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Abstract

Drug delivery strategies using cell penetrating peptides (CPPs) have been widely explored to 

improve the intracellular delivery of a large number of cargo molecules. Electrostatic 

complexation of pDNA using CPPs has been less explored due to the relatively large complexes 

formed and the low levels of gene expression achieved when using these low molecular weight 

polycations as DNA condensing agents. Here, condensing nascent CPP polyplexes using CaCl2 

produced small and stable nanoparticles leading to gene expression levels higher than observed for 

control PEI gene vectors. This simple formulation approach showed negligible cytotoxicity in 

A549 lung epithelial cells and maintained particle size and transfection efficiency even in the 

presence of serum.
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Introduction

Nucleic acid therapeutics continue to offer promise for the treatment of both acquired and 

inherited diseases. One major obstacle impeding the successful application of nucleic acid 

drugs is the difficulty to develop a simple, safe, and efficacious delivery system 1–3. Gene 

delivery vectors must compact genetic material into nanoparticles that are colloidally stable, 

protect nucleic acids from enzymatic degradation, effectively transit nucleic acids to target 

cells, and achieve a significant transfection yield. Viral vectors remain the most effective 

method of gene delivery even though problems such as immunogenicity remain a concern.

Polymer-mediated gene delivery has emerged as a viable alternative to viral transfection due 

to potential attributes such as low immunogenicity, low toxicity, ease of synthesis and low 

cost 4–6. Many studies have shown that DNA complexes electrostatically with polycations to 

form "polyplexes" that are endocytosed by many cell types and deliver DNA with varying 

degrees of efficiency and toxicity 7–16. Frequently, the most effective polyplexes are also the 

most toxic, thus hampering clinical translation 1–6. As a primary example, polyethylenimine 
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(PEI) exhibits efficient gene delivery but is also very cytotoxic 17,18. Cell-penetrating 

peptides (CPPs) offer a potential alternative to PEI. These short polycations achieve 

intracellular access by crossing the plasma membrane directly or by endocytosis 19–25 while 

typically exhibiting low cytotoxicity 26,27. Covalently conjugating CPPs to gene vectors 

(e.g. liposomes, polymer nanoparticle, etc.) has shown some promise, but polyplexes of 

CPPs and DNA have proven to be relatively inefficient and require improvement 28,29.

To provide a simple method for improving the gene delivery of CPP polyplexes, calcium 

was used to condense large and inefficient CPP polyplexes. The resulting nanoparticles 

transfected human lung carcinoma cell line A549 more efficiently than PEI and exhibited 

very low cytotoxicity. Four representative CPPs were studied; Arginine 7 (Arg7), Arginine 9 

(Arg9), Antennapedia Heptapeptide (Ahp) and Antennapedia Leader Peptide (Alp) (Table 

1). Plasmid DNA encoding firefly luciferase (pGL3, 4.8 kbp) was used as a reporter.

Experimental Section

Materials

Plasmid DNA encoding firefly luciferase (pGL3, 4.8 kbp) was obtained from Promega 

(Madison, WI). Cell penetrating peptides (CPPs) were purchased from Pi Proteomics 

(Huntsville, AL). Branched polyethylenimine (PEI, 25 kDa) was obtained from Aldrich 

(Milwaukee, WI). Calcium chloride (CaCl2. 2H2O) was purchased from Fisher Scientific 

(Pittsburgh, PA). A549 cells were obtained from the American Type Culture Collection 

(ATCC, Rockville, MD). The cell culture medium (Ham’s F-12 Nutrient Mixture, Kaighn’s 

modified with L-glutamine) was purchased through Fisher Scientic. Fetal bovine serum 

(FBS) was purchased from Hyclone. Penicillin-streptomycin was purchased from MB 

Biomedical, LLC. Trypsin-EDTA was purchased through Gibco. MTS reagent [tetrazolium 

compound; 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt] was purchased from Promega.

Preparation of CPP/pGL3 complexes

CPP/pGL3 complexes were prepared by adding 10 µL (0.1 µg/µL) of pGL3 to 15 µL CPP 

solution while pipetting. To this solution, 15 µL of known molarity (e.g. 113 mM) CaCl2 

was added and mixed by vigorous pipetting. Before performing experiments, the complexes 

were allowed to equilibrate for 20 min at 4° C.

Preparation of PEI/pGL3 complexes

PEI/pGL3 complexes were prepared by adding 10 µl (0.1 µg/µL) of pGL3 solution to 15 µL 

(N/P ratio 10) PEI solution while pipetting followed by 20 min incubation at 4° C. 

Complexes were freshly prepared before each individual experiment.

Characterization of CPPs and PEI complexes

The size and zeta potential of the different complexes were measured by using ZetaPALS 

dynamic light scattering (DLS) (Brookhaven, Holtsville, NY).
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Cell culture

Culturing of human epithelial lung cell line A549 was performed according to the protocol 

provided by the American Type Culture Collection. A549 cells were grown in F-12K 

supplemented with 10% v/v FBS and 1% v/v Penicillin/streptomycin at 37° C in a 

humidified air atmosphere containing 5% CO2.

In vitro cell transfection studies

A549 cells were trypsinized, counted and diluted to a concentration of approximately 80,000 

cells/ mL. Then 0.1 mL of that dilution was added to each well of a 96-well plate and the 

cells were incubated in a humidified atmosphere at 5% CO2 and 37°C for 24 h. Immediately 

before transfection, the cells were washed once with PBS and 100 µl sample (20% of 

complex to 80% of serum free cell culture medium) was added to each well. Cells were 

incubated with the complexes for 5 h. The transfection agent was then removed by 

aspiration and 100 µL of fresh serum medium was added followed by further incubation. 

The Luciferase Assay System from Promega was used to determine gene expression 

following the manufacturer’s recommended protocol. The light units were normalized 

against protein concentration in the cells extracts, which were measured using the BCA™ 

Protein Assay (Thermo Scientific). The transfection results were expressed as Relative Light 

Units (RLU) per mg of cellular protein.

Assessment of cytotoxicity (MTS Assay)

Cytotoxicity of polymers was determined by the CellTiter 96® Aqueous Cell Proliferation 

Assay (Promega). A549 cells were grown as described in the transfection experiments. Cells 

were treated with the samples for ~24 h. The media were then removed and replaced with a 

mixture of 100 µL fresh culture media and 20 µL MTS reagent solution. The cells were 

incubated for 3 h at 37°C in the 5% CO2 incubator. The absorbance of each well was then 

measured at 490 nm using a microtiter plate reader (SpectraMax, M25, Molecular Devices 

Corp., CA) to determine cell viability.

Statistical analysis

Statistical evaluation of comparing the significance of the difference in expression between 

the means of two groups was performed using the t-test, a value of p <0.05 was accepted as 

significant.

Results and Discussion

Peptides offer a highly attractive feature of incorporating various biological activities 

required for biomedical applications30–34. Cell-penetrating peptides, a group of short 

peptides with the potent ability to translocate across the plasma membrane of the cells, have 

been reported to mediate plasmid DNA delivery into cells35–37; however, improving the 

transfection efficiency of their DNA complexes remains a major challenge. The relatively 

low transfection level of certain complexes may be due to inadequate escape from 

endosomes or the inefficient release of DNA from the complexes38. Previous studies 

demonstrated that the HIV-1 TAT peptide could only provide a high level of gene 

expression when chloroquine (an endosomolytic agent) was added, which is not feasible for 
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gene delivery in vivo28,39–41. One approach for overcoming this limitation was to link the 

CPPs to produce high molecular weight polypeptides42–44 or to directly conjugate the CPPs 

using histidine or cysteine residues38,45. Others have tried a low molecular weight PEI with 

covalently linked TAT to overcome the poor transfection efficiency of the CPP alone39. 

Targeting studies have also been explored. For example, the YIGSR pentapeptide, known to 

target cell surface laminin receptors, or the LK15 peptide was conjugated to TAT. In each 

case, the transfection efficiency improved, but gene expression levels were still low 

compared to PEI46–48.

In studies reported here, CPP/pGL3 complexes were synthesized by rapidly adding pGL3 to 

CPP. These complexes were thoroughly mixed by pipetting and then CaCl2 was added to 

decrease the large size of these complexes. Calcium was previously reported to interact with 

both amines (e.g. on CPPs) and pDNA within polyplexes to form compact complexes 

through "soft" crosslinks. Here, the reduction in the size of CPP/pGL3 complexes likely led 

to some of the noted increase in transfection. A CaCl2 concentration of 113 mM consistently 

produced small (100–140 nm) and stable CPP polyplexes with a single particle population 

(polydispersity < 0.23). In general, the zeta potential of CPP polyplexes increased 

significantly from 8 to 26 mV with increasing concentration of CaCl2 (Figure 1). The CPP 

polyplexes synthesized with CaCl2 remained stable in the absence and presence of 10% FBS 

at 37° C for 1 hr. Conversely, CPP polyplexes without added calcium remained large 

(Figure 2).

A successful gene delivery vector should be able to deliver gene to the cell without 

negatively affecting the viability of the host cell. To investigate whether the CPPs affected 

the viability of A549 human lung carcinoma cells, an MTS cytotoxicity assay of free CPP or 

branched PEI (25 kDa) was conducted. A549 cells were incubated with up to 5 mg/mL of 

CPPs or PEI for ~24 hrs. Cytotoxicity profiles of Arg7, Arg9 and Ahp peptides revealed no 

evidence of cytotoxicity and cells maintained high viability (Figure 3), while Alp peptide 

showed moderate cytotoxicity (IC50 ~2144 µg/mL). Branched PEI induced substantial 

cytotoxicity (IC50 ~35 µg/mL).

Luciferase gene expression was measured 24 h after transfection in order to study the ability 

of CPP polyplexes to transfect A549 cells. Different N/P ratios of the CPP or branched PEI 

(N/P 10) polyplexes were studied using different concentrations of CaCl2; 0, 28.3, 56.5, and 

113 mM as a condensing agent after complex formation. Most CPP polyplexes showed the 

highest level of gene expression at 113 mM of added CaCl2 for the various N/P ratios when 

compared to branched PEI, which had excellent transfection efficiency only in the absence 

of CaCl2 (Figure 4). Arg7, Arg9, Ahp and Alp revealed the greatest transfection efficiency 

with 113 mM CaCl2 at N/P ratios of 36, 35, 29 and 15 respectively. It is important to note 

that gene expression was not detectable for CPPs/pDNA complexes without CaCl2.

To gain insight into the potential of utilizing calcium condensed CPP polyplexes as delivery 

vectors in vivo, A549 cells were transfected in the presence of serum (Figure 5). A slight 

decrease in transfection efficiency was observed and CPP polyplexes exerted a similar 

reduction in gene expression as that observed for PEI polyplexes. PEI polyplexes have 

shown effective gene transfection in vivo, but is dose limited due to toxicity.
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Conclusion

The delivery of therapeutic nucleic acids by CPP polyplexes condensed with calcium may 

offer a simple and effective gene delivery method with potential for clinical translation. 

Adding CaCl2 to CPP polyplexes produced small nanoparticles leading to gene expression 

levels higher than observed for optimized PEI gene vectors in A549 lung epithelial cells. 

CPP polyplexes were stable, maintaining particle size in the absence and presence of 10% of 

FBS over a period of 1 h. The CPPs generally showed negligible cytotoxicity up to 5 

mg/mL, which may offer an opportunity to increase the dose of nucleic acid therapeutics to 

achieve a desired therapeutic effect. The simplicity of the formulation in combination with 

the efficacy and low cytotoxicity of CPP polyplexes makes them highly interesting vectors 

for future studies in vivo.
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Figure 1. 
The effect of CaCl2 (113 mM) on the charge of PEI and CPPs complexes. Results are 

presented as mean ± SD (n = 3). PEI, polyethylenimine; CPPs, cell-penetrating peptides; 

Arg7, arginine 7; Arg9, arginine 9; Ahp, antennapedia heptapeptide; Alp, antennapedia 

leader peptide.
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Figure 2. 
The diameter of CPPs–Ca/pGL3 and PEI complexes (without and with 113 mM CaCl2) in 

(a) the presence and (b) absence of 10% fetal bovine serum. Results are presented as mean ± 

SD (n = 3). PEI, polyethylenimine; CPPs, cell-penetrating peptides; Arg7, arginine 7; Arg9, 

arginine 9; Ahp, antennapedia heptapeptide; Alp, antennapedia leader peptide.
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Figure 3. 
Cytotoxicity profiles of PEI andCPPs.. Viability is expressed as a function of polymer 

concentration. Results are presented as mean ± SD (n = 3). PEI, polyethylenimine; CPPs, 

cell-penetrating peptides; Arg7, arginine 7; Arg9, arginine 9; Ahp, antennapedia 

heptapeptide; Alp, antennapedia leader peptide.
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Figure 4. 
The transfection efficiency of CPP polyplexes using (a) Arg7, (b) Arg9, (c) Ahp, or (d) Alp 

with different concentrations of added CaCl2. Results are presented as mean ± SD (n = 3), 

*p < 0.001(Arg7, Ahp, and Alp), and *p < 0.01 (Arg9) as compared with PEI. PEI, 

polyethylenimine; CPPs, cell-penetrating peptides; Arg7, arginine 7; Arg9, arginine 9; Ahp, 

antennapedia heptapeptide; Alp, antennapedia leader peptide; RLUs, relative light units.
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Figure 5. 
The transfection efficiency of CPP polyplexes in the absence and presence of 10% fetal 

bovine serum. Results are presented asmean ± SD (n = 3). PEI, polyethylenimine; CPPs, 

cell-penetrating peptides; Arg7, arginine 7; Arg9, arginine 9; Ahp, antennapedia 

heptapeptide; Alp, antennapedia leader peptide; RLUs, relative light units.
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Table 1

Structure of CPPs, Arginine 7 (Arg7), Arginine 9 (Arg9), Antennapedia Heptapeptide (Ahp) and 

Antennapedia Leader Peptide (Alp).

CPP Sequence Molecular weight
(Da)

Arg7 RRRRRRR 1,111.3

Arg9 RRRRRRRRR 1,423.3

Ahp RRMKWKK 1,032.6

Alp KKWKMRRNQFWVKVQRG 2,276.2
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