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Abstract

IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different

environmental stresses. Formation of aggregates and particles of varying size was monitored by a

combination of size exclusion chromatography (SEC), Nanosight Tracking Analysis (NTA),

Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the

highest concentration of particles. In general, the presence of NaCl enhanced this effect. The

morphology of the particles formed from mAb samples exposed to different stresses was analyzed

from TEM and MFI images. Shaking samples without NaCl generated the most fibrillar particles,

while stirring created largely spherical particles. The composition of the particles was evaluated

for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and

surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles

containing protein with native-like secondary structure. Heating and stirring produced IgG1

containing aggregates and particles with some non-native disulfide crosslinks, varying levels of

intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight

the importance of evaluating protein particle morphology and composition, in addition to particle

number and size distributions, to better understand the effect of solution conditions and

environmental stresses on the formation of protein particles in mAb solutions.
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INTRODUCTION

A current concern with the use of monoclonal antibody-based therapeutics is their tendency

to aggregate and form particles during long-term storage and/or during accidental exposure

to environmental stresses. The formation of aggregates and particles may lead to an increase
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in immune response 1-3 or a decrease in efficacy of the drug.2,4 Protein aggregation can

occur during many stages of production (purification, formulation, and filling), or during

long-term storage, shipping, and even administration to the patient.5 Therefore it is

important to better understand the reasons for aggregation and particle formation due to

different stresses and formulation conditions in order to develop strategies to minimize its

occurrence.

Aggregation and particle formation in therapeutic protein formulations can be caused by a

variety of environmental stresses or by formulation conditions such as concentration,6-8

solution pH,6,9,10 and the presence or absence of certain excipients.6,7,9 Freezing can not

only lead to changes in the formulation pH6,11,12 and concentration of proteins and

excipients,6 but also to the formation of ice/water interfaces6,13-15 where protein adsorption

can induce partial protein unfolding and subsequent aggregation.6,9,15-17 Proteins subjected

to heating undergo conformational changes that can lead to the formation of aggregates and

particles.9,18 Mechanical stresses may cause shear or interfacial effects in which the protein

adsorbs to the air-water interface, leading to structural alterations which can initiate

aggregation as well.9,16,19,20 Stirring and shaking are both mechanical stresses that can also

cause cavitation, local thermal effects, bubble entrapment, and transportation of the

aggregated protein from the air-water or air-container interface into the bulk

solution.6,21,2223

One major challenge in studying protein aggregation experimentally is that a wide variety of

analytical techniques are required to characterize the formation of protein aggregates and

particles over a broad size range (from few nanometer to hundreds of microns).24 In

addition, it is also important to have complimentary, orthogonal techniques for analyzing

aggregates of similar size ranges since results can differ based on the principles and setup of

each technique.6 In this work, we follow the previously proposed definitions of protein

aggregates, across the size ranges of few nanometers to 100s of microns. 25 In this case

study, size exclusion chromatography (SEC) is used to analyze smaller aggregates in the

size range of tens of nanometers. Although it is a powerful analytical tool for monitoring

small nanometer-sized soluble aggregates, upon injection of sample into the column,

aggregates can potentially dissociate upon mixing with mobile phase or adhere to the

column thereby requiring careful method development and use of orthogonal techniques.26

For sizing submicron particles (0.1 to 1 μm), Nanosight Tracking Analysis (NTA) is used

while for micron (1-100 μm) size particles, Microflow-Imaging technique (MFI) is

employed. NTA tracks and sizes individual particles (unlike its DLS counterpart), but has

limited sensitivity in detecting low numbers of submicron particles. In addition to sizing and

counting particles like light obscuration, MFI also has digital imaging capabilities that can

provide morphological information allowing differentiation between silicone and protein

particles. To detect visible particles larger than 100 μm, visual assessments are employed.

Turbidity is also used as a general method to monitor the formation of aggregates and

particles in solution across the various size ranges. Although visual inspection is a

commonly used technique, even under pre-defined conditions and with extensive analyst

training, results may vary between different analysts. Turbidity provides semi-quantitative

information for comparisons of the overall aggregation state of a sample, but it does not

provide information regarding the size or number of particles. Detailed discussions of the
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strengths and limitations of these analytical techniques are described more thoroughly

elsewhere.27,28

Recently, there has been an increased emphasis on characterizing the morphology and

composition of particles in addition to counting and sizing them.27 As a starting point for

this work, MFI analysis, in addition to sizing and counting of subvisible particles, is used for

morphological analysis by utilizing parameters such as aspect ratio and intensity of the

digital images.29,30 For visualization of small, nanometer-sized aggregates, transmission

electron microscopy (TEM) is used.31 SDS-PAGE is used to determine the extent of

covalent, disulfide linkages present in aggregates.32 Extrinsic fluorescence spectroscopy

with 8-anilino-1-naphthalene sulfonate (ANS) probe provides information concerning the

surface hydrophobicity of aggregates.33;34,35 FTIR provides insights into the secondary

structure of native protein and aggregates in solution,6,36-38 with the use of a FTIR

microscope allowing for selection of individual protein particles for secondary structure

analysis.29

This paper is a “protein particle formation” case study by utilizing a variety of analytical

techniques to examine the effect of four different environmental stresses (freeze-thaw,

shaking, stirring, and heating) and formulation composition (salt concentration) on the

number, size range morphology, and compositional nature of the IgG1 aggregates/particles

formed from stressing the mAb solutions. Additionally, a new data visualization method

consisting of radar plot analysis was used to better evaluate the effects of environmental

stress and salt concentration on particle size distributions as well as changes in certain

morphological parameters measured by MFI. The trends observed in terms of types and

amounts of particles formed under the different stress conditions are discussed, along with

some comparisons to previous studies with different monoclonal antibodies.

EXPERIMENTAL METHODS

Materials

Purified monoclonal human IgG1 (mAb) was obtained from Janssen Biotech (Radnor, PA)

at 40 mg/mL. The reagents and stir bars required for sample preparation were purchased

from Sigma Aldrich (St. Louis, MO), and Fisher Scientific (Pittsburgh, PA). The 3 mL vials

and rubber stoppers used to generate protein aggregates were purchased from West

Pharmaceuticals (Lionville, PA). For counting and sizing of aggregates (using SEC, NTA,

MFI, turbidity, visual assessments), the mAb was diluted to 1 mg/mL using 10 mM sodium

acetate buffer, pH 5 ± 150 mM NaCl.23 This condition was also used for morphological

analysis of particles by MFI. For structural and morphological analysis of the aggregates

(using TEM, MFI, SDS-PAGE, FTIR-Microscopy, ANS-Fluorescence), the mAb was

diluted to 1 mg/ml in 10 mM sodium acetate buffer, pH 5 containing 150 mM NaCl.

Generation of Aggregates

The 40 mg/mL IgG1 mAb solution was diluted to 1 mg/mL in 10 mM sodium acetate buffer,

pH 5 ± 150 mM NaCl and then subjected to a variety of accelerated stress conditions. These

conditions were selected to match pH solution conditions used previously with a different

set of IgG mAbs23,39 In each case, the buffer controls were stressed similarly to the protein
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samples and analyzed using various sizing, counting, and characterization techniques. Since

the buffer controls showed very low particle counts, the data were not included in the

figures. For freeze-thaw stress, the mAb was frozen and thawed one to three times (indicated

as cycles) at -80°C and room temperature, respectively (labeled FT-C1 and FT-C3). For

shaking stress, the mAb was agitated at 300 rpm (using an IKA AS260.1 shaking platform)

for 1-3 days (labeled shake-D1 and shake-D3). For stirring stress, the mAb was stirred at an

intermediate speed (setting 5) on a stirring plate (ThermoSci Pierce Reacti-Therm III

#18823 Heating/Stirring Module) using Flea Micro Teflon coated magnets (Fisher

Scientific) for 1-3 days (labeled stir-D1 and stir-D3). For thermal stress, the mAb was

incubated at 60°C in an incubator (Revco Ultima II) for 1-3 days (labeled heat-D1 and heat-

D3).

Size-Exclusion Chromatography

A Shimadzu Prominence HPLC system equipped with a diode-array detector was employed

with a Tosoh Bioscience TSK-Gel Bioassist G3SWXL (7.8 mm × 30.0 cm) PEEK column

and a corresponding PEEK Guard column (TSK Guard Column SWXL, 6.0 mm × 4.0 cm)

that were preconditioned with BSA as described previously.26 Molecular weight standards

(Biorad Laboratories; Hercules, CA) were run to test for efficiency of separation and

resolution. Both the column and guard column were equilibrated at 30°C for 1 hour using

the mobile phase comprised of 0.2 M sodium phosphate, pH 6.8 at a flow rate of 0.7 ml/min.

Aggregated samples were centrifuged at 16,000g (851 rotor on an IEC Micromax 3593) for

5 min and 10 μL of supernatant was injected for analysis and monitored simultaneously at

214 and 280 nm for each 30 min sample run.26 Multimers, dimers, monomer, and fragment

peaks were quantified using the LC Solutions data analysis software provided with the

instrument as described elsewhere.26

Nanoparticle Tracking Analysis (NTA)

Submicron (nanometer) sized particles were measured using a Nanosight LM-14

(Nanosight, Amesbury, UK) with a high resolution EMCCD camera. Stressed mAb

solutions were centrifuged at 16,000g for 5 min and 300 uL of the supernatants were

injected into the sample holder. The stirred (with and without NaCl) and heat stressed (with

NaCl only) samples were diluted by a factor of 100 prior to analysis. Three 30 s movies

were taken at ambient temperature for each sample at a viscosity of 0.95 cP. Data analysis

was completed using NTA 2.3 software (Nanosight) with the required camera level and gain

adjustments. Dilution factors were accounted for in the data analysis.

Micro-Flow Digital Imaging

Subvisible (micron sized) protein particles were analyzed and imaged using a MFI DPA

4200 (Protein Simple, Santa Clara, CA). Prior to each analysis, the instrument was primed

with purified water to obtain a particle-free baseline. Samples were gently swirled and 1 mL

of each sample was removed using a low protein-binding pipette tip and loaded into a

sample holder. Some of the samples (stir-D1 and D3 with and without NaCl; shake-D3 with

NaCl; and heat-D3 with NaCl) were diluted by a factor of 100 prior to being passed through

the instrument at a flow rate of 0.1m/min. The data were obtained as described previously by

Kumru et al.40
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Data Visualization with Radar Plots

To generate MFI particle size distribution radar plots, subvisible particle concentrations and

sizes for both unstressed and stressed samples were obtained from MFI’s MVAS 1.3

software. Similarly, MFI particle morphology radar charts were created using the average

mean intensity and aspect ratio values for each sample. All samples were run independently

three times (n=3). The data were pre-processed in Excel and two radar plots (one showing

average values and one showing variability in the runs) were generated using the

MiddaughSuite software created in our lab.41 The two radar charts were superimposed using

Adobe Photoshop CS6. See Kalonia et al. 2013 and Kim et al. 2012 for a more detailed

description of this data visualization methodology as applied to protein aggregation and

conformational stability data, respectively.41,42

SDS-PAGE

Samples were centrifuged at 16,000g for 5 min to separate the soluble fraction (supernatant)

from the insoluble fraction (pellet). Both fractions were dissolved in NuPAGE LDS sample

buffer (Life Technologies, Carlsbad, CA) with and without 50 mM DTT (BioRad) and

incubated at 80°C for 90 s. Approximately 10 μg of each sample was separated on a 3-8%

Tris-Acetate gel using Tris-Acetate running buffer (Life Technologies) for 65 min at 150V.

A Hi-Mark unstained molecular weight ladder was used as a reference (Life Technologies).

The starting protein concentration for the supernatant of one sample (stir-D3) was low so a

maximum of 20 μL was loaded. Protein bands were visualized by staining with Bio-Safe

Coomassie blue (BioRad).

Turbidity

A HACH 2100 AN turbidimeter was used to monitor the turbidity of each of the samples.

Prior to running the aggregated samples, NTU calibration standards were used to generate a

standard curve.

Transmission Electron Microscopy (TEM)

Carbon-coated grids were dipped into methylene chloride for 10 s to remove the top carbon

layer and were dried for a few minutes. The images were obtained by uranyl acetate staining

and by following the procedure by Kumru et al.40

Free Thiol Quantitation

Samples were centrifuged at 16,000g for 5 min to separate the soluble (supernatant) and the

insoluble (pellet) fractions. The pellet was dissolved in 6M guanidine hydrochloride (Fisher

Scientific). The amount of free thiol in the samples as well as in the appropriate controls was

measured using the protocol described in the Measure-iT Thiol Assay Kit (Molecular

Probes) with a SpectraMax MS plate reader (Molecular Devices; Sunnyvale, CA).

Extrinsic Fluorescence Spectroscopy

Samples were centrifuged at 16,000g for 5 min to separate the soluble and insoluble

fractions. The pellet was resuspended in 10 mM sodium acetate, 150mM NaCl, pH 5. The

protein concentration of each of these supernatant and pellet components was measured
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using a Nanodrop spectrometer (Thermo Scientific) with light scattering correction. The

samples were diluted to 0.1 mg/mL in 10 mM sodium acetate, 150 mM NaCl, pH 5. 8-

Anilinonaphthalene-1-sulfonate (ANS; Sigma-Aldrich, St. Louis, MO) was added and the

ANS fluorescence of the samples were recorded according to Kumru et al.40 The signal

from the buffer with equivalent amount of ANS was subtracted from all measurements.

Fourier Transform Infrared Microscopy

Five μm gold filters (Pall Corporation) were used for analyzing the aggregated samples.

Filters were equilibrated by washing with 0.1 M NaOH. The samples were then filtered,

washed with ultrapure water, and dried overnight. A Bruker Hyperion FTIR Microscope

with a 15X objective was used to image individual particles. Two-hundred-fifty-six scans

were recorded from 600-4000 cm-1 with a viewing area of about 100 μm × 100 μm. To

observe the maximum change in secondary structure due to heating, a 1 mg/mL sample in

acetate buffer (10 mM sodium acetate, 150 mM NaCl, pH 5) was heated for 20 min at 80°C.

This heated sample (labeled heated control) was also filtered onto the 5 μm gold filter and

dried overnight. OPUS (V6.5) software was used for baseline and atmospheric correction.

The second derivative spectra were obtained using a nine-point Savitzky-Golay smoothing

function.

Fourier Transform Infrared Spectroscopy

The unstressed mAb at 1 and 10 mg/mL in 10 mM sodium acetate, 150 mM NaCl, pH 5

were analyzed with a Bruker Tensor 27 FTIR Spectrometer and a Bio-ATR cell. Two-

hundred-fifty-six scans were recorded from 600-4000 cm-1 at a resolution of 4 cm-1. To

observe changes in secondary structure as a function of temperature, 256 scans of 10 mg/mL

of unstressed sample were heated from 10-87.5°C at 4 cm-1 resolution and 120 s

equilibration time with 2.5°C increments.

RESULTS

Counting and Sizing of Aggregates and Particles Formed under Accelerated Stress
Conditions

SEC (soluble aggregates, <100 nm)—To determine the amount of smaller (soluble)

nanometer aggregates, the stressed IgG1 mAb samples were centrifuged and the resulting

supernatants were analyzed by SEC. The amount of protein material that did not elute from

the SEC (referred to as insoluble aggregates) was indirectly determined by monitoring the

decrease in the total area of the chromatogram peaks between unstressed (D0) and the

stressed samples. The earliest eluted peak was labeled as multimer, the second peak as

dimer, the third and largest peak as monomer, and the final peak as fragment based on the

estimated molecular weights. In the absence of salt, heat stressed samples produced more

fragments, dimers, and insoluble aggregates compared to the unstressed sample (Fig. 1A, I).

Stirring formed more multimers and insoluble aggregates (Fig. 1G), while freeze-thaw

formed a very small amount of multimers and dimers (Fig. 1A), compared to the unstressed

sample. Shaking (Fig. 1E) did not show an increase in any species relative to the unstressed

sample. In the presence of 0.15M NaCl, protein was further destabilized and generally

resulted in the formation of more aggregates. Heat-stressed mAb in the presence of NaCl

Telikepalli et al. Page 6

J Pharm Sci. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Fig. 1J) showed more insoluble aggregates, a larger decrease in monomer, and an increase

in multimer compared to its NaCl-free counterpart, which showed some fragment formation

and lower levels of impurity (Fig. 1I). Stirring the mAb solution in the presence of salt

resulted in a large increase in insoluble aggregate and a concurrent decrease in monomer

content (Fig. 1G vs. H). Freeze-thaw and shaking did not show changes in any species, but

in the presence of NaCl, a slight increase in insoluble aggregate was observed (Fig 1D, 1F).

Nanoparticle Tracking Analysis (NTA) (50-1000 nm particles)—NTA was used to

assess the concentration and size distribution of nanometer sized particles (also referred to as

submicron particles) formed in stressed and unstressed samples. Stirring of the mAb solution

in the absence of NaCl (Fig. 2A and 2C) generated the largest number of nanometer sized

particles (between ~150-250 nm). In contrast, in the presence of salt, heating generated the

most nanometer sized particles (Fig. 2B and 2D). The concentration of nanometer particles

present in the unstressed controls was below the instrument’s quantitation limit (data not

shown).

MFI (2-100 μm particles)—Subvisible particle data (concentration and size range of

micron size particles) obtained from MFI measurements of stressed and unstressed samples

were visualized using radar plots (Fig. 3 and Supplemental Fig. S1). This novel data

visualization method for MFI data is described in detail elsewhere.42 As shown in the key to

Figure 3, the concentric circles represent concentration of particles, with the lowest

concentration (102) being the innermost circle, and highest concentration (>107) being the

outermost. The 5 corners of the polygon within the circles represent the particle size bins.

An increase in size of the polygon towards one corner represents an increase in

concentration of particles in that size bin (e.g., stretching of a corner from the innermost

concentric circle to the outermost circle in size bin number 3 indicates that there is an

increase in the ≥10<25 μm particles from 102 to >107 particles/mL).

As shown in Figure 3, the size and concentration of subvisible particles formed is highly

dependent on the type of stress. In the absence of NaCl, freeze-thaw and heat stressed mAb

samples showed the lowest concentration of particles even after 3 cycles/days of stress,

while shaking and stirring showed a higher concentration of particles. Stirring produced the

most subvisible particles, especially in the 2-25 μm size range. In the presence of NaCl, a

higher concentration of particles, especially in the 2-25 μm size range, was observed in all of

the stressed mAb samples. The heated mAb showed a large difference in both particle

number and size in the presence and absence of salt that increased from day 1 to day 3. A

large variability in the larger particles was observed (the lighter shading on the radar plots

reflects the standard deviation of the measurements). In general, shaking the mAb solution

containing NaCl generated the largest subvisible particles (2-50 μm) (Fig. 3). Particle counts

of controls were negligible.

Turbidity and Visual Assessment—Results of turbidity measurements and visual

observations of the stressed mAb solutions are shown in Table 1. In samples lacking NaCl,

agitation and stirring resulted in the highest number of >100 μm (referred to as visible

particles, VP), with stirring producing the greatest turbidity. No major NaCl effect was seen

for the freeze-thaw stress. Agitation, stirring, and heating stresses on the mAb formed more
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VP and higher turbidity in the presence of NaCl than in the absence of it. The highest

turbidity levels were measured for stir-D3 samples, followed by stir-D1, and heat-D3. In

addition, the presence of NaCl increased the turbidity for the heated (heat-D1 and heat-D3)

protein compared to the corresponding heat stressed mAb samples without NaCl. Shaken or

stirred mAb samples formed a large number of visible particles regardless of the presence or

absence of NaCl.

Structural Characterization of Aggregates and Particles

Particle Morphology—As an initial step in characterizing the nature and composition of

the particles formed under different stresses, MFI was used to elucidate morphological

information (intensity and aspect ratio parameters) of the subvisible particles generated after

three days of stress (Fig. 3 and Supplemental Fig. S1). Aspect ratio is a ratio of width of the

particle relative to the height and intensity is related to the particle absorption

characteristics. Data were visualized in the form of a radar plot (Fig. 4). Figure 4 shows the

different stresses applied to mAb solutions with and without NaCl on the x-axis and the MFI

morphology parameters, intensity and aspect ratio, on the y-axis. The top and bottom radar

charts describe the intensity and aspect ratio, respectively, of the particles as a function of

stress and solution condition. As shown in the key to Figure 4, the aspect ratio of the micron

particles varies from ~0.35 (elongated) to 0.85 (more circular) and the intensity from about

350 (opaque) to 850 (highly transparent) intensity level units (ILU). It should be emphasized

that the concentric circles here do not represent concentration, but rather a change in particle

morphology with the outermost circle representing elongated, opaque particles, and the

innermost circle representing transparent, circular particles. The corners of the 5-sided

polygon represent distinct particle size bins (labeled 1-5 in the figure). The pink-shaded

region indicates that an insufficient number of particles were collected in that size range for

accurate morphological analysis.

In the absence of NaCl, the shaking of the mAb solution over 3 days resulted in particles

that appeared transparent (Fig. 4A) and elongated (Fig. 4B) over all particle size ranges. In

the presence of NaCl under the same stress condition, the particles formed are less

transparent (i.e., more opaque) and less elongated (i.e., more circular in shape) over a

narrower size range. Stirring-induced mAb particles formed in the presence or absence of

NaCl do not show notable differences in intensity or aspect ratio. The concentration of

particles in the freeze-thaw and heated samples without NaCl was lower (Fig. 3) and an

accurate comparison of the morphology change across the size ranges was limited (as shown

by the shaded areas in Figure 4).

To characterize the morphology of smaller particles, TEM was used to examine the shape of

nanometer sized aggregates generated from 3 days of different stresses in the presence of

0.15 M NaCl. Some representative TEM images are shown in Figure 5. It can be seen that

the type of stress to which the mAb solution was subjected influences the morphology of the

aggregates generated. Freeze-thaw and heated aggregates appear very fibrillar, while

agitated-induced aggregates appear fibrillar with some spherical aggregates. The stirring-

induced aggregates were predominantly spherical in nature in this size range.
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Non-native disulphide cross-linking—SDS-PAGE was used to study the formation of

non-native covalent crosslinking in the stressed mAb. Results for the stirring and heating

stressed mAb containing NaCl are shown in Figure 6A and B (non-reduced and reduced,

respectively). These samples were first centrifuged to separate the supernatant (S) and pellet

components (P) prior to electrophoresis. The non-reduced supernatants contained

predominantly monomers while the pellets contained high molecular weight species above

500 kDa (i.e., larger than tetramer). Upon reduction of the supernatant and pellet, a complete

loss in the high molecular weight material was observed with the light and heavy chains

bands of the mAb visible as the primary species. The pellet for stir-D1 and D3, heat-D1 and

D3 contained significant amounts of non-native disulfide linked aggregates. The supernatant

of heat-D1 protein contained some of these non-native disulfide linked aggregates as well.

No disulfide-linked aggregates were detected in freeze-thaw and agitation stressed mAb

samples (data not shown). The number of free sulfhydryl groups in the mAb samples was

also measured, and virtually no free thiols were present in control or stressed samples (data

not shown).

Overall secondary structure content—The secondary structure of the aggregated

samples was studied using FTIR spectroscopy of control mAb samples and FTIR

microscopy of individual particles formed by stress in 10 mM acetate, 150 mM NaCl, pH 5.

Representative spectra are shown in Figure 7 along with wavelength values from multiple

measurements including standard deviations. Two mAb controls were prepared for

comparison to the particles formed from stressed samples: an unstressed mAb with native

conformation (Figure 7A in the form of second derivative FTIR spectra) and particles

isolated from an extensively heated mAb sample with some degree of structural

perturbations (Figure 7B). Figures C-F show microscopic images and the corresponding

FTIR spectra of isolated amorphous mAb particles generated under different stresses.

In the Amide I region of the second derivative FTIR spectra of the native mAb, two minima

at 1637 cm-1 and 1690 cm-1 were observed (Figure 7A). This result is consistent with the

predominantly intramolecular beta sheets present in native IgGs. 9,43,44 For the isolated

mAb particles from the extensively heat stressed control, severely altered secondary

structure displaying extensive loss of intramolecular beta sheet structure (as shown by loss

of the two minima seen in the native mAb control, and the appearance of intermolecular beta

sheets with minima at 1617 cm-1, and 1693 cm-1 (Figure 7B) is seen. For the isolated mAb

particles produced by three days of heating at 60°C, the spectra show the sample is more

similar to the extensively heated control as evidenced by the presence of the two minima at

1624 cm-1 and 1694 cm-1.45,46 The mAb particles isolated after three freeze-thaw cycles and

three days of agitation have FTIR spectra with primarily native-like structure as seen by the

second derivative minima at 1634 cm-1 and 1691 cm-1 and 1635 cm-1 and 1692 cm-1,

respectively. The stirred aggregates show reproducibly shifted minima in the main second

derivative peak to 1631 cm-1 indicating some alteration in secondary structure.

Surface hydrophobicity—To examine any changes in the exposure of apolar regions in

the stressed samples containing NaCl due to structural perturbations or aggregation/self-

association, ANS extrinsic fluorescence spectroscopy was used. Stress induced aggregated
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mAb samples were centrifuged and separated into supernatant and pellet components. They

were analyzed along with two controls: the unstressed mAb (D0) and a positive control

(Heat-melt). As a positive control to determine the greatest extent of apolar binding of ANS,

the mAb solution was heated from 10 to 87.5°C in the presence of ANS. From the emission

spectrum, it was determined that the maximum binding of ANS to the mAb occurred at

72°C suggesting maximal ANS access to apolar sites at high temperature. Representative

spectra are shown in Figure 8. The control mAb solution (D0) along with supernatants from

the FT, shake, and stir-D1 samples (Fig. 8A,B) show very little fluorescence intensity

indicating that in these samples, ANS has very little access to the apolar regions of the mAb.

In the stir-D1 pellet, slightly higher fluorescence intensity was observed, which suggests

some exposure of apolar sites in these aggregates (Fig. 8A, B). The heat-D1 supernatant and

pellet show the largest ANS fluorescence intensity increase suggesting the greatest exposure

of apolar regions. The heat stressed mAb samples containing NaCl displayed a similar

magnitude of fluorescence intensity as the positive control (heat-melt) indicating that this

stress condition may also generate samples with extensively apolar exposed regions.

DISCUSSION

As an initial set of experiments, we first counted and sized protein particles generated under

accelerated stress conditions employing an IgG1 mAb solution with and without 0.15 M

NaCl. A summary of the counting and sizing results from SEC, NTA, MFI, Turbidity, and

Visual Assessments are presented in Table 2. Different stresses (in the presence and absence

of NaCl) result in the formation of mAb aggregates and particles of varying sizes which

cannot be measured by a single analytical method. As shown in Table 2, using multiple

techniques is therefore very important for analyzing the formation of a broad size range of

aggregates. For example, SEC showed that the formation of soluble aggregates was

influenced by the presence of NaCl across the four stresses. NTA results demonstrated that

the presence of NaCl affected the extent of nanometer particle formation in the freeze-thaw

and heat stressed samples, but not for the agitated and stirred stressed samples. Similarly,

MFI detected that NaCl enhanced the formation of micron particles only for the freeze-thaw

stressed mAb sample. Finally, turbidity and visual assessments showed changes in particle

formation (due to the presence or absence of NaCl) with heat stressed mAb solutions.

Freeze-thaw stress was observed to be the mildest condition in solutions without NaCl since

essentially no detectable aggregates or particles were seen (Table 2, first row). Upon

addition of NaCl (Table 2, second row), some insoluble aggregates (detected as a loss of

total mass by SEC) and some nanometer and micron particles were detected by NTA and

MFI. Shaking the mAb solution with and without NaCl (third and fourth row in Table 2)

generated a turbid solution with primarily micron (2 to >100 μm) size particles observed by

MFI and visual inspection. The shaken solution in presence of NaCl was more turbid with

some insoluble aggregates, and a larger number of micron-sized particles 2 to >100 μm.

Stirring without NaCl produced a moderately turbid solution consisting of some insoluble

aggregates, submicron, micron, as well as a large number of visible entities. Stirring the

mAb solutions, in the presence of NaCl, generated the most turbid solutions consisting of a

very large amount of insoluble aggregates (20% after day 1 and around 60% after 3 days of

stress, as quantified by SE-HPLC). The largest differences in aggregate and particle
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formation were observed due to heating the mAb solution (Table 2; rows seven and eight).

Heating in the absence of NaCl generated a fairly clear solution consisting of primarily

monomers with a very small amount of insoluble aggregates and fragments (SEC), little to

no nanometer-sized (NTA), micron (MFI), and visible particles even after three days of

stress. In the presence of NaCl, however, a highly turbid solution formed containing much

more insoluble and multimer aggregates as well as a large increase in the number of

nanometer, micron, and visible sized particles.

Comparison of these results to other studies shows similar trends in which mAb aggregate

and particle formation depends on the type of stress and solution conditions. For an IgG1

mAb with a basic pI range formulated at lower solution pH such as pH 5.0, the addition of

NaCl (<0.15 M) may promote protein aggregation and particle formation during

environmental stress by a combination of effects resulting from neutralizing protein surface

charge and decreasing electrostatic interactions. These effects may promote protein-protein

interactions (colloidal stability) or decrease the structural integrity and stability of the

protein (conformational stability).9,47 The last column of Table 2 describes the impact of

NaCl on various stresses using eight analytical readouts obtained from four instruments. For

a given stress, column values can potentially range from 0/8, indicating NaCl had no impact

on the aggregation behavior, to 8/8 where NaCl impacted the aggregation behavior of the

mAb as measured by all of these analytical methods. Agitation and stirring stresses of the

mAb solution were least influenced by the presence of NaCl (1 out of 8). Although the two

stresses themselves were damaging to the protein, the addition of NaCl minimally increased

mAb instability (as manifested in detectable changes in SEC for percent insoluble aggregate

and monomer content for agitation and stirring stresses, respectively). Aggregation of the

mAb under freeze-thaw stress was more influenced by the presence of NaCl (3 out of 8).

Although freeze-thaw stress does not seem to cause alterations in the conformation of the

mAb (see below), increases in percent insoluble and soluble aggregate, as well as nanometer

and micron sized particles (by SEC, NTA, and MFI, respectively) were noted due to the

presence of NaCl, indicating decreased colloidal stability. Finally, heat stress showed the

largest effect of NaCl on mAb instability (6 out of 8). While heating of the mAb solution in

the absence of salt alters the conformational stability of the protein, it does not result in

extensive aggregate or particle formation. With the addition of NaCl, however, there is now

a large colloidal component to the mAb instability.

Despite the availability of new analytical methods to accurately and precisely count and size

protein particles in the submicron and subvisible size range,27,28,48-51 biophysical

characterization of the nature, composition and structural integrity of the protein within

these particles remains a major analytical challenge. The focus of this work was to

characterize aggregates and particles formed in an IgG1 mAb in the presence of 0.15M NaCl

as a function of various stresses (freeze-thaw, shaking, stirring and heating). The primary

goal was to characterize the morphology, structural integrity and composition of the IgG1

particles formed in 0.15M NaCl containing solutions by probing the extent of non-native

covalent cross-linking, changes in overall protein secondary structure, and alterations in

surface hydrophobicity within the particles as formed by each type of stress applied to the

mAb solutions. Additionally, we also evaluated the morphology of these particles by TEM

and by a newly developed approach from our laboratory to analyze MFI size distribution
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and morphological data using radar plots.42 These plots are commonly used to summarize

large sets of protein data from multiple biophysical techniques. Radar plots are used to better

visualize particle size distribution and morphological parameters of the particles.42

The freeze-thaw stress appeared to be mild and essentially did not change the overall higher

order structure or covalent crosslinking of the protein within the aggregates. Particles,

isolated onto a gold filter, showed no detectable alterations in overall secondary structure

relative to the native IgG sample, even after three freeze thaw cycles. The nanometer sized

aggregates appeared to have a fibrillar morphology by TEM. The micron sized particles

(10-50μm) were opaque (less transparent) and more elongated. Similarly, freeze-thaw

samples showed very low surface hydrophobicity almost equal to that of the native protein.

There appeared to be no covalent cross-linking present in the sample and no corresponding

higher molecular weight aggregates seen on SDS-PAGE gels (data not shown). Results

obtained from similar experiments by Joubert et al. as well as Barnard et al and Zhang et

al.52,53 with different mAbs were consistent with our observations.23

For mAb solutions stressed by shaking, a common stress encountered by many protein drugs

during transportation, generated predominantly fibrillar and slightly spherical nanometer

particles, while the micron sized particles were more opaque and circular than the samples

shaken without NaCl, as shown in Figures 4 and 5. These stressed samples contained little to

no covalently linked aggregates with largely native-like secondary structure and low surface

hydrophobicity (Figs 6-8) even after three days of shaking stress. While shaking generated

higher number of aggregates and particles than freeze-thaw, there were not many differences

in the biophysical characteristics of the aggregates generated by these two stresses compared

to the unstressed, native protein. This result is similar to data published previously with

other proteins.17,23,54

Stirring stress was a harsher condition on the IgG1 compared to freeze-thaw and shaking. In

addition, the particles generated from this stress were predominantly spherical in

morphology which was not observed with other stresses. From the MFI morphology data,

NaCl did not notably affect particle morphology (in terms of aspect ratio and intensity) of

the stirred samples in the micron size range as shown by the radar chart analysis in Figure 4.

Biophysical differences were also observed in protein from the pellet fraction and

supernatant fraction of the centrifuged stirred IgG mAb samples. The protein in the pellet

fraction displayed greater surface hydrophobicity (Figure 8) and contained an increased

amount of reducible high molecular weight covalently linked aggregates (Figure 6) than the

supernatant fraction. The ANS fluorescence data suggest that the population of aggregates

present in the pellet may be more structurally altered compared to the aggregates present in

the supernatant. The isolated stir-stressed particles showed some loss in overall

intramolecular beta sheet structure content and some increase in the formation of

intermolecular beta sheet structures (non-native, aggregated structures) as shown by FTIR

analysis (Figure 7). One study reported that the overall secondary structure of the stirred

sample was similar to that of the unstressed sample, contrary to our results with this IgG.17

In addition to rapid transportation of aggregates into bulk solution from the interface, protein

also encounters the harsh shear force of the stir-bar and the resulting thermal effects as well
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as cavitation.17,55 All of these factors could account for higher aggregation and particulation

with stirring stress compared to shaking.

For the heated samples of the IgG mAb, the supernatant fraction contained less non-native

covalently linked aggregates compared to the pellet fraction which possessed higher levels

of this type of disulfide cross-linked aggregate as measured by SDS-PAGE (Figure 6). The

variability in the micron particle concentration was very high due to heating, so it is difficult

to make definitive conclusions about the aspect ratio or intensity of these particles, although

more elongated and more opaque particles were seen in the presence of NaCl (Figure 4). In

the presence of NaCl, nanometer sized particles seen by TEM appeared fibrillar in

morphology (Figure 5). The heat stressed samples displayed a highly perturbed overall

secondary structure content consisting of predominantly intermolecular beta sheets as

measured by FTIR (Figure 7). The increased ANS binding in both the supernatant and pellet

of the centrifuged heated samples suggests significant exposure of apolar moieties in both

fractions. Hawe et al. noted that the heat generated aggregates contained non-native covalent

cross-linking with significantly increased ANS binding (increase in surface hydrophobicity),

as well as a large perturbation in the secondary structure 18,23 Zhang et al. conducted a

similar experiment with Bevacizumab and determined that heat generated aggregates had

significantly altered structure from their ANS and intrinsic Trp fluorescence data.53 These

results are consistent with our observations

In summary, while there has been a vast growth in our ability to count and size protein

aggregates and particles over a wide size range during the past ~5 years, our analytical

capabilities to describe the morphology, structural integrity and composition of the protein

within these particles is still limited. The goal of this study was to provide a case study to

examine the effect of different environmental stresses on an IgG1 mAb solution in terms of

the morphology of particles formed as well the extent of structural alterations of the protein

within the particles. We confirmed results of previous studies 17,18,23,52,55 that the type of

stress a mAb solution experiences greatly influences many of its physical properties in

distinct ways. There are still many gaps in our understanding that need to be addressed, 56

especially if there is a relationship between a particular particle count, particle size range,

particle weight or perhaps the physicochemical or morphological trait(s) of protein particles/

aggregates and their potential to generate an immune response in vivo. 56-62
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Figure 1.
Formation of soluble and insoluble aggregates in IgG1 mAb solutions exposed to different

stresses as measured by SEC. (A, B) Representative SEC chromatograms monitored at 214

nm of 1 mg/mL antibody in 10 mM sodium acetate, pH 5 in absence (A) and presence (B) of

150 mM NaCl. Key: Day 0 Control (—), F/T Cycle 3 ( ), Agitation Day 3 ( ),

Stirring Day 3 ( ), Heating Day 3 ( ). Plots of monomer loss and changes in amounts

of impurities as a function of different stresses are shown: freeze-thaw cycles (C) without

NaCl and (D) with NaCl; days of agitation (E) without NaCl and (F) with NaCl; days of

stirring (G) without NaCl and (H) with NaCl; days of heating (I) without NaCl and (J) with
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NaCl. Key for C-J:  -% Monomer; Impurity:▬- % Insoluble; ▲- % Multimer; ▼ - %

Dimer; ◆- % Fragment. Each graph represents the average of three separate experiments

(n=3). Error bars represent the 95% confidence interval.
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Figure 2.
Formation of submicron sized particles in IgG1 mAb solutions exposed to different stresses

as measured by NTA. Representative NTA data showing the formation of nanometer sized

particles due to four indicated stresses applied to 1 mg/mL antibody solution containing 10

mM sodium acetate, pH 5 in the (A) absence of NaCl and (B) in the presence of NaCl.

Concentration of nanometer sized protein particles formed due to each stress at day 1 (D1)

and (D3) in the presence and absence of NaCl (C, D). Each data point are the average of

three separate experiments (n=3) and the error bars for each data point represent the 95%

confidence interval.
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Figure 3.
Radar plots for visualizing formation of subvisible particles (concentration and size

distributions) in IgG1 mAb solutions exposed to different stresses as measured by MFI.

Radar plots show MFI particle concentration and size data distributions as generated by four

indicated stresses when applied to 1 mg/mL antibody solution containing 10 mM sodium

acetate, pH 5 with and without 150 mM NaCl. See text for details of radar plot analysis. The

data shown are the average of three separate experiments (n=3) and the error represents the

95% confidence interval.

Telikepalli et al. Page 21

J Pharm Sci. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Radar plots for visualizing morphology parameters of subvisible particles (aspect ratio and

intensity) in IgG1 mAb solutions exposed to different stresses as measured by MFI. Radar

plots show MFI morphology data distributions as generated by four indicated stresses when

applied to 1 mg/mL antibody solution containing 10 mM sodium acetate, pH 5 with and

without 150 mM NaCl. See text for details of radar plot analysis. The data shown are the

average of three separate experiments (n=3) and the error represents the 95% confidence

interval.
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Figure 5.
Representative TEM images of IgG1 mAb aggregates and particles formed after 3 freeze-

thaw cycles or three days of each indicated stress. Particles were isolated from 1 mg/mL

antibody solution in 10 mM sodium acetate, 150 mM NaCl, pH 5.
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Figure 6.
Reduced and non-reduced SDS-PAGE gels of IgG1 mAb samples exposed to four different

stresses. Samples contained 1 mg/ml antibody in 10 mM sodium acetate, 150 mM NaCl, pH

5. High molecular weight aggregates formed by disulfide linkages were observed in pellet of

stir-Day 1, stir-Day 3, heat-Day 1 and heat-Day 3 samples. Stressed samples were

centrifuged to separate supernatant (S) from pellet (P), run on SDS-PAGE, and stained as

described in methods section.
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Figure 7.
FTIR analysis of overall secondary structure of IgG mAb solutions and isolated particles as

generated from four indicated stresses. Samples contained 1 mg/ml antibody in 10 mM

sodium acetate, 150 mM NaCl, pH 5. Second derivative FTIR spectrum of (A) native,

unstressed protein in solution, and (B) mAb heated at 80°C for 20 min to determine the

maximum extent of secondary structure loss in solution, (C, D, E, F) Representative optical

images of isolated mAb particles (by passing through gold filter) as generated from the four

indicated stresses and their corresponding second derivative FTIR spectra from FTIR

microscope. Numerical values are the average of three separate experiments (n=3) with error

associated with the wavenumbers representing the 95% confidence interval.
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Figure 8.
ANS extrinsic fluorescence analysis of IgG1 mAb samples (supernatant and pellet

components) before and after indicated stress was applied to samples. Samples contained 1

mg/ml mAb in 10 mM sodium acetate, 150 mM NaCl, pH 5. (A) Representative ANS

spectra, and (B) ANS fluorescence intensity values (at 480 nm) for each stressed mAb

sample compared to the two controls: unstressed (D0) and extensively heated samples

(Heat-melt). The average intensities shown are based on three separate experiments (n=3).

The error bars represent 95% confidence interval.
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