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Abstract 

 Nanotechnology holds exciting potential to significantly advance research in 

many fields such as sensors, environmental sustainability and cleanup, energy harvesting 

and storage, as well as nanoelectronics.  The resulting high demand for implementation 

into these areas has simultaneously created a large need for effective fabrication methods 

for nanostructured materials.  It is important the fabrication methods are capable of 

significant control over size, orientation, and structural configuration of nanomaterials for 

effective function in these applications. Nanopatterning and templating are a promising 

means to achieve extreme selectivity over these parameters, and additionally be used as 

tools to control the growth and structure of large-scale materials through nanoscale 

manipulation.  In this research, nanopatterning and templating are implemented to create 

metallic nanowire structures on surfaces of silicon substrates with highly selectivity over 

nanowire placement and design.  Additionally, templating is incorporated in graphene 

growth on metallic substrates to influence the quality of graphene films,and further film 

patterning is used to improve the graphene electrical and optical properties. 

 The first part of this work focuses on the fabrication of copper metallic nanowires 

through resist patterning coupled with electroless copper deposition.  An atomic force 

microscope is used to selectively remove portions of a self-assembled monolayer resist 

on a silicon substrate, with patterns reaching down to widths of 20 nm.  Electroless metal 

plating provides a facile way to deposit metal in selectively activated areas on surfaces 

with nanoscale dimensions.  Here, it is employed to deposit copper selectively within 

these nanopatterned lines to create copper nanowire features.  Through variation of the 

electroless metal solution conditions, the dimensions of the AFM-patterned line, and the 
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doping of the underlying silicon substrate, the dimensions and uniformity of copper 

deposition within AFM-patterned lines can be influenced.  Furthermore, this method 

provides a successful level of control to construct copper nanowire features between gold 

microelectrodes, which allows the electrical properties of these nanowires to be 

examined.  The ability to selectively place nanowire features on a substrate surface with 

dimensions down to the tens of nanometers, as well as the capability to manipulate the 

nanowire size and uniformity, make this a promising method to construct metallic 

nanofeatures for complex nanodevices and circuitry. 

 The second portion of this research investigates techniques to develop high 

quality graphene films produced by chemical vapor deposition (CVD) on copper 

substrates.  Chemical vapor deposition shows great potential for developing graphene 

films of large area, but unfortunately CVD graphene oftentimes possesses low 

conductivity values due to an increased amount of misaligned grain boundaries and point 

defects, and oftentimes exhibits low optical transparency.  The focus of this research is to 

better understand the role the copper substrate plays in CVD graphene formation, and to 

find ways to directly enhance CVD graphene quality through changes in the copper 

substrate template.  The surface morphology, optical transmittance, and electrical 

properties of CVD graphene manufactured on two copper substrates with different 

surface structures were investigated.  It was found that differences in the copper substrate 

grain alignment and crystal lattice could significantly influence the deposition and quality 

of graphene on copper substrates.  Furthermore, the possibility of developing graphene 

films on nonmetallic substrates, as well as enhancing its properties through chemical 

doping, is demonstrated by nanopatterning and templating of graphene films. 
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Chapter 1:  Introduction 

1.1 Background 

 Nanotechnology has been a rapidly growing field for the past three decades, and 

consequently there has been a great demand for fabrication and manipulation of materials 

at the nanoscale.  Development of new production methods as well as techniques to 

controllably influence properties and structure on the nanoscale is paramount, 

considering most material properties are different at the nanoscale when compared to 

their larger counterparts.  The major contributors to differences in material properties at 

the nanoscale are the emerging importance of quantum confinement effects and greatly 

increased surface area to volume ratio.  For this purpose, a vast amount of research has 

been focused on topics such as the properties of nanostructured materials, the role of 

nanostructure on interface properties, chemistry at the interfaces of nanostructured 

materials, and patterning and templating for controllable nanoscale growth.  A reduction 

in the dimensions of materials towards the nanoscale limit can effect several properties of 

materials such as their melting point,
1
 electrical conductivity,

2
 thermoelectric property,

3
 

fluorescence,
2
 magnetic permeability,

4
 plasticity,

5
 and a host of other characteristics.  

Researchers may utilize these changes in behavior at the nanoscale to tune the properties 

of materials for improved photonic and electronic devices,
6
 cancer diagnosis and 

therapy,
7,8

 power generation and cooling technologies,
9
 cellular adhesion and 

manipulation,
10

 and even improved insulation for clothing and homes.
11,12

  In addition, 

the nanoscale structure at interfaces has a significant impact on the properties of materials 

specifically at their surface.   For instance, the hydrophobicity of materials can be 

enhanced with nanoscale roughening or patterning of a surface, which is promising in the 



 2 

industrial area of self-cleaning materials and antioxidant surfaces as well as in 

microfluidics to decrease drag.
13

 Changes in the surface nanostructure may considerably 

impact wettability, friction, and wear that can be used for practical benefits in the realm 

of industry such as improved lubrication or packaging material. They also can be applied 

in the biomedical field for cellular manipulation and reduced fouling of medical 

implants.
14,15

  A nanostructured surface topography is clearly capable of influencing 

interface properties, but can further influence the chemistry at the surface interface as 

well.  For example, gold with a nanoporous structure demonstrates a different chemical 

reactivity in comparison to bulk gold,
16

 and nanostructured surfaces have been widely 

used to enhance the chemical reactivity in catalysis applications.
17

 In order to 

manufacture well-defined nanostructured materials, or control bulk material growth by 

nanoscale manipulation, a high degree of control on size, shape, and orientation is 

necessary.  Nanopatterning and nanotemplating are promising means to achieve these 

requirements.   Nanopatterning with a scanning optical microscope has allowed for the 

creation of complex patterns within self-assembled monolayers,
18

 for instance, and boron 

nitride with structured orientation has been grown from nanoscale graphene templates.
19

 

From all these considerations, it is evident the properties of materials change when 

reduceddown to the nanoscale dimensions, and the capability to manufacture materials at 

this scale requires a heightened control of spatial dimensions.   

 Some of the most common areas which benefit immensely from nanotechnology 

advances are lab-on-a-chip (LOC) devices, sensing, environmental applications, energy, 

and nanoelectronics.  Lab-on-a-chip devices involve synthesis and analysis of chemicals 

on a miniaturized scale within a portable device.  There is a profound interest in 
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transitioning from the current implementation of microfluidics for LOC devices to 

smaller scale nanofluidics.
20

 In order to do so, fabrication of nanoscale components is 

imperative.  Recent work has shown manufacture of nanochannels
21

 and nanosensors
22

 

for incorporation into LOC devices, but the field of nanofluidics is still relatively new, 

and a great potential remains for nanostructure implementation into LOC devices to 

improve their routine processing, as well as adding new functionality into current 

microfluidic devices.
20

  The production of nanosensors for LOC incorporation is only one 

example of how nanotechnology can provide improved sensing.  It also possesses broad 

applications in bio-sensing,
23

 electrochemical sensing,
24

 single molecule sensing,
25

 and 

magnetic sensing.
26

 Many of these applications utilize the heightened surface area to 

volume ratios of nanostructured material for signal enhancement and sensitivity.  

Nanosensors for electrochemical detection exhibit enhanced signal to noise ratios,
27

 and 

limits of detection can reach down into the nanomolar and single molecule range with the 

occurrence of the plasmon resonance phenomenon at the surface on gold nanorods.
25,28

 

 The increased surface area to volume ratio on nanostructured material not only 

has positive benefits for sensing applications, but also for fundamental application in 

environmental chemistry.  As mentioned in the previous paragraph, nanomaterials can be 

implemented for sensing, which includes detection of harmful or toxic substances in the 

environmental sector.  Newly developed nanomaterials show potential for improved 

detection of such analytes as trace heavy metals (Hg(II), Cr(VI), Cd(II), As(III), As(V), 

Pb(II), etc.) in food and surface water,
29,30

 environmentally hazardous gases (NO2, H2S, 

CH4, SO2, CO2, etc.),
31

 and persistent organic pollutants (pentachlorophenol (PCP), 

trinitrotoluene (TNT), polychlorinated biphenyls (PCB), etc.).
30,32

 In addition to 
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detection, materials with nanoscale features may be used to clean the environment of 

these hazardous materials.  Nanostructured catalytic membranes, nanosorbents, 

nanocatalysts, and bioactive nanoparticles have all been implemented for environmental 

treatment, purification, and disinfection.
33

  All these substances described thus far have 

been limited to detection and purification of chemical species, but nanotechnology has 

implications in the biological realm of the environment as well, such as monitoring 

ecosystem health with biosensors.
34,35

 Due to these possible detrimental effects 

nanotechnology may play on the environment and living organisms, there has also been 

great focus on green chemistry nanotechnology for use in environmental and biological 

systems by creating more biocompatible nanomaterials and developing new synthesis 

pathways to reduce hazardous waste production.
36,37

 

 Closely related to the idea of sustainability for nanotechnology in environmental 

applications, nanomaterials have shown great promise in the area of renewable energy 

sources.  As of 2007, about 80% of global energy consumption was powered by chemical 

energy stored in fossil fuels, and according to the US Department of Energy, the energy 

demand is expected to increase by 71% from 2003 to 2030.
38

 Consequently, the demand 

for alternative energy sources and energy storage devices is paramount.  Nanoscale 

materials have demonstrated enhanced energy harvesting and storage in devices including 

solar cells, fuel cells, and batteries.   

 A solar cell is an electronic device that converts solar energy into electrical 

energy via the photovoltaic effect.  It utilizes the excitation of an electron in a 

semiconductor material by light photons, with subsequent creation and splitting of an 

electron-hole pair, to induce a current between two electrodes.  Significant photon 
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absorption at the correct bandgap energy for electron excitation is crucial for electron-

hole production.  If a photon of too little or too high of energy contacts the solar cell 

surface, the light will either pass through the material without being absorbed, or be lost 

as heat.  Furthermore, it is imperative for current production for the electron to travel 

toward the cathode and the hole toward the anode for current generation, but oftentimes, 

the electron-hole pair recombine before traveling to their respective electrode surfaces.  

Nanotechnology provides a promising means to overcome these limitations by increasing 

the effective optical path for absorption due to reflections of light on the nanoscale 

surface, creating shorter path lengths for electrons and holes to travel, and providing band 

gap tunability of the semiconductor by size of the nanostructured material.
39

  Gold 

nanomesh implemented into an organic solar cell has been shown to only reflect 4% of 

incident light, absorbing 96%, leading to an overall efficiency in converting light to 

energy at a value 52% higher than its conventional counterpart.
40

  Other morphologies 

that have been explored for use in solar cells have included titania nanorods and 

nanoflowers,
41

 ZnO nanoneedle arrays,
42

 silicon nanopore and nanowire arrays,
43

 and 

many more.
44,45

  

 Similar to solar cells, fuel cells and batteries convert chemical energy into 

electrical energy.  Fuel cells are highly dependent on chemical reduction and oxidation 

reactions at electrode surfaces, and thus catalysts are commonly incorporated into 

electrodes for increased reactivity.  Currently, platinum is the dominant material used for 

fuel cells due to its superior catalytic capabilities, and is commonly deposited as 

nanoparticles on nanostructured foundations such as carbon nanotubes
46

 and nanoporous 

gold
47

 to increase the available electrode surface area for oxidation and reduction, which 
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raises reaction rate.  However, other nanomaterials with high catalytic behavior are also 

being explored such as edge-halogenated graphene platelets
48

 and graphene coated with 

cobalt nanoparticles.
49

 Nanostructured materials provide benefits in batteries as well, 

such as increasing available power, decreasing charging time, and improving the shelf 

life.  Silicon-coated nanotubes have been used as anodes in lithium-ion batteries and 

exhibit energy capacities up to 10 times that of conventional ion batteries.
50

 Additional 

silicon structures, such as silicon nanowires
51

 and silicon nanoparticles,
52

 are employed in 

lithium ion batteries to prevent cracking which is normally experienced in Li
+
 batteries 

composed of bulk silicon. The silicon nanostructures can significantly increase battery 

lifetime and reduce charging time to within 10 minutes.  

 In the area of electronics, there is a drive to create devices of ever-decreasing 

dimensions,
53

 leading to the field of nanoelectronics. By creating electronic components 

of smaller size, it is possible to manufacture electronic devices with reduced weight and 

power consumption.  Advantages of nanoscale electronics are not only limited to size 

reduction, but also low cost, ease of production with the advent of self-assembly, and 

potentially improved intrinsic properties compared to microscale electronics devices 

resulting from improved system integration.
54,55,56

  These benefits may have implications 

in the scientific realm in addition to the world of industry, permitting the construction of 

devices with more computing power for intricate computational studies.  Coupled with 

nanoelectronics, nano-robotics is an emerging field involving fabrication of robotics 

components in the size range of 1- 100 nm.  Even though most of the work in this area 

remains theoretical for man-made devices, nature’s biological nanorobotic systems are 

the basis for current research involving drug delivery in medicinal chemistry.
57

 The trend 
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in rapid miniaturization of electronic components for nanoelectronic and nanorobotics 

applications is observed in Figure 1.1.  Clearly, there has been a constant push to increase 

transistor counts in microprocessors over the past three decades by the slope of the line in 

Figure 1.1-a.
58

 This has led to an additional drive to decrease transistor gate length size as 

apparent in Figure 1.1-b.
59

    

 Unfortunately, the fundamental limit on transistor size is rapidly approaching, due 

in part to the limitation of current fabrication methods, but primarily problems 

experienced by transistors at small gate lengths.
59,60

 Modern lithography techniques can 

produce silicon transistors with sizes near 30 nm in high volume production at fairly 

cheap processing costs,
59,61

 which keeps them as the predominant choice for current 

nanotechnology technologies.  Additionally, with recent advances in nanoscale 

fabrication, it is highly probable in the near future to manufacture silicon transistors 

smaller than 30 nm.  However, transistor gate lengths that are lower than tens of 

nanometers do experience significant current leakage due to tunneling, power 

consumption, and problems with heat dissipation.  Present day transistors can experience 

Figure 1.1.  (a)  Log scale plot of transistor count vs. date of introduction for commercially available 

microprocessors.  Graph adapted from Reference 34.  (b) Logic technology node and transistor gate 

length versus calendar year.  Note mainstream Si technology is nanotechnology.  (Published at the 

International Electron Devices Meeting.)  
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a 20-30% leakage of dissipated power.
59

 As a result, other nanoscale materials with 

superior mobilities and thermoconductivities that show great potential to replace silicon 

are being extensively explored, such as germanium
62

, silicon alloys,
63

 alloys of Group III-

V elements,
64

 and graphene nanoribbons or carbon nanotubes.
65

 

  Clearly, nanostructured materials provide wide-spread benefits in the areas of 

lab-on-a-chip devices, sensing, environmental sustainability and cleanup, energy, and 

nanoelectronics.  For effective implementation of nanostructures into these applications, 

however, it is imperative to develop new methods for precise control and manipulation 

over the size, shape, and orientation of materials at the nanoscale.  Two promising means 

to achieve these requirements are nanopatterning and templating.  These two techniques 

are the basis for the two major projects described in this thesis: the fabrication of surface-

attached metallic nanofeatures, and the controlled growth and manipulation of graphene 

films, as described below. 

1.2 Fabrication of Metallic Nanowire Features 

 Nanowires have been the basis for advancements in several technologies such as 

sensing,
66,67

 solar cells,
68

 batteries,
51

 and nanoelectronics
69

 as described above, but they 

also provides benefits in the areas of transparent electrodes,
70

 biomedical delivery,
71

 and 

biological cell manipulation.
72

 Most of these applications require the bulk production of 

nanowires in solution, or the formulation of large nanowire arrays from structured 

templates.  However, for progress in the area of nanoelectronics and nanorobotics, it is 

essential to be able to study a single nanocircuit or nanodevice systems for prototyping 

prior to large-scale production.  To accomplish this objective, it is necessary to 
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manufacture single metallic features on surfaces with highly controllable placement and 

design to act as interconnects between nanocapacitor and nanotransistor components, or 

as the nanoscale components themselves.  Therefore, a simple and flexible method to 

manufacture nanoscale metallic features of varying shape, size, and arrangement is 

desirable for investigations involving a variety of electronic nanodevices with a range of 

dimensions and configurations.  One such device among many that could be envisioned is 

a bionanodevice comprised of the molecular rotor, ATP synthase.  This device requires 

extensive control over metallic feature location and size, and which is the focus for future 

application of the research described here.  The following sections briefly describe this 

device, as well as methods for fabrication of metallic nanowire features on surfaces 

including photolithography, electron beam lithography, nano-imprint lithography, dip-

pen lithography, oxidative lithography, and nanopatterning and grafting.  These methods 

are additionally described in Chapter 4. 

1.2.1 ATP Synthase Nanobiodevice 

 ATP synthase is a membrane-bound protein that plays a key role in the energy 

metabolic pathway of most organisms by converting adenosine diphosphate (ADP) to 

adenosine triphosphate (ATP) through a phosphorylation reaction.  It consists of the 

membrane-embedded hydrophobic F0 portion, and a hydrophilic F1 portion that protrudes 

out of the membrane.  The F0 portion consists of 3 subunits labeled a, b, and c, and the 

catalytic F1 portion is composed of γ α subunits, γ ȕ subunits, and one Ȗ subunits.73
  The 

three α and three ȕ subunits are organized in a barrel-like hexamer arrangement of 

alternating α and ȕ sections, with the long rod-like Ȗ subunit located partially within the 

hexamer structure and partially protruding out of the hexamer.  In order to synthesize 
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ATP, the central Ȗ subunit rotates inducing conformational changes in active sites on the 

α and ȕ hexamer to drive ATP synthesis.  When the F1 portion is separated from the F0 

counterpart, it will rotate in the opposite direction to convert ATP to ADP and phosphate.  

The specific details regarding the stepwise rotation of the Ȗ subunit still remain unclear,
74

 

and therefore methods to adequately characterize its function are desired.  Furthermore, if 

the rotation of the F1-ATP synthase can be well-understood and characterized, it may 

potentially permit future manipulation of the rotation mechanism, and allow the ATP 

synthase to be used as a motor for hybrid biological-inorganic devices.  Its small diameter 

of 10 nm is favorable for such an application. 

Figure 1.2.  Schematic of nanobiodevice with immobilized F1 portion of ATP-synthase surrounded 

by metallic nanofeatures connected to nanoelectrodes. 
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 A schematic of a potential nanodevice incorporating the F1 portion of ATP-

synthase within a metallic electrode array is depicted in Figure 1.2.  In the center of the 

nanodevice, the F1 portion of ATP-synthase would be selectively placed in an upright 

orientation with the Ȗ subunit protruding up from the surface interface.  Attached to the 

apex of the protruding subunit would be an armature, parallel to the surface, that would 

extend out from the Ȗ subunit, over the α and ȕ hexamer, and into the regions surrounding 

the surface-bound protein. The long armature would be further terminated with a 

magnetic bead.  In the immediate vicinity around the central ATP-synthase component, 

there would be a fabricated array of metallic nanofeatures in a circular configuration, 

which are attached to larger microelectrodes.  In the presence of ATP, the Ȗ subunit of the 

protein would rotate to chemically produce ADP, thereby rotating the connected armature 

around the central immobilized ATP-synthase, and the magnetic bead over the metallic 

nanofeatures.  As the magnetic bead passes over the individual metallic nanofeatures, a 

current is induced within the metal nanofeatures which can be measured via the 

nanoelectrode components.   

 For this device to be operational, the metallic nanofeatures need to be small 

enough to fit around the immobilized F1 portion of ATP-synthase, as well as allow the 

proper rotation of the armature and magnetic without any hindrance, and make it feasible 

for the magnetic bead to induce a detectable current in the metallic nanofeatures.  In view 

of the fact that the size of the F1 portion of ATP-synthase is approximately 10 nm, the 

metallic nanofeatures could only extend 10 nm or less above the surface, and be in the 

low 10s of nanometers in width.  The objective of this research was to be able to fabricate 

metallic nanowire features that allow high selectivity of surface location, as well as 



 12 

control on nanowire dimensions at the tens of nanometers scale.  This type of fabrication 

control and flexibility would not only be beneficial for the construction of the  ATP-

synthase nanobiodevice as described above, but also for a large variety of other 

nanoelectronic devices. 

1.2.2 Nanofabrication Methods for Surface-Attached Metallic Nanowire Features 

 Current methods for nanowire production on substrate surfaces include 

photolithography,
75

 electron beam lithography,
76

 nano-imprint lithography,
77

 dip-pen 

lithography,
78

 oxidative lithography,
79

 and nanopatterning
80

 and grafting.
81

 A majority of 

these techniques are composed of an initial nanopatterning step of a resist-coated surface 

with a focused beam, nanotemplate, or probe tip, followed by selective metal deposition 

in the patterned area.  Therefore, for the fabrication of metallic nanowire features using 

these methods, it is imperative they possess the capability to create patterns down to and 

lower than the tens of nanometers scale.  Additionally, these nanoscale patterns need to 

be placed in highly selective locations on sample surfaces. 

Photolithography has been utilized for decades as a means to manufacture bulk 

microscale integrated circuits on semiconductor surfaces via patterning with a focused 

beam of light.  Most equipment utilized in photolithography is restricted to patterns on 

the microscale or hundreds of nanometers due to the diffraction limit of light.  However, 

modern development of sophisticated instrumentation, such as eximer lasers and extreme 

ultraviolet lithography, have led to fabrication of patterned features with widths down to 

the tens of nanometers.
61,82

  Unfortunately, this instrumentation can be very costly and 

complex.  For example, some systems with an eximer laser can have an objective with up 
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to 30 purified quartz lenses.
83

 Furthermore, more significant advances are needed to in 

order to approach pattern widths of 10 nm or smaller. 

 Electron beam lithography is a technique similar to photolithography, but uses a 

focused beam of electrons to pattern resist-coated materials.  Beam sizes have been 

shown to be able to reach down into single-nanometer sizes, and this technique has been 

capable of producing patterned lines with widths down to 5-7 nm.
84

 However, the 

exposure of the resist to the electron beam only destabilizes the resist in that region, and a 

necessary etch step is required to remove the resist from within the patterned area.  

Previous studies have demonstrated that with lines widths on the order of 5-7 nm 

produced by electron beam lithography in PMMA resists, it may be difficult to dissolve 

the destabilized resist.
84

 Furthermore, if the electron beam power is not sufficient enough 

once focused to a few nanometers in size, it will inadequately destabilize the resist 

coating and be unsuccessful at patterning.  Lastly, this method takes place with a vacuum 

chamber, which may adversely effect sensitive samples. 

 Nanoimprint lithography utilizes a templated mold or stamp to pattern surfaces on 

a bulk scale.  The stamp is applied to the target surface commonly under increased 

pressure and temperature, and then removed.  Lines with 10 nm widths have been 

produced within PMMA resists using nanoimprint lithography.
85

 Even though line widths 

of a 10 nm width can be fabricated, there are a few drawbacks to this method for the 

fabrication of single metallic nanowire fabrication on surfaces.  First, placement of the 

stamp on the substrate surface, and thus the location of patterned regions, is far less 

controllable as compared to the other fabrication techniques described here.  Also, this 

technique is used to manufacture large arrays of patterns, which can make this method 
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quite costly for making master template stamps with complex patterns, and limits its 

flexibility to create a variety of patterns.  It is quite inefficient for construction of a 

complex singular system. 

 Dip-pen lithography is a technique used to directly write molecules onto the 

surface of a target substrate via a coated atomic force microscope (AFM) tip.  The AFM 

tip is coated with molecules by either dipping the tip into a solution containing the 

species or its neat liquid.  Upon tip contact onto the substrate surface, a meniscus is 

formed due to ambient humidity, and the molecules on the coated tip can travel to the 

substrate surface.  The size features that can be obtained with this technique are on the 

order of tens of nanometers.
86

 It is not possible to reach smaller dimensions due to the 

fact the size of the features is limited by the size of the meniscus, which can be very 

sensitive to atmospheric conditions and difficult to control.  Control of specific nanowire 

placement on the surface may be difficult as well, considering one cannot image the 

surface before depositing the molecules onto the surface. 

 Oxidative lithography is performed by applying a negative potential between an 

AFM probe tip and sample surface.  In the presence of the aqueous environment due to 

the meniscus formed between the sample and probe tip, the surface becomes oxidized.  

Oxidized regions can be direct templates for metallic deposition.  Researchers have used 

this technique to form oxidized patterns in monolayers on silicon oxide, and subsequently 

deposit silver on those features.
87

 The patterned line dimensions are also dependent on 

the size of the meniscus formed between the tip and sample surfaces, and has only 

reached line widths at the tens of nanometers scale.
88
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 Nanopatterning and nanografting use an AFM tip with increased force on the 

surface to dig out selective areas of a resist-coated surface.  In nanopatterning, an AFM 

tip with a high value of applied force may penetrate through the top layer or a resist 

coating down into the lower levels of the sample substrate.  As the tip scans, it removes 

the upper regions of the surface, leaving the underlying regions of the substrate exposed.  

The resulting pattern is thus dependent on the regions where the tip has scanned.  If the 

patterning is performed in the presence of another solution with molecules that can bind 

to the uncovered substrate regions, this process is known as nanografting. These two 

techniques are promising for creation of patterned lines down into the single nanometer 

range considering dimensions are dependent on the AFM tip size, and modern sharpened 

tips with radius of curvature values of 2-5 nm are commercially available.  Even though 

the beam size of electron beam lithography rivals these sizes, nanopatterning and 

nanografting provide the advantage of direct removal of a resist coating as opposed to 

resist destabilization with electron beam lithography, and do not require additional 

processing steps for nanopattern fabrication.  Nanofeatures using these methods have 

been able to produce widths as low as ten nanometers,
81

 and using sharpened tips there is 

great potential in the near future to further reduce this size.  

Nanopatterning and nanografting show a great potential to pattern resist-coated 

surfaces with single nanometer dimensions and highly selectivity of pattern location and 

configuration.  For this reason, this method was coupled with electroless metal deposition 

to fabricate copper nanowire features.  It is the focus of this research project to utilize 

these two techniques to develop an easy and versatile method to construct surface-

attached metallic nanofeatures with controllable size and surface location.   
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1.3 Controlled Growth and Manipulation of Graphene Films 

 In the previous section, the role of controllable nano-patterning for formation of 

single metallic nanofeatures was discussed. In this section, the role of templating for 

controllable growth and manipulation of graphene films is described.  

 Graphene is a one-atom thick layer of sp
2
 carbon atoms arranged in a hexagonal 

lattice, and due to its characteristic structure, it possesses unique properties such as great 

mechanical robustness,
89

 high electron mobility,
90,91,92

 transparency,
93,94,95

 chemical 

stability,
95,96

 and flexibility to conform to various surface morphologies.
94,97

  

Consequently, graphene has had widespread applications into the previously described 

fields of sensors, 
98,94,99

 solar cells, 
100,101

 and energy storage devices,
102

 as well as 

memory devices,
103,104

 transparent electrodes, 
105,106,107

 and transistors. 
108

  Graphene can 

be developed into several different structures such as sheets, nanoribbons, carbon 

nanotubes, and fullerenes depending upon the application demand.  Graphene 

nanoribbons and carbon nanotubes, with their small sizes, low resistance, thermal 

conductivity, and highly tunable band gaps, are prime candidates for nanoelectronics 

such as tiny transistors
109

 and nanoelectronic interconnects.
110

  Fullerenes with their small 

cage-like structure and functionalization potential have been investigated for use in gene 

and drug delivery in medicinal chemistry,
111

 and additionally hydrogen storage for fuel 

cell applications.
112

 Clearly, there has been significant research regarding fabrication and 

manipulation of micro and nanoscale graphene-like structures.  However, the transition to 

large-scale graphene sheets while retaining its highly favorable properties has proven 

difficult.  The minimum calculated sheet resistance for single-layer graphene is 

approximately γ1 Ω/square,91
 however experimentally observed sheet resistance values 
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fall within the range of 1β5 to 10,000 Ω/square,105,113
 with most values falling near the 

larger value in this range.  Values at the lower end of this range oftentimes result from 

multi-layered graphene, graphene of small area, or retain these values at cost of lowered 

optical transmittance.  Many applications, such as transparent electrodes for solar cells, 

require optical transparency as well as high conductivity. 

 Chemical vapor deposition (CVD) is a promising method to produce large-area 

graphene with high conductivity and optical transparency.  Researchers have been able to 

produce graphene with sheet resistances in the hundreds of Ω/square utilizing chemical 

vapor deposition, 
105,113

 but sheets with this high value are limited to transmittance values 

of around 80%,
105

 which is much lower in comparison to values of modern ITO 

transparent electrodes.  Therefore, there has been a push to create not only highly 

conductive large-area graphene, but produce this graphene with transmittance values that 

surpass ITO.  Some ways accomplish this objective is to gain a better understanding of 

the CVD graphene deposition mechanism on copper, leading to potential control of 

graphene formation and its quality on these metallic substrates.  The conductivity of 

graphene is significantly dependent on the presence of graphene boundaries and point 

defects within its film.  Thus, to create films with higher quality, it is important to be able 

to control the number and alignment of grain boundaries, as well as point defect density.   

 Researchers have shown that the underlying copper substrate can make a 

significant difference in graphene quality, with Cu (111) lattice faces producing graphene 

of higher quality as opposed to CVD graphene on Cu (100) and (110) faces. 
114,115

  

Furthermore, graphene on expensive single-crystal copper surfaces has shown 

significantly better conductivity as opposed to polycrystalline surfaces, likely due to 
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increased grain boundaries in the polycrystalline copper.  It is for this purpose there is a 

push to be able to manipulate copper substrate surfaces, which act as templates for 

graphene growth, on a commercially cheap scale to align grain boundaries, increase grain 

size, and promote the formation of mostly single-crystalline surface.  An additional 

method to increase graphene conductivity, which has been the focus of much research, is 

chemical doping. 
116,113

  Researchers have shown increases in conductivity in several 

orders of magnitude by chemical doping.  Graphene is easily doped at edges or defects, 

but terrace sites are quite inert and do not easily react with dopants.  Therefore, an 

increase in edge sites with hole array fabrications would allow control of dopant density 

and distribution within the graphene, and the ability to directly influence conductivity. 
 

 Thus, this research is focused on the role the copper substrate plays on CVD 

graphene deposition, as well as the possibility to control and manipulate the features of 

the copper substrate that influence CVD graphene formation.  It is the hope that through 

controlled changes in the copper substrate template, it is possible to develop large-area 

CVD graphene with high conductivity and optical transmittance values.  Furthermore, it 

is the focus to enhance the doping of the graphene films to further increase the 

conductivity behavior of graphene.  It is believed through patterning of the graphene, it is 

likely chemical doping can be enhanced without significantly damaging the graphene 

layer, and potentially raising optical transparency. 

1.4 Overview 

 As discussed in the previous sections of this chapter, nanotechnology is pervasive 

in a wide variety of applications such as lab-on-a-chip devices, sensing, environmental 

sustainability and clean up, energy harvesting and storage, and nanoelectronics.  
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However, for successful implementation of nanostructured materials for these 

applications, recise control over size and structure are imperative.  Nanopatterning and 

templating are promising means to achieve these requirements.  Nanopatterning utilizing 

lithography methods can provide highly selective placement and size control over 

nanopatterned lines, which may act as templates for electroless copper deposition.  

Templating of copper substrates provides the potential to controllably develop large-area 

CVD graphene of high quality, as well as enhanced chemical doping by patterning 

graphene films. 

 Chapter 2 is an overview of general methods and basic instrumentation used for 

the research presented in this work.  Self-assembled monolayers (SAMs) provide a facile 

means to coat bulk substrates with a thin layer and change the chemistry at surfaces.  

Ellipsometry can be used to characterize the quality of these SAMs by measuring the 

thickness values, and can detect changes in thickness on the angstrom level.  Goniometry 

is also an effective characterization tool to determine the hydrophilicity or 

hydrophobicity of substrates coated with SAMs, and can provide information of how well 

the SAM protects the underlying substrate through contact angle measurements.  Atomic 

force microscopy is a versatile technique to not only characterize the surface morphology 

of SAMs, but also successfully create patterns within the monolayer resists exposing 

layers of the underlying substrate.  The combination of all these techniques allows for in-

depth analysis of SAM on silicon substrates, and can be used to effectively fabricate 

metallic nanofeatures on silicon substrates. 

 Chapter 3 describes electroless copper deposition experiments performed on bulk 

silicon to optimize electroless metal plating conditions.  The optimization was done in 
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order to produce uniform and well-adhered copper films on silicon substrate surfaces.  

Copper films with different characteristics were observed when the concentration of 

solution components were varied, demonstrating the significant role concentration 

variation plays on electroless copper deposition behavior.  Furthermore, preliminary 

studies were performed to investigate the role of additives in the electroless deposition 

process.   

 Chapter 4 includes detailed investigations of nanopatterning with subsequent 

electroless copper deposition within SAMs to fabricate copper nanowire features.  

Nanopatterning within three different types of monolayers were examined, and the 

capability of these monolayers to act as adequate resists to metal deposition probed.  In 

addition, the behavior of electroless copper deposition upon changes in solution 

conditions, patterned lines dimensions, and silicon substrate doping was studied.  The 

dependence of the fabricated copper nanowire feature on these parameters suggests a 

capability to manipulate nanowire dimensions and deposition uniformity. The 

conclusions of these experiment provided information for the successful construction of 

copper nanowire features connecting two gold microelectrodes, which permitted 

characterization of the electrical properties of these copper nanowire features.   

 Chapter 5 details the studies done on the chemical vapor deposition (CVD) of 

graphene on copper substrates.  Graphene was grown via the CVD method on copper 

substrates with different structural characteristics, and the properties of the resulting 

graphene were probed, and demonstrated significant differences in quality.  A time-

sequenced analysis was done for CVD graphene deposition on these two copper 

substrates, and their deposition mechanisms illustrate behavior dependent upon features 
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of the underlying copper substrate.  In order to manufacture graphene on relatively 

insulating substrates and controllably template graphene growth, graphene nanohole array 

templates were fabricated, and the possibility of inducing graphene growth at the edge of 

the templates examined. 

 Chapter 6 describes other graphene-based experiments again incorporating the 

manufacture of graphene nanohole arrays, but this time investigating their potential to 

enhance chemical doping of graphene films.   

 Chapter 7 summarizes the conclusions from the previous research chapters, and 

details future directions for the project focused on fabrication of copper nanowire 

features, as well as the research involving manipulation and controlled growth of CVD 

graphene.  It is the focus of this research to continue to refine fabrication methods for 

both of these projects, specifically create nanowires with smaller dimensions and more 

complex geometries as well as develop better copper substrate templates for production 

of high quality CVD graphene.  Furthermore, to continue to explore how these 

fabrication methods can be applied to other systems, such as the manufacture of nanowire 

features consisting of other metals besides copper, or constructing high quality CVD 

graphene on more complex patterned templates.  In the end, it is the hope to utilize the 

controllability and flexibility of copper nanowire placement and configuration to create 

these complex patterned templates, which may be used to deposit graphene on surfaces in 

highly intricate arrangements. 
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Chapter 2:  General Methods and Instrumentation 

2.1  Summary 

 This chapter provides a general description of methods and instrumentation utilized for 

the research discussed in the subsequent chapters of this dissertation.  Self-assembled 

monolayers (SAMs) are a means to easily coat a surface with a molecule-thick layer, and allow 

manipulation of surface chemistry in addition to providing a protective coating against corrosion 

or other harsh processing conditions, as well as a resist for lithographic patterning.
1,2

  In this 

research, SAMs on silicon and silicon oxide surfaces are implemented as a resist against metal 

deposition, and are formed via a simple wet chemistry method.  SAMs of several different types 

are made and characterized to determine the optimal SAM coatings to use in the implemented 

scanning probe lithographic process.  These characterization methods include goniometry and 

ellipsometry to characterize the contact angle and thickness of a SAM coating, which are good 

indicators of the quality and durability.  Through goniometry one may obtain information about 

the type of chemical functionalities present on a surface.  It involves measurement of the contact 

angle between a water droplet and the surface on which it resides, and can demonstrate the 

quality of a SAM by how well the value matches the predicted large contact angle values for a 

hydrophobic surface or the anticipated low contact angles for a hydrophilic surface.
3
  

Ellipsometry is a technique to determine thickness measurements of a SAM, and can provide 

information about the packing organization of the molecules on the surface.  It measures the 

change in light polarization as a laser light is reflected off the surface, and the thickness of the 

SAM may be calculated based on this information coupled with the optical constants of the 

organic coating.  Atomic force microscopy (AFM) is an effective tool to characterize surface 

morphology as well as manipulate it through the use of a scanning probe tip.  Here the AFM 
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instrument is implemented to characterize the surface of SAMS, and to further pattern the 

surface for nanowire formation.  This chapter outlines basic theory and method descriptions for 

the implementation of SAMs, goniometry, ellipsometry, and atomic force microscopy in this 

work. 

2.2 Self-Assembled Monolayers 

 Self-assembled monolayers (SAMs) are monomolecular thin-film layers which 

spontaneously adhere and organize onto a substrate surface upon solution exposure. They are a 

simple means to control surface functionality on a wide range of surfaces, are highly ordered, 

and can provide a robust surface coating to prevent chemical wear or functionalization of the 

underlying material.  All these features have led to their pervasive use in several research fields 

such as biosensing,
4,5,6

 tribology,
7,8

 electrochemistry,
9,10

 catalysis,
11

 microfabrication,
12,13

 

electronics,
14,15

 and a host of other fields.  A biosensor constructed by Frederix et al. consisting 

of gold coated with mixed SAMs of carboxylic or poly (ethylene glycol) groups demonstrated 

better SPR sensitivity, stability, and selectivity in comparison to commercial available affinity 

biosensors.
6
  Kim et al. studied the friction behavior of gold surfaces coated with alkanethiols 

and silicon with silane monolayers to probe the capability of these monolayers to perform as 

industrial lubricants.
8
  Fan et al. investigated charge transport through monolayers of thiolates 

and acrylates on gold and found differences in electron conductivity through SAMs containing 

different functionalities, lying the foundation for understanding charge transport for molecular 

wires.
16

  In this research, the robust ability of SAMs to act as surface resists against harsh 

chemical exposure is employed. 
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Self-assembled monolayers are very easy to form via a wet chemical method, as demonstrated in 

Figure 2.1.  A substrate is placed in a solution containing a millimolar concentration of a 

molecule with a functional head group that either has an affinity for or may react with the 

substrate surface.  As head groups from several molecules interact with the substrate and surface 

coverage increases, the tail groups of the surface-attached molecules begin to interact by Van der 

Waals forces to help stabilize the SAM.  Molecules located far apart from one another tilt from 

the surface normal to maximize these interactions,
17

 as illustrated in the lower right hand box in 

Figure 2.1.  Most robust SAM tail groups consist of long alkane chains, which have been shown 

to create highly stable monolayers with chain lengths greater than about 15 carbon chains,
18,19

 

but aromatic rings
20,21

 and other functionalities to promote hydrogen bonding and cross-linking 

have also been studied.
22,23,24

  Monolayers consisting of alkane chain lengths shorter than 

 

  

Substrate 

Solution 

Head 
Group 

Tail Group 

Figure 2.1.  Schematic of self-assembled monolayer formation 
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approximately 15 carbons exhibit characteristics of a liquid-

like structure on the surface indicative by widely spaced 

molecules, large molecular tilt angles, and low contact 

angles.
18

  However, SAMs with alkane chains with a carbon 

number greater than 15 display densely packed organization 

with low tilt angle, and high contact angle.  In order to 

maximize substrate coverage and the stabilizing interactions 

of the tail groups, most well-ordered monolayers are formed 

within a 24 hour period.
25,26

  A majority of molecular 

adsorption onto the target substrate occurs within the initial 

seconds of solution exposure, and organized structuring may 

occur within a large range from minutes to hours depending 

upon the type of SAM, but most monolayers illustrate 

permanent structures by the end of 24 hours.
25,26

 

 The two types of monolayers utilized in the following 

chapters will be an octadecyl moiety attached to silicon, as 

well as reactions of octadecyldimethylchlorosilane (ODMS) 

and octadecyltrichlorosilane (OTS) to attach these silanes onto 

silicon oxide, as shown in Figure 2.2.  The alkyl system on 

silicon results from the thermal
27,28

 or photoactivated
28

 

reaction of an alkene molecule with a hydrogen-terminated 

silicon surface.  To form the ODMS and OTS SAMs, the chlorosilanes initially undergo a 

SiO2
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Figure 2.2.  Schematic of 

octadecene on silicon (top), 

octadecyldimethylchlorosilane 

(ODMS) on silicon oxide 

(middle), and 

octadecyltrichlorosilane (OTS) on 

silicon oxide (bottom). 

Octadecyldimethylchlorosilane 

(OTS) 
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hydrolysis reaction with the trace amounts of water in the nonpolar solvent and adsorbed water at 

the oxide surface to give –OH functionalites, and then the silanes become attached to the oxide 

surface by a subsequent dehyrolysis reaction with the oxide’s –OH surface groups.
29

  Alkyl 

functionalities on silicon and silanes on silicon dioxide have been studied extensively for their 

robust qualities to act as a resist for patterning methods.
1,30,31,32

  All three molecules are of 

similar length, approximately 2.4 nm,
33

 with 18 carbon chains which are long enough to promote 

good packing via Van der Wahls interactions.  The major differences between the three SAMs 

include a strong covalent bond directly onto the silicon surface for the octadecyl SAM, and the 

silanes are atop the silicon oxide, which is able to provide a more insulating surface for the 

specific application of this research to form metallic nanowires.  Furthermore, the ODMS 

monolayer contains methyl groups adjacent to its silane functional groups, which may negatively 

influence its molecular packing capability due to steric hindrance between molecules.  The 

octadecyl SAM on silicon and the OTS SAM do not contain such side groups.  Lastly, the OTS 

is able to polymerize at the SAM-oxide interface to create a connected network between the 

surface-attached molecules.  All of these characteristics can lead to differences in molecular 

packing, and their capability to act as chemical resists.  Further details of each monolayer system 

are given in later chapters. 

2.3 Goniometry 

 Goniometry is a method that may be employed to measure the contact angle between a 

liquid droplet and the solid surface, and measures surface free energies, which can also be related 

to the hydrophobicity or hydrophilicity of the surface.
3
  Here, it is a method implemented to 

characterize SAMs seeing as the surface functionality of the sample has a strong influence on 

whether the surface chemistry is more hydrophobic or hydrophilic, leading to differences in 
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contact angle values with a water droplet.  As one changes 

the exposed terminal group at the substrate surface, the 

contact angle changes in value due to differences in the 

relative energies of the solid-liquid, solid-air, and liquid-air 

interfaces.
34

 This relationship of the contact angle, θ, and 

the interfacial energies can be expressed in Young’s 

Equation as follows: 

                  

where γSG, γSL, and γLG  are the solid-air interfacial energy, solid-liquid interfacial energy, and 

liquid-air interfacial energy.
34

  For instance, a methyl-terminated SAM is hydrophobic and 

results in a large contact angle as seen in the top image of Figure 2.3.  The tension for the solid-

air interface is comparably lower than the tension for the solid-liquid interface, the droplet beads 

up, resulting in a higher contact angle value.  Conversely, a surface composed of hydroxyl 

groups will express a significantly lower contact angle, as illustrated in the bottom image in 

Figure 2.3.  The hydrophilic surface possesses a greater solid-air interfacial tension in relation to 

the solid-liquid tension, and the water droplet spreads out across the surface.  In this research, 

only hydrophobic methyl-terminated SAMs with long alkane chains on silicon substrates are 

implemented.  By comparison to previous literature values of well-characterized robust methyl-

terminated SAMs of the same composition we can determine the quality of SAMs in this work.  

Deviation from literature values can result from increased surface roughness,
35

  conformational 

defects in packing,
36

 or influence from the underlying hydrophilic substrate penetrating through 

the monolayer.
3,36

  Even though it may not be possible to specifically pinpoint the reason why 

monolayers in this work may deviate significantly from literature values, a majority of the causes  

Ɵ 

H2O 

Ɵ H2O 

Figure 2.3.  Illustration of a 

contact angle measurement (Ɵ) 

with a water droplet on a 

hydrophobic surface (top) and 

hydrophilic surface (bottom). 
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for deviation are undesirable for a densely packed, well-ordered SAM, and would most likely 

lead to a monolayer of poorer quality to act as a chemical resist.   

Contact angles measurements were obtained for SiO2, H-terminated silicon, octadecyl 

SAMs, ODMS SAMs, and OTS SAMs, and representative values are shown in Table 2.4.  It is 

evident that modifications in surface functionality, and its relative hydrophobicity or 

hydrophilicity, can be tracked through contact angle measurements as we see the contact angle 

change from a few degrees for the very hydrophilic SiO2, to a greater value for the less 

hydrophilic H-terminated silicon, to comparatively large values for the methyl-terminated SAMs 

with long alkane chains.  Thus, as we form the SAM atop their designated substrates, we can use 

goniometry to verify the presence of the hydrophobic methyl-terminated SAMs. Furthermore, it 

is possible to measure differences in contact angle measurements between the three monolayers 

themselves, which will be discussed in more detail in later chapters.   

Contact angles are presented in this text as average values calculated from 6 

measurements obtained across each sample surface, unless otherwise indicated.  The goniometer 

used was a Ramé-Hart, Inc. NRL C.A. Goniometer. 

 

Monolayer Contact Angle (°) 
SiO2 4 ± 2 

H-terminated Si 68 ± 1 

Octadecene 100. ± 2 

ODMS 73 ± 1 

OTS 109 ± 2 

Table 2.4.  Representative contact angle values for octadecene, ODMS, and OTS 

monolayers on silicon (100). 
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2.4 Ellipsometry 

 Ellipsometry is an optical technique which can be used to investigate many different 

properties of thin films, such as dielectric constants,
37

,
38

 thickness values,
37

,
38

 surface 

roughness,
39

 crystalline structure,
40

,
41

 electrical conductivity,
42

,
43

 and other material 

characteristics.  Giri et al. investigated the crystalline to amorphous phase transition of silicon 

due to argon ion implantation utilizing ellipsometric techniques.
41

  Tiwald et al. coupled infrared 

ellipsometry and anodic oxidation sectioning to obtain resistivity measurements and develop 

doped silicon carrier concentration profiles.
43

  For this research purpose, ellipsometry is used to 

characterize SAMs on silicon substrates and obtain thickness values.  These values provide 

information about the monolayer molecular packing and organization at the monolayer-substrate 

interface, and reflect the monolayer’s potential ability to act as a resist for the formation of 

electroless-plated copper nanowires on the substrate surface.   

 A schematic of a single-wave ellipsometer is shown in Figure 2.5, and represents the 

setup found within the Rudolph Auto EL III ellipsometer used in this research.  A light source is  

 
Figure 2.5.  Schematic of ellipsometer instrument.   
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focused toward a sample surface at a 70° incident angle, Ɵ.  Before the light reaches the 

 sample surface, it first passes through a rotating polarizer to change the unpolarized laser light to 

linearly polarized light, and continues on through a quarter-wave plate compensator to further 

adjust the light to an elliptical polarization.  When the elliptically polarized light hits the sample 

surface it travels through the thin film on the substrate surface until it reaches the film-substrate 

interface, where it is then reflected and passes through the film a second time.  If the light travels 

through a dielectric thin film, the amplitude and phase will change in the s-polarized and p-

polarized light components of the elliptically polarized light.  The second polarizer rotates in 

conjunction with the first rotating polarizer to minimize the reflected light intensity at the 

detector.  The parameters Δ and Ψ are then calculated from the angles of the two rotating 

polarizers relative to the quarter-wave plate.  The parameter Δ is the change in phase difference 

between the s-polarized and p-polarized light before sample interaction relative to after 

reflection.  The tangent of parameter Ψ is the ratio of the normalized amplitude intensities of the 

p-polarized and s-polarized light components.  These parameters paired with pre-determined 

index of refraction values can be used to calculate the thickness of a thin film on a substrate 

down to the sub-nanometer level utilizing the following equation: 

              

The variables Rp and Rs represent the normalized amplitudes of the p-polarized and s-polarized 

light components and i is the imaginary number.
44

 

 Ellipsometry was used to determine thickness values of octadecyl, ODMS, and OTS 

SAMs on silicon substrates, and example values for these monolayers are shown in Table 2.6.   
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All three of these molecules are 18 carbon chains with an approximate length of 2.4nm.
33

  If all 

three molecules had similar packing and orientation, it would be expected their thickness values 

would mirror one another.  The differences in their thickness values likely result from their 

different packing behavior, which will be examined in more detail in later chapters.  All 

thickness measurements presented are calculated averages obtained from 6 randomly-placed 

measurements across each sample surface.  

2.5 Atomic Force Microscopy 

2.5.1  General Overview 

 Atomic Force Microscopy (AFM) is a powerful scanning probe method to investigate 

many surface properties on a micron to sub-nanometer length scale.  These surface properties 

may include morphology, elasticity, magnetic domains, conductivity, relative surface energy 

values, electrostatic behavior, and a host of other characteristics.  Due to its adaptability to 

measure a wide variety of surface qualities, research utilizing atomic force microscopy spans a 

large range of applications including nanofabrication,
45,46

 molecular electronics,
47,48

 cellular 

motion and surface interactions,
49,50

 tribology,
51

 polymer science,
52

 DNA studies and 

manipulation,
53,54

 electrochemical mapping,
55

 and several other research areas.  Electrical 

measurements of a single dithiolated molecule inserted into an insulating SAM were conducted 

by Rawlett et al. to understand its electron transport properties.
48

  Muller et al. was able to image 

Monolayer Thickness (Å) 
Octadecene 23.9 ± 0.9 

ODMS 11.3 ± 0.5 

OTS 28.2 ± 0.6 

Table 2.6.  Representative thickness values of octadecene, ODMS, and octadecene monolayers.    
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real time motions of purple membrane down to a resolution of 0.7 nm.
49

  Macpherson et al. 

simultaneously mapped surface morphology and electrochemical properties of polycarbonate 

ultrafiltration membranes with a platinum probe tip coated with electrophoretically deposited 

paint.
55

  In this work, the AFM microscope is employed to create topographical maps of surfaces 

on the microscale, as well as pattern SAMs at the nanoscale.   

 A basic schematic of an atomic 

force microscope is shown in Figure 2.7.  

A diode laser is focused near the edge of 

a cantilever positioned above a sample 

surface.  At the end of the cantilever is a 

small tip, with a radius of curvature in 

the tens of nanometers, which will scan 

the surface in the x and y axis 

implementing motion via a piezoelectric 

unit.  The piezoelectric unit may be 

attached to the tip to scan across a stationary sample, or be coupled to a sample stage to move in 

relation to a stationary tip, which is found in the Digital Instruments Nanoscope IIIa Multimode 

and Nanoscope E with Lateral Force Mode used for this research.  As the tip encounters changes 

in height, it becomes deflected in the z axis.  All these changes in the x, y, and z axis are detected 

by a photodetector as the laser light is deflected to different regions on its surface.  The laser 

light creates voltage readings as it hits various locations on the photodetector, and the differences 

in voltage between the four partitioned quadrants of the photodetector indicate the position of the 

deflected laser light.  These voltage readings can be analyzed by a computer interface to 

Figure 2.7.  Basic schematic of AFM instrument and 

operation. 
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determine changes in deflection as the tip scans the surface, and thereby create maps of surface 

features.  Resolution of AFM images can get down to the sub-nanometer scale due to the 

controlled motion of the piezoelectric scanner.  An AFM microscope may be operated is a 

variety of modes to map different surface properties, and the two modes used here are contact 

mode and tapping mode. 

2.5.2  Contact Mode 

 Contact Mode AFM, as the name suggests, involves direct contact of the tip with the 

sample surface.  The tip is lowered onto a sample surface until contact is made with a set applied 

force, and then the tip scans the surface of the sample in the x and y direction.  When the tip 

comes across a surface feature with a difference in height, the tip becomes deflected in the z 

direction, and causes a change in position of the deflected laser light on the photodetector 

Figure 2.8.  AFM image of flat OTS monolayer with cross section analysis (left).  AFM image of OTS 

monolayer with surface debri and etched line, with cross section analysis (right). 
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surface.  In order to keep a constant force on the surface, the piezoelectric scanner moves the 

sample stage in the z direction during the course of the scan.  These movements in conjunction 

with x and y motions during scanning allow the computer interface to produce a topographical 

map of a microscale area on the sample surface.   

An example of a topographical AFM image is shown in Figure 2.8.  The left image is a 

flat OTS monolayer, and shows no change in color across the 5 micron square dimension.  This 

indicates a flat surface, which can be reaffirmed by the relatively flat line in the cross section 

analysis with a 20 nm height scale.  However, when there are surface features with variations in 

height, high features show up as bright colors in the AFM image, and low features can be 

attributed to dark colors.  This is observed in the right image of Figure 2.8, which has similar 

lateral dimensions and height scale, and illustrates an OTS monolayer with surface debris with a 

large height and an AFM-patterned line with a large depth.  The AFM patterned line was 

developed by scanning the substrate surface with a large force of approximately 3000 nN, which 

consequently etches away part of the substrate surface.  These nanoscale variations in height 

across the few-micron size image can be noted in the cross section analysis for this OTS 

monolayer as well.  Thus, AFM can be effectively utilized to note surface morphology on the 

nanoscale, and in addition be used as a tool for patterning.  It allows for the production of 

selectively placed patterns on the surface with nanoscale dimensions for nanowire formation, as 

well as tracking of topography changes before and after electroless metal deposition. 

 2.5.3  Tapping Mode 

 Tapping mode is implemented here to create topographical maps identical to ones 

produced by contact mode, but is used for imaging delicate samples.  If the surface is delicate, 
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such as a disordered SAM or a sample with components weakly adhered to the surface, contact 

mode can damage the SAM in the imaged region or loosen the weakly attached material and drag 

it across the surface.  An example of this is illustrated in the AFM image displayed in Figure 2.9.  

This image depicts an ODMS monolayer after AFM patterning of the darkly-colored line, 

followed by imaging of the line in contact mode, and subsequent exposure to electroless metal 

deposition.  There is clear debris accumulated in the square region near the AFM-patterned line, 

which indicates enhanced metal deposition in this area as compared to the flat surrounding 

region.  The square in the AFM image was the imaging area performed in contact mode prior to 

electroless copper plating.  Clearly, contact mode may disrupt a SAM enough weaken its 

chemical resistance.  Furthermore, this image displays streaks adjacent to the tall debris on the 

surface, suggesting it is being dragged across the surface by the scanning contact mode AFM tip.  

In this research, sensitive samples such as silicon oxide, microelectrode arrays with a potentially 

disordered SAM, and samples with weakly adhered debris are imaged in tapping mode to 

prevent disruption of the sample surface. 

The basis for tapping mode atomic force microscopy is to oscillate the cantilever with the 

imaging tip close to its resonance frequency via a piezo located in the AFM tip holder, and place 

Figure 2.9.  AFM image and cross section of ODMS monolayer after AFM patterning, contact mode imaging, 

and electroless copper deposition. 
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the oscillating cantilever in close enough proximity of the sample surface for the tip to “tap” the 

surface near its downward oscillation minimum.  Similar to contact mode, a constant oscillation 

amplitude is set while the tip scans the sample surface.  When the tip encounters changes in 

height, the tip-sample interaction changes and either dampens or increases the oscillation 

amplitude.  To keep the amplitude constant, the piezoelectric unit in the sample stage moves in 

the z direction to compensate for these changes in oscillation amplitude. 

2.6 Implementation 

 The research presented in this work was performed utilizing the methods and techniques 

described throughout this chapter.  Detailed descriptions of methods stemming from these 

techniques, and other minor techniques will be described in their relevant chapters.  Self-

assembled monolayers (SAMs) act as resist monolayers to electroless metal deposition, and are 

thin enough to permit AFM nanopatterning for selective placement of nanowires within the 

monolayer area.  They are implemented primarily in Chapters 3 and 4.  Goniometry and 

ellipsometry are characterization techniques for these SAMs by measuring contact angles and 

thickness values, and provide information about the packing of the SAMs.  Atomic Force 

Microscopy is a powerful tool that is present in all the following chapters of this text, but is 

heavily applied in Chapters 4 and 5.  In Chapter 4 the AFM is used to characterize a variety of 

monolayers, as well as selectively pattern nanoscale regions of the monolayers’ surfaces, and 

obtain topographical images of metallic nanowires formed within microelectrode arrays.  It is 

used in Chapter 5 to characterize the morphology of CVD graphene on a variety of copper 

surfaces, as well as graphene regrown within graphene templates. 
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Chapter 3: Electroless Copper Deposition – Solution Optimization Studies 

3.1 Abstract 

Electroless metal deposition has been shown to be a quick and simple method to create 

metallic features for implementation into circuits and other electronic devices.  It is the objective 

of this research to utilize metal deposition from electroless plating solutions to form nanoscale 

copper wires on the surface of silicon substrates in a very selective and controlled manner.  

Optimization of the electroless plating solution was performed on bulk silicon (100) surfaces 

with the hopes of producing high quality copper wires on the nanoscale, as well as investigating 

the role of the solution components in the electroless deposition process.  Silicon (100) wafers 

were exposed to copper plating solutions with a range of ammonium fluoride, copper sulfate, 

ascorbic acid, and sodium tartrate concentrations.  It was found that ascorbic acid promotes 

adhesion of the electrolessly deposited copper film to the underlying silicon, however at high 

concentration it forms stress-induced features from high deposition rates.  For this purpose, 

sodium tartrate is necessary to complex with the free copper ions, leading to a reduction in 

deposition rate and uniformly plated copper films with no visible evidence of stress-induced 

formations.  The optimal plating solution was chosen to be 0.27 M NH4F, 0.13 M CuSO4, 14 

mM ascorbic acid, and 18 mM sodium tartrate, which produced uniform copper films with strong 

adhesion to the silicon surface.  

3.2 Introduction 

Electroless metal deposition provides a quick and easy method to produce uniform 

metallic films,1 and more importantly may produce high quality plating within nanoscale 

templated regions on a substrate surface.1,2,3  It is for this reason electroless metal deposition is a 

well-utilized method for fabrication of modern integrated circuit (IC) technology.1,4 But, it also 
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has other applications in microfluidics,5 plasmonics,3,6 electromagnetic shielding,7 fuel cells,8,9 

catalysis,10 sensors,11,12 and several other additional applications.  Allen et al.5 used electroless 

metal deposition to develop a Ni-Ag thermocouple capable of measuring changes in temperature 

caused by chemical reactions within a microfluidic channel.  Byeon et al.10 were able to monitor 

the catalytic conversion of carbon monoxide at the surface of bimetallic nanostructure formed by 

electroless metal deposition.  Hilmi et al.11 electrolessly deposited gold films on glass substrates 

for capillary electrophoresis chips, and were able to increase sensitivity of catechol and several 

nitroaromatic explosives. The experimental procedure for electroless metal deposition simply 

requires creating a deposition solution with all the necessary components, and exposing a target 

substrate surface to the solution for a specific amount of time.  Other common metallic film 

deposition methods such as vapor deposition,13,14 thermal spray coating,15 and 

electrodeposition16,17 require expensive equipment, time-intensive work, heating of the substrate, 

application of an external voltage, or are limited to only high quality production of thick bulk 

films rather than deposition on nanometer-size regions of the substrate surface.  In this research, 

electroless copper deposition offers a cheap, fast, and easy means to selectively deposit copper in 

regions of a silicon surface that are templated for copper nanowire growth. 

Electroless deposition occurs when either the material at a substrate surface is displaced 

by a metallic ion in solution due to the lower oxidation potential of the metallic ion compared to 

the substrate material, or a reducing agent in the bulk solution catalytically reduces the metal ion 

at the substrate surface.1  The first instance describes galvanic displacement, and the second is 

termed autocatalytic deposition.  In galvanic displacement, the material of the substrate is 

dislodged from the surface and is released into solution as a charged ion, whereas the previously 

dissolved metallic ion is reduced and adheres to the surface.  Autocatalytic deposition does not 
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involve any removal of the substrate 

material, and only involves oxidation of a 

reducing agent at the substrate surface, 

freeing electrons for metal reduction.1 

Copper has been a common metal to utilize 

with galvanic displacement and 

autocatalytic deposition because of its low 

cost, low resistance values,18,19 high 

electromigration resistance,18,19 and strong 

adhesion to silicon surfaces,19 which is a 

prominent material in the electronics field.  

Other metals utilized in electroless metal 

deposition such as gold,20,21 silver,22 and 

nickel23,24 are either comparatively costly, possess higher resistance values, or adhere poorly to 

silicon surfaces.  There have been several studies investigating galvanic displacement or 

autocatalytic deposition of copper on silicon substrates.19,25,26  Solutions implemented in galvanic 

displacement for deposition on silicon normally consist of a copper source, complexing agent, 

and fluoride-containing species.1  Autocatalytic deposition of copper frequently involves a 

similar solution with a copper ion source and complexing agent, but it further includes 

formaldehyde as a common reducing agent, and NaOH to create a highly basic solution 

necessary for formaldehyde oxidation.27 Autocatalytic deposition provides some benefits over 

galvanic displacement such as unlimited deposition and more uniform film structure.1 However, 

for application into this research, galvanic displacement methods were chosen since the 

Figure 3.1. Schematic of electroless copper deposition 
process at surface interface with oxidation and reduction 
half cell reactions and standard electrode potentials. 
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deposition solution for this method does not require highly basic solutions.  Previous studies 

have shown the stability of silane self-assembled monoalyers (SAMs) is significantly 

compromised when exposed to very basic solutions,28 which is a requirement for many 

autocatalytic deposition solutions.  It is the ultimate objective of this research to use electroless 

copper deposition to create nanowires within AFM-patterned SAM resists, mainly silane SAMs.  

Thus, galvanic displacement deposition is expected to provide more selective copper deposition 

within patterned regions of the SAM monolayer resists, and not adversely influence monolayer 

stability, which could lead to metal deposition within the resist surface regions. 

Galvanic displacement deposition of copper on silicon surfaces via fluoride-containing 

solutions is a redox reaction where both the anodic and cathodic processes occur simultaneously 

at the silicon substrate surface.1  Electrons from the oxidized silicon are transported to the copper 

ions at the substrate surface for copper reduction, as illustrated in Figure 3.1.  The overall 

reaction equation at the silicon surface in the presence of F- is:25 

Cu2+(aq) + Si0(s) + 6F- (aq)  Cu0(s) + SiF6
2-(aq)  (1) 

 The surface silicon is oxidized and becomes freed from the surface in the form of the 

SiF6
2- species, whereas the copper ions in solution located near the substrate interface become 

reduced and subsequently adhered to the substrate.  The overall reaction in equation (1) can be 

split into two half-cell processes as depicted by the anodic reaction at the top of Figure 3.1 and 

the cathodic reaction at the bottom of the same figure:1 

SiF6
2- (aq)+4e- → Si0(s)+6F-         E0 = -1.20 VSHE  (2) 

Cu2+ (aq) + 2e- → Cu0 (s)              E0 = 0.340 VSHE  (3) 



 53 

The largely positive standard electrode potential of the copper reduction at 0.340 V versus the 

standard hydrogen electrode (SHE) in comparison to that of reaction (2), with a value of -1.20 

VSHE, shows the affinity for copper reduction in the presence of silicon and fluoride ions.  

However, the standard reduction potential of Cu2+/Cu0 significantly decreases in electroless 

deposition solutions containing fluoride species (-0.48VSHE in 40% NH4F and -0.12VSHE in 0.5% 

HF).  As a result, hydrogen evolution occurs at the silicon surface as well as copper deposition: 

2H+(aq) + 2e- → H2(g)  E0 = 0.0 VSHE  (4) 

Hydrogen production at the silicon surface is believed to create electrolessly deposited copper 

films with weak adhesion to the silicon surface.19  Because of this, chemical species are added 

into the deposition solution which are believed to quench the hydrogen at the silicon substrate 

surface.  Some of these additives include ascorbic acid19,29 and fumaric acid,19 which are well-

known hydrogen scavengers.  Da Rosa et al.29 has discovered upon inclusion of the ascorbic acid 

into the deposition solution, though, large raised features are induced in the plated copper films, 

which are believed to be the result of film restructuring to relieve compressive stresses during 

film growth with high deposition rates.  The further addition of sodium tartrate to the deposition 

solution, which is proposed to act as a chelator of copper ions to reduce copper deposition 

rates,26 resulted in the formation of uniform copper films which were well-adhered to the 

surface.29  In constrast to the claim by Maganin et al.19 that ascorbic acid acts as a hydrogen 

scavenger for improved film adhesion, Da Rosa claims the increased copper film adhesion with 

the ascorbic acid additive is a consequence of the localized increase of silicon dissolution rates 

surrounding nucleated copper metal during the metal deposition process.  The inhomogeneous 

etching of the silicon leads to a rough and jagged silicon-copper interface with an increased 

surface area, which allows for the improved adhesion.  Furthermore, Da Rosa made no claim as 
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to the specific mechanism behind improved copper film growth with the sodium tartrate additive.  

Clearly, copper deposition by galvanic deposition with the inclusion of additives to produce 

well-adhered and uniform copper thin films is not well understood.  Additionally, no studies 

have been performed to optimize the concentration of deposition solution additives to maximize 

film adhesion and uniformity, as well as to investigate the role these additives may play in 

electroless copper deposition. 

 It is for this purpose the electroless deposition of copper was studied on bulk silicon 

substrates by deposition solutions with varying concentrations, and the concentrations optimized 

to produce copper thin films with good adhesion and uniformity.  The solution components 

included ammonium fluoride, copper sulfate, sodium tartrate, and ascorbic acid.  The 

concentration of each one was individually varied, and the uniformity of copper films 

investigated with an optical microscope, as well as the adhesion with the scotch tape test.  The 

optimized concentrations were found to be 0.27 M NH4F, 0.13 M CuSO4, 18 mM sodium 

tartrate, and 14 mM ascorbic acid to form electrolessly deposited copper films with good 

adhesion to the bulk silicon substrates as well as uniform deposition.  Also, ascorbic acid was 

found to aid in the reduction of free copper ions and increase the adhesion and uniformity of 

deposited copper.  However, in large concentrations it induces large raised structures across the 

film surface which interfere with its adhesion capability.  The addition of sodium tartrate is 

necessary to remove these raised formations and improve copper film uniformity. 
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3.3 Materials and Methods 

3.3.1 Selectivity of Electroless Copper Plating 

Self-Assembled Monolayer Formation and Characterization 

 In order to demonstrate the selectivity of electroless copper deposition on bare silicon as 

opposed to silane-coated resist regions, bulk silicon wafers with native oxide and wafers with an 

OTS coating were exposed to an electroless copper deposition solution, and their surface 

morphology investigated by AFM.  Bare instrinsic Si(100) wafers (L441 - El-Cat.com) with a 

native oxide approximately 1 cm2 in area were sonicated in acetone for 10 minutes and rinsed 

with acetone.  They were then subject to a piranha solution (3:1 v/v solution of sulfuric acid and 

30% hydrogen peroxide in water) for 10 minutes, following an extensive rinse with Nanopure 

water (18 MΩ).  One bare silicon wafer was saved under nitrogen for further experiments, and 

all other wafers were sonicated in toluene for 20 minutes.  The wafers were then placed in a 

solution of 1.3 mM octadecyltrichlorosilane (OTS) in toluene for 24 hours.  After the wafers 

were removed from the OTS solutions, they were sonicated in toluene for 30 minutes, and rinsed 

with toluene, chloroform, acetone, and ethanol.   

 The OTS monolayers on intrinsic Si(100) were characterized using thickness and contact 

angle measurements.  Ellipsometry measurements were obtained using a Rudolph Research 

AutoEL ellipsometer with Program 221 (NU = 1.45, TL = 17.0, NL = 1.469).  For the specific 

OTS sample used in this section, a value of 28.0 ± 0.7 Å was calculated by averaging five 

readings across the sample surface.  The literature for the OTS thickness is approximately 26 

nm,30 showing relatively good agreement with the thickness value observed here. Contact angle 

measurements were acquired with a Ramé-Hart, Inc. NRL C.A. Goniometer.  The particular OTS 
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sample utilized in this section also had a contact angle value of 109.8 ± 0.8º calculated by 

averaging six readings across the sample surface. 

Atomic Force Microscopy (AFM) Imaging and Electroless Copper Deposition 

 The topography of the bare intrinsic Si(100) wafer was obtained using AFM with a 

Digital Instruments Nanoscope IIIa Multimode instrument in tapping mode.  The tip was a 

diamond-like carbon coated tip (TAP300DLC, Ted Pella) with a force constant of 40 N/m and a 

resonance frequency of approximately 300 kHz.  The scan rate was around 0.5 Hz.  Tapping 

mode was incorporated because the silicon oxide surface is sensitive, and may be disrupted by 

the AFM tip in contact mode. 

 The OTS sample on the intrinsic Si(100) was imaged using a Digital Instruments 

Nanoscope E in contact mode.  The tip utilized for this imaging was a silicon nitride tip (NPS, 

Bruker) with a force constant of 0.24 N/m, and scan rate of 1.5 Hz.  The silicon sample coated 

with an OTS monolayer is relatively robust,31 and therefore can be imaged in contact mode most 

likely without damaging the monolayer integrity.  It was employed here for faster data collection, 

considering contact mode can obtain adequate images with faster scan rates in relation to tapping 

mode AFM. 

 Both the bare intrinsic silicon (100) and the OTS monolayer on top of the intrinsic (100) 

surface were exposed to a copper plating solution for one minute containing 0.28 M NH4F, 0.13 

M CuSO4, 19 mM sodium tartrate, and 15 mM ascorbic acid.  Upon removal they were rinsed 

with Nanopure water (18 MΩ) and topographical maps of the resulting surface morphologies 

collected with the same AFM instruments and parameters as described above. 
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3.3.2 Concentration Studies and Optimization of Electroless Copper Deposition on Bulk Silicon 

 Following confirmation that electroless copper deposition primarily occurs only on bare 

silicon surfaces and not within OTS monolayers regions with the plating solutions listed above, 

the individual concentrations of the electroless copper plating solution were varied and the effect 

on deposited copper films examined. Bare instrinsic Si(100) wafers (L441 - El-Cat.com) with a 

native oxide approximately 1 cm2 in area were sonicated in acetone for 10 minutes, rinsed with 

acetone, and dried with nitrogen gas.  As a control experiment, a single wafer was exposed to a 

solution for one minute with 0.27 M NH4F and 0.13 M Cu2+ with no ascorbic acid or sodium 

tartrate additives.  Six silicon wafers were subject for one minute to a copper deposition solutions 

containing 0.27 M NH4F, 18 mM sodium tartrate, 14 mM ascorbic acid, and a range of CuSO4 

concentrations: 0 M, 0.017 M, 0.032 M, 0.068 M, 0.13 M, and 0.25 M.  Six silicon wafers were 

subject for one minute to a copper deposition solutions containing 0.13 M CuSO4, 18 mM 

sodium tartrate, 14 mM ascorbic acid, and a range of NH4F concentrations: 0 M, 0.095 M, 0.18 

M, 0.28 M, 0.36 M, and 0.46 M. Five silicon wafers were subject for one minute to a copper 

deposition solutions containing 0.27 M NH4F, 0.13 M CuSO4, 18 mM sodium tartrate, and a 

range of ascorbic acid concentrations: 0 M, 7 mM, 14 mM, 28 mM,  and 56 mM.  Five silicon 

wafers were subject for one minute to a copper deposition solutions containing 0.27 M NH4F,  

0.13 M CuSO4, 14 mM ascorbic acid, and a range of sodium tartrate concentrations: 0 M, 9 mM, 

19 mM, 88 mM,  and 0.45 M. 

 After the copper films were formed on the surfaces of the silicon substrates, optical 

images were obtained to probe the macroscale structure of the electrolessly deposited copper on 

the bulk silicon wafers.  Optical images were acquired with a Nikon 10x objective lens with 

DC12V Sony camera and GrabBee software.  UV-Vis spectra were collected with a Cary 300 
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UV-Vis Spectrometer.  Tape tests were performed by placing a piece of scotch tape over a 

portion of the wafer samples with electrolessly deposited copper films, the tape was pressed 

down gently, and removed. 

3.4 Results and Discussion 

3.4.1 Selectivity of Electroless Copper Plating 

 In order to confirm electroless copper deposition occurred only on the surface of exposed 

silicon, a piece of bare silicon (100) and OTS monolayer were both exposed to a standard copper 

plating solution for one minute.  The AFM images with cross sections displayed in Figure 3.2 

illustrate the microscale surface morphology of bare silicon with native oxide (a) and OTS 

monolayer on SiO2 (b).  Before electroless deposition solution exposure, both the silicon and 

monolayer surfaces are flat as observed by their cross sections with minor height variability 

across a 5-micron length, and by their small roughness values of 0.15 nm and 0.19 nm.  The 

topography of the bare silicon surface changed drastically after solution exposure, however, due  

to the deposition of copper features depicted in the AFM image in Figure 3.2-c. The 

corresponding cross section immediately below the AFM image displays larger changes in height 

across a similar 5-micron length, producing increased surface roughness values of approximately 

10.3 nm.  The surface morphology of the OTS monolayer remained very flat following exposure 

to the electroless copper deposition solution as apparent in image (d), with roughness values 

remaining similar to those prior to copper deposition exposure at 0.21 nm.  Additionally, the 

photographs of the macroscopic wafers shown in Figure 3.2-e showing the bare silicon substrate 

(right) and OTS-coated wafer (left) after electroless copper deposition demonstrate how the bare 

grey-colored silicon substrate has become copper colored following copper deposition exposure, 

whereas the wafer coated with the OTS monolayer remained a grey color characteristic of a bulk 
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Figure 3.2.  AFM images and cross-sections of (a) bare silicon (100) and (b) an OTS SAM-coated silicon 
wafer before electroless copper deposition.  AFM images and cross-sections of (c) bare silicon (100) and (d) 
an OTS SAM-coated silicon wafer after electroless copper deposition.  (e) Photograph of a bare silicon (100) 
wafer after copper deposition exposure (right) and a silicon wafer coated with an OTS monolayer after copper 
deposition exposure (left). 
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silicon sample.  All of this evidence supports that electroless copper deposition occurs selectively 

on exposed silicon surfaces, and areas coated with a SAM resist inhibit copper plating. 

 

3.4.2 Concentration Studies and Optimization of Electroless Copper Deposition on Bulk Silicon 

After confirmation that electroless copper plating only occurred on exposed silicon 

surfaces, the structure and surface adhesion of the electrolessly deposited copper films was 

probed when electroless plating solution conditions were varied.  The purpose behind this 

investigation is to optimize electroless deposition solution conditions to produce high quality 

copper films, as well as potentially examine the role some solution components play in the 

deposition process.  The concentration of each solution component was varied independently as 

all other components were held constant, and information was obtained via photographs of the 

deposition solutions as well as the copper-coated sample wafers, optical images, and UV-Vis 

spectra analysis.   

Figure 3.3-a,b shows an initial study where a bare silicon (100) wafer was exposed for 

one minute to an electroless copper plating solution with only 0.27 M NH4F and 0.13 M CuSO4, 

which dissolves in solution to 

produce solvated Cu2+ ions.  In 

both the photograph and optical 

images in (a) and (b), it is 

evident that a copper film was 

deposited on the bulk silicon 

wafer.  Normal silicon bare 

(i) 

Figure 3.3.  (a) Photo of silicon wafer after 1 minute exposure to copper 
plating solution with 0.27 M NH4F and 0.13 M Cu2+. (b) Optical image 
of same wafer from part (a). 

(a) 
(b) 
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silicon substrates visibly appear grey in color, but the substrate surface has changed to a copper 

color in images (a) and (b).   However, the surface coverage of the copper film seems to be quite 

nonuniform in both the photograph and optical images.  Variation in copper color, as well as 

cracks and nonuniform formations are especially visible in the optical image.  To solve the issue 

of nonuniform deposition, sodium tartrate and ascorbic acid were added to the deposition 

solution, since they have been shown to increase the uniformity and copper adhesion to the 

silicon surface during deposition.19,29  The ascorbic acid is believed to act as a hydrogen 

scavenger to quench hydrogen produced at the silicon surface during electroless copper plating, 

which is believed to produced deformities in the deposited copper films.  The sodium tartrate 

chelates copper ions to reduce the electroless copper deposition rate and inhibit the production of 

stress-induced deformations in the copper film. 

 The results of sodium tartrate and ascorbic acid addition to the copper plating solution are 

shown in Figure 3.4.  A bare silicon (100) wafer was again exposed to an electroless copper 

deposition solution of 0.27 M NH4F and 0.13 M CuSO4 for one minute, but the solution also 

included 19 mM sodium tartrate and 14 mM ascorbic acid.  From the photograph of the resulting 

wafer surface in (a) and the optical image of the substrate surface in (b), it is clear the copper has 

deposited on the silicon surface in a 

much more uniform manner with the 

presence of tartrate and ascorbic acid 

species in relation to when they are 

absent from the electroless plating 

solution.  In particular, there are no 

visible variations in color or surface 

Figure 3.4.  (a) Photo of silicon wafer after 1 minute 
exposure to copper plating solution with 0.27 M NH4F, 0.13 
M Cu2+, 19 mM sodium tartrate, and 14 mM ascorbic acid.         
(b) Optical image of same wafer from part (a). 
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deformities in the optical image.  Thus, the inclusion of ascorbic acid and sodium tartrate are 

believed to be necessary for the manufacture of electrolessly deposited copper films on bulk 

silicon substrates. 

Once the importance of ascorbic acid and sodium tartrate in the copper deposition 

solution was made apparent, concentration studies were performed to investigate how the 

variation of copper ion concentration affected the deposited copper film, and the results are 

shown in Figure 3.5. The photos in part (a)-(f) show electroless copper deposition solutions with 

constant NH4F, sodium tartrate, and ascorbic acid concentrations, and increasing Cu2+ 

concentrations from 0 to 0.25 M.  Without any copper in solution, depicted in photo (a) of this 

figure, the solution appears colorless.  However, as the concentration of the solution increases 

through images (b) – (f), the solution gains a green color, which deepens as the copper 

concentration is raised.  Copper (II) ions are well known for their characteristic blue color in 

aqueous solutions.  The UV-Vis spectra in part (g) of Figure 3.5 depicts a broad absorption peak 

between 600 and 900, with its maximum absorption at approximately 800 nm, for all the 

solutions containing copper ions, which confirms the solutions should be visibly exhibiting a 

blue color.  Upon the addition of ascorbic acid into the solution, however, a small shoulder 

appears at around 400 nm.  Absorption at this wavelength would contribute a yellow color to the 

electroless solution in addition to the blue color from the absorbance at around 800 nm, therefore 

leading to the experimentally observed green color.  The green color and absorption shoulder at 

400 nm are the consequence of the reduction of Cu2+ to Cu+ by the ascorbic acid, with its 

following chelation around Cu+.32 With an increase in the copper ion concentration, there is more 

copper present to be reduced and chelate with the ascorbic acid, leading to a deepening in green 

color.  With the presence of sodium tartrate and ascorbic acid in these solutions, all the optical 
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images of the deposited copper films demonstrated uniform copper plating, as displayed in the 

representative optical image in (h).  Not only does the green color deepen in these electroless 

copper plating solutions when the concentration of copper ions is increased, but the copper color 

on the bulk silicon substrates deepens upon visual inspection of the sample wafers as well.  The 

photo in Figure 3.5 part (i) shows the silicon wafers following electroless copper deposition as 

the copper ion concentration is raised.  It is evident as the color of the wafer surface changes 

Figure 3.5.  Photos of standard copper plating solutions with a range of Cu2+concentrations: (a) no Cu2+ (b) 
0.017 M (c) 0.032 M (d) 0.068 M (e) 0.13 M and (f) 0.25 M, as well as 0.27 M NH4F, 18 mM of sodium 
tartrate, and 14 mM ascorbic acid.  (g) UV-Vis spectra of standard electroless copper plating solution with 
different components.  (h) Representative optical images of silicon wafer after exposure to solutions in part (a) 
– (f).  (i) Photo of silicon wafer surfaces following copper deposition.  From left to right are wafers exposed to 
electroless copper plating solutions with no Cu2+, 0.017M, 0.032 M, 0.068 M, 0.13 M, and 0.25 M Cu2+. 
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from silicon grey to an orange-brown characteristic of Cu0 as the copper ion concentration is 

increased from left to right, likely due to the increase in copper film thickness.  Thus, it can be 

concluded that as the copper concentration is increased, more copper is uniformly deposited on 

the silicon substrate.  As long as the copper ion concentration is over 0.068 M, there seems to be 

Figure 3.6.  Photos of standard copper plating solutions with a range of NH4F concentrations: (a) no NH4F (b) 
0.095M (c) 0.18 M (d) 0.28 M (e) 0.36 M and (f) 0.46M, as well as 0.13 M Cu2+, 18 mM of sodium tartrate, 14 
mM ascorbic acid. Optical images of silicon wafers after exposure to solutions in part (a)-(f): (g) no NH4F (h) 
0.095M (i) 0.18 M (j) 0.28 M (k) 0.36 M and (l) 0.46 M.  (m) Photo of silicon wafer surfaces following copper 
deposition.  From left to right are wafers exposed to electroless copper plating solutions with no NH4F, 0.095M, 
0.18 M, 0.28 M, 0.36 M, and 0.46 M.  The red circle within this photo indicates the localized region where 
branch-like features were visible on the sample surface. 
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no  dramatic difference in the structure of the copper film on the surface of the silicon substrate 

seeing as all the optical images and visually-inspected wafers show similar uniformity. 

The influence of NH4F concentration variation on electroless copper deposition on bulk 

silicon substrates is shown in Figure 3.6.  Deposition solutions were made with NH4F 

concentrations ranging from 0 to 0.46 M, with copper, sodium tartrate, and ascorbic acid 

concentrations remaining constant, and subsequently bare silicon (100) wafers were exposed to 

the plating solutions for one minute.  There is not significant variation in the color from solutions 

pictured in Figure 3.6 parts (a)-(f) as the NH4F is varied.  As the ammonium fluoride 

concentration is increased from 0 to 0.28 M, the optical images in Figure 3.6 parts (g)-(j) 

illustrate uniform copper deposition without any visible localized differences in copper plating or 

visible structural defects.  The photo in part (m) shows a uniform deepening in the copper color 

on the silicon surface as the ammonium fluoride concentrations is raised, similar to the same 

trends observed in the increase in copper ion concentration.  Upon reaching 0.36 M ammonium 

fluoride, though, the optical images in (k) and (l) of this figure show branch-like features 

beginning to form on the silicon surface with deposited copper.  Other researchers have observed 

this same phenomenon and associate it with either the addition of ascorbic acid, which 

significantly increases the deposition rate and leads to stress-induced restructuring of the 

deposited copper film, or accelerated formation of hydrogen gas in these areas. 1, 29,33  If these 

structures appear as a result of an increased deposition rate, it is not surprising these features 

appear with high concentrations of ammonium fluoride.  It is directly involved in the electroless 

deposition reaction, and increasing its concentration would increase the deposition rate.  

Furthermore, it has been shown by Fukumuro et al.34 that during electroless copper plating, 

copper thin films may undergo significant compressive stress during the initial stages of 
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deposition, and over time begin to experience tensile stress with thicker films.  Stress in metallic 

films may adversely impact their electrical properties,35 and metallic films of low stress are 

desirable.  Thus, films containing these branch-like features are unfavorable if they may be used 

as an indicator for copper films experiencing significant stress during deposition growth.  

Roughening of the copper film can be observed visually as well as in the optical images.  It is not 

apparent in the photo in part (m) of Figure 3.6, but on the silicon wafer exposed to a copper 

plating solution with 0.36 M ammonium fluoride, there is a rough patch where a roughening can 

be observed in comparison to an otherwise smooth surface of the copper-coated sample, which is 

designated by a red circle in the photo of sample wafers.  This region corresponds to the location 

where the branch-like features appear in the optical image.  Since branching seems to be 

localized on the surface, it is hypothesized a localized enhancement of the electroless copper 

deposition occurred due to regional defects in the substrate surface, resulting in these stress-

induced structures that spread across the surface in a small region.  The branching phenomenon 

is also seen on the sample exposed to the copper deposition solution with 0.46 M ammonium 

fluoride, but the features are spread all across the substrate surface and have larger spacing 

between structures in comparison to the solution with only 0.36 M ammonium fluoride.  With 

the higher concentration of ammonium fluoride it is likely there is a high deposition rate 

uniformly across the silicon surface, leading to stress which is spread across the entire wafer, 

resulting in larger, spread out features rather than concentrated structures due a high amount of 

localized copper film stress.  Thus, in order to avoid the presence of significant stress in the 

deposited copper and a significant deposition of copper within the one minute deposition time, 

0.28 M was chosen as the optimal concentration for ammonium fluoride in the electroless copper 

deposition solution. 
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The results for the concentration variation in ascorbic acid are shown in Figure 3.7.  As in 

the studies involving varying concentrations of copper ions and ammonium fluoride, bulk silicon 

wafers were subject to electroless copper deposition solutions with concentrations of ascorbic 

acid ranging from 0 mM to 56 mM, while the concentrations of all other solution components 

remained constant.  The photos in (a) – (e) depict the visual characteristics of the electroless 

copper deposition solution with a range of ascorbic acid concentrations.  In the photo in part (a) 

we see that without the addition of ascorbic acid the electroless copper deposition solution 

appears a clear blue color, which is consistent with the expected color from Cu2+ ions in solution, 

and the broad peak between 600 and 900 nm displayed in the previous Figure 3.5.  Upon 

addition of ascorbic acid to the solution, the color changes to a green hue, indicative of the 

(a) (b) 

(c) (d) 

(e) 

(g) (h) 

(i) 

Figure 3.7.  Photos of standard copper plating solutions with a range of ascorbic acid concentrations: (a) no 
ascorbic acid (b) 7 mM (c) 14 mM (d) 28 mM and (e) 56 mM, as well as 0.27 M NH4F, 0.13 M Cu2+, and 18 
mM of sodium tartrate. (f) Copper solution immediately after removing plated wafer from deposition solution 
with 56mM ascorbic acid.  Optical images of silicon wafer surfaces after exposure to solution from part (a) – 
(e): (g) no ascorbic acid (h) 7 mM (i) 14 mM (j) 28 mM and (k) 56 mM. 

(f) 

(j) 

(k) 
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reduction of Cu2+ ions to Cu+ ions from the ascorbic acid, and its further chelation around the Cu+ 

ions for stabilization.32,36  The green color becomes more and more apparent as the initial 

concentration of ascorbic acid increases, and in part (e) there appears a tint of copper color in the 

deposition solution, indicating a further reduction to Cu0.  Figure 3.7 part (f) additionally shows 

the copper plating solution in part (e) once the silicon wafer is removed after 1 minute of 

exposure time, and there is a clear copper-colored precipitate developing within the solution.  In 

order to choose the optimal concentration of ascorbic acid it is therefore imperative to keep the 

concentration under that which will cause Cu0 to precipitate out into the deposition solution 

while the silicon wafer is being exposed to it.  This will ensure copper plates onto the silicon 

surface and does not precipitate out into the solution. 

The optical images in Figure 3.7 part (g)-(k) and the photo in Figure 3.8 show how the 

structure of the copper film changes upon the increase in the ascorbic acid concentration.  As the 

concentration increases from 0 to 14 mM, the optical images in Figure 3.7 (g) – (i) exhibit 

uniform plating of copper across the bulk silicon substrates.  This same trend can be seen in the 

photo in Figure 3.8  moving from the far left wafer exposed to a copper plating solution with no 

ascorbic acid, to the two adjacent wafers on its right, which underwent deposition with an 

electroless copper plating 

solution containing 7 mM 

and 14 mM ascorbic acid.  

The uniformity is observed 

in the central regions of the 

wafers, and the grey-colored 

areas are the exposed silicon 

Figure 3.8.  Photo of silicon wafer surfaces following copper deposition 
and scotch tape test.  From left to right are wafers exposed to electroless 
copper plating solutions with no ascorbic acid, 7 mM, 14 mM, 28 mM and 
56 mM ascorbic acid.  See Figure 3.7 for optical images of these wafers. 
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resulting from film removal during the scotch tape test, which will be discussed in the following 

paragraph.  More importantly, once the ascorbic acid concentration increased to 28 mM, the 

branching phenomenon begins to form, denoting a significant amount of stress in the deposited 

copper film during the deposition process.  Not only can we observe these features in the optical 

images in Figure 3.7 parts (j) and (k), but these sections of branching are visibly clear to the eye 

by a localized surface roughening of the copper-coated substrate inside the red circles in Figure 

3.8.  Again as a result of these branching features, the ascorbic acid concentration should be kept 

under 28 mM in the copper deposition solution. 

 The role of the ascorbic acid species within the electroless copper plating solution 

becomes apparent in the photo in Figure 3.8.  Adhesion of electrolessly deposited films can be 

qualitatively and easily examined with the scotch tape test.37,38  If the deposited film adheres to a 

piece of scotch tape placed atop the film surface and comes off the substrate, it is said to have a 

weak adhesion to the substrate surface.  The photo in Figure 3.8  demonstrates from the coated 

wafer on the far left that without ascorbic acid present in the plating solution, plating is relatively 

uneven even before the scotch tape test was implemented and minimal compared to the other 

wafers which were exposed to solutions with the addition of ascorbic acid.  This reaffirms the 

importance of ascorbic acid inclusion into the electroless deposition solution for uniform copper 

plating.  In the presence of 7 mM ascorbic acid in solution, the film becomes more uniform with 

a deeper copper color seen in the central regions of the sample pictured in Figure 3.8.  However, 

upon application of the scotch tape test to the upper region of the sample wafer, the majority of 

the film is easily removed with scotch tape observed by the return of the grey color characteristic 

of bare silicon in the region where the tape was placed.  The removed copper is adhered to the 

removed tape is depicted immediately above its corresponding sample.  The removal of the 
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copper film denotes weak adhesion to the silicon surface when electroless copper deposition 

takes place in solution containing a small 7 mM concentration of ascorbic acid.  When the 

ascorbic acid is increased to 14 mM, some copper film is removed, but the majority is removed 

around the edges of the wafer.  In the following Figure 3.9 part (k) there is a silicon wafer 

exposed to similar conditions as the center silicon wafer in Figure 3.8  which undergoes the 

scotch tape test and does not show any sign of copper removal from the silicon surface.  This 

behavior variation amongst coated wafers may be due to the difference in the cleanliness and 

surface defects of the initial silicon substrate surface.  The center silicon wafer in Figure 3.8 was 

sitting out in air for a longer period of time after its initial cleaning compared to the wafer in 

Figure 3.9  part (k).  It is therefore assumed the behavior of the copper film when exposed to a 

electroless plating solution with 14 mM ascorbic acid will demonstrate strong adhesion to the 

silicon surface as long as the initial silicon surface is well cleaned. 

The silicon wafers exposed to deposition solutions with 28 and 56 mM ascorbic acid in 

Figure 3.8 show copper films with strong adhesion to the silicon surface since no noticeable trace 

of copper removed in the scotch tape test.  However, there are regions denoted by the red circles 

that show the initial formation of stress-induced branching in certain areas of the substrate 

surface.  Therefore, in order maximize adhesion of the copper film to the surface, and also to 

prevent significant stress formation in the deposited copper film, an optimal ascorbic acid 

concentration of 14 mM was chosen for the deposition solution. 

 The results for the concentration variation of sodium tartrate in the electroless copper 

plating solution are shown in Figure 3.9.  The color of the deposition solutions in parts (a)-(e) 

show a change in color from a green to a bluish green tint as you increase the amount of sodium 

tartrate in the solution.  It is proposed the sodium tartrate chelates the aqueous copper ions in 
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solution,26 which would prevent the ascorbic acid from reducing Cu2+ to Cu+ and further 

chelating around the Cu+, and eventually reducing the Cu+ to Cu0.  Thus, as the tartrate 

concentration increases, there is more tartrate present to protect the Cu2+ ions from being reduced 

to Cu+ and chelated by ascorbic acid, which causes the color to remain more of the characteristic 

blue color of Cu2+ ions.  The optical images in Figure 3.9 parts (f)-(j) illustrate the copper-coated 

silicon wafer surfaces after exposure to the deposition solutions in parts (a)-(e).  Without the 

presence of sodium tartrate within the electroless deposition solution, uneven plating as well as 

small branch-like features appear within the plated copper film as seen in part (f). Since these 

features are normally seen in the presence of ascorbic acid and high etch rates, the chelation of 

(j) (k) 

Figure 3.9.  Photos of standard copper plating solutions with a range of sodium tartrate concentrations: (a) no 
sodium tartrate (b) 9 mM (c) 19 mM (d) 88 mM and (e) 0.45 M, as well as 0.27 M NH4F, 0.13 M Cu2+, and 14 
mM ascorbic acid.  Optical images of wafer surfaces after exposure to solutions from part (a) – (e): (f) no 
sodium tartrate (g) 9 mM (h) 19 mM (i) 88 mM and (j) 0.45 M.  (k) Photo of silicon wafer surfaces following 
copper deposition and scotch tape test.  From left to right are wafers exposed to electroless copper plating 
solutions with no sodium tartrate, 9 mM, 19 mM, 88 mM and 0.45 M sodium tartrate. 

(a) (b) (f) (g) 

(c) (d) (h) (i) 

(e) 
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the sodium tartrate is thought to chelate the copper ions in solution,26 and thereby slow down the 

etch rate and prevent formation of stress-induced features on the substrate surface.  A small 

addition of sodium tartrate to produce a concentration of 9 mM is not enough to completely 

overcome nonuniform copper plating as displayed in Figure 3.9  part (g).  Uneven plating is also 

evident in the photo of the sample wafers in part (k), and striation-like structures can be seen 

within the red circles on the two far left samples, which correspond to wafers subject to copper 

plating solutions with no ascorbic acid as well as a small ascorbic acid concentration of 9 mM.  

However, any concentration of sodium tartrate over 19 mM seems to produce uniform copper 

films on the silicon substrate surface as seen in the optical images is Figure 3.9  part (h)-(j) and 

the three far right copper-coated silicon wafers in part (k). 

Administration of the scotch tape test to the copper-coated silicon wafers formed from 

solutions in parts (a)-(e) of Figure 3.9 are illustrated in part (k) of the same figure. The copper 

films formed by deposition solutions with no sodium tartrate and 9 mM sodium tartrate detach 

easily from the silicon surface, seeing as most of the copper film is retained on the tape located 

immediately below their respective samples, demonstrating weak adhesion to the surface.  The 

raised striation-like features in areas with stress-induced branching on the two sample surfaces 

likely disrupt the contact between copper and silicon at the copper-silicon interface, leading to a 

decrease in the film’s adhesion strength.  Conversely, there appears to be strong adhesion of the 

deposited metal onto the sample surface when the sodium tartrate concentration surpasses 19 

mM, where no striation-like structures are observed.  Thus, any tartrate concentration above 19 

mM would be sufficient for good-quality copper film production with uniform plating and strong 

adhesion to the silicon surface.  However, as discussed in the following chapter, the electroless 

copper deposition solution will be implemented for metal deposition within self-assembled 
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monolayers (SAM) resists for copper nanowire fabrication.  The harsh conditions of the 

electroless deposition solution are likely to degrade the monolayer resist during prolonged 

exposure,28 leading to unwanted metal deposition within resist areas.  Therefore, it is important 

to maximize the amount of copper deposition within patterned locations for successful nanowire 

fabrication before the monolayer becomes destabilized and unfavorable metal deposition occurs 

within the SAM resist.  Since sodium tartrate slows down the deposition of copper by chelating 

copper ions in solution, it is beneficial to minimize its concentration without compromising its 

role in copper film adhesion. Consequently, the concentration of 19 mM was chosen as an 

adequate sodium tartrate concentration for electroless copper deposition. 

3.5 Conclusions 

Electroless metal deposition is a fast and easy technique to deposit copper on silicon 

substrates, and has promise for application in metal deposition within nanoscale patterned lines, 

seeing as it can provide selective copper deposition on exposed silicon substrates as opposed to 

resist-coated samples.  However, in order to create uniformly deposited copper with good 

adhesion to the surface, it is imperative to include additional materials into the deposition 

solution.  The role of these additives is relatively unclear, and optimization of deposition 

conditions with the additives to maximize copper film adhesion and uniformity has not been 

previously performed.  In the research presented here, optimization of an electroless plating 

solution was performed on bulk silicon (100) surfaces to produce copper films with maximized 

adhesion and uniformity, and the role of the deposition solution components examined.  Silicon 

(100) wafers were exposed to copper plating solutions with a range of NH4F, Cu2+, ascorbic acid, 

and sodium tartrate concentrations, and the resulting copper films probed via optical imaging and 

implementation of a scotch tap test.  It was found that changes in the concentration of Cu2+ do 
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not significantly influence the uniformity of deposited copper, and only impact the amount of 

deposited copper.  Concentrations of NH4F at 0.36 M and above create raised branch-like 

features across the copper films, likely due to stress created within the copper films due to 

increased etch rates.  These features are undesirable in the films, because they indicate copper 

films with high levels of compressive stress, which may adversely affect the electrical properties 

of the deposited metal.  These same features appear on sample surfaces when the ascorbic acid 

concentration in the deposition solution reaches 28 mM or higher.  However, at lower 

concentrations it promotes adhesion of the electrolessly deposited copper film to the underlying 

silicon.  Sodium tartrate is necessary to combat the formation of branch-like features within the 

electrolessly deposited copper films, likely because it complexes with copper ions in solution to 

reduce the deposition rate of copper.  The optimal plating solution was chosen to be 0.27 M 

NH4F, 0.13 M CuSO4, 14 mM ascorbic acid, and 18 mM sodium tartrate, which produced 

uniform copper films with strong adhesion to the silicon surface.   
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Chapter 4: Fabrication of Copper Nanowire Features 

4.1 Abstract 

Nanopatterning of self assembled monolayers (SAMs) via atomic force 

microscopy (AFM) followed by copper electroless deposition was implemented for the 

fabrication of copper nanowires.  Many current methods to manufacture surface-attached 

metallic nanowires are limited by their capability to create patterned lines only down to 

tens of nanometers in width, their expensive equipment, or inability to create complex 

patterns in specific locations on a substrate surface.  Nanopatterning with AFM is a 

promising means to create highly intricate patterns with line widths on the few nanometer 

scale.  Electroless copper deposition is an easy and highly effective technique to deposit 

metal within patterned lines with such small widths.  However, its capability to create 

metallic nanowires within these patterns with high uniformity and controllable 

dimensions has largely remained unexplored.  Therefore, it is the main objective of this 

research to thoroughly examine how electroless copper deposition may change within 

AFM-patterned lines on organic monolayers with alterations in the resist monolayer 

composition, deposition solution conditions, patterned line features, and silicon substrate 

doping.  AFM patterning was performed in three different SAM systems including an 

octadecyl monolayer on silicon, and octadecyldimethylchlorosilane (ODMS) on silicon 

oxide, and octadecyltrichlorosilane (OTS) on silicon oxide and their resist capabilities 

examined against the electroless copper deposition solution.  In addition, solution 

concentrations of the individual electroless copper deposition components were varied 

and preliminary data collected in regards to how electroless plating changes within AFM-

patterned lines.   It was found that changes in solution concentration of the copper ion 
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source, sodium tartrate, and ascorbic acid may be used to impact nanowire height.  

Successful electroless deposition was demonstrated within AFM-patterned lines down to 

widths of 20 nm, but patterned line widths larger than a few hundred nanometers 

illustrated insufficient filling of the patterned line with deposited copper.  This may likely 

be overcome, however, with changes in the electroless deposition solution conditions.  

Electroless copper plating on intrinsic silicon (100) showed copper plating behavior 

different from that of n-doped silicon (100), indicating the dopant level of the underlying 

substrate plays a role in electroless metal deposition within AFM-patterned lines.  Lastly, 

copper nanowires were successfully manufactured between two gold microelectrodes, 

and the electrical properties examined.  The nanowires exhibit behavior of nanowires 

with a possible copper oxide coating surrounding a reduced copper core. 

4.2 Introduction 

 With the ever-increasing demand for nanotechnology and the ease of 

nanofabrication, nanowires have become a widely used resource for a variety of 

applications.  Some of these applications include biomedical delivery,1 magnetic cell 

separation,2 biosensing,3,4 electrochemical detection,5,6 transparent electrodes,7 energy 

storage,4 solar cells,8,9 nanophotonics and optoelectronics,10,11 molecular electronics,12,13 

nanocircuits,14,15 and host of other research areas.  Kim et al.1 produced silicon nanowires 

that could penetrate into mammalian cells, demonstrating the utility of the nanowires for 

potential biomedical delivery if the nanowires were coated with a target drug.  Lee et al.7 

developed a high performance flexible transparent electrode out of long silver nanowires 

for application in touch-screen devices.  Huang et al.10 fabricated nanoscale light-

emitting diodes with colors spanning the ultraviolet to near-infrared region of the 
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electromagnetic spectrum for integrating nanophotonic and nanoelectronic devices.  Even 

though many advancements have been made for the successful incorporation of 

nanowires into several application areas, there remains a large unmet need for 

development of methods for incorporation of such nanowires into nanocircuitry.  Many 

current nanoelectronic devices primarily consist of single components, such as 

nanotransistors16 or nanocapacitors.17  For the implementation of these components into 

nanocircuits, it is imperative to develop methods to create nanowires which may be 

selectively placed on surfaces to connect these individual elements, and in addition be 

fabricated with specific dimensions to be adaptable to fit in a variety of arrangements.  

Many current methods produce small nanowires with diameters of 10 nm or less, which 

is very desirable for nanocircuit applications, but are formed in arrays18,19 or in bulk 

solution,20 which make it difficult to manipulate single nanowires into specific 

configurations on a substrate surface.  Either that, or the methods have high selectivity for 

surface placement, but exhibit diameters of several tens or hundreds of nanometers.21,22  

There is a crucial demand for a nanowire fabrication method which allows precise control 

of nanowire placement on a substrate surface, and additionally permits easy manipulation 

of the nanowire dimensions including height, width, and length.  Both of these 

requirements must be met for successful implementation into nanoelectronic devices. 

 Current methods for nanowire production on substrate surfaces include 

photolithography,23 electron beam lithography,22 nano-imprint lithography,24 dip-pen 

lithography,21 oxidative lithography,25 and nanopatterning26 and grafting.27 Most of these 

methods involve patterning of a resist-coated substrate to promote selective metal 

deposition in the patterned area.  Photolithography uses light to pattern a resist layer 
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which either causes the patterned areas to become destabilized as with a positive resist, or 

strengthened for negative resist methods.  The destabilized patterns may then be etched 

away leaving exposed patterned regions for further surface chemistry manipulation, or in 

the latter instance, the strengthened areas remain while the bulk of the resist is removed.  

This method is ultimately limited by the diffraction of light, and with expensive optics 

systems that may include extreme ultraviolet equipment, excimer lasers, or several costly 

lenses, has only been able to fabricate features of sizes reaching down to tens of 

nanometers.28  

Electron beam lithography is a similar technique, involving a beam of electrons in 

place of light implemented in photolithography.  Even though this method provides 

immense control over fabrication patterns on substrate surfaces, its beam size is limited 

by the repulsion experienced by the electrons within the beam.  The beam may be tightly 

focused, and beam sizes can reach down to single nanometer size, but in order to do so 

the power of the beam must be lowered.  Lowering the power of the beam inhibits the 

instrument’s capability to successfully pattern strong resist coatings, which is imperative 

for subsequent electroless metal deposition within patterned self-assembled monolayers 

(SAMs) described in this work.  Furthermore, manufactured nanowire utilizing this 

method exhibit widths on the order of tens of nanometers.22   

Nanoimprint lithography incorporates the use of a mold or stamp to pattern 

substrate surfaces with large templated arrays.  Stamps are normally fabricated using 

photolithography or electron beam lithography, so their feature sizes are limited as 

previously discussed.  Furthermore, this technique is geared toward large-scale 
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development of arrays with repeating configurations instead of single nanowires with 

specified structure.   

Dip pen-lithography includes the coating of an atomic force microscope (AFM) 

tip with a desired species by either dipping the tip into a solution containing the species 

or its neat liquid.  As the tip contacts the surface, a meniscus of water is created between 

the tip and the sample due to ambient humidity, and the species is transferred from the tip 

to the surface as the tip is scanned.  In order to create metallic nanowires, either the 

deposited species promotes copper metal reduction21 or metallic nanoparticles can be 

deposited directly on the substrate surface.29 The size of the features with this technique 

can reach on the order of tens of nanometers in width,30 but oftentimes results in 

significantly larger widths on the order of hundreds of nanometers. 21,29  Additionally, the 

coated tip does not allow scanning of the targeted surface region prior to deposition, 

which limits the capacity to place the species in the pinpointed surface location.  

Furthermore, uniform deposition may prove difficult since deposition is dependent upon 

the coated species detaching from the AFM tip, diffusing through the water meniscus, 

and attaching onto the substrate surface at a constant rate while to the AFM tip is 

scanning.   

Oxidative lithography is performed with a conductive AFM probe tip, which is 

able to oxidize the sample surface when a negative bias is applied between the tip and 

sample under the aqueous environment caused by the formation of a water meniscus 

between the tip and sample.  This pattern may act as a template, similar to dip-pen 

lithography, to promote the reduction of metal ions, and lead to selective metal 

deposition.  This method is again limited to the size of the meniscus formed between the 
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tip and substrate surface, and has demonstrated nanofeature fabrication on the order of 

tens of nanometers.31  Furthermore, the ability to control the size of nanofeatures is 

highly sensitive to factors such as humidity, tip conditions, and the characteristics of the 

sample surface, which can make is difficult create patterns of controlled dimensions.   

Nanopatterning and nanografting demonstrate a promising avenue to create 

nanowires with widths of 10 nm or less, seeing as the size of patterned regions is 

dependent primarily on the size of the AFM tip itself, and sharpened AFM tips can reach 

radius of curvature values as low as 1 nm.32  Nanopatterning is performed by increasing 

the applied force of an AFM tip in contact mode on the sample surface, causing the tip to 

dig into the substrate.  As the tip is scanned across the surface, it consequently removes 

the top layers at the sample surface, exposing underlying substrate regions beneath resist 

layers if the tip surpasses the depth of the resist coating.  Nanografting is extremely 

similar, but the patterning is done in the presence of an aqueous solution containing a 

target replacement molecule to bind onto the exposed substrate surface.  As the 

underlying layers of the substrate are exposed, the target analyte diffuses to the patterned 

region and immediately fills in the exposed area.  Nanofeatures of 3-5 nm in width have 

been developed using this method.33 It is for this purpose AFM-based nanopatterning was 

implemented in this research to develop nanoscale wires selectively places on silicon 

substrate surfaces coated with self-assembled monolayer resists. 

 Not only is it important to be able to make patterns of small dimensions in resist 

layers for surface-attached nanowire fabrication, but it also is necessary to be able to 

deposit metals successfully within the patterned regions for uniform nanowire formation 

without deposition within the resist-coated surface.  Electroless metal deposition is an 
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easy method for metallic plating into small nanoscale patterns.34  The experimental 

procedure includes simple exposure of the nanopatterned region to an electroless 

deposition solution for a specified amount of time.  It does not require heating of the 

substrate or expensive vacuum chamber apparatus, such as with vapor deposition 

methods.  However, the electroless plating solution may be harmful to resist regions of 

the sample surfaces, and destabilize the resist region over time, causing metal deposition 

within the resist area at defect areas as well as the nanoscale pattern.35  Thus, it is crucial 

to utilize resists systems that can withstand electroless deposition solutions long enough 

to promote sufficient metal plating within the AFM patterns to produce adequate 

nanowires.  Self-assembled monolayers (SAMs) are a promising tool to provide a resist 

monolayer for AFM patterning and subsequent electroless metal deposition.  They are a 

molecule-thick coating on the sample surface created by simple exposure of the target 

substrate to a solution containing the SAM molecules.  They are advantageous for resist 

applications for their ease of fabrication as well as their thin coatings with thickness 

values of a few nanometers or less.  Polymeric resist coatings have inherent thicknesses 

that are normally much larger, and the AFM tip would need to penetrate deep into the 

polymer resist to expose the underlying substrate.  This would lead to significant 

broadening of the patterned line, seeing as the AFM tip gets wider as one moves from the 

tip end towards its base.  Patterning in thin SAMs would prevent the need for the AFM 

tip to dig into the surface to such a large depth, thereby lessening pattern width.  There 

are several monolayer systems available to act as a reasonable resist layer against 

electroless copper deposition on silicon substrates.  Alkenes, alkynes, and silane 

monolayers on silicon substrates present viable options seeing as vast amounts of 
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research have been performed on their chemical resistance capabilities.35,36  Furthermore, 

the capability of the AFM to pattern through these robust monolayers has been confirmed 

by Headrick et al.37  and Sung et al.38  The ability for alkyne, alkene, and silane SAMs on 

silicon to withstand harsh chemical conditions in conjunction with their capacity to be 

adequately patterned with AFM shows great potential for the possibility of fabricating 

surface-attached metallic nanowires with controllable dimensions via AFM patterning 

and subsequent electroless metal deposition. 

 AFM patterning followed by electrochemical metal deposition has been 

performed previously, but most involve electrodeposition of metal with an externally 

applied voltage to drive metal depositon.39,40 However, Zhang et al.41 has successfully 

shown electroless copper deposition within AFM-patterned lines made in organic 

monolayers on silicon substrates.  Furthermore, their research included some 

optimization experiments of the electroless deposition solution to form uniform copper 

nanowires.  However, their optimization experiments were very limited, and lacked a 

thorough understanding of how adjustments in solution conditions and patterned line 

characteristics may influence electroless metal plating and nanowire fabrication.  In 

addition no characterization of the electrical properties of the manufactured nanoscale 

wires was performed.   

It is the aim of this research to thoroughly examine how changes in the resist 

monolayer, solution conditions, patterned line features, and substrate doping may 

influence copper nanowire fabrication via AFM patterning and subsequent electroless 

copper deposition.  First, AFM patterns were created in octadecyl SAMs on silicon, as 

well as octadecyltrichlorosilane (OTS) and octadecyldimethylchlorosilane (ODMS) 
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SAMs on silicon oxide, and their resistance capability against the electroless copper 

deposition solution probed.  Then, the concentrations of the electroless deposition 

solution components were individually varied, and copper deposition with these solutions 

investigated within AFM-patterned lines.  Through this, we were able to gather 

preliminary data on how changes in solution conditions may influence electroless copper 

deposition within AFM-patterned lines.  The width and depth of AFM-patterned lines 

was varied as well, and the electroless copper plating within these lines of variable 

dimension studied.  Additionally, SAMs on doped and intrinsic silicon were produced, 

and the electroless deposition behavior examined on bare silicon wafers as well as within 

AFM-patterned lines.  It is the hope that with this knowledge it would be possible to 

control nanowire size through manipulation of these parameters as well as optimize them 

for creation of uniform, well-connected nanowire features.  Furthermore, copper 

nanowires were fabricated within gold microelectrode arrays and their electrical 

properties examined to investigate their potential for nanoelectronics applications. 

4.3 Materials and Methods 

4.3.1  Nanopatterning and Electroless Copper Deposition of Octadecyl, ODMS, and OTS SAMs 

Octadecyl, ODMS, and OTS Monolayer Formation 

Octadecyl, ODMS, and OTS monolayers were formed on phosphorous n-doped Si 

(100) substrates (Resistivity:  2-6 Ω-cm, Virginia Semiconductor, Inc).  Initially, silicon 

wafers ~1cm2 in size were cleaned with exposure to a piranha solution (15 mL H202 and 

35 mL H2SO4) for 10 minutes, and rinsed excessively with Nanopure water (18 MΩ).  

For the octadecyl monolayer, wafers were then subject to a 40% NH4F solution for 3 
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minutes to produce H-terminated silicon samples, and rinsed with Nanopure water.  The 

samples were thoroughly dried with nitrogen gas, and placed in pure octadecene under 

bubbling nitrogen.  After a 30 minute nitrogen gas purge, the octadecene was heated to 

180°C with further nitrogen bubbling.  After 2 hours, the samples were allowed to cool to 

room temperature, and the nitrogen flow stopped.  Following a rinse with chloroform, 

acetone, and ethanol, the octadecyl SAMs on silicon were stored in atmospheric 

conditions.  For the OTS and ODMS SAMs, following piranha cleaning, the silicon 

samples with native oxide were thoroughly dried with nitrogen gas and placed in 2.5 mM 

solutions of either octadecyltrichlorosilane (OTS) or octadecyldimethylchlorosilane in a 

toluene solvent.  After 24 hours, the silane-coated samples were removed from the 

solutions in toluene, and sonicated for 30 minutes in pure toluene.  Then, samples were 

rinsed with toluene, chloroform, acetone, and ethanol, dried with nitrogen gas, and stored 

in atmospheric conditions. 

Octadecyl, ODMS, and OTS Monolayer Characterization, AFM Patterning, and 

Electroless Copper Deposition 

 In order to characterize the octadecyl, ODMS, and OTS SAMs, contact angles 

and thickness measurements were obtained with a Ramé-Hart, Inc. NRL C.A. 

Goniometer and Rudolph Auto EL III ellipsometer.  The presented values are averages 

calculated from 5 or 6 sample measurements. 

 Additional characterization of the SAMs included collecting surface morphology 

data, which was performed via atomic force microscopy (AFM) with a Digital 

Instruments Nanoscope IIIa Multimode AFM and Nanoscope E with Lateral Force Mode.  
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Imaging was either performed in contact mode with silicon nitride tips (NPS, Bruker, 

force constant = 0.06 – 0.35 N/m) or in tapping mode with diamond-like carbon coated 

tips (Tap 300DLC, NanoAndMore, force constant = 40 N/m).  Contact mode included 

deflection set points in the range of 0.5 - 1.5 V, and scan rates of 1.0 – 2.0 Hz.  

Parameters for tapping mode comprised of drive frequencies of approximately 300 kHz, 

amplitude setpoints of 0.5 – 0.8 V, and scan rates of 0.3 – 0.8 Hz. 

The AFM microscopes were also implemented in contact mode to pattern the 

SAMs.  The two AFM tips implemented for patterning included diamond-like carbon 

coated tips (Tap300DLC, NanoAndMore) and silicon nitride coated tip (NSC35, 

Mikromasch).  Patterning of the SAMs was performed by increasing the deflection 

setpoints in the AFM Nanoscope software and scanning the sample surface.  AFM-

patterned line widths were controlled by adjusting the aspect ratio parameter.  The force 

applied by the AFM tip while patterning was determined by the following equation: 

          

where Fn is the normal force applied by the tip on the sample, kn is the tip force constant, 

Sn in the deflection sensitivity, and In is the photodiode response signal, or the deflection 

setpoint.42  The force constant for the diamond-like carbon coated tip (Tap300DLC) was 

40 N/m, and the silicon nitride coated tip (NSC35) was 16 N/m.  Deflection sensitivities 

were determined by the value of the contact slope in the force curve for each tip.  

 After patterning within the octadecyl, ODMS, and OTS SAM systems, the 

samples were exposed to a standard copper deposition solution containing 0.27 M NH4F, 
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0.13 M CuSO4, 18 mM sodium tartrate, and 14 mM ascorbic acid.  The octadecyl SAM 

was exposed for 45 sec, the ODMS SAM for 35 sec, and the OTS SAM for 1 minute. 

 

4.3.2  Electroless Copper Plating within AFM-Patterned Lines - Dependence on Solution 

Conditions and Patterned Line Characteristics 

Variation of Solution Conditions with Electroless Copper Deposition within Patterned Lines 

The electroless copper deposition solution conditions were changed by varying 

the concentrations of CuSO4, sodium tartrate, and ascorbic acid, as well as varying the 

type of copper sulfate used in the deposition solutions.  The control experiments were 

conducted with the optimized electroless copper deposition solution, or termed “standard 

plating solution” in this work, obtained from the research described in Chapter 3 of this 

dissertation.  Then, for each experiment involving concentration change, the 

concentration value for one solution component was varied and the concentrations for all 

other components remained at the values of the standard plating solution.  The effect on 

the electroless copper deposition within AFM-patterned lines on OTS upon solution 

condition changes was then investigated via AFM characterization.  All solution 

condition studies incorporated AFM-patterning using a diamond-like carbon coated AFM 

tip (Tap300DLC, NanoAndMore) of OTS SAM samples on n-doped silicon (Resistivity:  

2-6 Ω-cm, Virginia Semiconductor, Inc.).  Patterned lines were of similar width and 

depth.  After electroless copper deposition, the patterned line regions were then 

topographically mapped by contact mode AFM, whose imaging conditions are described 

in section 3.3.1 of this chapter.   
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The following paragraph describes details regarding concentration variation of the 

deposition solution components with subsequent electroless deposition with AFM-

patterned lines.  Two AFM-patterned OTS samples on n-doped silicon were used in each 

study.  One patterned sample was exposed to a standard electroless plating solution with 

normal concentrations for 1 minute, and the other to a solution of variable concentration 

of one solution component for 1 minute.  For the CuSO4 study, one patterned sample was 

exposed to a standard electroless plating solution (0.27 M NH4F, 0.13 M CuSO45H20 

(Sigma Aldrich),18 mM sodium tartrate, and 14 mM ascorbic acid) and the other exposed 

to a solution containing a doubled concentration of CuSO4 (0.27 M NH4F, 0.26 M 

CuSO45H20 (Sigma Aldrich),18 mM sodium tartrate, and 14 mM ascorbic acid).  For 

the sodium tartrate concentration variation, one patterned sample was exposed to a 

standard electroless plating solution (0.27 M NH4F, 0.13 M CuSO4 (old storage in lab),18 

mM sodium tartrate, and 14 mM ascorbic acid) and the other exposed to a solution 

containing no sodium tartrate (0.27 M NH4F, 0.26 M 0.13 M CuSO4 (old storage in lab), 

and 14 mM ascorbic acid).  Lastly, the ascorbic acid concentration changed from 14 mM 

in a standard copper deposition solution (0.27 M NH4F, 0.13 M CuSO4 (old storage in 

lab),18 mM sodium tartrate, and 14 mM ascorbic acid) for one patterned sample to 42 

mM in the second deposition solution (0.27 M NH4F, 0.13 M CuSO4 (old storage in 

lab),18 mM sodium tartrate, and 42 mM ascorbic acid).   

The variation of solution conditions also involved changing the copper sulfate 

source used in the electroless copper deposition solution. Three types of copper sulfate 

sources were implemented to investigate how differences in the source of copper sulfate 

may influence electroless copper deposition within AFM-patterned lines.  The primary 
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source incorporated in a majority of electroless copper deposition studies was anhydrous 

copper sulfate purchased at least 5 years prior to a significant portion of the electroless 

deposition studies presented in this work.  The two other copper sulfate sources were 

newly purchased CuSO45H20 (Sigma Aldrich) and anhydrous CuSO4 (Sigma Aldrich).  

Three OTS samples on n-doped silicon (Resistivity:  2-6 Ω-cm, Virginia Semiconductor, 

Inc.) were patterned with the AFM to produce lines of similar width and depth.  

Following patterning, the samples were exposed to a standard electroless copper 

deposition solution (0.27 M NH4F, 0.13 M CuSO4, 18 mM sodium tartrate, and 14 mM 

ascorbic acid) for one minute.  The difference in molar mass was accounted for in the 

concentration determination of CuSO4 from CuSO45H20, and the old copper sulfate was 

assumed to be anhydrous.  Contact mode AFM was used to characterize these samples, 

with the experimental imaging parameters described in section 3.3.1 of this chapter.  

Additionally, UV-Vis spectra were obtained with a Cary 300 UV-Vis Spectrometer. 

Variation in Line Width and Depth with Electroless Copper Deposition within AFM-

Patterned Lines 

 The AFM-patterned line width and depth were varied, and the subsequent 

electroless copper deposition on these samples probed by AFM microscopy.  All 

patterning and imaging by AFM is described in section 3.3.1 of this chapter.  OTS 

monolayers were formed on n-doped silicon (100) (Resistivity:  2-6 Ω-cm, Virginia 

Semiconductor, Inc.).  Electroless copper deposition conditions were 0.27 M NH4F, 0.13 

M CuSO4, 18 mM sodium tartrate, and 14 mM ascorbic acid for all of these experiments.  

The exposure time for electroless copper deposition was 1 minute.   
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Doping of Si (100) Substrate with Electroless Copper Deposition within AFM-Patterned Lines 

OTS monolayers were formed on n-doped silicon (100) (Resistivity:  2-6 Ω-cm, 

Virginia Semiconductor, Inc.) as well as intrinsic Si (100) (Resistivity:  >20,000 Ω-cm, 

ElCat, Inc.)  All patterning and imaging by AFM is described in section 3.3.1 of this 

chapter.  Electroless copper deposition conditions were 0.27 M NH4F, 0.13 M CuSO4, 18 

mM sodium tartrate, and 14 mM ascorbic acid for all of these experiments.  The 

deposition solution exposure time was 45 seconds.  

The research including doping of the silicon substrate and its influence on 

electroless copper plating was also performed on bulk silicon substrates.  Wafers ~ 1 cm2 

in size of intrinsic Si (100) (Resistivity:  >20,000 Ω-cm, ElCat, Inc.) and n-doped Si 

(100) (Resistivity:  2-6 Ω-cm, Virginia Semiconductor, Inc.) were piranha cleaned for 10 

minute and rinsed thoroughly with Nanopure water (18MΩ).  They were then exposed to 

an electroless copper plating solution consisting of 0.27 M NH4F, 0.13 M CuSO4, 18 mM 

sodium tartrate, and 14 mM ascorbic acid for various time segments.  The samples were 

then characterized by tapping mode AFM as described in section 3.3.1 of this chapter.  

Seed densities were calculated using the particle analysis in Nanoscope Software v 5.3.1. 

4.3.3  Nanowire Formation within Gold Microelectrode Arrays and Resistance Measurements 

 Nanowire fabrication between microelectrodes in an electrode array was 

performed in order to characterize the electrical properties of the electrolessly deposited 

copper nanowires.  Gold microelectrode arrays were fabricated by the Judy Wu Research 

Group in the Physics Department at the University of Kansas.  Their fabrication on 

intrinsic silicon (100) (Resistivity:  >20,000 Ω-cm, ElCat, Inc.) included 
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photolithography to deposit large parts of the electrode arrays and electron beam 

lithography to pattern the microelectrodes onto the substrate surface.  The arrays 

consisted of a 10 nm thick layer of evaporated titantium with an overlying 70 nm layer of 

evaporated gold.  The microelectrodes were developed with a 20 μm length and 2 μm 

width, with the distance between microelectrodes ranging from 1 – 5 μm.  AFM imaging 

and patterning of the gold microelectrode arrays is the same as described in section 3.3.1.  

I-V curve measurements were obtained with a two-point probe apparatus. 

 To understand how bulk resistance values change with copper film thickness, 

copper films of varying thickness were electrolessly deposited on intrinsic silicon (100) 

and their electrical properties examined.  Intrinsic silicon (100) wafers were placed in an 

electroless copper deposition solution with 0.27 M NH4F, 0.13 M CuSO4, 18 mM sodium 

tartrate, and 14 mM ascorbic acid for times ranging from 30 seconds to 4 minutes.  They 

were then rinsed with Nanopure water (18 MΩ).  Parafilm was used to cover 

approximately one half of the samples’ surface area, and the uncovered regions exposed 

to a 1 M solution of FeCl3 for approximately 30 seconds, with a subsequent rinse of 

Nanopure water.  AFM in contact mode described in section 3.3.1 was then used to 

collect step height data at the edge of the dissolved copper-copper film region. 

4.4 Results and Discussion 

4.4.1  Nanopatterning and Electroless Copper Deposition of Octadecyl, ODMS, and OTS SAMs 

 Nanopatterning and electroless copper deposition for nanowire fabrication 

requires a robust resist coating covering the substrate surface to prevent bulk metal 

deposition over the entire sample.  Not only does this resist need to be adequately 
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impervious to metallic plating, but have the capability to be patterned by scanning 

microscopy methods to activate localized regions for metal deposition.  It is for this 

purpose AFM patterning and electroless copper deposition was studied for three different 

types of monolayers on silicon, which is an active material for electroless copper plating.  

The three SAMs include an octadecyl functionality on silicon, 

octadecyldimethylchlorosilane (ODMS) on silicon oxide, and octadecyltrichlorosilane 

(OTS) on silicon oxide.   

  Before patterning and plating, the monolayers were characterized via goniometry, 

ellipsometry, and AFM imaging to probe the packing structure of the molecules on the 

silicon substrate surfaces.  The packing structure of the molecules could indicate how 

effective the monolayer may perform as a resist against electroless plating.  The higher 

surface coverage and tighter packing of the SAM molecule aids in its capability to resist 

penetration of solution species through the monolayer to the underlying substrate.48,49 

Representative values of contact angles and monolayer thicknesses for the three 

monolayer systems are displayed in Table 4.1, as well as their characteristic literature 

values.  Most contact angle and thickness measurements are close to their respective 

literature values.  Comparing contact angle values, it can be seen the ODMS monolayer 

possesses a contact angle and thickness that are significantly smaller than the octadecene 

Monolayer Contact Angle (°) Lit. Contact Angle (°) Thickness (Å) Lit. Thickness (Å) 

Octadecene 100.1 ± 1.7 10343 23.9 ± 0.9 19.544 

ODMS 72.8 ± 1.2 65-7545 11.3 ± 0.5 9.246 

OTS 109.0 ± 1.4 11247 28.2 ± 0.6 26.246 

Table 4.1.  Table of contact angle (°) and thickness (Å) values for octadecyl group on silicon, ODMS 
on SiO2, and OTS on SiO2. 
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and OTS SAMs.  All three molecules within these SAMs 

contain a hydrophobic 18 carbon chain which is 

approximately 2.4 nm in length46, and would thus be 

predicted to depict similar contact angle and thickness 

values if the molecules were organized in similar manners 

on the silicon substrate surfaces.  The only SAM that shows 

heights greater than this value is the OTS monolayer on 

silicon oxide, whose increased height is most likely due to 

slight polymerization of the molecules at the surface, 

slightly increasing the thickness of the monolayer.50  The 

low contact angle and thickness values for the ODMS 

monolayer can be attributed to the two methyl groups 

terminating the molecule with the silane functionality, 

which create steric hindrance between attached ODMS 

molecules on the silicon oxide surface (see Figure 4.2).  

The octadecene and OTS molecule do not experience such 

steric hindrance at the monolayer-substrate interface, and 

therefore are able to pack more closely to one another and 

increase surface coverage.  It is calculated with the steric 

hindrance caused by the methyl groups of the ODMS 

molecule, the maximum possible surface coverage with this 

molecule is approximately half of the maximum coverage 

for OTS monolayers.49  Furthermore, the measured tilt 

Figure 4.2.  Schematic of 
octadecene on silicon (top), 
octadecyldimethylchlorosilane 
(ODMS) on silicon oxide 
(middle), and 
octadecyltrichlorosilane (OTS) on 
silicon oxide (bottom). 
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angles for octadecene and OTS on silicon are approximately 36°44 and 7-8°51 as opposed 

to the ODMS tilt angle which is most likely around ~45° (Note: value based upon 

monochloro silane with some perfluorinated moieties).52  From the probable large tilt 

angle of ODMS in comparison to OTS and an octadecyl monolayer on silicon, it can be 

expected that the thickness of ODMS would be significantly less because the surface 

molecules are lying in a flatter geometry on the surface, leading to a poorly packed 

monolayer in comparison to OTS and octadecene.  These findings are supported by Li et 

al.49 who performed a comparison of OTS and ODMS monolayer systems on silicon 

oxide substrates via sum-frequency spectroscopy and contact angle measurements, and 

found spectroscopic behavior indicative of a high density of gauche defects in the ODMS 

monolayers and proposed a disordered “liquid-like” monolayer phase at the surface.  

However, the OTS monolayers illustrated a high amount of ordered trans configurations 

in the spectroscopic data, as well as signs of significant cross-linking between the 

terminal silane groups at the monolayer-substrate interface.  It is therefore not surprising 

the ODMS exhibits smaller thickness and contact angle values. 

   Even though the SAM containing an octadecyl group on silicon displayed higher 

contact angle and ellipsometric thickness values in relation to ODMS on silicon oxide, 

these numbers were still lower than the values obtained for OTS monolayers.  This may 

be due to the cross linking between the silane functionalities at the monolayer-substrate  

interface in OTS, which could help to increase the order in the SAM packing 

arrangement.  It may also be the result of increased surface roughness of the substrate 

before octadecene monolayer formation due to sample preparation.  Surface roughness 

has been linked to poor SAM quality,53 and thus if the silicon surface was relatively 
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rough before octadecene attachment, it could possibly infringe on the ability of the 

ODMS molecules to pack well in comparison to the OTS and ODMS monolayers, which 

are produced on very flat native silicon oxide. 

 The morphologies of the hydrogen-terminated silicon and silicon oxide before  

monolayer production are illustrated in Figure 4.3.  As stated in the methods section 

4.3.1, in order to covalently bond the octadecyl moiety to the silicon surface, a silicon 

Figure 4.3.  AFM images with cross sections of (a) a piranha-cleaned silicon wafer with native oxide, and 
(b) hydrogen-terminated silicon produced by exposure of a silicon wafer with native oxide to ammonium 
fluoride for 2 minutes.   AFM images of hydrogen-terminated silicon produced by exposure of a silicon 
wafer with native oxide to ammonium fluoride for (c) 6 minutes and (d) 12 minutes. 



 98 

oxide surface is exposed to a 40% ammonium fluoride solution to hydrogen terminate the 

surface.  Subsequently, the sample is heated in pure octadecene under nitrogen flow to 

attach the octadecyl functional group onto the silicon substrate.   The initial silicon wafer 

with a native oxide after piranha cleaning is depicted in part (a).  The cross section 

directly below the image illustrates a very flat surface with a surface roughness of 0.176 

nm, characteristic of silicon oxide after piranha exposure.  However, placing the silicon 

wafer with the native oxide into a solution of 40% ammonium fluoride seems to roughen 

the wafer surface as demonstrated by the large features that range from 1-4 nm in size 

across the hydrogen-terminated silicon sample in part (b) and a surface roughness 

increase to 0.457 nm.  These surface features are similar to ones observed by Bae et al.54 

when exposing Si(111) to 40% ammonium fluoride for short etching times and imaging 

the surface morphology with a scanning tunneling microscope.  Over time these small 

rough features shown here begin to expand to large formations across the surface, as 

depicted in Figure 4.3-c,d.  These images show topographical maps of hydrogen-

terminated silicon surfaces after a silicon wafer with a native oxide layer was exposed to 

40% ammonium fluoride for 6 minutes, (c), and 12 minutes, (d).  The roughening of the 

surface after these times further increases the roughness to 4.536 nm after a 6 minute 

exposure, and 9.085 nm after 12 minutes. Wade et al.55 experienced similar formations 

when etching Si(111) with an oxygen-unpurged 40% ammonium fluoride solution, and 

contributed heavily pitted surfaces from dissolved oxygen which acts as an etch pit 

initiator.  For ease of fabrication in this research, octadecyl monolayers on silicon were 

formed on hydrogen-terminated silicon from silicon wafers exposed to 40% ammonium 

fluoride for 3 minutes to remove the thin silicon oxide coating the silicon layer, but 
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prevent large pit formation and significant roughening of the surface before octadecyl 

SAM formation. 

The resulting morphology of the octadecyl SAM on silicon is illustrated in part 

(a) of Figure 4.4, as well as the surface morphology of the ODMS SAM (b) and OTS 

SAM (c) on silicon oxide.  The AFM cross section for the image of the octadecyl SAM 

confirms a surface structure which is comparatively more rough in relation to the flat 

lines in the cross section for the ODMS and OTS silane monolayers on silicon oxide, and 

the roughness is calculated to be approximately 0.9 nm.  It is likely this results partially  

from the rough surface of the hydrogen-terminated silicon before octadecyl surface 

bonding,53 and will most likely negatively influence the capability of the octadecyl SAM 

on silicon to perform adequately as a chemical resist. The OTS and ODMS monolayers 

demonstrate flat surfaces which mirror the underlying silicon oxide film with roughness 

Figure 4.4.  AFM images with cross sections of (a) an octadecyl SAM on silicon, (b) an ODMS SAM on 
silicon oxide, and (c) an OTS SAM on silicon oxide. 
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values of 0.167 nm and 0.189 nm, demonstrating a uniformity in surface coverage 

without visible defects or pinholes, as some researchers have encountered in previous 

studies.50  From these findings coupled with the contact angle and monolayer thickness 

data, it is predicted the OTS monolayer will likely function as the superior chemical 

resist, surpassing an octadecyl SAM on silicon or ODMS SAM due to its high contact 

angle and thickness reflecting highly ordered packing. 

 In order for the three SAMs in this work to act as chemical resists for the 

formation of metallic nanowires by electroless copper deposition within AFM patterned 

regions, it is necessary to be able to utilize the AFM tip to remove the monolayer resist in 

selective regions to expose the active plating silicon substrate underlying the monolayer 

systems.  Diamond-like carbon coated tips and silicon nitride coated tips were utilized for 

AFM patterning due to their high force constants (40 N/m, 14 N/m) that permit 

Figure 4.5.  AFM images with cross sections of AFM patterned lines in (a) octadecyl SAM, (b) ODMS 
SAM, and (c) OTS SAM. 
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application of high force on the substrate surface, as well as their robust nature to 

withstand harsh patterning conditions.56  Applied forces here ranged from approximately 

600 nN to 4300 nN. The capability for the AFM to create patterns within the SAM 

monolayer resists is illustrated by the AFM images and cross sections in Figure 4.5.  The 

thin dark lines down the center of each image indicate a region of greater depth where a 

substantial force was applied with the AFM and scanned, demonstrating the AFM tip can 

pattern down into the substrate surface.  From the cross section and depth values for the 

AFM etches in the octadecyl SAM (2.7±0.8 nm), ODMS SAM (8.7±0.7 nm), and OTS 

SAM (3.0±0.3 nm), it is clear the tip penetrated past the monolayer films (thickness:  

octadecyl SAM – 2.39±0.09 nm, ODMS SAM – 1.13±0.05 nm, OTS SAM – 2.82±0.6 

nm) to the underlying silicon substrate.  The depths of the AFM-etched patterns range 

from slightly past the monolayer for the octadecyl SAM and OTS SAM, and deep into 

the silicon substrate for the ODMS SAM.  Patterning with the AFM tip is very sensitive 

to condition parameters such as the wear of the tip, scan speed, force applied, and 

monolayer/substrate defects.37,56  The applied force, tip wear, and monolayer defects were 

variable when patterning these three monolayers with the AFM.  Even though the depth 

of the etches is dependent upon all these parameters which may be difficult to control or 

effectively reproduce, most importantly these AFM images display the ability of the 

AFM to selectively expose the silicon substrate underneath the SAMs in localized areas 

for potential electroless metal deposition. 

  After AFM patterning, the samples with the AFM-etched lines were exposed to an 

electroless copper plating solution containing 0.13 M CuSO4, 0.27 M NH4F, 18 mM 

sodium tartrate, and 14 mM ascorbic acid.  The ability for the electroless deposition 
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solution to selectively plate copper on exposed silicon surfaces is discussed in section 3.2 

in Chapter 3.  The exposure time for the octadecyl monolayer, ODMS SAM, and OTS 

SAM were 45 seconds, 35 seconds, and 1 minute.  The exposure times were different due 

to the fact each monolayer exhibited different resistance capabilities to copper electroless 

plating, thus plating times were adjusted to prevent significant copper deposition within 

resist areas, which would make it difficult to obtain AFM images of the AFM-patterned 

areas.  The variation in surface morphology of substrates after this deposition is 

illustrated in Figure 4.6.  There appears to be preferential plating within the patterned 

region of the octadecyl SAM on silicon shown in image (a), with a majority of the raised 

features attributed to copper deposition residing within the AFM-etched area.  However, 

a significant amount of small seeds with raised height above the SAM seem to have 

nucleated within the resist region, suggestive of solution penetration through the 

octadecyl monolayer with subsequent copper deposition in these areas.  This penetration 

most likely happens at defect sites. Nucleation of silver from an electroless metal 

deposition solution has been used before to characterize the defect density of silane 

Figure 4.6.  AFM images after AFM patterning and copper electroless deposition with a solution of 0.13 
M CuSO4, 0.27 M NH4F, 18 mM sodium tartrate, and 14 mM ascorbic acid in (a) octadecyl SAM on 
silicon, (b) ODMS SAM on SiO2, and (c) OTS SAM on SiO2. 
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monolayers.35 Comparatively, there seems to be significantly less copper deposition 

within the patterned line on the ODMS monolayer in part (b), as the density of the 

nucleated seeds appears to be similar throughout the region within the patterned line and 

the surrounding resist area.  This implies poor resistance to the harsh conditions of the 

electroless plating solution, and that deposition happens simultaneously within the 

patterned region and the surface with the SAM-coated resist.  The copper deposition 

within the OTS pattern in Figure 4.6-c appears to be comparably specific to within the 

AFM-etched region, as the dark color of the deep etch is now brightly colored, 

representing a large increase in height to about 150 nm, and only a few copper seeds 

appear in the OTS resist region.  Not only does most of the copper deposition happen 

within the patterned line, but also the copper seems to be deposited in a more uniform 

structure in relation to the small dispersed seeds displayed within the etched line of the 

octadecyl SAM.  This most likely is the result of the longer one-minute exposure time of 

the OTS monolayer to the electroless deposition time compared to the 45-second time for 

the octadecyl SAM, which would allow the copper seeds to grow larger and aggregate 

into a more uniform formation.  It should be noted the presence of a few copper seeds in 

the OTS resist region show the monolayer is not impervious to solution penetration and 

metal deposition.  Longer exposure times of the OTS monolayer to the deposition 

solution do demonstrate increased copper plating within the unpatterned resist region.  

However, the OTS monolayer does provide a means to slow down the penetration and 

metal nucleation process enough to allow for sufficient deposition in AFM patterned 

regions to create a relatively uniform nanowire feature. 
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  The ability to resist copper seed nucleation even with a more prolonged exposure 

time to the electroless metal deposition solution makes it evident the OTS monolayer is 

the best choice as a chemical resist.  This is not surprising considering its higher 

thickness and contact angle values, which signify highly ordered packing of the OTS 

molecules on the substrate surface to withstand solution penetration.  It is the most 

promising for successful copper nanowire formation via electroless plating, and the SAM 

implemented in the remainder of the research described in this chapter. 

4.4.2  Electroless Copper Plating within AFM-Patterned Lines - Dependence on Solution 

Conditions and Patterned Line Characteristics 

 Now that it has been established that the OTS functionality on silicon oxide 

demonstrates the best resistance to the electroless copper deposition solution, and the 

production of nanowires by selective copper deposition within an AFM-patterned is 

possible, it is the focus of this research to be able to control the dimensions and features 

of the nanowires through manipulation of the electroless copper deposition components 

as well as the AFM patterning procedure.  In order to use these nanowires for a variety of 

applications, especially electronics and nanodevices of precise size, it is important to be 

able to control the lateral size and height of the wires in addition to selectively placing the 

nanowires in the desired location on the substrate surface.  It is for this purpose the 

electroless deposition of copper within AFM-patterned lines was investigated upon 

altering solution conditions, the patterned line dimensions, as well as the type of silicon 

of silicon substrate. 
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 Solution conditions were 

altered by varying concentrations 

of the copper sulfate, sodium 

tartrate, and ascorbic acid within 

the electroless plating solution, 

and the subsequent influence on 

nanowire dimensions 

investigated by AFM.   It should 

be noted the electroless plating 

took place for a 1-minute 

deposition time within AFM-

patterned lines of similar lengths, 

widths, and depths, as well as 

similar silicon substrate doping 

and crystal lattice orientation, to 

discount deposition variations 

resulting from these factors.  The 

results from solution 

concentration changes are 

depicted in Figure 4.7.  In part 

(a) of this figure, which displays 

an AFM-patterned line after 

exposure to a standard plating 

Figure 4.7.  AFM images and cross sections of 
electrolessly deposited copper into AFM patterned lines 
upon varying solution concentrations.  The copper sulfate 
concentration in a standard plating solution was changed 
from (a) 0.13 M CuSO4 to (b) 0.26 M CuSO4.  The sodium 
tartrate concentration in a standard plating solution was 
changed from (c) 18 mM to (d) 0 mM.  The ascorbic acid 
concentration in a standard plating solution was changed 
from (e) 14 mM to (f) 42 mM. 
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solution, the height of the deposited copper features reaches approximately 275 nm, with 

a small number of large seeds sparsely dispersed along the patterned line.  The 

heterogeneity of the deposition is most likely a consequence of the type of copper sulfate 

implemented in the electroless copper deposition solution for this particular experiment 

involving variation in copper sulfate concentration, which will be discussed later.  The 

other two experiments involving the change in concentration of ascorbic acid and sodium 

tartrate utilize a different copper sulfate source.  More importantly, though, as the copper 

sulfate concentration is doubled, the height of the deposited metal increases by more than 

a factor of two as seen in Figure 4.7-b.  Clearly as the copper sulfate concentration 

changes, so does the amount of copper deposited within the AFM-patterned line.  

Additionally, changes in the sodium tartrate concentration demonstrate the capability to 

influence the dimensions of the fabricated nanowire as observed in parts (c) and (d) of 

Figure 4.7.  Without the addition of sodium tartrate within the deposition solution, the 

plated metal reaches heights of around 980 ± 90 nm (image (d)) within the AFM-

patterned area, far surpassing the height of 160 ± 30 nm (image (c)) when a concentration 

of 18 mM of sodium tartrate is present in the solution.  This is no surprise considering 

sodium tartrate is believed to complex with copper ions in solution to prevent copper 

reduction and precipitation within the bulk solution, as well as slow down the deposition 

rate to relieve compressive stress within electrolessly deposited metal films.57,58  Lastly, 

there additionally seems to be a significant change in the copper nanowire height upon 

change of the ascorbic acid concentration.  Increasing the ascorbic acid concentration to 

42 mM (f) from 14 mM (e) present in a standard plating solution changes the height of 

deposited metal from around 150 nm to about 350 nm.  The ascorbic acid is considered to 
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aid in adhesion of the copper film,57,59 and it was previously discussed in section 3.4 of 

Chapter 3 that ascorbic acid can increase the deposition rate and induce significant stress 

into electrolessly deposited copper films.  The copper sulfate, sodium tartrate, and 

ascorbic acid all directly influence the amount of copper ions available for reduction at 

the silicon surface.  The copper sulfate is the source of copper ions, sodium tartrate acts 

as a chelator to bind free copper ions, and ascorbic acid facilitates the reduction of Cu2+ 

to Cu+, as well as chelates these ions.  An increased number of available copper ions in 

the vicinity of the AFM-patterned line would likely lead to a larger amount of copper 

reduced within the pattern, resulting in the formation of larger-sized features after copper 

deposition.   The effect of a wide range of copper sulfate, sodium tartrate, and ascorbic 

acid concentrations was not investigated here, and the illustrated results demonstrate 

preliminary data.  Even though concentration effects over a large range is not depicted, it 

has still been shown it is possible to change the height of the fabricated copper nanowires 

by variation of the copper sulfate, tartrate, and ascorbic acid concentrations within the 

electroless deposition solution, which highlights the promise of concentration variation as 

an easy means to control the features of the metallic nanowires.  Future studies are to be 

performed to gain a better understanding of the detailed control provided by a large 

assortment of concentrations of copper sulfate and sodium tartrate. 

 As mentioned, the type of copper sulfate compound incorporated into the 

electroless deposition solution may also play a role in the deposition of copper on 

exposed silicon within AFM-patterned lines.  Unexpectedly, electroless copper 

deposition within patterned lines in an OTS monolayer demonstrated differences 

depending on the source of the copper sulfate, as illustrated in Figure 4.8.  Images (a) – 
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(c) display AFM-patterned lines of 

similar dimensions after 1 minute 

of electroless plating solution 

exposure.  The solution 

concentrations were standard with 

0.13 M CuSO4, 0.27 M NH4F, 18 

mM sodium tartrate, and 14 mM 

ascorbic acid, and the only 

variation was the source of the 

copper sulfate.  The AFM image in 

(a) exhibits rather uniform copper 

plating along the AFM etched line 

with copper sulfate used from an 

old storage source, whereas (b) and 

(c) show small, dispersed seeds 

along the AFM-patterned line 

when newly purchased copper 

pentahydrate and anhydrous copper 

sulfate were used in the deposition 

Figure 4.8.  AFM images of AFM-patterned lines and 1-
minute electroless copper deposition with standard plating 
solutions containing (a) an old storage of copper sulfate, 
(b) newly purchased copper sulfate pentahydrate, and (c) 
newly purchased anhydrous copper sulfate.  Photos of the 
(d) old storage of copper sulfate, the (e) newly purchased 
copper sulfate pentahydrate, and the (f) newly purchased 
anhydrous copper sulfate. 
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solution.  Copper sulfate is 

stable in air, and only 

undergoes hydration in 

ambient conditions.  Its 

anhydrous form, the white 

powder depicted in (f), is 

hygroscopic and absorbs water 

from the atmosphere to create 

a deep blue copper sulfate 

pentahydrate,60 as shown in (e) 

of this figure.  The old copper 

sulfate source clearly depicts a 

hydrated mixture somewhere 

in between that of the 

anhydrous and pentahydrate 

compounds, with a mixture of 

light blue color in image (d).  

Seeing as all the copper sulfate 

compounds become dissolved 

in aqueous solution, it is 

expected the initial amount of 

copper sulfate hydration would 

not effect electroless copper 
Figure 4.9.  UV-Vis spectra of electroless copper plating 
solutions with (a) old copper sulfate, (b) newly purchased copper 
sulfate pentahydrate, and (c) newly purchased anhydrous copper 
sulfate. 
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deposition behavior.  Experiments were performed to account for potential concentration 

differences due to differences in hydration, however the same behavior is still observed.  

To investigate possible differences in coordination surrounding the copper ions in 

solution for these three compounds, the absorption spectra in the visible region were 

collected for these copper sulfate chemicals with and without the other electroless 

deposition components.  The spectra do not show any detectable variations as 

demonstrated in Figure 4.9.  All show the characteristic water-solvated Cu(II) absorption 

peak at approximately 800 nm61 for the solutions containing copper sulfate, with the 

subsequent additions of ammonium fluoride, sodium tartrate, and ascorbic acid.  Upon 

addition of the ascorbic acid, all three further display a shoulder formation around 400 

nm.62  Since there are no detectable differences in the absorption spectra, it is believed 

some type of impurity in the old, or newly purchased copper sulfates is contributing to 

the differences in electroless plating behavior.  Previous studies have shown that trace 

amounts of metal in addition to copper have led to significant etching of the silicon 

substrate immediately surrounding nucleated copper in fluoride-containing solutions, 

even at ppb quantities.63  The newly purchased copper sulfates do contain trace amounts 

of iron, so these variations in plating could potentially result from metallic impurities that 

exist in the newly acquired copper sulfate compounds, or at least differences in the 

amount of metallic impurities in the old stored copper sulfate in relation to the newly 

purchased copper sulfates.  Future studies are currently underway to purify the old copper 

sulfate storage and perform similar electroless copper deposition experiments to confirm 

impurities are the true cause of the variation in copper deposition behavior within the 

AFM-patterned lines.  Though the specific source of deposition differences for various 
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copper sulfates is still undetermined, it is still evident that the type of copper sulfate 

utilized can influence the electroless deposition of copper within AFM-patterned lines, 

and the purity of the copper sulfate added to the electroless deposition solution may be a 

significant factor in uniform metal deposition. 

 Thus far only changes in solution conditions and the resulting effect on the 

electroless copper deposition within AFM-patterned lines has been discussed.  There is 

also the potential for the deposition to be influenced by characteristics of the AFM-

patterned lines themselves.  The contact area between the AFM tip and the sample limits 

Figure 4.10.  (a) – (c) AFM images and cross section of AFM-patterned lines different widths in an 
OTS SAM.  (d) – (f)  AFM images of the patterned lines in (a) – (c) after exposure to a standard 
electroless deposition solution for 1 minute. 
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the lateral dimensions of the patterned lines, and patterns within SAMs from scanning 

probe lithography have reported line widths down to approximately 10 nm.27  Here, it has 

been possible to pattern lines down to an approximately 20 nm width, and demonstrate 

sufficient copper electroless plating within these lines to form copper nanowires.  Figure 

4.10-a shows an AFM image with accompanying cross section of a patterned line within 

an OTS SAM that is approximately 20 nm in width.  After exposure to a standard copper 

electroless deposition solution, relatively uniform plating can be observed in image (d) 

throughout the etched lines, with its height ranging from 50 – 70 nm, and its width 

around 450 nm.  The width increases significantly after metallic deposition, which is 

undesirable for the application of these nanowires into small nanoelectronic devices, but 

the height and width of the metallic nanofeature may be manipulated by changes in the 

electroless deposition solution, as been shown previously within this chapter.  Increasing 

the patterned line width to slightly over 120 nm, as illustrated in image (b), produces 

similar results after electroless metal deposition, seen in Figure 4.10-e.  A continuous 

well-formed nanowire was created with a width of approximately 500 nm and a height of 

about 200 nm after copper metal deposition (see Figure 4.10-e).  However, further 

expansion of the line width may have adverse effects on the formation of a well-

connected, uniform nanofabricated line after metal plating.  Image (c) of Figure 4.10 

displays a line patterned between two gold microelectrodes, which possesses a large 

width of approximately 650 nm.  Upon exposure to the electroless copper plating 

solution, copper seeds do appear to have nucleated along the entire length of the 

patterned line as observed in image (f), but the seeds do not display sufficient growth to 

produce a well-connected metal nanowire of uniform dimensions as seen in images (d) 
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and (e).  Evidently, AFM-patterned lines with significantly increased widths, on the order 

of hundreds of nanometers, do not provide enough confinement to promote significant 

copper seed growth to fill in the large patterned region under these plating conditions.  

Thus, further adjust of the plating conditions would likely permit improved seeding and 

growth of copper within lines of large widths, considering the previous Figure 4.7, which 

demonstrates copper nanowire growth with and without any sodium tartrate present in the 

electroless copper plating solution.  With the absence of sodium tartrate in solution, very 

large copper features over a micron in height are observed, whereas most other copper 

features in this work display heights of 300 nm or less.  More importantly, though, it is 

clearly demonstrated this method is practical for patterning wires down to approximately 

20 nm followed by successful electroless copper deposition within these line patterns.  

Future studies are underway to develop AFM-patterned lines with smaller widths to 

investigate any potential limitations in electroless copper plating in patterns of decreased 

line width.   

 Another parameter of the AFM-patterned line to potentially influence electroless 

copper deposition would be the depth of the patterned line.  In order to expose the 

underlying silicon surface for electroless copper plating, it is imperative to pattern past 

the OTS SAM, whose thickness is approximately 2.6 nm.46  Figure 4.11-a shows an AFM 

image of an AFM-patterned line within an OTS monolayer with a depth of 2.5 ± 0.5 nm, 

which is barely through the monolayer coating on the silicon surface.  It can be observed 

in image (d) that the depth is significant enough to permit electroless copper deposition 

within the AFM-patterned line.  However, if the depth of the patterned line does not 

reach through the monolayer, as in image (b) illustrating an AFM-patterned line 
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possessing a 1.5 ± 0.3 nm depth, electroless copper plating does not occur within the 

patterned line of insufficient depth. Image (e) depicts the patterned line from (b) after 

exposure to the electroless copper deposition solution.  No raised features from copper 

deposition appear and the depth of the patterned line remains consistent at 1.7 ± 0.5 nm 

with the depth before electroless copper plating.  Evidently, partial removal of the OTS 

SAM does not disrupt the monolayer enough to promote copper plating within patterned 

lines, and the remaining components of the SAM can act as a sufficient chemical resist 

under these copper plating conditions.  Even though it is necessary to AFM-pattern deep 

Figure 4.11.  (a) – (c) AFM images and cross section of AFM-patterned lines different depths in an 
OTS SAM.  (d) – (f)  AFM images of the patterned lines in (a) – (c) after exposure to a standard 
electroless deposition solution for 1 minute. 
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enough to pass through the OTS SAM coating to allow electroless copper deposition, 

there seems to be no threshold on a maximum depth for successful electroless copper 

plating.  For example, Figure 4.11-c depicts an AFM-patterned line in an OTS SAM with 

a large depth of 22 ± 5 nm.  Image (f) confirms electroless copper deposition within this 

line, demonstrating uniform deposition and a well-filled line with large copper features.  

Clearly, it is crucial to surpass the 2.6 nm thickness of the OTS SAM for sufficient 

copper plating within AFM-patterned lines, but there is no limit on the depth of the AFM-

pattern for effective metal deposition once this threshold is exceeded. 

The dimensions of the AFM-patterned line within the OTS SAM on silicon may 

not be the only sample factor to impact electroless copper deposition, but the doping of 

the underlying silicon may affect the plating as well.  A majority of previous studies 

utilize heavily n or p-doped silicon with low resistivity values,59,57 and consequently most 

of the research detailed in this work thus far was performed with highly doped n-type 

silicon (2-6 Ω-cm).  These doped silicon substrates with small resistivities would 

significantly interfere with resistance measurements of the electrolessly deposited copper 

nanowires.  The current between the two electrodes connecting the wire could easily flow 

through the copper nanowire as well as the conductive doped silicon, leading to largely 

inaccurate conductivity values.  For this reason, it is desired to develop these electrolessly 

deposited copper nanowires on intrinsic silicon, which contains no dopant and has large 

resistivity values surpassing 20,000 Ω-cm.  The current resulting from an applied voltage 

would primarily remain within the fabricated copper nanowire on undoped silicon, seeing 

as the resistivity of copper is much lower than that of intrinsic silicon with a value on the 

order of μΩ-cm.64,65  Furthermore, investigations in current literature have not been 
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performed probing the potential influence doping of the silicon substrate may have on 

electroless copper deposition.  In view of the fact electroless copper deposition occurs 

Figure 4.12 AFM images of AFM-patterned lines and 45-second electroless copper deposition with 
standard plating solutions on (a) intrinsic Si (100) and (b) n-doped Si (100).  AFM images of bare 
intrinsic Si (100) wafers with native oxide after electroless copper deposition for (a) 2-3 sec, (b) 5 
sec, and (c) 10 sec.  AFM images of bare n-doped Si (100) wafers with native oxide after electroless 
copper deposition for (a) 2-3 sec, (b) 5 sec, and (c) 10 sec. 
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with a transfer of electrons at the silicon-metal interface from the silicon to the copper 

ions for copper metal reduction,66 there is possibility for the conductivity of the silicon 

substrate to play a role in facilitating this electron transfer, resulting in potential 

differences in electrolessly plated copper morphology.  

 To study this hypothesis and the effect of silicon doping on electroless copper 

deposition, OTS monolayers were developed on both intrinsic Si (100) and n-doped Si 

(100), patterned with AFM to produce lines of similar dimensions, and the patterned 

regions exposed to similar electroless deposition conditions for a 45 second period.  The 

experimental results are displayed in Figure 4.12-a,b.  The electroless metal deposition 

within the patterned line on intrinsic silicon (100) illustrates rather uniform metal seeding 

throughout the patterned line, with seed dimensions in the range of 80 to 100 nm, 

showing promise for the production of a well-connected, continuous metallic nanowire.  

Conversely, the plating within the patterned line on n-doped silicon shows a lower 

density of larger seeds, with sizes in the range of 140-160 nm in size, in relation to the 

nucleated metal with the AFM-pattern on instrinsic Si (100). To further investigate this 

variation in metallic plating behavior between these two silicon samples, electroless 

copper deposition was performed on bare substrates of intrinsic Si (100) and n-doped Si 

(100), and the metal deposition probed over a period of time.  The surface morphology of 

deposited copper on bare intrinsic Si (100) for the first 10 seconds of deposition are 

depicted in Figure 4.12 parts (c) – (e), and the surface structure of nucleated copper on 

bare n-doped Si (100) for the same time range illustrated in images (f) – (h) of the same 

figure.  Comparing (c) and (f), it can be seen the initial stages of copper nucleation on 

bare intrinsic Si (100) are different in relation to bare n-doped Si (100).  The seed density 
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within the first few seconds of deposition is significantly higher on intrinsic Si (100) at 

40 ± 10 particles/μm2 as compared to the 6 ± 3 particles/μm2 on n-doped Si (100), and 

furthermore the majority of seeds on the n-doped Si (100) are larger in size than the ones 

found on intrinsic Si (100) in the same time range.  After approximately 5 seconds, the 

seeds on the bare intrinsic Si (100) begin to grow larger in image (d), and an increased 

amount of smaller seeds begin to appear on the bare n-doped Si (100) surface amongst 

large nucleated seeds in image (g).  The seed densities for both the bare instrinsic Si 

(100) and bare n-doped Si (100) reach similar values at 30 ± 10 particles/μm2 and 25 ± 10 

particles/μm2.  The similarity in seed density is a result from the appearance of new, 

smaller seeds on the bare n-doped silicon surface, but there is still a noticeable difference 

in the distribution of seed sizes within the two AFM images in (d) and (g).  It is important 

to note the copper seed density seems to decrease on the intrinsic Si (100) from the 2-3 

second time period onto the 5-second image in (d).  The data was collected on different 

silicon wafer samples, and the decrease is likely due to sample variability.  Upon 

reaching the 10-second deposition time, there is no evident difference in surface 

morphology, seed density, or metal seed size between the deposited copper on intrinsic Si 

(100) in image (e) and the n-doped Si (100) in image (h).  Evidently, copper nucleation 

on the bulk silicon substrates shows smaller seeds depositing in large density upon the 

intrinsic silicon, whereas the doped silicon illustrates nucleation of large copper seeds 

with a decreased density.  However, this difference appears to diminish after 10 seconds 

of electroless copper plating on the bulk intrinsic and n-doped silicon.  It is possible the 

confined, nanoscale dimensions of the AFM-patterned lines on these silicon substrates 

allows for this difference in copper nucleation and growth to be evident even after a 45 
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second exposure time to the copper plating solution.  The contrasting behavior of metal 

deposition within AFM patterned lines on instrinsic Si (100) and n-doped Si (100) could 

potentially be the result of their conductivity differences.  Yae et al.67 has shown metal 

nucleation on silicon in HF solutions causes increased etching of the silicon immediately 

surrounding the nucleated metal due to the formation of a localized galvanic cell.  The 

etching depended upon the metal, the presence of the dissolved oxygen oxidizing agent, 

and the photogenerated electrons and holes in the silicon.  If the amount of available 

holes and electrons are different due to contrasting doping levels of the silicon substrate, 

it would most likely lead to a change in etching around the copper nucleated seeds.  

Consequently, the ability of the copper to nucleate and grow may alter if the silicon is 

being etched in a significantly different manner around the nucleated metal seeds.  The 

more limited number of holes and electrons in the intrinsic silicon with high resistivity 

could possibly lower the silicon etch rate around the nucleated copper seeds in relation to 

the n-doped silicon, potentially allowing for more seeds to nucleate to form within the 

patterned region.  Most importantly, it is evident a larger density of copper seeds forms 

within the AFM-patterned lines on intrinsic silicon in comparison to n-doped silicon, 

which is promising to form uniform, continuous copper nanowires on a largely insulating 

substrate. 

 In summary, it has been shown through manipulation of several factors including 

the electroless copper plating solution conditions, AFM-patterned line dimensions, as 

well as the doping of the underlying silicon substrate, one may significantly influence the 

characteristics of electroless copper deposition within AFM-patterned lines made on 

silicon substrates possessing a SAM resist coating.  Changes in copper sulfate and 
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sodium tartrate concentrations can be used to directly affect the size of the fabricated 

metal nanowires, most likely because they control the amount of available free copper 

ions for reduction at the silicon surface.  Additionally, potential metal impurities in the 

copper sulfate source may negatively influence the ability to uniformly deposit copper 

along AFM-patterned lines.  The uniformity of copper deposition is also adversely 

impacted when the width of the AFM-patterned lines exceed values of a few hundred 

nanometers, however this may likely be overcome by adjustment in plating solution 

parameters, and in addition it is possible to successfully electrolessly deposit copper 

within lines reaching down to an approximate 20 nm width.  The only limitation on the 

depth of the AFM-patterned lines seems to be a minimum threshold that needs to exceed 

the thickness of the OTS SAM, sufficiently exposing the silicon substrate for electroless 

metal deposition.  Lastly, metal deposition on samples with an intrinsic Si (100) substrate 

seem to show increased nucleated copper seed densities in comparison to n-doped Si 

(100) samples, illustrating a promise for fabrication of uniform copper nanowires on 

insulating substrates.  All these considerations may be used to develop copper nanowires 

on silicon surfaces of good quality and controllable dimensions. 

4.4.3  Nanowire Formation within Gold Microelectrode Arrays and Resistance Measurements 

In order to implement these copper metallic nanowires into electronic 

applications, it is imperative to characterize their electrical properties.  For this reason, 

copper nanowires were produced within gold microelectrode arrays via AFM patterning 

and electroless copper deposition, and their resistance values measured by collection of 

current-voltage curves.  Gold microelectrode arrays were manufactured in collaboration 

with the Judy Wu Research Group in the Physics Department at the University of Kansas.  
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Their fabrication included photolithography and electron beam lithography to deposit 10 

nm layer of titantium followed by 70 nm of gold in microelectrode patterns onto intrinsic 

Si (100) with its native oxide.  The microelectrodes were 20 μm in length, 2 μm in width, 

and the electrode separation was in the range of 1 – 5 μm.   An optical image of the array 

is depicted in Figure 4.13-a. The large gold pads for I-V curve measurements are visible 

in the large-scale image, and are connected to the smaller microelectrodes evident in the 

zoomed-in area within the smaller accompanying optical image.  The AFM image in (b) 

of the same figure shows the microelectrodes on a micron scale, and that the regions 

around the microelectrodes are relatively flat with little variation in color.  To 

Figure 4.13.  (a) Optical image of gold microelectrodes array comprised of a 10-nm thick layer of Ti and 
60-nm thick layer of Au on intrinsic Si (100).  (b) AFM image of gold microelectrode array.  (c) I-V curve 
between gold microelectrodes with a 4 μm separation before nanowire fabrication. 
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characterize the electrical properties before nanowire fabrication between these gold 

microelectrodes, I-V measurements were collected and the resistance values calculated 

for the bare intrinsic Si (100).  The resulting I-V curve for an electrode separation of 4 

μm is displayed in Figure 4.13-c.  The curve exhibits relatively linear behavior over the 

range of 0 – 1 V, which is similar to characteristics shown for intrinsic silicon 

nanowires,68 and a large average resistance of 4.0 MΩ.  It is supposed following copper 

nanowire fabrication, the resistance would drop significantly seeing as the resistivity of 

the intrinsic Si (100) substrate (>20,000 Ω-cm) is much larger than the resistivity of 

electrodeposited copper, which has resistivity values on the order of μΩ-cm.65  It is 

predicted the fabricated copper nanowire would have the following dimensions: width 

(w) = 200 nm, length (l) = 4 μm, and thickness (t) = 200 nm.  Assuming a resistivity (   
value of 6 μΩ-cm, the anticipated resistance value (R) after copper nanowire is 

approximately 6 Ω according to the equation: 

        

The drastic resistance drop between the gold microelectrodes with a 4 μm separation 

from 4 MΩ before nanowire fabrication to a predicted 6 Ω following production of the 

copper nanowire illustrates the likelihood of measuring a resistance change if a nanowire 

of good quality and adequate connection is fabricated between these microelectrodes.   

 After the I-V measurements were obtained between the gold microelectrodes for 

the bare intrinsic Si (100), the sample wafer was placed in a mM OTS solution to form an 

OTS monolayer on the exposed silicon oxide surface.  The presence of the monolayer 

was confirmed with a thickness measurement of 26.4 ± 0.9 nm, and a contact angle value 
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of 110 ± 2 on the mm-size regions of the sample wafer without the gold microelectrode 

arrays.  The AFM was then used to pattern a line between the same gold microelectrodes 

with a 4 μm separation, the line was exposed to a standard electroless copper plating 

solution for one minute, and the surface morphology characterized with AFM and 

resistance values determined from I-V curve measurements.   The data collected is shown 

in Figure 4.14.  Before metal deposition, it is demonstrated in part (a) of this figure that 

the AFM instrument can be successfully implemented to pattern lines between the gold 

microelectrodes, exposing silicon for selective copper deposition.  The line has an 

approximate 17 nm depth, surpassing the thickness of the OTS monolayer, and a width of 

around 70 nm.  Upon exposure to a standard electroless copper plating solution for one 

minute, it can be seen in images (b) and (c) that copper deposition occurs within the 

AFM-patterned line, creating metal deposition which connects the two microelectrodes.  

Figure 4.14.  AFM image with cross section of (a) AFM-patterned line within gold microelectrode array 
coated with OTS SAM and (b) the patterned line after 1 minute exposure to a standard electroless copper 
deposition solution.  (c) AFM image of the same fabricated nanowire between the gold microelectrodes 
separated by 4 microns.  (d)  I-V curve measurements of the nanowire depicted in (b) and (c). 
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There is some notable copper seeding in the resist region immediately surrounding the 

nanowire as well.  Since these seeds are isolated from one another and do not form any 

apparent connection between the electrodes, it is believed they will not provide pathways 

for sufficient current to travel from one microelectrode to the other, and the bulk of the 

current will move through the nanowire feature.  The height at around 150 nm and width 

at approximately 300 nm do vary from the expected dimensions mentioned previously 

when calculating the predicted resistance values following nanowire formation, however 

these changes are not significant enough to alter the expected several order of magnitude 

change following nanowire fabrication within the electrode array.  The I-V curve in 

Figure 4.14-d however, does not reflect a drastic decrease in resistance values as 

projected, and the calculated resistances based on the graph data range from 1 – 4 MΩ.  

There are some key differences from the I-V curve from before and after deposition, 

however.  The I-V in Figure 4.14-d resulting from nanowire fabrication between the gold 

microelectrodes displays a higher degree of exponential curvature in relation to the 

primarily linear I-V curve before nanowire construction (see Figure 4.13-c).  These 

changes indicate a possible change in the I-V curve behavior due to the copper nanowire 

feature connecting the two gold microelectrodes, and that these high resistance values are 

not simply measuring the resistance of the intrinsic silicon.  The current values in this 

voltage range are similar to those acquired for I-V curve measurements obtained by Liao 

et al. for that of a single copper oxide nanowire.69  Copper oxide possesses a significantly 

larger resistivity value (about 1500 Ω-cm or greater)70 in comparison to reduced copper, 

which has resistivity values in the μΩ-cm range.65  The expected resistance value for the 

nanowire if it were comprised primarily of copper oxide with a resistivity (   value of 
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1500 Ω-cm would be over 1000 MΩ implementing the equation R=   l / w t  with the 

following parameters:  width (w) = 300 nm, length (l) = 4 μm, and thickness (t) = 150 

nm.  This resistance value is much more than the measured range of 1 – 4 MΩ, so if the 

wire is primarily copper oxide, it would probably result in I-V curve behavior which 

mirrors that of the intrinsic silicon.  However, De Los Santos Valladares et al. 

demonstrated how the resistivity changes of thinly deposited copper films as they become 

oxidized.  According to their research, thin films consisting of both reduced copper and 

copper oxide may hold resistivity values anywhere between 1 x 10-4 and 1 x 103 Ω-cm 

depending on the Cu-Cu2O composition ratio.  In view of this finding, it is likely the 

electrolessly deposited copper here contains both copper and copper oxide.  It has been 

well-studied copper may oxidize significantly in the presence of air,71,72 and the 

prolonged exposure of the fabricated nanowire to atmospheric conditions likely oxidized 

part of the electrolessly plated copper to copper oxide.  Lim et al.72 illustrated enhanced 

copper oxide growth on copper surfaces with microstructures and surface defects, and 

thus the seed-like copper deposition within the AFM-patterned line would likely promote 

increased copper oxide growth.  Another factor that may influence the large resistance 

value after copper oxide deposition would not only be the composition of the nanowire, 

but also its structure.  In image (b) of Figure 4.14, there appear possible gaps along the 

nanowire feature that may not be well-connected, which could significantly hinder 

electron transport along the developed nanowire.  From the given data, the cause of the 

large resistance value after nanowire fabrication between the microelectrodes remains 

inconclusive and could be the result of incomplete copper connection or the formation of 

copper oxide. 
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 One way to determine if copper oxidation is behind the large resistance value 

following nanowire fabrication would be to develop copper nanowires with significantly  

larger dimensions, and determine if there is a significant change in the trend of resistivity 

values in relation to nanowire size.  Preliminary data from experiments on bulk intrinsic 

silicon demonstrating how resistance values change with electrolessly deposited copper 

film thickness is illustrated in Figure 4.15-a.  Copper was electrolessly deposited on bulk 

Figure 4.15.  (a) Graph depicting resistance values of electrolessly deposited copper films of varying 
thickness.  (b) AFM image and cross section of step edge from dissolving part of copper film with 0.1 M 
FeCl3. 
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intrinsic Si (100) to create copper films of varying thickness, and the resistance measured 

over a 1 cm length.  Thickness values were determined by dissolving part of the copper 

film in a 0.1 M FeCl3 solution, and measuring the resulting step edge height with AFM.  

An example is depicted in Figure 4.15-b.  From the graph in part (a) it can be seen that 

copper film thicknesses smaller than about 150 nm show extreme changes in resistance 

with variation in thickness.  However, thicker copper films of approximately 150 nm and 

above do not show such severe changes in resistance over the same magnitude of film 

thickness change.  This suggests possible influence of surface copper oxides on the 

resistance values of deposited copper films smaller than 150 nm, significantly increasing 

the resistance with the enhanced presence of the oxide.  However, with thicker films, the 

increased amount of copper in relation to the copper oxide allows for the resistance to be 

primarily dependent on the copper, and show smaller changes in resistance with film 

thickness.  In order to overcome oxidation of the copper and the detrimental effect it has 

on resistance values of the fabricated nanowires, it may be possible to electrolessly plate 

other metals using this method which do not oxidize in air, such as silver or gold.  Plus, 

their higher reduction potentials at E0
Ag = 0.779 VSHE and E0

Au = 1.42 VSHE make their 

plating on silicon very favorable.66  Future studies are currently underway to examine 

electroless silver plating within AFM-patterned lines on silicon substrates. 

 It has been clearly demonstrated through AFM patterning and electroless copper 

deposition, it is possible to develop nanowires within gold microelectrode arrays.  

Resistance measurements of bare intrinsic silicon (100) between two microelectrodes 

demonstrate high resistance measurements, which are expected considering the high 

resistivity of undoped silicon.  Following nanowire fabrication connecting the two 
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electrodes, however, does not result in a large drop in resistance as anticipated, and the 

resistance remains high in the range of 1 – 4 MΩ.  This is likely due to oxidation of the 

deposited copper in air, seeing as the resistivity of copper oxide is significantly higher 

than reduced copper.  However, it is believed only partial oxidation occurs, considering 

complete oxidation would likely lead to resistance values which surpass experimentally 

obtained values.   

4.5 Conclusions 

It has been demonstrated that copper nanowires can be successfully manufactured 

via AFM nanopatterning of organic self assembled monolayers (SAMs) followed by 

electroless copper deposition.  Furthermore, the dimensions of the nanowire can be 

controlled and conditions optimized for the production of well-formed copper nanowires 

through potential manipulation of the resist monolayer composition, deposition solution 

conditions, patterned line features, and silicon substrate doping.  Three different SAM 

systems including an octadecyl monolayer on silicon, and octadecyldimethylchlorosilane 

(ODMS) on silicon oxide, and octadecyltrichlorosilane (OTS) on silicon oxide were 

patterned with the AFM and their resist capabilities against the harsh electroless 

deposition solution examine.  All three monolayers were able to be sufficiently patterned 

with the AFM to expose their underlying silicon substrates, however the OTS monolayer 

on silicon oxide exhibited the best capability to withstand copper metal seeding within 

the resist region.  This is likely due to its crosslinking ability at the monolayer-silicon 

oxide interface, as well as its superior packing in relation to an octadecyl SAM on silicon 

and ODMS SAM on silicon oxide.  The better packing of the OTS SAM is evident 

through its higher thickness and contact angle values.  This packing of the OTS 
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molecules on the substrate surface likely aids the monolayer’s capability to withstand 

solution penetration and metal deposition.   

 In addition, it has been shown that electroless copper deposition within AFM-

patterned lines made on silicon substrates possessing a SAM resist coating may be 

manipulated through variation in solution conditions, AFM-patterned line dimensions, 

and the doping of the underlying silicon substrate.  Changes in copper sulfate, sodium 

tartrate, and ascorbic acid concentrations can be used to directly influence the size of the 

fabricated metal nanowires.  Additionally, electroless copper deposition uniformity may 

be negatively influenced by potential metal impurities in the copper sulfate source.  

Newly purchased copper sulfate did not display signs of significant copper plating within 

AFM-patterned lines, which could be the consequence of enhanced silicon etch rates 

surrounding deposited metal seeds in the presence of trace metal impurities, inhibiting 

sufficient metal seeding and growth.   

Electroless copper deposition may also be impacted by substrate conditions, as 

well as solution conditions.  The uniformity of copper deposition is adversely impacted 

when the width of the AFM-patterned lines exceed values of a few hundred nanometers, 

but it is probably to overcome this drawback with adjustments in plating solution 

conditions.  More importantly, successful electroless copper deposition was shown within 

AFM-patterned lines in OTS SAM resists reaching down to an approximate 20 nm width.  

The only limitation on the depth of the AFM-patterned lines seems to be a minimum 

threshold determined by the thickness of the SAM resist that needs to be surpassed in 

order to expose the underlying silicon substrate for electroless metal deposition.   
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Also, electroless copper deposition on samples with an underlying intrinsic Si 

(100) substrate exhibit different electroless deposition behavior in relation to their n-

doped silicon (100) counterpart.  Intrinsic silicon (100) samples display increased 

nucleated copper seed densities with decreased seed size, whereas n-doped Si (100) 

samples show smaller densities for seed nucleation, but a larger size of seed in 

comparison to intrinsic silicon.  This difference is likely due to the difference in electron 

transport at the silicon-deposition solution interface leading to a difference in silicon 

dissolution rates surrounding nucleated metal seeds.  Most importantly, though it 

illustrates the promise for fabrication of uniform copper nanowires on insulating silicon 

substrates.  All these considerations collectively demonstrate the capacity to develop 

copper nanowires on silicon surfaces of good quality and controllable dimensions by 

utilizing changes in electroless deposition solution conditions, patterned line size, and 

doping of the silicon substrate. 

Lastly, copper nanowires were successfully fabricated between gold 

microelectrodes and the electrical properties probed by collection of I-V curve data.  

Prior to nanowire fabrication between the microelectrodes, the bare intrinsic silicon (100) 

had high resistance measurements, 4 MΩ for a 4 μm electrode separation, which is not 

surprising considering the large resistivity value of the undoped silicon sample at 

>20,000 Ω-cm.  It was expected that following nanowire fabrication connecting the two 

electrodes, the resistance value would drop significantly to a value on the order of ohms.  

However, the experimental data did not display a significant decrease in resistance values 

with subsequent nanowire formation, and retained large resistance values in the range of 

1 – 4 MΩ.  It is believed the copper surface of the nanofabricated wire is oxidized upon 
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exposure in air, creating a copper oxide coating surrounding a copper core.  Full 

oxidation of the copper is proposed not to occur, seeing as the experimentally obtained 

resistance values would likely mirror that of the intrinsic silicon.  Future studies are 

currently being performed to further investigate the potential oxidation of the copper 

nanowire upon exposure to air, as well as the potential to electrolessly deposit other 

metals within AFM-patterned regions that do not exhibit the problem of oxidation in air, 

such as silver and gold. 
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Chapter 5:  Graphene Growth on Copper Substrates 

5.1 Abstract 

 The manufacture of large-area graphene with high conductivity and optical 

transparency is imperative for its potential application as a transparent electrode in 

photovoltaic devices.  Chemical vapor deposition of graphene on copper substrates is a 

promising method to produce single-layer graphene with large lateral dimensions, 

however current CVD methods produce graphene exhibiting inferior conductivity and 

transparency to other fabrication methods.  Low conductivity is attributed to the 

increased presence of misaligned grain boundaries and point defects in these CVD 

graphene films.  To overcome these drawbacks, there is substantial interest in 

understanding the role the copper substrate plays on the graphene deposition process.  

With this understanding it may be possible to manipulate features of the copper substrate 

to directly influence CVD graphene quality.  For this purpose, CVD graphene was 

deposited on cube-textured (100) oriented copper (CTO-Cu) and polycrystalline copper, 

which possess vast differences in crystal face structure and grain alignment, and the 
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electrical and optical properties of the resulting CVD graphene examined.  It was found 

that graphene on CTO-Cu depicted significantly higher conductivity, optical 

transmittance, and a lower defect density via observation of the collected Raman spectra.  

By a time-sequenced analysis for graphene on both of these substrates, it was found that 

the highly aligned grains on CTO-Cu produced aligned triangular-like features on the 

copper substrate surface, indicating a large restructuring of the copper surface during 

CVD graphene deposition.  Graphene nucleates on the surface of these triangles, and a 

restructuring of the (100) surface occurs to a (111) lattice to promote this graphene 

deposition.  These triangles grow in size as the graphene deposition time increases, and 

eventually cover the entire surface.  A morphological restructuring on the graphene-

coated polycrystalline copper surface is also evident, but these features do not exhibit any 

highly ordered shape or alignment, and the copper crystal structure underlying the 

deposited graphene remains fairly polycrystalline.  These differences likely lead to the 

variation in graphene quality manufactured on these two copper substrates.  Additionally, 

graphene growth within holes of graphene array templates was investigated as another 

potential means to control CVD graphene growth and orientation.  Graphene nanohole 

arrays on insulating silicon substrates were fabricated, copper was deposited via 

evaporation into exposed hole regions within the nanohole arrays, and the samples 

exposed to CVD graphene growth conditions.  Preliminary data suggests the deposited 

copper may accumulate at hole edges at elevated temperatures, and upon exposure to 

CVD graphene conditions, promote growth of graphene from the edge sites of the 

nanohole array inward.  This research illustrates the potential to control CVD graphene 
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growth by copper substrate manipulation, as well as the possibility of developing CVD 

graphene on the surface of insulating substrates. 

5.2 Introduction 

 Graphene is a promising material in the nanotechnology and materials science 

community for its mechanical robustness,1 high electron mobility,2,3,4 transparency,5,6,7 

chemical stability,7,8 and flexibility to conform to various surface morphologies.6,9 It has 

been instituted in several areas of research including transistors,10 memory devices,11,12 

transparent electrodes,13,14,15 photovoltaic devices,16,17 sensors,18,6,19 and energy storage 

devices.20  There are several graphene fabrication methods, but the most common are 

mechanical exfoliation,2,21 epitaxial growth on SiC substrates,22,23,24 graphene oxide 

reduction,25,26,27 and chemical vapor deposition.28,14,29  Mechanical exfoliation involves 

the physical removal of graphene from a single crystal graphite substrate, oftentimes via 

scotch tape removal, and produces high quality pristine graphene limited to microscale 

dimensions and generally resulting in multi-layer graphene.2,30  Epitaxial graphene 

production on SiC requires intense heating of the silicon carbide substrate under high 

vacuum or inert gas atmosphere to thermally decompose the SiC to graphene at its 

surface interface.  This method is easy and allows for graphene development on an 

insulating substrate, however it normally creates multi-layer graphene24 with potentially 

high concentrations of defects due to the SiC lattice mismatch with graphene,31 and 

further is limited in size by the SiC substrate, which is very expensive.31  Reduction of 

graphene oxide is a very diverse field implementing several different reduction methods 

including electrochemical,27,32 photochemical,33,34 thermal,26 and chemical reduction 

methods.25,35  Its advantages are experimental simplicity, cost, and the ability to create 
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reduced graphene sheets in solution for various applications.36  However, the electrical 

conductivity of these sheets are normally several orders of magnitude smaller than 

pristine graphene due to incomplete reduction,37 and these methods may further result in 

the production of excessive hazardous wastes from reducing agent materials.38  Most of 

these processes are limited either in graphene sheet size, cost, or multiple layer formation.  

Chemical vapor deposition is a promising method to overcome most of these 

disadvantages. 

 The chemical vapor deposition (CVD) process to produce graphene involves 

thermal heating of a metallic substrate in the presence of a hydrocarbon gas under low 

vacuum conditions.  At the surface of the metal, the hydrocarbon gas breaks down and 

the metal solubilizes the carbon.  As the substrate is allowed to cool, carbon precipitates 

out of the metal and reforms at the metal surface interface as graphene.  Several metals 

such as copper,39 nickel,40 cobalt,41 iron,42 and ruthenium,43 have been used as substrate 

platforms for CVD graphene.  Copper offers an advantage in the area of predominant 

production of single-layer graphene due to the low carbon solubility in copper,39 also it 

has relatively low cost compared to some of these other metals.  However, large copper 

foils commercially available on a cheap scale are principally polycrystalline copper with 

grains sizes on the order of microns and a variety of crystal orientations such as Cu (111), 

(100), and (110).  It has been found that CVD deposition on these substrates leads to 

graphene with significantly lower carrier mobilities compared to pristine graphene, which 

are most likely the result of the formation of small misaligned grains and other point 

defects that obstruct charge transport in the graphene layer due to scattering.28,44,45,46  A 

significant portion of these defects generate from graphene deposition on copper lattice 
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faces other than the (111) orientation, such as the (100) and (110) crystals, which have 

significantly different lattice constants than graphene.  This lattice mismatch leads to 

substantial strain and thereby defects in the deposited graphene.  Other researchers have 

demonstrated graphene deposited on these other crystal faces possess behavior of lower 

quality.47,48  Comparatively, graphene deposition on single crystal Cu (111) surfaces 

produces graphene of high quality due to the single crystalline nature of the surface 

resulting in large aligned graphene grains, and the close lattice match of graphene with 

the Cu (111) orientation.29 Unfortunately, single crystal copper samples are very 

expensive and do not come in large sizes.  In order to utilize large-area production of 

graphene via chemical vapor deposition at a low cost, controlling grain boundaries and 

other defects, as well as understanding the deposition mechanism, is imperative for 

successful implementation of large graphene sheets into a variety of applications. 

 One promising alternative to the use of polycrystalline copper is cube-textured 

(100) oriented copper (CTO-Cu) foils.  These copper foils undergo a special 

thermomechanical treament to create large-area smooth copper foils with closely aligned 

grains of a single crystal orientation, in this case the (100) lattice orientation.49  Since it 

has been shown that graphene nucleation on the single crystal copper generates graphene 

with more desirable characteristics due in part to aligned grains, implementing a substrate 

with a single crystal face, such as CTO-Cu, with a high degree of grain alignment shows 

potential in influencing graphene grain alignment on a cheaper scale.  The initial 

objective of this work is to compare the optical and electrical properties of graphene 

grown by chemical vapor deposition on polycrystalline copper as well as CTO-Cu to 

determine whether these properties can be improved through the use of oriented copper 
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foils such as the CTO copper.  Through this research we are able to better understand 

how grain alignment and crystal lattice orientation of the copper substrate influence the 

defect density, conductivity, and optical transparency of CVD graphene.   

 An additional drawback to chemical vapor deposition of graphene on copper and 

other metallic substrates is the introduction of additional defects in the graphene as a 

result of transfer to dielectric materials.  To incorporate CVD graphene into many 

research applications, the conductive graphene needs to be transferred to an insulating 

substrate, commonly silicon.  The graphene transfer process involves a multitude of steps 

that may include polymer resist coating, thermal curing, metal foil dissolution, liquid 

suspension over the desired substrate, and solvent rinses to remove polymer resists.  

These steps can incorporate defects into the transferred graphene through residual 

polymer doping,50 tears,44 and wrinkles.44  Thus, research has been conducted to form 

graphene directly on dielectric material surfaces such as SiO2,
51 BN,52 and Ge.53  

However, CVD graphene growth on these surfaces often results in defect-rich graphene 

with maximum flake size in the microns.  All of these investigations have explored 

graphene epitaxy on insulating substrates vastly different than copper, but little attention 

has been paid to the use of metal oxide layers coating metallic substrates to promote 

CVD graphene deposition.  The potential to produce graphene at a thin reduced copper 

interface atop a copper oxide insulating layer has not been thoroughly explored, and is 

investigated in this research. 

 It has been well-established graphene nucleates as seeds and grows to larger 

grains on clean reduced copper surfaces.  However, most commercial copper foils have a 

native oxide layer approximately 3-5 nm thick due to atmospheric exposure to oxygen at 
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room temperature.54  Since graphene chemical vapor deposition on copper is generally a 

low vacuum process, residual adsorbed oxygen on the substrate surface or oxygen within 

the CVD chamber coupled with intense heat could further promote copper oxide 

formation and increase this thickness.  Copper foils heated to a 970°C temperature in air 

have been shown to develop copper oxide coatings on the scale of tens of microns.55  

Because of this, most copper foils undergo a prolonged annealing step with H2 gas after 

reaching the CVD deposition temperature to rid of any copper oxide on the substrate 

surface before introduction of the carbon source gas for graphene formation.  However, if 

it were possible to retain the copper oxide film and promote copper reduction in the first 

few atomic layers of the copper oxide surface, successful graphene epitaxy may be 

feasible on a mostly insulating surface with minimal effects from a nanoscale layer of 

reduced copper.  Research has supported formation of thin reduced copper films 

overlying bulk copper oxide layers.56  Potentially monolayer thin Cu0 atop bulk Cu2O can 

be produced under temperatures of 400 K and low hydrogen gas pressure as studied by 

X-ray photoelectron spectroscopy (XPS) and X-ray-excited Auger electron spectroscopy 

(XAES).56  It may be promising to subsequently generate atomic layer or near atomic 

layer Cu0 atop a copper oxide layer during the initial stages of graphene deposition.  

Furthermore, it has been demonstrated in previous studies that the presence of the copper 

oxide may perhaps improve graphene formation by decreasing the nucleation density 

during the initial stages of CVD deposition.  Graphene nucleates at the catalytically 

active Cu0 surface, and the predominant presence of the catalytically inactive oxide may 

significantly reduce the nucleation density by almost five orders of magnitude.57  The 

smaller nucleation density would permit formation of larger graphene grains, and 
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therefore reduce grain boundaries and likely enhance electron mobility throughout the 

graphene layer. A second objective of this work is to investigate the CVD graphene 

deposition process on polycrystalline copper and CTO-Cu over shortened periods of time 

without extensive hydrogen annealing of the copper surface.  Through this research, it 

would be possible to investigate the graphene deposition mechanism by watching the 

deposition process over time, and additionally explore CVD graphene construction on 

copper surfaces with a significant amount of copper oxide.  It is the hope to yield 

graphene of high quality by understanding the graphene deposition mechanism on copper 

substrates, leading to potential manipulation of the mechanism to reduce defects, as well 

as form the graphene on insulating substrates. 

 Another means to produce graphene on dielectric materials is to use graphene 

templates as the foundation for further CVD graphene growth.  The growth mechanism 

on bulk copper begins by graphene seed nucleation throughout the copper substrate 

surface, followed by outward growth of seeds into larger graphene grains.  Therefore, if 

small structured graphene templates can be systematically arranged across an insulating 

surface with a small amount of catalytic copper present, aligned graphene grains in a 

controlled geometry may be achievable.  Furthermore, graphene growth from graphene 

templates can provide a way to promote deposition selectivity to localized regions on a 

substrate surface as opposed to bulk deposition coating the entire surface.  This would be 

a benefit for the creation of structured graphene geometries for research applications in 

the electronics and sensor industries.   

  Very little research has been performed on continued graphene growth from 

graphene templates atop dielectric materials.  Most researchers have focused on bulk 
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CVD graphene deposition on insulating substrates.  One promising avenue to create 

graphene on insulated surfaces is by CVD graphene deposition on evaporated thin-film 

copper substrates over a dielectric material.   Thin films as small as 100 nm coated on a 

quartz surface show potential for adequate graphene deposition.58  An additional 

advantage to this method is the partial or full evaporation of the copper substrate 

immediately after graphene deposition under CVD graphene deposition conditions.  The 

high deposition temperature of approximately 1000°C and small pressures in the mTorr 

range promote the evaporation of the surface copper.  This would lead to graphene coated 

on the insulating dielectic substrate.  Copper thin films of a 100 nm thickness coated on 

quartz have shown substantial evaporation during the chemical vapor deposition of 

graphene with deposition times greater than 420 minutes.58  Even though this method 

shows potential, it lacks the capability to control graphene deposition into structured or 

aligned features, as well as selectively placed graphene on localized regions on the 

surface.  If it was coupled with a structured graphene template, these limitations may be 

overcome.  The third objective of this research is to combine the use of graphene hole 

array templates on insulating SiO2 substrates and selectively deposited copper thin films 

to promote and study possible CVD graphene growth from graphene edges present in the 

hole array template.  It is desired to discover a novel means by which high quality CVD 

graphene can be produced on insulating substrates with the possibility for control over 

graphene deposition location. 

 In summary, there are three major objectives of this work, which are ultimately 

focused on improving the quality of CVD graphene on copoer substrates and overcoming 

the current limitations of this process.  First, the morphological, optical, and electrical 
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properties of CVD graphene films grown on polycrystalline copper and CTO-Cu are 

compared to uncover how substrate characteristics may influence graphene quality.  

Second, sub monolayer graphene is grown on these copper substrates to investigate the 

initial stages of growth and elucidate the mechanism of growth.  Graphene development 

on both of these copper foils is performed without a preannealing process to retain the 

likely copper oxide species at the foil surface to investigate the possibility of CVD 

graphene production on insulating metallic oxides.  Lastly, graphene hole arrays on an 

insulating silica substrate are implemented as templates and joined with selective copper 

deposition to investigate potential graphene growth from the template edges after 

exposure to CVD graphene deposition conditions.  The possibility to grow graphene from 

templates on insulating substrates reduces difficulties in the graphene transfer process, 

and provides a practical means to deposit graphene in selective surface locations in future 

research.  The following sections detail the methods, results, and discussion for each of 

these objectives. 

5.3 Materials and Methods 

5.3.1 CVD Graphene Growth on Polycrystalline and Cube-Textured Oriented (100) Copper  

CVD Graphene Deposition and Transfer Process 

 Commercial polycrystalline copper with a thickness of approximately 25 μm was 

purchased from Alfa Aesar.  Base metal copper was thermomechanically processed to 

produce cube-textured oriented (100) copper (CTO-Cu) of an 100 μm thickness.59  Each 

copper substrate was exposed to similar deposition procedures.  First, the copper films 

were placed into a fused silica furnace tube and heated to 1000°C under H2 flow (0.1 

sccm).  After the growth temperature was reached, CH4 gas was introduced at a flow rate 
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of 3.0 sccm for 30 minutes.  The furnace was allowed to cool to room temperature, and 

the samples removed from the fused silica tube. 

 In order to analyze optical and electrical properties of the CVD graphene, it was 

transferred to glass or a silicon substrate via the following process.  First, poly-methyl 

methacrylate (PMMA) was spin-coated onto the CVD graphene/copper surface.  The 

sample was placed into a solution of iron chloride (0.1 g/mL) to dissolve the copper 

substrate, followed by a rinse with deionized water.  The remaining PMMA/graphene 

sample was then immersed in deionized water with the graphene-side facing down 

aligned directly above a silicon substrate.  The deionized water was drained, and the 

PMMA/graphene/silicon sample heated inside an oven at 80°C for one hour to remove 

any residual moisture.  Finally, the PMMA was dissolved by acetone. 

Characterization of CVD Graphene on Polycrystalline Cu and CTO-Cu 

 SEM imaging was done with Joel JSM-630 and Leo 1550 FESEM instruments 

with the electron beam accelerating voltage at 2-25 KeV.  AFM imaging was performed 

in contact mode under ambient conditions with a Multimode Nanoscope E Atomic Force 

Microscope (Bruker Instruments).  The probe tip used was a silicon nitride NPS with a 

nomical force constant of 0.12 N/m (Bruker).  All images were collected with Nanoscope 

version 5.13 software, and were collected with a deflection set point of approximately 1.5 

V and a scan rate of 2.0 Hz.  Images presented here were flattened with the Nanoscope 

software. 

 The Raman spectra for graphene on polycrystalline copper and CTO-Cu were 

obtained with a Renishaw InVia Raman Microprobe with a helium-cadmium laser with 
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an excitation wavelength of 442 nm.  The laser spot diameter on the sample surface is 

approximately 2 microns, and its energy density is about 1 mW/μm2.  Reported spectra 

were signal averaged over 10 scans. 

 The visible transmittance spectra of the graphene films were measured with a 

Cornerstone monochromator (Newport 74004) with a xenon arc lamp illuminator 

(Newport 70611) and calibrated UV-Si photodiode (Newport 71640).  The IV curves for 

graphene on poly-Cu and CTO-Cu were conducted with a four point probe apparatus.  

Gold electrodes were fabricated with a 4 mm length and 2 mm width containing 15nm of 

deposited titanium and 85 nm of gold on top of a silicon substrate with a 500 nm silicon 

oxide barrier.  The voltage electrodes were separated by 0.3 mm space. 

5.3.2 Time-Sequenced Graphene Growth on Cube-Textured Oriented (100) Copper 

CVD Deposition and Graphene Transfer Process 

 Graphene deposition and transfer were performed as previously described in 

section 5.3.1.  Briefly, cube-textured oriented (100) copper (CTO-Cu) foils were placed 

into a fused silica furnace tube and heated to 1000°C under H2 flow (0.1 – 2 sccm).  After 

the growth temperature was reached, CH4 gas was introduced at a flow rate between 3.0 

and 35 sccm for times ranging from 2 – 30 minutes, and the furnace cooled to ambient 

temperature.  To transfer graphene from atop the copper substrates the procedure was 

followed as described in section 5.3.1. To remove any graphene or copper oxide from a 

CVD graphene/CTO-Cu sample, the sample was exposed to a 0.1 M HCl solution for 

approximately 2 seconds. 
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 In order to compare the graphene-coated CTO-Cu surface with the bare CTO-Cu 

copper at elevated temperatures with no carbon source, a CTO-Cu substrate was heated to 

1000°C under hydrogen flow (2sccm) and allowed to cool to room temperature.  Another 

CTO-Cu foil was raised to a similar temperature and hydrogen flow, annealed for 20 

minutes under hydrogen flux, and subsequently allowed to cool to ambient temperature.  

This was a control experiment to investigate any potential copper reconstruction at 

elevated temperatures without graphene deposition. 

Characterization of CTO-Cu Substrates with CVD Graphene 

 The morphology of the copper/graphene surfaces was investigated via SEM and 

AFM imaging.  SEM imaging was done with Joel JSM-630 and Leo 1550 FESEM 

instruments with the electron beam accelerating voltage at 2 KeV.  AFM imaging was 

performed in contact mode under ambient conditions with a Multimode Nanoscope E 

Atomic Force Microscope (Bruker Instruments) with parameters described in section 

5.3.1.   

 Energy dispersive spectroscopy (EDS) was performed with a Carl Zeiss Leo 1550 

Field Emission Scanning Electron Microscope.  The SEM has an EDAX SiLi detector 

and used the acquisition software Genesis.  The electron beam energy was in the range of 

approximately 10 - 20 kV, and according to Monte Carlo simulations has an interaction 

volume range of 300 - 890 nm in the Z direction, and 315 – 520 nm in the X and Y 

directions. 

 Electron backscatter diffraction (EBSD) patterns were obtained by placing 

samples in the Leo 1550 FESEM and inclining them with a 70° angle relative to the 
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normal incidence of the electron beam.  The detector is a camera equipped with a  

phosphor screen integrated with a digital frame grabber. 

5.3.3 Comparison of Initial Graphene Growth on CTO-Cu and Polycrystalline Copper 

CVD Deposition and Graphene Transfer Process 

Graphene deposition and transfer were performed as previously described in 

section 5.2.1 with a 5-minute deposition time on thermally pretreated CTO-Cu with a 

thickness of 150 μm and polycrystalline copper commercially purchased from Alfa 

Aesar. 

In order to compare the graphene coated polycrystalline copper sample with bare 

polycrystalline copper at elevated temperatures with no carbon source, a poly-Cu 

substrates was heated to 1000°C under hydrogen flow (2sccm) and allowed to cool to 

room temperature.  

Characterization of CTO-Cu and Polycrystalline Copper Substrates with CVD Graphene 

The morphology of the copper/graphene surfaces was investigated with the same 

AFM and SEM instruments and parameters as described in section 5.3.1. 

The EBSD mapping and Raman spectra were acquired using equipment and 

parameters described in section 5.3.1 and 5.3.2. 
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5.3.4  Graphene Hole Array Templated Growth  

Graphene Hole Array Template Production 

 Templated graphene hole arrays with deposited copper were produced according 

to the procedure depicted in Figure 5.1.  First, mechanically exfoliated flakes of graphene 

were transferred to silicon substrates via scotch tape.  A PMMA resist was spin-coated 

onto the surface.  Then, a nanoimprint lithography (NIL) stamp was placed on the sample 

surface and was heated to 140-180°C followed by application of 20-50 bar pressure for 4 

minutes, and the system was allowed to cool to room temperature.  The stamp was 

removed, and oxygen plasma reactive ion etching (RIE) used to remove the PMMA resist 

Figure 5.1.  Production schematic of templated graphene hole array with deposited copper.  First, 
mechanically exfoliated graphene is spin coated with a PMMA resist.  Then, an NIL stamp is placed on the 
sample surface, heated and pressed.  After an oxygen plasma etch to expose the underlying silicon substrate, 
copper is e-beam evaporated onto the surface with a subsequent acetone rinse.  The remaining copper within 
the templated graphene holes finally undergoes CVD graphene deposition conditions. 
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and selectively etch away the graphene in the hole regions where the thickness of the 

resist was decreased due to the heated stamp process.  Either 1 nm or 5 nm thick copper 

layers were deposited via e-beam evaporation onto the surface.  An acetone rinse was 

used to remove the remaining PMMA resist with deposited copper.  Finally, the sample 

underwent the same CVD graphene deposition conditions as previous samples.  

Succinctly, the sample was placed in a fused silica tube, heated to 1000°C under H2 flow 

(2 sccm), followed by CH4 gas (3.0 sccm) introduction for 30 minutes, and cooling to 

ambient temperature.  

Characterization of Graphene Hole Array Template with Regrown Graphene 

 SEM and AFM images were obtained with the same equipment and parameters as 

described in section 5.3.1. 

 Raman mapping was taken on a confocal Raman system (WiTec alpha300) with a 

laser excitation of 488 nm and 200 nm resolution.  For mapping, the 2D peak was 

monitored at 2700 cm-1 and the G peak at 1580 cm-1. 

5.4 Results and Discussion 

5.4.1 CVD Graphene Growth on Polycrystalline and Cube-Textured Oriented (100) Copper  

In order to study the influence of copper substrate properties on CVD-grown 

graphene quality, polycrystalline copper and cube-textured oriented (100) copper were 

exposed to similar graphene deposition conditions for 30 minutes, and the subsequent 

samples were characterized via several methods.  Surface morphology differences before 

and after graphene deposition on these two copper substrates can be noted in the SEM 
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and AFM images with corresponding cross sections in Figure 5.2.  In parts (a) – (c), it is 

observed the bare polycrystalline copper has a relatively rough surface with somewhat 

parallel-aligned hill and valley-like features that span height and depth values of 

approximately 100 nm.  However, the CTO-Cu comparatively demonstrates a flat surface 

with changes in height less than 10 nm, as seen in parts (d) – (f).  Upon CVD graphene 

deposition, the surface structures of both the polycrystalline copper and CTO-Cu copper 

change dramatically to form features as shown in parts (g) - (j) in Figure 5.2.  The 

graphene on polycrystalline copper in (g) and (h) seems to form somewhat aligned 

striations with a resemblance of hill and valley-like topography, slightly similar to the 

image before graphene deposition, but still undergoing a distinct change in structure 

Figure 5.2.  (a) SEM with zoomed in inset and (b) – (c) AFM image with cross section of bare 
polycrystalline copper.  (d) SEM image with zoomed in inset and (e) – (f) AFM image with cross section of 
bare CTO-Cu.  SEM with zoomed in insets and AFM images of (g) – (h) CVD graphene on polycrystalline 
copper and (i) – (j) CVD graphene on CTO-Cu. 
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during the CVD deposition process which is much more disordered than the CTO copper.  

The CTO-Cu analogously experiences a surface morphology transformation upon 

exposure to CVD graphene growth conditions.  In parts (i) and (j) there appear large, 

raised features on the surface of the graphene-polycrystalline copper on the order of 

hundreds of nanometers in height, with highly-aligned step-like features embedded 

within the large hillocks.  It is evident that both the polycrystalline and CTO-Cu have a 

significant change in surface structure and it is not the graphene causing these changes 

itself, seeing as the features in these AFM images are tens to hundreds of nanometers in 

dimension, and the height of single-layer graphene on most substrates is approximately 

0.5 nm.2  The copper substrate surface must be restructuring during the graphene 

deposition process to create these features.  It is important to note the changes in surface 

structure are different amongst the two copper substrates, indicating the substrate could 

potentially have a role in producing graphene of various quality and with different 

properties atop the distinct copper topography.  Restructuring of the copper surface may 

also occur during heating without graphene deposition, and is explained in greater detail 

later in this section. 

A variety of properties are compared between graphene deposited on 

polycrystalline copper (poly-Cu) in relation to graphene produced on CTO-Cu in Figure 

5.3, and highlight distinct differences of CVD graphene formed on these two copper 

substrates.  In parts (a) and (b) on the figure, there are clear 2D and G peaks at 2700 cm-1 

and 1580 cm-1, which are characteristic peaks of graphene due to second order zone-

boundary phonons and the doubly degenerate zone center E2g mode.60  The full-width-at-

half-maximum for each peak is around 50 cm-1, indicating there is no coupling between 
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the Raman excitation wavelength at 

442nm, which would result in a full-

width-at-half-maximum value of 100 

cm-1 or more.  The presence of the 2D 

peak and G peak demonstrate the 

existence of graphene on the copper 

substrate surface, but it is the 2D/G 

peak intensity ratio that illustrates the 

number of graphene layers on the 

metal surface. Since the ratio of both 

graphene on polycrystalline copper 

and CTO-Cu is greater than two, as 

well as show typical symmetrical peak 

shapes, research suggests a majority of 

single layer graphene on the two 

copper samples.44  Thus, it can be 

ascertained there is single layer 

graphene on both the polycrystalline 

and CTO-Cu. However, the defect 

density of graphene on these two 

copper substrates is shown to be 

different by comparing the D/G peak 

intensity ratios.  The defect character 

Figure 5.3.  (a) Table of Raman spectra 2D/G Ratio 
and G/D Ratio for graphene on polycrystalline copper 
(poly-Cu) and CTO-Cu.  (b) Raman spectra of 
graphene on poly-Cu and CTO-Cu.  (c) Transmittance 
spectra of graphene on poly-Cu and CTO-Cu.  (d) VI 
curve for poly-Cu and CTO-Cu. 
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of the single-layer graphene can be determined by the intensity of the D peak at ~1350 

cm-1, which is a consequence of breathing modes of sp2 rings and the active phonons 

being excited in defective regions of the graphene, compared to the intensity of the G 

peak.61  The higher D/G peak intensity ratio of 0.56 for graphene on polycrystalline 

copper compared to a 0.2 value for graphene on CTO-Cu suggests the graphene on the 

polycrystalline copper surface possesses an increased number of grain boundaries and 

related growth defects.   

The difference in defect density between graphene on poly-Cu and CTO-Cu can 

significantly influence optical and electrical properties.  The optical transmittance spectra 

of graphene transferred from polycrystalline copper and CTO-Cu are illustrated in Figure 

5.3-c.  Throughout most of the solar spectrum wavelength range of 400 to 800 nm, the 

transmittance for graphene on CTO-Cu is higher compared to the graphene produced on 

polycrystalline copper.  At 550 nm, the transmittance of graphene from CTO-Cu is 

approximately 97%, which is close to the value 97.7% for mechanically cleaved pristine 

graphene with a closely matched theoretically predicted transmittance.62  The 

transmittance for graphene on poly-Cu at the same wavelength is around 95%, which 

may suggest a larger amount of graphene defects.  A higher number of misaligned grain 

boundaries and growth defects may also contribute to the difference in IV curve slopes 

for graphene on CTO-Cu and polycrystalline copper shown in Figure 5.3-d.  From the 

four point probe measurements, the calculated conductivity for graphene deposited on 

CTO-Cu is approximately 20% higher than the conductivity for graphene grown on 

polycrystalline copper.  It is expected a larger defect density and presence of an increased 
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number of grain boundaries would significantly impair charge mobility of the graphene 

layer, and thereby lead to a smaller conductivity.   

It is evident the contrasting characteristics of CTO-Cu and polycrystalline copper 

influence the optical and electrical properties of graphene deposited on these copper 

surfaces, and potentially impact the amount and structure of grain boundaries and other 

defect features within CVD graphene.  However, this data does not provide a clear 

understanding of how specific features of the copper substrates influence the organization 

and quality of CVD graphene on their surfaces.  It is the purpose of this research to be 

able to manipulate the components of the copper substrate to controllably affect CVD 

graphene, and therefore a better knowledge of the graphene deposition mechanism on 

polycrystalline and CTO-Cu is imperative. 

5.4.2 Time-Sequenced Graphene Growth on Cube-Textured Oriented (100) Copper 

 In order to understand the effect of particular copper foil characteristics on the 

growth of CVD graphene, CTO-Cu underwent deposition conditions for shortened time 

periods to study initial growth features and how those features change until single-layer 

graphene coats the entire surface of the copper substrates.  CTO-Cu samples were heated 

to 1000°C under hydrogen flow followed by the introduction of CH4 gas, and these 

conditions were held for times between 2 – 30 minutes before cooling to room 

temperature.  The AFM and SEM results of a 2, 5, and 10 minute graphene deposition 

time on CTO-Cu are shown in Figure 5.4.  In (a) and (b), you can see the initial 

development of small triangular features with sizes on the order of tens to a couple 

hundred nanometers dispersed throughout the copper surface after a 2 minute graphene 
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deposition period, as well as a few micron-scale triangular-like structures visibly apparent 

in the AFM image in part (b).  The background region around these geometric elements 

still looks relatively flat with a hint of parallel striations, comparable to the surface 

features of the bare CTO-Cu.  After 5 minutes, however, there seems to be a greater 

quantity of large right triangles with dimensions on the order of several microns.  One 

side of most of the triangles is aligned relatively along the same axis as shown with  

the red dashed lines in (c).  It is likely the alignment may be a result from the special 

processing of CTO-Cu to align its Cu (100) grains in the same orientation, demonstrating 

the influence of the bare copper substrate character on potentially aligning graphene 

grains.  In the region around the triangular features appears a fairly even distribution of 

raised debri whose composition will be discussed later.  Continuing on to a graphene 

Figure 5.4.  SEM and AFM image of CTO-Cu with (a) – (b) 2 minute, (c) – (d) 5 minute, and (e) – (f) 10 
minute exposure to graphene deposition conditions. 
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growth time of 10 minutes, in the SEM and AFM image in Figure 5.4 part (e) and (f), the 

triangles on the copper surface have grown in size and begin to coalesce with one another 

as their external edges begin to encounter one another.  The substrate surface is 

predominantly covered with these geometric structures with heights reaching several 

hundreds of nanometers, and the flat region surrounding the triangles begins to diminish. 

Although, at this point, there are still smaller triangles less than one micron in size 

dotting the more flat areas in between the mountainous triangle shapes.  It should be 

noted the deposition at this time resembles the large-featured surface observed in Figure 

5.2 with a deposition time of 30 minutes in which single-layer graphene covers the entire 

copper foil surface.  The formation of these smaller triangle features could demonstrate 

the initial restructuring of the copper surface to promote graphene deposition in these 

regions.  From the collective data illustrated here, it can be concluded during the 

graphene deposition process on CTO-Cu, triangular features begin to form across the 

entire surface and grow in dimension over the course of deposition time.  Initial triangles 

with smaller sizes begin to grow in height and lateral range and merge at the edges as 

they spread across the surface.  Furthermore, at any point during the graphene growth 

process there is new triangle formation on the flatter regions of the substrate surface.  The 

clear development of triangular features during the initial stages of CVD graphene 

growth could demonstrate the restructuring mechanism of the copper foil surface to 

promote graphene deposition in these locations. 
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 A closer look at the detailed 

characteristics of a single triangle 

on CTO-Cu after a 5 minute 

graphene growth time is illustrated 

in Figure 5.5.  The triangle features 

are on the order of 80-150 nm tall 

from edge to center and show clear 

faceting along different directions, 

as demonstrated in the cross section 

of part (a) of this figure.  The area 

surrounding the triangle illustrated 

in the AFM image with cross section 

in part (b) shows very rough 

topography with a roughness on the 

order of 10-15 nm.  It is possible an 

adsorbed hydrocarbon layer from 

methane adsorption and breakdown at the copper surface may account for this 

morphology, but it is unlikely because the expected thickness of an adsorbed layer would 

be much smaller in value.  The EDS line scan in part (c) suggests the surface coating may 

be some amorphous copper oxide due to the presence of an oxygen signal outside the 

triangle area.  The CVD process in this research is a low vacuum process, and it is 

possible for residual adsorbed oxygen on the copper surface to remain and form a copper 

oxide across the substrate surface.  Signal from oxygen is not restricted to the area around 

Figure 5.5.  (a) AFM image with cross section analysis 
of single triangle feature on CTO-Cu after 5 minute 
exposure to graphene deposition conditions.  (b) AFM 
image and cross section analysis of background region 
following 5 minute growth time on CTO-Cu.  (c) EDS 
line scan of Cu, O and C across the line of the triangle 
shown in the SEM inset.  (d) Optical image of 
transferred graphene grown on CTO-Cu with 5 minute 
deposition time. 
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the triangle structure, but a comparable oxygen signal is found inside the triangle 

structure as well.   The consistency of the oxygen amount in both of these regions 

suggests an evenly dispersed copper oxide layer among the entire substrate surface.  

Furthermore, the copper oxide layer must be relatively thick, likely on the order of tens or 

hundreds of nanometers, considering the interaction volume in the Z direction for the 

EDS measurements is believed to be in the range 300-890 nm.  The copper oxide must be 

relatively thick in order to show a sufficient oxygen signal in comparison to copper.  If 

the copper oxide possessed a thickness around the single nanometer scale, the oxygen 

signal would be significantly lower.  Graphene formation can only occur at a copper 

interface, however, so it is predicted there is copper oxide reduction at the uppermost 

regions of the copper oxide inside the triangle feature to induce graphene deposition.  The 

reduced layer may be so thin it would produce a negligible signal compared to the signal 

from the bulk copper substrate.  From the EDS line scan it can be seen there is no change 

in all the Cu, O, or C signals, resulting in a uniform element distribution inside and 

outside the triangle formation.  The Cu signal is expected to remain constant considering 

the large amount of bulk copper substrate. The homogenous carbon is most likely a result 

of adsorbed hydrocarbon species from the methane source across the entire copper 

surface. 

To confirm the location of CVD graphene atop the triangle formations, all 

deposited graphene from 5 minute graphene deposition on CTO-Cu was transferred onto 

silicon substrates with a 300 nm-thick thermal oxide and the optical properties were 

investigated for any transferred material.  The resulting optical image in Figure 5.5-d 

shows dark-colored regions in triangular geometries across the sample with a difference 
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in optical properties, which correspond to graphene on the silicon substrate.2  The size 

and shape of the darker areas parallel the dimensions of the triangles in the previous 

AFM and SEM images.  This indicates graphene nucleation and growth on the triangular 

regions of the CTO-Cu foil.   

It is apparent the formation of triangular features on the CTO-Cu surface during 

the CVD deposition process promotes graphene growth, and it has been shown that the 

morphology of the copper foil changes dramatically to produce these triangular features.  

In order to understand further how the copper surface restructures to allow graphene 

deposition, electron back-scatter diffraction (EBSD) patterns were collected on the 

triangular formations as well as surrounding locations around the triangles.  It can be seen 

in Figure 5.6-b that there is no detectable diffraction patterns obtained outside of the 

Figure 5.6.  (a) SEM image of triangular features on CTO-Cu after 5 minute graphene deposition.  
(inset SEM image of triangle with a flat top).  (b) EBSD pattern in region surrounding triangle.  (d) – (f) 
EBSD patterns on different facets of the triangle.  (c) EBSD pattern indexed to Cu (111).  
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triangle shapes, indicating an amorphous surface.  Conversely, the EBSD patterns on 

spots within the triangle areas produce distinguishable patterns among all facets (Figure 

5.6 (d) –(f)), illustrating the structures are single crystalline.  All of these patterns can be 

indexed predominantly to the Cu (111) out-of-plane within several degrees with respect 

to the standard pole using TSL OIM Analysis 5 software, which may be due to the 

pyramidal shape of the triangles confirmed in the AFM image in Figure 5.6-a.  The lattice 

of Cu (111) at 2.56 Å is quite similar to the lattice of graphene at 2.46 Å,29 which would 

indicate a restructuring of the predominantly Cu (100) CTO-Cu surface to a Cu (111) in 

order for the graphene film to match the lattice of the substrate and minimize stress and 

defect formation in its development.  It should be noted the similar lattice constants make 

it difficult to distinguish graphene directly from Cu (111), and both would cause 

comparable diffraction patterns.  The penetration depth of the EBSD technique is on the 

order of tens of nanometers, and the average step height for graphene on silica is from 0.5 

– 1 nm,2 so the majority of the signal is likely due to the Cu (111) lattice underneath the 

thin graphene coating.  Furthermore, the single crystalline Cu (111) lattice has a three-

fold symmetry, and if the entire shape of the feature were dependent on the Cu (111) 

orientation it would be expected the surface would produce triangles in an equilateral 

geometry instead of right-angle alignment.  However, this is not observed.  The four-fold 

symmetry of the Cu (100) lattice would result in features in rectangular geometries, 

however.  The appearance of principally (111) oriented right-angle triangles suggests not 

only does the copper surface restructure to a (111) lattice to initiate graphene deposition, 

but the substrate’s initial (100) crystal face also influences the alignment of the triangles.        
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Another important note to discuss is that all the diffraction patterns showed 

behavior for Cu (111) underneath the triangular formations, and not behavior for copper 

(II) oxide (111).   The EDS line scans showed a significant oxygen signal, denoting the 

presence of a copper oxide layer across the entire substrate surface, even within the 

triangular structures.  Copper (II) oxide (111) has a notably different lattice constant of 

5.96 Å63 as compared to Cu (111) and graphene, which would result in a different 

diffraction pattern than Cu (111) and graphene.  Additionally, if the copper oxide were 

amorphous, there would be no detectable diffraction pattern.  Since there is not a 

significant signal for this diffraction pattern for copper (II) oxide (111) and the primary 

signal fits well to the Cu (111) and graphene lattices, there must be a reduced Cu (111) 

layer between the deposited graphene and copper oxide that is thick enough to be 

detectable by EBSD analysis.  Considering the penetration depth of EBSD is on the order 

of tens of nanometers, it is predicted the thickness is likely at least 10 nm to produce a 

notable diffraction pattern signal.  Further profiling XPS studies are planned to 

investigate the actual thickness of this reduced copper layer, and potentially manipulate 

deposition conditions to reduce its thickness. 

To further investigate the copper structure underneath the single layer graphene, 

the graphene deposited on CTO-Cu after a 5 minute deposition and any surface oxide was 

dissolved with brief exposure to a 0.1 M HCl solution (~ 2 sec) and the resulting surface 

structure studied via SEM imaging.  Figure 5.7 (a) – (c) shows the foundations of the 

large triangle features several microns in size remain with smaller irregular-shaped 

nanoparticles spread across the entire surface.  It can be observed that many of the 

nanoparticles have sharp edges and vertices, suggesting they may have crystalline 
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structures. In the zoomed in view near the apex of the large triangle structure (Figure 5.7 

-d), most of the nanoparticles have an equilateral shape indicating a (111) crystalline 

lattice as seen in the EBSD patterns in Figure 5.6.  Research has shown that metal oxides 

may epitaxially form on (100) oriented metals, such as Ni64 and Cu.65,63  Specifically, a 

Cu2O (111) layer tens of nanometers in thickness may nucleate in the form of 

nanoparticles on a Cu (100) lattice at elevated temperature due to the presence of sub-

surface oxygen.65,63  To validate the formation of copper oxide nanoparticles developing 

on the copper (100) surface under exposure to intense heat, CTO-Cu substrates were 

Figure 5.7.  (a) – (c) SEM images of graphene grown on STO-Cu for 5 minutes and etched in the 0.1 M 
HCL solution for 2 secnds at different scales.  (d) Zoomed in SEM images of the nanoparticles 
revealing equilateral triangle-shaped nanoparticles 
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heated to 1000°C under hydrogen flow and immediately brought down to room 

temperature, or annealed for 20 minutes under hydrogen flux and allowed to cool 

 to ambient temperature.  The SEM image in Figure 5.8-a shows right-triangle shapes 

several microns in dimension, comparable to the geometries and sizes of the triangle 

formations observed under CVD graphene deposition conditions.  Within the triangular 

features are nanoparticles similar to ones found after removal of the CVD graphene layer 

on copper following exposure to a hydrochloric acid etch.  Upon sustained heat and 

hydrogen flow for an extended period of time (20 minutes), the triangle features with an 

EBSD pattern (not shown) indexed to Cu2O (111) disappear from the surface structure 

(see Figure 5.8-b) and any notable diffraction pattern is no longer detectable.  This 

implies the triangle features are most likely surface features of copper oxides initially 

formed due to residual oxygen in the CTO-Cu and in the CVD chamber, and after 

prolonged annealing these features disappear to form an amorphous film at the copper 

surface. 

 

Figure 5.8.  (a) SEM image of CTO-Cu heated to 1000°C under 2 sccm H2 flow followed by immediate 
cooling to room temperature.  (b) SEM image of CTO-Cu heated to 1000°C under 2 sccm H2 flow, 
annealed for 20 minute with constant hydrogen flow and temperature, followed by cooling to room 
temperature. 
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Based on all the information regarding the surface morphology and structure of 

graphene and copper during the initial stages of graphene nucleation and growth, a model 

of the deposition mechanism is proposed as illustrated in Figure 5.9.  Research has shown 

the reduction rate of copper oxide lowers with decreasing H2 partial pressure.66  The 

relatively small H2 partial pressure of 2 sccm used in this research may not be sufficient 

 to reduce the thick copper oxide at the surface interface, leaving some remnant of a 

copper oxide species at the copper substrate surface.  The remaining copper oxide at the 

surface coupled with the introduction of hydrogen gas may cause partial melting of a thin 

layer at the copper foil surface, as seen in the top left image in Figure 5.9.  The eutectic 

temperatures for Cu-CuO and Cu-Cu2O are approximately 1091°C and 1066°C, which 

are slightly above the 1000°C deposition temperature region.  However, premelting,67 or 

partial melting, of a thin layer near the copper substrate surface has been shown to occur 

Figure 5.9.  Schematic of the CVD graphene deposition process on CTO-Cu at 1000°C under H2 flow.  
First, the formation of a Cu-O-H layer (red color) upon diffusion of H2 in Cu (yellow).  Then, formation 
of Cu nanoparticles with partially melted Cu-O-H surface layer (red sphere).  Third, segregation of the 
Cu/Cu-O-H core/shell nanoparticles and last formation of triangle domains.  Lastly, the deposition of 
graphene on the amassed triangular domains. 



 168 

at temperatures considerably lower than the bulk melting temperature of copper (1083°C) 

depending on the crystallographic orientation at the surface and existence of impurities,68 

such as CuOx and H2, whose solubility increases in Cu at elevated temperatures.  The 

easy mobility in the thin liquid-phase layer at the surface may promote the aggregation of 

copper oxide species into nanoparticles within the melted Cu-O-H layer, as demonstrated 

in the top right picture in Figure 5.9.  Since the (111) crystal orientation is the most 

energetically favored, the nanoparticles are very likely to assemble into the Cu2O 

orientation and form equilateral triangles as observed previously in Figure 5.7.  Not only 

could it be possible for these nanoparticles to form, but also to migrate in the partially 

melted Cu-O-H layer to form triangular domains (bottom right image).  The right angle 

geometry and parallel alignment of the domains are most likely facilitated by the 

underlying Cu (100) beneath the melted surface layer.  The nucleation and deposition of 

graphene can occur epitaxially on the surface of these triangle domains upon reduction at 

the surface layers of the Cu2O nanoparticles to Cu0 (bottom left image).  Copper oxide 

reduction in the partially melted thin layer regions surrounding the triangles may occur 

more slowly due to the amorphous Cu-O-H composition, and the crystalline Cu2O (111) 

provides an easy avenue for reduction to Cu (111).  

 It is clear specific characteristics of CTO-Cu significantly influence the CVD 

graphene deposition process.  The (100) textured surface on CTO-Cu is capable of 

influencing the alignment of triangle features formed on the copper oxide surface, as well 

as their arrangement into right-angled geometries.  Restructuring of the copper oxide in 

these regions to form nanoparticles then promote the reduction to Cu (111) with 

subsequent graphene deposition.  The triangle formations with deposited graphene grow 
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in dimension across the sample surface until their edges merge and graphene coats the 

entire substrate.  The impact the CTO-Cu has on graphene growth is promising to aid in 

the alignment of graphene grains, and produce graphene of high quality with increased 

electron mobility.   

5.4.3 Comparison of Initial Graphene Growth on CTO-Cu and Polycrystalline Copper 

 Now that its been established that features of CTO-Cu copper can significantly 

influence the characteristics of CVD graphene and its deposition mechanism, it is 

important to study how graphene features may change and how the deposition 

mechanism may be modified when the copper substrate contains different characteristics 

than CTO-Cu, such as with polycrystalline copper.  If the objective of this research is to 

be able to manipulate copper foil properties to produce defect-free and highly conductive 

single layer CVD graphene, it is imperative to know not only the details of graphene 

deposition on a single type of copper surface, but on multiple copper surfaces to 

understand how the change of copper substrate properties influences the change in 

graphene characteristics.   

 For this investigation, CVD graphene was deposited on both CTO-Cu and 

polycrystalline copper foils for a limited time period to examine the initial graphene 

deposition properties on the two copper surfaces. The copper foils to were heated to 

1000°C under hydrogen flow, exposed to methane for a 5 minute period, and allowed to 

return to ambient temperature conditions.  The contrasting surface morphologies are 

evident in the AFM images illustrated in Figure 5.10.  Consistent with images presented 

in the previous section, triangle formations ranging in lateral dimensions from tens of 
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nanometers to a few microns are dispersed throughout the CTO-Cu surface after a 5-

minute graphene deposition period (image (a)).  The height of a typical triangle from  

edge to center illustrated in part (b) of this figure is in the range of 80-150 nm.  The 

region surrounding the triangle shapes demonstrates a jagged topography with a 

roughness around 10 – 15 nm, which is mostly likely the result of an amorphous copper 

Figure 5.10.  (a) AFM image of graphene on CTO-Cu after 5 min deposition.  (b) Zoomed in view of 
triangle on CVD graphene/CTO-Cu after 5 minute graphene deposition with cross section analysis.  (c) 
AFM image of graphene on polycrystalline copper after 5 minute deposition.  (d)  Zoomed in view of 
features on CVD graphene/poly-Cu after 5 minute graphene deposition with cross section analysis. 
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oxide building up around the triangle geometries.  In comparison, the surface formations  

on the polycrystalline copper (Figure 5.10-c) additionally show a distribution of tall 

faceted features in localized regions amidst a background of a somewhat coarse 

morphology.  These large structures, however, do not show any specific geometry at their 

base or any clear alignment amongst their population.  This was somewhat expected 

considering the polycrystalline copper does not have any special pretreatment as does the 

CTO-Cu to align its grain boundaries or to predominantly change the surface structure to 

a single orientation of the crystal lattice. Additionally, the minority of the large 

formations possess heights similar to the triangles features on CTO-Cu, with heights 

Figure 5.11.  (a) SEM image and (b) EBSD OIM mapping of CVD graphene on CTO-Cu after 5 
minute graphene deposition.  (c) SEM image and (d) EBSD OIM mapping of CVD graphene on 
polycrystalline copper after 5 minute graphene deposition. 
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around 100 nm as shown in part (d) of Figure 5.10, however a majority of heights extend 

over 200 nm and lateral dimensions reaching several microns.  Clearly there is different 

surface morphology upon restructuring of the copper surface during the initial stages of 

CVD graphene deposition on CTO-Cu and polycrystalline copper.  These structures are 

validated in the SEM images displayed in Figure 5.11.  Also shown in Figure 5.11 are 

EBSD mappings which correspond with the specific SEM images in (a) and (c).  From 

the EBSD mapping for graphene on CTO-Cu after a 5 minute deposition time (Figure 

5.11-b), it can be seen that the majority of the triangular features on the surface have a 

(111) crystal orientation represented by the blue color, and in the surrounding areas the 

spackling of a variety of colors designates some type of amorphous material.  These 

results were confirmed in previous timed studies of graphene deposition on CTO-Cu.  

Comparatively, the images in part (c) and (d) of this figure highlight the morphology and 

lattice structure of the substrate surface upon graphene deposition on polycrystalline 

copper following a 5 minute growth period.  The large structured features in the SEM 

image mirror that shown in the previous AFM images, and the areas outside of the 

formations demonstrate coloring in the EBSD image similar to that of the CTO-

Cu/graphene sample, indicating amorphous material.  But, the EBSD mapping of these 

sizable structured formations exhibit a variety of lattice faces among the (111), (100), and 

(101) orientations.  The ability for CVD graphene to form on copper lattices other than 

(111), such as the (100) orientation have been shown in other research, however the CVD 

graphene produced on these other single crystalline structures have reportedly been lower 

in quality in comparison to CVD graphene on a Cu (111) substrate due primarily to 

lattice mismatch.47,48   
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Raman studies performed here support findings shown in previous research.  

Raman spectra of graphene deposited on CTO-Cu and polycrystalline copper after 5 

minutes of exposure to CVD growth conditions are displayed in Figure 5.12.   

The spectra for the graphene coating on CTO-Cu was obtained atop the region of the 

large triangle shapes, and the CVD graphene on polycrystalline copper obtained from  

inside the area of large irregularly-shaped faceted formations.  Both exhibit the 

characteristics 2D and G peaks for graphene at 2700 cm-1 and 1580 cm-1 due to second 

order zone-boundary phonons and the doubly degenerate zone center E2g mode.60  The 

intensity ratio for the 2D to G peak for the graphene on CTO-Cu (Figure U-a) is 

calculated to be over two, supporting the premise of single layer graphene covering the 

triangle structures on CTO-Cu.  There is no distinguishable signal in the surface region 

outside of the triangle shapes, as seen in the inset of this image, confirming there is no 

notable graphene construction outside of the triangles.  In comparison, the 2D/G peak 

intensity ratio for the graphene grown on polycrystalline copper does not exceed two, 

which may be due to either multiple layers of graphene, or significant defect development 

  
(a) (b) 

Figure 5.12.  (a) Raman spectra on triangle formation on CTO-Cu with graphene after 5 minute 
deposition.  Inset Raman spectra taken in region outside of triangle feature.  (b) Raman spectra on 
irregular-shaped structure feature on polycrystalline copper with graphene after 5 minute deposition.  
Inset spectra obtained in region surrounding large faceted formations. 
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in the CVD graphene potentially caused by strain between the mismatched lattices of 

graphene and the underlying variety of crystalline orientations.  The presence of the D 

peak at ~1350 cm-1 would allow for a better comparison of defect density between these 

two graphene samples on CTO-Cu and polycrystalline copper, but the very small peak at 

this wavenumber in both of these spectra make it very difficult to quantify and make a 

comparison.  It is still evident, however, the quality of graphene epitaxially grown on 

CTO-Cu illustrates behavior of higher quality in comparison to that of polycrystalline 

copper during the initial stages of CVD graphene deposition.  This is most likely due to 

the restructuring of the CTO-Cu surface to a predominantly (111) orientation to match 

the lattice constant of graphene, whereas growth on polycrystalline copper occurs on a 

much more varied surface morphology with a variety of exposed crystal faces.  

Therefore, it is desirable to develop copper surfaces which may restructure primarily to a 

surface (111) orientation, and CTO-Cu shows a promising means to achieve this 

objective. 

 On the CTO-Cu it was shown previously that the aligned triangle structures found 

on its surface following CVD graphene deposition for 5 minutes were formed during the 

initial heating process before the introduction of a methane gas carbon source.  This 

initial surface reconstruction influenced the location of graphene deposition on the 

surface, as well as potential alignment of its grains.  To investigate how initial thermal 

heating affects potential changes on the bare polycrystalline copper surface, 

polycrystalline copper samples were heated to 1000°C under 2 sccm hydrogen flow, and 

immediately upon reaching this temperature allowed to cool back to ambient temperature 

conditions.  The resulting substrate morphology is illustrated in the SEM image in Figure 
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5.13.  There is no clear evidence of organized 

formations on the sample surface, or 

nanoparticle formation as demonstrated on 

CTO-Cu under similar treatment.  Randomly 

aligned striations of dark color appear across 

the surface, and EBSD patterns (not shown) 

show the crystal orientation within these 

darker regions to be correlated to a variety of 

lattice structures, whereas there is no detectable signal of the lighter regions, indicating 

amorphous material.  This matches the findings whereby the CVD graphene deposited on 

polycrystalline copper is atop a substrate surface with a range of crystalline lattices.  

These results reaffirm the distinct influence the pretreated textured (100) surface on the 

CTO-Cu has on the particular alignment and growth process of CVD graphene on copper 

substrates. 

 In summary, the initial growth stages of CVD graphene on CTO-Cu and 

polycrystalline copper show clear differences in morphology, graphene quality, and 

copper substrate restructuring to form different crystalline lattices underneath the 

nucleated graphene regions.  On the CTO copper, the morphology of the copper substrate 

surface displays clearly aligned right-triangle formations indicative of organization 

influenced by the textured (100) surface, whereas the polycrystalline copper depicts large 

irregular-shaped faceted features with no specific alignment.  The surface on the CTO-Cu 

undergoes a lattice reconstruction to an (111) orientation to promote higher quality 

graphene deposition due to matching lattice constants, and the polycrystalline copper 

Figure 5.13.  SEM image of poly-Cu heated 
to 1000°C under 2 sccm H2 flow followed by 
cooling to room temperature. 
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surface found underneath CVD graphene areas displays a range of crystalline lattices 

producing graphene regions with behavior indicative of a higher defect density.  Clearly, 

characteristics of the copper substrate play a significant role in the deposition mechanism 

of graphene on metallic surfaces, and the manipulation of copper substrate features can 

be used to improve CVD graphene quality. 

5.4.4  Graphene Hole Array Templated Growth  

 Graphene deposited on various metallic surfaces via chemical vapor deposition 

presents several advantages such as low cost, large area production, and an easy 

production scheme.  However, there are also several drawbacks to this method as well 

such as high defect density, multiple graphene sheet production on some metals, and 

graphene production on a conducting metallic substrate.  It is because of this last 

disadvantage there has been interest in producing graphene on nonconductive substrates 

such as silicon, but these processes typically generate graphene flakes on the micron scale 

and of very low quality.51,52,53  In order to overcome this limitation, we would like to 

explore the potential of growing graphene from a templated graphene scaffold on a 

nonconducting silicon substrate, and minimize the use of conductive metal in the 

deposition process.  It is the hope to be able to potentially produce graphene on an 

insulating substrate, and investigate the possibility of controlled graphene placement on a 

templated graphene pattern. 
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To perform this research, mechanically exfoliated graphene on a silicon substrate 

was first patterned into a nanohole array template.  Then, copper was deposited inside 

exposed hole regions of the templated graphene hole array, and the sample exposed to 

CVD graphene deposition conditions.  Graphene templated hole arrays were produced 

from mechanically exfoliated graphene, patterned with a PMMA coating coupled with 

heated stamp process, copper was evaporated onto the surface followed by resist removal, 

and the sample placed into a heated furnace at 1000°C under CVD growth conditions.  

Analysis of the substrate surface after 1 nm of copper was e-beam evaporated onto the 

sample surface followed by resist removal is illustrated in Figure 5.14.  It is clear from 

the AFM image in part (a) a large portion of the resist surrounding the graphene patterned 

holes still remains.  The outline of the approximately 250 nm diameter holes is somewhat 

Figure 5.14.  (a) AFM image, (b) zoomed in AFM image of single hole region, and (c) SEM image of 
graphene hole array on silicon substrate after 1nm copper deposition.  Raman mapping of (d) G and (e) 
2D band on graphene hole array sample on silicon with 1 nm thick deposited copper. 
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visible under the resist, but is primarily masked by the surrounding resist residue.  The 

SEM image in part (c) shows slightly distorted outlines of these holes most likely due to 

the residual polymer interfering with signal collection.  A clearer picture of the individual 

hole characteristics is exhibited in the zoomed in AFM image in part (b) of this figure, 

after applying a larger scanning force with the AFM tip to clear away surrounding debris.  

Small particles are apparent inside the hole, with a majority clustering around the outer 

edges.  This is to be expected considering the percolation threshold, or the evaporated 

copper thickness needed to produce homogenous copper films on silicon surfaces has 

been found to be somewhere between 5 and 8 nm.69  Below this level, thin copper films 

create small islands on the silicon surface due to relative surface energies and surface 

tension values.  It is most likely these particles initially exist as reduced copper on the 

silicon surface due to the high vacuum conditions for e-beam evaporation.  However, 

upon exposure to oxygen during the acetone rinse to remove the PMMA resist, they are 

most likely oxidized considering their small size in the range of 10-20 nm.  Furthermore, 

the thermal heating and low vacuum conditions when undergoing regrowth of graphene 

inside the hole array template further promote the likelihood of copper oxidation.  The 

Raman mappings of the graphene G and 2D peaks are illustrated in Figure 5.14-d,e for 

the sample surface after 1 nm copper deposition and resist removal from the graphene 

hole template.  The maps depict strong graphene signals in the areas of the graphene hole 

array template, and the signal significantly drops to an undetectable amount in the 

exposed hole areas where only evaporated copper is present.  These maps will be used for 

an important comparison for graphene deposition upon exposure of this sample to CVD 

graphene deposition conditions. 
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The results of CVD graphene regrowth in the graphene hole arrays with 1 nm 

deposited copper are exhibited in Figure 5.15.  The SEM image in (a) shows a change in 

the geometry of the dark region inside the holes to smaller irregular shapes, suggesting 

some sort of growth at the edge of the holes to reduce the size of the exposed hole 

regions.  Some of these edges are faceted and form triangular formations, suggesting a 

possible (111) orientation around these outer edges.  A clearer image of the surface 

morphology of this sample is highlighted in part (b) with an AFM image.  In comparison 

to the SEM image, repeated circular shapes raised in height approximately 15 nm above 

the surface are found within the templated holes, centered in the middle of the hole in 

Figure 5.15.  (a) SEM image and (b) AFM image of graphene hole array on silicon substrate after 1nm 
copper deposition and CVD graphene deposition.  Raman mapping of (c) G and (d) 2D band on 
graphene hole array sample on silicon with 1 nm thick deposited copper and CVD graphene deposition. 
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relatively the same location.  The repetitive pattern indicates these features are most 

likely not random debri on the surface, but resulting structures from the CVD growth 

process.  The 250 nm diameter outline of the hole is evident in the image, with a very flat 

region inside the hole between the perimeter and the raised circular formations, 

suggesting potential graphene deposition in these flat spaces. To confirm potential 

graphene deposition, Raman mapping was again performed, investigating the intensity 

distribution of the G and 2D peak signals across the surface, which is displayed in Figure 

5.15-c,d.  The contrasting signal distribution between the graphene templated region and 

areas inside the holes has reduced, showing more detectable signal intensity around the 

outer edges of the patterned holes.  This result could be from graphene deposition around 

the outer edges of the holes, leaving some regions of significantly reduced signal near the 

center of the hole region.  It is difficult to pinpoint the exact region of graphene 

deposition considering the area of the laser light on the sample for Raman mapping is 

around 200 nm, which limits the resolution.  However, there is some notable change in 

the signal around the holes, which at least demonstrates probable graphene growth. 

The tall circular-shaped structures in the center of each patterned hole are quite 

unique, and simple solvent exposure experiments were performed to gain some insight as 

to the composition of these surface formations.  The graphene template with 1 nm thick 

deposited copper with successive graphene growth was exposed to several solvents to 

potentially dissolve these features and observe possible changes via AFM inspection.  

Initially, the sample was placed into pure acetone and chloroform for several days to rid 

of any residual polymer remaining on the surface.  From the AFM images in (a) and (b) 

of Figure 5.16, there is no alteration of the circular features, indicating they are not a 
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result of lingering PMMA on the substrate surface.  Secondly, if the composition was of 

reduced copper, a 0.1 M FeCl3 solution should dissolve any copper on the surface, seeing 

as this solution is used to dissolve the bulk copper substrate from CVD graphene in 

previous experiments.  The AFM image in Figure 5.15-c again indicates no change in 

surface morphology upon iron chloride exposure over a several day period, so these 

features must not be exposed reduced copper.  If there existed any surface copper oxide, 

subjection to a dilute sulfuric acid solution has been shown to easily dissolve copper 

oxide.  After placing the sample in a 0.1 M sulfuric acid solution for a period of 2 days, 

again the tall circular features remained and did not disappear through dissolution.  These 

results indicate these raised features may be potentially covered with a graphene layer 

which would protect them from decomposition in these solvents, or it is possibly 

composed of some other hydrocarbon species that is resistant to dissolution in these 

solvents. 

For a comparison, a similar sample of CVD graphene deposition was made on a 

graphene hole array template instituting 5 nm thick layer of deposited copper on the 

surface to see how the presence of more copper would change potential graphene growth 

Figure 5.16.  AFM images with cross sections of a graphene hole template with 1 nm thick evaporated 
copper, followed by (a) graphene growth and several day exposure to (b) pure organic solvents and (c) 
0.1 M FeCl3. 
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within the graphene hole template.  The results are exhibited in Figure 5.17.  The SEM 

image in (a) does not show any dark region inside the hole shapes, indicating they are  

completely filled with conductive material similar to the graphene template.  The AFM 

image in (b) depicts a large globular formation in the relatively same central locale within 

each patterned hole.  Similar to the deposition on the sample with only 1 nm of deposited 

copper, the region between the outer edge of the holes and the aggregated formation near 

its center is relatively flat.  The G band Raman mapping for a single hole is illustrated in 

Figure 5.17-d.  It is apparent the distribution of the Raman peak signal becomes more 

homogeneous across the hole for this sample.  The G band Raman maps for zoomed in 

Figure 5.17.  (a) SEM image and (b) AFM image with (c) cross section of graphene hole array on 
silicon substrate after 5 nm copper deposition and CVD graphene deposition.  G band Raman mapping 
of templated graphene hole array with (d) 5 nm thick deposited copper and graphene deposition, (e) 1 
nm thick deposited copper and graphene deposition, and (f) 1 nm thick deposited copper with no 
graphene deposition. 
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areas on the graphene hole arrays with 1 nm thick evaporated copper with subsequent 

graphene growth (e) and 1 nm thick deposited copper with no graphene regrowth (f) are 

shown for comparison purposes.  These show reduced peak intensity near the center of 

the holes, implying there is no graphene present near the center region of the hole. 

From the accumulation of this data, it is supposed the graphene template acts as a 

foundation to generate further graphene growth from the perimeter of the patterned holes 

toward the center of the hole.  At the high deposition temperature of 1000°C, the likely 

oxidized copper nanoparticles from e-beam evaporation of copper within the graphene 

template can migrate among the area within the hole, and propagate to the edge of the 

patterned holes.  It has been extensively studied that CVD graphene deposition occurs 

with dispersed graphene nucleation in regions across the copper surface, followed by 

outward growth of these areas across the substrate surface.  Thus, it is not surprising the 

graphene template would act similarly as a site to continue graphene deposition.  The 

edge of the hole array would provide a lower surface energy placement for this 

nanoparticles in relation to a flat exposed surface, so the movement of the particles to a 

step-edge region is quite probable.  Upon introduction of the methane gas carbon source, 

the copper oxide particles may become potentially reduced at the surface, initiating a 

graphene coating over their surface as well as promote graphene growth from the 

graphene template edge inward.  This process would account for the tall circular features 

within the templated holes after graphene regrowth, and additionally the inability to 

dissolved these structures in a variety of solvents.  It is believed the copper oxide 

particles may move toward the center of the hole during graphene formation because they 

may be extremely mobile across the surface at the elevated temperatures, allowing them 
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to easily move and be displaced as graphene is formed at the edge of the hole array 

template.  Additionally, it may be more energetically favorable for the graphene to 

remain in a flat orientation on the silicon surface rather than be in a curved structure 

coating the copper particles.  Graphene with high curvature has been shown to experience 

significant strain, even enough to induce significant defects in the graphene structure.70  

Thus, the copper could be displaced toward the center of the nanohole for the graphene to 

remain favorably flat.  Over time, or with the presence of a larger amount of copper as 

with the 5 nm thick evaporated copper, graphene production from the template can cover 

the entire exposed region of the templated hole.  Consequently, the circular-type 

formation will aggregate into one globular formation within the central region of the hole, 

and the Raman mapping of the hole region to go from a contrasting signal within and 

outside of the hole to a homogenous signal for the same area.   Further time-sequenced 

studies examining how the surface of templated graphene arrays with regrown graphene 

change over time specific periods during the deposition process would hopefully allow 

better confirmation of this proposed hypothesis. 

5.5 Conclusions 

 The research described in this chapter has focused on fundamental investigations 

of graphene growth that will aid in developing methods for production of high quality, 

continuous, single-layer graphene films over large surface areas for numerous 

applications envisioned for graphene.  To improve conductivity and lower defect density, 

it is first imperative to know if differences in copper substrate features may influence 

graphene quality, which was the initial objective. To fulfill this goal, graphene was 

deposited by the CVD process on polycrystalline copper and CTO-Cu, which is copper 
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foil specially treated to align grain angles and produce a predominant surface orientation 

of (100).  The morphological, optical, and electrical properties of the graphene on these 

substrates were then compared.  Graphene on polycrystalline copper displayed a rough 

morphology with somewhat aligned peaks and valleys, slightly similar to the bare 

polycrystalline surface, but different enough to suggest a copper surface reconstruction 

underneath its graphene coating.  The bare CTO-Cu surface was quite flat, and 

demonstrated a change after CVD graphene deposition to large-scale features, also 

strongly indicating a reconstruction of the abundant copper under the graphene film.  The 

graphene on polycrystalline copper further showed behavior of defect-rich graphene by a 

comparatively large D peak in its Raman spectra, decreased transmittance across the 

visible spectrum, and a 20% lower conductivity value in relation to the graphene on 

CTO-Cu.  All of these differences imply there is an influence from specific traits of the 

copper substrate on formation and quality of CVD graphene.   

The second objective of this research was to further understand this specific 

dependence with the features of CTO-Cu and to elucidate details of the graphene 

deposition mechanism on this copper substrate.  Graphene was deposited on CTO-Cu for 

shortened periods of time, and a multitude of properties probed.  It was found during the 

initial deposition stages, small localized regions across the substrate surface begin to 

reconstruct into raised right-angle triangle structures that are principally aligned along a 

single axis, indicating an influence of the aligned grains of the special-treated CTO-Cu 

with its chiefly (100) lattice.   These structures grow in size until their edges begin to 

coalesce, covering the entire copper substrate surface.  The primarily Cu (100) surface 

reconstructs to a (111) lattice to initiate growth of graphene, which shares a closely 
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matched lattice constant with the (111) orientation.  The principal component at the 

copper interface is believed to be a thick copper oxide considering the likely presence of 

oxygen and high deposition temperatures, however a several nanometer thick reduced 

copper layer is believed to reside between the oxide and graphene due to EBSD 

measurements.  With all this information, the mechanism of graphene deposition is 

proposed to begin by formation of a thin melted Cu-O-H layer at the copper oxide 

surface, followed by formation and aggregation of reconstructed copper oxide (111) 

nanoparticles into aligned right triangles, as directed by the (100) substrate.  Upon 

reduction at the surface regions of the copper oxide nanoparticles to a thin Cu0 coating, 

graphene may deposit cover the surface of the triangle structures, and over time cover the 

entire substrate surface.   

 To expand on the second objective, graphene was deposited on polycrystalline 

copper by the CVD process and compared to graphene on CTO-Cu in order to ascertain 

how the deposition mechanism or graphene formation may change upon significant 

changes in the copper substrate features.  In comparison to the traits of CTO-Cu, 

polycrystalline copper is well known for its randomly aligned micron-scale grains of 

several crystal orientations, such as Cu (100), Cu (111), and Cu (110).  As a result, the 

initial stages of graphene development on this substrate did not demonstrate any specific 

structural alignment or organized geometric arrangement on the sample surface as found 

in the CTO-Cu samples, even though restructuring of the surface did take place into large 

irregular features with faceted characteristics.  The polycrystalline copper present under 

the CVD graphene did not display a clear favor to reconstruct to a (111) crystal 

orientation on these faceted structures, and illustrates a variety of other orientations 
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including (100) and (110).  As a result, the graphene present on the faceted formations 

displayed behavior of a film with a higher defect density, which is expected for graphene 

on crystal lattices other than (111).  It is evident the special-treated CTO-Cu with its 

highly aligned grains and (100) orientation must promote formation of aligned triangle 

features on the copper substrate surface during the initial heating stages of the CVD 

process, since this is not observed when initially heating the polycrystalline copper.  

Furthermore, the thermally treated CTO-Cu surface must facilitate the reconstruction of 

the surface to the energetically-favorable (111) orientation, seeing as the multitude of 

lattice orientations still remain on the polycrystalline copper substrate after CVD 

graphene deposition.  These differences produce graphene on the CTO-Cu foil with 

aligned grains, smaller defect density, and consequently higher quality.  These results are 

promising to be able to manipulate copper foil surfaces and generate graphene with 

aligned grains to improve electron mobility for more successful implementation of 

graphene as a transparent electrode, as well as form graphene on a mostly insulating 

metallic oxide surface. 

 Another means to produce CVD graphene on insulating substrates, and the third 

aim of this research, was to utilize graphene templates and thin, selectively deposited 

copper to initiate further growth from the graphene template across an insulating material 

surface.  Templated graphene hole arrays were produced on insulating silicon substrates, 

followed by selective copper deposition within the bare hole regions, and the sample 

exposed to CVD graphene deposition conditions.  Following graphene growth when only 

1 nm of copper was deposited, tall circular disk-like features were revealed near the 

center of all holes within the templated structure.  The region between the edge of the 
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template hole and tall feature was very flat, much flatter than the patterned graphene, 

which most likely retained some residual resist from the patterning process.  The Raman 

spectra showed an increase in 2D and G signal intensity around the outer edges of the 

holes after graphene deposition.  In comparison, the sample with 5 nm of deposited 

copper and graphene deposition exhibited a large globular formation located at 

approximately the center of all the templated holes, and a further increase in Raman 

signal intensity across the hole structures.  It is proposed during the exposure of the 

templated graphene array with copper to CVD graphene growth conditions, the deposited 

copper becomes oxidized and migrates to the energetically-favorable edge sites of the 

hole array.  There, the surface of the copper may potentially be reduced and promote 

graphene assembly from the edge site, and the copper species at the edge site may move 

inward as the graphene edge closes the hole area.  The chemical composition of the raised 

circular structures still remains undetermined and it is still unclear if this proposed 

deposition hypothesis is accurate, but further time-sequenced and composition 

experiments would allow for better clarification.  The primitive initial findings still show 

potential for graphene deposition from graphene template edges on insulating substrates, 

and with further inquiry would provide a means to overcome the limitation of CVD 

graphene deposition on bulk metallic substrates, and the difficulties included in transfer 

to dielectric materials.  Overall, through a detailed understanding of the graphene growth 

mechanism, it may be possible to manipulate the growth by controlling the substrate 

structure, processing conditions, or even templating the growth of graphene on insulating 

substrates. 

 



 189 

5.6 References 

1. Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. 
M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Electromechanical resonators 
from graphene sheets. Science 2007, 315 (5811), 490-3. 

2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubunos, 
S. V.; Grigorieva, I. V.; Firsov, A. A., Electric FIeld Effect in Atomically Thin 
Carbon Films. Science 2004, 306 (5296), 666-669. 

3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; 
Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of 
massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200. 

4. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P., Experimental observation of the 
quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 
201-4. 

5. Eda, G.; Lin, Y.-Y.; Miller, S.; Chen, C.-W.; Su, W.-F.; Chhowalla, M., 
Transparent and conducting electrodes for organic electronics from reduced 
graphene oxide. Applied Physics Letters 2008, 92 (23), 233305. 

6. Verma, V. P.; Das, S.; Lahiri, I.; Choi, W., Large-area graphene on polymer film 
for flexible and transparent anode in field emission device. Applied Physics 

Letters 2010, 96 (20), 203108. 
7. Wang, X.; Zhi, L.; Mullen, K., Transparent, Conductive Graphene Electrodes for 

Dye-Sensitized Solar Cells. Nano letters 2008, 8 (1), 323-327. 
8. Lih, E. T. Y.; Zaid, R. b. M.; Tan, L. L.; Chong, K. F., Facile Corrosion 

Protection Coating from Graphene. International Journal of Chemical 

Engineering and Applications 2012, 453-455. 
9. Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; 

Ruoff, R. S.; Kim, S. O., Three-dimensional self-assembly of graphene oxide 
platelets into mechanically flexible macroporous carbon films. Angewandte 

Chemie 2010, 49 (52), 10084-8. 
10. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; 

Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., 
Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 

2006, 312 (5777), 1191-1196. 
11. Zheng, Y.; Ni, G.-X.; Toh, C.-T.; Zeng, M.-G.; Chen, S.-T.; Yao, K.; Ozyilmaz, 

B., Gate-controlled non-volatile graphene-ferroelectric memory. Applied Physics 

Letters 2009, 94, 163505. 
12. Gunlycke, D.; Areshkin, D. A.; Li, J.; Mintmire, J. W.; White, C. T., Graphene 

Nanostrip Digital Memory Device. Nano letters 2007, 7 (12), 3608-3611. 
13. Wassei, J. K.; Kaner, R. B., Graphene, a promising transparent conductor. 

Materials Today 2010, 13 (3), 52-59. 
14. De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, 

C., Continuous, Highly Flexible, and Transparent Graphene Films by Chemical 
Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4 (5), 2865-2873. 

15. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; 
Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of 
Electrical, Chemical, and Structural Properties of Transparent and Conducting 



 190 

Chemically Derived Graphene Thin Films. Advanced Functional Materials 2009, 
19 (16), 2577-2583. 

16. Wu, J.; Becerril, H. c. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P., Organic solar 
cells with solution-processed graphene transparent electrodes. Applied Physics 

Letters 2008, 92 (26), 263302. 
17. Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y., 

Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. 
Advanced Materials 2008, 20 (20), 3924-3930. 

18. Zhou, M.; Zhai, Y.; Dong, S., Electrochemical Sensing and Biosensing Platform 
Based on Chemically Reduced Graphene Oxide. Analytical Chemistry 2009, 81, 
5603-5613. 

19. Dankerl, M.; Hauf, M. V.; Lippert, A.; Hess, L. H.; Birner, S.; Sharp, I. D.; 
Mahmood, A.; Mallet, P.; Veuillen, J.-Y.; Stutzmann, M.; Garrido, J. A., 
Graphene Solution-Gated Field-Effect Transistor Array for Sensing Applications. 
Advanced Functional Materials 2010, 20 (18), 3117-3124. 

20. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based 
Ultracapacitors. Nano letters 2008, 8 (10), 3498-3502. 

21. Martinez, A.; Fuse, K.; Yamashita, S., Mechanical exfoliation of graphene for the 
passive mode-locking of fiber lasers. Applied Physics Letters 2011, 99 (12), 
121107. 

22. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; 
McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. 
K.; Waldmann, D.; Weber, H. B.; Seyller, T., Towards wafer-size graphene layers 
by atmospheric pressure graphitization of silicon carbide. Nat Mater 2009, 8 (3), 
203-7. 

23. Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L., Interaction, growth, and ordering of 
epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron 
spectroscopy study. Physical Review B 2008, 77 (15). 

24. Hibino, H.; Kageshima, H.; Nagase, M., Epitaxial few-layer graphene: towards 
single crystal growth. Journal of Physics D: Applied Physics 2010, 43 (37), 
374005. 

25. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; 
Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based 
nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 
(7), 1558-1565. 

26. Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S., Dual path 
mechanism in the thermal reduction of graphene oxide. Journal of the American 

Chemical Society 2011, 133 (43), 17315-21. 
27. Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y., Facile and controllable 

electrochemical reduction of graphene oxide and its applications. Journal of 

Materials Chemistry 2010, 20 (4), 743. 
28. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; 

Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, 
B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent 
electrodes. Nature nanotechnology 2010, 5 (8), 574-8. 



 191 

29. Tao, L.; Lee, J.; Chou, H.; Holt, M.; Ruoff, R. S.; Akinwande, D., Synthesis of 
High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-
Enriched Evaporated Copper (111) Films. ACS Nano 6 (3), 2319-2325. 

30. Avouris, P.; Dimitrakopoulos, C., Graphene: synthesis and applications. Materials 

Today 2012, 15 (3), 86-97. 
31. Chae   .  .    ne    .   im   .  .   im, E. S.; Han, G. H.; Kim, S. M.; Shin, H.-

J.; Yoon, S.-M.; Choi, J.-Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H., 
Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical 
Vapor Deposition: Wrinkle Formation. Advanced Materials 2009, 21 (22), 2328-
2333. 

32. Ramesha, G. K.; Sampath, S., Electrochemical Reduction of Oriented Graphene 
Oxide Films:  An Insitu Raman Spectroelectrochemical Study. Journal of Phys 

Chem C Lett 2009, 113, 7985-7989. 
33. Huang, X.; Zhou, X.; Wu, S.; Wei, Y.; Qi, X.; Zhang, J.; Boey, F.; Zhang, H., 

Reduced graphene oxide-templated photochemical synthesis and in situ assembly 
of Au nanodots to orderly patterned Au nanodot chains. Small 2010, 6 (4), 513-6. 

34. Williams, G.; Seger, B.; Kamat, P. V., TiO2-Graphene Nanocomposites.  UV-
Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2 (7), 1487-
1491. 

35. Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; 
Burghard, M.; Kern, K., Electronic Transport Properties of Individual Chemically 
Reduced Graphene Oxide Sheets. Nano letters 2007, 7 (11), 3499-3503. 

36. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of 
Graphene. Chem. Rev. 2010, 110, 132-145. 

37. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene based 
materials: Past, present and future. Progress in Materials Science 2011, 56 (8), 
1178-1271. 

38. Fernandez-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solis-
Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M., Vitamin C is an Ideal 
Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J Phys 

Chem C 2010, 114, 6426-6432. 
39. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; 

Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-area 
synthesis of high-quality and uniform graphene films on copper foils. Science 

2009, 324 (5932), 1312-4. 
40. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; 

Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by 
Chemical Vapor Deposition. Nano letters 2009, 9 (1), 30-35. 

41. Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C. M.; Tsuji, M.; 
Ikeda, K.; Mizuno, S., Epitaxial Chemical Vapor Deposition Growth of Single-
Layer Graphene over Colbalt Film Crystallized on Sapphire. ACS Nano 2010, 4 
(12), 7407-7414. 

42. An, H.; Lee, W.-J.; Jung, J., Graphene synthesis on Fe foil using thermal CVD. 
Current Applied Physics 2011, 11 (4), S81-S85. 

43. Sutter, E.; Albrecht, P.; Sutter, P., Graphene growth on polycrystalline Ru thin 
films. Applied Physics Letters 2009, 95 (13), 133109. 



 192 

44. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, 
L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for Highe Performance 
Transparent Conductive Electrodes. Nano letters 2009, 9 (12), 4359-4363. 

45. Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, 
M.; Cai, W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; 
Colombo, L.; Ruoff, R. S., Graphene films with large domain size by a two-step 
chemical vapor deposition process. Nano letters 2010, 10 (11), 4328-34. 

46. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; 
Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; 
Park, J.; McEuen, P. L.; Muller, D. A., Grains and grain boundaries in single-
layer graphene atomic patchwork quilts. Nature 2011, 469 (7330), 389-92. 

47. Ishihara, M.; Koga, Y.; Kim, J.; Tsugawa, K.; Hasegawa, M., Direct evidence of 
advantage of Cu(111) for graphene synthesis by using Raman mapping and 
electron backscatter diffraction. Materials Letters 2011, 65 (19-20), 2864-2867. 

48. Ogawa, Y.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.; Mizuno, S.; Hibino, H.; 
Ago, H., Domain Structure and Boundary in Single-Layer Graphene Grown on 
Cu (111) and Cu (100) Films. J. Phys. Chem.  2012, 3 (2), 219-226. 

49. Truchan, T. G.; Miller, D. J.; Goretta, K. C.; Balachandran, U.; Foley, R., 
Biaxially textured face-centered cubic metal; rolling, heat treatment, annealing; 
depositing epitaxial layer; reduced amount of grain bounderies with 
misorientation angles. Google Patents: 2002. 

50. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, 
S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of 
chemical residues on the physical and electrical properties of chemical vapor 
deposited graphene transferred to SiO2. Applied Physics Letters 2011, 99 (12), 
122108. 

51. Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; 
Yu, G.; Liu, Y., Oxygen-aided synthesis of polycrystalline graphene on silicon 
dioxide substrates. Journal of the American Chemical Society 2011, 133 (44), 
17548-51. 

52. Tang, S.; Ding, G.; Xie, X.; Chen, J.; Wang, C.; Ding, X.; Huang, F.; Lu, W.; 
Jiang, M., Nucleation and growth of single crystal graphene on hexagonal boron 
nitride. Carbon 2012, 50 (1), 329-331. 

53. Wang, G.; Zhang, M.; Zhu, Y.; Ding, G.; Jiang, D.; Guo, Q.; Liu, S.; Xie, X.; 
Chu, P. K.; Di, Z.; Wang, X., Direct growth of graphene film on germanium 
substrate. Scientific reports 2013, 3, 2465. 

54. Keil, P.; Lutzenkirchen-Hecht, D.; Frahm, R., Investigation of Room Temperature 
Oxidation of Cu in Air by Yoneda-XAFS. AIP Conference Proceedings 2007, 
882, 490-492. 

55. Musa, A. O.; Akomolafe, T.; Carter, M. J., Production of cuprous oxide, a solar 
cell material, by thermal oxidation and a study of its physical and electrical 
properties. Solar Energy Materials and Solar Cells 1998, 51 (3-4), 305-316. 

56. Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M., Surface Oxidation and 
Reduction of CuO and Cu2O Studied Using XPS and XAES. Surface and 

Interface Analysis 1996, 24 (12), 811-820. 



 193 

57. Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; 
Huang, Y.; Duan, X., Chemical vapour deposition growth of large single crystals 
of monolayer and bilayer graphene. Nature communications 2013, 4, 2096. 

58. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; 
Bokor, J.; Zhang, Y., Direct chemical vapor deposition of graphene on dielectric 
surfaces. Nano letters 2010, 10 (5), 1542-8. 

59. Goyal, A.; Norton, D. P.; Christen, D. K.; Specht, E. D.; Paranthaman, M. P.; 
Kroeger, D. M.; Budai, J. D.; He, Q.; List, F. A.; Feenstra, R.; Kerchner, H. R.; 
Lee, D. F.; Hatfield, E.; Martin, P. M.; Mathis, J.; Park, C., Epitaxial 
Superconductors on Rolling-Assisted Biaxially-Textured Substrates (RABiTS):  
A Route towards High Critical Current Density Wire. Applied Superconductivity 

1996, 4 (10-11), 403-427. 
60. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; 

Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum 
of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18). 

61. Hwang, J. Y.; Kuo, C. C.; Chen, L. C.; Chen, K. H., Correlating defect density 
with carrier mobility in large-scaled graphene films: Raman spectral signatures 
for the estimation of defect density. Nanotechnology 2010, 21 (46), 465705. 

62. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, 
T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual 
Transparency of Graphene. Science 2008, 320 (5881), 1308. 

63. Devlin, C. L. H.; Sato, Y.; Chiang, S., Morphology of the Cu[sub 2]O surface 
oxide phase formed on Cu(100) at high temperature. Journal of Applied Physics 

2009, 105 (12), 123534. 
64. Woodcock, T. G.; Abell, J. S.; Eickemeyer, J.; Holzapfel, B., Crystal orientation 

mapping of NiO grown on cube textured Ni tapes. Journal of Microscopy 2004, 
216 (2), 123-130. 

65. Yang, J. C.; Kolasa, B.; Gibson, J. M.; Yeadon, M., Self-limiting oxidation of 
copper. Applied Physics Letters 1998, 73 (19), 2841. 

66. Rodriguez, J. A.; Kim, J. Y.; Hanson, J. C.; Perez, M.; Frenkel, A. I., Reduction 
of CuO in H2: in situ time-resolved XRD studies. Catalysis Letters 2003, 85 (3-
4), 247-254. 

67. Barnett, R.; Landman, U., Surface premelting of Cu(110). Physical Review B 

1991, 44 (7), 3226-3239. 
68. Karabacak, T.; DeLuca, J. S.; Wang, P.-I.; Ten Eyck, G. A.; Ye, D.; Wang, G.-C.; 

Lu, T.-M., Low temperature melting of copper nanorod arrays. Journal of Applied 

Physics 2006, 99 (6), 064304. 
69. Ramanandan, G. K. P.; Ramakrishnan, G.; Planken, P. C. M., Oxidation kinetics 

of nanoscale copper films studied by terahertz transmission spectroscopy. Journal 

of Applied Physics 2012, 111 (12), 123517. 
70. Wu, Q.; Wu, Y.; Hao, Y. F.; Geng, J.; Charlton, M.; Ruoff, R. S., Selective 

surface functionalization at regions of high local curvature in graphene. Chemical 

Communications 2013, 49, 677-679. 

 



 194 

NOTE:  The content of this chapter is primarily based upon the following published 

work performed in collaboration with the Judy Wu research group in the Physics 

Department at the University of Kansas: 

Liu, Jianwei; Xu, Guowei, Rochford, Caitlin; Lu, Rongtao; Wu, Judy; Edwards, Christina 

M.; Berrie, Cindy L.; Chen, Zhijun;  Maroni, Victor.  Doped graphene nanohole arrays 

for flexible transparent electrodes. Applied Physics Letters 2011, 99, 023111. 

 

Chapter 6: Doped Graphene Nanohole Arrays 

6.1 Abstract 

 Graphene nanohole arrays (GNAs) were fabricated by nanoimprint lithography 

and doped with thionyl chloride for potential application as a superior transparent 

electrode alternative to indium tin oxide.  Before doping, the optical transmittance of 

single-layer graphene increased 2-3% across the entire visible region of the light 

spectrum, primarily due to the reduced surface coverage of the nanohole array structure, 

and only reduced slightly after doping.  Graphene doping was enhanced by the exposed 

edge sites of the nanoholes within the array, and led to a conductance enhancement 15-18 

times greater than its undoped counterpart, whereas unpatterned single-layer graphene 

illustrated only a 2-4 enhancement factor following dopant exposure.  These data reflect 

the promise doped GNAs may play for improving both optical transmittance and 

electrical conductivity of graphene-based transparent conductors. 
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6.2 Introduction 

 Graphene is an attractive material for current implementation into several research 

fields due to its attractive qualities such as high charge mobility,
1,2,3

 mechanical and 

chemical robustness,
4,5,6

 high optical transmittance,
7,8,5

 and flexibility to conform to a 

wide variety of surfaces.
8,9

  In particular, the area of photovoltaics is focused on graphene 

incorporation into solar cells and as a replacement transparent conductor for 

contemporary devices.  Presently, indium tin oxide (ITO) is the most commonly used 

transparent conductor in the market due to low sheet resistance values (10-30 Ω/square), 

decent optical transparency (>90% at 550 nm), a advantageous work function, and ease 

of fabrication.
10

 However, there are several drawbacks to ITO that severely limit its 

widespread function as a transparent electrode.  One such problem is that world’s supply 

of indium is slowly depleting which is driving up the price of the rare element.  

Furthermore, the preparation of ITO thin films is costly, ITO is brittle and can easily 

fracture, and its optical transparency decreases dramatically at longer visible 

wavelengths.
10

  Consequently, there is a drive to discover alternate sources for 

transparent conductor applications. 

 Graphene is a promising replacement for ITO as a result of its high electrical 

conductivity,
11

 high optical transmittance in the visible region of the light spectrum,
12

 and 

a favorable work function of ~4.42 eV for a suitable hole-collecting electrode.
13,14

  A 

single layer of graphene absorbs only about 2.3% of incident white light
15

 and its 

predicted sheet resistance is approximately 31 Ω/square,2 which is comparable to ITO.  

Unfortunately, the experimentally observed range of graphene sheet resistance values is 

approximately 125 to 10,000 Ω/square,10,16
 which is significantly lower than the ideal 
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single layer graphene values.  Furthermore, the most hopeful method to produce large 

area single layer graphene, chemical vapor deposition (CVD) on metallic substrates, falls 

near the higher end of this range.  In order to improve sheet resist values, some 

researchers have attempted to stack multiple layers of graphene.  The total sheet 

resistance was reduced by almost an order of magnitude for a 4-layer stacking, but the 

optical transmittance was adversely affected, and decreased by up to 10% when 

compared to single layer CVD graphene.
16

  Another approach to improve conductivity is 

by chemical doping of the graphene layer.  Chemical doping can be performed via 

various methods, including gating, substitutional doping, and chemical doping.
17

  

Electrical gating includes the application of bias voltages up to 100 V for device 

functionality, and is therefore unattractive.
18

  Substitutional doping involves replacement 

of a carbon atom in the graphene hexagonal lattice with another atom, usually boron or 

nitrogen, and leds to disorder in the graphene, lowering its electron mobility.
18

  Chemical 

doping involves interaction of adsorbed species on the graphene surface, or chemical 

interactions at defect sites or edges, which either withdraw or inject electrons into the 

graphene layer, thereby p-doping or n-doping the graphene.  Chemical doping by surface 

adsorption of metal nanoparticles,
19,20,21

 HNO3,
16,22

 NO2,
23

 and a host of other species 

have shown to increase the electron mobility of graphene, however these adsorbed 

components either negatively affect optical transparency or degrade over time.
18

  For 

successful improvement of graphene as a transparent via chemical doping, it is thus 

crucial to uncover a means to enhance electrical conductivity without decreasing optical 

transmittance. 
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Research has shown doping carbon nanotubes and pristine graphene with thionyl 

chloride improves conductivity significantly.
24

  Thionyl chloride (SOCl2) is thought to 

break down in the vapor phase to form chlorine anions, which adsorb onto the graphene 

surface and further react with delocalized π electrons in the conjugated graphene lattice.
24

  

The reaction occurs preferentially at the energetically favorable edge and defect sites.  

Through this method, a piece of mechanically exfoliated graphene doped with SOCl2 

demonstrated a 44% reduction in sheet resistance, and no change in transmittance values 

as compared to undoped pristine graphene over the visible region of the light spectrum.
24

  

The large drawback to this method, however, is mechanically exfoliated graphene has a 

small defect density,
25

 as thus the active doping sites are limited.   

 One way to build on these findings to improve conductivity without adversely 

influencing transmittance values would be through the implementation of graphene 

nanohole arrays (GNAs).  Graphene nanohole arrays provide an increased density of edge 

sites for chemical doping
7
 to take place while simultaneously reducing graphene surface 

coverage to lower optical absorption.  Thereby, increasing the potential to tune the 

electrical properties of graphene more effectively and efficiently without decreasing 

transmittace.  The research presented here investigates the impact SOCl2 doped GNAs 

have on conductivity and optical transmittance as compared to unpatterned graphene and 

undoped graphene hole arrays.  It is the hope to provide a means to significantly increase 

conductivity of single layer graphene while possibly increasing its optical transparency. 
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6.3 Materials and Methods 

6.3.1 CVD Graphene Deposition and Transfer Process 

 Polycrystalline copper foils were purchased commercially from Alpha Aesar (No. 

13382) with a 25 μm thickness.  Chemical vapor deposition was performed on cut 2x2 

cm
2
 foils.  The foil was placed in a quartz tube and heated to 1000°C under 0.1 sccm H2 

flow.  Upon reaching the deposition temperature, CH4 gas was introduced at a flow rate 

of 3.0 sccm for 30 minutes.  Following graphene film formation, the apparatus with 

sample were allowed to cool to room temperature. 

 The graphene films were transferred to silicon substrates for characterization and 

analysis.  The transfer process consisted of spin coating of poly-methyl methacrylate 

(PMMA) onto the graphene/copper surface.  The copper component of the sample was 

subjected to a 0.1 g/mL solution of iron chloride to remove the copper substrate.  The 

remaining graphene/PMMA was rinsed extensively and soaked with deionized water.  

The target silicon substrate with thermal oxide was aligned beneath the graphene/PMMA 

sample, the deionized water drained, and the sample placed in an oven for one hour at 

80°C to eliminate residual moisture.  Lastly, the PMMA polymer was removed with an 

acetone rinse. 

6.3.2 Graphene Nanohole Array (GNA) Formation by Nanoimprint Lithography (NIL) 

 Following graphene transfer to a silicon substrate, a resist (mr-I 7030R, 

Microresist Corp) with a 300 nm thickness was spin coated onto the graphene surface.  

The sample was baked on a hot plate at 100°C for 1 minute.  An NIL mold (LightSmyth 

Technologies) with a hexagonal array of posts with a diameter of 240 nm and a period of 
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600 nm was treated with FDTS (1H, 1H, 2H, 2H-perfluorodecyl-trichlorosilane) to 

facilitate easy release of the mold from the spin-coated resist.  The NIL mold was 

positioned over the resist-covered graphene, and both were heated to 140-180°C with 

subsequent application of 20-50 bar pressure for 4 minutes.  The mold/resist/graphene 

sample was then allowed to cool to a temperature of 50°C, whereby the mold was 

released from the resist/graphene component, and further cooled to ambient temperature.  

The sample was then etched with O2 plasma by reactive ion etching (RIE) for 4 minutes 

(O2 flow 10 sccm, chamber pressure 7.80 mTorr, RIE power 20 W).  The residual resist 

was removed with an acetone rinse and the sample dried with N2 gas.  To further remove 

remaining polymer deposits, the surface was exposed to a mixture of H2 (500 sccm) and 

Ar (486 sccm) gas at 400°C for 1 hour. 

6.3.3 Doping GNA with SOCl2 

 The pristine graphene or GNA samples were placed in a N2-filled glove box face 

down over a vial with SOCl2 and exposed to its vapor for 15 minutes at room 

temperature. 

6.3.4 Characterization of Undoped and Doped Graphene and GNA Samples 

 Surface morphology was examined by  SEM and AFM imaging.  SEM imaging 

was performed with Joel JSM-630 and Leo 1550 FESEM instruments with the electron 

beam accelerating voltage at 2-25 KeV.  AFM images were obtained in ambient 

conditions using a Nanoscope E Atomic Force Microscope (Veeco Instruments, Santa 

Barbara CA) operating in contact mode.  Veeco silicon nitride tips (NSC35, Mikromasch) 
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with a force constant of 0.12 N/m were scanned at 2 Hz with a setpoint of approximately 

1.5 V.  Images were flattened before cross section analysis. 

  The Raman spectrum of CVD graphene was obtained with a Renishaw InVia 

Raman Microprobe with helium-cadmium laser.  The excitation wavelength was 442 nm.  

The laser spot diameter was approximately 2 microns, and its energy density 1 mW/μm2
.  

The spectrum shown here was an average of 10 scans. 

  Optical properties were probed by collection of visible transmittance spectra with 

a Cornerstone monochromator (Newport 74004) with Xe arc lamp illuminator (Newport 

70611) calibrated with a UV-Si photodiode (Newport 71640).  The electrical properties 

were explored by sheet resistance measurements and I-V curves.  The sheet resistance 

measurements were collected with a four-point-probe apparatus.  The IV curves were 

collected by making electrode contacts (15 nm titanium and 65 nm gold) to the graphene 

samples with a 3.2 μm spacing between electrodes. 

6.4 Results and Discussion 

 Graphene was 

initially deposited onto 

copper foils by chemical 

vapor deposition and 

characterized prior to hole 

array patterning and doping.  

A Raman spectrum and SEM 

Figure 6.1.  Raman spectrum of graphene on copper foil.  Inset: 

SEM image of graphene grown on copper foil using CVD method. 
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image were collected to characterize the sample, and the results are depicted in Figure 

6.1.  The G peak at 1580 cm
-1

 is generated from the doubly degenerate zone center E2g 

mode, the breathing mode for the rings in graphene, and the 2D peak at ~2720 cm
-1

 

results from the second order of zone-boundary phonons in graphene.
26

  Both of these 

peaks are commonly used to indicate the presence of graphene on a substrate surface, and 

their signal intensity ratio specifies the number of graphene layers.  Here, the intensity of 

the 2D peak is at least 2 times greater than that of the G peak and the peaks have a 

symmetric shape, strongly suggesting single layer graphene on the copper substrate 

surface.
26,27

  The D peak at the far left of the Raman spectrum is used to qualitatively 

determine the amount of graphene defects.
26,27

  Its relatively low intensity in the figure 

above implies a small defect density on the graphene surface.  The morphology of the 

graphene/copper substrate surface can be observed by the SEM image inset of Figure 6.1.  

The image displays some graphene wrinkles, but mostly a continuous graphene layer is 

spread throughout the entire sample surface. 

 After the single layer CVD graphene was characterized, the CVD graphene was 

transferred to a silicon substrate and GNAs were made by NIL.  The hexagonal pattern of 

holes can be observed in Figure 6.2 with SEM and AFM images representing before and 

after NIL resist removal.  The graphene surface coated with NIL resist and after stamping 

with the NIL mold is illustrated in the inset of Figure 6.2 -a.  The image depicts a darker 

colored GNA template region surrounding brightly colored holes.  The brightness is 

likely a result of the edge effect in SEM, where more secondary electrons are allowed to 

escape and reach the detector from the exposed step surface area, and/or charging of the 

insulating silicon substrate underlying the GNA template.
28

  The diameter of the holes is 
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245 ± 15 nm and the hexagonal lattice constant is ~590 nm, which is in close agreement 

to the dimensions of the NIL stamp molding.  Following stamping of the NIL resist, the 

Figure 6.2.  SEM and AFM images of GNAs:  (a) GNAs after RIE, before PMMA removal (inset: 

the same sample before RIE).  (b) after PMMA removal with acetone followed by hydrogen/argon 

annealing.  (c) AFM image and (d) cross section of GNAs after annealing. (e) AFM image of GNA 

after acetone rinse and without hydrogen/argon annealing. 
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sample was subject to reactive-ion etching (RIE) with O2 plasma to pattern the 

underlying graphene into a nanohole array, and the NIL resist removed by an acetone 

rinse.  The graphene hole diameter increased to 260 ± 15 nm after RIE as depicted in the 

SEM image in part (a) of this figure.  The acetone rinse was not sufficient to completely 

remove the NIL polymer resist as apparent from the prominent amount of debris 

remaining on the surface, as illustrated by the AFM image in Figure 6.2-e.  The graphene 

hole template is vaguely seen amongst the significant residue in the image, however the 

debris inhibits the collection of a well-defined image of the GNA and the ability to 

observe a sharp step-edge at the perimeter of the nanoholes. A second NIL resist removal 

step with Ar/H2 annealing at 400°C for one hour helped to diminish the amount of 

residual resist as seen in the SEM and AFM images in parts (b) – (d).  This method has 

been established to help remove polymer residues on from transferred graphene.
29

  

Circular holes with distinct edges in an array pattern appear in these images, even though 

some roughness still remains in the regions around the holes, probably as a consequence 

of a small amount of residual polymer material.  This also may explain the larger than 

expected graphene step height of approximately 2.6  ± 0.6 nm displayed in the AFM 

cross section in part (d), when the experimentally observed step height of clean graphene 

on silicon is around 0.5 nm.
1
    

 Optical transmittance and resistance measurements were obtained for several 

samples of pristine, hole-patterned, and doped single and multi-layer graphene to 

investigate how the optical transmittance and conductivity may change upon stacking 

CVD graphene layers, as well as patterning graphene with a nanohole array arrangement 

with subsequent SOCl2 doping.  The optical transmittance spectra for 1 and 4-layer 
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graphene and GNAs are shown in Figure 6.3-a.  Before patterning of the CVD graphene, 

stacking of the unpatterned graphene layers shows a marked decrease in transmittance as 

expected.  At 550 nm, the unpatterned single-layer graphene was found to reduce the 

Figure 6.3.  (a) Transmittance spectra of 1 and 4-layer graphene before and after GNA production.  (b) 

SEM image of GNAs after doping.  (c) Transmittance spectra of single layer unpatterned graphene and 

GNAbefore and after doping.  (d) I-V curves of 1 layer unpatterned graphene and GNAs before and 

after doping.  (e) Sheet resistance of undoped samples shown in Figure G-a and as well as the same 

samples after doping. 
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transmittance of the transparent silica substrate by 4.8 ± 0.6% (95.2% transmittance), 

with additional reductions of 3.7 ± 0.5% (91.5% transmittance) for bilayer graphene, 1.8 

± 0.3% (89.7% transmittance) for trilayer graphene, and 2.7 ± 0.5% (87.0% 

transmittance) for 4-layer graphene.  The irregular reduction of the optical transmittance 

for each additional graphene layer may be a consequence of imperfections in the 

individual graphene films, but the overall trend of decreasing transmittance values 

throughout the visible spectrum as the number of stacked graphene layers increase is 

consistent with previous studies of optical spectra from multi-layer CVD graphene.
30

  It is 

important to note the comparison of these results to the optical transparency of ITO.  The 

stacked pristine graphene layers do not exhibit significant reduction in light transparency 

at longer wavelengths, in contrast to ITO where transmittance values can reach as low as 

70% or worse at wavelengths above 750 nm.
10

  This evidence coupled with the lower 

sheet resistance values in Figure 6.3-e for multi-layer graphene support the promise of 

stacked CVD graphene for improving performance of broadband optoelectronic devices 

by possessing better optical transparency relative to ITO and moderate sheet resistance.  

It is the hope, however, that further patterning of single layer graphene with a nanohole 

array would provide even better enhancement of the optical transparency across the 

visible region of the light spectrum, surpassing transmittance of ITO even at short 

wavelengths, and doping the GNA would produce comparable resistance value to ITO 

and multi-layer graphene. 

 Figure 6.3-a demonstrates a higher optical transparency for GNAs across the 

visible spectrum as compared to pristine graphene with the same number of layers.  

Quantitatively, the transmittance of the monolayer GNA is 97.0% at 550 nm as compared 
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to a reduced 95.0 % value at the same wavelength for the pristine single layer graphene.  

Also, the 4-layer GNA holds an 89.5% transmittance, and is significantly higher than its 

pristine counterpart with an 86.0% transmittance.  At 750 nm, the difference between the 

hole-patterned and pristine 1-layer graphene increases to 3.0%, and the difference 

between the 4-layer GNA and stacked 4-layer unpatterned graphene increases to 5.0%.  

The hole array decreases the surface coverage of graphene by a factor of 0.16, which is 

expected to result in an improvement of less than 1% (0.16 x 5.0% absorption = 0.8% 

absorption reduction) in the GNA optical transmittance compared to unpatterned 

graphene.  Since the observed transmittance improvement surpasses this expectation, it is 

surmised there are other factors that are influencing transmittance besides the decrease of 

graphene surface coverage.  A potential factor could be incident light scattering or 

interference at the GNA hole edges in an advantageous manner.  Future work is 

underway to determine the specific factors that contribute to this heightened increase in 

optical transmittance as a result of hole patterning graphene. 

 It is imperative for this work to not only examine the morphology and optical 

transmittance upon patterning to make GNAs, but to confirm doping of the GNA with 

SOCl2 does not unfavorably influence the surface and optical transparency improvement 

as discussed above.  The SEM image in Figure 6.3-b shows the clear hexagonal lattice of 

the graphene hole array remains unchanged after chemical doping of the single layer 

GNA.  The transmittance decreased only slightly after doping of the single layer GNA 

and pristine graphene, as observed in the spectrum depicted in Figure 6.3-c.  For 

quantitative comparison purposes, the transmittance decreased by 1.0% at 550 nm in the 

GNA after doping while it decreased by 2.0% in the unpatterned graphene.  Fortunately, 
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there does not appear to be any significant negative effect of doping on the morphology 

or optical transparency of the GNA structures. 

 Patterning of graphene into nanohole arrays may not only change optical 

properties, but electrical properties, which is the main aim of this research.  Sheet 

resistance values as well as IV curves were collected to understand how chemical doping 

of graphene and GNAs may impact conductivity.  In Figure 6.3-d IV curves demonstrate 

the variations in conductivity for single layer graphene, doped single layer graphene, 

single layer GNA, and doped single layer GNA.  The electrical conductivity increased in 

both pristine and patterned GNA after doping.  The prior increased by only 2-4 times, and 

the later by 15-18 times.  These results for pristine graphene doping coincide with 

previous findings.
24

  The larger increase in conductivity for the patterned GNA after 

doping as compared to the pristine CVD graphene is believed to be the product of 

enhanced edge availability on the GNA, allowing more edge and defect sites for 

favorable doping injection into the single graphene layer. 

 A summarized comparison of sheet resistances for graphene films of various 

layers, patterning, and doping is displayed in the graph in Figure 6.3-e.  The 

measurements were obtained via a four-point probe apparatus with the width between 

electrodes at 3.2 μm.  The range of sheet resistance values for single layer CVD graphene 

attained here was 1450 – 2150 Ω/square, consistent with values reported by Li et al.
30

 and 

Verma et al.,
8
 but considerably higher than results acquired by Bae et al.

16
  The 

difference is likely the result of a special thermal treatment and annealing step of the 

copper foils performed by Bae et al. to increase copper grain size from a few micrometers 

to over 100 μm.  Decreased grain size and increased grain boundaries are a substantial 
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contributor to reduced conductivity.  Furthermore, it is unclear to which substrate the 

graphene was transferred and electrical measurements obtained, as the graphene was 

transferred to several substrates in their research.  It has been shown substrate interactions 

can act as dopants to the graphene, and transfer to a multitude of substrates can alter 

graphene sheet resistances almost an order of magnitude.
30

 

 There is a consistent drop in sheet resistance as the number of graphene layers 

increase of a single layer to a 4-layer stacking for both the pristine CVD graphene and 

GNAs, as is expected and demonstrated in prior studies.
16

  As the unpatterned graphene 

stacking moves from a monolayer to a bilayer, trilayer, and 4-layer configuration the 

sheet resistance decreases by a factor of 1.2, 2.8, and 4.0 in relation to the unpatterned 

single layer.  It would be expected after the addition of each graphene layer the sheet 

resistance would reduce by a factor of 2, however this is not the case.  The nonuniformity 

in sheet resistance reduction mirrors previous findings, and is expected to be the possible 

outcome of defect variability of the individual graphene sheets in the stacked design, or 

the limited contact of the electrodes to the topmost layer of graphene forcing charge 

transport between graphene layers which is poorer than transport in a single graphene 

sheet. 

 The sheet resistance of the monolayer and 4-layer pristine graphene increases 

dramatically after patterning to form their GNA counterparts.  The sheet resistance rises 

by 140% after hole patterning of the single layer graphene, and 100% following GNA 

production of the 4-layer stacked arrangement.  The large difference is likely the effect of 

scattering at the hole edges reducing electron transport, as well as potential defect 

introduction during the oxygen plasma etching step.  Even though there is a significant 
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increase in sheet resistance after nanohole patterning to ~3200 Ω/square, a substantial 

drop in sheet resistance occurs for the patterened single layer graphene after SOCl2 

doping, leading to sheet resistance value at 195 Ω/square, which resides lower than 

pristine doped and undoped monolayer graphene.  It should be noted there is a decrease 

in sheet resistance between the doped pristine graphene and doped GNA, with the doped 

pristine graphene at 305 Ω/square and the single layer doped GNA at 195 Ω/square.  It is 

possible considerable doping could have taken place on the CVD single layer graphene 

seeing as the graphene deposition took place on commercial polycrystalline copper, 

which is known to produce graphene with micrometer-size grains of multiple crystal 

orientations and a relatively large number of grain boundaries and defects.  The grain 

boundaries may serve as defect sites in addition to other point defects for favorable 

chemical doping.
31

  Future studies involving CVD graphene deposition on other copper 

substrates which produce graphene with larger grains and limited grain boundaries are 

promising platforms to improve conductance of GNAs and their doped equivalents on a 

more significant scale.  However, overall, it has been shown through nanohole patterning 

of single layer graphene optical transmittance may be improved across the visible 

spectrum, overcoming absorption limitations of current ITO transparent electrodes, and 

this may be done while increasing doped single-layer GNA conductivity to values 

comparable to ITO resistance values. 

6.5 Conclusions 

 Graphene nanohole arrays (GNA) present a promising tool to increase 

conductivity without diminishing optical transmittance, which is imperative for 

graphene’s application as a transparent electrode.  Multilayer stacking of graphene is a 
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potentially promising alternative to current ITO transparent electrodes because it displays 

comparable sheet resistance values and better optical transparency when 4 layers or less.  

The optical transmittance spectrum of 4-layer graphene does not show a drop in 

transmittance at longer wavelengths, and remains above 80% for the entire visible 

spectrum, whereas ITO transmittance has been shown to drop below this value at high 

wavelengths.  In order to retain a high conductivity without adversely diminishing 

transparency, graphene nanohole arrays (GNAs) doped with SOCl2 are developed and 

their optical and electrical behaviors studied.  The fabrication of graphene nanohole 

arrays is possible by nanoimprint lithography of CVD graphene.  The patterned GNAs 

decrease light absorption a small amount.  Quantitatively, the single layer nanohole-

patterned graphene improves light transmittance at 550 nm by 2.0 %, as well as 3.0 % at 

750 nm, in relation to the unpatterned monolayer, demonstrating a slight rise in optical 

transparency throughout the entire visible spectrum.  Doping of the GNA minutely 

lowers optical transmittance of single layer pristine graphene and the GNA, with the 

largest decrease at 2.0%.  Both the single layer pristine and GNA displayed a marked 

increase in conductivity following dopant exposure, with their values increasing by 2-4 

times and 15-18 times respectively.  The larger impact of doping on the GNA is proposed 

to be the consequence of a heightened amount of edges from the hole array structure, 

which are favorable locations for doping.  Even though the nanopatterning of pristine 

single layer CVD graphene rises the sheet resistance value to around 3200 Ω/square, 

doping counteracts the negative effect and lowers the sheet resistance to a minimum 

value of 195 Ω/square.  It is clearly demonstrated both the conductivity and transparency 

are enhanced by nanopatterning of graphene with subsequent SOCl2 doping, and such 
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nanohole fabrication provides a potential pathway to enhancing the performance of 

graphene as a transparent electrode. 
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Chapter 7: Conclusions and Future Directions 

7.1 Overview 

 The research presented in this dissertation investigated the fabrication and 

manipulation of materials at the nanoscale through nanopatterning and templating, 

specifically the production of copper nanowire features through AFM nanopatterning as 

well as the manufacture and manipulation of CVD graphene by substrate templating.  

Through these methods it has been shown that nanopatterning and templating are 

effective and simple methods to successfully control the dimensions of nanostructured 

materials, and in addition can be tools to influence the structure and properties of bulk 

materials developed from nanoscale and microscale templates.  The ability to 

manufacture single nanostructured features on surfaces in selective locations and 

configuration, such as the copper nanowire features, illustrate advancement toward 

construction of nanodevices that require high selectivity over nanowire dimension and 

design, such as the ATP synthase nanobiodevice described in Chapter 1.  The 

optimization of the electroless copper plating process implemented in this fabrication 

method is described in Chapter 3 of this work, and the details of the copper nanowire 

feature fabrication outlined in Chapter 4.  Furthermore, through the use of copper 

substrate templates, as well patterned hole-array templates, it has been shown we can 

increase the quality of large-area CVD graphene for improved function in applications 

such as transparent electrodes in solar cells.  This work is detailed in Chapter 5, and 

additional improvement of the graphene electrical properties for transparent electrode 

implementation is accomplished by chemical doping of graphene nanohole arrays, which 

is explained in Chapter 6.  The ability to grow copper nanowires can be combined with 
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an understanding of the growth of graphene to template intricate graphene structures.  

The following concludes this work with summaries of the major findings included in 

each of these chapters, as well as the future directions envisioned for each of these 

research topics. 

7.2  Electroless Copper Deposition – Solution Optimization Studies 

7.2.1 Conclusions Summary 

 Electroless metal deposition shows great potential for an easy and fast means to 

selectively deposit copper within very thin lines.  Initially, it was shown that the 

electroless copper plating solution presented in this work can selectively plate on exposed 

silicon surfaces, whereas it does not show any copper deposition behavior on SAM-

coated substrates.  However, most previous studies have not performed optimization 

experiments to determine the best concentration values for solution components to 

produce uniform deposited copper that is well-adhered to the surface.  Furthermore, the 

specific roles that additives play in the metal plating process are still widely debated.  

Here, concentrations of each component in the electroless copper plating solution were 

varied, copper films deposited on bulk silicon substrates, and the properties of the 

deposited films probed by optical images and photographs.  The following concentration 

values were then chosen to optimize uniformity and adhesion of copper: 0.13 M CuSO4, 

0.27 M NH4F, 14 mM ascorbic acid, and 18 mM sodium tartrate.  Changes in the copper 

sulfate concentration did not influence the uniformity or adhesion of the copper films, but 

simply acted as a copper ion source, and changes in its concentration led to differences in 

the thickness of the plated copper.  Ammonium fluoride directly influences the rate of 
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deposition, and at higher concentrations induces large branch-like formation across the 

substrate surface, which are likely stress-induced restructuring of the copper films due to 

the high deposition rate.  This same behavior is observed upon the addition of ascorbic 

acid, which also increases the deposition rate when added to the solution.  It is necessary 

for addition to the electroless deposition solution, however, to promote strong adhesion of 

the plated copper to the silicon substrate surface.  In order to overcome this drawback, 

sodium tartrate is added to the solution to chelate copper ions, and slow down the 

deposition rate to prevent formation of these stress-induced features, as well as promote 

uniform copper deposition across the sample surface.  Clearly, the properties of the 

copper plated manufactured films via this method are very sensitive to solution 

conditions, and variation of the electroless plating solution can be used to manipulate the 

quality and characteristics of the copper thin films. 

7.2.2 Future Directions 

 Even though studies have been performed here to investigate the potential role 

that the sodium tartrate and ascorbic acid may play in the electroless copper deposition 

mechanism, it still remains unclear as to how ascorbic acid promotes adhesion onto the 

silicon surface.  Previous researchers have claimed it is because ascorbic acid acts as a 

hydrogen scavenger,
1
 and others that it promotes enhanced localized etch rates of silicon 

around nucleated copper, increasing the copper-silicon contact area.
2
  Experiments which 

replace ascorbic acid with other well-known hydrogen scavengers such as fumaric acid
1
 

would help to determine if the ascorbic acid acts as a hydrogen scavenger.  If these 

experiments show the same adhesion behavior, it may support the claim that the presence 

of hydrogen scavengers truly does influence the adhesion of copper films to the substrate 



 217 

surface, and that ascorbic acid is acting as a potential hydrogen scavenger.  Also, a more 

in-depth analysis of the silicon surface underlying the copper films after deposition would 

provide information about enhanced localized etch rates of silicon, which would give 

support to the second claim listed above.  If the silicon etch rate is truly enchanced in 

localized regions of the silicon surface, then the silicon surface would show large etch 

pits when collecting topographical maps via AFM imaging.  The copper films can easily 

be removed with an iron chloride solution, so this investigation would be an easy means 

to examine the possible role ascorbic acid plays in increasing the silicon etch rate in local 

regions of the surface. 

7.3  Fabrication of Copper Nanowire Features 

7.3.1 Conclusions Summary 

  Copper nanowire features were fabricated by AFM patterning of self-assembled 

monolayers on silicon substrates, followed by selective electroless metal deposition 

within these AFM-patterned lines. It was also shown that the dimensions of the copper 

nanowire features can be controlled and conditions optimized for the production of well-

formed copper nanowires.  Initially, three different SAM system which consisted of an 

octadecyl monolayer on silicon, and octadecyldimethylchlorosilane (ODMS) on silicon 

oxide, and octadecyltrichlorosilane (OTS) on silicon oxide were patterned with an AFM 

probe tip.  All three were able to be successfully patterned, showing etch depths that 

surpassed the thickness of the SAM.  Following electroless copper deposition, however, 

the octadecyl and ODMS demonstrated significant copper nucleation within resist-coated 

areas, whereas minimal deposition was observed in the OTS resist regions.  The OTS 
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monolayer likely acts as a better chemical resist due to its cross-linking of the silane 

moieties at the SAM-silicon oxide interface as well as its superior packing and surface 

coverage, which can help to prevent solution penetration through the monolayer to the 

underlying silicon substrate.   

 Next, it was shown that through changes in solution conditions the copper 

deposition within AFM-patterned lines can be significantly impacted.  Variation in the 

concentrations of copper sulfate, sodium tartrate, and ascorbic acid all demonstrated 

noteable influence on the dimensions of the fabricated copper nanowire features.  This 

shows the great potential to manipulate the size of these copper nanowires through 

changes in concentration of the solution components.  Furthermore, the copper sulfate 

source surprisingly affected the electroless deposition behavior of copper within these 

AFM-patterned lines.  It is believed potential trace metal impurities may be the cause for 

these differences in behavior. 

   Electroless metal deposition behavior can also be influenced by substrate 

conditions as well as solution conditions.  Changes in the width and depth of the AFM-

patterned lines were investigated for their possible influence on the copper deposition in 

these patterned regions.  Utilizing the AFM for nanopatterning, it was possible to achieve 

line widths down to 20 nm and successfully deposit copper within these very thin lines.  

Increases in line width to 125 nm also demonstrated successful plating for well-connected 

copper nanowire features.  However, plating under standard deposition conditions within 

large patterned line widths of several hundreds of nanometers showed lots of small and 

dispersed copper seeding throughout the length of the line, and inadequate copper filling 

of the line to form a continuous copper nanowire.  Considering electroless deposition 
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within these AFM-patterned lines can be controlled by changes in solution conditions, 

though, it is believed that uniform copper deposition within patterned lines with large 

widths may be achievable by altering concentrations of solution components.  In regards 

to the depth of these AFM-patterned lines, the only requirement for successful copper 

deposition is to pattern deep enough to surpass the thickness of the SAM coating to 

expose the underlying active silicon for electroless plating. 

 Another substrate condition that was examined for potential impact on electroless 

copper deposition behavior was the doping of the underlying substrate.  Monolayers were 

formed on both n-doped silicon as well as intrinsic silicon, were subsequently patterned 

with AFM, and exposed to an electroless deposition solution.  Different plating behavior 

was expected considering electroless metal deposition occurs via a transfer of electrons 

between species at the surface interface.  It was found that plating on intrinsic silicon 

(100) producing a higher density of smaller seeds within the patterned lines, whereas the 

copper seeds appeared to be larger in size and possessing a smaller seed density within 

lines patterned on n-doped silicon.  This same behavior was observed within the first few 

seconds of electroless copper deposition on bulk silicon substrates.  This difference is 

likely due to the difference in electron transport at the silicon-deposition solution 

interface leading to a difference in silicon dissolution rates surrounding nucleated metal 

seeds.  Most importantly, though, it illustrated the promise for fabrication of uniform 

copper nanowires on highly resistive silicon substrates, which is important for 

characterization for the electrical properties of these nanowires.  Overall, it was 

demonstrated that it is possible to impact the electroless deposition of copper within 

AFM-patterned lines by altering solution and substrate conditions, which shows the 
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potential to control the size and uniformity of fabricated copper nanowires via this 

method. 

 Lastly, copper nanowires were successfully fabricated between gold 

microelectrodes on an intrinsic silicon surface in order to characterize their electrical 

properties.  It was expected that following nanowire fabrication, the large resistance of 4 

MΩ for a 4 μm electrode separation would significant drop several orders of magnitude 

considering the resistivity of intrinsic silicon (>20,000 Ω-cm) is much larger than copper 

(on the order of μΩ-cm).  However, following nanowire fabrication, the resistance only 

changed slightly, possessing a value in the range of 1 – 4 MΩ.  The cause of this is 

believed to either be inadequate connection along the copper nanowire, or oxidation of 

the copper nanowire surface.  More importantly, it was shown that it is possible to 

fabricate these nanowires between microelectrodes and obtain I-V curve measurements, 

and coupled with the research illustrating the capacity to influence electroless deposition 

by changes in solution and substrate conditions, it is possible in the future to fabricate 

uniform copper nanowires with controllable dimensions between these electrodes and 

their electrical properties can be successfully studied. 

7.3.2 Future Directions 

 Clearly it is possible to impact the electroless copper deposition behavior within 

AFM-patterned lines by changing solution conditions.  However, in the research 

described above, changing the concentrations of individual components within the 

electroless copper deposition solution to two concentration values collected only 

preliminary data.  In order to gain a better understanding of how changes in solution 
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conditions directly affect the dimensions and uniformity of copper deposition within 

AFM-patterned lines, a range of concentration values needs to be investigated.  

Furthermore, it is still unclear why electroless metal deposition demonstrates different 

behavior within AFM-patterned lines when the copper sulfate source is varied.  For this 

purpose, it would be beneficial to perform experiments that could quantify the amount of 

trace metals within these copper sulfate compounds.  This could be done by such 

methods as atomic absorption spectroscopy, or anodic stripping analysis.  If there were 

significant differences in the amount of trace metals between these copper sulfate 

sources, it would help support the hypothesis that trace metals play a role in the 

electroless deposition of copper on silicon substrates. 

 Additionally, the cause of the large resistance values following copper nanowire 

fabrication between the two gold electrodes remains unclear.  The large resistance values 

are believed to be the result of either inadequate connection of the copper along the 

length of the nanowire, or oxidation of the deposited copper to form the more insulating 

copper oxide.  In regards to the first claim, this experiment could likely be repeated to 

develop a copper nanowire feature with more uniformity and continuity.  If this 

experiment was to be performed and the resistance values drop significantly, it would 

support the claim that the connection along the copper nanowire was the cause of such 

high resistance values.  For the second claim, it has already been shown through 

resistance measurements of copper films on bulk silicon substrates that the resistance is 

extremely high at small film thickness values, and upon reaching thicknesses of over 

approximately 200 nm, the resistance seems to change less sensitive to changes in 

thickness.  This suggests that copper oxidation may be the cause of high resistance 



 222 

values.  Future studies are planned, however, to further investigate this hypothesis by 

fabricating copper nanowires of larger dimension between the gold microelectrodes and 

measuring their resistance values.  It would be desirable to create a graph similar to the 

one for the resistance measurements of the bulk copper films that shows how the 

resistance may change upon changes in the nanowire dimensions.  If the resistance shows 

drastic changes at smaller nanowire sizes as compared to larger nanowire sizes, it would 

demonstrate the high likelihood that the copper is being oxidized at the nanowire surface 

and adversely affecting resistance values. 

 In order to overcome the drawback of potential oxidation of the copper nanowire, 

which can severely diminish its conductivity, other metals can be investigated for 

possible replacements.  Copper has a standard reduction potential of E
0

Cu = 0.34 VSHE. 

This high reduction potential relative to the reduction potential for the oxidation of silicon 

that occurs at the surface during electroless metal deposition is the driving force for 

copper deposition.  There are other metals that have been used for electroless metal 

deposition which display even higher standard reduction potentials, such as silver (E
0

Ag = 

0.779 VSHE) and gold (E
0

Au = 1.42 VSHE).
3
  The higher reduction potential of these metals 

would make their deposition on the silicon surface even more favorable in comparison to 

the copper.  Current investigations involving silver on silicon substrates are underway, 

and preliminary results indicate the ability to selectively deposit silver within AFM-

patterned lines on silicon substrates.  If uniform and continuous nanowires with these 

metals can be developed between microelectrodes utilizing electroless metal deposition, 

this would be a promising means to overcome the drawback of copper oxidation, and 
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allow for measurable changes in resistance upon nanowire fabrication between a pair of 

microelectrodes. 

7.4  Graphene Growth on Copper Substrates 

7.4.1 Conclusions Summary 

 Large-area graphene possessing high optical transparency and high conductivity 

is essential for its application as a transparent electrode in solar cells.  Chemical vapor 

deposition is a cheap and easy way to develop graphene of large-area dimensions, 

however, it suffers low conductivity values primarily due to misaligned grain boundaries 

and point defects.  The research described here focused on fundamental investigations of 

graphene growth that would help to overcome these limitations and improve the optical 

and electrical properties of CVD graphene.  

 First, graphene growth was investigated on two copper substrate templates of 

varying structure:  polycrystalline copper and cube-textured (100) oriented copper.  By 

this analysis, it is possible to examine how changes in the substrate structure can impact 

graphene growth and quality.  Polycrystalline copper contains mainly misaligned grain 

boundaries of varying crystal lattice orientation, such as Cu (100), (110), and (111).  

Cube-textured (100) oriented copper (CTO-Cu) is a specially treated at high temperature 

and pressure to generate a copper foil with highly aligned grain boundaries, as well as a 

crystal lattice structure that is primarily (100).  Initially, graphene growth was performed 

on both of these bulk substrates.  It was found through AFM mapping that both surfaces 

undergo significant copper restructuring due the CVD graphene growth process, with the 

CTO-Cu demonstrating a more structured and aligned orientation following restructuring 
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as compared to the polycrystalline-graphene surface.  Furthermore, the electrical and 

optical properties were significantly different, with the graphene on the CTO-Cu 

illustrating higher optical transparency and higher conductivity.  Clearly, substrate 

features play a role in the deposition of graphene on copper surfaces. 

 Secondly, graphene deposition on CTO-Cu was monitored over time to elucidate 

how its highly structured surface may influence the mechanism of CVD graphene 

deposition.  Graphene was deposited on CTO-Cu for shortened periods of time, and a 

multitude of properties probed.  During the initial stages of deposition, the relatively flat 

CTO-Cu surface begins to reconstruct into raised right triangles that are primarily aligned 

on a single axis, indicating an influence of the aligned grains of the special-treated CTO-

Cu with its chiefly (100) lattice.  The crystal lattice orientation within these triangular 

structures is Cu (111), however, showing that the surface reconstructs to promote 

graphene deposition in these areas due to the matching lattice constants of Cu (111) and 

graphene.  The composition of the copper underneath the deposited graphene is believed 

to be primarily copper oxide, considering the large oxygen signal in EDS measurements, 

However, there must be a layer of reduced copper that is likely several nanometers thick 

in between the graphene and copper oxide, seeing as EBSD measurements show a signal 

that is principally Cu (111), which has a significantly different lattice constant relative to 

copper oxide (111).  With all this information, the mechanism of graphene deposition is 

proposed to begin by formation of a thin melted Cu-O-H layer at the copper oxide 

surface, followed by formation and aggregation of reconstructed copper oxide (111) 

nanoparticles into aligned right triangles, as directed by the (100) substrate.  Upon 

reduction at the surface regions of the copper oxide nanoparticles to a thin Cu
0
 coating, 
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graphene may deposit cover the surface of the triangle structures, and over time cover the 

entire substrate surface.   

 Graphene deposition on polycrystalline copper was also monitored over time and 

compared to the deposition process on CTO-Cu.  It was found that the polycrystalline 

copper does undergo a reconstruction during CVD graphene deposition.  However, this 

reconstruction does not show any significant alignment or geometric structure as does the 

CTO-Cu.  It was shown that graphene does deposit selectively on the surfaces of these 

reconstructed regions.  Although, the crystal orientation of the copper on these structures 

still retains its polycrystalline behavior, with the notable presence of Cu (100), Cu (111), 

and Cu (110).  From this data, it can be concluded that the special alignment and single 

crystal structure of the CTO-Cu aids in the alignment of graphene grain boundaries, 

seeing as no alignment was observed for the graphene on polycrystalline copper.  

Additionally, the ability of the CTO-Cu to reconstruct to a primarily Cu (111) surface 

shows its promise to create higher quality graphene with reduced defect density, 

considering the polycrystalline copper retains a variety of lattice orientations, which leads 

to greater defect densities as a consequence of the lattice mismatches of graphene with 

Cu (100) and (110).  These results are promising to be able to manipulate copper foil 

surfaces and generate graphene with aligned grains to improve electron mobility for more 

successful implementation of graphene as a transparent electrode, as well as form 

graphene on a mostly insulating metallic oxide surface. 

 Finally, patterned graphene templates were investigated as a means to initiate 

graphene growth on insulating substrates.  First, graphene nanohole templates were 

fabricated on insulating silicon substrates, followed by selective copper deposition within 
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the bare hole regions, and exposure to CVD graphene deposition conditions.  It was 

found that when only 1 nm of copper was deposited on these samples, tall disk-like 

features were formed in the central regions of the holes, and there was a signal increase in 

graphene’s characteristic Raman peaks near the perimeter of the hole regions. When 5 nm 

of copper was deposited, large globular features were seen in the center of these holes, 

and Raman spectra showed the presence of graphene’s characteristic peaks filling the 

majority of the hole region.  With this preliminary data, it is proposed during the 

exposure of the templated graphene array with copper to CVD graphene growth 

conditions, the deposited copper becomes oxidized and migrates to the energetically-

favorable edge sites of the hole array.  There, the surface of the copper may potentially be 

reduced and promote graphene assembly from the edge site, and the copper species at the 

edge site may move inward as the graphene edge closes the hole area.  The initial 

findings still show potential for graphene deposition from graphene template edges on 

insulating substrates, and with further inquiry would provide a means to overcome the 

limitation of CVD graphene deposition on bulk metallic substrates, and the difficulties 

included in transfer to dielectric materials.  Overall, through a detailed understanding of 

the graphene growth mechanism, it may be possible to manipulate the growth by 

controlling the substrate structure, processing conditions, or even templating the growth 

of graphene on insulating substrates. 

7.4.2 Future Directions 

 It has been shown that changes in the copper substrate structure can significantly 

impact the deposition and quality of CVD graphene.  From the data presented above, a 

proposed mechanism was postulated describing the stepwise process by which graphene 
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may form on the CTO-Cu and polycrystalline copper.  However, there are still a few 

aspects that remain unclear in this deposition process.  For instance, it is evident from the 

EDS data that there is oxygen present underneath the deposited graphene as well as the 

areas with no deposited graphene, indicative of the presence of copper oxide across the 

entire substrate surface.  However, the EBSD measurements reveal that the surface of the 

copper where graphene has deposited is Cu (111), which has a significantly different 

lattice constant that Cu2O (111).  Evidently, there must be a layer of reduced copper in 

between the graphene and the copper oxide, but the exact thickness of this layer remains 

unclear.  For the purpose of creating graphene on mostly insulating substrates, it is 

imperative to determine the thickness of this reduced copper layer to understand the 

potential affects the copper may have on the graphene’s electrical properties atop these 

substrates.  Future studies are therefore planned to be able to determine the thickness of 

the reduced copper layer, as well as the underlying copper oxide layer, utilizing depth 

profiling techniques such as X-ray photoelectron spectroscopy (XPS) or Auger electron 

spectroscopy (AES).  This would provide a greater knowledge of the composition and 

insulating capacity of these copper substrates with deposited CVD graphene. 

 Additional future studies include the thorough examination of the graphene 

deposition within the graphene nanohole templates.  Preliminary data have shown the 

possibility of graphene nanohole templates to induce the further growth of graphene, 

however this process is still largely unclear.  It was hypothesized that during the growth 

process, the deposited copper nanoparticles can migrate to the nanohole edges, and 

induce graphene growth from the edge toward the central region.   In order to clarify this 

process, it would be valuable to monitor this process over time and with a larger range of 
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deposited copper thicknesses to see if these raised features can be observed moving from 

the outer hole edges toward the hole center.  Furthermore, the resolution for Raman 

mapping is near the size of the nanoholes within these graphene hole templates.  This 

makes it difficult to get a clear mapping of any potential graphene growth within the 

nanoholes.  To overcome this, experiments with larger nanoholes would provide better 

mapping of graphene growth, and a clearer idea of how the graphene may grow from the 

edge of the nanoholes. 

 In the end, it would be the hope to merge the work on selective copper nanowire 

fabrication on silicon substrates and the research focused on controllable growth of CVD 

graphene.  Clearly, copper can be used as a template to selectively deposit CVD 

graphene.  Through the high controllability of size, orientation, and configuration 

provided by AFM nanopatterning and electroless copper deposition, it is possible to 

create highly complex designs of copper on silicon substrates.  These intricate designs 

may then be used as templates to selectively deposit CVD graphene, and allow for the 

construction of complex designs of graphene. 

7.5  Doped Graphene Nanohole Arrays 

7.5.1 Conclusions Summary 

 An additional method explored in this work to improve the optical transparency 

and electrical conductivity of CVD graphene films was through nanopatterning and 

chemical doping.  Graphene nanohole arrays (GNAs) were fabricated by nanoimprint 

lithography and doped with thionyl chloride to potentially increase conductivity while 

simultaneously decreasing the optical transmittance, which would beneficial for the 
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application of graphene as a transparent electrode.  It was found that patterning graphene 

films with nanoholes decreased the optical transmittance of single layer graphene across 

the visible region of the light spectrum.  Furthermore, nanopatterning provided a greater 

amount of active sites for chemical doping due to the exposed nanohole edges, and led to 

a conductance enhancement of 15-18 times greater than its undoped counterpart, whereas 

unpatterned single-layer graphene illustrated only a 2-4 enhancement factor following 

dopant exposure.  Clearly through this method, conductivity of graphene films can be 

significantly enhanced while also enhancing optical transparency. 

7.5.1 Future Directions 

 Chemical doping is an effective means to increase the conductivity of graphene 

films, as seen from the research presented in this dissertation.  Only one dopant was 

investigated in this work, however there is a potential to explore other dopants that can 

also increase conductivity, such as metal nanoparticles or NO2.  Furthermore, only one 

nanohole size and spacing was examined in these experiments.  It may be possible to tune 

the amount of chemical doping, and therefore the electrical properties of graphene, 

through changes in the nanohole dimensions and density.  By alterations in the size and 

density, it would be feasible to control the amount of active doping sites within the 

graphene arrays, and therefore the doping and consequently the electrical conductivity.   

7.6  Final Statement 

 The research presented in this dissertation demonstrates how nanopatterning and 

templating can be utilized to form highly ordered nanostructured material on substrate 

surfaces.  Both of these methods provide a promising means to control the size, 
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orientation, and design of materials on the nanoscale.  Nanopatterning was coupled with 

electroless metal deposition to fabricate copper nanowire features on silicon substrates.  

Templating was incorporated for the development of high quality CVD graphene on 

copper substrate templates, as well as directed growth from nanopatterned hole array 

templates and chemical doping.  Through the improvement of nanostructured material 

properties and their fabrication methods as described here, it is possible to enhance their 

function in several application areas that possess a large demand for nanostructured 

materials, such as sensing, environmental sustainability and clean up, energy harvesting 

and storage, as well as nanoelectronics. 
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