
   

 



2 
 

 



3 
 

Abstract 

Diagnostic classification models (DCMs) may suffer from the latent class label switching 

issue. Label switching refers to the situation where the labels for the parameters switch across 

replications of the same estimation. It happens when there are the permutations of the number of 

latent classes (k!) with statistically equivalent solutions to the estimation, resulting from a 

symmetry parameter space. With uncertainty in the accuracy of the labels in the parameters, the 

interpretation of results could be invalid and misleading. 

A simulation study is used to investigate the prevalence of label switching in DCMs. 

Three independent variables are involved, including the model constraints, the effect size of the 

measurement model parameters, and the q-matrix specifications. The data is generated via R, and 

estimated via Mplus. Label switching is operationally defined as, for the same dataset, the 

existence of any difference in the estimated parameters between the model without constraints 

and the model with constraints, given that they have the same log likelihood.  

Results show that local optimal solutions prevail in some conditions, making it difficult 

to identify label switching. Given the same log likelihoods between models, 13.9 to 40 percent of 

those replications show label switching. 
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Chapter 1: Introduction 

This study targets an estimation issue in diagnostic classification models (DCMs) that 

occurs when they are estimated without monotonicity constraints. DCMs, as the name implies, 

are specific kinds of measurement models that classify people so as to make diagnostic 

decisions, e.g., student placements in education, or psychological pathological diagnoses. 

Statistically, DCMs are confirmatory latent class models. Latent class models, introduced by 

Lazarsfeld and Henry (1968) and further developed by Goodman (1974a, 1974b), are intended to 

build a relationship between unobserved (latent) categorical variables (classes) and observed 

(manifest) variables (Kaplan, 2004).  

Label switching in latent class models (Redner and Walker, 1984), happens when the 

label for each latent class switches across replicated estimations. For example, for a two-class 

model, at the first estimation, class 1 is labeled as having an emotional disorder. Accordingly, 

class 2 is labeled as having no emotional disorder. However, for another estimation with the 

same model specification and using the same software, unexpectedly, class 1 is now labeled as 

having no emotional disorder, whereas class 2 is labeled as having an emotional disorder. This is 

label switching. With uncertainty in the accuracy of the labels in the parameters, the 

interpretation of results could be invalid and misleading. 

For exploratory latent class models the number of latent classes is unknown, so is the 

meaning of each latent class. However, for the confirmatory latent class models, both the number 

and the meaning of each latent class is predefined, such as those in DCMs. As a result, label 

switching is a concern in confirmatory latent class models (the focus of this paper), but irrelevant 

in exploratory models.  
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Statistically, label switching is due to the fact that there is more than one set of 

parameters that produces the same model likelihood. The number of statistically equivalent 

alternative solutions is equal to the number of permutations of the count of classes. With K latent 

classes, there are K! statistically equivalent solutions resulting from symmetry of the likelihood 

function in the parameter space. In such solutions, the values of the parameters are identical 

within a class, but the class itself may appear with a different numeric label from what was 

originally assigned. All the permutations of the parameters yield invariant estimation results—

each has the same log-likelihood value. 

The term “label switching” comes from the fact that the labels of classes (and 

subsequently, each class-specific parameter), along with their corresponding meaning, can 

switch across replicated model estimations. Moreover, for exploratory latent class analyses, the 

label switching issue is not obvious unless comparing results across multiple analyses. A review 

of the existing methods on the label switching issue is beyond the scope of this paper; please 

refer to other authors for details (e.g., Celeux, Hurn, & Robert, 2000; Grün & Leisch, 2009; 

Jasra, Holmes, & Stephens, 2005; Richardson & Green, 1997; Stephens, 2000; Yao, 2012, 2013). 

This is a concern in confirmatory latent class models (e.g., DCMs), but not to the 

exploratory latent class models because for the exploratory models, neither the number nor the 

meaning of each latent class is defined in the model. They are meant to be provided after the 

estimation. Consequently, whether the label of having emotional disorder switches from class 1 

to class 2 makes no difference, as the meaning (the label) of classes is unknown before 

estimation. Exploratory models do not assume a fixed label across replicated estimation.   

However, confirmatory latent class models do assume a consistent labeling across 

replicated estimations. The label, as well as its corresponding meaning, is predefined for each 
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specific class during the model specification. For example, class 1 is defined explicitly as having 

emotional disorder in the model. However, inspection of item responses might show that class 1 

is associated with items that indicate a lack of an emotional disorder, contradicting the original 

predefined label. Based on the label in the model specification, those classified in class 1, which 

are thought to have emotional disorder, are in fact the opposite in the results. The output label is 

inconsistent with their original definition in the model, which may cause misleading 

interpretation of the results.  

Then the next question is does the process of setting a confirmatory model, either 

explicitly or implicitly, automatically constrain the labels as well? The answer is not known 

definitively as it depends on the type of model specification. For example, with four different 

structural models in DCMs, which will be introduced later in the paper, some may fix the labels 

as part of the model specification, while others may not. This is the part of the question this 

paper intends to address.  

When not provided with model-specific constraints, DCMs, as confirmatory latent class 

models, may suffer from this latent class model label switching issue. In DCMs, each latent class 

represents a specific pattern of mastered attributes. As DCM item and structural parameters are 

formed from their constrained latent class model counterparts, the meaning of the class is needed 

to determine which of these latent class model parameters becomes part of the DCMs’ 

parameterization. Because of this a priori assignment in DCM analysis an instance of label 

switching may lead to inconsistent results.  

General versions of DCMs, such as the Loglinear Cognitive Diagnosis Model (LCDM; 

Henson, Templin, & Willse, 2009), by definition place constraints on the item parameters of the 

model to ensure monotonicity of item response performance with respect to attribute status. 
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When one places no constraints on model parameters, the label switching issue may jeopardize 

the meanings of parameters and the interpretations of estimation results.  

Despite this risk, not placing constraints on LCDM item parameters is common in nearly 

all currently available software (e.g., flexMIRT, CDM package in R), possibly due to a lack of 

widespread recognition of the label switching issue in the community of researchers and 

practitioners of DCMs. In order to improve the accuracy of using DCMs this thesis will use a 

simulation study to explore the prevalence of label switching issue in DCMs.  

The results will shed light on (1) whether the practitioners of DCMs need to explicitly 

place model constraints on the parameters in order to reduce the risk and confusion caused by 

label switching, and (2) whether the current and future software developers of DCMs should add 

model constraints to the model specification as a common practice in the field.  
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Chapter 2: Literature Review 

Overview of DCMs 

DCMs are confirmatory latent class models that provide information for diagnostic 

decision making (Rupp, Templin, and Henson, 2010). Similar to Item Response Theory (IRT) 

models, the analytic unit in DCMs is an item. Different from the continuous latent trait assumed 

in IRT models, DCMs assume categorical latent variables that relate to observed item responses. 

The unobserved categorical latent variables in DCMs are called attributes. Most often an 

attribute has two categories and can either be mastered or non-mastered. DCMs provide a profile 

of mastered attributes to respondents instead of a single score.  

DCMs provide two types of information: structural information and item information. 

Structural information refers to the probability of diagnoses, often called the structural model in 

DCMs. Item information indicates how well each item discriminates between respondents with 

different levels of the attribute, and is often called the measurement model in DCMs.  

One benefit of using DCMs is that, if the model fits, attribute estimates can have overall 

higher reliability with fewer items than IRT models, as they require less information to 

accurately categorize test-takers than it does to place them on a continuous scale (Templin & 

Bradshaw, 2013). Therefore, tests developed based on DCMs can assess multiple attributes 

simultaneously without as many high dimensional calculations as are required in 

multidimensional IRT models. The price for this multidimensional efficiency is the reduction of 

information obtained for each attribute. The classification in DCMs comes from the latent 

variables themselves as opposed to having to find a cut score on the estimated latent variable 
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dimension. As such, DCMs are appropriate for diagnostic assessments, including clinical (e.g., 

Templin & Henson, 2006) and psychoeducational assessments (e.g., Rupp & Templin, 2008).  

DCMs as Latent Class Models 

To better understand the label switching issue, it may be beneficial to provide a 

background on the statistical foundations of DCM. Since DCMs are constrained latent class 

models, it is beneficial to begin with latent class models. A latent class model includes both 

structural and the measurement components. The structural models describe the relationship 

among attributes. The measurement models specify the relationship between item responses and 

attribute mastery status. The full model can be mathematically expressed in Equation (1), 

representing the marginal likelihood function for binary items with binary attribute for a given 

respondent. 

 

P(𝐗r) = ∑ νc

2𝐴

c=1

∏ P(Xri = 1|𝛂𝐫𝐜)xri  (1 − P(Xri = 1|𝛂𝐫𝐜))
1−xir

I

i=1

 

  

(1) 

where P(𝑿𝒓) is the probability function; 𝑿𝒓  are the observed item responses for respondent r; Σ 

is the summation symbol to sum across 2A latent classes; 𝜈𝑐 is the probability (i.e., marginal 

frequency) of latent class c in the population; ∏ is the product symbol, multiplying the 

conditional probabilities of correct response across all items given each latent class c for 

respondent r; 𝑃(𝑋𝑟𝑖 = 1|𝜶𝒓𝒄) is the conditional probability of correct response to item i by 

respondent r, given a specific attribute profile c; x𝑟𝑖 is the binary item response to item i for 

respondent r (0/1 for incorrect/correct).  
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For each respondent, the latent class model searches the latent class space one-by-one, 

modeling the item responses given each latent class. The probabilities for all respondents are 

multiplied as a whole for parameter estimation with all the observed data.  

DCMs are confirmatory latent class models, meaning DCMs include the two components 

of latent class models: measurement and structural. For the measurement component, it can be 

modeled using the general LCDM framework (or with any other latent-class based DCM). For 

the structural component, there are more options, including the saturated log linear structural 

model, the reduced log linear structural model, the tetrachoric structural model, and the Bayesian 

structural model. The measurement models will be introduced first, familiarizing readers with the 

log linear modeling framework. The structural models follow, with a higher level of complexity.   

The Measurement Models 

The measurement model in DCMs indicates how well the items discriminate between 

respondents with different levels of mastery of the attributes. In DCMs, the q-matrix is used to 

represents the set of attributes each item measures. The q-matrix stores the information in a 

matrix, with items in the rows and the attributes in the columns. The entries in the matrix are 

either 0s or 1s, representing whether an item measures an attribute (i.e., whether subject matter 

experts believe that the cognitive process of responding to an item involves a particular 

attribute). Statistically, it is analogous to the loading matrix in confirmatory factor analysis 

models, specifying an empirical hypothesis about the attribute structure to be tested.  

The Log Linear Cognitive Diagnosis Model 

Statistical Expression  

In DCMs, the response to an item is assumed to be caused by a function of only the set of 

attributes measured by the item. Given an examinee’s attribute profile and item parameters, item 
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responses are conditionally independent. An attribute profile in DCMs, which will be described 

in more detail in the structural models, represents a latent class (i.e., a specific combination of 

mastery statuses for all attributes).  

 As an item is developed to measure a set of attributes, the mastery status of the 

corresponding attributes should be a good predictor of the response to the item. If an item is not 

designed to measure an attribute, the mastery status of that attribute is assumed to have no effect 

on that item response. With an increasing number of mastered measured attributes, the predicted 

probability of a correct response to the item increases, as well as the log-odds of a correct 

response.  

For example, take an item measuring two attributes. The probability of a correct response 

to an item can be modeled with the LCDM. The model uses concepts borrowed from the analysis 

of variance (ANOVA) model, and breaks down item response probabilities into model-based 

parameters, such as an intercept, main effects, and interactions. The intercept indicates the 

probability of a correct response to the item when no attributes are mastered. A main effect 

represents the difference in probability between those who have mastered the attribute and those 

who have not, conditional on non-mastering the other attribute. An interaction term is used to 

explain any increase in the probability for those who have mastered both attributes, over and 

above the sum of two main effects.  

To solve the issue of constrained range, a logit link function is used, so that the new 

model space ranges from negative infinity to positive infinity. The logit is the natural logarithm 

of the odds. The odds is the ratio of the probability of a correct response to an item over the 

probability of an incorrect one.  

The general equation for items measuring two attributes is as following Equation (2):  
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ln (
P(Xie = 1|αe1, αe2)

P(Xie = 0|αe1, αe2)
) = λi,0 + λi,1,(1)αe1 + λi,1,(2)αe2 + λi,2,(1,2)αe1αe2 

  

(2) 

where,  𝑋𝑖𝑒  is the response to the item i for examinee e; 𝑋𝑖𝑒 ∈ {0,1} indicates a correct/incorrect 

response to item i; 𝛼𝑒1 is the latent variable for Attribute 1; 𝛼𝑒2is the latent variable for Attribute 

2; P(Xie = 1|αe1, αe2) rrepresents the probability of a correct response to item i for an examinee 

e, given the mastery status (0/1) of  attribute 𝛼1 and 𝛼2; P(𝑋𝑖𝑒 = 0⃓ αe1, αe2) represents the 

probability of an incorrect response to an item i, given the mastery status of 𝛼𝑒1 and 𝛼𝑒2; 

ln (
P(X𝑖𝑒=1|αe1,αe2)

P(X𝑖𝑒=0|αe1,αe2)
) represents the log-odds of a correct response over an incorrect response to an 

item i, given the mastery status of 𝛼𝑒1 and 𝛼𝑒2; λ𝑖,0 is the intercept and represents the predicted 

log-odds of a correct response for examinees in the reference group, who have mastered neither 

of the attributes (i.e., 𝛼𝑒1= 0, 𝛼𝑒2 = 0); λ𝑖,1,(1) is the main effect for 𝛼𝑒1, indicating the increase in 

the log-odds of a correct response for examinees who have mastered 𝛼𝑒1 but not 𝛼𝑒2 (i.e., 𝛼𝑒1= 

1, 𝛼𝑒2= 0); λ𝑖,1,(2)  is the main effect for 𝛼𝑒2, indicating the increase in the log-odds of a correct 

response for examinees who have mastered 𝛼𝑒2 but not 𝛼𝑒1 (𝛼𝑒1= 0, 𝛼𝑒2= 1); λ𝑖,2,(1,2) is the 

interaction for 𝛼𝑒1 and 𝛼𝑒2, indicating the additional increase in the log-odds for examinees who 

have mastered both 𝛼𝑒1 and 𝛼𝑒2 (i.e., 𝛼𝑒1 = 1, 𝛼𝑒2 = 1).   

The log-odds can be transformed back into the probability of correct response with 

Equation (3). 

 

P(Xie = 1|αe1, αe2) =
exp(λi,0 + λi,1,(1)α𝑒1 + λi,1,(2)αe2 + λi,2,(1,2)αe1αe2)

1 +  exp(λi,0 + λi,1,(1)α𝑒1 + λi,1,(2)αe2 + λi,2,(1,2)αe1αe2)
 

  

(3) 
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 For items measuring multiple attributes simultaneously, a generalized form of the log 

linear model can be used, as shown in Equation ((4). It specifies an item response as a function of 

the q-matrix entries (𝒒𝒊, the attribute profiles (𝜶𝒄), and the item parameters (𝝀𝒊). 

 

πic =  P(Xic = 1|𝛂𝐜) =
exp(λi,0 +  𝛌𝐢

𝐓𝐡(𝛂𝐜, 𝐪𝐢)) 

1 +  exp(λi,0 +  𝛌𝐢
𝐓𝐡(𝛂𝐜, 𝐪𝐢)) 

 

(

(4) 

Where 𝜋𝑖𝑐 is the probability of a correct response to an item i (P(Xri = 1|𝛂𝐫𝐜)) from 

Equation (1), given latent class c; λ𝑖,0 is the intercept parameter, indicating the logit of a correct 

response given none of the attributes measured by item i is mastered; 𝛌𝒊 are the main effect and 

interaction parameters for item i, a vector of size (2𝑛 − 1) × 1; 𝒉(𝜶𝒄, 𝒒𝒊) is a vector of the same 

size with 𝛌𝒊, pertaining to the linear combinations of 𝜶𝒄and 𝒒𝒊, where 𝜶𝒄 represents the attribute 

profile in latent class c, and 𝒒𝒊, represents the q-matrix entries for item i.  

The exponent part is a kernel expression, which can be represented in Equation (5). The 

kernel expression includes an intercept, all main effects, and all possible interactions between 

attributes. 

             kernel = λi,0 +  𝛌𝐢
𝐓𝐡(𝛂𝐜, 𝐪𝐢)  

=  λi,0 +  ∑ λi,1,(a)αcaqia

A

a=1

+  ∑ ∑ λi,2,(a,a′)αcaαca′qcaqca′

A

a′>1
a=1

 

+  … 

  

(5) 

where  λ𝑖,0 is the intercept parameter; λ𝑖,1,(𝑎) represent the main effect for attribute α;  𝛼𝑐𝑎  is the 

attribute profile for latent class c; 𝑞𝑖𝑐  is the q-matrix entry for item i in latent class c;   λ𝑖,2,(𝑎,𝑎′) 

represents three two-way interactions between two attributes; etc.  

An Example with Three Attributes 
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To facilitate understanding, an example with three attributes and seven items is shown. 

With three attributes, there are seven possible unique patterns on the q-matrix, as shown in Table 

1. The number of unique patterns for the q-matrix is (2𝐴 − 1), where A is the number of binary 

attributes in the test. There are 2𝐴 unique patterns. Yet an item must measure at least one 

attribute, so he pattern in which no attributes is measured is excluded.  

Presumably, the mastery status of an attribute should not affect the probability of a 

correct response to an item if the item does not measure the attribute; vice versa. For example, 

for item 1, the probability of a correct response will only be affected by the mastery status of 

attribute 3, whereas the mastery status of attribute 1 or attribute 2 has no effect. For item 7, the 

mastery status of all three attributes will have an effect on the probability of a correct response.  

Based on Equation ((4) and (5), given an attribute profile (i.e., latent class c), the 

probability of correct response to item i is expressed as following Equation (6).   

 
πic =  P(Xic = 1|𝛂𝐜) =

exp(λi,0 +  𝛌𝐢
𝐓𝐡(𝛂𝐜, 𝐪𝐢))  

1 +  exp(λi,0 + 𝛌𝐢
𝐓𝐡(𝛂𝐜, 𝐪𝐢)) 

; 

𝑤ℎ𝑒𝑟𝑒 𝛌𝐢
𝐓𝐡(𝛂𝐜, 𝐪𝐢) = (λi,1,1)(αc1)(qi1) + (λi,1,2)(αc2)(qi2) + (λi,1,3)(αc3)(qi3)

+ (λi,2,(1,2))(α𝑐1)(αc2)(qi1)(qi2)

+ (λi,2,(1,3))(α𝑐1)(αc3)(qi1)(qi3)

+ (λi,2,(2,3))(α𝑐2)(αc3)(q𝑖2)(q𝑖3)

+ (λi,3,(1,2,3))(α𝑐1)(αc2)(αc3)(qi1)(qi2)(qi3) 

  

(6) 

where exp(⋅) is the exponential function; λ is the item parameter, including intercept (λi,0), main 

effects(λi,i,1), two-way interactions (λi,2,(a,a′)), and three-way interactions (λi,3,(1,2,3)); αca is the 
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attribute profile, indicating the mastery status of attribute a for latent class c; q𝑖𝑐  is the binary q-

matrix entry, indicating whether item i measures the attribute a. 

As an example, the probability of a correct response to item 5, given a person in latent 

class c is π5c, representing in Equation (7).   

 
π5c =  P(X5c = 1|𝛂𝐜) =

exp(λ5,0 +  𝛌𝟓
𝐓𝐡(𝛂𝐜, 𝐪𝟓))  

1 +  exp(λ5,0 +  𝛌𝟓
𝐓𝐡(𝛂𝐜, 𝐪𝟓)) 

; 

𝑤ℎ𝑒𝑟𝑒 𝛌𝟓
𝐓𝐡(𝛂𝐜, 𝐪𝟓) = (λ5,1,1)(αc1)(q51) + (λ5,1,2)(αc2)(q52)

+ (λ5,1,3)(αc3)(q53) + (λ5,2,(1,2))(α𝑐1)(αc2)(q51)(q52)

+ (λ5,2,(1,3))(α𝑐1)(αc3)(q51)(q53)

+ (λ5,2,(2,3))(α𝑐2)(αc3)(q52)(q53)

+ (λ5,2,(1,2,3))(α𝑐1)(αc2)(αc3)(q51)(q52)(q53) 

= (λ5,1,1)(αc1)(1) + (λ5,1,2)(αc2)(0) + (λ5,1,3)(αc3)(1)

+ (λ5,2,(1,2))(α𝑐1)(αc2)(1)(0) + (λ5,2,(1,3))(α𝑐1)(αc3)(1)(1)

+ (λ5,2,(2,3))(α𝑐2)(αc3)(0)(1)

+ (λ5,2,(1,2,3))(α𝑐1)(αc2)(αc3)(1)(0)(1) 

= (λ5,1,1)(αc1) + (λ5,1,3)(αc3) + (λ5,2,(1,3))(α𝑐1)(αc3) 

  

(7) 

Therefore, the response to item 5 is only affected by the mastery status of attributes 1 and 3. 

Model Constraints in LCDM and Label Switching  

  A brief introduction to the constraints used in the LCDM will facilitate 

understanding of the effects such constraints have on label switching. 
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In the LCDM, the main effect parameters, representing the logit probability difference of 

a correct response to an item between masters and non-masters of measured attributes, are 

usually constrained to be greater than zero to meet the assumption of a monotonic increase in the 

probability with increasing mastery: with an increasing number of mastered measured attributes, 

students should have higher probability of a correct response. Secondly, constraints can be 

placed on the interaction effect parameters so as to ensure the simultaneous mastery of more than 

one measured attribute will result in a higher probability of a correct response than mastery of 

any attribute alone.   

 With the constraints on main effect parameters, the meaning of latent classes is fixed to 

match the model specification. Without model such constraints, the meaning of latent classes is 

determined during the estimation. With model constraints, the previous unspecified parameter 

space that leads to the label switching is resolved. However, in addition to constraints on main 

effect parameters, it is not yet understood whether constraints on interaction effect parameters 

are necessary to prevent label switching.  

The Structural Models 

In DCMs, the structural model provides the probability of diagnoses (i.e., proportion 

population mastering of each attribute profile). Assuming there are 𝐴binary attributes (i.e., 

mastery/non-mastery), there are 2𝐴 permutations of attribute mastery statuses, called attribute 

profiles. As DCMs are constrained latent class models, each attribute profile represents a latent 

class. The probability of all possible attribute profiles sums up to one. For example, with three 

measured attributes(𝐴 = 3), there are 23 = 8 different attribute profiles of mastery or non-

mastery for these three attributes. The attribute profile that represents none of the three attributes 
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mastered is symbolized as 000, whereas it is 001 if the first three attributes non-mastered and the 

last one mastered. The sum of eight probabilities equal one. As such, there are (2𝐴 – 1) unknown 

probabilities in the structural model. Thus seven probabilities need to be estimated and the eighth 

can be calculated by subtracting the sum of the others from one. This model is often called the 

saturated structural model as all possible structural probabilities are estimated, making it 

equivalent to the general latent class structural model.  

One potential issue in estimation is that the number of unknown parameters in the 

saturated structural model increases exponentially as the number of measured attributes 

increases. Thus except for the saturated structural models, there are various constrained models 

that aim to reduce the number of unknown parameters to improve estimation efficiency. To 

achieve this reduction, the marginal and joint probabilities of attributes can be modeled as 

various kinds of effects. For example, in the log linear structural model, the joint probabilities 

can be represented by main effects and interaction terms, instead of estimating all 2𝐴 − 1 

marginal probabilities linearly. The following section will only introduce the general saturated 

model, as the constrained model is beyond the scope of the current study.  

The Log Linear Saturated Structural Models  

Statistical Expression 

Log linear models re-express the joint probability into different effects similar to 

ANOVA models, which provides a model-based method to reduce redundant parameters (see 

Chapter 8 of Rupp et al., 2010). A log linear model rescales the base-rate probability (𝜈𝑐) for 

each attribute profile (latent class) c using the natural logarithm (𝜇𝑐 = log 𝜈𝑐 )  . The attribute 
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profile probabilities can be integrated into the marginal probabilities of mastery for each 

attribute—the proportion of examinees mastering any specific attribute. 

The log linear saturated model uses main effects for attributes and possible interactions of 

all attributes to express the log of the base-rate probability for a given attribute profile. It can be 

represented as below in Equation (8).   

 

µ𝑐 =  ∑ 𝛶1,(𝑎)𝛼𝑐𝑎 + 

𝐴

𝑎=1

∑ ∑ 𝛾2,(𝑎,𝑎′)𝛼𝑐𝑎𝛼𝑐𝑎′

𝐴

𝑎′=𝑎+1

𝐴−1

𝑎=1

+ ⋯ +  𝛾𝐴,(𝑎,𝑎′,… ) ∏ 𝛼𝑎

𝐴

𝑎=1

 

  

(8) 

where 𝜇𝑐 is the kernel expression to indicate the membership probability of latent class c; 

𝛶1,(𝑎)represents the main effect connected with attribute a, indicating the mastery probability in a 

natural logarithmic scale of each  single attribute a, whereas in the measurement model, the main 

effect parameters indicate the difference of a correct-response probability to an item in logit scale 

for those who have mastered a single attribute, compared with those who have mastered none) ; 

 𝛾2,(𝑎,𝑎′)represents the two-way interaction connected with attribute a and a’, indicating the 

mastery probability in a natural logarithmic scale of both attributes, whereas in the measurement 

mode, two-way interaction parameters indicate the difference of a correct-response probability to 

an item in logit scale for those who have mastered both attributes, compared with those who 

have mastered either one;  𝛾𝐴,(𝑎,𝑎′,… )represents a one-way interaction connected with all 

attributes, indicating the mastery probability in a natural logarithmic scale of all a attributes; 𝛼𝑐𝑎 

represents the attribute profile in latent class c.  

 The interpretation of parameters in the log linear structural model is not the same as that 

in the log linear measurement model. This is because in the structural model, parameters are used 

to estimate the relationship between attributes, whereas parameters are used to estimate the 
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relationship between attributes and the items in the measurement model. These parameters are 

designed to answer different questions, and therefore carry different meanings. The structural 

model depends on the probability (proportion) of mastering each attribute in the population (i.e., 

estimation of the distribution of attribute mastery status), whereas the measurement model 

depends on the probability of a correct response to an item (i.e., estimation of the relationship 

between attribute mastery status and item property). 

Based on the parameters in equation (8), the probability of membership in latent class c 

(𝜈𝑐) can be estimated with Equation (9). The probability can be calculated by an inverse 

transformation of a natural logarithm scale (exp(𝜇𝑐)) . Next, in order to ensure that the sum of all 

probabilities is equal to one, each transformed component (exp(𝜇𝑐)) is divided by the sum of all 

components, as shown in Equation (9).  

 

ν𝑐 =  
exp (𝜇𝑐)

∑ exp (µ𝑐)𝑐
𝑐=1

      
  

(9) 

 Furthermore, the marginal probability of each latent class can be aggregated into the 

marginal probability (p𝑎) for each attribute as shown in Equation (10), 

 

p𝑎 =  ∑ 𝛼𝑐𝑎ν𝑐

𝑐

𝑐=1

                
  

(10) 

where ν𝑐 is the probability of membership in latent class c; 𝛼𝑐𝑎 is binary (0/1) variable, 

representing whether Attribute a is non-mastered (0) or mastered (1) in latent class c.  

An Example with Three Attributes 

To facilitate understanding, an example with three attributes is shown. With three 

attributes, there are 23  =  8 unique attribute profiles (i.e., latent classes). The corresponding 
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attribute profile and probabilities are shown in Table 2. There are two types of marginal 

probabilities: one is for each attribute (p𝑎), the other is for each latent class (ν𝑐). For the 

marginal probabilities of latent classes, they are re-expressed in a linear combination of attributes 

in the model-based combinations. Given that the probability can only range between zero and 

one, it is rescaled in the natural logarithm (𝜇𝑐) so that the model space can be wider and more 

flexible.  

In the log linear saturated model, the log probability for latent class c (𝜇𝑐) is equal the 

sum of three main effects, three two-way interactions, and one three-way interaction. This is 

demonstrated using latent Class 5 as an example in Equation (11), 

 µ5 = (𝛾1,1)(𝛼51) +  (𝛾1,2)(𝛼52) + (𝛾1,3)(𝛼53) +  (𝛾2,(1,2))(𝛼51)(𝛼52)

+  (𝛾2,(1,3))(𝛼51)(𝛼53) +  (𝛾2,(2,3))(𝛼52)(𝛼53)

+  (𝛾3,(1,2,3))(𝛼51)(𝛼52)(𝛼53)

=  (𝛾1,1)(1) + (𝛾1,2)(0) + (𝛾1,3)(0) + (𝛾2,(1,2))(1)(0)

+  (𝛾2,(1,3))(1)(0) +  (𝛾2,(2,3))(0)(0) +  (𝛾3,(1,2,3))(1)(0)(0)  

= (𝛾1,1)  

  

(11) 

in which µ5 is the probability for latent class 5; 𝛾1,1is the main effect parameter for attribute 1; 

𝛾2,(1,2) is the two-way interaction between attribute 1 and attribute 2; 𝛾3,(1,2,3) is the three-way 

interaction among attribute 1, attribute 2, and attribute 3; and 𝛼51is the latent variable for 

attribute 1 in latent class 5. 

The log probability for latent class can be transformed back to a probability scale using 

Equation (9). The transformation involves two steps. The first step is to calculate the exponential 

of log probability, which is the raw probability that may not fall within the range of zero and one. 
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In order to ensure that the sum of probabilities is equal to one, each raw probability is divided by 

the sum of all raw probabilities.  

Using latent class 5 as an example, as shown in Equation (12),  

 

ν5  =  
exp(µ5)

∑ exp(µc)c=5
c=1

 =  
ν5’

ν1’ +  ν2’ +  ν3’ +  ν4’ +  ν5’
 

  

(12) 

in which  𝜈𝑐
′   the log probability of latent class c;  ν5 is the marginal probability of latent class 5. 

 Finally, these probabilities for latent classes νc can be used to calculated marginal 

probabilities for attributes. The probability of attribute 1 is shown as an example in Equation 

(13). 

 
p1 = ∑ 𝛼𝑐1ν𝑐

𝑐

𝑐=1

= (0)(𝜈1) + (0)(𝜈2) + (0)(𝜈3) + (0)(𝜈4) + (1)(𝜈5) + (1)(𝜈6)

+ (1)(𝜈7) + (1)(𝜈8) =  (𝜈5) + (𝜈6) + (𝜈7) + (𝜈8)                           

  

(13) 

 In summary, the log probabilities of latent classes µ𝑐are modeled by main effect and 

interaction effect parameters γ (Equation (8)). The log probabilities µ𝑐are then transformed back 

to probability scale (Equation (9)). Finally, the probabilities of latent class (ν𝑐) are used to 

calculate the marginal probabilities of attributes p𝑎 (Equation (10)). 

An Example of Label Switching in Latent Class Models  

A concrete example may assist in building an intuitive understanding of the label 

switching issue. With a single attribute measured, there are two latent classes (non-

mastery/mastery of the attribute), and thus there is only one way of label switching between the 
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two classes (0 or 1). In this case, it is easy to judge which version of the results is the “correct” 

one, based on the monotonicity assumption. That is, students mastering the attribute have higher 

probability of a correct response to the items than those non-mastered. In other words, the main 

effect parameters have to be positive, representing the probability increment (in logit scale) of a 

correct response to an item, between the students with mastery and those without.  

Nevertheless, it becomes increasingly challenging when more attributes are measured. 

With A attributes measured, the number of latent classes increase exponentially(2𝐴
). 

Correspondingly, the number of permutations of possible label switching increases rapidly(2𝐴!). 

In this case, it is difficult to identify and disentangle the label switching pattern and recover the 

“correct” labeling as defined initially in the model, and thus misinterpretation becomes much 

more likely. Strategically, it is much more practical to avoid the issue from the beginning than to 

recover from any unforeseen consequences after they occur.  

The sample data generated is based on the observed frequency of response patterns in 

Table 3 D2from Macready and Dayton (1977). A simple dataset such as that shown in Table 3 

can be used to demonstrate this effect in a straightforward manner. In total, there is one attribute, 

four items, and 142 binary responses. A one-attribute DCM is used to analyze the data, with the 

specification of the log linear structural model and LCDM measurement model, using RStudio 

(Version 0.99.473), a tool designed to facilitate the use of R. Even with only two replications, the 

label switched. The results are shown in Table 3.  

With positive main effect parameters, Replication I in Table 3 shows the correct version 

of labeling, while Replication II shows the incorrect one after label switching. Most importantly, 

Replication II shares the same model fit index with Replication I, with the log likelihood being -
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331.76. Label switching happens without influencing the model fit, which makes it a less 

discernible issue.   

For the structural model, the probability of the mastery switches with that of non-mastery 

after the label switches. The meanings of the parameters switch correspondingly with label 

switching, yet the labels carry over as the model had originally specified. This is a problem in 

confirmatory models. 

For the measurement model, the main effect parameters in Replication II have the same 

absolute values with those in Replication I, with opposite sign. In Replication I, the main effect 

parameters indicates the probability difference on a logit scale of a correct response of class 2 

from that of class 1 (the reference group). The positive parameters indicate a higher probability 

for membership in class 2. As the monotonicity assumption indicates, class 2 should be 

comprised of students with mastery. On the contrary, in Replication II, the main effect 

parameters with the same meaning, are reversed and have a negative sign. In this case, class 2 

actually refers to students without mastery. However, with the same model specification, the 

label in class 1 is fixed across replication as either mastery or non-mastery. In either case, there 

is one version of results that is contradictory to what the label indicates. This is the type of 

misleading information caused by the label switching issue.  

While the absolute probability difference between groups stays the same (i.e., same 

absolute values in main effect parameters with an opposite sign), the probability of the reference 

group changes, as the group membership switches between two result versions. The actual 

meaning of the reference group switches between mastery and non-mastery. Accordingly, the 

intercept parameters, referring to the probability in logit scale of a correct response for the 

reference group, are different in the two result versions.  
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We propose to solve this issue by setting the same labeling rules for both processes—

model specification and model estimation, so as not to allow random assignment. In the DCMs, 

this problem caused label switched, but could be resolved by add a constraint such that the 

probability for a correct response for those students with more mastery monotonically increasing. 

The occurrence of label switching can be identified by comparing results from the model with 

redefined labeling rules (i.e., model constraints) with the model without such constraints.  
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Chapter 3: Method 

The following simulation study was conducted to investigate the prevalence of the label 

switching issue in DCMs and the effectiveness of adding model constraints to resolve the issue. 

The presence of label switching is the dependent variable, operationally identified as any 

difference in the structural model parameters between the model with constraints and the model 

without constraints for the same data set, given that the two models have the same log likelihood.  

There are three independent variables. The first one is the use of constraints or the 

absence of constraints in the DCM measurement models. Based on the monotonic assumption, 

the constraints restrict the main effect parameters in the measurement models to be greater than 

zero (pp. 208 - 211, Rupp, Templin & Henson, 2010). The interaction terms are constrained to 

ensure that the main effect parameters are positive. From a substantive perspective, this means 

that there is always an increase in the probability of a success response to an item, with more 

mastery of the attributes measured by an item. Constraints are placed on the measurement 

models because they connect between latent classes and item performances.  

The second independent variable is the effect sizes of the DCM measurement model 

parameters. The effect size is conceptually similar to the item discrimination parameter in item 

response theory models. It indicates the magnitude of the difference in the probability of a 

success response between those students classified by mastered and students classified as non-

mastered. The high effect size is defined as those with a .30 higher probability for a success 

response along with the mastery of one additional measured attribute. The low effect size is 

defined as those with a .20 increase in the probability for a success response, along with the 
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mastery of one additional measured attribute. With high effect size, classification may become 

more distinguishable, leading to a lower probability of label switching. 

The third independent variable is the q-matrix specification. Two conditions were 

included:  balanced and empirical, as shown in Table 4. The balanced q-matrix is specified as 

three times of the seven unique q-matrix patterns, with an item measuring either one attribute, 

two attributes, or three attributes. In contrast, the empirical q-matrix is a selected matrix from the 

empirical DTMR item parameters from Bradshaw, Izsák, Templin, and Jacobson (2014, p. 9). 

The DTMR data has four attributes and 28 items. 

In order to generate the empirical q-matrix, three attributes are randomly selected from 

the four, without replacement, as the first step. The next step is to create the specific item pool by 

excluding items that measure none of the three selected attributes. Next, 21 items are randomly 

sampled from the item pool, with replacement. Finally, the identification of attributes is checked 

by multiplying the transpose of the empirical q-matrix with itself. The basic rule is that each 

attribute has to be measured individually by at least one item, so that it can be separated from 

other attributes.  

All conditions of the simulation study included three attributes, 21 items, and 5000 

examinees. Three has been chosen as the number of attributes in order to maintain a balance 

between simplicity the complexity required to mimic reality. With three attributes, there are 

seven (23 − 1) unique q-matrix entries, with each item measuring one, two or three attributes. 

With three replications of seven unique item loading patterns, 21 items are generated. The 

number of examinees has to be large enough for estimation stability. The number of replications 



30 
 

of conditions has been selected in order to balance the generalizability of results versus the time 

required for estimation.  

For each effect size and q-matrix specification, 1000 replications were generated using R 

(R Development Core Team, 2016; version 3.2.0), respectively. Thus 4000 unique datasets were 

generated using a saturated log linear structural model and a log linear cognitive diagnostic 

measurement model. For each unique dataset, Mplus 7.3 (Muthen & Muthen, 1998-2016) was 

used to estimate parameters two times: once by a model with constraints and once by a model 

without constraints via. Model specifications were the same for both models, except for the 

constraints. There were 8000 estimations in total.  

Table 5 provides a summary of values of the parameters for the structural model and 

Table 6 for the measurement models. All parameters were simulated from a uniform distribution 

in order to make the conclusion generalizable. The uniform distribution was used for all 

parameters, as its simplicity serves adequately for the purpose, namely generating the model 

parameters randomly within a certain reasonable range.  
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Chapter 4: Results 

In total, for both the balanced q-matrix condition and the empirical q-matrix condition, 

there were 4000 estimations via Mplus respectively; 1000 from each of the four sub-conditions, 

including high effect size without constraints, high effect size with constraints, low effect size 

without constraints, and low effect size with constraints. In order to compare the effects of 

adding model constraints, each true dataset was estimated by both the model without constraints 

and the model with constraints. The same analytic procedures apply to both the balanced q-

matrix condition and the empirical q-matrix condition. The main results for the balanced q-

matrix condition and empirical q-matrix are summarized in Table 7, and showed in Figure 1 and 

Figure 2. Tables after Table 7 contain results regarding the parameter recovery information of 

the simulation study. 

Balanced Q-Matrix  

First, the model convergence was checked. For the model without constraints, both the 

high and the low effect size conditions have full convergence for their corresponding 1000 

estimations. However, for the model with constraints, the convergence rate is lower. For the high 

effect size condition, 89.5 percent converged; whereas only 42.4 percent converged for the low 

effect size condition.  

The second step was to identify the valid replications, which was defined as estimates 

from both the model without constraints and the model with constraints converge. Because all 

estimates using the model without constraints converge, the rate of valid replication is the same 
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as the rate of convergence for estimation using the model with constraints. Only valid 

replications were used for subsequent analyses. 

The third step was to check whether the model without constraints converged at the same 

mode as with the model with constraints. This was determined by whether the two models had 

the same log likelihood for the same data set. Results showed that for the high effect size 

condition 67.6 percent (605 out of 895) of the valid replications converged at the same mode for 

the model without and the model with constraints. However, only 6.1 percent (26 out of 424) of 

the valid replications converged at the same mode for the low effect size condition.  

Furthermore, label switching was checked among the valid and same mode replications. 

Given the same log likelihood from the model without constraints and the model with 

constraints, the two models are regarded as converging at the same mode in the sample space. 

The models are indicated as having the same parameters if there is no label switching. In 

contrast, when there are differences in the models’ parameters, the replication is flagged as 

having label switching. Structural model parameters from the two models are used for this index.  

Results showed that for the high effect size condition, 86.1 percent (521 out of 605) of 

the valid and same mode replications had exactly the same structural model parameters. As a 

result, 13.9 percent were regarded as having had label switching. For the low effect size 

condition, 73.1 percent (19 out of 26) replications had exactly the same structural model 

parameters between the model without and the model with constraints, given the same log 

likelihood. As a result, 26.9 percent were regarded as having had label switching.  
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Empirical Q-Matrix  

The first step was to check model convergence, which was indicated by whether a 

calibration provided output for the person classification parameters. For the model without 

constraints, both the high and the low effect size conditions have full convergence for their 

corresponding 1000 estimations.  For the model with constraints, the convergence rate was 

slightly lower. For the high effect size condition, 990 replications converged; whereas 931 

replications converged for the low effect size condition.  

The second step was to identify the valid replications, which was defined as when 

calibrations from both the model without constraints and the model with constraints had 

converged. Because all estimates using the model without constraints converge, the rate of valid 

replication is the same as the rate of convergence for estimation using the model with constraints. 

Only valid replications were used for subsequent analyses. 

The third step was to check whether the model without constraints converged at the same 

mode as the model with constraints. This was indicated by whether the two models had the same 

log likelihood for the same data set. Results showed that, for the high effect size condition, 937 

out of the 990 valid replications had the same log likelihood for the model without constraints 

and the model with constraints. For the low effect size condition, 369 out of the 931 valid 

replications converged at the same mode.  

As the further step, label switching was checked among the valid and same mode 

replications. Given the same log likelihood from the model without constraints and the model 

with constraints, the two models were regarded to converge at the same mode in the sample 
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space. If no label switching occurred the models should have the same parameters. In contrast, if 

there were differences in their parameters the replication was flagged as having label switching. 

Structural model parameters from the two models were used for this index.  

Results showed that for the high effect size condition, 81.4 percent (763 out of 937) of 

the valid and same mode replications had exactly the same structural model parameters. As a 

result, 18.6 percent were regarded as having had label switching. For the low effect size 

condition, 60 percent (221 out of 369) replications had exactly the same structural model 

parameters between the model without and the model with constraints, given the same log 

likelihood. As a result, 40 percent were regarded as having had label switching.  

Parameter Recovery  

For both the balanced q-matrix condition and the empirical q-matrix condition, the 

parameter recovery was evaluated for the structural model, the measurement model, and the 

person latent class classification respectively. The bias and the root mean squared error (RMSE) 

were examined for the converged replications across conditions.  

For the structural model, the estimated log probability (i.e., the “means” from the Mplus 

output) was compared with its corresponding true value, which was transformed from the true 

latent class probability based on Equation 9. By default, Mplus constrained the last latent class 

log probability to zero, as a consideration of the model identification. In total, seven structural 

model parameters were compared between their estimated values and their true values. For the 

measurement model, the parameters for the balanced q-matrix condition included 21 intercepts, 

36 main effects, and 21 interactions, whereas there were 21 intercepts, 23 main effects, and 2 
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interactions for the empirical q-matrix condition. Given the large number of parameters involved, 

the type of the parameter (i.e., intercepts, main effects, and interactions) was selected as the 

analytic unit, instead of the individual parameter for the measurement model. For the person 

classification accuracy, the estimated latent class was compared with the true latent class across 

5000 examinees, using Cohen’s Kappa. Results from a single replication were aggregated across 

all converged replications within the same condition, with their standard errors reported. Results 

were summarized in Table 8 to Table 10.  

For the structural model, as shown in Table 8, the estimated parameters recovered better 

for the high effect size condition than the low effect size condition. The balanced q-matrix 

condition had better parameter recovery than the empirical q-matrix condition. Both the mean 

and standard error of the RMSEs were huge for the empirical q-matrix condition, due to a few 

estimation outliers.   

For the measurement model, as shown in Table 9, the estimated intercepts recovered the 

best for both q-matrix conditions, whereas the estimated interactions recovered the worst. For 

both conditions, the RMSE index were huge, except for the intercept parameters in the model 

with constraints condition.  

For the person latent class classification, as shown in Table 10, the high effect size 

condition had much higher accuracy than the low effect size condition, for both q-matrix 

conditions. The classification accuracy was relatively higher for the balanced q-matrix condition 

than the empirical q-matrix condition. The classification accuracy was slightly higher for the 

model with constraints condition than the model without constraints condition.  
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 In addition, the parameter recovery was compared between the non-label switching 

replications and those label switching replications. The non-label switching replications were 

identified when the model without constraints and the model with constraints had exactly 

structural model parameters, given the two models converged at the same mode (i.e., the same 

log likelihood). The label switching replications were identified when the two models had 

different structural model parameters, given the same mode. Replications that were neither 

converged nor shared the same mode were excluded from this analysis. Results were 

summarized from Table 11 to Table 14.  

 For the structural model, as shown in Table 11, the estimated parameters recovered better 

in the non-label switching replications than those label switching replications, with much smaller 

bias and RMSE. The label switching replications had more extreme estimated values, indicated 

by big RMSE values and standard errors.  

 For the measurement model, as shown in Table 12 for the non-label switching 

replications and Table 13 for the label switching replications, the non-label switching 

replications generally had better parameter recovery than the label switching replications. The 

estimated intercepts recovered well for both groups, whereas the estimated interactions recovered 

poorly for both.  

 For the person latent class classification, as shown in Table 14, both the non-label 

switching and the label switching replications showed similar pattern with the combined analysis 

mentioned previously. The high effect size condition outperformed the low effect size condition. 

The balanced q-matrix outperformed the empirical q-matrix condition. The classification 
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accuracy were slightly higher and more stable in the non-label switching replications than in the 

label switching replications.   
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Chapter 5: Discussion 

One distinct difference in the results between the balanced q-matrix condition and the 

empirical q-matrix condition was the frequency of finding local optimal solutions, when the 

estimation from the model without constraints had different log likelihoods from the model with 

constraints. For the balanced q-matrix condition 67.6 percent of valid replications converged at 

the same solution as for the high effect size condition, whereas only 6.1 percent converged for 

the low effect size condition. However, for the empirical q-matrix, the percentage was 94.6 

percent for the high effect size condition and 39.6 percent for the low effect size condition.  

This finding should raise concern regarding the instability in latent class analysis due to 

local optimal solutions. For both q-matrix conditions, the high effect size condition suffers less 

from the local optimal solutions than the low effect size condition. This indicates that with higher 

discriminating items the calibration is more likely to identify the same solution in the sample 

space, either without constraints or with constraints.  

This finding should raise concern when using models without constraints in latent class 

analysis, due to the non-negligible instability of estimation. Adding constraints to a model, by 

definition, improves the stability of results by reducing the randomness in the search of the 

sample space. However, it does not guarantee a global optimal solution, even though adding 

constraints can stabilize the results over replications. Different start values may be recommended 

to test for a global optimal solution.  

In addition, the estimation for the empirical q-matrix condition was more stable in both 

high and low effect size conditions than the balanced q-matrix condition. One reason that might 



39 
 

account for the relative estimation stability was the relative simplicity of the empirical q-matrix, 

including only two two-way interactions. The balanced q-matrix had three three-way 

interactions, and 18 two-way interactions. The higher complexity in the q-matrix and the more 

unknown parameters, the more difficult for an estimation reached an optimal solution in the 

sample space. This indicated a simpler q-matrix design was preferred to attain higher estimation 

stability.  

Another noteworthy finding was regarding the frequency in label switching. In the 

balanced q-matrix condition, for the high effect size condition, 13.9 percent of the valid 

replications that had the same log likelihood indicated label switching, whereas 26.9 percent of 

those replications were identified as label switching for the low effect size condition. In the 

empirical q-matrix condition, 18.6 percent of the valid replications that had the same log 

likelihood were identified as label switching for the high effect size condition, whereas 40 

percent of those replications were flagged as showing label switching for the low effect size.  

This finding should raise concern when using models without constraints in latent class 

analysis, due to the non-negligible high frequency of label switching, especially with low quality 

items.  Even when the model without and the model with constraints reached the same sample 

space (i.e., the same log likelihood), there were occasions in which they provided different 

estimated parameters, indicating label switching. In such cases, the interpretation of results was 

confusing. By adding constraints to the model, the meaning of each latent class was predefined 

to reduce confusion in the result interpretation. Although adding model constraints resulted in a 

lower convergence rate, it provided a more accurate interpretation.  
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Based on the parameter recovery results, the general patterns included 1) the high effect 

size condition outperformed the low effect size condition, with smaller mean and standard errors 

of both the bias and the RMSE across replications; 2) the model with constraints outperformed 

the model without constraints; 3) the intercept estimation outperformed the main effect and 

interaction estimation in the measurement model; 4) the non-label switching replications 

outperformed the label switching replications in parameter recovery.  

However, there were a proportion of extremely high values of both the mean and the 

standard errors of the RMSE across conditions, especially in the measurement model and in the 

empirical q-matrix condition. One potential source was the extreme estimated values in some 

outputs provided by Mplus when the search in the sample space was void. For example, in one 

replication, the estimated parameter was 6303.11, whereas the true parameter was 3.58.  

Furthermore, the generalizability of the findings of the current paper is limited by the 

software used. The only commonly used estimation software that allowed adding the necessary 

constraints was Mplus. It would be interesting to compare the prevalence of label switching 

using other software. The frequency of label switching, as well as the convergence rate, 

occurrence of local optimal solutions, might differ across software.  

Another potential future research direction is to compare other structural models in 

DCMs, such as tetrachoric correlation and Bayesian Networks. The current research uses only 

the saturated structural model, which is another limitation of the study that calls for future 

research. Other structural models may have implicit constraints on the model specification that 

may systematically avoid label switching because of their implicit model constraints, such as the 
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tetrachoric correlation structural model that specifies thresholds. The prior information specified 

in the Bayesian Nets may have added constraints to the model as well.   
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Table 1  

An Example of a Q-matrix for Three Attributes 

 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 

Attribute 1 0 0 0 1 1 1 1 

Attribute 2 0 1 1 0 0 1 1 

Attribute 3 1 0 1 0 1 0 1 

Note: The zeros mean an item does not measure that attribute, whereas the ones mean an item 

measures that attribute. 
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Table 2  

An Example of Attribute Profiles and Probabilities for Three Attributes 

 class 

1 

class 

2 

class 

3 

class 

4 

class 

5 

class 

6 

class 

7 

class 

8 

 

Marginal  

Attribute 1 0 0 0 0 1 1 1 1 𝑃𝛼1
   

Attribute 2 0 0 1 1 0 0 1 1 𝑃𝛼2
   

Attribute 3 0 1 0 1 0 1 0 1 𝑃𝛼3
   

log probability  𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 ∑ 𝜇𝑐 

probability  𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 1 

Note: The zeros mean a non-mastery status of an attribute, whereas the ones refer to a mastery 

status of that attribute. For example, class 1 [000] refers to the group who master none of three 

attributes, whereas class 8 [111] refers to the group who master all three attributes; 𝜈𝑐  indicates 

the marginal probability for latent class c, whereas 𝜇𝑐is the log transformation of the marginal 

probability for class c.  
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Table 3  

An Example of Label Switching with Macready and Dayton (1977) Data  

 

Components 

 

Parameters 

 

Replication I 

Replication II  

(After label switching) 

Model fit Log likelihood -331.76 -331.76 

Structural  

 

Probability Mastery .59 .41 

Non-mastery .41 .59 

Measurement  

 

 

 

Intercepts Item 1 -1.33 1.12 

Item 2 -2.61 1.27 

Item 3 -3.99 -.27 

Item 4 -2.89 .88 

Main effects Item 1 2.45 -2.45 

Item 2 3.89 -3.89 

Item 3 3.72 -3.72 

Item 4 3.78 -3.78 
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Table 4  

The Balanced and the Empirical Q-Matrix Specification  

      E_Q  

 

Attribute 1 

B_Q 

Attribute 2 

 

Attribute 3 

 

Item # 

Attribute 1 

(PI) 

Attribute 2 

(MC) 

Attribute 3 

(APP) 

0 0 1 1 (5) 0 1 0 

0 1 0 2 (10b) 0 1 0 

0 1 1 3 (2) 0 0 1 

1 0 0 4 (5) 0 1 0 

1 0 1 5 (18) 1 0 0 

1 1 0 6 (13) 1 1 0 

1 1 1 7 (19) 0 0 1 

0 0 1 8 (10a) 0 1 0 

0 1 0 9 (10c) 0 1 0 

0 1 1 10 (3) 1 0 0 

1 0 0 11 (17) 1 0 0 

1 0 1 12 (11) 0 1 0 

1 1 0 13 (11) 0 1 0 

1 1 1 14 (19) 0 0 1 

0 0 1 15 (8c) 0 0 1 

0 1 0 16 (15b) 1 1 0 
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0 1 1 17 (19) 0 0 1 

1 0 0 18 (3) 1 0 0 

1 0 1 19 (8b) 0 0 1 

1 1 0 20 (22) 1 0 0 

1 1 1 21 (22) 1 0 0 

Note: B_Q refers to the balanced q-matrix condition, and the E_Q refers to the empirical q-

matrix condition. Information in parentheses refers to the corresponding attributes and item 

numbers in Table 1 from Bradshaw, Izsák, Templin, and Jacobson (2014, p. 9).  
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Table 5  

The Structural Model Parameter Specification in the Simulation Study 

Structural Models Parameters Symbols Distribution 

Saturated log linear Main effect (𝛾𝑖,1,𝑎) 𝑈(−1.5, 1.5) 

 Two-way interaction (𝛾𝑖,2,(𝑎,𝑎′)) 𝑈(−1.5, 1.5) 

 Three-way interaction (𝛾𝑖,3,(1,2,3)) 𝑈(−1.5, 1.5) 

Note: U(a,b) refers to a uniform distribution, ranging from a to b.  
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Table 6  

The Measurement Model Parameter Specification in the Simulation Study 

Effect 

Size 

 

Parameter 

Items Measuring 

One Attribute Two Attributes Three Attributes 

High Intercept U(-1.62,  .38) U(-2.39,  -.39) U(-3.94, -1.94) 

 Main effect U(.49,  1.99) U(.64,  2.14) U(1.58,  3.08) 

 Two-way interaction NA U(-.50,  .50) U(-1.59,  -.59) 

 Three-way interaction NA NA U(-.65,  .35) 

Low Intercept U(-1.41,  .59) U(-1.85,  0.15) U(-2.39, -.39) 

 Main effect U(.06,  1.56) U(0.10,  1.60) U(0.23,  1.73) 

 Two-way interaction NA U(-0.50,  0.50) U(-0.67, .33) 

 Three-way interaction NA NA U(-1.14,  -.14) 

Note: NA indicates inapplicable; U(a, b) means a uniform distribution, ranging from a to b.  
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Table 7  

Main Results for the Balanced Q-Matrix and Empirical Q-Matrix 

   

Effect 

Size 

 

NC_ 

convergence 

 

C_ 

convergence  

 

Valid 

Replications 

 

Valid & 

ΔLL=0 

Valid & 

ΔLL=0 & 

Δμ=0 

B_Q High 1000 895 895 605 521 

 Low 1000 424 424 26 19 

E_Q High 1000 990 990 937 763 

 Low 1000 931 931 369 221 

Note: 1000 replications for the high and low effect size respectively. B_Q refers to the balanced 

q-matrix condition, and E_Q refers to the empirical q-matrix condition; NC refers to the model 

without constraints, C refers to the model with constraints, Δ refers to the difference, LL refers to 

the log likelihood, μ refers to the structural model parameters.  
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Table 8  

Parameter Recovery Results for the Structural Model Parameters 

    B_Q     E_Q   

   Bias  RMSE   Bias  RMSE  

  # Mean SE Mean SE # Mean SE Mean SE 

H NC 

1000 -0.17 0.73 0.75 3.11 999 0.52 23.21 

1164.4

1 

21091.

04 

 C 

895 -0.18 0.61 0.53 1.57 990 6.75 200.40 

40444.

52 

12611

73.14 

L NC 

1000 -0.32 8.51 496.05 

15578.

06 996 -3.06 64.43 

16701.

20 

21148

5.07 

 C 

424 -0.11 1.01 1.43 2.34 931 11.56 375.30 

14251

9.49 

42856

05.13 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. It is worth mentioning that the # could vary across the 

type of parameters within the same condition, because a converging replication may not report a 

specific parameter, such as an interaction term. SE refers to the standard error. 
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Table 9  

Parameter Recovery Results for the Measurement Model Parameters  

    B_Q     E_Q   

   Bias  RMSE   Bias  RMSE  

  # Mean SE Mean SE # Mean SE Mean SE 

Intercept     (21) (21) 

H NC 

999 -0.74 5.21 

518.4

8 

6725.

38 999 -0.06 1.39 41.75 

1313.

87 

 C 895 -0.05 0.21 0.57 1.59 990 -0.01 0.06 0.04 0.27 

L NC 

999 -0.51 8.46 

1494.

99 

42220

.47 999 -0.99 16.01 

5345.6

8 

12887

3.05 

 C 424 0.02 0.14 0.15 0.98 931 -0.03 0.12 0.18 0.92 

Main Effect (36) (23) 

H NC 

999 7.54 92.83 

28883

7.82 

58364

78.32 

100

0 1.07 30.80 

10908.

99 

34250

2.42 

 C 

895 0.38 3.32 

390.7

7 

8175.

64 990 0.04 0.71 11.63 

347.7

2 

L NC 

999 7.04 74.32 

17639

9.72 

33156

90.53 

100

0 3.02 45.46 

24136.

62 

51805

5.36 

 C 

424 2.53 28.70 

29372

.27 

42029

7.33 930 8.24 

134.6

4 

416734

.47 

10509

019.8

4 
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Interaction (21) (2) 

H NC 

990 0.24 34.39 

35538

.25 

51494

7.15 999 -0.30 15.32 466.60 

14549

.52 

 C 

895 3.33 32.35 

36492

.59 

36181

9.41 990 1.28 19.07 720.64 

15044

.32 

L NC 

978 10.07 

179.3

6 

73129

7.30 

11360

077.8

5 999 6.53 

504.9

7 

509319

.52 

14468

828.9

1 

 C 

422 15.33 

107.4

8 

26639

2.31 

26278

72.29 927 24.02 

900.1

0 

161469

0.46 

47523

475.0

5 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error.   
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Table 10  

Parameter Recovery Results for the Person Latent Class Classifications  

   B_Q   E_Q  

  Kappa Kappa 

  # Mean SE # Mean SE 

H NC 1000 0.55 0.09 1000 0.46 0.05 

 C 895 0.56 0.07 990 0.46 0.05 

L NC 1000 0.32 0.10 1000 0.26 0.08 

 C 424 0.34 0.08 931 0.27 0.07 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error. 
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Table 11  

Parameter Recovery Results for the Structural Model Parameters between the Non-Label 

Switching and the Label Switching Replications    

    B_Q     E_Q   

   Bias  RMSE   Bias  RMSE  

  # Mean SE Mean SE # Mean SE Mean SE 

Non Label Switching  

H NC 521 -0.19 0.50 0.37 1.06 763 -0.07 0.42 0.63 3.35 

 C 521 -0.19 0.50 0.37 1.06 763 -0.07 0.44 0.77 4.50 

L NC 19 0.00 0.44 0.43 0.59 221 -0.29 0.90 3.65 9.64 

 C 19 0.00 0.44 0.43 0.59 221 -0.51 3.20 60.99 840.90 

Label Switching  

H NC 84 -0.29 0.67 0.61 1.58 174 2.26 8.08 79.15 430.97 

 C 

84 -0.29 0.67 0.61 1.58 174 39.00 477.48 

22820

0.50 

30081

94.89 

L NC 

7 -0.59 0.64 0.97 1.17 148 1.22 12.27 528.72 

5187.4

4 

 C 7 -0.59 0.64 0.96 1.17 148 1.32 5.39 40.14 89.02 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 
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condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error.  
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Table 12  

Parameter Recovery Results for the Measurement Model Parameters for the Non-Label 

Switching Replications    

    B_Q     E_Q   

   Bias  RMSE   Bias  RMSE  

  # Mean SE Mean SE # Mean SE Mean SE 

Intercept (21) (21) 

H NC 521 -0.03 0.24 0.99 10.46 763 0.00 0.04 0.02 0.04 

 C 521 -0.02 0.13 0.26 1.22 763 0.00 0.04 0.02 0.04 

L NC 19 0.03 0.11 0.04 0.04 221 -0.01 0.05 0.02 0.03 

 C 19 0.03 0.11 0.04 0.04 221 -0.01 0.05 0.02 0.03 

Main Effect (36) (23) 

H NC 521 0.10 0.40 1.87 18.56 763 0.01 0.06 0.05 0.31 

 C 521 0.07 0.21 0.61 3.21 763 0.01 0.06 0.05 0.35 

L NC 19 0.06 0.08 0.11 0.06 221 0.05 0.14 0.36 1.98 

 C 

19 0.06 0.08 0.11 0.06 221 0.69 9.52 

2081.1

8 

30935

.13 

Interaction (21) (2) 

H NC 

521 0.96 19.11 

7655.

50 

17292

2.50 763 0.16 1.28 2.95 18.50 

 C 

521 0.26 2.50 

1880.

48 

23984

.76 763 0.43 7.26 105.77 

2774.

38 
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L NC 

19 0.07 0.37 14.25 20.82 221 0.31 4.77 44.92 

550.7

0 

 C 

19 0.02 0.22 12.60 17.55 221 -6.89 

109.6

6 

23996.

60 

35601

2.22 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error. 
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Table 13  

Parameter Recovery Results for the Measurement Model Parameters for the Label Switching 

Replications    

    B_Q     E_Q   

   Bias  RMSE   Bias  RMSE  

  # Mean SE Mean SE # Mean SE Mean SE 

Intercept (21) (21) 

H NC 

84 -0.23 1.37 38.75 

343.2

3 174 -0.01 0.06 0.06 0.43 

 C 84 -0.05 0.16 0.42 1.02 174 -0.01 0.05 0.03 0.13 

L NC 7 -0.03 0.06 0.02 0.01 148 -0.01 0.05 0.03 0.04 

 C 7 -0.03 0.06 0.02 0.01 148 -0.01 0.05 0.03 0.04 

Main Effect (36) (23) 

H NC 

84 0.44 2.39 68.10 

600.0

9 174 0.03 0.10 0.11 0.78 

 C 84 0.12 0.25 0.93 2.29 174 0.02 0.08 0.07 0.23 

L NC 7 0.07 0.04 0.09 0.03 148 0.09 0.22 0.78 3.52 

 C 

7 0.07 0.04 0.09 0.03 148 25.20 

305.4

3 

214270

0.81 

26067

064.1

1 

Interaction (21) (2) 
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H NC 

84 -0.28 2.92 

171.9

7 

1371.

33 174 0.53 2.38 10.07 34.19 

 C 

84 5.09 45.69 

43583

.81 

39873

4.49 174 2.39 22.38 

1011.0

1 

13085

.61 

L NC 7 0.08 0.37 39.99 58.82 148 0.08 3.68 19.07 62.38 

 C 

7 0.04 0.30 29.60 51.99 147 0.82 9.12 159.27 

1353.

55 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error. 
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Table 14  

Parameter Recovery Results for the Person Latent Class Classifications between the Non-

Label Switching and the Label Switching Replications    

   B_Q   E_Q  

   Kappa   Kappa  

  # Mean SE # Mean SE 

Non Label Switching 

H NC 521 0.58 0.05 763 0.47 0.04 

 C 521 0.58 0.05 763 0.47 0.04 

L NC 19 0.36 0.08 221 0.30 0.05 

 C 19 0.36 0.08 221 0.30 0.05 

Label Switching 

H NC 84 0.56 0.06 174 0.46 0.05 

 C 84 0.56 0.06 174 0.46 0.05 

L NC 7 0.38 0.05 148 0.28 0.07 

 C 7 0.38 0.05 148 0.28 0.07 

Note: B_Q refers to the balanced q-matrix condition, and E_Q refers to the empirical q-matrix 

condition. H refers to the high effect size condition, and L refers to the low effect size condition. 

NC refers to the model without constraints condition, and C refers to the model with constraints 

condition. The # refers to the number of replications aggregated over to calculate the mean and 

standard errors of the bias and the RMSE. SE refers to the standard error.  
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Figure 1  

Main Results for the Balanced Q-Matrix Condition 
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Figure 2  

Main Results for the Empirical Q-Matrix Condition 
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