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Abstract 

 

How a transient experience creates a persistent memory remains a fundamental unresolved 

issue in neuroscience. One of the molecular processes that is believed to be critical for long- lasting 

memory is synthesis of new protein at the synapse. However, how synaptic protein synthesis is 

regulated and how these new proteins confers persistence of memory is largely unknown. Previous 

studies in Drosophila and Aplysia have implicated that a family of mRNA binding proteins known 

as Cytoplasmic Polyadenylation Element (CPE) binding proteins is essential for persistent change 

in experience-dependent synaptic efficacy and persistence of memory. Moreover specific CPEB 

family members demonstrate biophysical properties that are associated with prion-like proteins.  

They exist in two distinct physical states: a monomeric and a dominant self-sustaining 

amyloidogenic aggregated state. This suggested a model in which a transient experience creates 

persistence molecular alteration in the nervous system via recruiting a stable and self-sustaining 

amyloidogenic aggregates of neuronal CPEB.  The primary objective of this thesis is to determine 

how Drosophila neuronal CPEB, Orb2, regulates protein synthesis and how conversion to the 

aggregated state effects its function. Combining in vitro and in vivo studies we find that the 

monomeric Orb2 represses, while the amyloidogenic oligomeric Orb2 enhances translation and 

imparts its translational state onto the monomer. The monomer removes, whereas the oligomer 

stabilizes and elongates the polyA tail of mRNA. In support of these findings, we have identified 

a two novel proteins: CG13928, which binds only to monomeric Orb2, promotes deadenylation, 

and CG4612, a putative polyA binding protein, promotes oligomeric Orb2-dependent translation.  

We posit that monomeric Orb2 keeps target mRNA in a translationally dormant state and 

experience-dependent conversion of Orb2 to the stable amyloidogenic state activates translation, 

resulting in persistent alteration of synaptic activity and stabilization of memory. This study also 

provides an example of an amyloid-based protein switch that turns a repressor into an activator. 
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Introduction 

 The cellular basis of memory storage is believed to be experience-dependent changes in 

synaptic efficacy, often referred to as synaptic plasticity (Kandel et al., 2014; Martin et al., 2000b; 

Martin and Morris, 2002). The synapse is a communication bridge between neurons, and the 

minimal unit of change. Since strength of an individual synapse influences the nature of 

communication in a network of neurons, it was envisioned that one of the ways information can 

be encoded in the nervous system is by changing the function of the synapse in an experience-

dependent manner (Kandel et al., 2014). The discovery of long-term facilitation and long-term 

depression of synaptic function in response to behavioral training provided experimental credence 

to the synaptic plasticity hypothesis of memory (Bliss and Collingridge, 1993; Malenka and Bear, 

2004; Martin et al., 2000b; Takeuchi et al., 2014). The synaptic plasticity hypothesis of long-term 

memory also raised some fundamental questions (Takeuchi et al., 2014). How does a synapse 

change its function? Do all synapses of a given neuron change when animal form a memory? If 

indeed changes in synaptic strength underlie memory, how does the synaptic change persist for 

long period of time, even for months and years?  

Role of protein synthesis in synaptic plasticity and memory 

Some memories last for minutes, while others persist for days and months (Carew et al., 

1972; Dudai, 2002, 2004). These temporally distinct forms of memories also have distinct 

biochemical requirements. While short-term memory depends on the modification of the existing 

proteins in the synapse, long-term memory requires the de novo synthesis of mRNAs and proteins 

(Bliss and Collingridge, 1993; Kandel et al., 2014; Malenka and Bear, 2004).  
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The necessity of protein synthesis in memory was first suggested by the work of Flexner 

et al. (Flexner et al., 1963). They observed that injection of protein-synthesis inhibitor puromycin 

into the temporal lobe of mice from day 1 to 3 after learning blocked long-term memory. This 

observation suggested that after training animals need new protein synthesis in the brain to 

consolidate the newly acquired information. Following this initial observation a number of studies 

in mice, rats, fruit flies, and honeybee, in which animals were fed protein synthesis inhibitors 

before or immediately after training, resulted in a similar disruption of memory (Lagasse et al., 

2009; Remaud et al., 2014; Wittstock et al., 1993; Wustenberg et al., 1998).  A general problem 

with these studies is that feeding protein synthesis inhibitors results in a global disruption of animal 

physiology and it was therefore difficult to distinguish whether the inability to form long-term 

memories is due to the disruption of memory processes or a general disruption of the animal 

physiology (Rodriguez-Ortiz et al., 2008). However, a number of behavioral observations argued 

against a general disruption of the animal physiology or function of the nervous system. For 

example injection of protein synthesis inhibitors prior to training did not interfere with learning or 

short-term memory. Even for long-term memory, protein synthesis inhibitors only interfered with 

very specific forms of long lasting memory (Naghdi et al., 2003; Scharf et al., 2002). For example 

the animals can be subjected to the same behavioral training in two different manners.  If a training 

paradigm consists of multiple training sessions they can be delivered successively (massed) or 

with gaps between individual sessions (spaced) (Mauelshagen et al., 1998). Both massed and 

spaced training produce long-term memory, but memory produced by the spaced training often 

persist longer than that produced by the massed training. Remarkably injection of protein synthesis 

inhibitors only interfered with spaced training-induced memory but not that of massed training 

(Collatz et al., 2006; Hermitte et al., 1999; Scharf et al., 2002). These observations had two major 
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implications. One, long-term memories of different durations have distinct molecular 

requirements, and second, only spaced training produces a form of long-lasting memory that 

requires new protein synthesis.    

 While the requirement of protein synthesis in long-term memory was evident, it was 

unclear what specific function protein synthesis serves in long-lasting memory. The discovery of 

synaptic plasticity as the cellular substrate of memory prompted a number of groups to ask which 

aspects of synaptic function is dependent on new protein synthesis. Similar to memory processes, 

the activity-dependent change in synaptic activity has multiple phases that mirror the behavioral 

memory; short, intermediate and long-term (Carew et al., 1972; Castellucci et al., 1978; Nonaka 

et al., 2014) . While the short or intermediate-term change in synaptic activity is primarily due to 

change in the efficacy of preexisting synapses, long-term synaptic plasticity involves growth of 

new synapses (Bartsch et al., 1995). These various phases of synaptic plasticity also have distinct 

molecular requirements similar to behavioral memory (Bailey et al., 2000; Casadio et al., 1999; 

Sutton and Carew, 2000). Application of inhibitors of mRNA and protein synthesis revealed 

various phases of the activity-dependent long-term potentiation (LTP) of hippocampal CA1-CA3 

synapses (Krug et al., 1984) or long-term facilitation of Aplysia sensory-motor neuron synapse. 

While transcriptional inhibitors did not have an effect on early phases of LTP (60-90 mins) but did 

have an effect on late-phase LTP, protein synthesis inhibitor anisomycin blocked both early and 

late phases of LTP. These and other subsequent studies suggested that there is a protein synthesis-

dependent but transcription-independent early phase and both transcription- and protein synthesis-

dependent late phase (Huang and Kandel, 2007).  
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Local Protein Synthesis in Neurons  

Synapses are made of functionally diverse proteins and these proteins are required not only 

for synaptic transmission and regulation of synaptic transmission but also for building and 

maintaining a synapse (Miniaci et al., 2008). Since proteins have a finite half-life compared to the 

life-time of a synapse, the synapse requires continuous feedback of proteins to maintain synaptic 

protein content (Cohen et al., 2013). In addition to this homeostatic maintenance of synaptic 

content, synaptic plasticity involves alteration in both function and size of the synapse and 

therefore a significant change in the protein composition of the synapse (Cline, 2003; Davis and 

Bezprozvanny, 2001). The maintenance of synaptic protein homeostasis and changes in synaptic 

proteins are particularly challenging for a neuron because of its organization (Davis and 

Bezprozvanny, 2001). The number of synapses formed by a given neuron is large. A typical 

mammalian neuron forms on average 1000 synapses (Cernuda-Cernuda et al., 2003). The relative 

distance of these synapses from cell body varies significantly. Moreover, synapses that are just a 

few microns apart can be functionally and morphologically independent of each other (Martin et 

al., 1997; Miniaci et al., 2008). These neuronal features raise several questions: how does a neuron 

maintain the protein composition of a synapse? How does it restrict changes in protein composition 

to a subset of synapses when they share the same cell body, the source of mRNAs and most 

proteins?  

Most proteins are synthesized in neuronal cell bodies (Steward and Schuman, 2003). 

However, over time it became evident that in neurons new proteins are synthesized outside the cell 

body (Steward et al., 2014). The synthesis of new proteins outside the cell body was first observed 

from incorporation of radiolabeled amino acids in isolated preparation of axons (Arch, 1972; 

Wilson, 1971).  Moreover, in a narrow time window, which is considered insufficient for transport 
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of newly synthesized protein from cell body to the distant synapses, radiolabeled proteins were 

detected in synaptic fractions immediately after synaptic stimulation (Steward et al., 1991). These 

studies however failed to establish unequivocally whether these new proteins are indeed 

synthesized within the axon or from some other cells that are attached to the isolated axons or that 

a small amount of contaminating cell bodies accounts for the incorporation of radiolabeled amino 

acids. Discovery of ribosomes in the axon and dendritic processes confirmed the idea that protein 

synthesis can occur outside the cell body (Steward and Levy, 1982). Bodian et al. first noticed the 

presence of ribosome particles in the proximal dendrites adjacent to synaptic “knobs” in monkey 

spinal cord motor neurons (Bodian, 1965). Subsequently a series of studies by Steward and Levy, 

demonstrated that ribosomes, including polysomes, are present in the dendritic spines in granule 

cells of rat dentate gyrus (Steward and Falk, 1986; Steward and Levy, 1982). Since polysomes 

represent ribosomes bound to translating mRNA, the presence of polysomes indicated active 

translation at the synapse (Steward and Ribak, 1986; Sutton and Schuman, 2006). More 

compelling evidence of local protein synthesis in dendrites came from the studies with cultured 

neurons (Aakalu et al., 2001). For example, in hippocampal neurons, myristolated GFP tagged 

reporter with the 3'UTR of CAMKII mRNA was used to entrap the translated proteins in site of 

synthesis (Rook et al., 2000).  Stimulation with brain derived neurotrophic factor (BDNF), showed 

enhanced GFP fluorescence in the dendrites. Taken together with the observation that a number of 

mRNAs are localized in the dendrites and axons of neurons in various species, these observations 

suggested that mRNAs are indeed translated locally in the synapse (Moccia et al., 2003).  

What is the function of local protein synthesis in the nervous system? The first functional 

role of local protein synthesis was shown by Kang et al. (Kang and Schuman, 1996). In this study 

they noticed that local application of the growth factor BDNF not only causes local proteins 
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synthesis in the dendrites but also that this newly synthesized protein is required for the rapid 

enhancement of synaptic transmission. Kang et.al found that BDNF increased synaptic efficacy in 

neurites that were dissociated from the cell bodies and application of protein synthesis inhibitors 

such as emetine inhibited the synaptic enhancement. Since the neurites were separated from the 

primary source of proteins, the cell body, this study provided the first causal link between local 

protein synthesis and synaptic plasticity. More elegant experiments in Aplysia sensory-motor 

neuron co-cultures demonstrated that synapse specific long-term facilitation requires local protein 

synthesis in the presynaptic cell (Martin et al., 1997).  In these experiments a bifurcated Aplysia 

sensory neuron was used which made synaptic contact with two separate target motor neurons. 

Repeated application of serotonin (5-HT) to one set of synapses produced a CREB-dependent, 

synapse-specific, long-term facilitation, which can be captured at the opposite synapse by a single 

pulse of 5-HT (Casadio et al., 1999). Perfusion of protein synthesis inhibitors locally in the 

synaptic region did not change short-term facilitation, but selectively interfered with long-term 

facilitation. Furthermore this system also revealed that a transient and neuron wide CREB-

mediated long-term facilitation can stabilized at specific synapses by local application of serotonin 

in the synapse and this stabilization requires local protein synthesis (Casadio et al., 1999). 

However, prior application of protein synthesis inhibitors blocked the ability to capture facilitation 

via single pulse of 5-HT. Likewise, repeated application of 5-HT only to the cell body of sensory 

neurons produced a CREB-dependent, cell-wide long-term facilitation. However, this cell wide 

facilitation was not associated with any new synaptic growth and the synapse-specific facilitation 

did not persist more than 24 hours. This transient cell-wide facilitation can be converted to 

persistent synapse-specific facilitation by a single pulse of 5-HT at the synapse (Casadio et al., 

1999). Again application of protein synthesis inhibitor at the synapse blocks the capture of cell 
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wide facilitation.  A similar synaptic tagging was also reported in other systems including mouse 

hippocampus (Alarcon et al., 2006). These results suggested two very specific roles of local protein 

synthesis. First, local protein synthesis is required for a retrograde signal from synapse to the cell 

body that activates transcriptions in the cell body. Second, local protein synthesis also “tags” the 

activated synapse and the tag allows the activated synapses either to capture and/or utilize the 

globally distributed gene products (Frey and Morris, 1997; Reymann and Frey, 2007).  

Translational control by cytoplasmic polyadenylation 

These observations suggested that local protein synthesis is a key molecular event in 

generating synapse-specific long-term change in synaptic efficacy and raised a number of 

questions. How is local protein synthesis in the synapse regulated? What proteins are locally 

synthesized and how do they stabilize synaptic growth and function? Protein synthesis in the 

synapse can be regulated by a number of ways, such as the availability of the mRNA, modification 

of the mRNA to make it translationally competent or the availability of protein synthesis 

machinery (Davis et al., 1987; Si et al., 2003a; Steward and Levy, 1982; Steward and Reeves, 

1988). Among these plausible mechanisms regulation, changing the polyA tail length of the 

mRNA has emerged as one of the principal mechanisms of synaptic protein synthesis regulation 

(Si et al., 2003a; Udagawa et al., 2012). 

   All newly made mRNAs receive a polyA tail in the nucleus through transcription-coupled 

polyadenylation (Bilger et al., 1994; Rigo and Martinson, 2009). Polyadenylation in the nucleus 

requires a cis-acting polyadenylation signal sequence, AAUAAA in the 3'UTR, and a 

polyadenylation complex composed of cleavage and polyadenylation specificity factors (CPSF) 

and the enzyme poly (A) polymerase (PAP) (Murthy and Manley, 1995; Proudfoot and Brownlee, 

1976). CPSF directly binds to the hexanucleotide sequence at the 3’ UTR and recruits PAP to form 
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an active polyadenylation complex (Bienroth et al., 1991; Murthy and Manley, 1995). As a result 

of generalized polyadenylation in the nucleus, most pre-mRNAs have a poly (A) tail of 

approximately ~70-90 nucleotides long in Saccharomyces cerevisiae (Brown and Sachs, 1998; 

Groner et al., 1974) and ~250 in mammalian cells (Brawerman, 1981). Once transported out of the 

nucleus to the cytoplasm the mRNA can undergo additional modifications and some of these 

modifications in the cytoplasm control mRNA translation (Barnard et al., 2004; Kim and Richter, 

2006). One such cytoplasmic modification of mRNA is elongation of the polyA tail. In eukaryotes 

the presence of a long polyA tail at the 3' end of the messenger RNA is an important regulatory 

step in translation (Sachs et al., 1997). The longer polyA tail can stabilize or enhance translation 

of the mRNAs (Munroe and Jacobson, 1990). The polyA tail-dependent translation regulation is 

particularly interesting in the context of synaptic protein synthesis because it was discovered as 

one of the key mechanisms of spatio-temporal regulation of translation (Groisman et al., 2000). 

 That polyA tail length is important for translation was first discovered in Xenopus oocyte 

by Joel Richter and colleagues in an attempt to understand how translationally dormant maternal 

mRNAs are translated upon exposure to oocytes maturating factors (Groisman et al., 2002). In 

immature oocytes, dormant mRNAs usually have short poly (A) tail of ~40 bases, but when these 

mRNAs are polyadenylated up to ~150 bases they then become translationally active, which results 

in meiotic division and oocyte maturation (Ivshina et al., 2014). Richter and colleagues 

subsequently discovered that cytoplasmic polyadenylation is dependent on the presence of U-rich 

sequence element UUUUAU at 3'UTR (CPE-element) and a CPE-element binding protein CPEB 

(Hake et al., 1998). Pre-mRNAs which have a cytoplasmic polyadenylation element (CPE) at their 

3'UTR upstream of the AAUAAA poly (A) selection site are bound by CPSF and transported to 

the cytoplasm (Lin et al., 2010). In the cytoplasm a complete polyadenylation complex is 
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assembled upon the joining of symplekin, a scaffolding protein, germline development 2 poly (A) 

polymerase, or Gld2, and the deadenylating enzyme poly (A) ribonuclease or PARN (Barnard et 

al., 2004; Kim and Richter, 2006). Both Gld2 and PARN are enzymatically active but the more 

robust nuclease activity of PARN keeps the mRNA transnationally silent by maintaining a short 

poly(A) tail (Kim and Richter, 2006). In addition, Maskin, which is a poly (A) binding protein, 

simultaneously binds CPEB and eukaryotic initiation factor 4E (eIF4E) and prevents eIF4E’s 

interaction with the 5' cap structure, stopping the assembly of the translation initiation complex 

(Cao and Richter, 2002; Richter and Sonenberg, 2005; Stebbins-Boaz et al., 1999).  

Hormone such as progesterone causes unmasking of dormant mRNA by removing the 

inhibitory constraints and elongating the polyA tail (Sarkissian et al., 2004). The first step in this 

process is the activation of Aurora A kinase which phosphorylates CPEB protein (Mendez et al., 

2000a; Sarkissian et al., 2004). CPEB phosphorylation has multiple effects: first, it causes PARN 

expulsion from the RNA-protein complex thereby stops deadenylation; second, it enhances 

interaction between CPEB and CPSF complex (Kim and Richter, 2006; Mendez et al., 2000b), and  

finally, phosphorylated CPEB has a low affinity for Maskin resulting in dissociation of Maskin 

from CPEB-eIF4E complex and allowing the formation of translation initiation complex  (Cao et 

al., 2006; Kim and Richter, 2007) (Fig 1.1).  
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Figure 1.1: Mechanism of canonical CPEB mediated translation in Xenopus oocytes. In immature 

oocytes the translationally dormant mRNA is bound by CPEB and Maskin. Maskin binds both 

eIF4E and CPEB and prevents interaction with eIF4G.This occupancy of eIF4E by Maskin 

restricts formation of 5'CAP dependent translation initiation complex. On the other hand when 

CPEB is phosphorylated Maskin and PARN are displaced from the complex, polyA polymerase 

elongates polyA tail, eIF4E and eIF4G interact each other and form translation initiation complex.  

 

Translational control by mRNA deadenylation: 

The polyA tail length of mRNAs in the cytoplasm is regulated by two opposing activities: 

polyadenylation and deadenylation. As mentioned before, long polyA tails often protect mRNAs 

from degradation and enhance translation of the mRNA. On the other hand shortening of polyA 

tail length is mostly associated with reduction in translation and decay of an mRNA. After 
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deadenylation the mRNAs are degraded in two ways: degradation in the 3' to 5' direction by 

cytoplasmic exosome complex or deadenylation followed by decapping and degradation in 5' to 3' 

direction by Xrn1 nuclease (Houseley and Tollervey, 2009; Meyer et al., 2004; Parker and Song, 

2004).  

What are the mechanisms of cytoplasmic deadenylation? Two protein complexes, Ccr4-

Not and Pan2-Pan3, are known so far to deadenylate mRNA in the cytoplasm. Ccr4-Not protein 

complex is one of the primary deadenyaltion complexes in eukaryotes, and mediates complete 

deadenylation of the target mRNA. This complex consists of five conserved subunits: Ccr4, 

Caf1/Pop2, Not1, Not2 and Not3/5 (Wahle and Winkler, 2013). In mammals there are two Ccr4 

orthologues, Ccr4a and Ccr4b (Morita et al., 2007; Wang et al., 2010). Ccr4 has Mg+ dependent 

3'exonuclease activity (Chen et al., 2002; Tucker et al., 2002). Ccr4 protein has two well 

characterized domains: a nuclease domain for exonuclease activity and a leucine-rich repeat (LRR) 

domain which mediates interaction with other subunits in the complex such as Caf1/Pop2 (Draper 

et al., 1995; Dupressoir et al., 2001; Malvar et al., 1992). The second conserved catalytic subunit 

of Ccr4-Not complex is Caf1 (Schwede et al., 2008) and it degrades polyA sequences with high 

efficiency (Bianchin et al., 2005; Viswanathan et al., 2004). Not1 acts as a central scaffolding 

agent and it interacts with most of the subunits in the complex (Bai et al., 1999; Maillet and Collart, 

2002; Maillet et al., 2000). The function of the Not2 subunit is unknown, though it is highly 

conserved. In yeast two other Not subunits, Not3p and Not5p, have been identified according to 

their sequence similarity (Chen et al., 2001; Liu et al., 1998; Oberholzer and Collart, 1998). 

However in other organisms, instead of Not3 and Not5, there is only the Not3 subunit (Albert et 

al., 2000; Lau et al., 2009; Temme et al., 2004). The function of Not3 is unclear. 
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Another well characterized protein complex that removes the polyA tail of mRNAs is the 

PAN complex. Both in yeast and mammals the poly (A)-specific nuclease PAN complex consists 

of two subunits, PAN2 and PAN3 (Boeck et al., 1996; Brown et al., 1996; Uchida et al., 2004). 

The catalytic PAN2 subunit has 3'-exonuclease activity and it requires divalent cations for 

enzymatic function (Uchida et al., 2004; Zuo and Deutscher, 2001). PAN2 requires poly (A) 

binding protein for its enzymatic activity, such as PABPC in mammals and Pabp1 in yeast, (Lowell 

et al., 1992; Sachs and Deardorff, 1992; Uchida et al., 2004). PABPC is recruited to the PAN 

complex via its interaction with PAN3. PAN3 has two binding motifs that mediate protein-protein 

interaction: PABP-interacting motif 2 or PAM2 at the N-terminal end that mediates interaction 

with PABPC, and a C-terminal motif that mediates interaction with PAN2 (Siddiqui et al., 2007). 

In vitro studies suggested that PAN2-PAN3 complex deadenylates the target RNA incompletely, 

leaving 25 nucleotides (Lowell et al., 1992). Similar observations were also made in vivo in yeast 

strains where accumulation of RNA with similar tails was found (Tucker et al., 2001). 

Both Ccr4-Not and Pan2-Pan3 complexes localize in the cytoplasm (Cougot et al., 2004; 

Tucker et al., 2001). Initially, it was thought that deadeynylation functions are redundant in the 

cytoplasm due to the presence of two deadenylation complexes. However, several studies 

suggested that these two complexes serve distinct functions(Bonisch et al., 2007). It was proposed 

that Pan2-Pan3 performs initial phase of deadenylation and the remaining bulk deadenylation is 

mediated by Ccr4-Not complex. Recruitment of both Ccr4-Not and Pan2-Pan3 complexes to the 

target mRNA are mediated by two mechanisms. One, a generalized deadenylation mechanism in 

which these complexes are recruited by polyA binding protein C1 (PABC1) and second, a targeted 

mRNA deadenylation mechanism in which these complexes are recruited to the target mRNA by 

element specific RNA binding protein. In the case of general deadenylation, Pan3 subunit, through 
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its PAM2 motif, interacts with the C-terminal domain of PABPC1. However, none of the Ccr4-

Not complex subunit proteins have PAM2 motifs, and recruitment of this complex to PABPC1 is 

mediated, in mammals, by mammalian TOB proteins that are known to have PAM2 motif in their 

C-terminal region (Ezzeddine et al., 2007; Ezzeddine et al., 2012; Funakoshi et al., 2007). There 

are several examples of Ccr4-Not involvement in targeted mRNA deadenaylation. In yeast S. 

cerevisiae Ccr4-Not complex is recruited by Mpt5 protein, which belongs to the PUF family of 

RNA binding protein, similar to the Drosophila Pumilio protein. Mpt5 binds specific sequence 

elements of target mRNAs and recruits the Ccr4-Not complex through binding the Caf1 subunit 

of the complex (Goldstrohm et al., 2007). In human cells the Ccr4-Not complex is recruited 

through short A/U rich elements (ARE) present in a number of mRNAs with very short half-lives, 

for example mRNA of  cytokine tumor necrosis factor (TNF) α or the inducible transcription 

factors c-Fos and c-Myc. The specific ARE element of these mRNAs is bound by a zinc-finger 

containing Tristetraprolin (TTP) protein, which in turn binds Ccr4-Not complex via the CNOT1 

subunit of the complex (Sandler et al., 2011).  

CPEB Proteins in Neuron 

Although CPEB proteins were discovered in developing oocytes, based on studies both in 

invertebrates and mammals, proteins of the CPEB family emerged as potential candidates for 

regulator of synaptic protein synthesis (Richter and Klann, 2009). In mammals CPEB has four 

family members, CPEB1-4. Though all of them are expressed in the brain, CPEB1 and CPEB2-4 

are thought to form different functional groups of CPEB family proteins (Mendez and Richter, 

2001). They all contain a common RNA binding domain and a Zn-finger domain at the C-terminal 

end, but they differ in the N-terminal end (Richter, 2007). Intriguingly CPEB3 and CPEB2 contain 

an N-terminal unstructured domain similar to prion-like domains (discussed in detail later). In vitro 
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iterative binding assays suggested that CPEB2-4 do not interact with the canonical CPE, instead 

they bind a U-rich stem-loop structure (Huang et al., 2006). CPEB3 neither requires the AAUAAA 

polyadenylation signal nor does it bind to the CPSF polyadenylation factor (Huang et al., 2006). 

There are two CPEB proteins in Aplysia (Liu et al., 2006). Similar to mammalian CPEB, the two 

ApCPEBs differ in the N-terminal end, one of them having a poly glutamine (Q) stretch at the N-

terminus (Fig 1.2), along with the propensity to form amyloid-like structures. In Drosophila there 

are two CPEB orthologues, Orb1 and Orb2, and both of them are expressed in the nervous system 

(Hafer et al., 2011; Pai et al., 2013). Similar to Aplysia (ApCPEB), Orb2 also possess a poly-

glutamine (Q) stretch at its N-terminus (Fig 1.2).  

 

 

 

 

 

Figure 1.2: Drosophila Orb2 and Aplysia CPEB have structural similarity. RRM refers to RNA 

recognition motif. PolyQ refers to polyglutamine stretches of 25 and longer.  

 

CPEB and Synaptic Plasticity 

Several studies reported that CPEB-mediated translational regulation is essential in early 

development (Fox et al., 1989; McGrew et al., 1989; Minshall et al., 1999; Tay et al., 2000). 

However, CPEB mediated translational regulation also exists beyond development. Although 

earlier studies in mouse suggested CPEB1 (mCPEB, a 62 KDa protein) is expressed in testis, ovary 

and kidney (Gebauer and Richter, 1996), subsequent studies found moderate level of CPEB protein 

in the brain (Huber et al., 2000; Kang and Schuman, 1996; Martin et al., 2000a; Martin et al., 1997; 
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Wu et al., 1998). CPEB1 is present in the post-synaptic density, and activation of NMDA receptors 

enhances the translation of Ca2+-calmodulin dependent kinase (α-CaMKII), a molecule that is 

important for LTP (Du and Richter, 2005; Huang et al., 2003; Huang et al., 2002; Wells et al., 

2001; Wu et al., 1998). Inactivation of CPEB-1 impaired some forms of LTP; however, it is not 

clear whether CPEB1 is a primary regulator of long-term memory-related protein synthesis 

(Alarcon et al., 2004; Wu et al., 1998; Zearfoss et al., 2008). Among other CPEB family members, 

CPEB3 regulates neuronal protein synthesis and either ubiquitination or truncation of CPEB3 

relieves its translation inhibitory function (Pavlopoulos et al., 2011). CPEB4, similar to CPEB1, 

seems to be involved in a number of cellular processes and is abundantly expressed in the nervous 

system (Tsai et al., 2013). However, constitutive knock out of CPEB4 has no discernable effect on 

synaptic function or memory.   

The role of CPEB in synaptic plasticity has been well characterized in Aplysia (ApCPEB) 

(Si et al., 2003a). ApCPEB protein is upregulated in the stimulated synapse and is required for the 

persistence of serotonin-induced long-term facilitation (Fig 1.3).   

 

 

 

 

 

 

                                                                                                              

Si et al. 2003 
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Figure 1.3 Maintenance of synaptic facilitation requires ApCPEB in the activated synapse. Long-

term facilitation is disrupted due to the local inhibition of ApCPEB by applying TAT–ApCPEB 

anti-sense oligo. 

 

The studies in Aplysia suggested that the neuronal CPEB has properties required of a 

synaptic tag: 1) ApCPEB is upregulated only at the activated synapse in a stimulus-dependent 

manner (Si et al., 2003a); 2) It is required not for initiation but for the persistence of long-term 

facilitation and stabilization of newly formed synapses; 3) ApCPEB can activate translation of 

dormant mRNAs (Bally-Cuif et al., 1998; Schroeder et al., 1999; Stebbins-Boaz et al., 1996; Tan 

et al., 2001); and finally 4) CPEB target mRNAs are involved in synaptic growth (Chang et al., 

2001; Groisman et al., 2002).  

In Drosophila, CPEB has two family members: Orb1 and Orb2. Orb1 is known to be 

involved in establishing polarity axes in the developing egg as well as early embryo (Hafer et al., 

2011). Beyond the germline, the role of Orb1 in somatic tissues are unclear (Hafer et al., 2011). 

However, one recent study reported that Drosophila Orb1 is expressed in the adult nervous system 

and is required for the conversion of labile olfactory memory into stable long-term memory (Pai 

et al., 2013). 

Unlike Orb1, Orb2 mRNA and protein are expressed both throughout development and in 

somatic tissues (Hafer et al., 2011). The Orb2 localization in embryonic central nervous system 

(CNS) is restricted to cell bodies and mostly absent in the axonal tracts (Hafer et al., 2011). 

However, in the adult fly brain Orb2 protein can be detected in the cell bodies, axonal tracts as 

well as dendritic terminals (Hafer et al., 2011; Kruttner et al., 2015; Majumdar et al., 2012). Orb2 

has been implicated in development of embryonic nervous system and mesoderm through 

asymmetric division of stem cells and other precursor cells (Hafer et al., 2011). In adult flies, 
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removal of Orb2 does not interfere with short-term memory but impairs long-term memory 

(Majumdar et al., 2012).  

Prion hypothesis of long-term memory  

Since proteins are short-lived compared to the duration of memory, it remains unclear how 

memory can be immune to turnover of individual proteins (Lynch and Baudry, 1984; Roberson 

and Sweatt, 1999). For a long time the likely solution was believed to be structural changes at the 

synapse that confer stability to the memory.  As a corollary it was assumed that the requirement 

for activity-dependent molecular changes, such as synthesis of new protein was transient. 

However, studies in a number of model systems suggested that the maintenance of behavioral 

memory as well as structural alterations requires ongoing macromolecular synthesis (Kandel, 

2001; Martin et al., 1997; Nader, 2015). This posed a problem: how does a transient experience 

produce such a persistent state of macromolecular synthesis? A potential solution to this problem 

of molecular turnover is to either have proteins with unusually long-half lives or a self-sustaining 

biochemical reaction. In 1984, Crick first addressed the possibility of a self-sustained molecular 

alteration as the basis of long-term memory storage using protein phosphorylation as a candidate 

mechanism (Crick, 1984). Subsequently a number of plausible candidate mechanisms has been 

proposed including auto catalytic nature of calcium-calmodulin dependent kinaseII or CamKII 

(Dudai, 2004; Lisman, 1994). Another plausible candidate for a self-sustaining biochemical 

reaction came from the analysis of the amino acid sequence of ApCPEBs. Si et al. made the 

surprising observation that the neuronal isoform of ApCPEB has a glutamine and asparagine (Q 

and N)-rich N-terminal domain, reminiscent of well-characterized prions in yeast (Si et al., 2003b). 

Prions are proteins that can assume at least two distinct physical states: a monomeric state and 

self-templating amyloidogenic aggregated state (Prusiner, 1998). Once the aggregate state is 
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formed it induces the conformational conversion of the monomeric state and initiates a dominant 

autocatalytic state. Prions were first discovered as the causative agent for a number of 

neurodegenerative diseases (Prusiner, 2013). However studies primarily in yeast revealed that 

proteins can adopt a prion-like state and be non-pathogenic and even be the basis of phenotypic 

variations (Shorter and Lindquist, 2005; Wickner et al., 2007).  A number of assays developed for 

studying prions in yeast revealed that ApCPEB could exist in yeast in two distinct conformational 

states, very much like other yeast prion proteins. One of these states is monomeric and incapable 

of self-perpetuation. The other state is oligomeric and stably inherited across generations in yeast 

although occasional switches to the monomeric state occur (Heinrich and Lindquist, 2011; Si et 

al., 2003b). 

Si et al. went on to explore the conformational state of ApCPEB in Aplysia neurons (Si et 

al., 2010). They found that when ApCPEB was overexpressed in Aplysia sensory neurons, it 

formed punctate structures that were amyloid-like in nature, a common characteristic of all known 

prions and prion-like proteins. These punctate structures were due to self-assembly of the ApCPEB 

protein and once formed they could recruit newly synthesized protein, a feature necessary for self-

sustenance. Intriguingly, application of 5 pulses of serotonin, which produces long-term 

facilitation, increased the number of puncta, suggesting that the aggregation of ApCPEB could be 

regulated by modulators of synaptic activity. Importantly, injection of an antibody that selectively 

binds the aggregated form of ApCPEB did not prevent the initiation of long-term facilitation but 

selectively blocked its maintenance beyond 24 hours (Si et al., 2003a).  

These observations led to a model that explains persistent synaptic protein synthesis at the 

activated synapse. According to this model ApCPEB in the sensory neuron has at least two 

conformational states: 1) a recessive monomeric state where ApCPEB is inactive or acts as a 
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repressor of translation; and 2) a dominant, self-sustaining, active multimeric state. In a naive 

synapse, the basal level of ApCPEB is low and the protein is in the monomeric state. Serotonin 

stimulation converts ApCPEB from the monomeric to the prion-like state, which might be more 

active or devoid of the inhibitory function of the basal state. Once the prion state is established at 

an activated synapse, dormant mRNAs, made in the cell body and distributed globally to all 

synapses, can be activated only locally through the activated ApCPEB. Because the activated 

ApCPEB can be self-perpetuating, it can contribute to a self-sustaining synapse-specific long-term 

molecular change and provides a mechanism for the stabilization of learning-related synaptic 

modification and growth, thereby contributing to the persistence of memory storage.  

Prion-like state of Orb2 and long lasting memory: 

CPEB’s role and mode of action in the maintenance of long-term plasticity and hence 

memory is not restricted to Aplysia. Similar to ApCPEB, Drosophila Orb2 has two distinct 

physical states in the adult fly brain; a monomer and a stable SDS-resistant amyloid-like oligomer. 

The oligomers are formed at physiological concentrations of Orb2 protein and stimulation of 

behaviorally relevant neurons, such as the Kenyon cells of the mushroom body or octopamine or 

dopamine responsive neurons, increases the level of the oligomeric Orb2 (Kruttner et al., 2012; 

Majumdar et al., 2012). Considering the evolutionary distance between the Aplysia CPEB and 

Drosophila Orb2, these observations suggested that the amyloidogenic oligomers of Orb2/CPEB 

may act to stabilize activity-dependent changes in synaptic efficacy across species.  

There are six protein isoforms encoded from Orb2 genomic locus, includingOrb2A and 

Orb2B, which are homologous to mammalian CPEB2-3 and ApCPEB proteins (Keleman et al., 

2007; Mastushita-Sakai et al., 2010). The two Orb2 protein isoforms Orb2A and Orb2B share a 

common C-terminal end but they differ in the N-terminal end. While both isoforms have N-
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terminal Q-rich domain, Orb2A has 8 amino acids and Orb2B has 162 amino acids preceding the 

Q-rich domain (Majumdar et al., 2012). The Q-rich domain, present in both isoforms of Orb2, is 

implicated in Orb2 oligomerization (Majumdar et al., 2012). Biochemical studies found that both 

Orb2A and Orb2B formed SDS-resistant oligomers. Fluorescence resonance energy transfer 

(FRET) and fluorescence recovery after photobleaching (FRAP) analysis demonstrated that 

Orb2A forms higher-ordered and tightly assembled oligomers. The FRAP analysis also revealed 

that Orb2A puncta are more stable than Orb2B and other Drosophila poly-glutamine-rich proteins. 

Based on this experimental evidence it was suggested that the Orb2A isoform is more efficient 

than Orb2B in forming self-sustaining SDS-resistant oligomers both in vitro and in vivo. 

In fly head, the abundance of Orb2A and Orb2B isoforms is different. The short Orb2A 

isoform is rare and is not detectable by western blot analysis. Based on the genomic transgene 

expression of both Orb2 isoforms, it was observed that the Orb2A isoform is approximately 100-

fold less prevalent in fly brain than the Orb2B isoform (Majumdar et al., 2012). The longer Orb2 

isoform (Orb2B) is constitutively expressed and readily detectable by conventional western blot 

analysis in the fly head lysate (Majumdar et al., 2012). In spite of its low abundance the Orb2A 

isoform is critical for Orb2 oligomerization and the animal’s ability to form stable long-lasting 

memory. When the Orb2A isoform was knocked out the level of Orb2B monomer was unchanged 

but surprisingly the level of Orb2 oligomer was significantly decreased in the fly head. Based on 

these findings it was hypothesized that Orb2A might act as a seed and recruit the Orb2B isoform, 

which results in the formation of self-sustaining Orb2 oligomer in fly brain.    

Considering the prion-like conformational states of neuronal CPEB and its role in long-

term memory formation, Keleman et al. specifically tested the effect of removing glutamine-rich 

prion-like domain from Orb2 protein and asked whether the prion-like domain is necessary for the 
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memory formation (Keleman et al., 2007). The mutant flies without prion domain were defective 

in forming long-term memory. Importantly the deletion of prion-like domain didn’t affect learning, 

short-term memory, or memory recall (Keleman et al., 2007). This study also narrowed down the 

set of neurons (fru-positive mushroom body γ neurons) in the fly head in which Orb2 function was 

required for the memory formation. However, this study didn’t provide any biochemical evidence 

for whether Drosophila Orb2 is truly a prion, or that the prion property is required for the memory 

formation. 

Majumdar et al. specifically addressed the question of whether the prion-like property of 

Orb2 is important for memory (Majumdar et al., 2012). They took the advantage of the fact that 

rare Orb2A plays a critical role in the prion-like conversion of the abundant Orb2B in the fly head. 

They performed a random mutagenesis screen and identified a number of mutations in the first 8 

amino acids that are unique to the Orb2A isoform that prevented Orb2A oligomerization. One of 

these point mutations in Orb2A, Orb2AF5>Y5, when introduced into the fly, reduced activity-

dependent amyloid-like oligomerization of Orb2. Notably, flies carrying this mutation showed a 

very specific memory deficit. In two different behavioral paradigms, male courtship suppression 

memory and appetitive associative memory, the memory score of mutant flies were similar to the 

memory score of wild type a day after training. However unlike wild type flies, in the mutant flies 

memory begins to decay at 2 days and by 3 days there was no measureable memory. The loss of 

memory in the Orb2 mutant that can’t form Orb2 amyloid is reminiscent of the loss of synaptic 

facilitation in sensory-motor neuron synapse upon inhibition of the ApCPEB oligomers via 

antibody.   
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Goal of this study: 

These observations led to a model for long-term memory in which external stimuli recruit a 

self-sustaining amyloidogenic form of neuronal CPEB in the activated synapse, where CPEB then 

maintains memory through the sustained and regulated synthesis of a specific set of synaptic 

proteins. However, the prevailing view is that amyloid formation in general leads to inactivation 

of proteins. Therefore a central tenet of the hypothesis remains untested: how does neuronal CPEB 

regulate synaptic protein synthesis and what is the consequence of conversion to the self-sustaining 

amyloidogenic state?  

In an attempt to address this question previously, Sakai et al. found that Drosophila Orb2 

targets mRNA transcripts of several candidate long-term memory genes (Mastushita-Sakai et al., 

2010). These mRNAs are not only targeted by monomeric Orb2 but also oligomeric Orb2 since 

both conformational states of Orb2 were efficiently pull down by biotin-labeled in vitro-

synthesized target 3'UTRs (Fig 1.4).   

 

 

 

 

 

 

 

 

 

Figure 1.4. Both isoforms (Orb2A and Orb2B) and both conformational states (monomeric and 

oligomeric) of Orb2 interact with 3'UTRs of target genes (Tequila, aPKC, murashaka and 

neuroligin). Actin88F 3'UTR serves as a negative control in this RNA binding assay.  
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Although both Orb2A and Orb2B contain the same conserved RNA recognition motifs 

(RRM) at the C-terminus and bind to the same mRNA they also vary in various aspects: amino 

acid sequences leading to the prion domain are different, the Orb2B isoform is constitutively 

expressed and present all over the neuron, the Orb2A isoform is expressed in an activity dependent 

manner and present primarily in the synaptic region. Previous studies suggested that Orb2 is a 

translational repressor (Mastushita-Sakai et al., 2010; Xu et al., 2012; Xu et al., 2014). However, 

the biochemical functions of the two isoforms of Orb2 and more importantly the functions of 

monomeric and amyloidogenic oligomeric states in translation are largely unknown. The goal of 

this study is to address the following issues:  

 

1. Determine the role of Orb2 in protein synthesis 

2. Determine the role of Orb2A and Orb2B isoforms and the monomeric and oligomeric Orb2 in 

protein synthesis 

3. Determine the mechanism of Orb2-dependent translation regulation 

4. Determine the molecular basis of Orb2-dependent translation regulation 
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Materials and Methods 

Fly strains: The following fly strains were generated in this study: UAS-Luciferase, UAS-

FLAGCG13928, UAS-Orb2A320, UAS-Orb2A320∆8, UAS-Orb2A320∆80, UAS-FLAG-

CG13928. All constructs were inserted in the attp1 site in the second chromosome except UAS-

FLAG-CG13928.  The CG13928 construct was made by conventional transgenic methods and 

independent lines in 2nd and 3rd chromosomes were selected. The CG4612RNAi (VDRC 

Stock#52497), CG13928RNAi (TRiP collection, Bloomington Stock#28646), MzvumGal4 

(Bloomington Stock#29031), GeneSwitch-ElavGal4 (Bloomington Stock#43642) were obtained 

from the Bloomington stock center, Indiana. The 201YGal4 and 17DGal4 were kindly provided 

by Dr. Troy Zars of University of Missouri. Various genetic combinations were made by standard 

genetic crosses.   

Antibodies: The anti-Orb2 polyclonal rabbit IgG (#273) and anti-Orb2 polyclonal guinea pig IgG 

(#2233) were raised against full length recombinant Orb2A protein. The anti-Smaug polyclonal 

(#2442), anti-CG4612 polyclonal (#2444), and anti-CG13928 polyclonal (#2447) antibodies were 

raised in guinea pigs against 6Xhistidine-tagged purified recombinant full length proteins. All 

antibodies were affinity purified against the purified recombinant antigens. The following 

antibodies were obtained from commercial sources; anti-FLAG HRP-linked monoclonal (#A8592, 

Sigma), anti-Myc 9B11 monoclonal (#2276, Cell signaling Technology), anti-V5 monoclonal 

(#46-0705, Invitrogen), anti-Oligomer A11 antibody (AHB0052, Invitrogen), anti-mouse HRP 

linked secondary antibody (#7076, Cell signaling Technology) and anti-rabbit HRP linked 

secondary antibody (#7074, Cell signaling Technology). The anti-HRP36 rabbit antibody was 

kindly provided by Dr. Marco Blanchette of the Stowers Institute.  
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Plasmids and clones: For RNA binding assay the 3'UTR of Tequila was cloned in TOPOII dual 

vector (Invitrogen) and then linearized with BamHI for in vitro transcript synthesis. To make in 

vitro translation construct firefly luciferase was cloned between the 5'UTR and 3'UTR of Tequila, 

Neuroligin and aPKC in pBSKII vector.  For all protein-protein interaction study in S2 cells the 

open reading frames were cloned into TopoD vector (Invitrogen) and transferred into following 

vectors obtained from Drosophila Genome Research Center (DGRC) using Gateway system; PAC 

5.1 C-FLAG, PAC 5.1 C-HA, PAC 5.1C-V5 or PAC 5.1C-6XMyc and pUAST-FLAG vector. For 

in vitro protein purification the genes were cloned in pDEST42-6xHis vector (Invitrogen) using 

the Gateway cloning system. For expression in the adult fly brain the genes were cloned into 

pUAST-attB (Kindly provided by Dr. Konrad Basler, University of Zurich) vector. The 

Drosophila Not-CCR4-PAN complex cDNAs were kindly provided by Dr. Elisa Izaurralde of 

Max Planck Institute for Developmental Biology, Tubingen, Germany. 

Orb2-TEV flies: The Orb2 genomic rescue constructs were made as described by Venken et al. 

(Venken et al., 2006; Venken et al., 2008) . 500 bp fragments from the 5′ and 3′ end of the Orb2 

locus were cloned into the pattB vector to generate a capture vector and a 18761 base pair fragment 

encompassing the Orb2 locus was captured using recombineering. The resulting untagged pattB-

Orb2 construct was used to introduce the TEV-protease recognition site ENLYFQG at amino acid 

position 369 with respect to Orb2B (position 216 with respect to Orb2A) using the counter 

selection BAC modification kit from Genebridges. Briefly, the Rpls-neo cassette was inserted into 

the Orb2A/Orb2B specific common exon at the indicated position and replaced with an oligo 

carrying an in frame TEV-protease recognition site using counter selection. The pattB-Orb2-TEV 

fragment was inserted in the attP2 site in third chromosome and ∆orb2:pattB-Orb2-TEV flies were 

generated via recombination.  
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Proteomics: The transcripts of the target 3'UTRs were in vitro synthesized using MegaScript T7 

transcription kit (Ambion) and labeled with Bio-ATP and Bio-CTP (Enzo) RNA nucleotide 

analogues. DNase treated RNAs were purified by passing through MicroSpinTM G-50 RNA 

purification column (GE healthcare). The RNAs were stored at -80ºC until used. For RNA-portein 

pull down heads were isolated from 10ml of flies and lysed in cold lysis buffer containing 250mM 

Tris pH8.0, 150mM NaCl, 1mM EDTA, 5% glycerol, 1% TritonX-100, 1.5mM fresh DTT, 

0.2mg/ml heparin, 0.2mg/ml yeast tRNA, 0.25% BSA, 40u/µL RNase inhibitor and protease 

inhibitor). The collected heads were homogenized and incubated for 10 mins at 4ºC with 

continuous rotation. Total protein concentration was measured using BCA kit (Pierce) and 10 mg 

of total protein was incubated on a rotator with 3µg of biotin labeled RNA probe in presence of 

RNase inhibitor for 40 mins at room temperature.  After 40 mins of incubation, pre-equilibrated 

500µL streptavidin magnetic beads (Streptavidin M-280 dynabeads, Invitrogen) added and 

incubated another 40 mins with continuous rotation. The beads with RNA-protein complex were 

washed with cold lysis buffer for three times for 10 mins on rotation. The bound proteins were 

then eluted with unlabeled corresponding RNA for overnight at 4ºC 

A methanol/chloroform extraction was performed on the eluted protein to decrease lipid content 

and subsequently precipitated with cold TCA. Precipitated pellets were solubilized in TRIS-HCl 

pH 8.5 and 8M Urea. TCEP (Tris(2-Carboxylethyl)-Phosphine Hydrochloride, Pierce) and CAM 

(Chloroacetamide, Sigma) were added to a final concentration of 5mM and 10mM, respectively. 

Protein suspensions were digested overnight at 37°C using Endoproteinase Lys-C at 1:50 wt/wt 

(Roche). Samples were brought to a final concentration of 2M urea and 2mM CaCl2 before 

performing a second overnight digestion at 37°C using Trypsin (Promega) at 1:100 wt/wt. Formic 

acid (5% final) was added to stop the reactions.  Samples were loaded on split-triple-phase fused-
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silica micro-capillary columns (McDonald, et al. 2002) and placed in-line with linear ion trap mass 

spectrometers (LTQ, Thermo Scientific), coupled with quaternary Agilent 1100 HPLCs.  Fully 

automated 10-step chromatography run (for a total of 20 hours) was carried out for each sample, 

as described in(Florens et al., 2006), enabling dynamic exclusion for 120 sec.  The MS/MS datasets 

were searched using SEQUEST (Link et al., 1999) against a database of 37466 sequences, 

consisting of 18556 D. melanogaster non-redundant proteins (downloaded from NCBI on 2012-

03-08), 177 usual contaminants (such as human keratins, IgGs, and proteolytic enzymes), and, to 

estimate false discovery rates, 18733 randomized amino acid sequences derived from each non-

redundant protein entry. Peptide/spectrum matches were sorted, selected and compared using 

DTASelect/CONTRAST(Tabb et al., 2002).  Combining all runs, proteins had to be detected by 

at least 2 peptides, leading to FDRs at the protein and spectral levels of 0.63 and 0.15, respectively.  

To estimate relative protein levels, Normalized Spectral Abundance Factors (dNSAFs) were 

calculated for each detected protein distributing shared spectral counts based on unique peptides, 

as described in (Zhang, Wen, et al. 2010). PLGEM was used to calculate signal-to-noise (STN) 

ratios between samples and controls and derive p-values for significant enrichment of proteins in 

the immunoprecipitates (Pavelka et al., 2008). 

Purification of Smaug, CG13928 and CG4612: Protein purification was performed in native 

condition using auto-induction system(Studier, 2005). All four genes were cloned into pDEST42 

vector (Invitrogen) with C-terminal histidine-tag and expressed in BL21 E.coli cells (Invitrogen). 

Bacteria were grown in 1 liter of auto-inducing media (1% N-Z-amine AS, 0.5% yeast extract, 25 

mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4, 0.5% or 54 mM 

glycerol, 0.05% glucose, 0.2% α-lactose and pH adjusted to 7.2 using NaOH) at 25ºC to an OD600 

of 0.5 to 0.8. Following auto-induction the cells were harvested, washed with cold phosphate 
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buffer saline (PBS) and lysed in cold native buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM 

imidazole and pH adjusted to 8.0 using NaOH). The 6xhis-tagged protein were purified in Ni-NTA 

resin (Qiagen), eluted with 300 mM imidazole (Sigma) and dialyzed against PBS+ 5% glycerol at 

4ºC for subsequent assays.  

RNA binding assay: The RNA binding assay was performed as described before by Sakai et al. 

(Mastushita-Sakai et al., 2010). In vitro synthesized biotin labeled RNAs were used to pull down 

Orb2. Briefly, Drosophila S2 cells were transfected with Orb2A and Orb2B isoforms in 6-well 

culture plate using Effectene DNA transfection reagent (QAIGEN) and incubated for 48 hr at 25oC. 

After 48 hr of incubation 1 mL of transfected S2 cells were washed twice with PBS and lysed in 

0.8 mL of RNA binding buffer (20 mM Tris-HCl, pH 8.0; 150 mM NaCl; 1 mM EDTA, pH 8.0; 

5% Glycerol, 0.1% Triton X-100; 1.5 mM DTT; 0.2 mg/mL heparin, 0.2 mg/mL yeast tRNA and 

0.25% BSA) at 4ºC with continuous rotation.  The lysates were centrifuged at 10,000 rpm at 4ºC 

for 10 mins and supernatant was collected carefully. The 3'UTR was transcribed in vitro in 

presence Bio-ATP and Bio-CTP (Enzo) and ~1 µg of RNA was added to the S2 cell lysates and 

incubated in presence of RNase inhibitor at room temperature for 40 mins with continuous rotation. 

Subsequently 100 µL of M-280 Streptavidin conjugated Dynabeads (Invitrogen) were added to 

each reaction and incubated for another 40 mins at room temperature. The RNA-protein complex 

was isolated using magnet, washed thoroughly with RNA binding buffer five times, boiled in 

presence of 1% SDS and run in 4-12% polyacrylamide gel (Invitrogen). The Actin88F 3'UTR was 

used as a negative control. The association of Orb2 with the target 3'UTR was determined by 

Western blot using anti-Orb2 polyclonal antibody.  

Tequila 5'-3'UTR based translation reporter design: All translation reporters for in vitro 

translation experiments were designed and cloned in pBSKII vector with T7 promoter. The 
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reporter construct contained firefly luciferase open reading flanked with Tequila 5'UTR and 

different versions (wild type and mutant) of Tequila 3'UTRs. The linearized (by SalI) vectors were 

first transcribed with T7 mMESSAGE mMACHINE  transcription Kit (Ambion) to make capped 

mRNA and then in the subsequent reaction the capped mRNAs were tailed by mMESSAGE 

mMACHINE T7 ULTRA Transcription Kit (Ambion). All transcribed reporter mRNAs were 

column purified using MicroSpinTM G-50 (GE Healthcare) column. After measuring RNA 

concentration all reporters were aliquoted in small volume and stored in -80oC. For expression in 

adult fly head the reporters were cloned into pUAST-attB vector (kindly provided by Dr. Konrad 

Basler) and transgenic flies were created by inserting the pUAST-attB constructs in attP1 site in 

the second chromosome.   

Drosophila embryo extract preparation: Embryo extract was prepared according to the protocol 

described by Jeske et al.(Jeske and Wahle, 2008). Briefly, the flies were housed at 25ºC and 0-to-

2hr old embryos were collected on large petri-dish containing apple juice agar medium and yeast 

paste. After 2-h the embryos were collected into a sieve by scraping them off from agar surface 

with a soft paint brush and rinsing with a stream of cold tap water. Approximately 1-2 gm of 

embryos was obtained per 2-h collection. Then embryos were dechorionated at room temperature 

by submerging them in a beaker containing 1:2 diluted sodium hypochlorite solution with periodic 

stirring. After hypochlorite treatment for approximately 1 minute, the embryos were washed 

extensively with cold tap water to remove any chlorine from the preparation. The embryos were 

dried using blotting paper to remove residual water. Approximately, 1 gm of dried embryos were 

lysed in 1 ml of freshly prepared embryo lysis buffer (30 mM HEPES-KOH, pH 7.4, 100 mM 

potassium acetate, 2 mM magnesium acetate, 5 mM dithiothreitol (DTT), and 1 mg/ml Pefabloc 

SC (Roche). The embryos were homogenized using dounce homogenizer (KontesTMDounce) in 
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ice, transferred to 1.5-ml Eppendorf tube and centrifuged at 14,500Xg at 4ºC for 20 minutes. 

Following centrifugation the soluble cytoplasmic phase was collected and snap frozen in liquid 

nitrogen as 50-100 µl aliquots. Protein concentration (~30 mg/mL) of the extract was measured 

using BCA Protein Assay Kit (Pierce).  

Generation of Baculovirus and separation of Orb2 monomer and oligomer using gel 

filtration: Both isoforms of Orb2 were expressed in Sf9 insect cell line using Baculovirus 

expression system. The viruses were generated using Bac-to-Bac Baculovirus expression system 

(Life technology). Briefly, full length Orb2A and Orb2B open reading frames were cloned first 

into TopoD vector and then into pDEST8 vector containing polyhedron promoter.  The 

recombinant bacmids were generated in DH10BacTM (Life technologies) using blue-white 

selection in X-gal plates. The high molecular weight recombinant bacmid DNA was prepared from 

500ml cultures using CsCl DNA purification methods.   

Approximately 1x106 cells were transfected with the viral DNA and incubated for 48 to 72 hrs at 

25ºC in 6-well plate.  The infected cells were collected, washed with PBS and lysed in 250 µL of 

lysis buffer containing-150mM NaCl, 10mM Tris-HCl pH7.5, 1% NP-40 (Sigma), 0.1% Triton-X 

100(Sigma), 1% SDS and EDTA-free protease inhibitor (Roche). 100ul of total cell lysate was 

loaded into the 2ml Superose 6 PC column equilibrated with a buffer containing 500mM NaCl and 

10mM Tris-HCl pH 7.5 and fractionated using a HPLC (Smart system) system. Altogether 48 

fractions (50 µL each) were collected for each lysate and alternative fractions were analyzed in 

1.5% Semi-Denaturing Detergent Agarose Gel (SDD-AGE) Electrophoresis. The proteins were 

transferred to nitrocellulose membrane by capillary methods and probed with anti-Orb2 antibody 

to detect different size classes of Orb2 proteins. For subsequent use in translation assay the 

fractions were dialyzed against 1000ml PBS+2.5% glycerol at 4ºC for > 12 hours. 
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Statistical analysis: For in vitro and in vivo experiments unpaired two tailed t-test or in case of 

multiple samples one way ANOVA were performed. Statistical significance was determined 

compared to control. For the in vitro translation assay each time point or each experimental 

condition has corresponding control. The statistical significance was calculated directly from the 

ratio of Firefly/Renilla luciferase. For ease of visualization the data is plotted by normalizing the 

control to 100.       

In vitro translation assay: For all in vitro translation experiments in this study we used 50ng 

(~0.75pM) of wild-type and mutant reporter mRNAs. Each translation assay was carried out in 25 

µL reaction volume, consisting of 50ng translation reporter, 40% (v/v) embryo extract, 16 mM 

Hepes-KOH, pH 7.4, 100 μM amino acid mixture (Promega), 250 ng/μl S. cerevisiae tRNA (Roche 

Applied Science), 50 mM potassium acetate, 2.5 mM magnesium acetate, 100 μM spermidine 

(Sigma), 20 mM creatine phosphate (Roche Applied Science), 80 ng/μl creatine kinase (Roche 

Applied Science), 800 μM ATP, and 100 μM GTP (Sigma). All the translation reactions contained 

20U of RNase inhibitor (Invitrogen) and it was added before adding the translation reporter in the 

reaction. All reactions were incubated at 26oC for the time points indicated. Luciferase activity 

was measured using the dual-glo luciferase assay system (Promega). The assay was normalized 

using renilla luciferase reporter. Luciferase activity was measured in 96-well plate reader (Perkin-

Elmer 1420 Multilabel Counter).  

To compare the protein expression of Tequila WT and mutant reporters, 25 µl translation reactions 

were assembled for each reporter in 40% (v/v) embryo extract with different Orb2 background. 

This assay was performed by using the same amount (50ng or ~75pM) of WT and mutant reporters 

and maintaining similar assay conditions for all the translation reporters. After 15 min incubation 

firefly-renilla luciferase activity was measured using dual-glo luciferase assay system.  
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For in vitro assay with separated monomer and oligomer, we used the high molecular weight 

(HMW) and low molecular weight (LMW) HPLC fractions with corresponding fractions of un-

transfected Sf9 cell lysate. The fractions were dialyzed against PBS with 2.5% glycerol overnight 

at 4ºC. Translation reporters were pre-incubated for 30 min with ~100 ng total protein from each 

dialyzed fractions. Exactly same amount of total protein for different fractions (Orb2 monomer, 

monomer blank fraction, Orb2 oligomer and oligomer blank fraction) were used. Following pre 

incubation translation assay was performed in 40% (v/v) embryo extract at 26ºC for 15 mins and 

luciferase activity was measured. 

To test the effect of known translational inhibitors (cyclohexamide and emetine) in our assay 

system we performed time course using Tequila translation reporter. Regular translation reactions 

were assembled in absence and presence of 0.01 µM cyclohexamide (CALBIOCHEM) or emetine 

hydrochloride (Sigma) and translation reactions were carried out for 0, 10, 20, 30 and 40 mins. 

Luciferase activity was measured using luciferase assay system (Promega). 

Polysome profile of in vitro translation reaction: The polysome assay was performed according 

to the protocol describes by Zid et al. (Zid et al., 2009). For each translation reaction of 100 µL 

volume approximately ~150,000 cpm equivalent translation reporter was added. Translation 

reaction was carried out for 15 mins at 26ºC and was stopped by adding 0.002 µM of 

cyclohexamide and the final volume of reaction was adjusted to 200µL by adding buffer. The 

translation reaction was applied on the top of 7-47% sucrose gradient in resolving buffer (15 mM 

Tris-Cl, pH 7.4, 140 mM NaCl, 7.8 mM MgOAc-4H2O) and ribosomal subunits were separated 

by centrifuging the gradients in a Beckman SW40Ti rotor at 40,000 rpm for 150 min at 4ºC. The 

centrifuged gradient was fractionated in a Teledyne density gradient fractionator with continuous 

monitoring of absorbance at 252 nm. For each gradient approximately 23-27 fractions (~ 500µL 
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each) were collected in 96-well mini-titter plate (Neptune, USA). To measure the radioactivity 

each fraction was added to 4 mL of scintillation fluid (ScintiSafe Econo 2, Fisher Scientific) and 

[p32] level was measured in a scintillation counter (LS6500; Beckman Coulter).  

Ribosome tagging and polysome immunoprecipitation from adult fly head extract: For 

ribosome tagging we used the 60S ribosomal subunits Rpl10, Rpl22 and Rpl18 and 40S ribosomal 

subunit Rps25 because these ribosomal subunits were tagged in other systems. The tagged proteins 

were first expressed in S2 cells and verified whether they are incorporated into respective 

ribosomal subunits and if so, whether the tagged ribosomes are part of polysomes. Under our 

experimental conditions tagged Drosophila Rpl10 and Rpl22 although were incorporated in 60S 

ribosomes but were not in polysomes. Only HA tagged 40S ribosomal subunit Rps25 and FLAG-

tagged 60S ribosomal subunit Rpl18 were part of polysomes. The tagged Rps25 and Rpl18 were 

than used to generate transgenic flies and expressed in all neurons or a subpopulation of neurons 

and the tagged ribosomes were immunopurified with anti-HA (Rps25) or anti-FLAG (Rpl18) from 

adult brain. Since 40S ribosomes by itself bind mRNA the FLAG-tagged 60S ribosomal subunit 

was used in all of our subsequent studies.   

The FLAG-Rpl18 tagged ribosomes were efficiently immunoprecipitated from the brain. First, we 

have compared the complexity of the mRNA recovered from the FLAG-immunoprecipitate 

(ActinGal4:UAS-FLAGRpl18) and mRNA isolated from polysomes by conventional techniques. 

The mRNA comparison revealed that the tagged ribosomes indeed co-purifies with translating 

mRNA.  To determine that the tagged ribosome indeed purifies cell type specific mRNA the 

FLAG-tagged Rpl18 was expressed in subpopulation in neurons, such as neuropeptide F (NPF) or 

octopaminergic neurons using NPF-Gal4 and Tdc2-Gal4 respectively. These neurons are well 

characterized allowing for easy identification of cell type specific mRNAs. Ribosomes were 
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isolated from these neurons and the bound mRNA was compared to that of all cells of the nervous 

system using RNAseq. Immunoprecipitation of FLAG-Rpl18 revealed not only neuron, but 

neuronal cell type specific enrichment of the mRNA in the polysomes. These results suggested 

like other systems, in Drosophila also, tagged ribosomes can be used to perform cell type specific 

polysome analysis.          

The FLAG-Rpl18 expressing flies (4-6 days old) were collected in 1.5 mL Eppendorf tube and 

snap freezed in liquid nitrogen. Fly heads were separated from body by brief pulses of vortex and 

subsequent sieving. To assess incorporation of Rpl18 in polysomes the separated heads were 

homogenized in a buffer containing 50 mM Tris pH 8.0, 300 mM KCl, 10 mM MgCl2, 1mg/ml 

heparin, 1mM DTT, 200 U/ml RNAsin, 1% triton X-100, 0.1% sodium deoxycholate, 100 µg/ml 

cyclohexamide and one EDTA free protease inhibitor tablet in 10 ml buffer. The lysates were 

incubated with continuous rotation for 30 mins at 4ºC, centrifuged at 10,000 rpm for 10 minutes 

at 4ºC and clear supernatant was collected carefully from the top. Total protein concentration was 

estimated for each fly head lysates using BCA kit (Thermo Scientific). For polysome profile 

analysis 100 µl of fly head lysates were applied on the top of 7-47% sucrose gradient in resolving 

buffer (15 mM Tris-Cl, pH 7.4, 140 mM NaCl, 7.8 mM MgOAc-4H2O) and ribosomal subunits 

were separated by centrifuging the gradients in a Beckman SW40Ti rotor at 40,000 rpm for 150 

min at 4ºC.  

For ribosome immunoprecipitation the separated heads were homogenized in a lysis buffer 

containing 50 mM Tris pH 7.5, 100 mM KCl, 12 mM MgCl2, 1mg/ml heparin, 1mM DTT, 200 

U/ml RNAsin, 100 µg/ml cyclohexamide and one EDTA free protease inhibitor tablet in 10 ml 

buffer. Total 1.5 mg of protein was taken and immunoprecipitated with pre-washed 10 µL anti-

FLAG affinity beads (Sigma) for 2 hrs at 4ºC with continuous rotation. After 2 hrs the beads were 
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washed five times with cold lysis buffer and boiled with 2X SDS-PAGE gel loading dye for 10 

mins. The samples were analyzed in 4-12% polyacrylamide gel (Invitrogen). The Western blotting 

was performed using anti-Orb2 antibody.  

Translation assay with Orb2B-TEV: Orb2B monomeric and oligomeric fractions with the 

corresponding control fractions were dialyzed in PBS and 2.5% glycerol. Approximately 1µg total 

protein from each fraction was digested with 0.1 µg protease at room temperature for 1 hr. Then 

translation reporters were pre-incubated with TEV enzyme treated and untreated fractions (150 ng 

total proteins from each fraction) for 30 mins at room temperature. Translation assay was 

performed in ∆orb2 embryo extract for various time points at 26ºC. The firefly and renilla 

luciferase activities were measured by using Dual-Glo luciferase system.  

Orb2B-TEV embryo extract was prepared following the same protocol described before. For 

digestion of the embryo extract, 30 µg (total protein) of embryo extract was treated with 1 µg of 

TEV protease for an hour at room temperature. After the enzyme treatment the translation reporters 

were pre-incubated with the enzyme treated and untreated embryo extract for 15 mins. Translation 

assay was carried out in ∆orb2 embryo extract for different time points. To confirm whether any 

nonspecific degradation takes place due to the protease treatment the wild type embryo extract was 

also treated in parallel. The specific cleavage of orb2 protein was confirmed by Orb2 western after 

TEV protease treatment.  

Translation with anti-Orb2 antibody treated embryo extract: To immunodeplete Orb2 protein, 

Drosophila embryo extract was treated with anti-Orb2 polyclonal antibody and control IgG. Total 

10 µl (approximately 300µg) of embryo extract was pre incubated with 1 µg of anti-Orb2 antibody 

or control IgG in ice for an hour. The translation reaction was subsequently assembled in ice and 
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the reaction was carried out at 26ºC for 15 mins. Firefly and renilla luciferase activity was 

measured with Dual-Glo luciferase assay system. 

In vitro translation assay with rabbit reticulocyte lysate: All translation reactions were 

assembled in ice in 25 µL volumes. The reaction consists of 50% (12.5 µL) TNT lysate, 1 µL TNT 

buffer, 1 mM complete amino acid mix, 20U RNasin ribonuclease inhibitor (Invitrogen), 50ng 

(~75pM) of wild-type and mutant translation reporters and 9 µL nuclease free H2O. The reactions 

were incubated at 30ºC for different time points and luciferase activity was measured using Dual-

Glo luciferase assay system (Promega). 

In vitro seeding assay. The seeding assay with Orb2A N-terminal fragments was performed in 

two steps. In the first step 25 µL translation reactions were assembled in WT or ∆orb2 embryo 

extract by adding 100 ng of SF9 cells fractions containing Orb2A320 oligomer or corresponding 

control fraction for 30 mins at 26ºC. In case of purified recombinant proteins 10 ng of recombinant 

protein or 10ng BSA as control was used. In the second step Tequila translation reporters were 

added in the reaction and the luciferase activity was measured following 30 min incubation at 26ºC 

(Promega).  

To perform in vitro seeding assay using Orb2A 320mRNA instead of proteins, in the first step, 

5ng of Orb2A320 mRNAs were added. For each reaction a corresponding mRNA blank control 

was carried out. In second step Tequila translation reporters were added in the reaction and the 

luciferase activity was measured following 30 min incubation at 26ºC (Promega). For longer 

seeding experiment the mRNAs were translated in WT or ∆orb2 embryo extract for an hour at 

26ºC and then the reactions were incubated at 4ºC for 12-72h. To test the effect of newly formed 
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oligomer in translation, the translation reporters were pre-incubated for 30 mins with the oligomer 

and followed by translation in ∆orb2 embryo extract for 30 mins.  

In vitro deadenylation assay: Deadenylation assay was performed according to the protocol 

described by Jeske et.al (Jeske and Wahle, 2008). To minimize variation the reaction was 

assembled in ice. The assay consists of 5 to 20 nM  [32p]-labeled polyA tailed 3'UTR, 40%(v/v) 

Drosophila embryo extract,16 mM HEPES-KOH, pH 7.4, 50 mM potassium acetate, 2.5 mM 

magnesium acetate , 100 µM spermidine, 250 mg/ml yeast tRNA (Roche), 80 mg/ml creatine 

kinase (Roche), 20mM creatine phosphate (Sigma), and 800µM ATP. Every time we used a premix 

containing HEPES buffer, potassium acetate, magnesium acetate, spermidine, and yeast tRNA to 

assemble the deadenylation reaction. The uncapped-polyadenylated 3'UTRs were synthesized 

using mMESSAGE-mMACHINE RNA synthesizing kit (Ambion Inc.). All deadenylation 

experiments were performed at 26ºC for different time points and at every time point the reaction 

was stopped by adding 180-190 µL stop solution (25 mM EDTA, pH 8) and making the final 

volume of 200 µL. Total RNA was extracted from deadenylation reaction using phenol-chloroform 

(Ambion) extraction method. The RNA was precipitated by adding 50 µL of 7.5 M ammonium 

acetate, 0.2 mg/ml glycogen (Roche) and 400 µl ethanol. The RNA pellet was air-dried and 

dissolved in 8 µL formamide loading dye (95% Formamide, 18 mM EDTA and 0.025% each of 

SDS, Xylene Cyanol, and Bromophenol Blue). The sample was denatured for 3 mins at 90oC and 

RNA was separated in 6% polyacrylamide-urea gel according to a standard protocol(Rio et al., 

2010). The dried gel was exposed overnight at -80ºC. 

In vitro polyadenylation assay: In vitro polyadenylation assay in Drosophila embryo extract was 

performed according to the protocol described by Olga et al. (Coll et al., 2014)  with minor 

changes. RNA substrate was prepared by labelling Teq3'UTR with 8 adenine residues at the end 
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with α[p32]-CTP (3,000 Ci/mmol; 10 μCi/μL) and subsequently a m7GpppG-cap was added in the 

5' end. The labelled 3'UTR was preincubated with Orb2 oligomer and control Sf9 fractions for 30 

minutes at room temperature. After pre-incubation regular translation reaction was assembled in 

∆orb2 embryo extract in ice. Reaction was carried out at 26ºC for 30, 60 and 90 minutes. Total 

RNA was extracted using TRIZOL (Invitrogen) and polyadenylated RNAs were separated in 8M 

urea-6% polyacrylamide gel.  

Measuring PolyA tail by PAT assay: This PCR based method was used to measure the polyA 

tail length of endogenous Tequila mRNA as well as in vitro synthesized Tequila 3'UTR by 

adding in our in vitro cell free translation system. Total RNA was extracted by TRIZOL and 

phenol-chloroform extraction method. For fly head assay 10 fly heads from each fly line were 

used to extract total RNA. After extraction the RNA samples were treated with TURBO DNase 

(Ambion) for 30 mins at 37oC and subsequently measured the RNA concentration. Total 0.5 µg 

of RNA was taken for each sample and mixed with 0.5 µL of oligo (dT) (Takara) in 5 µL total 

volume. Then the mix was incubated for 5 mins at 65oC. The reaction was mixed with 6.5 µL of 

pre-warmed master mix (2 µL RT buffer, 1 µL 100 mM DTT, 0.5 µL 10 mM dNTPS, 0.5 µL 10 

mM ATP, 0.5 µL T4 DNA ligase (New England Bio-lab) and 1.7 µL H2O. Then the reaction was 

incubated for 30 mins at 42oC. Afterward 0.5 µL of oligo (dT) anchor primer was added to each 

reaction and incubated overnight at 12oC. After overnight incubation, 0.75 µL of reverse 

transcriptase (Takara) was added and incubated for 1h at 42oC. After RT PCR 15 µL of H2O was 

added and incubated for another 30 mins at 70oC. Then regular PCR reaction was performed 

using Tequila forward primer as well as oligo (dT) anchor primer for 30 cycles. The PCR 

products were visualized in 1.5% agarose gel.  
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mRNA stability assay in translation conditions: To test the effect of Orb2 monomer and 

oligomer in RNA stability, Tequila 3'UTR was transcribed and labelled with [P32] α-CTP 

(PerkinElmer) using T7 mMESSAGE mMACHINE  transcription Kit (Ambion Inc.). Equal 

amount of labelled 3'UTR (~20,000 cpm equivalent) was pre incubated in presence of Orb2 

monomer, oligomer and corresponding Sf9 control proteins. After pre-incubation regular 

translation reaction was assembled in ice and incubated at 26ºC for different time points. For each 

reaction total RNA was extracted using TRIZOL and run in 6% urea-polyacrylamide gel. 

ThioflavinT (ThT) binding assay with Orb2 monomer and oligomer:  ThT binding assay was 

performed according to the standard protocol described by Chien et al. (Chien et al., 2003) with 

minor variation. Different amount of Sf9 lysate cell lysates (0.5, 1.0, 2.0 µg total lysate for Orb2 

monomer and oligomer with corresponding blank SF9 cell lysates) were used for the binding assay. 

Final volume of each sample was made equal using Sf9 cell lysis buffer. Each sample of 20µL 

volume was added to 180 µL of 25µM thioflavin-T (Sigma) at pH 8.0 in 50mM glycine. The assay 

was carried out at 25ºC in 96-well fluorescence plate reader (442nm excitation and 485 nm 

emission) and the reading was taken automatically using SoftMax Pro software (Spectra Max M2 

Molecular Devices) in every two min with 1 sec shaking between the measurements. Binding data 

after 5 minutes are represented in the figure. 

Proteinase K digestion: Fractions containing Orb2 monomer and oligomer (0.5 µg of total 

protein) were digested with 0.1, 1 and 10 ng of proteinase K for two minutes at 37ºC. All reactions 

were assembled in ice and then incubated at 37ºC water bath for 2 mins. The enzyme activity was 

stopped by immediately heating the samples to 75ºC. The enzyme treated reaction mixture was 

passed through nitrocellulose membrane using a dot blot apparatus. The membrane was blocked 

in 5% milk in TBS buffer and probed with anti-Orb2 antibody. 
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A11 Western blot assay: For A11 western analysis, different amount of total protein (0.5, 1.0 and 

1.5 µg) of corresponding Orb2 monomeric and oligomeric fractions (with corresponding SF9 

control blank fractions) were dot blotted on nitrocellulose transfer membrane (Whatman). The 

membrane was blocked in 5% milk and incubated with rabbit A11 anti-oligomer antibody 

(Invitrogen) overnight at 4ºC. The same blot was also probed with anti-Orb2 antibody for the 

detection of Orb2 proteins.  

Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR) spectroscopy: FTIR-

ATR measurements were performed with a Thermo Scientific iS10 FTIR spectrometer equipped 

with a diamond single-bounce ATR accessory. Measurements were taken with 64 scans integration 

and 2 cm-1 resolution. Control proteins (Ab42, Sup35-NM, Myoglobin, and Concanavalin A) were 

purchased from Sigma-Aldrich.  For FTIR-ATR analysis, control proteins were dissolved at 1 

mg/mL in phosphate buffered saline, then diluted 50% in cold methanol for precipitation for 1 

hour prior to spectral acquisition.  Samples were centrifuged at 16,000 x g for 10 minutes at 4ºC 

to consolidate the pellet. For infrared spectroscopy analysis of Orb2 monomer and oligomeric 

fractions total 5µg of monomer, oligomer and corresponding SF9 control fractions were 

precipitated with 0.5 mL cold acetone for 1 hour in 4ºC and centrifuged at 16,000xg for 10 mins 

at 4ºC. Pellets were transferred to the ATR accessory and allowed to dry under an ambient air 

stream before spectral acquisition.   

Spectra were corrected for ambient water vapor by subtracting the background collected 

immediately after each scan scaled to fit the local shape of the spectrum in the 1600-1700 cm-1 

region. The liquid water spectrum was subtracted by matching the signal at 2200 cm-1 to a liquid 

water spectrum via linear least squares. A linear background between 1580 and 1720 cm-1 was 

subtracted and the spectrum in this region was normalized to obtain the final spectra. 
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 IP and Western blot with S2 cell lysate: To study pair wise protein-protein interaction S2 cells 

were transfected with 0.1 µg of Orb2 and/or target (HA- , FLAG- or Myc- tagged) DNA constructs 

using Effectene transfection reagent (Qiagen). After 24 or 48 hrs of transfection cells were 

harvested, washed with PBS and lysed in PBS based homogenization/lysis buffer (150 mM NaCl, 

10 mM Tris pH 7.5, 1% NP-40) for 30 mins. The lysates were centrifuged at 10,000 rpm, 4ºC and 

clear supernatant was collected in fresh 1.5 mL Eppendorf tube. For immunoprecipitation 1.5-2.0 

mg of total S2 cell lysate was incubated in each IP with 10 µL pre washed anti-HA , anti-FLAG, 

anti-Myc agarose beads (Sigma) for 2 hrs at 4oC with continuous rotation. After 5 times washing 

and boiling with 2X SDS proteins loading dye, the immuniprecipitates were run in 4-12% SDS-

polyacrylamide gel (Invitrogen). The IPs were western blotted with anti-Orb2 antibody. Total S2 

cell lysates were also western blotted for Orb2 and Orb2 partners as loading controls. 

In vivo single fly head translation assay: Flies were raised in regular corn meal food at 25°C in 

a 12h day night cycle. For GeneSwitch-Gal4 inducible expression 3-4 days old adult flies were 

starved for 18-20 hrs in glass vials containing water soaked Kim wipes. Flies were subsequently 

transferred to 2% sucrose solution containing 200µM of RU486 (Mifepristone). After 24 hrs of 

incubation with RU, flies were either immediately processed or transferred to regular fly food for 

additional 48 hours. The flies were collected in a 1.5 ml Eppendorf tubes and snap-frozen in liquid 

nitrogen. The heads were separated from body by vortexing for 5-10 sec and individual heads were 

transferred to the wells of 96-well flat-bottom micro-titter plate (Corning, NY, USA). The heads 

were then crushed using pipette tips in 50 µl of PBS buffer containing 0.1% NP-40 (Sigma) and 

0.1% Triton-X 100 (Sigma). 50 µL of luciferase substrate (Promega) was added in each well, 

incubated for 10 minutes at room temperature and luciferase activity was measured in using a 

luminometer.    
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Male Courtship Suppression Assay. For spaced training, individual males were placed in 

individual small food tubes (16 X 100 mm culture tubes, VWR) with a mated female for 2 hr.  The 

female was removed and the male was left alone for 30 min.  A different mated female was placed 

in the tube with the male for another 2 hr.  The female was removed and the male again rested for 

another 30 min.  A third mated female was introduced in the tube for 2 hr and removed at the end 

of the trial.  Control males were treated exactly the same way except no mated females were 

introduced into the tube.  Memory test was assayed at 5 min, 4, 15, 24, 36, 48, 60 hr after training.  

All tests were performed in a 1 cm courtship chamber.  Fresh mated females were used for all time 

points.  All memory tests were recorded (for 10 min) and analyzed using a customized software. 

The courtship index of each male was obtained by manual and/or automatic analysis of the movies 

by an experimenter blind to the genotype and experimental conditions.    

 

Primers used in this study: 

Teq3'UTRM1F  5-ctt tac act tta ata cct tct tac atg-3 

Teq3'UTR M1R  5-tca tgt aag aag gta tta aag tgt aaa-3 

Teq3'UTR M2F  5-cta att tat aag aag tag tga act tgc-3 

Teq3'UTR M2R  5-agc aag ttc act act tct tat aaa tta-3 

Teq3'UTR M3F  5-gct aat aaa gca gat tag aac gag ca-3 

Teq3'UTR M3R  5-ttg ctc gtt cta atc tgc ttt att agc-3 

Teq3'UTR M4F  5-agc ata tac tca cac ttt aat atc cac-3 

Teq3'UTR M4R  5-gtg gat att aaa gtg tga gta tat gc-3 

Teq3'UTR M5F  5-act cac ttt aca cta tcc acc ttc tta-3 
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Teq3'UTR M5R  5-gta aga agg tgg ata gtg taa agt ga-3 

Teq3'UTR M6F  5-ctt taa tct cca cca cat gac tac taa-3 

Teq3'UTR M6R  5-aat tag tag tca tgt ggt gga tat taa-3 

Teq3'UTR M7F  5-tac atg act act aaa aga att ttg tag-3 

Teq3'UTR M7R  5-cac tac aaa att ctt tta gta gtc atg-3 

Teq3'UTR M8F  5-gaa ttt tgt agt gaa caa taa agc ag-3 

Teq3'UTR M8R  5-tct gct tta ttg ttc act aca aaa ttc-3 

Teq3'UTR PM2F  5-cta att tat aag aat gct gta gtg aac-3 

Teq3'UTR PM2R  5-aag ttc act aca gca ttc tta taa att-3 

Teq3'UTR PM1F  5-ttt aca ctt taa tag taa cct tct tac-3 

Teq3'UTR PM1R  5-cat gta aga agg tta cta tta aag tgt-3 

Teq3'UTR PolyARev:  5-ttt ttt ttt aat tgc tcg ttc taa aaa agt ctg-3 

Teq3'UTRT7:    5-ttg taa tac gac tca cta tag-3 

DTAdaptor:    5-gcg agc tcc gcg gcc gcg ttt ttt ttt ttt-3 

DTAdaptorR:    5-cgc ggc cgc gga gct cgc-3 

Teq3'UTRF:    5-act gcg gct tca aga aca ga-3 

aPKC3'UTRF:   5-ctg gat gca ctt ttg gca ta-3   

Neuroligin3'UTRF:   5-tag ttt atg tta ctt ttt ggt gta cga-3  

Murashka5'UTRF:  5-agg atc ctc agg taa ccc aag ctg tg-3  

Murashka5'UTRR:  5-acc atg gct gct gcg cac tgt tgt tg-3 

Neuroligin5'UTRF:  5-agg atc cgc gca gaa gac cag agc ct-3 

Neuroligin5'UTRR:  5-acc atg gcc ctg ccg agc ttc aat  tg-3 

aPKC5'UTRF:   5-agg atc cac ttc ggt tct ccg ctt tg-3 



 

44 
 

aPKC5'UTRR:  5-acc atg gtt gct agt aaa ata ttt tg-3  

Pabp2F:   5-cac cat ggc cga tga aga ta-3 

Pabp2R:   5-gta-agg agc gta gta att gg-3 

Rbp6F:   5-cac cat ggt gac gag aac ga-3 

Rbp6R:   5-cca ttt gta aat gcc gca gg-3 

Luciferase F:    5-cca ggg att tca gtc gat gt-3 

Luciferase R:    5-cac aca gtt cgc ctc ttt ga-3  

  

 

cDNA Constructs used in this study:  

Orb2A     PAC 5.1  no tag 

Orb2B     PAC 5.1  no tag 

Orb2A160    pDEST42 

Orb2A320    pDEST42 

Orb2A320F5>Y   pDEST42 

Orb2A320∆8    pDEST42 

Orb2A320∆8-88   pDEST42 

Orb2A320    pUAST attB ccdb 

Orb2A320∆8    pUAST attB ccdb 

Orb2A320∆8-88   pUAST attB ccdb 

Orb2A     pUAST attB  cHA 

CG4612     PAC 5.1   cFLAG    

Smaug                 PAC 5.1  cFLAG and pUAST-cFLAG 

 Smaug    PAC5.1  cMyc 
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Smaug     pDEST42  cHis 

Pabp2                              pUAST      cHA-FLAG 

Pabp2     pDEST42  cHis 

CG13928    PMT                cFLAG  

CG13928    pDEST42  cHis   

Syncrip    PMT   cHA-FLAG  

Rbp6     PAC 5.1  cMyc  

CPSF     PAC 5.1  cMyc 

Symplekin    PAC 5.1  cV5 

Wispy Gld2    PAC 5.1  cV5 

CCR4     PAC 5.1  cHA 

NOT1     PAC 5.1  cHA 

NOT2     PAC 5.1  cHA 

NOT3/5    PAC 5.1  cHA 

PAN2     PAC 5.1  cHA 

PAN3     PAC 5.1  cHA  

Teq5'UTRLucTeq3'UTRWT  pUAST attB 

Teq5'UTRLucTeq3'UTR∆M2 pUAST attB 

Teq5'UTRLucTeq3'UTRM2PM pUAST attB 

Teq5'UTRLucNO3'UTR  pUAST attB 

Teq5'UTRLucTeq3'UTRWT  pKSII 

Teq5'UTRLucTeq3'UTR∆M2 pKSII 

Teq5'UTRLucTeq3'UTRM2PM pKSII 
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Renilla reporter   pBSK 

Actin5'UTRLucactin3'UTR  pKSII 

Neuroligin5'UTRLucNL3'UTR pKSII 

Teq3'UTRMutant1   Topo TA   

Teq3'UTRMutant2   Topo TA 

Teq3'UTRMutant3   Topo TA 

Teq3'UTRMutant4   Topo TA 

Teq3'UTRMutant5   Topo TA 

Teq3'UTRMutant6   Topo TA 

Teq3'UTRMutant7   Topo TA 

Teq3'UTRMutant8   Topo TA 

Teq3'UTR point mutant1  Topo TA   

Teq3'UTR point mutant2  Topo TA  
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Results 

Orb2 is a translational repressor: 

Drosophila Orb2 has a critical role in memory persistence and it targets a number of 

neuronal genes involved in formation and growth of synapses as well as synaptic function 

(Majumdar et al., 2012; Mastushita-Sakai et al., 2010). However, the role of Orb2 in translational 

regulation of these mRNAs remains largely unknown. Previous studies have suggested several 

possibilities–including Orb2 directly regulates the translation of these mRNA targets or indirectly 

by affecting the stability, transport or localization of these mRNAs. Moreover, at the translational 

level Orb2 can act as a translational activator or repressor or both.  

To test the direct effect of Orb2, if any, in translation I intended to utilize a cell free in vitro 

assay system that would allow us to examine the effect of the Orb2 in translation by adding or 

removing it from the assay system. We used Drosophila embryo extract as an in vitro assay system 

to study translational regulation. The main rationale for using embryo extract as an in vitro system 

is the expression of Orb2B isoform in early embryo (Hafer et al., 2011). Moreover many proteins 

that associate with Orb2 in the adult fly brain are also present in embryo (Hafer et al., 2011; 

Kruttner et al., 2012; White-Grindley et al., 2014; Xu et al., 2014). The translation in embryo 

extract is very robust (Jeske et al., 2011), which allow us to test translation of our test reporter in 

a short time period. I developed a dual reporter system in which firefly luciferase reports Orb2 

dependent translation and renilla luciferase serves as an internal control. For in vivo translation 

same translation reporters are driven in adult fly brain using nervous system specific UAS-Gal4 

system and measured luciferase enzymatic activity in single fly brain.  

To develop Orb2 dependent translation reporter I first determined the sequence elements 

in the target mRNA that are important for Orb2 recruitment. Among several mRNA targets, I 
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choose the Tequila gene, the Drosophila orthologue of a human neurotrypsin to study Orb2-

dependent translation. The rationales of choosing Tequila are- both Orb2 and Tequila are  required 

for long-term memory formation (Didelot et al., 2006; Keleman et al., 2007; Majumdar et al., 

2012), it has very short and easily manageable 3'UTR of 113 nucleotides (Fig 2.1A) and most 

importantly both conformational states of Orb2 efficiently interact with the Tequila 3'UTR. 

Tequila expression in adult fly brain is regulated by Orb2 (Mastushita-Sakai et al., 2010). A series 

of small deletions and nucleotide substitutions were made to map the Orb2 binding sites in Tequila 

3'UTR (Fig 2.1A) and Orb2 binding was examined using RNA binding assay (Fig 2.1C). In this 

assay in vitro biotin labeled wild type and mutated 3'UTR of tequila mRNA were used to pull 

down Orb2 protein from S2 cell lysates and allowed us to determine the gain or loss of Orb2 

interaction following mutation of various sequences in the UTR. Using this approach we identified 

two stretches of sequence in the 3'UTR and mutation of these sequences resulted in significant 

reduction in Orb2-mRNA interaction (Fig 2.1 C&D). One of these sequence is UCCACCUU/G 

(referred as M1 sequence) which is 90 nucleotides upstream of the 3' end and the other one is 

UUUUGU (referred as M2 sequence), 48 nucleotides upstream of the 3' end (Fig 2.1 A). The 

UUUUGU M2 element is analogous to the canonical CPEB-binding element (CPE) UUUUAU 

(Richter, 2007). Both nucleotide substitution mutation from UUUUGU to GCUUGU (which is 

denoted as point mutation M2P) and deletion of four U residues (ΔM2) significantly reduced 

binding of both monomeric and oligomeric Orb2 to the Tequila 3'UTR. However point and 

deletion mutation of M1 sequence showed ambiguous effect- while deletion mutation had no 

visible effect but point mutation significantly reduced Orb2-mRNA interaction. Although we do 

not know the exact reason we wondered whether the deletion of M1 site might have created another 

site that somehow favored Orb2-mRNA interaction. Nonetheless we concluded that M2P (both 
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deletion and point mutation) and M1P mutation attenuates Orb2-mRNA interaction and used these 

mutation to design reporters for in vitro and in vivo translation assay. All reporter mRNAs carried 

the same Tequila 5'UTR and the control reporters contained either SV40 3'UTR or Actin 3'UTR.    

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Orb2 recruitment is dependent on the conserved elements at the Tequila 3'UTR. (A) 

Sequence of 113 nucleotides long 3'UTR of Tequila gene. M1-M7 indicates sequences that were 

mutated. The putative CPE-like element UUUUGU (M2) indicated in red is required for Orb2 

recruitment. A sequence (M1) conserved in other Drosophila species is indicated in pink. (B) 

Schematic of the RNA-protein binding assay using S2 cell lysate. (C) Western blot of RNA bound 

Orb2A protein. Deletion (∆M2) or mutation (M2P) of M2 elements reduced interaction of both 

monomer and oligomer. Surprisingly not deletion (∆M1) but mutation of M1 (M1P) sequence 

interfered with Orb2 recruitment. The 3'UTR of Actin88F (Actin) controls for non-specific Orb2 

binding and Hrp36 serves as a control for general RNA binding. The amount of RNA and Orb2 

protein used in the assay are shown below as loading. (D) Western blot of RNA bound Orb2B 

protein. 

 



 

50 
 

In vitro translation showed inverse relationship between reporter expression and the Orb2 

recruitment. The reduced Orb2 interaction with the UTR resulted in higher protein expression (Fig 

2.2B). The M1P, M2P and ΔM2 reporter all showed higher expression in embryo extract. We 

assumed that this effect in translation is primarily due to monomeric Orb2B since in early embryo 

monomeric form of Orb2B isoform is the predominant form of Orb2 (Fig 2.3A). Next we wanted 

to determine whether the reporter expression is indeed dependent on Orb2 protein present in the 

embryo extract. To test Orb2 dependence in our in vitro assay system we have applied several 

approaches.  

Figure 2.2: Orb2 acts as a translation repressor. (A) Schematic of the in vitro translation assay 

system from 0-2 hour Drosophila embryo. (B) Loss of Orb2 recruitment increases protein 

expression in vitro. These data represent normalized ratio of firefly and renilla enzyme activity of 

3 independent experiments. Data is expressed as mean ± SEM. The statistical significance was 

measured by unpaired two-tailed t-test. * indicates p value<0.05, ** indicates p value<0.01 and 

*** indicates p value<0.001. 

 

First, we prepared cell free embryo extract from flies with different genetic background 

that either lack Orb2 or provide a way to acutely destabilize Orb2 protein in the extract. When we 

expressed the wild type reporter in embryo extract prepared from orb2 null (∆orb2) flies we 

observed significantly higher expression compared to wild type embryo extract (Fig 2.3B). 
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Likewise embryo extract made from an Orb2 hypomorphic mutant flies (Orb2∆Q) also showed 

higher reporter expression than wild type embryo extract (Fig 2.3B). Orb2 has two protein 

isoforms, Orb2A and Orb2B, but in early embryo primarily the Orb2B isoform is expressed (Fig 

2.3A). To test whether Orb2A anyway contribute to the translation we prepared embryo extract 

from mutant flies which lack only the Orb2A isoform (Orb2∆A)  but still expresses the Orb2B 

isoform. There was no measureable difference in expression of wild type reporter in wild type and 

Orb2∆A mutant embryo extract. We concluded that since Orb2B isoform is contributing to the 

Orb2-dependent translation in early embryo extract and can be used to test the role of Orb2A in 

translation by adding exogenous Orb2A.   

The higher expression of the reporters in Orb2 deficient mutant extract could be the 

secondary consequence of chronic Orb2 protein depletion in the system. To exclude this possibility 

we immune-deplete Orb2 protein from wild type embryo extract by adding affinity purified anti-

Orb2 antibodies. We observed enhanced reporter expression in antibody treated embryo extract 

(Fig 2.3C). However in this approach Orb2 antibody probably sequester the entire protein complex 

formed by Orb2. Therefore, we selectively targeted only Orb2 protein and measure the effect in 

translation. To this end our lab generated a fly line (Δorb2:Orb2-TEV) in which both copies of the 

Orb2 gene carried a TEV protease recognition (Kapust and Waugh, 2000) sequence  at amino acid 

position 369. It is important to note that the Orb2-TEV fully substituted the function of wild type 

Orb2 and the embryo extract prepared from Orb2-TEV flies were as active as extract prepared 

from the unmodified wild type Orb2 flies. We prepared embryo extract from Orb2-TEV transgenic 

flies and the treated with TEV protease. The Orb2-TEV protein is digested within an hour of 

addition of protease (Fig 2.3D). The treatment of Orb2-TEV embryo extract significantly enhanced 

wild type reporter expression than the untreated one (Fig 2.3D). To control this experiment 
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similarly we treated wild type embryo extract with TEV protease and didn’t see any difference in 

translation performed with treated and untreated embryo extract. This result suggests that acute 

destabilization of Orb2 protein alone is sufficient to increase reporter expression in our in vitro 

system. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Orb2 deficient embryo extract or Orb2 inactivation enhances reporter expression. (A) 

Embryo extract contains monomeric Orb2B but no oligomeric Orb2. The oligomeric Orb2 is only 

visible in the head extract. The ∆orb2 flies lacks the entire Orb2 locus. The orb2∆Q lacks the 80 

amino acids from Q-rich region common to both Orb2A and Orb2B and is a strong hypomorphic 

mutant. orb2∆A lacks only the Orb2A-specific exon and expression of Orb2B is unaltered. Orb2A 

protein is not detectable in the embryo extract. Tubulin serves as loading control. (B) The absence 

of Orb2 enhances wild type Tequila reporter expression. (C) Treatment of embryo extract with 

Orb2 antibody enhances reporter expression. Addition of Orb2 antibody in extract lacking Orb2 

(∆orb2) has no effect. (D) Acute inactivation of Orb2 enhances translation. Top panel: Schematic 

of the experimental design. A TEV protease site was inserted within the Orb2 gene in a genomic 

rescue fragment and the genomic fragment was introduced into orb2 null background. Left panel: 

Western blot analysis of TEV enzyme treated wild type and Orb2-TEV embryo extract. Right 
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panel:  addition of TEV in Orb2-TEV, but not wild type (Orb2) embryo extract enhances reporter 

expression. Data is expressed as mean ± SEM. The statistical significance was measured by 

unpaired two-tailed t-test. * indicates p value<0.05, ** indicates p value<0.01 and *** indicates p 

value<0.001.   

 

Since Orb2 has a number of mRNA targets and these targets have UUUUGU (similar to 

canonical CPE) sequence at their 3'UTR, we wanted to examine whether Orb2 shows common 

translational effect on the reporters designed using 3'UTRs of these target genes. To this end in 

addition to Tequila, we designed reporter using 5' and 3' UTRs of two other Orb2 target genes 

aPKC (atypical protein kinase C) and neuroligin (a cell adhesion protein present in synaptic 

membrane). Previously we found 3'UTRs of Neuroligin and aPKC efficiently interact with Orb2 

protein. Both neuroligin and aPKC reporters showed higher expression in Orb2 deficient embryo 

extract than wild type embryo extract (Fig 2.4 A&B) (Mastushita-Sakai et al., 2010; Xu et al., 

2014). These results suggest Orb2 has mRNA element (CPE) specific repression on its target 

mRNAs.    

 

 

 

 

 

 

 

 

 

 



 

54 
 

Figure 2-4: Translation of neuroligin and aPKC reporter is Orb2 dependent. (A) Expressing of 

neuroligin reporter is enhanced in Orb2 deficient or hypomorphic embryo extract. (B) Expressing 

of aPKC reporter is enhanced in Orb2 deficient or hypomorphic embryo extract. Data is expressed 

as mean ± SEM. The statistical significance was measured by unpaired two-tailed t-test. * indicates 

p value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001.  

  

To further confirm that the reporter expression is indeed Orb2 dependent we used the M2-

sequence mutant reporters. Expectedly, we didn’t see any significant difference in expression of 

wild type and mutant reporters (M2P and ∆M2) in orb2 null (∆orb2) or hypomorphic (Orb2∆Q) 

embryo extract (Fig 2.5A&B). We also expressed both wild type and mutant translation reporters 

in heterologous mammalian reticulocyte lysate (TnT) where Orb2 protein is not present. In TnT 

lysate there was no difference in protein expression between wild type and mutant reporters (Fig 

2.5C). In another approach we substituted Tequila 3'UTR with the 3'UTR of Actin88F gene in the 

reporter construct. Actin 88F is not a target of Drosophila Orb2. Substitution of Tequila 3'UTR 

with Actin88F UTR abolished Orb2 dependent translation when the reporter was tested in WT and 

mutant embryo extract (Fig 2.5D). Taken together these results suggested that the reporter 

expression in embryo extract is indeed due to the 3'UTR sequence element as well as Orb2 protein.  
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Figure 2.5: Orb2 deficient or hypomorphic embryo extract abolish differences in expression 

between wild type and mutant reporters. (A) In Orb2 null extract (∆orb2) or (B) Orb2 hypomorphic 

extract (Orb2∆Q) the translation of wild type or M2 mutated reporter is similar indicating M2 

sequence is only relevant in presence of Orb2. (C) Mutation of M2 sequence has no effect on 

reporter translation in rabbit reticulocyte lysates indicating that it does not play a significant role 

in basal translation. (D) Substitution of Tequila 3'UTR with actin88F 3'UTR abolishes the Orb2-

dependent translation. The statistical significance was measured by unpaired two-tailed t-test.  

 

In our in vitro assay system we observed significant differences in protein expression 

between wild type and mutant reporter and also we observed differences in expression between 

wild type and Orb2 deficient mutant embryo extract. Finally we wanted to examine whether these 

differences in expression are actually due to the differences in translation of the reporter constructs. 

To this end we performed polysome profile analysis of in vitro translation reaction to examine the 

association of reporter mRNA with actively translating 80S ribosome. We labelled the reporter 



 

56 
 

mRNA with radioactive P[32] nucleotide, added in translation reaction and compared the amount 

of labelled wild type and mutant reporter mRNA in the polysome fractions. Similarly we also 

compared the reporter mRNAs in polysomes in wild type and Orb2 null embryo extract. Polysome 

profile analysis of [32P] labelled mRNA revealed that the mutant translation reporter (M2P) that 

does not recruit Orb2 is more abundant in polysome fractions than the wild type reporter (Fig 

2.6B). Likewise the translation reporter is significantly more abundant in the polysome fractions 

when translation reaction was performed in Orb2 mutant (Orb2∆Q) embryo extract compared to 

the wild type (Fig 2.6C).  

Figure 2.6: Polysome profile analysis of in vitro translation reaction shows the relative abundance 

of translating mRNA. (A) Schematic of polysome assay using [P32]-label mRNA. (B) Mutant 

reporter (M2P) mRNA is more abundant in polysome fractions compared to wild type. (C) Wild 

type reporter is more abundant in polysome when translated in ∆orb2 embryo extract. 
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Finally we sought to determine whether Orb2 recruitment similarly affects Tequila reporter 

expression in adult fly brain. For this in vivo experiments we generated transgenic flies bearing 

wild type Tequila 5'UTR along with M1P, M2P, ∆M2 Tequila 3'UTRs and control SV40 3'UTR. 

All constructs were inserted into the same genomic location in the 2nd chromosome in the attP1 

site using attP-attB system to control for the level of expression of the reporter transcript. The 

reporters were expressed using UAS-Gal4 system in adult mushroom body neurons. The 

mushroom body neurons are important for long-term memory of Drosophila and expression of 

both Orb2 and Tequila in mushroom body neurons is required for the consolidation of memory 

(Didelot et al., 2006; Keleman et al., 2007). We expressed these reporters using two mushroom 

body specific Gal4 drivers, MzVUm-Gal4, which drives expression in all mushroom body lobes 

(α, β and γ) and 201Y-Gal4 which restrict expression only in the γ-lobe. Expression of the 

translation reporters in adult mushroom body neurons using both UAS-Gal4 systems revealed 

same expression pattern, mutations that reduce Orb2 recruitment increase reporter expression (Fig 

2.7 B&C). 

Figure 2.7: Tequila reporter expression in adult fly brain is enhanced upon M1 and M2 sequence 

mutation. (A) Schematic shows the reporter bearing wild type or mutated 3'UTR was expressed 

under mushroom body Gal4 driver 201Y. (B) Luciferase activity measured from individual fly 

heads under mushroom body Gal4 driver MzVum. (C) Luciferase activity measured from 

individual fly heads under mushroom body Gal4 driver 201Y. The statistical significance was 
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measured by one way ANOVA. Data is expressed as mean ± SEM. * indicates p value<0.05, ** 

indicates p value<0.01 and *** indicates p value<0.001. 

 

Orb2 monomer represses and oligomer activates translation: 

There are two protein isoforms of Drosophila Orb2; Orb2A and Orb2B. The two forms 

differ in structure-  Orb2A has 8 and Orb2B has 162 amino acids at the N-terminal end that are 

isoform specific, in amount- the Orb2A protein is ~100 times less abundant than Orb2 in the fly 

head and in biophysical properties- Orb2A is more prone to oligomerize then Orb2B (Keleman et 

al., 2007; Kruttner et al., 2012; Majumdar et al., 2012; White-Grindley et al., 2014). The 

abundance, distribution and structure of Orb2A and Orb2B protein indicate they may have 

different functions. However, when we analyzed the binding of Orb2A and Orb2B with the 3'UTR 

of target mRNAs we did not observe any difference between the two protein isoforms. This 

suggests they may be functionally equivalent or the differences between the two forms arise from 

their differential association with other protein complexes. In addition both isoforms of Orb2, as 

mentioned before, have two distinct conformational states; a monomeric and a SDS-resistant 

amyloidogenic oligomeric state (Majumdar et al., 2012). Therefore to determine whether two 

isoforms and physical states are functionally equivalent or distinct we adopted the experimental 

strategy of adding back various forms of Orb2 in a translation extract lacking any endogenous 

Orb2. However, to carry out these experiments we first needed to obtain both Orb2A and Orb2B 

in monomeric and amyloid states separated from each other.  

Isolation of monomeric and oligomeric Orb2:  

Recombinant Orb2 is extremely aggregate prone and Orb2A protein rapidly assembles into 

oligomers even in 6M urea (Majumdar et al., 2012). However, in insect cells, both monomeric and 

oligomeric Orb2 can be observed suggesting proper cellular milieu is important for the protein 
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states. Therefore, to obtain monomeric and amyloidogenic Orb2 separated from each other, full 

length untagged Orb2 proteins were expressed in insect Sf9 cells (which lack endogenous Orb2) 

using Baculovirus. The whole cell extracts were fractionated in the presence of high salt (500 mM 

NaCl) and detergents (1% NP-40, 0.1% SDS and 0.1% Triton-X) using a superpose 6 PC size 

exclusion column. Untransfected Sf9 cells were similarly fractionated to use as a control for 

subsequent experiments. The Orb2 protein was recovered in fractions consistent with two distinct 

physical states; a monomeric and an oligomeric Orb2 and the size of the oligomeric form was 

similar to that of the endogenous Orb2 oligomer (Fig 3.1B). The range of oligomeric species that 

we have seen in our fractions is similar to that of the endogenous Orb2-oligomer (Majumdar et al., 

2012). 

 

 

Figure 3.1: Isolation of Orb2 monomer and oligomer using gel filtration. (A) Western blot of total 

SF9 cell lysates (5 and 10 µg) expressing untagged Orb2A or Orb2B protein. Untransfected Sf9 

lysate was used as control. Tubulin serves as a loading control. (B) Separation of untagged wild 

type Orb2 monomer and oligomer using gel filtration. Left panel: Schematic of the experiment. 

Right panel: Western blot analysis of various fractions. The relative size of the protein complexes 

are indicated in the top. Fractions used in in vitro assays are indicted with a line.        

 

We examined several biochemical and biophysical properties of Orb2 proteins obtained 

from gel filtration to address whether the oligomeric Orb2 is amyloid in nature. First, the high 
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molecular weight Orb2 is resistant to heat and detergents (Fig 3.1 A&B). Second, fractions 

containing oligomeric Orb2 had significantly higher binding to fluorescence dye Thioflavin T 

compared to control fractions or fractions containing monomeric Orb2 (Fig 3.2A). Third, the 

oligomeric but not the monomeric Orb2 reacted with the amyloidogenic anti-oligomeric antibody 

A11 (Fig 3.2 B). Fourth, the oligomeric Orb2 but not the monomeric Orb2 produced proteinase K 

resistance fragments (Fig 3.2C). Finally, when analyzed by Fourier Transform Infrared 

spectroscopy (FTIR) the Orb2 oligomeric fraction showed higher amyloid-β structure compared 

to the control fraction or fraction containing monomeric Orb2 (Fig 3.2 D&E). Based on these 

findings we assumed that we have obtained two distinct pools of Orb2 proteins: a monomeric and 

an amyloidogenic oligomeric Orb2.  

 

Figure 3.2: Characterization of isolated Orb2 monomer and oligomer. (A) Thioflavin T (ThT) 

binding of monomeric and oligomeric Orb2. Fractions containing Orb2A and Orb2B show 

enhanced ThT bonding compared to the control SF9 fractions. On the other hand ThT binding of 

monomeric fractions is similar to or less than SF9 control fractions. (B) Western-blot analysis of 
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Orb2 monomer and oligomer fractions using anti-oligomeric A11 antibody. A11 recognizes 

amyloidogenic oligomers and A11 reactivity was observed only in Orb2 oligomer fractions, but 

not in monomer fractions. (C) Proteinase K digestion and western blot analysis of different 

amounts of Orb2 monomer and oligomeric fractions. The monomer is readily digested upon 

enzyme treatment while the oligomer shows protease resistance. (D & E) Fourier Transform 

Infrared (FTIR) absorption spectroscopy analysis of Orb2 monomer and oligomeric fractions. The 

Orb2 oligomeric fractions show more absorption than the control SF9 fractions. (F) Control 

proteins for peak assignment in the FTIR experiment. The aβ42 peptide is a control for canonical 

amyloid, yeast prion sup35 for canonical prions, myoglobin for α-helix and concanavalinA for β-

sheet. Data is expressed as mean ± SEM. The statistical significance was measured by unpaired 

two-tailed t-test. * indicates p value<0.05, ** indicates p value<0.01 and *** indicates p 

value<0.001. 

 

Both monomeric and oligomeric Orb2 fractions were dialyzed in PBS and equivalent 

amount of proteins were added in null Orb2 embryo extract. As control untransfected Sf9 cell 

lysate was fractionated similarly and corresponding fractions of Orb2 monomer and oligomer were 

used to control the effect of monomeric and oligomeric Orb2 in translation. Addition of monomeric 

Orb2A or Orb2B protein fractions resulted in significant repression in translation (Fig 3.3A) while 

addition of oligomeric Orb2 resulted in an increase in translation compared to control fractions 

(Fig 3.3A). Mutation of the M2 sequence reduced the monomer-dependent repression and 

abolished the oligomer-dependent increase in translation (Fig 3.3B). We further wanted to verify 

translational repression or activation by measuring the abundance of reporter mRNA associated in 

translationally active polyribosme in the in vitro translation reaction. Labelled reporter mRNAs 

with P[32] were added to the translation reaction in presence of Orb2 monomer and oligomer, 

measured the distribution of labelled mRNA in various ribosomal fractions including 

polyribosomes. In monomer treated reaction we observed more reporters on the top the sucrose 

gradient and less in polysome fractions (Fig 3.3C). On the other hand in oligomer treated reaction 
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more reporters mRNA was found at the bottom of the gradient indicative of mRNA association 

with polyribosomes (Fig 3.3C). 

 

Figure 3.3: Orb2 monomer acts a translation repressor while amyloidogenic oligomer as an 

activator. (A) Orb2 monomer represses translation and Orb2 oligomer increases translation in 

∆orb2 embryo extract. (B) Mutations of the M2 sequence that reduces Orb2 recruitment also 

attenuate that translational effect of monomeric and oligomeric Orb2. (C) Polysome profile 

analysis of in vitro translation reactions shows that Orb2 monomer reduces and oligomer increases 

the abundance of translating mRNA in polysome fractions. Data is expressed as mean ± SEM. The 

statistical significance was measured by unpaired two-tailed t-test. * indicates p value<0.05, ** 

indicates p value<0.01 and *** indicates p value<0.001.   
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To confirm that Orb2 proteins in these fractions are influencing the translation but not some 

other co-fractionating proteins, we took the advantage of TEV digestion approach. Orb2B isoform 

carrying TEV recognition site was expressed in Sf9 cell and fractionated using Superose 6 

exclusion column (Fig 3.4A). Similar to wild type protein, addition of monomeric Orb2-TEV 

reduced, whereas the oligomeric form enhanced translation. Both monomeric and oligomeric 

Orb2-TEV proteins were cleaved upon incubation with TEV protease (Fig 3.4B). Incubation of 

Orb2-TEV fractions with TEV-protease significantly attenuates the repressive function of the 

monomer and the activating function of oligomeric Orb2 (Fig 3.4C). Addition of TEV-protease to 

the wild type Orb2 had no effect. These observations supports that the Orb2 protein in the extracts 

is largely responsible for the changes in translation activity.    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4: Cleavage of Orb2 protein by TEV protease attenuates monomer dependent repression 

and oligomer dependent translational activation. (A) Isolation of Orb2B-TEV monomer and 

oligomer using gel filtration. Alternate fractions were run in SDS-agarose gel and western blotted 
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with anti-Orb2 antibody. (B) Western blot analysis of TEV enzyme digested Orb2B-TEV 

monomeric and oligomeric fractions. (C) The translation repression activity of Orb2 monomeric 

fraction and activating function of oligomeric fractions are mostly due to Orb2. Incubation with 

TEV protease that cleaves Orb2 significantly reduces (+ lanes compare to - lanes) repressive and 

activating function of Orb2 monomer and oligomer respectively. Data is expressed as mean ± 

SEM. The statistical significance was measured by unpaired two-tailed t-test. * indicates p 

value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001. 

 

Since Orb2 is required for long-term memory (Keleman et al., 2007; Majumdar et al., 2012) 

we wanted to determine whether Orb2 recruitment is required for experience dependent expression 

of Tequila reporter in adult fly brain. The reporters were expressed in various lobes of Drosophila 

mushroom body (Fig 3.5A) and luciferase activity was measured following courtship suppression 

training since this training paradigm, was previously shown,  produces Orb2 dependent long-term 

memory (Keleman et al., 2007; Majumdar et al., 2012). The training dependent significant increase 

in reporter expression was observed when Tequila wild type reporter was expressed in all 

mushroom body lobes using MzVum-Gal4 driver (Fig 3.5 B). We also observed similar increase 

when the wild type reporter was expressed in mushroom body γ-lobe using 201Y-Gal4 (Fig 3.5 

C). However, when the mutant reporters were expressed in the same mushroom body neurons there 

was no significant change in reporter expression (Fig 3.5 B&C). We also noticed that expression 

of wild type reporter in α-β lobe didn’t show any training dependent increase in translation (Fig 

3.5D).  These several results suggest that Orb2 recruitment is important for training-dependent 

expression of Tequila in the γ-lobe neurons in mushroom body. These results are also consistent 

with previous studies that Orb2 activity is important in γ-lobe neurons for long-term memory 

(Keleman et al., 2007; Kruttner et al., 2012; Majumdar et al., 2012) and that behavioral training 

increases Tequila expression in the mushroom body (Didelot et al., 2006).  
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Figure 3.5: Orb2 recruitment is important for training dependent increase in Tequila expression 

in adult fly brain. (A) The expression patterns of various Gal4 lines. (B) Male courtship 

conditioning (long-term memory training) enhances wild type Tequila reporter expression. Left 

panel: Schematic of the experimental design. Right Panel: the training-dependent increase was 

observed when the reporter was expressed in the mushroom body lobes. (C) Behavioral training-

dependent increase in reporter expression is specific to Tequila 3'UTR and mushroom body γ-lobe 

neurons. (D) Behavioral training doesn’t enhance luciferase expression when the reporter 

expression is restricted to α/β mushroom body lobes. Mean luciferase activity ±sem: Wild type 

3'UTR Naive- 300548±4986, Trained-317205± 3693; Actin 3UTR Naive- 293594±3916, Trained-

276595±5713; M1P 3UTR Naive- 530199±8630, Trained-533988±9974, M2P 3UTR Naive-

607567±8470, Trained- 582807±10358. Data is expressed as mean ± SEM. The statistical 

significance was measured by unpaired two-tailed t-test. * indicates p value<0.05, ** indicates p 

value<0.01 and *** indicates p value<0.001. Scale bar, 50µm. 
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While in vitro Orb2 oligomer increases translation there is very little evidence that Orb2 

oligomer acts similarly in vivo. Therefore we sought to determine whether oligomeric Orb2 

associates with actively translating polyribosomes as an indication of its involvement in active 

translation. To this end we have applied ribosome tagging approach, which entails tagging a 

protein of either the 40S or 60S ribosome, expression of the tagged ribosomal protein in a specific 

cell type and immunoprecipitation of ribosomes using antibodies against the tag (Doyle et al., 

2008; Mustroph et al., 2009; Sanz et al., 2009) . We tagged several 40S and 60S ribosomal proteins 

(RPS25, RPL18, RPL22) with FLAG or HA and measured whether tagged ribosomal proteins are 

incorporated in the active ribosomes.  We found one 60S ribosomal protein RPL18 satisfied all the 

criteria to be expressed in vivo and subsequently used for pull down from brain tissues. When N-

terminally FLAG tagged Rpl18 was expressed either in S2 cell or in adult fly head the tagged 

ribosomal subunit was recovered in the active polysomes (Fig 3.6A). To examine the association 

of Orb2 oligomer with active ribosome we expressed the FLAGRpl18 specifically in the nervous 

system using the UAS-Gal4 system, immunoprecipitated tagged-ribosomes and probed for Orb2 

proteins (Fig 3.6B). The Orb2 proteins immunoprecipitated with ribosomes are primarily heat and 

SDS-resistant oligomers. Treatment of the extracts with 30mM EDTA or RNaseA that are known 

to disrupt polysomes also reduced immunoprecipitated oligomeric Orb2.   
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Figure 3.6: Oligomeric Orb2 associates with polyribosomes in adult fly brain. (A) FLAG-tagged 

60S ribosomal protein incorporates into the functional polysomes. The left panel shows schematic 

of the experiment. The polysomes from adult fly brain are shown in the right. Addition of EDTA 

breakdowns polysomes to monosomes and free the ribosomal subunits. Alternative fraction from 

the gradient are blotted for the presence of FLAG tagged Rpl18 protein. (B) Primarily oligomeric 

Orb2 associates with FLAG-tagged 60S ribosomal subunits that are part of polyribosomes. 

Treatment with 30mM EDTA (pH8.0) or 20unit/ml RNaseA that disrupts polysomes also reduces 

oligomeric Orb2 association. The RPL18 fly head lysates are immunoprecipitated with anti-FLAG 

antibodies and probed for Orb2.  
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Orb2A isoform induces Orb2B oligomerization dependent translation in vitro and in vivo: 

Previous study in our lab  demonstrated that the low abundant but highly amyloidogenic 

Orb2A induces oligomerization of constitutively expressed Orb2B (Kruttner et al., 2012; Kruttner 

et al., 2015; Majumdar et al., 2012) and only the N-terminal Orb2A that contains the prion-like 

domain (PLD), but lacks the RRM domain, is sufficient for long-term memory (Keleman et al., 

2007). The distinct functional states of the monomeric and amyloidogenic oligomeric forms of 

Orb2B allow us to examine the functional consequence of interaction of Orb2B with Orb2A prion-

like domain. While it is evident that only the prion domain of Orb2A can support long lasting 

memory, it is not known whether only prion domain of Orb2A is enough to seed Orb2B isoform 

and cause oligomerization dependent translational enhancement. 

In our in vitro and in vivo translational assay system we examined the role of first half of 

Orb2A protein (Orb2A320aa which lacks RRM motif) in seeding dependent Orb2B 

oligomerization and in parallel the role of this oligomerization in reporter translation. Similar to 

full length Orb2A, both OrbA320 has a monomeric and amyloidogenic oligomeric state. Addition 

of oligomeric Orb2A320 isolated from insect cells or from bacteria to translation extract containing 

monomeric Orb2B significantly enhanced translation compared to the control (Fig 4.1B). Addition 

of oligomeric Orb2A320 to orb2 null extract had no effect indicating the enhanced translation was 

not due Orb2A320 and was dependent on Orb2B (Fig 4.1B). 

 The Orb2A320 protein isolated from bacteria or from insect cell may carry some other 

proteins or nucleic acids in addition to Orb2 that can influence Orb2B dependent translation. To 

rule out such a possibility instead of protein, mRNA encoding Orb2A320 was added to extract 

with (wild type), or without Orb2B (∆orb2). Addition of Orb2A320 mRNA resulted in a time-

dependent increase in Orb2B oligomerization and translation in wild type. 
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  We also observed a modest increase in translation in ∆orb2 extract, but it was significantly 

lower compared to wild type extracts (Fig 4.1C).  The modest increase could result from the 

maternal contribution of the Orb2B protein in the orb2 null embryos. Nonetheless this 

experimental approach partially mimicked the in vivo conditions in which Orb2A320 mRNAs 

were expressed and provided a seed and we tested the consequence of seeding in oligomerization 

and in translation measuring reporter expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1: Orb2A N-terminal prion-like domain converts monomeric Orb2B to a translational 

activator. (A) Schematic representation of the experimental design. The wild type embryo extract 

serves as source for monomeric Orb2B and the ∆orb2 extract as control. Same amount of purified 

BSA or similar amount of Sf9 cell extracts serve as control in each reaction. (B) Addition of 

recombinant (Orb2A320R) or Sf9 cell extracts containing oligomer of N-terminal 320aa of Orb2A 

(Orb2A320S) enhances translation only in wild type extract. The seeding reaction was carried out 

for 12hours at 4ºC and translation was measured for 30 min. (C) Seeding with mRNA expressing 

Orb2A320 enhances translation and convert monomeric Orb2B to an oligomer. The seeding 

reaction was performed for indicated time and subsequently translation (left panel) and oligomeric 
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state of Orb2 (right panel) were assessed. The translation reactions were analyzed in 1.5% SDS-

agarose gel and Western blotted with anti-Orb2 antibody. The * indicates an Orb2-immunoreactive 

band that is present in wild type and ∆orb2 extract. We are unsure about its origin. Data is 

expressed as mean ± SEM. The statistical significance was measured by unpaired two-tailed t-test. 

* indicates p value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001. 

 

Next we sought to determine whether Orb2B oligomerization and translational 

enhancement indeed depends on the ability of Orb2A320 to induce oligomerization. To this end 

we made several mutated versions of Orb2A320aa mRNA to examine their effects in translation. 

Previously studies have found that N-terminal 88 amino acids of Orb2A is important for efficient 

oligomerization and  deletion of either first 8 N-terminal amino acids (Orb2A∆8) or subsequent 

80 amino acids (Orb2A∆80), or the mutation of the F5 to Y (Orb2A F5Y) that significantly reduce 

Orb2A’s ability to form amyloidogenic oligomers (2). Similarly we observed that compared to 

wild type Orb2A320, mutant Orb2A mRNAs are significantly less effective in enhancing 

translation (Fig 4.2A), although the expression of mutant Orb2A fragments were similar to that of 

wild type Orb2A (Fig 4.2B). Therefore mutations that affect Orb2A’s ability to form self-

sustaining amyloidogenic oligomers also affect its ability to change Orb2B dependent translation. 

To determine how rapidly the translational enhancement can ensues instead of hours we carried 

out the seeding reaction for 30 minutes and observed a small but significant increase in translation 

(Fig 4.2 C&D).      
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Fig 4.2: Orb2A prion domain (orb2A320aa) enhances translation in vitro. (A) Mutation that affects 

the oligomerization of Orb2A also attenuates its ability to enhance translation.  Also Addition of 

mRNA encoding 46Q residues had no effect indicating the reaction is not influenced by any polyQ-

containing protein. (B) The amount of wild type and various mutants of Orb2A320 (Orb2A320, 

Orb2A320∆8, Orb2A320∆80 and Orb2A320F>Y) in wild type or ∆orb2 extracts are similar. 

Tubulin serves as loading control. (C) Recombinant Orb2A160 or Orb2A320 isolated from 

bacteria also enhances translation only in wild type but not in ∆orb2 extract. (D) Transient 

expression of Orb2A160aa and 320aa in enhances translation. Hn46Q mRNA serves as a control. 

Data is expressed as mean ± SEM. The statistical significance was measured by unpaired two-

tailed t-test. * indicates p value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001. 

 

Next we sought to determine whether these in vitro results reflect in in vivo fly head 

translation. We transiently overexpressed either full length Orb2A or Orb2A320 with the Tequila 

reporter in the adult fly brain (Majumdar et al., 2012). Transient expression of full length Orb2A 

in the adult brain resulted in a significant increase in the translation from wild type reporter mRNA. 
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This Oligomerization dependent increase in translation was not observed with mutated M2 

reporters (Fig 4.3A). Similar to full length Orb2A protein, expression of Orb2A320 showed 

significant increase in translation with parallel in detectable Orb2 oligomer (Fig 4.3B). Unlike wild 

type Orb2A320, expression of Orb2A320∆80 had less effect in oligomerization as well as 

enhancing translation (Fig 4.3B). Orb2A320∆8 in the brain resulted in an increase translation albeit 

less efficiently than full length Orb2A320 (Fig 4.3B). Consistent with the increase in translation 

by Orb2A320∆8 there was also an increase in amount of oligomer suggesting that the seeding may 

be more efficient in the brain compared to in vitro. This indicates seeding is influenced by factors 

that are either limiting or missing in the embryo extract or modification of Orb2 protein (such as 

phosphorylation) may influence either the seeding capacity of Orb2A or Orb2B to be a substrate. 

Nonetheless taken together these results suggest that the Orb2A prion-like domain can induce 

Orb2B oligomerization and enhance translation.   
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Fig 4.3: Expression of full length Orb2A or Orb2A320aa induces oligomerization dependent 

translational enhancement. (A) Transient overexpression of full length Orb2A in adult fly brain 

enhances translation of wild type but not M2 sequence mutated reporter. Schematic of the 

experiment is shown in the left. (B)Transient expression of Orb2A N-terminal prion-like domain 

enhances translation in the adult fly brain. Removal of the N-terminal 8 or 80 amino acids 

significantly reduces the translation enhancing activity of Orb2A (Left panel). Expression of 

Orb2A320aa protein in fly brain using Gene switch Gal4 enhances Orb2 oligomerization which is 

detectable by IP Western blot (Right panel). The statistical significance was measured by one way 

ANOVA. Data is expressed as mean ± SEM and * indicates p value<0.05, ** indicates p 

value<0.01, *** indicates p value<0.001 and ns indicates not significant. 
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Orb2 monomer and oligomer have distinct roles in mRNA metabolism: 

CPEB is a family of RNA binding protein. In mammals there are four CPEB family 

members, CPEB1-4. The members of this protein family vary not only in their target but also in 

their mode of action. Whereas CPEB1 and CPEB4 regulate translation by regulating the length of 

polyA tail, CPEB2 regulates translation by interacting translation elongation factors (Chen and 

Huang, 2012). In addition to PolyA tail length, translation regulation by CPEB-proteins is also 

implicated in mRNA localization (Nagaoka et al., 2012). Our earlier studies revealed that Orb2 

does not interact with the component of polyA tail machinery that regulates CPEB1 dependent 

translation. These observations suggest the following modes of Orb2 dependent translation that 

are not mutually exclusive: 1) Orb2 may regulate polyA tail length via separate mechanism such 

as regulating deadenylation of mRNA. Interaction of Orb2 with Smaug dependent deadenylation 

complex supports this notion. 2)  Orb2 may affect the stability of the mRNA and 3) Orb2 may 

change the accessibility of the mRNA. 

 

How does Orb2 affect the target mRNA translation?  Previously we observed that Orb2 

interacts with Transducer of Erb2 (Tob)(White-Grindley et al., 2014), a protein that has been 

implicated in mRNA deadenylation (Hosoda et al., 2011). To determine whether Orb2-regulates 

deadenylation, [32P] labelled Tequila 3'UTR with ~300 nucleotide long polyA tail was added into 

the in vitro extract. In the wild type 3'UTR, the polyA tail was gradually shortened with increasing 

time (Fig 5.1A) and mutations of the M2 sequence reduced polyA tail shortening (Fig 5.1A). In 

another approach we wanted to examine whether wild type and Orb2 mutant embryo extract 

differentially deadenylate the Tequila 3’UTR. To test that possibility [32P] labelled Tequila 3'UTR 

was added both in wild type and mutant embryo extract.  Addition of wild type reporter into 
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extracts lacking Orb2 (∆orb2 or Orb2∆Q) showed less efficient deadenylation compared to the 

wild type extract suggesting Orb2 is involved in deadenylation of the target mRNA (Fig 5.1B). 

 

 

 

 

 

 

 

 

 

Figure 5.1: Orb2 deadenylates polyA tail. (A) Orb2 promotes deadenylation of wild type 

Teq3'UTR. Mutation of the M2 sequence reduces deadenylation. (B) Deadenylation is reduced in 

extracts lacking Orb2 (∆orb2 or Orb2∆Q) compared to wild type extract.   

 

Since we had isolated Orb2 monomer and oligomer next we sought to determine whether 

the functional difference between monomeric and oligomeric Orb2 arises from their differential 

mRNA deadenylation activity. To this end we carried out the deadenylation assay in orb2 null 

extract in presence of exogenously added monomeric or oligomeric Orb2. Addition of monomeric 

Orb2 rapidly deadenylates (Fig 5.2A) while the addition of oligomeric Orb2 had no effect on polyA 

tail (Fig 5.2B). Taken together these results indicate that monomeric Orb2 reduces polyA tail 

length and eventually destabilizes mRNA. 
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Figure 5.2: Orb2 monomer reduces whereas Orb2 oligomer stabilizes polyA tail. (A) Orb2 

monomer deadenylates and destabilize the polyadenylated UTR.  (B) Orb2 oligomer doesn’t 

deadenylates the Tequila 3'UTR. 

 

We were interested to study  whether the oligomer is simply an inactive version of 

monomer or it actively participate in polyA tail maintenance either by protecting the existing 

polyA tail from decay and/or elongation of the polyA tail.  Therefore instead of ~300 nucleotides, 

we used 8-nucleotide long polyA tailed mRNA since 8-10 adenine residues are reported to be 

sufficient to trigger polyadenylation (Benoit et al., 1999). Unlike long-polyadenylated mRNA the 

short polyA tailed mRNA was degraded in control extracts or in extract containing Orb2 monomer 

within 30 minutes. However, in extract containing Orb2 oligomer there was significantly less 

degradation of the mRNA and there was also low but significant increase in size of the mRNA 

(Fig 5.3A). PCR-based polyA tail length assay or PAT assay revealed that the incubation with 

Orb2 oligomer indeed results in longer polyA tail length (Fig 5.3B).  Finally, to determine whether 

Orb2 affects polyA tail length of Tequila mRNA in the adult brain we transiently expressed 

Orb2A320 and measured polyA tail length using the PAT assay. Consistent with reporter 

translation and Orb2 oligomerization, expression of Orb2A320 or Orb2A320∆8 but not Orb2A∆80 
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resulted in an increase in polyA tail length (Fig 5.3C). Taken together these results indicate that 

oligomeric Orb2 protects/elongate polyA tail and stabilizes mRNA.  

 

 

 

 

 

 

 

 

 

Figure 5.3: Orb2 Oligomer stabilizes and polyadenylates mRNA. (A) Both Orb2A and Orb2B 

oligomers stabilize and polyadenylate capped and short poly (A) tailed and p32 labeled mRNA in 

vitro. (B) PCR based PolyA tail (PAT) assay shows addition of Orb2 oligomer increases polyA 

tail in vitro. Actin serves as a control for total mRNA used. (C) Expression of Orb2A320 and 

Orb3A320∆8 but not Orb2A 320∆80 increases Tequila mRNA polyA tail length in vivo. Actin 

serves as amount of mRNA used in the reactions. For ease of visualization the position of the 

starting mRNA has been indicated with two lines. Addition of CG4612 itself has some mRNA 

stabilizing activity mostly apparent at 30 min time point.   
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Orb2 monomer and oligomer form distinct translation regulatory complexes: 

Molecular basis of Orb2 monomer and oligomer dependent translational regulations is not 

well understood. Since both states require the same M2 sequence we reasoned that the two forms 

may form distinct protein complexes assembled on the same mRNA element. Previously we 

identified Orb2 interacting proteins in the adult fly head by immunopurifying Orb2-protein 

complex in presence of RNAse (Mastushita-Sakai et al., 2010; White-Grindley et al., 2014). These 

include proteins that are involved in Orb2-dependent translation as well as stability, localization 

or modification of Orb2. To determine the mechanism of Orb2 dependent translation we sought to 

identify protein complexes that are specifically assembled in the Orb2 target Tequila mRNA 

compared to an Actin88F control in the adult fly head using MudPIT mass spectrometry (Fig 

6.1A). Comparing 6 independent controls and experimental groups we identified 29 proteins that 

were significantly (p<0.01) enriched in the Tequila 3'UTR affinity purification. Six of these 

proteins: CG13928, Rbp6, Pabp2, CG4612, Syncrip, and Imp- were also identified as part of Orb2 

protein complex. In pairwise interaction studies, three of these proteins, Pabp2, Rbp6 and 

CG13928 showed strong interaction with monomeric Orb2 (Fig 6.1B).  

 

We also identified Smaug, a known translational regulator that represses translation by 

promoting deadenylation (Smibert et al., 1996), as an Orb2 interacting protein. Although initially 

identified in the early embryo, Smaug is expressed in the adult brain (Fig 6.2A) and forms a 

complex with Orb2 (Fig 6.2B). We also found in our in vitro assay addition of recombinant Smaug 

reduces wild type reporter translation in presence of Orb2 suggesting that Smaug is one of the 

accessory factors for Orb2 mediated translation.  
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To understand the mechanism how Orb2 dependent translation repression is mediated we 

specifically focused on one of the Orb2 interacting proteins, CG13928 because, i) it interacts with 

Orb2 monomer both in vitro (Fig 6.1B) and in vivo (Fig 6.1C). ii) not only Orb2 it also interacts 

with Smaug- a known factor in translation repression by mRNA deadenylation (Fig 6.2C) and iii) 

it is enriched in the nervous system (Fig 6.2A)  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Fly head proteomics identified Orb2 interacting protein. (A) Schematic of the 

complementary proteomics analyses from adult fly head. Orb2 interacting proteins from fly head 

lysate were either immunoprecipitated with Orb2 antibody (previous studies) or RNA affinity 

purified using an Orb2 target 3'UTR. (B) Pairwise interaction study of the common interacting 

proteins revealed CG13928, Rbp6 and Pabp2 interacts better with monomeric Orb2 compare to 

CG4612. The low level of interaction between Syncrip (Syp) and Orb2 is due to lower expression 

of Syp. (C) CG13928 interacts with monomeric Orb2 in the adult fly head. Co-imminoprecipitation 

of endogenous Orb2 with pre immune or CG13928 serum. Lowers panels show the loading 

controls.     
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Since all three proteins (Orb2, CG13928 and Smaug) exist in the Drosophila nervous 

system and these proteins interact with each other, Orb2 interacts with both Smaug and CG13928 

in vivo and Smaug also interacts with CG13928, we assumed these three proteins could be the 

components of the same translation repressor complex in fly brain.    

 

 

.  

 

 

 

 

 

Figure 6.2: Orb2, Smaug and CG4613918 form a protein complex. (A) CG13928 is enriched in 

the nervous system. Detection of Smaug, CG13928 and CG4612 protein in embryo extract and in 

adult fly head. (B) Smaug interacts with Orb2 in fly head. The upper panel shows pull down with 

antio-Orb2 (rabbit Ab) and western with Smaug affinity purified antibody. The lower panels show 

loading for Orb2 and Smaug proteins. (C) Smaug interacts with some but not all Orb2-interacting 

proteins. Among the Orb2 partners CG13928 and Rbp6 strongly interact with Smaug. The upper 

panel shows FLAG IP and Myc western and the lower panels serve as loading controls. 

 

To determine whether CG13928 contributes to Orb2-mediated translation repression we 

exogenously added purified recombinant CG13928 protein to the translation reaction (Fig 6.3A). 

Addition of CG13928 reduced translation in a concentration dependent manner in wild type extract 

but not in extracts lacking Orb2 (Fig 6.3A). When incubated with limiting amount of monomeric 

or oligomeric Orb2, CG13928 enhanced the translation repressive function of monomeric Orb2 

(Fig 6.3B, left panel) but had no significant effect on the oligomeric activity (Fig 6.3B, right panel). 
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Consistent with translation repression CG13928 also enhanced Orb2 monomer-mediated 

deadenylation (Fig 6.3C). Similar to the in vitro results, overexpression of CG13928 

(ElavGeneSwitch: UAS-Teq-Reporter; UAS-FLAG-CG13928) in fly brain suppressed translation, 

whereas knock down of CG13928 (ElavGeneSwitch: UAS-Teq-Reporter; UAS- CG13928-

dsRNA) increased reporter expression (Fig S6C&D). Neither overexpression nor reduction of 

CG13928 had any effect on the M2 sequence mutated reporter (Fig 6.3D). Taken together these 

results suggest CG13928 contributes to the repressive function of monomeric Orb2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: CG13928 promotes Orb2 monomer dependent translation repression and 

deadenylation. (A) CG13928 represses translation in Orb2-dependent manner. Increasing amount 

purified CG13928 proteins were added and compared with respect to equivalent amount of BSA. 

(B) CG13928 imparts translation repression through monomeric Orb2. Fixed amount of Orb2 (100 

ng of monomer and oligomer fractions) were incubated with increasing amount of CG13928 

recombinant protein. CG13928 enhanced repression but had no significant effect on oligomer 
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mediated translation increase. (C) CG13928 enhances deadenylation in Orb2 dependent manner. 

Addition of increasing amount of CG13928 protein proportionally enhances deadenylation only in 

wild type extract but not in Orb2 depleted (∆orb2) extract. (D) CG13928 negatively regulates Orb2 

dependent reporter translation in the adult fly head. Translation of wild type and M2 mutant 

reporters were measured from single fly head expressing FLAG-tagged CG13928 or CG13928 

RNAi under RU484 inducible Gene-switch Gal4. Overexpression of CG13928 represses while 

reduction in CG13928 enhances translation from wild type reporter but had no effect on M2 mutant 

reporters. The statistical significance was measured by one way ANOVA. Data is expressed as 

mean ± SEM and * indicates p value<0.05, ** indicates p value<0.01 and *** indicates p 

value<0.001.   

 

What is the underlying biochemical mechanism of monomeric Orb2 mediated translation 

repression and mRNA deadenylation? Smaug-Caf/Tob-Not-CCR4-PAN is a major deadenylation 

and translation repression complex and Orb2 interacts with Smaug and Tob (Bawankar et al., 2013; 

Braun et al., 2011; Hosoda et al., 2011; Jeske et al., 2011; Wahle and Winkler, 2013). Therefore 

we performed pairwise interaction studies between Orb2 and individual components of Ccr4-Not 

and Pan2-Pan3 deadenylation complexes. In this experiment individual components (HA-tagged) 

of Ccr4-Not and Pan2-Pan3 complexes were pair wisely transfected in S2 cell both in absence and 

presence of CG13928. After 48 hrs of transfection, S2 cell lysates were made and 

immunoprecipitated with anti-HA beads and probed the western blot with anti-Orb2 antibody.   We 

observed that monomeric Orb2 interacts with Not-CCR4-PAN weakly and CG13928 enhances the 

association of Orb2 with the deadenylation complexes (Fig 6.4 A&B for Ccr4-Not and Fig 6.4 

C&D for Pan2-Pan3 complex). These several results suggest that a monomeric Orb2-Smaug-Not-

CCR4-PAN complex mediates deadenylation and translation suppression of Orb2 target mRNA. 

CG13928 enhances the interaction between monomeric Orb2 and deadenylation complex. The low 

affinity of the oligomeric Orb2 for CG13928 and deadenylation complex occludes the recruitment 

of deadenylation complex and thereby protects the polyA tail.    
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Figure 6.4: CG13928 enhances recruitment of Not-Ccr4 and Pan2-Pan3 deadenylation complex 

to Orb2.  (A &C) CG13928 enhances the recruitment of Ccr4-Not and Pan2-Pan3 deadenylation 

complex to monomeric Orb2B. HA-tagged Not-CCR4 complex were immunoprecipitated and 

Western blotted for FLAG-tagged CG13928 and untagged Orb2. (B&D) CG13928 enhances the 

recruitment of NOT-CCR4 and PAN2-PAN3 deadenylation complexes to monomeric Orb2A. 

 

To understand the molecular basis of oligomeric Orb2 dependent translational activation 

we focused on the Orb2 interacting protein CG4612 identified from fly head proteomics. We 

wanted to study CG4612 protein in Orb2 oligomer dependent activation for the following reasons: 

i) it is a putative polyA binding protein (PABP) and PABP proteins are known to promote 

polyadenylation and enhance translation (Benoit et al., 1999; Kim and Richter, 2007; Wahle et al., 
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1991) and ii), unlike CG13928, CG4612 binds to oligomeric Orb2 (Fig 6.6A). Addition of purified 

CG4612 resulted in a small but significant increase in translation of the oligomeric Orb2 dependent 

translation (Fig 6.5A) but no such increase in translation was observed in presence of monomeric 

Orb2. One plausible explanation of the small increase in translation by exogenously added 

CG4612 protein is that the translation extract already contained CG4612 (Fig 6.2A). To determine 

whether CG4612 is required for translation enhancing activity of Orb2 we measured Orb2 

oligomer dependent translation in presence of anti-CG4612 antibodies. Addition of affinity 

purified anti-CG4612 antibody but not control IgG significantly reduced oligomeric Orb2 

mediated translation (Fig 6.5B) but had no effect on monomer-mediated translation inhibition. To 

determine whether CG4612 affects Orb2 oligomer mediated mRNA stability and polyA tail length, 

Tequila 3'UTR with short polyA tail was incubated with oligomeric Orb2 in presence or absence 

of CG4612. Consistent with small increase in translation there was also a similar increase in the 

amount of long polyA tailed mRNA (Fig 6.5C). It is important to notice that CG4612 alone had 

shown some extent of stabilization and polyadenylation effect when the 3'UTR was pre incubated 

with CG4612 alone in absence of any Orb2 oligomer (Fig 6.5C). 
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Figure 6.5: CG4612 contributes to Orb2 oligomer mediated translation activation. (A) 

Recombinant CG4612 enhances translation only when combined with Orb2B oligomer but not 

monomer. (B) CG4612 activity is required for Orb2 oligomer mediated translation increase. 

Incubation of the translation extract with anti-CG4612 antibody significantly reduces the 

translation enhancing activity of oligomeric Orb2. Addition of similar amount of purified control 

IgG had no effect. Likewise addition of CG4612 antibody did not result in a general translation 

inhibition. (C) CG4612 enhances Orb2 oligomer-mediated polyadenylation and stabilization of 

short polyA tailed mRNA. Limiting amount of Orb2 oligomers were used to score the effect of 

CG4612. For ease of visualization the position of the starting mRNA has been indicated with two 

lines. Addition of CG4612 itself has some mRNA stabilizing activity mostly apparent at 30 min 

time point. Data is expressed as mean ± SEM and * indicates p value<0.05, ** indicates p 

value<0.01 and *** indicates p value<0.001.     
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The canonical CPEB, CPEB1, upon binding to the UUUUAU element (the canonical 

CPEB-binding element) recruits a protein complex comprised of cleavage and polyadenylation 

specificity factor CPSF160, Symplekin and polyA polymerase Gld2 (germ-like development-2) 

(Kim and Richter, 2008; Kwak et al., 2008; Rouhana et al., 2005; Udagawa et al., 2012). This 

complex elongates the polyA tail length and enhances translation (Ivshina et al., 2014; Kim and 

Richter, 2007). Since oligomeric Orb2 binds to a U-rich sequence UUUUGU and controls polyA 

tail length we asked whether Orb2 associates with CPSF-Symplekin-Gld polyA complex. Orb2 by 

itself interacted weakly with CPSF160, Symplekin and Glds. Therefore we asked whether CG4612 

interacts with polyA components and found both CPSF160 and Symplekin binds to CG4612 (Fig 

6.6B). Intriguingly, two polyA polymerases, Wispy (X-Gld) and Gld2 don’t interact with Orb2 but 

strongly associate with Orb2 oligomer in presence of CG4612 (Fig 6.6C). Taken together these 

results suggest CG4612 facilitates the recruitment of CPSF160-symplekin-Gld2 to the oligomeric 

Orb2, which elongates and/or maintains the polyA tail to enhance translation.  

 

Figure 6.6: CG4612 form complex with Orb2 and cytoplasmic polyadenylation factors. (A) 

CG4612 interacts with Orb2 monomer and oligomers. Untagged Orb2 was co transfected with 

FLAG-tagged CG4612 and FLAG immunoprecipitate was western blotted for Orb2. (B) CPSF160 

and Symplekin interact with CG4612. Myc-tagged CPSF160, Symplekin and V5-tagged Gld 
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proteins were immunoprecipitated and Western blotted for FLAG-tagged CG4612. (C) The Gld 

proteins associate with oligomeric Orb2. 

Since Orb2 oligomerization is important for long-term memory we sought to determine 

whether CG4612, which is involved in Orb2 oligomer dependent translation, is important for long- 

term memory. To this end we expressed dsRNA against CG4612 in the mushroom body γ-lobe 

neurons using a 201Y-Gal4 driver and tested these flies using male courtship suppression paradigm 

to score memory phenotype (Fig 6.7 A&B). In this paradigm male flies learn to suppress their 

courtship behavior upon repeated exposure to an unreceptive female. The 201Y-Gal4: UAS-

CG4612RNAi flies developed normally and when tested they did not display a deficit in short-

term memory or memory up to a day. However, when tested 48 hours after training there was 

significant impairment in learned suppression of male courtship (Fig 6.7A). The memory 

phenotype due to impairment of CG4612 activity is reminiscent of the phenotype observed with 

selective perturbation of Orb2 oligomerization (Majumdar et al., 2012).  
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Figure 6.7: CG4612 is required memory persistence beyond 24 hrs. (A) CG4612 is required for 

long-term male courtship suppression memory. Flies expressing CG4612 RNAi had similar short- 

term and intermediate term memory but had significantly reduced long-term memory measured at 

48h. (B) Expression of CG4612RNAi reduces CG4612 protein level. CG4612RNAi was expressed 

pan-neuronally and Western blotted for CG4612 protein.  Tubulin was used as a loading control. 

The statistical significance was measured by one way ANOVA. Data is expressed as mean ± SEM 

and * indicates p value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001. 

 

Similarly we also examined the effect of CG13928 in fly male courtship suppression 

memory by expressing CG13928 RNAi in the mushroom body γ-lobe neurons using a 201Y-Gal4 

driver. The 201Y-Gal4: UAS-CG13928NAi flies showed significant deficit in both short-term and 

long-term memory (Fig 6.8A). According to the findings in this study CG4612 is not required for 

early memory but required for the persistence but on the other hand CG13928 is required earlier 

in consolidation and memory formation. But we are not sure whether this early memory deficit is 

Orb2 dependent.    

 

Figure 6.8: CG13928 is required for short-term memory. (A) Flies expressing CG13928 RNAi 

showed significant deficit in both short and long-term male courtship suppression memory. (B) 

Expression of CG13928 protein in RNAi and Gal4 flies. Tubulin served as a loading control. The 

statistical significance was measured by one way ANOVA. Data is expressed as mean ± SEM and 

* indicates p value<0.05, ** indicates p value<0.01 and *** indicates p value<0.001. 
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Discussion 

Orb2 is a prion-like protein which has a well-established role in the persistence of long-

term memory in Drosophila (Keleman et al., 2007; Majumdar et al., 2012). However, the 

biochemical consequences of Orb2’s prion-like conversion are largely unknown. This study 

primarily attempted to understand the translational regulatory activity of Orb2, particularly when 

the protein exists in two distinct conformational states: a monomeric state and an amyloidogenic 

prion-like state. In this discussion I have briefly outlined the important observations and tried to 

place it in the broader context of protein synthesis, memory and the plausible roles of prions and 

amyloids in the nervous system and beyond.     

Orb2-mediated translation: Role of monomeric and oligomeric Orb2 

 

Specific sequences in the 3UTR recruits Orb2 to the target mRNA 

Orb2 is an RNA-binding protein that regulates translation of some but not all mRNAs. This 

suggests like many other RNA-binding proteins there are specific sequences in the mRNA that 

allow Orb2 to recognize the appropriate target mRNA. For some CPEB family members, such as 

mammalian CPEB1, the sequence UUUUAU recruits it to the target mRNA, while CPEB3 seems 

to rely not on specific sequence, but on the secondary structure of the target mRNA (Huang et al., 

2006). Based on deletion and point mutation of the 3'UTR of the Tequila gene, we found that 

recruitment of both Orb2 monomer and oligomeric proteins requires two conserved sequences in 

the 3´UTR of the target mRNA: UCCACCUU/G (Mutation1 or M1) and UUUUGU (Mutation2 

or M2). The UUUUGU sequence is similar to the canonical CPEB-binding element UUUUAU 

and UUUUGU sequence is present in most of the known Orb2 target mRNA (Mastushita-Sakai et 

al., 2010). Mutation or deletion of the M2 sequence uniformly reduces Orb2 recruitment to the 
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Tequila mRNA, suggesting it is a major recognition element for Orb2. That both monomer and 

oligomer require the same M2 sequence suggest that a given mRNA can be occupied either by the 

monomer or the oligomer but not by both forms at the same time. Therefore the translational state 

of the mRNA would be dictated by which form of the protein is bound to the mRNA. Unlike the 

M2 sequence the function of the UCCACCUU/G or M1 sequence is unclear. While mutation of 

the M1 sequence reduced Orb2 recruitment, the deletion of it had no significant effect, suggesting 

some structural aspect of the mRNA may be dependent on the M1 sequence. Since the M1 

sequence is conserved in the 3'UTR of Tequila gene in a number of Drosophila species, it suggests 

that this sequence has conserved function, although what that function is remains unclear at this 

stage. From our analysis it is also unclear whether different conformational states of Orb2 have 

similar or different affinities for target mRNA, and whether Orb2 proteins by themselves directly 

bind to these conserved sites or are recruited to these sites by some other mRNA binding protein. 

Typically direct binding is assayed using purified recombinant protein and labelled mRNA. 

However, the recombinant Orb2 protein purified from bacteria exists as large aggregates and not 

in the monomeric form, rendering such experiments impossible. Similarly, the partially purified 

soluble Orb2 monomer and oligomer from insect cells or fly head also did not address this issue 

since they contain other proteins in addition to Orb2.  

Orb2 monomer acts as a repressor 

Earlier studies in S2 cells using reporter mRNA, as well as endogenous translation in male 

germ cells, suggested that Orb2 is most likely a translational repressor (Mastushita-Sakai et al., 

2010; Xu et al., 2012; Xu et al., 2014). However, these cell-based studies failed to delineate exactly 

how Orb2 acts to regulate protein expression. The repression could be the result of translation 

inhibition, destabilization of mRNA, destabilization of the newly expressed protein, or all of the 
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above (Mastushita-Sakai et al., 2010; Xu et al., 2014). This study, combining both in vitro and in 

vivo approaches, provides experimental evidence that Orb2 protein in its monomeric form indeed 

acts as a repressor of protein synthesis. That Orb2 is an mRNA-element specific translational 

repressor is supported by several lines of evidences: 1) Mutations that attenuate Orb2 recruitment 

to the target mRNA enhances translation both in embryo extract as well as in fly head. 2) 

Expression of the reporters in embryo extract lacking Orb2 (null as well as hypomorphic) showed 

no significant differences between wild type and mutant reporters. 3) Expression of the reporters 

in heterologous rabbit reticulocyte translation extract, which lacks Orb2, showed no differences in 

expression between wild type and mutant reporter. 4) Immuno-inactivation by anti-Orb2 antibody 

or acute inactivation of modified Orb2 by TEV protease showed translation de-repression. 5) 

Polysome analysis of in vitro translation reactions showed that in the absence of Orb2 protein, or 

in the absence of Orb2 recruitment to the mRNA, the amount of mRNA in the translating ribosomal 

fractions increases.  

That the in vitro translation extract prepared from 0-2 hrs embryos can recapitulate some 

aspects of neuronal translation is likely due to the fact that the predominant Orb2 protein both in 

embryo and fly head is monomeric Orb2B.That the repressive nature of Orb2B is maintained both 

in early embryo and neuron suggest the core factors important for Orb2 activity are present in both 

systems. However there are considerable differences between an embryo and adult neurons and 

these differences provided an opportunity to further interrogate the Orb2 function. For example, 

while Orb2 oligomer can be easily detected in fly head lysate, there was no detectable oligomeric 

Orb2 in embryo extract. Therefore by adding back the oligomer in this system or other neuron-

specific factors one can interrogate the functional contribution of these various components in 

Orb2-dependent translation. Likewise the absence of Orb2B oligomer in the embryo suggest either 
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Orb2B undergoes different post-translational modifications in embryo and in adult fly brain that 

favors oligomerization in the brain but not in the embryo. The other possibility is that Orb2A, 

which is important for Orb2B oligomerization, is not expressed in embryo and therefore Orb2B 

could not oligomerize (Majumdar et al., 2012). This again provided an opportunity to add back 

Orb2A or modified forms of Orb2B in the embryo extract and assess the functional consequences.  

Orb2 oligomer acts as a translation activator 

By adding back Orb2 oligomer into the Orb2 deficient embryo we observed that upon 

oligomerization Orb2 not only losses its repressive function but it gains a new function.  This 

conclusion is based on the following observations: 1) while isolated monomer represses 

translation, the isolated oligomer enhances translation. 2) The mutant reporters (M2P and ΔM2) 

showed significantly less oligomer-dependent translation enhancement, suggesting activation is 

mRNA element specific and dependent on the recruitment of Orb2 to the mRNA. 3) Inactivation 

of Orb2 oligomer by TEV protease digestion decreased oligomer-dependent translation activation. 

4) Polysome analysis of translation reaction showed significant increase in the amount of reporter 

mRNA in the translating ribosomal fraction in presence of Orb2 oligomer. These in vitro 

observations are further corroborated by the in vivo observation that in the adult neuron the form 

of Orb2 that associates with translating ribosome is the oligomeric Orb2 although it is less 

abundant than the monomer. Therefore the oligomerization induced conformational change 

endows Orb2 with a new activity. 

Orb2A triggers Orb2B oligomerization and transform a translation repressor to an activator  

 Prions and amyloids are distinct form other forms of protein aggregates because once they 

are formed inside the cell that can induce aggregation of the monomeric state(Prusiner, 1998). The 
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functional differences between monomeric and oligomeric Orb2 provided an opportunity not only 

to test induced aggregation but also the functional consequence.  Previous studies have shown that 

just the N-terminus of Orb2A that contains the prion-like domain (PLD) is sufficient for long-term 

memory (Keleman et al., 2007; Kruttner et al., 2012) provided there is full length Orb2B protein 

around. These observations are consistent with the model that an important function of the low-

abundant Orb2A is to change the activity state of abundant Orb2B protein presumably via inducing 

oligomerization. We have tested this model by in vitro and in vivo experiments. Transient 

expression of the full-length Orb2A isoform or just the N-terminal prion-like domain (Orb2A320) 

in adult fly head significantly enhanced reporter translation. Likewise, addition of recombinant 

Orb2A320 oligomer or mRNA encoding Orb2A 320 to the in vitro translation reaction induced 

Orb2B oligomerization with concomitant increase in reporter translation.  

The Orb2A-dependent Orb2B oligomerization also suggests that the availability of the 

Orb2A is an important determinant of when and where Orb2-dependent translation would ensue. 

Indeed a number of studies indicate that Orb2A expression is tightly regulated. Orb2A protein has 

a very short half-life (~1h) consistent with its low abundance. Transducer of Erb2 or Tob, a 

previously known regulator of SMAD-dependent transcription (Yoshida et al., 2000; Yoshida et 

al., 2003) and CPEB-mediated translation (Hosoda et al., 2011) associates with both Orb2A and 

Orb2B, but increases the half-life of only Orb2A. Both Orb2 and Tob are phospho-proteins and 

protein phosphatase 2A (PP2A) dephosphorylates Orb2 (White-Grindley et al., 2014). Stimulation 

with tyramine or activation of mushroom body neurons enhances Tob-Orb2 association, and Tob 

promotes Orb2 phosphorylation by recruiting Lim kinase. Phosphorylation destabilizes Orb2-

associated Tob, whereas it increases the monomeric Orb2A protein level. PP2A, an autocatalytic 

phosphatase, is known to act as a bidirectional switch in an activity-dependent changes in synaptic 
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activity (Belmeguenai and Hansel, 2005; Kikuchi et al., 2003; Mulkey et al., 1993; Pi and Lisman, 

2008). Similarly, Lim kinase, which is synthesized locally at the synapse (Schratt et al., 2006) in 

response to synaptic activation, is also critical for long-term changes in synaptic activity and 

synaptic growth (Meng et al., 2002).  The Orb2A protein level is not only regulated by PP2A-

LimK; our unpublished observation suggests that Orb2A expression is also regulated at the mRNA 

level. The Orb2A transcript is expressed in an un-spliced form in the adult brain. The intron 

contains multiple stop codons and therefore the transcript does not code full length Orb2A protein. 

Intriguingly, behavioral training that produces long-term memory also increases the amount of 

protein coding spliced Orb2A transcript.   

These observations suggested a model in which, in the basal state, synaptic PP2A keeps 

the available Orb2A in a un- or hypo-phosphorylated and thereby unstable state.  Upon behavioral 

training the increase in spliced protein-coding mRNA increases the amount of Orb2A protein. The 

Tob protein that is constitutively present at the synapse binds to and stabilizes the un- or hypo-

phosphorylated Orb2A and recruits the activated LimK to the Tob-Orb2 complex, allowing Orb2 

phosphorylation. Concomitant decreases in PP2A activity and phosphorylation by other kinases 

increases Orb2A half-life. The increase in Orb2A level as well as phosphorylation may induce 

conformational changes in Orb2A, which allows Orb2A to act as a seed. Alternatively, 

accumulation and oligomerization of Orb2A could create an environment that is conducive to 

overall Orb2 oligomerization.   

Orb2 monomer deadenylates and Orb2 oligomer stabilizes and polyadenylates target 

mRNA  

What is the mechanistic basis of the opposing functions of Orb2 monomer and Orb2 

oligomer? As mentioned before Orb2 associates Tob (White-Grindley et al., 2014), a protein that 

has been implicated in mRNA deadenylation (Hosoda et al., 2011). In addition, Orb2 associates 
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with Smaug, a protein involved in mRNA destabilization and deadenylation (Jeske et al., 2006; 

Jeske et al., 2011). Since deadenylation reduces translation and Orb2 associates with deadenylation 

factors such as Tob and Smaug, we asked whether the Orb2 repressive function is mediated via 

mRNA deadenylation. The following observations suggest that Orb2 deadenylates target mRNA: 

1) the wild type 3'UTR is more rapidly deadenylated than mutant UTRs (ΔM2 and M2P) that do 

not recruit Orb2. 2) The deadenylation is more efficient in wild type embryo extract than the Orb2 

mutant embryo extract. 3) Addition of monomeric Orb2 in the orb2 null extract induces rapid 

deadenylation of the target mRNA. Unlike monomeric Orb2, oligomeric Orb2 did not show any 

deadenylating activity. In fact the polyA tail was stabilized in the presence of Orb2 oligomer, 

suggesting oligomer blocks deadenylation. However, the translation assays suggested that the 

oligomer is not just devoid of the repressive function of the monomer, but that it also gains new 

function. Therefore we tested whether oligomeric Orb2 can elongate polyA tail. Several 

observations suggested oligomeric Orb2 can elongate polyA tail of an mRNA: 1) Both Orb2A and 

Orb2B oligomer increased polyA tail length by ~50-100 nucleotides compared to control extracts. 

2) Transient expression of Orb2A, which induces Orb2 oligomerization, also increases polyA tail 

length of the Tequila mRNA. Therefore, the net outcome of Orb2 oligomerization is a reduction 

in deadenylation, an increase in polyA tail length, stabilization of mRNA, and enhanced 

translation. However, it is unclear whether the polyA tail elongation directly contributes to the 

increased translation; the relative contributions of inhibition of deadenylation and elongation of 

the polyA tail in Orb2-oligomer mediated translation also remain unclear. 

The molecular basis of Orb2 monomer- and oligomer-mediated translation regulation 

 

Similar to mammalian CPEB1, Orb2 acts as a repressor as well as an activator of translation 

by regulating the polyA tail length. CPEB1 binds to the CPE-element at the 3'UTR and recruits a 
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number of proteins including maskin (Stebbins-Boaz et al., 1999), polyA polymerase Gld2, and 

polyA-specific ribonuclease PARN. The balance between deadenylation and polyadenylation 

activity of CPEB1 regulates translation (Kim and Richter, 2006; Udagawa et al., 2012).  

The Orb2 monomer and oligomer utilizes the same U-rich sequence in the Tequila 3'UTR. 

However when these two states of the Orb2 occupy the same RNA-element the outcomes are very 

distinct: repression vs activation, due to deadenylation vs polyadenylation. These observations 

suggest that these two proteins states are associated with very distinct protein complexes. What 

are these protein complexes and how are they differentially recruited to the monomeric and 

oligomeric Orb2? From proteomics-based studies we identified a zinc-finger domain containing 

protein CG13928 that interacts with monomeric Orb2 but not oligomeric Orb2. The mRNA 

expression pattern (based on modeENCODE project) and immunostaining indicate that CG13928 

is expressed primarily in the nervous system. Embryo extract lacking CG13928 can still support 

Orb2-dependent translation repression, suggesting that CG13928 is not necessary for Orb2-

mediated translation repression but likely facilitates the recruitment of a deadenylation complex 

to the mRNA. Consistent with this idea, addition of CG13928 enhances Orb2-monomer mediated 

translation repression as well as deadenylation, and removal of CG13928 from the fly brain 

enhances Orb2-dependent translation. Intriguingly, there is no obvious structural homologue of 

CG13928 in mammals. It is unclear why Drosophila utilizes a structurally non-conserved protein 

such as CG13928 for translation regulation. It is worth mentioning that one of the key regulators 

of mammalian CPEB1-mediated translation is Maskin (Groisman et al., 2000; Groisman et al., 

2002; Mendez and Richter, 2001). In C. elegans, although CPEB function is conserved, no Maskin 

homologue has been identified (O'Brien et al., 2005). We speculate that in different organisms, as 
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long as the core machineries are the same, some regulatory molecules may have different structural 

features.  

Unlike monomeric Orb2, no oligomer-specific interacting protein has been identified, and 

although CG4612 is required for oligomerization-mediated translation, it binds to both forms of 

the Orb2 protein.  However, oligomer may enhance translation not only by recruitment of a specific 

protein but also by increasing the affinity for existing interactors. For example, an mRNA bound 

by oligomeric Orb2 will have more CG4612 compared to a monomer bound mRNA and therefore 

more of the CG4612-associated proteins. Such a mechanism would be reminiscent of CPEB1-

mediated polyadenylation (Mendez et al., 2000b) where unphosphorylated CPEB1 has weak 

affinity for the CPSF160 complex and phosphorylation increases the affinity of CPEB1 for 

CPSF160, leading to polyadenylation and translational activation. Although CG4612 is involved 

in polyadenylation, it may have other functions that are important for translation activation.  In 

mammals, PABPs are multifunctional proteins, and in some cases are known to activate translation 

by interacting with the translation initiation complex (Bernstein and Ross, 1989; Smith et al., 2014; 

Vazquez-Pianzola et al., 2011). Curiously, the other PABP, Pabp2, interacts with both forms of 

Orb2 yet does not have a significant effect on Orb2 function under these experimental conditions, 

except for translation inhibition at a high concentration. Further studies will be required to dissect 

the detailed mechanism of translational activation and the role of PABPs and other proteins in 

Orb2-mediated translation activation.  

The molecular composition of Orb2-associated deadenylation and polyadenylation complex 

Smaug is a well-known deadenylation factor and is known to cause deadenylation and 

destabilization of many mRNAs in Drosophila (Jeske et al., 2006; Jeske et al., 2011; Smibert et 
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al., 1996). Smaug has an established role as a local translational regulator in the embryo, where it 

destabilizes the unlocalized mRNA and serves as a determinant of Drosophila posterior body 

patterning (Smibert et al., 1996). Although initially discovered in Drosophila embryo we found 

that Smaug is expressed in the adult nervous system. Similarly mammalian Smaug1 is abundant 

in post-synaptic densities, a subcellular region where translation is tightly regulated by synaptic 

stimulation (Baez and Boccaccio, 2005). These results suggest a conserved role of Smaug in 

translation regulation in neurons.   

Association of Orb2 with Smaug led us to examine whether Orb2 associates with the 

Smaug-deadenylation complex. Among the two main cytoplasmic deadenylation complexes, Not-

CCR4 complex and Pan2-Pan3 complex, Smaug associates with Not-CCR4 complex. Intriguingly, 

although Smaug interacts with Orb2, the components of Not-CCr4 or Pan2-Pan3 complex do not 

efficiently interact with Orb2 and CG13928 promotes the Orb2-Smaug-Not-CCr4 complex 

formation. Based on these observations we conclude that CG13928 acts as an adaptor or stimulator 

of Orb2 monomer-dependent deadenylation.  

On the other hand. to understand how Orb2 oligomer works we focused on two polyA 

binding proteins Pabp2 and CG4612. Pabp2, is well known for its role in mRNA stability and 

polyadenylation and CG4612 is a putative polyA binding proteins based on the predicted amino 

acid sequence.  However, although Pabp2 interacts with both Orb2 monomer and oligomer what 

role it plays in Orb2-dependent translation is unclear since it had no significant effect on Orb2-

dependent translation. On the other hand CG4612 had moderate but significant effect on Orb2 

oligomer-dependent translation activation. The translation enhancing activity of the CG4612 is 

partly mediated by recruitment of the two polyA polymerase enzymes X-Gld and Gld2 to the Orb2 

oligomer. Both of these interact efficiently with Orb2 oligomer in presence of CG4612, suggesting 
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CG4612 recruits or tethers the polyadenylation complex to Orb2 oligomer.  However, further work 

is needed to elucidate exactly how CG4612 promotes translation since the effect of CG4612 in 

polyadenylation is modest. Likewise, the consequence of interaction between CG4612 and Orb2 

monomer remains unclear. 

A model for Orb2-mediated synapse-specific local protein synthesis 

 

Results from both in vitro and in vivo assays suggest that monomeric Orb2 protein 

represses translation of the target mRNAs. We found that monomers of both Orb2A and Orb2B 

isoform have similar repressive functions. However Orb2A is extremely rare in neurons, while 

Orb2B is constitutively expressed throughout the neuron including at the synapse. Therefore, it is 

likely that the repressive function of Orb2 is primarily mediated by the Orb2B protein and since 

Orb2B is present both in synapse and cell body it most likely suppresses translation in both 

compartments (Majumdar et al., 2012). Moreover attempts to determine the subcellular 

distribution of monomeric and oligomeric Orb2 revealed significant enrichment of SDS-resistant 

oligomeric Orb2 in the synaptic membrane fraction (Majumdar et al., 2012). This membrane 

associated enrichment of Orb2 oligomer was striking since the monomeric Orb2 is more abundant 

in the nervous system.  

Although direct evidence that the amyloidogenic oligomer regulates translation only in the 

activated synapse is still lacking, based on these observations we propose a plausible model for 

synapse-specific persistent translation. We posit that Orb2B binds to the target mRNA and the 

bound mRNA is transported to the synapses and kept in a repressed state via association with the 

deadenylation complex. Synaptic activation increases the local concentration of the low abundant 

Orb2A protein via phosphorylation (White-Grindley et al., 2014) and/or other yet unknown 
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mechanisms. Increase in the Orb2A protein level triggers self-sustaining amyloidogenic-

oligomerization of Orb2A-Orb2B. Binding of the oligomer to the 3'UTR prevents deadenylation 

and recruits polyadenylation complex and both of these events result in enhanced translation.  

Because of the self-sustaining and stable nature of the amyloid state, this creates a local and self-

sustaining translation activation of Orb2-target mRNA, maintaining the changed state of synaptic 

activity over time.  

Translation regulation by mammalian CPEB 

 

How general is the role of an amyloidogenic aggregated CPEB in the persistence of 

memory?  In mammals there are four CPEB proteins, CPEB1-4 and all of them are expressed in 

the adult nervous system. Recent studies suggest a functional role of aggregated mammalian 

CPEB3 similar to Aplysia and Drosophila (Fioriti et al., 2015; Stephan et al., 2015). CPEB3 forms 

amyloid-like oligomers in the adult hippocampus and removal of CPEB3 from the hippocampus 

affects both the consolidation and expression of long-term memory (Fioriti et al., 2015). 

Functionally, CPEB3 regulates neuronal protein synthesis, and ubiquitination and SUMOylation 

regulates translation inhibitory function and aggregation of CPEB3 (Drisaldi et al., 2015; 

Pavlopoulos et al., 2011). Surprisingly, constitutive removal of CPEB3 did not affect one of the 

cellular correlates of long-term memory, long-term potentiation, but instead enhanced long-term 

depression and improved some forms of memory (Huang et al., 2014). The mechanistic basis of 

the consequences of constitutive removal of CPEB3 remains unclear. Among the other CPEB 

family members, variants of CPEB2 have putative prion-like domains, although it remains to be 

known whether they confer prion-like properties and whether CPEB2 is required for long-term 

memory. CPEB1, which is known to regulate synaptic protein synthesis, also impairs some forms 

of memory when deleted (Alarcon et al., 2004; Udagawa et al., 2012). Interestingly, forcible 
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dimerization of mammalian CPEB1 via a linker has been shown to act as competitive inhibitor of 

translation (Lin et al., 2012), although there is no evidence yet that CPEB1 forms such oligomers 

in the nervous system. CPEB4, similar to CPEB1, seems to be involved in a number of cellular 

processes and is abundantly expressed including in the nervous system (Novoa et al., 2010; Ortiz-

Zapater et al., 2012; Tsai et al., 2013). However the constitutive knock out of CPEB4 has no 

discernable memory phenotype (Tsai et al., 2013). Nonetheless, the studies with mammalian 

CPEB3 suggest a self-sustaining amyloidogenic state of CPEBs is involved in stabilization of 

memory across various species.  

Amyloids as a conformation-based protein switch 

 

The amyloidogenic oligomeric Orb2 enhances translation is consistent with its postulated 

function, but it is nonetheless surprising. It is surprising because in most cases in which proteins 

formed amyloids the amyloids are either toxic or non-functional. However, that amyloid formation 

can alter protein activity is not unprecedented. For example Pmel17, a transmembrane 

glycoprotein, involved in melanosome maturation forms amyloids inside the cell (Fowler et al., 

2006). It is postulated that in the amyloid state Pmel17 acts as a scaffold that accelerates melanin 

synthesis, although the exact mechanism is unknown. Likewise a number of peptide hormones 

form amyloids in the secretory granules (Maji et al., 2009). However it remains unclear how 

amyloid formation influence either the function or secretion of these peptide hormones. Recently, 

MAVS, a mitochondrial membrane protein involved in antiviral response in humans, has been 

shown to trigger transcription of interferon genes after it adopts an amyloid-like state (Cai et al., 

2014; Cai and Chen, 2014).  
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However, Orb2 is unique in the sense that amyloid formation results in a complete switch 

in activity states. The differential recruitment of distinct protein complexes to create an altered 

activity state indicates that prion-like behavior is in essence a protein-conformation based switch, 

whereby a protein can lose or gain a function that can be maintained over time in the absence of 

the original stimuli. Although such a possibility has been anticipated there are very few direct 

biochemical data to support such a possibility. 

 

A putative biochemical “trace” of long-lasting memory 

 

Models for the biochemical basis of memory propose that an external experience creates in 

specific neurons an enduring biochemical “trace” of the experience, which leads to altered 

neuronal properties and behavioral output (Crick, 1984; Dudai, 2002; Lynch and Baudry, 1984). 

Such a biochemical trace of long-lasting memory would need to have several distinct properties: 

i) be engaged by a temporally defined physiological stimulus; ii) form in response to some but not 

all experiences; iii) produce a change in the neuronal properties that elicit appropriate behavioral 

responses; and iv) deal with the natural turnover of individual proteins to enable a persistent change 

in behavioral output (Crick, 1984; Dudai, 2002; Lynch and Baudry, 1984).  

The emerging evidence from Aplysia, Drosophila and mouse suggests that the self-sustaining 

aggregates of CPEB may indeed be one of the biochemical substrates of at least some form of 

long-term memory: first, activity-dependent conversion to the amyloidogenic state suggests it can 

be engaged by behavioral training; second, phosphorylation or other mechanisms can confer the 

specificity and selectivity to long-term memory; third, Orb2-dependent activation of synaptic 

mRNAs alter the protein composition of the synapse, thereby altering synaptic properties and 
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neuronal output. Finally, once triggered, the stable amyloidogenic and self-sustaining capacity of 

Orb2 oligomer would outlast the turnover of individual molecules to sustain memory over the 

long-term. However some questions remain unanswered: how is selective engagement of the self-

sustaining state of neuronal CPEB ensured only in response to long-term memory-inducing 

stimuli? Once engaged, how long does it persist, and is its continued presence necessary for the 

persistence of memory? Can a transient memory be stabilized by artificial recruitment of the 

amyloidogenic state?   
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