. Although we expect TMIGD3 i1 to function similarly to A3AR, we observed that 

there are unique TMIGD3 pathways that do not overlap with A3AR. Such pathways 

should be explored in the future, which could further help us develop targeted therapies 

towards the treatment of high grade OS. Since robust metastases are observed 

following TMIGD3 knockdown in both orthotopic and intravenous tail vein assays, it 

would be intriguing to study the role of these differential regulators that specifically 

contribute towards increased metastasis following TMIGD3 knockdown.  

Additionally, the roles of TMIGD3 i1 and A3AR in stem-like properties of other 

sarcomas should also be examined, since all sarcomas are of mesenchymal origin.   

Further studies elucidating the roles of these proteins in self-renewability and multi-

lineage differentiation in different cancer types are required to establish TMIGD3 and 

A3AR as negative regulators of stem-like properties. Therapies targeting these proteins 

might diminish not only malignant properties, but also stem-like properties of many 

cancer types including OS.  

 It should be noted that A3AR knockout mice are not tumor-prone, rather show 

increased inflammatory response 172,178. In order to examine the in vivo significance of 

TMIGD3 i1 and A3AR on tumor development, generating compound knockout mice of 

TMIGD3 i1 and A3AR and a mouse model of cancer would be necessary.  
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