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Abstract

Three novel steroidal antiestrogen-geldanamycin conjugates were prepared using a convergent

strategy. The antiestrogenic component utilized the 11β-(4-functionalized-oxyphenyl) estradiol

scaffold, while the geldanamycin component was derived by replacement of the 17-methoxy

group with an appropriately functionalized amine. Ligation was achieved in high yield using azide

alkyne cyclization reactions. Evaluation of the products against two breast cancer cell lines

indicated that the conjugates retained significant antiproliferative activity.
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Introduction

Breast cancer is the most prevalent form of cancer in women and the well-established

association between the human estrogen receptor (ER) and cell proliferation provided the

basis for endocrine (antihormonal) therapy.1,2 However, prolonged treatment with

antiestrogens often results in the development of hormonal resistance, leading to recurrence

of the disease and the use of more potent, but nonselective, therapeutic agents.3–5 One

strategy that attempts to circumvent the effects of resistance is the use of drug conjugates in

which two therapeutic agents are combined into a single entity.6–8

As part of our program in breast cancer research, we have focused on using ER as a

targeting mechanism for which the steroidal anti-estrogenic component may also provide a

beneficial therapeutic response. The choice of the therapeutic component is also critical as it

should not only be active within the same concentration range as the hormonal component

but exert a complementary or synergistic effect. The ER-targeting component was

developed in our initial work with the 11β-(4-substituted-oxyphenyl) estradiols.9,10 Based

on the affinity of the steroids for the ER and their antiestrogenic activity, we prepared a

steroidal antiestrogen-mitomycin C conjugate to test our concept.11 Although the compound

retained high ER affinity and antiestrogenic properties, it was no more active than

mitomycin C and displayed no selectivity toward ER-expressing breast cancer cells. One

possible explanation for the lack of synergy may have involved the properties of the linker.
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Unfortunately, issues regarding the availability mitomycin C precluded further studies with

this conjugate. Therefore we elected to evaluate the effect of linker length and

conformational flexibility using the Hsp90 N-terminal inhibitor, geldanamycin (GDA), as

the therapeutic component. [Figure 1]

Heat shock proteins (HSP) are molecular chaperones that are critical for the maintenance of

cellular homeostasis through regulation of protein transport, conformational folding and

maturation12. Hsp90 is a 90kDa protein that is often overexpressed in breast cancer, as well

as other cancers, and, as a result of these increased levels, is responsible for maintaining

high levels of active oncogenic proteins13,14,15. One of these proteins is ERα which, when

dormant, is confined to the nucleus in an Hsp90 complex16. Disruption of the Hsp90-ERα

complex leads to improper folding of ERα and its subsequent degradation, resulting in

down-regulation of its corresponding pathways, such as transcription. Therefore, disruption

of Hsp90-mediated responses provides an alternative target for breast cancer therapy, and

has led to the use of geldanamycin (GDA) and its derivatives as therapeutic agents.

The geldanamycin component was developed based upon our work with chaperone

inhibiting agents. Structure- activity relationship studies demonstrated that modification at

the 17-position not only generates GDA derivatives that exhibit reduced toxicity, but this

position is also substituent tolerant as groups at this position of GDA exit the Hsp90 binding

pocket and thus do not significantly affect inhibitory activity17. Other 17-GDA derivatives

have been synthesized that exhibit improved solubility and lower toxicity than GDA, but are

still hepatotoxic18,19. Therefore we planned to introduce modifications at the 17-postion that

will permit conjugation to the steroidal derivatives.

We chose a convergent approach in which each component contained a side chain that is

terminally substituted with a reactive functionality. The final step then involves a ligation

reaction under mild conditions. The reaction selected for this study was the Huisgen [3+2]

cycloaddition reaction between a terminal azide and a terminal alkyne to generate a

chemically stable triazole moiety.20–22 The reaction has the advantage of being

chemoselective and allowing the reactive groups to reside on either component. In this study

we chose to use different lengths of the linker to investigate what effect, if any, it exerts on

the biological activity of the final conjugate. The overall synthetic strategy for our

conjugates is shown in Figure 2.

Results

The synthesis of the steroidal antiestrogen component was accomplished using a strategy

similar to one described for our 11β-(4-substituted oxyphenyl) estradiols.9,10 Deltenone 3-

ethylene ketal 1 was converted initially to the 11β-(4-hydroxyphenyl) estra-4,9-diene-3,17-

dione 2. This compound then served as the intermediate for the preparation of the requisite

11β-(4-azidoethoxyphenyl)estradiol 4a and 11β-(4-N-propargyl-N-

methylaminoethoxyphenyl) estradiol components 4b. For the propargyl derivative, we

prepared the 2-(N-propargyl-N-methylamino)ethanol which was then coupled to the 11β-(4-

hydroxyphenyl) estra-4,9-diene-3,17-dione 2 using the Mitsunobu reaction to give 3b.

Aromatization with acetic anhydride-acetyl bromide followed by reduction-saponification
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gave the desired product 4b. Overall yields for the two compounds were 28% (8 steps) and

19% (7 steps) respectively. We had previously characterized the azido derivative 4a,

determined its binding affinity (RBA= 39 %) and showed that it was a full antagonist of

ERα. The N-propargyl-N-methyl derivative 4b is a close analog of the RU39411 for which

we had determined ER affinity (RBA = 39%) and efficacy (full antagonism). Having

demonstrated that additional substituents distal to the nitrogen in the side chain did not

adversely affect either binding or efficacy, we felt that the steroidal components were

appropriate substrates for subsequent ligation reactions.10

The geldanamycin components were prepared using variations of methods previously

described for 17-amino derivatives.15, 23 Treatment of geldanamycin 5 with either propargyl

amine or ώ-azido pentaethylene glycol amine in dichloromethane gave the corresponding

17-amino geldanamycin components 6a and 6b in 80% and 68% yields respectively. For the

third geldanamycin component, a two step procedure was used, similar to that employed in

our previous preparation of the biotinylated derivative. Geldanamycin 5 was initially treated

with a 5-fold excess of 1,5-pentanediamine in dichloromethane. Purification by column

chromatography gave the 17-(5-aminopentyl)amino geldanamycin 6c in a 95% yield.

Bertozzi’s difluoro-cyclooctyne carboxylic acid24 was converted to the corresponding acyl

chloride and immediately reacted with 17-(5-aminopentyl)amino geldanamycin 6c to form

the corresponding amide 6d. The product was isolated in a 42% yield following column

chromatography.

Ligation to form the final antiestrogen-geldanamycin conjugates used two versions of the

“click” reaction. In the conventional version, we used the 17-propargylamino geldanamycin

6a and the 11β-(4-azidoethoxyphenyl) estradiol 4a as coupling partners to give the 1,2,3-

triazole conjugate 7a with a short linker in a 46 % isolated yield. Coupling the 17-

(azidopentaethylene glycolamino) geldanamycin 6b with 11β-(4-N-propargyl-N-

methylaminoethoxyphenyl) estradiol 4b under the same conditions gave the triazole

conjugate 7b with a longer linker in 47 % isolated yield. The third conjugate was prepared

from the cyclooctynylated amino geldanamycin 6d and 11β-(4-azidoethoxyphenyl) estradiol

4a in which the copperless-method gave the corresponding annulated triazole 7c in a 73 %

isolated yield.

The three new conjugates and geldanamycin were evaluated for antiproliferative activity

against MCF-7 and SKBr3 breast cancer cell lines. (Table 1) In this assay, the

antiproliferative activity of geldanamycin 5 in the two cell lines was determined to be 9.8

and 8.5 nM respectively. Conjugate 7a with the shortest linker group manifested an IC50 of

1150 ± 90 nM in MCF-7 and 710 ± 160 nM in SKBr3 cells. Conjugate 7b with the longer

linker was more potent with IC50 values of 102 ± 4.6 nM and 41 ± 4.6 in the respective cell

lines. Conjugate 7c that incorporated the bulkier Bertozzi linker had an IC50 value of 15200

± 3000 nM in MCF-7 cells and was not therefore evaluated in the SKBr3 cell line. The

results indicated that while all of the new conjugates retained significant antiproliferative

activity, however, the potency was clearly modulated by the additional linker and

antiestrogen components.
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The objectives of this study were to evaluate the effects of the linker on the antiproliferative

activity of the antiestrogen-drug conjugate. We had observed in our initial study with a

antiestrogen-mitomycin C conjugate that a long, linear oligoethylene glyocol linker retained

high ER binding affinity (RBA = 7%), similar to the effects observed previously by

Essigmann, et al with their 7α- derivatives.25 In that study, the antiproliferative activity of

the conjugate was comparable to that of the parent mitomycin C.11 In this study, the two

conjugates 7a and 7b having the least sterically constrained linkers were also the most

potent compounds. The conjugate 7c, having the cyclooctyl triazole closest to the 11β

position of estradiol was most likely to produce significant steric interactions with the

estrogen receptor which would compromise the targeting toward ER-expressing cells. The

results suggest that the accessibility of the antiestrogenic component for the target

membrane ER may influence the overall potency. The least sterically demanding conjugate

7b is an order of magnitude more potent than the conjugate with the shorter linker 7a which

is an order of magnitude more potent than the sterically compromised conjugate 7c.

The linker component may also affect the therapeutic activity. Previous studies indicated

that geldanamycin forms a stable complex with Hsp90 via a complex set of interactions that

are modulated by substituents at the 17-position. With the 17-amino-17-desmethoxy

derivatives, the exit site for this group corresponds to the heteroatom and therefore the

length of the group would be expected to affect the biological response. In this study, two

conjugates 7a and 7b display sub-micromolar activity against ER-expressing cells, although,

both compounds are more active against the SKBr3 breast cancer cells that do not express

ER. In those cells, conjugate 7b, having the longer linker, while less potent than

geldanamycin alone, is more than an order of magnitude more potent than 7a, the conjugate

with the shorter linker. Activity of the more complex conjugate 7c was not determined, but

the results suggest that the longer, more conformationally flexible linkers are favored at the

17-position.

The results suggest that ER-targeting was not the major factor underlying the biological

effectiveness of the conjugates. If ER-targeting were the major component, one would

expect thet cytotoxicity to be greater in MCF-7 cells as opposed to the SKBr3 cells. This

response pattern was observed with our steroidal antiestrogen-mitomycin C conjugate in

which ER-based selectivity was not achieved, even though the ER binding affinity for the

conjugate was relatively high.25 For the two most active conjugates 7a and 7b, activity was

greater in the SKBr3 cells than in the MCF-7, a pattern that was similar to geldanamycin

alone. Therefore it appears that the overall antiproliferative responses were modulated by the

presence of the steroidal components, but did not enhance the overall effect compared to

geldanamycin. It should be noted that the desired response pattern was observed for our

doxorubicin-antiestrogen conjugate that we recently described in which MCF-7

antiproliferative activity was enhanced compared to doxorubicin alone and almost seven-

fold greater than that observed in MDA-MB-231 cells which are ER-negative.26

One of the significant differences between our doxorubicin-antiestrogen conjugate and the

current series of geldamycin conjugates is that the former contain a component that allows

the drug to dissociate within cancer cells. As with the mitomycin C conjugate, the synthetic

strategy used in this study did not incorporate that property. It is possible that for these
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conjugates that cellular uptake may be mediated via the membrane estrogen receptor but that

effective intracellular distribution requires dissociation of the therapeutic component from

the antiestrogen targeting group. Continued association with the antiestrogen component

may reduce the effectiveness of the drug from accessing its site of action, even if elevated

intracellular concentrations are obtained. Oligoethylene glycol linkes, such as those used in

7b and the doxorubicin-anitestrogen conjugate, may also contribute physicochemical

properties that enhance cellular uptake. Because of the potent antiproliferative activity

observed for 7b, incorpoaration of a linker that can impart both properties may generate the

desired biological effect.

In conclusion, we have described a convergent strategy for the preparation of a novel series

of novel steroidal antiestrogen-drug conjugates. This approach has distinct advantages in

preparing and evaluating combinations of targeting groups, therapeutic drugs and linkers.

The conjugates in this study were obtained in good overall yields and demonstrated

significant activity against two breast cancer cell lines. Although one of the compounds (7b)

demonstrated significant antiproliferative activity, it did not, however, demonstrate

enhanced potency compared to the parent drug or selectivity for ER-expressing cells as

compared to non-expressing cells. The results suggest that further modifications in both ER-

targeting strategies and linking groups are needed in order to achieve greater potency and

selectivity in therapeutic drug delivery. The effects of different linkers on both ER binding

and Hsp90 warrant further evaluation as well. Those studies are in progress and will be

described in future publications.
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Figure 1.
Proposed extension of research from the antiestrogen-mitomycin C conjugate to the

antiestrogen-Geldanamycin conjugates.
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Figure 2.
Approach for synthesis of individual components and assembly as AE-GDA conjugates.
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Scheme 1.
Synthesis of steroidal antiestrogen component.

Reagents and conditions. (i) CF3COCF3·H2O, H2O2(50%), C5H5N, CH2Cl2, 0°C, 18 h (ii)

TMSiOC6H4MgBr, CuI, THF; 16 h iii. HOAc-H2O (7:3), 1.5 h (iv) TsOCH2CH2OTs,

Cs2CO3, CH3CN, 13 h (v) NaN3, EtOH, 4 h (vi) (HCCHCH2)(CH3)NCH2CH2OH, DEAD,

PS-PPh3, CH3CN, 16 h (vii) Ac2O, AcBr, CH2Cl2, 16 h (viii) NaBH4, MeOH, 1 h (ix)

NaOH, MeOH, 16 h.

Hendricks et al. Page 9

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 August 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 2.
Synthesis of Geldanamycin components.

Reagents and conditions. (i) amine, CH2Cl2, r.t., 24 h (ii) Substituted benzoic acid, SOCl2,

toluene, 70°C, 2 h (iii) CH2Cl2, TEA, 0°C – r.t., 2 h
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Scheme 3.
Ligation of steroidal antiestrogen and Geldanamycin components using “click” chemistry

Reagents and conditions. (i) CuSO4-5 H2O, sodium ascorbate, t-BuOH-H2O, r.t., 18–70 h

(ii) t-BuOH-H2O, r.t., 24 h
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Table 1

Anti-proliferation activity of ateroidal antiestrogen-Geldanamycin (AE-GDA) Conjugates 7a–7c

Compd MCF-7(IC50) SKBr3(IC50)

5 (GDA) 9.8±0.1 nMa 8.5±1.1 nMa

7a 1150± 90 nM 710±160 nM

7b 102± 4.6 nM 41± 4.6 nM

7c 15200±3000 nM N.D.

IC50 = concentration needed to produce 50% inhibition.

a
ref 15.

N.D. = Not determined.
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