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Abstract

Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently 

no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus 

infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of 

this enzyme is a fruitful avenue of investigation that may lead to the emergence of anti-norovirus 

therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like 

protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also 

demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.

Introduction

Human noroviruses are the primary cause of sporadic and epidemic acute gastroenteritis in 

the US and worldwide,1–3 consequently, they constitute an important public health problem, 

as well as a potential bioterrorism threat. Although the illness is generally considered to be 

mild and self-limiting, it can incapacitate infected individuals, including military troops on 

ships or war zones during the symptomatic phase.4 Noroviruses are very stable in the 

environment and refractory to many common disinfectants, with only a few virions required 
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to initiate virus infection and shedding, which could be a source for further contamination. 

Therefore, norovirus outbreaks are hard to contain using routine sanitation, and even 

implementation of aggressive sanitary measures often fails to prevent subsequent 

outbreaks.5–6 The problem is further compounded by the current dearth of diagnostics, 

effective vaccines, and norovirus-specific antiviral therapeutics and/or prophylactics.7–9

Human noroviruses are single-stranded, positive sense RNA viruses belonging to the 

Caliciviridae family.10 Genogroups I, II and IV of the six genogroups (GI-GVI) in the genus 

Norovirus are known to infect humans. The norovirus genome (7–8 kb) consists of three 

open reading frames that encode a 200 kDa polyprotein (ORF1), a major capsid protein VP1 

(ORF2), and a small basic protein VP2 (ORF3).10–11 The mature polyprotein precursor is 

processed by a virus-encoded 3C-like protease (3CLpro) to generate six mature non-

structural proteins, including the viral protease (3CLpro or NS6Pro) and the RNA dependent 

RNA polymerase (NS7Pol).12 Co- and post-translational processing of the polyprotein by 

norovirus 3CLpro is essential for virus replication, consequently, norovirus 3CLpro has 

emerged as a potential druggable target for the discovery of anti-norovirus small molecule 

therapeutics and prophylactics.13–14

Norovirus 3CLpro is a chymotrypsin-like cysteine protease with a Cys-His-Glu catalytic 

triad and an extended binding site.11,15 The primary substrate specificity of the protease is 

for a P1 glutamine residue and a strong preference for a –D/E-F-X-L-Q-G-P-sequence (X is 

H, Q or V), corresponding to the subsites S5-S4-S3-S2-S1-S1’-S2’-, respectively.15–16 

Cleavage is at the P1-P1’ (Q–G) scissile bond. We have recently reported an array of 

norovirus inhibitors, including acyclic and cyclic sulfamide17–19 and piperazine20 

derivatives. We have also disclosed for the first time peptidyl transition state (TS) 

inhibitors,13a–e TS mimics,13f as well as macrocyclic inhibitors13g effective in enzyme and 

cell based assays. We have furthermore described the first high throughput FRET assay of 

3CLpro from GI and GII noroviruses as a screening tool for identifying potential protease 

inhibitors and have determined high resolution X-ray crystal structures of Norwalk virus 

(NV, a prototype strain of norovirus) 3CLpro in complex with peptidyl transition state 

inhibitors,13c as well as the first solution structure of the protease using high-field NMR.13h 

Finally, we have demonstrated proof-of-concept using the mouse model of murine norovirus 

(MNV) infection (vide infra).

In continuing our foray in this area, we describe herein the structure-based optimization of a 

series of dipeptidyl inhibitors of NV 3CLpro represented by structure (I) (Figure 1) using an 

array of X-ray crystallographic, structure-activity relationship, biochemical, cell-based, and 

animal studies using the mouse model of murine norovirus (MNV) infection.

Results and Discussion

Inhibitor Design Rationale

We initially focused on the design of peptidyl transition state inhibitors of NV 3CLpro that 

incorporate in their structure a recognition element (a peptidyl fragment) that is congruent 

with the known substrate specificity of the enzyme (vide supra) and a warhead (aldehyde or 

α-ketoamide), latent warhead (bisulfite adduct) or transition state mimic (α-
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hydroxyphosphonate). In the case of inhibitors incorporating an aldehyde or α-ketoamide 

functionality in their structure, interaction with the active site cysteine (Cys139) leads to the 

formation of a reversible adduct (Figure 2).17a–c

Furthermore, in previous studies we demonstrated that norovirus 3CLpro shows a strong 

preference for a P2 cyclohexylalanine and, consequently, a P2 cyclohexyl alanine residue, as 

well as a glutamine surrogate,21 were incorporated in the structures of the inhibitors. The 

key binding interactions between norovirus 3CLpro and inhibitor were revealed by 

determining the high resolution X-ray crystal structure of NV 3CLpro with bound inhibitor 

(I) (R1=cyclohexylmethyl, R2=H, X=CH(OH)SO3Na). The co-crystal structure of the 

complex showed that, under the crystallization conditions used, the bisulfite reverted to the 

precursor aldehyde which subsequently formed a tetrahedral adduct with the active site 

cysteine (Cys139) (Figure 3). Inspection of the co-crystal structure revealed opportunities 

for additional binding interactions with a more efficient use of chemical structure. 

Specifically, one such opportunity was recognized by observing that there is a particular 

stretch of residues spanning Ala159, Ala160, Thr161 and Lys162 that are within 4.0 Å from 

the benzyl ring (Figure 4). Thus, it was envisaged that the incorporation of an appropriate 

functional group into the phenyl ring could serve as a locus for the formation of a hydrogen 

bond with the Thr161 or Lys162 backbone and/or side chains, stabilizing the flexible benzyl 

segment and increasing binding affinity. The formation of a halogen bond also appeared 

plausible.22 Thus, a small focused library of compounds was synthesized to evaluate these 

hypotheses, the ultimate goal being the identification of a dipeptidyl lead candidate suitable 

for conducting preclinical studies.

Chemistry

The synthesis of compounds 13–44 is outlined in Scheme 1. Refluxing cyclohexylalanine 

methyl ester hydrochloride (or leucine methyl ester hydrochloride) with trichloromethyl 

chloroformate yielded the corresponding isocyanate which was reacted with an 

appropriately substituted benzyl alcohol to yield a carbamate adduct methyl ester that was 

hydrolyzed to the corresponding acid with lithium hydroxide in aqueous THF. Subsequent 

coupling with glutamine surrogate methyl ester hydrochloride21 afforded the desired 

dipeptidyl ester which was then reduced to the corresponding alcohol with lithium 

borohydride. Dess-Martin oxidation followed by flash chromatography purification yielded 

pure dipeptidyl aldehyde. The enantiomeric purity of the aldehyde was consistently high, 

with the amount of epimerized aldehyde ranging between 0–10%, depending on the 

structure of the dipeptidyl aldehyde. Further reaction of the aldehyde with diethyl phosphite 

in the presence of diisopropyl ethyl amine yielded the corresponding α-hydroxyphosphonate 

as a mixture of epimers.23 The corresponding bisulfite adducts were readily obtained as 

white solids by stirring the aldehydes with sodium bisulfite in an ethyl acetate/water 

mixture.24 Reaction of the aldehyde with cyclopropyl isonitrile followed by Dess-Martin 

oxidation of the α-hydroxy cyclopropyl amide yielded the desired α-ketoamides. The 

synthesized compounds are listed in Table 1.

The synthesized compounds were evaluated for their inhibitory activity against NV 3CLpro, 

as well as their anti-norovirus activity in a cell-based replicon system, as previously 
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described.13 The IC50 and ED50 values are the average of at least two determinations and are 

listed in Table 1. The enzyme selectivity of a select number of inhibitors was evaluated 

against a panel of representative proteases and the results are summarized in Table 2. The 

methodologies employed in conducting the enzyme assays and inhibition studies were as 

described previously by us13 and others.25 The in vivo efficacy of compound 16 was 

evaluated in the murine model of norovirus infection.

X-ray crystallography was used to elucidate the nature of the interaction of compound 17 
with NV 3CLpro. The X-ray crystal structure of NV 3CLpro revealed the presence of 

prominent difference electron density with the substructure of 17 that is equivalent to 

precursor aldehyde inhibitor 16 covalently bound to Cys 139. However, no electron density 

was observed for the hydroxyphosphonate group that should be present for inhibitor 17 
(Figure 5). Instead, the structure of the NV 3CLpro-ligand complex was found to correspond 

to the covalent adduct of precursor aldehyde inhibitor 16 and NV 3CLpro. In addition, the 

m-chlorobenzyl ring was partially disordered so the electron density for this region of the 

inhibitor was somewhat ambiguous. The interactions between NV 3CLpro and inhibitor 16 
are shown in Figure 6. The m-chlorophenyl ring of inhibitor 16 occupies a hydrophobic 

pocket near Ile 109 and Val 168. Van der Waals and electrostatic surface representations of 

the inhibitor and NV 3CLpro are shown in Figure 7.

Inspection of the results shown in Table 1 reveals that, in general, dipeptidyl inhibitors that 

incorporate in their structure an aldehyde or aldehyde bisulfite adduct (masked aldehyde) 

display lower ED50 values than the corresponding compounds bearing an α-

hydroxyphosphonate or α-ketoamide moiety. Furthermore, the aldehyde and aldehyde 

bisulfite adduct-derived inhibitors had comparable ED50 values. These results are consistent 

with previous studies which showed that the activity of the aldehyde bisulfite adducts 

parallels the activity of the precursor aldehydes.13d,f Other things being equal, inhibitors 

having a cyclohexyl alanine P2 residue are more potent than the corresponding t-butyl 

glycine or leucine inhibitors (compare compounds 16, 21 and 22). As revealed by the X-ray 

crystal structure (Figure 7), the cyclohexyl alanine side chain optimally fills the hydrophobic 

S2 subsite, while the leucine and t-butyl alanine side chains do not. A range of ring 

substituents were explored to enhance pharmacological activity. Compounds with a halogen 

at the meta position were particularly effective (compounds 16, 27, 29, 33). These 

observations are suggestive of the involvement of a halogen bond between the halogen and 

the C=O of Ala160, however, this could not be demonstrated with absolute certainty because 

of the partially disordered m-chlorobenzyl moiety.

In order to evaluate the specific interactions between the enzyme and the α-

hydroxyphosphonate inhibitors, inhibitor 17 was incubated with NV 3CLpro in Tris buffer, 

pH 8.0. Surprisingly, the enzyme-inhibitor complex formed corresponded to the complex 

formed between aldehyde 16 and 3CL protease. The formation of this complex indicates 

initial non-enzymatic (buffer)- or enzyme-catalyzed conversion of α-hydroxyphosphonate 

17 to the corresponding aldehyde 16, followed by the formation of a tetrahedral adduct with 

the active site cysteine (Cys139). Studies aimed at ascertaining the validity of this 

hypothesis are in progress. The ensemble of hydrogen bonding and hydrophobic interactions 
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in the enzyme-ligand complex are near identical to those observed with aldehyde inhibitor 

(I), where R1=cyclohexylmethyl, R1=H, X=CHO) (Figure 3).

An initial evaluation of selectivity was carried out using a panel of proteases and four 

representative inhibitors (16, 17, 29 and 30). As shown in Table 2, these compounds 

displayed minimal activity toward the proteases of the digestive and blood coagulation 

cascade systems. Selectivity was uniformly lower against the serine protease human 

neutrophil elastase (HNE).

Compound 16 was used to obtain a preliminary indication of in vivo efficacy. All 

compounds that were effective against NV in cell culture were also effective against MNV-1 

in the range 0.08 to 5 µM. Among them compound 16 was found to be the most effective 

with an EC50 value of 80 nM. It is noted that compound 16 was also most effective against 

NV (Table 1). In mice, treatment with compound 16 significantly reduced the virus titers in 

the small and large intestines at 3 days post virus infection by 42.12- and 7.98-fold, 

respectively, compared to the untreated control group (Figure 8). The overall virus titers in 

the small intestine were higher than those in the large intestine, and the reduction of viral 

titers was also greater in the small intestine than the large intestine.

In conclusion, these studies describe the optimization of the pharmacological activity and 

selectivity of dipeptidyl inhibitors of norovirus 3CL protease by employing iterative 

medicinal chemistry/SAR studies, X-ray crystallography, in vitro and cell-based screening, 

and in vivo efficacy studies. Importantly, these studies have identified lead compounds that 

show efficacy in the murine model of norovirus infection and, consequently, are suitable for 

conducting further pre-clinical studies.

Experimental Section

General

Reagents and dry solvents were purchased from various chemical suppliers (Aldrich, Acros 

Organics, Chem-Impex, TCI America, and Bachem) and were used as obtained. Silica gel 

(230–450 mesh) used for flash chromatography was purchased from Sorbent Technologies 

(Atlanta, GA). Thin layer chromatography was performed using Analtech silica gel plates. 

Visualization was accomplished using UV light and/or iodine. NMR spectra were recorded 

in CDCl3 or DMSO-d6 using a Varian XL-400 spectrometer. Melting points were recorded 

on a Mel-Temp apparatus and are uncorrected. High resolution mass spectrometry (HRMS) 

was performed at the University of Kansas Mass Spectrometry lab using an LCT Premier 

mass spectrometer (Waters, Milford, MA) equipped with a time of flight mass analyzer and 

an electrospray ion source. The purity of the compounds was established using HPLC and 

was >95%.

Synthesis of amino acid methyl esters 1. General procedure

To a 250 mL RB flask (oven dried and purged with nitrogen) was added absolute methanol 

(30 mL) and the solution was cooled to 0 °C in an ice bath while kept under a nitrogen 

atmosphere. Thionyl chloride (8 mL) was added to the cooled methanol with stirring, 

followed by the addition of the amino acid (100 mmol). The ice bath was replaced by a 
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water bath and the reaction mixture was heated to ~50 °C for 3 h with stirring. Removal of 

the solvent left a white residue which was washed with diethyl ether (250 mL) and collected 

by vacuum filtration to yield the amino acid methyl ester hydrochloride 1 as a white solid.

Synthesis of amino acid methyl ester isocyanates 2. General procedure

Amino acid methyl ester hydrochloride (100 mmol) was placed in a dry 500-mL RB flask 

and then dried overnight on the vacuum pump. The flask was flushed with nitrogen and dry 

dioxane (200 mL) was added followed by trichloromethyl chloroformate (29.67 g, 150 

mmol), and the reaction mixture was refluxed for 10 h. The solvent was removed on the 

rotary evaporator and the residue was vacuum distilled to yield pure isocyanate 2 as a 

colorless oil.

Synthesis of substituted benzyl carbamates 3. General procedure

A solution of substituted benzyl alcohol (20 mmol) in dry acetonitrile (15 mL) was treated 

with triethylamine (4.05 g, 40 mmol) followed by the amino acid methyl ester isocyanate 

(20 mmol). The resulting solution was refluxed for 2 h and then allowed to cool to room 

temperature. The solution was concentrated and the residue was taken up in ethyl acetate (75 

mL). The organic layer was washed with 5% HCl (2 × 20 mL) and brine (20 mL). The 

organic layer was dried over anhydrous sodium sulfate, filtered and concentrated, leaving a 

colorless oil (compound 3).

Synthesis of acids 4. General procedure

A solution of ester 3 (20 mmol) in tetrahydrofuran (30 mL) was treated with 1M LiOH (40 

mL). The reaction mixture was stirred for 3 h at room temperature and the disappearance of 

the ester was monitored by TLC. Most of the solvent was evaporated off and the residue was 

diluted with water (25 mL). The solution was acidified to pH ~3 using 5% hydrochloride 

acid (20 mL) and the aqueous layer was extracted with ethyl acetate (3 × 100 mL). The 

combined organic layers were dried over anhydrous sodium sulfate, filtered, and 

concentrated to yield compound 4 as a colorless oil.

Synthesis of compounds 5. General Procedure

To a solution of compound 4 (10 mmol) in dry DMF (20 mL) was added EDCI (2.40 g, 12.5 

mmol, 1.25 eq), HOBt (1.92 g, 12.5 mmol, 1.25 eq) and the mixture was stirred for 30 

minutes at room temperature. In a separate flask, a solution of deprotected glutamine 

surrogate 12 (2.23 g, 10 mmol) in DMF (15 mL) cooled to 0–5 °C was treated with 

diisopropylethylamine (DIEA) (9.5 g, 40 mmol, 4 eq), stirred for 30 minutes, and then added 

to the reaction mixture containing acid. The reaction mixture was stirred for 12 h while 

monitoring the reaction by TLC. The solvent was removed and the residue was partitioned 

between ethyl acetate (200 mL) and 10% citric acid (2 × 40 mL). The ethyl acetate layer was 

further washed with saturated aqueous NaHCO3 (40 mL), followed by saturated NaCl (50 

mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated 

to yield a yellow-colored oily product. Purification by flash chromatography yielded ester 5 
as a white solid.
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Synthesis of alcohols 6. General procedure

To a solution of ester 5 (5 mmol) in anhydrous THF (30 mL) was added lithium borohydride 

(2M in THF, 7.5 mL, 15 mmol) dropwise, followed by absolute ethyl alcohol (15 mL), and 

the reaction mixture was stirred at room temperature overnight. The reaction mixture was 

then acidified by adding 5% HCl and the pH adjusted to ~2. Removal of the solvent left a 

residue which was taken up in ethyl acetate (100 mL). The organic layer was washed with 

brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated to yield 

compound 6 as a white solid.

Synthesis of aldehydes 7. General procedure

Compound 6 (5 mmol) was dissolved in anhydrous dichloromethane (50 mL) under a 

nitrogen atmosphere and cooled to 0°C. Dess-Martin periodinane reagent (3.18 g, 7.5 mmol, 

1.5 eq) was added to the reaction mixture with stirring. The ice bath was removed and the 

reaction mixture was stirred at room temperature for 3 h (monitoring by TLC indicated 

complete disappearance of the starting material). A solution of 10% aqueous sodium 

thiosulfate (20 mL) was added and the solution was stirred for another 15 minutes. The 

aqueous layer was removed and the organic layer was washed with 10% aqueous sodium 

thiosulfate (20 mL), followed by saturated aqueous sodium bicarbonate (2 × 20 mL), water 

(2 × 20 mL) and brine (20 mL). The organic layer was dried over anhydrous sodium sulfate, 

filtered and concentrated. The yellow residue was purified by flash chromatography (silica 

gel/methylene chloride/ethyl acetate/methanol) to yield a white solid 7.

2-Chlorobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (13)—Yield (78%), mp 58–60 °C. 1H 

NMR (400 MHz, DMSO-d6) δ 9.41 (s, 1H), 8.47 – 8.52 (m, 1H), 7.57 – 7.69 (m, 1H), 7.44 – 

7.51 (m, 2H), 7.32 – 7.40 (m, 2H), 5.74 – 5.77 (m, 1H), 5.02 – 5.19 (m, 2H), 4.06 – 4.22 (m, 

2H), 3.00 – 3.17 (m, 2H), 2.19 – 2.31 (m, 1H), 2.08 – 2.17 (m, 1H), 1.84 – 1.94 (m, 1H), 

1.54 – 1.76 (m, 8H), 1.39 – 1.52 (m, 3H), 1.08 – 1.19 (m, 2H), 0.81 – 0.93 (m, 2H). HRMS 

(ESI) calcd for C24H32ClN3O5Na: [M+Na]+: 500.1928. Found: 500.1914.

3-Chlorobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (16)—Yield (86%), mp 54–56 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.46 (s, 1H), 8.35 (d, J = 5.47 Hz, 1H), 7.33 (br. s., 1H), 7.27 – 

7.31 (m, 1H), 7.22 – 7.27 (m, 1H), 7.16 – 7.21 (m, 1H), 6.36 – 6.49 (m, 1H), 5.60 (d, J = 

8.20 Hz, 1H), 5.05 (s, 2H), 4.17 – 4.41 (m, 2H), 3.15 – 3.38 (m, 2H), 2.24 – 2.50 (m, 2H), 

1.84 – 2.06 (m, 2H), 1.74 – 1.83 (m, 2H), 1.45 – 1.73 (m, 6H), 1.30 – 1.43 (m, 1H), 1.02 – 

1.27 (m, 3H), 0.76 – 1.01 (m, 2H). HRMS (ESI) calcd for C24H32ClN3O5Na: [M+Na]+: 

500.1928. Found: 500.1917.

3-Chlorobenzyl ((S)-1-cyclohexyl-2-oxo-2-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)ethyl)carbamate (21)—Yield (81%), mp 51–53 °C. 1H NMR 

(400 MHz, CDCl3) δ 9.49 (s, 1H), 8.49 – 8.56 (m, 1H), 7.38 (br. s., 1H), 7.27 – 7.30 (m, 

2H), 7.23 (d, J = 4.30 Hz, 1H), 5.71 – 5.78 (m, 1H), 5.44 – 5.51 (m, 1H), 5.08 (d, J = 13.28 

Hz, 2H), 4.25 – 4.33 (m, 1H), 4.14 – 4.21 (m, 1H), 3.37 (d, J = 9.37 Hz, 2H), 2.36 – 2.52 

(m, 2H), 1.95 (d, J = 6.64 Hz, 1H), 1.88 (br. s., 1H), 1.76 (d, J = 10.94 Hz, 2H), 1.68 (br. s., 
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2H), 1.58 (s, 4H), 1.21 – 1.34 (m, 2H), 1.13 (d, J = 12.89 Hz, 2H). HRMS (ESI) calcd for 

C23H30ClN3O5Na: [M+Na]+: 486.1772. Found: 486.1758.

3-Chlorobenzyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)pentan-2-yl)carbamate (22)—Yield (82%), mp 53–55 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 8.51 – 8.54 (m, 1H), 7.90 – 7.94 (m, 1H), 7.36 – 

7.43 (m, 1H), 7.13 – 7.33 (m, 3H), 5.26 – 5.32 (m, 1H), 5.02 – 5.15 (m, 2H), 4.25 – 4.37 (m, 

2H), 3.29 – 3.41 (m, 2H), 2.39 – 2.47 (m, 1H), 1.83 – 1.99 (m, 2H), 1.66 – 1.78 (m, 3H), 

1.57 (m, 2H), 0.97 (d, J = 6.16 Hz, 6H).. HRMS (ESI) calcd for C21H28ClN3O5Na: [M

+Na]+: 460.1615. Found: 460.1611.

4-Chlorobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (24)—Yield (67%), mp 56–58 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.31 (d, J = 5.47 Hz, 1H), 7.27 – 7.35 (m, 4H), 6.01 

(br. s., 1H), 5.34 (d, J = 8.20 Hz, 1H), 5.03 – 5.11 (m, 2H), 4.28 – 4.39 (m, 2H), 3.35 (t, J = 

8.20 Hz, 2H), 2.35 – 2.51 (m, 2H), 1.90 – 1.98 (m, 1H), 1.79 – 1.90 (m, 2H), 1.60 – 1.76 (m, 

5H), 1.53 (ddd, J = 5.47, 8.98, 14.06 Hz, 1H), 1.23 – 1.30 (m, 2H), 1.08 – 1.22 (m, 2H), 0.81 

– 1.03 (m, 3H). HRMS (ESI) calcd for C24H32ClN3O5Na: [M+Na]+: 500.1928. Found: 

500.1917.

2-Fluorobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (25)—Yield (81%), mp 61–63 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.49 (s, 1H), 8.35 – 8.53 (m, 1H), 8.24 – 8.30 (m, 1H), 7.40 (t, J 

= 7.23 Hz, 1H), 7.27 – 7.34 (m, 1H), 7.10 – 7.17 (m, 1H), 7.05 (t, J = 9.18 Hz, 1H), 5.82 (br. 

s., 1H), 5.27 – 5.34 (m, 1H), 5.14 – 5.25 (m, 2H), 4.25 – 4.43 (m, 2H), 3.26 – 3.44 (m, 2H), 

2.31 – 2.57 (m, 2H), 1.93 – 2.00 (m, 2H), 1.79 – 1.91 (m, 2H), 1.47 – 1.76 (m, 5H), 1.38 (d, 

J = 2.73 Hz, 1H), 1.07 – 1.29 (m, 3H), 0.84 – 1.03 (m, 2H). HRMS (ESI) calcd for 

C24H32FN3O5Na: [M+Na]+: 484.2224. Found: 484.2214.

3-Fluorobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (27)—Yield (66%), mp 53–55 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.40 (d, J = 5.08 Hz, 1H), 7.27 – 7.35 (m, 1H), 7.06 

– 7.14 (m, 1H), 6.99 (dt, J = 2.34, 8.59 Hz, 2H), 5.97 (br s, 1H), 5.41 (d, J = 8.20 Hz, 1H), 

5.06 – 5.14 (m, 2H), 4.25 – 4.41 (m, 2H), 3.29 – 3.41 (m, 2H), 2.27 – 2.54 (m, 2H), 1.90 – 

2.00 (m, 1H), 1.79 – 1.89 (m, 2H), 1.60 – 1.78 (m, 6H), 1.48 – 1.58 (m, 1H), 1.32 – 1.46 (m, 

1H), 1.08 – 1.30 (m, 3H), 0.85 – 1.04 (m, 2H). HRMS (ESI) calcd for C24H32FN3O5Na: [M

+Na]+: 484.2224. Found: 484.2207.

3-Bromobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (29)—Yield (83%), mp 52–55 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.24 – 8.67 (m, 1H), 7.53 (br s, 1H), 7.35 – 7.47 

(m, 1H), 7.25 – 7.29 (m, 2H), 7.22 (d, J = 7.42 Hz, 1H), 5.66 – 5.74 (m, 1H), 5.08 (br s, 2H), 

4.23 – 4.40 (m, 2H), 3.36 (d, J = 8.59 Hz, 2H), 2.32 – 2.53 (m, 2H), 1.95 (br. s., 1H), 1.84 

(br. s., 2H), 1.69 (d, J = 9.37 Hz, 5H), 1.57 (br. s., 3H), 1.32 – 1.46 (m, 1H), 1.08 – 1.28 (m, 
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2H), 0.84 – 1.05 (m, 2H). HRMS (ESI) calcd for C24H32BrN3O5Na: [M+Na]+: 544.1423. 

Found: 544.1410.

3-Iodobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (33)—Yield (80%), mp 56–58 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.38 – 8.44 (m, 1H), 7.73 (br s, 1H), 7.64 (d, J = 

7.81 Hz, 1H), 7.31 (d, J = 7.81 Hz, 1H), 7.05 – 7.11 (m, 1H), 5.86 (br s, 1H), 5.34 (d, J = 

7.81 Hz, 1H), 5.05 (s, 2H), 4.27 – 4.39 (m, 2H), 3.31 – 3.40 (m, 2H), 2.32 – 2.53 (m, 2H), 

1.91 – 1.99 (m, 2H), 1.79 – 1.90 (m, 2H), 1.69 (d, J = 7.81 Hz, 6H), 1.47 – 1.58 (m, 1H), 

1.38 (br s, 1H), 1.09 – 1.29 (m, 2H), 0.84 – 1.04 (m, 2H). HRMS (ESI) calcd for 

C24H32IN3O5Na: [M+Na]+: 592.1284. Found: 592.1295.

2-Methoxybenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-
oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)carbamate (35)—Yield (64%), 

mp 56–58 °C. 1H NMR (400 MHz, CDCl3) δ 9.49 (br. s., 1H), 8.16 – 8.24 (m, 1H), 7.30 – 

7.37 (m, 2H), 7.29 (s, 1H), 6.93 (t, J = 7.42 Hz, 1H), 6.88 (d, J = 8.20 Hz, 1H), 5.80 (br s, 

1H), 5.11 – 5.24 (m, 2H), 4.28 – 4.40 (m, 2H), 3.83 (s, 3H), 3.27 – 3.39 (m, 2H), 2.40 (d, J = 

12.89 Hz, 2H), 1.96 (br s, 2H), 1.78 – 1.90 (m, 2H), 1.64 – 1.76 (m, 4H), 1.60 (s, 1H), 1.53 

(dd, J = 4.10, 9.57 Hz, 1H), 1.39 (br s, 1H), 1.08 – 1.30 (m, 3H), 0.85 – 1.04 (m, 2H). 

HRMS (ESI) calcd for C25H35N3O6Na: [M+Na]+: 496.2424. Found: 496.2432.

3-Methoxybenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-
oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)carbamate (36)—Yield (76%), 

mp 60–62 °C. 1H NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.32 (d, J = 5.95 Hz, 1H), 7.22 – 

7.26 (m, 1H), 6.88 – 6.95 (m, 2H), 6.84 (d, J = 8.24 Hz, 1H), 6.48 (br s, 1H), 5.56 (d, J = 

8.39 Hz, 1H), 5.08 (s, 2H), 4.22 – 4.44 (m, 2H), 3.80 (s, 3H), 3.24 – 3.36 (m, 2H), 2.29 – 

2.51 (m, 2H), 1.87 – 2.08 (m, 2H), 1.76 – 1.86 (m, 1H), 1.59 – 1.75 (m, 6H), 1.46 – 1.58 (m, 

1H), 1.38 (br. s., 1H), 1.06 – 1.28 (m, 3H), 0.82 – 1.04 (m, 2H). HRMS (ESI) calcd for 

C25H35N3O6Na: [M+Na]+: 496.2424. Found: 496.2418.

3-Cyanobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (37)—Yield (73%), mp 58–60 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 8.53 (d, J = 5.47 Hz, 1H), 7.65 – 7.76 (m, 2H), 7.54 

– 7.62 (m, 1H), 7.43 – 7.50 (m, 1H), 6.24 – 6.50 (m, 1H), 5.60 – 5.75 (m, 1H), 5.02 – 5.35 

(m, 2H), 4.45 – 4.56 (m, 1H), 4.24 – 4.41 (m, 1H), 3.18 – 3.43 (m, 2H), 2.29 – 2.59 (m, 2H), 

2.07 – 2.25 (m, 2H), 1.49 – 1.99 (m, 6H), 1.30 – 1.46 (m, 1H), 1.08 – 1.23 (m, 4H), 0.83 – 

1.01 (m, 3H). HRMS (ESI) calcd for C25H32N4O5Na: [M+Na]+: 491.2270. Found: 

491.2258.

3-((tert-Butoxycarbonyl)amino)benzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-
((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)carbamate (38)—Yield 

(65%), mp 106–110 °C. 1H NMR (400 MHz, CDCl3) δ 9.52 (s, 1H), 9.41 – 9.46 (m, 1H), 

8.40 – 8.46 (m, 1H), 7.32 – 7.38 (m, 1H), 7.24 (br s, 1H), 7.22 (s, 1H), 7.20 (s, 1H), 6.92 – 

6.98 (m, 1H), 5.42 – 5.51 (m, 1H), 4.98 (s, 2H), 4.22 – 4.41 (m, 2H), 3.30 (d, J = 7.20 Hz, 

2H), 2.22 – 2.50 (m, 2H), 2.03 (s, 1H), 1.86 – 1.94 (m, 1H), 1.76 (d, J = 8.09 Hz, 3H), 1.56 
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– 1.72 (m, 4H), 1.48 (s, 9H), 1.30 – 1.40 (m, 1H), 1.04 – 1.25 (m, 4H), 0.91 (br s, 2H). 

HRMS (ESI) calcd for C29H42N4O7Na: [M+Na]+: 581.2951. Found: 581.2957.

3-Nitrobenzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (39)—Yield (70%), mp 52–54 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 8.67 (d, J = 5.08 Hz, 1H), 8.30 (s, 1H), 8.16 (d, J = 

8.20 Hz, 1H), 7.66 (d, J = 7.81 Hz, 1H), 7.50 – 7.55 (m, 1H), 5.85 (br s, 1H), 5.38 (d, J = 

8.20 Hz, 1H), 5.11 – 5.30 (m, 2H), 4.31 – 4.40 (m, 1H), 4.24 (d, J = 6.25 Hz, 1H), 3.37 (dd, 

J = 6.05, 8.79 Hz, 2H), 2.33 – 2.52 (m, 2H), 1.86 – 1.97 (m, 2H), 1.47 – 1.84 (m, 6H), 1.31 

– 1.44 (m, 2H), 1.06 – 1.28 (m, 3H), 0.82 – 1.04 (m, 3H). HRMS (ESI) calcd for 

C24H32N4O7Na: [M+Na]+: 511.2169. Found: 511.2153.

Benzyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-
yl)amino)pentan-2-yl)carbamate (40)—Yield (83%), mp 57–59 °C. 1H NMR (400 

MHz, CDCl3) δ 9.53 (br s, 1H), 8.32 – 8.45 (m, 1H), 7.32 – 7.46 (m, 5H), 5.78 – 5.85 (m, 

1H), 5.34 (br s, 1H), 5.09 – 5.18 (m, 2H), 4.35 (br s, 2H), 3.30 – 3.45 (m, 2H), 2.30 – 2.59 

(m, 2H), 1.99 (d, J = 6.64 Hz, 1H), 1.83 – 1.93 (m, 1H), 1.69 – 1.81 (m, 1H), 1.58 – 1.69 (m, 

2H), 1.23–1.30 (m, 1H), 0.94 (d, J= 6.15 Hz, 6H). HRMS (ESI) calcd for C21H29N3O5Na: 

[M+Na]+: 426.2005. Found: 426.1997.

Benzyl ((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-
yl)propan-2-yl)amino)propan-2-yl)carbamate (43)—Yield (74%), mp 53–56 °C. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (s, 1H), 8.31 (d, J = 5.86 Hz, 1H), 7.73 (br s, 1H), 7.34 (br 

s, 5H), 5.50 – 5.59 (m, 1H), 5.04 – 5.15 (m, 2H), 4.20 – 4.53 (m, 2H), 3.20 – 3.41 (m, 2H), 

2.23 – 2.51 (m, 2H), 1.88 – 2.03 (m, 1H), 1.74 – 1.86 (m, 2H), 1.66 (d, J = 5.86 Hz, 6H), 

1.45 – 1.58 (m, 1H), 1.30 – 1.43 (m, 1H), 1.18 (d, J = 16.12 Hz, 3H), 0.79 – 1.03 (m, 2H). 

HRMS (ESI) calcd for C24H33N3O5Na: [M+Na]+: 466.2318. Found: 466.2299.

Synthesis of α-Hydroxyphosphonates 8. General procedure

To a solution of diethylphosphite (135 mg, 1 mmol) in dry dichloromethane (3.5 mL) was 

added DIEA (129 mg, 1 mmol) followed by a solution of aldehyde 7 (1 mmol) in 

dichloromethane (5 mL). The reaction mixture was stirred at room temperature for 20 h. The 

reaction mixture was diluted with dichloromethane (100 mL) and washed with 5% HCl (2 × 

20 mL), and brine (30 mL). The organic layer was dried over anhydrous sodium sulfate, 

filtered and concentrated, leaving a light yellow solid which was purified by flash 

chromatography to yield compound 8 as a white solid.

2-Chlorobenzyl ((2S)-3-cyclohexyl-1-(((2S)-1-(diethoxyphosphoryl)-1-
hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)-1-oxopropan-2-
yl)carbamate (14)—Yield (79%), mp 103–106 °C. 1H NMR (400 MHz, CDCl3) δ 7.66 – 

7.71 (m, 1H), 7.41 (d, J = 3.12 Hz, 1H), 7.33 – 7.37 (m, 1H), 7.28 – 7.32 (m, 1H), 7.21 – 

7.26 (m, 3H), 5.49 – 5.57 (m, 1H), 5.15 – 5.24 (m, 2H), 4.06 – 4.21 (m, 4H), 3.97 – 4.04 (m, 

1H), 3.86 – 3.95 (m, 1H), 3.41 – 3.52 (m, 1H), 1.77 – 1.86 (m, 2H), 1.56 – 1.71 (m, 6H), 

1.50 – 1.56 (m, 1H), 1.25 – 1.37 (m, 7H), 1.23 (s, 2H), 1.17 (dt, J = 2.15, 7.13 Hz, 4H), 0.86 
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(br s, 4H). HRMS (ESI) calcd for C28H43ClN3O8PNa: [M+Na]+: 638.2374. Found: 

638.2379.

3-Chlorobenzyl ((2S)-3-cyclohexyl-1-(((2S)-1-(diethoxyphosphoryl)-1-
hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)-1-oxopropan-2-
yl)carbamate (17)—Yield (81%), mp 58–61 °C. 1H NMR (400 MHz, CDCl3) δ 7.77 – 

7.83 (m, 1H), 7.30 – 7.38 (m, 1H), 7.24 – 7.29 (m, 2H), 7.16 – 7.23 (m, 1H), 6.39 – 6.48 (m, 

1H), 5.86 – 5.94 (m, 1H), 5.33 – 5.42 (m, 1H), 4.98 – 5.12 (m, 2H), 4.22 – 4.42 (m, 2H), 

4.07 – 4.20 (m, 4H), 3.91 – 4.01 (m, 1H), 3.17 – 3.35 (m, 2H), 2.30 – 2.47 (m, 2H), 2.10 – 

2.23 (m, 2H), 1.66 (d, J = 11.33 Hz, 6H), 1.41 – 1.54 (m, 2H), 1.28 – 1.36 (m, 6H), 1.05 – 

1.22 (m, 3H), 0.79 – 1.00 (m, 3H). HRMS (ESI) calcd for C28H43ClN3O8PNa: [M+Na]+: 

638.2374. Found: 638.2367.

2-Fluorobenzyl ((2S)-3-cyclohexyl-1-(((2S)-1-(diethoxyphosphoryl)-1-
hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)-1-oxopropan-2-
yl)carbamate (26)—Yield (73%), mp 98–101 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.80 

(br s, 1H), 7.65 (d, J = 8.98 Hz, 1H), 7.49 – 7.57 (m, 1H), 7.33 – 7.48 (m, 2H), 7.14 – 7.25 

(m, 2H), 5.90 – 5.97 (m, 1H), 5.71 – 5.84 (m, 1H), 5.07 (d, J = 6.35 Hz, 2H), 3.95 – 4.09 (m, 

5H), 3.75 – 3.93 (m, 1H), 2.96 – 3.24 (m, 3H), 2.00 – 2.26 (m, 2H), 1.50 – 1.75 (m, 7H), 

1.36 – 1.47 (m, 2H), 1.19 – 1.33 (m, 6H), 1.01 – 1.15 (m, 3H), 0.84 (d, J = 7.91 Hz, 3H). 

HRMS (ESI) calcd for C28H43FN3O8PNa: [M+Na]+: 622.2670. Found: 622.2658.

3-Bromobenzyl ((2S)-3-cyclohexyl-1-(((2S)-1-(diethoxyphosphoryl)-1-
hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)-1-oxopropan-2-
yl)carbamate (30)—Yield (78%), mp 48–52 °C. 1H NMR (400 MHz, CDCl3) δ 8.35 – 

8.40 (m, 1H), 7.46 (d, J = 3.32 Hz, 1H), 7.33 – 7.39 (m, 1H), 7.21 (br s, 1H), 7.11 – 7.18 (m, 

2H), 5.88 (s, 1H), 5.26 – 5.31 (m, 1H), 5.01 (d, J = 3.32 Hz, 2H), 4.02 – 4.15 (m, 6H), 3.27 

(d, J = 6.44 Hz, 3H), 1.88 (br. s., 1H), 1.76 (d, J = 9.37 Hz, 2H), 1.60 (br s, 7H), 1.46 (d, J = 

1.95 Hz, 1H), 1.23 – 1.34 (m, 6H), 1.19 (s, 1H), 0.98 – 1.16 (m, 3H), 0.75 – 0.96 (m, 3H). 

HRMS (ESI) calcd for C28H43BrN3O8PNa: [M+Na]+: 682.1869. Found: 682.1896.

Synthesis of bisulfite adducts 9. General procedure—To a solution of aldehyde 7 
(5 mmol) in dry ethyl acetate (20 mL) was added absolute ethanol (12 mL) with stirring, 

followed by a solution of sodium bisulfite (540 mg; 5 mmol) in water (5 mL). The reaction 

mixture was stirred for 3 h at 50 °C. The reaction mixture was allowed to cool to room 

temperature and then vacuum filtered. The solid was thoroughly washed with absolute 

ethanol and the filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated 

to yield yellowish oil. The oily product was treated with ethyl ether (2 × 50 mL) to form 

white solid. The white solid was stirred with ethyl ether (30 mL) and ethyl acetate (15 mL) 

for 5 minutes. Careful removal of the solvent using a pipette left compound 9 as a white 

solid.

Sodium (2S)-2-((S)-2-((((2-chlorobenzyl)oxy)carbonyl)amino)-3-
cyclohexylpropana mido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-
sulfonate (15)—Yield (60%), mp 128–132 °C. 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.53 

(m, 1H), 7.40 – 7.45 (m, 1H), 7.35 – 7.39 (m, 1H), 7.26 (s, 3H), 6.99 – 7.00 (m, 1H), 5.18 – 
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5.29 (m, 2H), 3.68 – 3.78 (m, 2H), 3.48 (d, J = 7.03 Hz, 3H), 3.29 – 3.40 (m, 1H), 1.92 – 

1.98 (m, 1H), 1.80 – 1.91 (m, 2H), 1.71 (br s, 7H), 1.24 – 1.28 (m, 5H), 0.79 – 0.96 (m, 2H), 

0.68 – 0.76 (m, 1H). HRMS (ESI) calcd for C24H33ClN3O8S: [M-]: 558.1677. Found: 

558.1648.

Sodium (2S)-2-((S)-2-((((3-chlorobenzyl)oxy)carbonyl)amino)-3-
cyclohexylpropana mido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-
sulfonate (18)—Yield (67%), mp 124–126 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.66 (d, 

J = 8.98 Hz, 1H), 7.58 (dd, J = 9.18, 11.52 Hz, 1H), 7.49 (d, J = 8.20 Hz, 1H), 7.42 (d, J = 

4.30 Hz, 1H), 7.40 (d, J = 1.95 Hz, 1H), 7.30 – 7.39 (m, 2H), 5.41 (d, J = 5.86 Hz, 1H), 5.25 

(d, J = 5.86 Hz, 1H), 5.03 (s, 2H), 4.17 – 4.26 (m, 1H), 3.89 – 3.99 (m, 2H), 3.81 – 3.87 (m, 

1H), 3.10 (t, J = 9.96 Hz, 1H), 2.95 – 3.05 (m, 1H), 2.01 – 2.25 (m, 3H), 1.51 – 1.78 (m, 

6H), 1.37 – 1.48 (m, 1H), 1.28 (br s, 1H), 1.15 – 1.21 (m, 1H), 1.08 – 1.14 (m, 2H), 0.74 – 

0.94 (m, 2H). HRMS (ESI) calcd for C24H33ClN3O8S: [M-]: 558.1677. Found: 558.1656.

Sodium(2S)-2-((S)-2-((((3-bromobenzyl)oxy)carbonyl)amino)-3-
cyclohexylpropana mido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-
sulfonate (31)—Yield (86%), mp 132–135 °C. 1H NMR (400 MHz, DMSO-d6) 0δ 7.68 

(d, J = 8.98 Hz, 1H), 7.60 (d, J = 9.37 Hz, 1H), 7.53 – 7.58 (m, 1H), 7.50 (d, J = 7.81 Hz, 

1H), 7.45 (d, J = 4.30 Hz, 1H), 7.29 – 7.41 (m, 2H), 5.54 (d, J = 5.47 Hz, 1H), 5.36 (d, J = 

5.08 Hz, 1H), 5.03 (s, 2H), 4.18 – 4.27 (m, 1H), 3.91 – 4.10 (m, 1H), 2.96 – 3.15 (m, 2H), 

2.05 – 2.23 (m, 2H), 1.89 – 2.05 (m, 1H), 1.49 – 1.75 (m, 6H), 1.38 – 1.47 (m, 1H), 1.23 – 

1.35 (m, 1H), 1.02 – 1.21 (m, 5H), 0.75 – 0.95 (m, 2H). HRMS (ESI) calcd for 

C24H33BrN3O8S: [M-]: 602.1172. Found: 602.1168.

Sodium (2S)-2-((S)-3-cyclohexyl-2-((((3-
iodobenzyl)oxy)carbonyl)amino)propane mido)-1-hydroxy-3-((S)-2-
oxopyrrolidin-3-yl)propane-1-sulfonate (34)—Yield (78%), mp 135–137 °C. 1H 

NMR (400 MHz, DMSO-d6) δ 8.48 – 8.52 (m, 1H), 7.73 (br s, 1H), 7.66 (d, J = 7.62 Hz, 

1H), 7.51 – 7.59 (m, 1H), 7.45 (d, J = 3.52 Hz, 1H), 7.36 (br s, 1H), 7.13 – 7.21 (m, 1H), 

5.45 – 5.52 (m, 1H), 5.28 – 5.35 (m, 1H), 4.92 – 5.14 (m, 2H), 4.13 – 4.29 (m, 1H), 3.88 – 

4.08 (m, 1H), 2.97 – 3.19 (m, 2H), 1.91 (s, 3H), 1.37 – 1.78 (m, 7H), 1.02 – 1.24 (m, 5H), 

0.73 – 0.97 (m, 3H). HRMS (ESI) calcd for C24H33IN3O8S: [M-]: 650.1033. Found: 

650.1019.

Sodium (2S)-2-((S)-2-(((benzyloxy)carbonyl)amino)-4-methylpentanamido)-1-
hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (41)—Yield (73%), mp 

109–113 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.57 – 7.62 (m, 1H), 7.47 – 7.52 (m, 1H), 

7.26 – 7.40 (m, 5H), 5.47 – 5.51 (m, 1H), 5.31 – 5.36 (m, 1H), 4.96 – 5.05 (m, 3H), 4.19 – 

4.28 (m, 1H), 3.83 – 4.06 (m, 2H), 3.07 – 3.16 (m, 1H), 2.97 – 3.06 (m, 1H), 2.04 – 2.23 (m, 

2H), 1.71 – 1.81 (m, 1H), 1.52 – 1.68 (m, 2H), 1.39 – 1.50 (m, 2H), 0.85 (ddd, J = 3.03, 

6.52, 9.40 Hz, 6H). HRMS (ESI) calcd for C21H30N3O8S: [M-]: 484.1754. Found: 

484.1754.

Sodium (2S)-2-((S)-2-(((benzyloxy)carbonyl)amino)-3-
cyclohexylpropanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-
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sulfonate (44)—Yield (78%), mp 131–133 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.62 – 

7.69 (m, 1H), 7.43 – 7.51 (m, 1H), 7.27 – 7.40 (m, 5H), 5.82 – 5.86 (m, 1H), 5.52 (d, J = 

6.25 Hz, 1H), 5.36 (d, J = 5.96 Hz, 1H), 5.02 (s, 2H), 3.83 – 4.08 (m, 2H), 2.97 – 3.20 (m, 

3H), 1.86 – 2.25 (m, 3H), 1.51 – 1.82 (m, 6H), 1.37 – 1.48 (m, 2H), 1.29 (br s, 1H), 1.02 – 

1.22 (m, 3H), 0.75 – 0.94 (m, 2H). HRMS (ESI) calcd for C24H34N3O8S: [M-]: 524.2067. 

Found: 524.2045.

Synthesis of compound 10. General procedure

A solution of aldehyde 7 (5 mmol) in ethyl acetate (30 mL) kept at 0 °C was treated with 

acetic acid (0.34 g; 5.75 mmol) followed by cyclopropyl isocyanide (0.37 g; 5.5 mmol), and 

the reaction mixture was stirred at room temperature for 18 h. The solution was concentrated 

in vacuo and the residue was dissolved in methanol (30 mL) and treated with a solution of 

K2CO3 (1.72 g; 12.5 mmol) in water (25 mL). The reaction mixture was stirred at room 

temperature for 2 h. Methanol was evaporated off and the aqueous layer was extracted with 

ethyl acetate (3 × 100 mL). The combined organic layers were washed with 5% HCl (2 × 50 

mL) and brine (75 mL). The organic layer was dried over anhydrous sodium sulfate and the 

solvent was removed to yield compound 10 as a white solid. This was used in the next step 

without further purification.

Synthesis of α-ketoamides 11. General procedure

To a solution of compound 10 (5 mmol) in anhydrous dichloromethane (50 mL) cooled to 0 

°C and kept under a nitrogen atmosphere was added Dess-Martin periodinane reagent (3.18 

g, 7.5 mmol, 1.5 eq) with stirring. The ice bath was removed and the reaction mixture was 

stirred at room temperature for 3 h. The reaction was monitored by TLC until the starting 

material disappeared. A solution of 10% aqueous sodium thiosulfate (20 mL) was added and 

the solution was stirred for 15 minutes. The solution was poured into a separatory funnel and 

the aqueous layer was removed. The organic layer was washed with 10 % aqueous sodium 

thiosulfate (20 mL), followed by saturated aqueous sodium bicarbonate (2 × 20 mL), water 

(2 × 20 mL) and brine (20 mL). The organic layer was dried over anhydrous sodium sulfate, 

filtered and concentrated leaving a yellow solid which was purified by flash chromatography 

(silica gel/methylene chloride/ethyl acetate/methanol) to yield 11 as a white solid.

3-Chlorobenzyl ((S)-3-cyclohexyl-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-
((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-1-oxopropan-2-yl)carbamate (19)—
Yield (88%), mp 135–138 °C. 1H NMR (400 MHz, CDCl3) δ 8.42 (br s, 1H), 7.36 (br s, 

1H), 7.27 – 7.29 (m, 2H), 7.19 – 7.24 (m, 2H), 6.97 (br s, 1H), 5.97 (br s, 1H), 5.08 (d, J = 

4.30 Hz, 2H), 4.24 – 4.42 (m, 2H), 3.27 – 3.40 (m, 2H), 2.76 (dd, J = 3.52, 7.42 Hz, 1H), 

2.35 – 2.60 (m, 2H), 2.07 (dd, J = 3.32, 5.27 Hz, 1H), 1.89 – 1.99 (m, 2H), 1.77 – 1.87 (m, 

2H), 1.59 – 1.75 (m, 4H), 1.43 – 1.56 (m, 1H), 1.38 (br s, 1H), 1.09 – 1.28 (m, 3H), 0.86 – 

1.04 (m, 2H), 0.81 – 0.85 (m, 2H), 0.56 – 0.66 (m, 2H). HRMS (ESI) calcd for 

C28H37ClN4O6Na: [M+Na]+: 583.2299. Found: 583.2293.

3-Chlorobenzyl ((S)-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-((S)-2-
oxopyrrolidin-3-yl)butan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)carbamate 
(23)—Yield (72%), mp 66–68 °C. 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 5.47 Hz, 1H), 
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7.24 (br s, 1H), 7.16 – 7.22 (m, 1H), 7.11 (br s, 2H), 6.75 (br s, 1H), 5.63 – 5.75 (m, 1H), 

5.10 – 5.21 (m, 1H), 4.93 – 5.05 (m, 2H), 4.22 – 4.36 (m, 2H), 3.15 – 3.30 (m, 2H), 2.69 (d, 

J = 3.12 Hz, 1H), 2.39 – 2.51 (m, 1H), 2.31 (d, J = 3.91 Hz, 1H), 1.80 – 2.01 (m, 5H), 1.50 – 

1.72 (m, 3H), 1.38 – 1.49 (m, 2H), 0.86 (d, J = 4.69 Hz, 2H), 0.74 (d, J = 7.42 Hz, 2H), 0.54 

(br s, 2H). HRMS (ESI) calcd for C25H33ClN4O6Na: [M+Na]+: 543.1986. Found: 543.1989.

3-Fluorobenzyl ((S)-3-cyclohexyl-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-
((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-1-oxopropan-2-yl)carbamate (28)—
Yield (74%), mp 95–98 °C. 1H NMR (400 MHz, CDCl3) δ 8.41 – 8.49 (m, 1H), 7.28 – 7.36 

(m, 2H), 7.25 (d, J = 2.34 Hz, 1H), 7.10 (t, J = 7.42 Hz, 2H), 6.90 – 7.02 (m, 1H), 5.83 (br s, 

1H), 5.04 – 5.13 (m, 2H), 4.25 – 4.39 (m, 2H), 3.36 (dd, J = 4.49, 8.79 Hz, 2H), 2.76 (dd, J 

= 3.52, 7.42 Hz, 1H), 2.51 – 2.61 (m, 1H), 2.39 – 2.50 (m, 1H), 2.06 – 2.14 (m, 1H), 1.94 (d, 

J = 10.94 Hz, 2H), 1.80 (br s, 1H), 1.58 – 1.74 (m, 6H), 1.48 (br s, 1H), 1.31 – 1.42 (m, 1H), 

1.07 – 1.29 (m, 3H), 0.79 – 1.03 (m, 3H), 0.61 (ddd, J = 1.56, 4.00, 5.76 Hz, 2H). HRMS 

(ESI) calcd for C28H37FN4O6Na: [M+Na]+: 567.2595. Found: 567.2592.

3-Bromobenzyl ((S)-3-cyclohexyl-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-
((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-1-oxopropan-2-yl)carbamate (32)—
Yield (70%), mp 124–127 °C. 1H NMR (400 MHz, CDCl3) δ 8.39 – 8.45 (m, 1H), 7.52 (br 

s, 1H), 7.43 (d, J = 7.62 Hz, 1H), 7.27 (br s, 1H), 7.22 (d, J = 7.62 Hz, 2H), 6.90 – 6.95 (m, 

1H), 5.71 – 5.75 (m, 1H), 5.18 – 5.27 (m, 1H), 5.07 (s, 2H), 4.28 – 4.35 (m, 1H), 3.35 (dd, J 

= 4.10, 8.98 Hz, 3H), 2.72 – 2.81 (m, 2H), 2.06 – 2.15 (m, 2H), 1.86 – 2.01 (m, 2H), 1.69 (d, 

J = 10.94 Hz, 5H), 1.58 (s, 3H), 1.25 (s, 2H), 0.87 – 1.02 (m, 2H), 0.84 (d, J = 7.42 Hz, 2H), 

0.55 – 0.67 (m, 2H). HRMS (ESI) calcd for C28H37BrN4O6Na: [M+Na]+: 627.1794. Found: 

627.1791.

Benzyl ((S)-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-
yl)butan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)carbamate (42)—Yield (78%), 

mp 75–78 °C. 1H NMR (400 MHz, CDCl3) δ 8.43 (d, J = 5.68 Hz, 1H), 7.33 (s, 5H), 7.08 

(d, J = 3.48 Hz, 1H), 6.57 (s, 1H), 5.53 (d, J = 8.79 Hz, 1H), 5.19 – 5.26 (m, 1H), 5.08 (s, 

2H), 4.40 (dt, J = 5.49, 8.88 Hz, 1H), 3.22 – 3.36 (m, 2H), 2.71 – 2.80 (m, 1H), 2.48 – 2.58 

(m, 1H), 2.35 – 2.46 (m, 1H), 1.88 – 2.10 (m, 3H), 1.59 – 1.79 (m, 2H), 1.45 – 1.55 (m, 1H), 

0.95 (d, J = 6.41 Hz, 6H), 0.79 – 0.86 (m, 2H), 0.57 – 0.66 (m, 2H). HRMS (ESI) calcd for 

C25H34N4O6Na: [M+Na]+: 509.2376. Found: 509.2364.

Enzyme assays and inhibition studies against NV with 3CLpro and cell-based replicon 
system

These studies were carried out as described previously.13c

X-ray Crystallographic studies. Crystallization and Data Collection

Purified NV 3CLpro in 100 mM NaCl, 50 mM PBS pH 7.2, 1 mM DTT at a concentration 

of 10 mg/mL was used for preparation of the norovirus 3CL protease-compound 17 
complex. A stock solution of 100 mM compound 17 or 44 was prepared in DMSO and each 

NV 3CLpro:inhibitor complex was prepared by mixing 12 µL of 17 or 44 (3 mM) with 388 

µL (0.49 mM) of NV 3CLpro and incubating on ice for 1 h. The mixture was loaded onto a 
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Superdex 75 10/300 GL column equilibrated with 100 mM NaCl, 20 mM Tris pH 8.0 and 

the sample was concentrated to 8.0 mg/mL in a Vivaspin-20 (Vivaproducts, Inc.) 

concentrator for crystallization screening. All crystallization experiments were conducted 

Compact Jr. (Rigaku Reagents) sitting drop vapor diffusion plates at 20 °C using equal 

volumes of protein and the crystallization solution were equilibrated against 75 µL of the 

latter. Crystals of NV 3CLpro-ligand 17 that displayed a needle morphology were obtained 

overnight from the Proplex HT screen (Molecular Dimensions) condition D4 (20% (w/v) 

PEG 5000 MME, 100 mM Tris pH 7.5, 200 mM ammonium sulfate). Samples were 

transferred to a fresh drop composed of 80% crystallization solution and 20% PEG glycerol 

and stored in liquid nitrogen. Two crystal forms of the NV 3CLpro:44 complex that 

displayed a prismatic morphology were observed in 2 days from the Wizard 3 & 4 screen 

(Emerald Biosystems). The primitive hexagonal (NV 3CLpro:44-h) form was obtained from 

condition A1 (20% w/v PEG3350, 200 mM ammonium citrate) and a primitive 

orthorhombic (NV 3CLpro:44-o) from A10 (20% w/v PEG3350, 200 mM sodium 

thiocyanate). Samples were transferred to a fresh drop composed of 80% crystallization 

solution and 20% PEG 400 and stored in liquid nitrogen prior to data collection. X-ray 

diffraction data were collected at the Advanced Photon Source beamline 17-ID using a 

Dectris Pilatus 6M pixel array detector.

Structure Solution and Refinement

Intensities were integrated using XDS26–27 and the Laue class analysis and data scaling were 

performed with Aimless28 which suggested that the highest probability Laue class was 

6/mmm and possible space groups was P6122 or P6522 for NV 3CLpro, NV 3CLpro:17, and 

NV 3CLpro:44-h. The Matthew’s coefficient29 suggested that there was a single molecule in 

the asymmetric unit (Vm=2.8 Å3/Da, % solvent=56%). Structure solution was conducted by 

molecular replacement with Phaser30 using a previously determined structure of inhibitor 

bound NV 3CLpro (PDB: 3UR9)13c as the search model and all space groups with 622 point 

symmetry were tested. The top solution was obtained in the space group P6522 which was 

used from this point forward. NV 3CLpro:44-o was isomorphous with PDB 3UR9. Structure 

refinement using and manual model building were conducted with Phenix31 and Coot32 

respectively. Disordered side chains were truncated to the point for which electron density 

could be observed. Structure validation was conducted with Molprobity33 and figures were 

prepared using the CCP4MG package34.

Study with MNV.35

RAW264.7 cells, mouse macrophage cell line, were maintained in Dulbecco’s Minimum 

Essential Medium (DMEM) containing antibiotics of chlortetracycline (25 µg/ml), penicillin 

(250 U/ml), and streptomycin (250 µg/ml) in the presence of 2~5% fetal bovine serum. 

MNV-1 was obtained from H. Virgin at Washington University (St. Louis, MO). Antiviral 

activity of each compound against MNV-1 in cell culture was determined with RAW264.7 

cells. Each compound was dissolved in DMSO to make a 10 mM stock solution. The 

amount of DMSO in cell culture did not exceed 0.5%. The stock solution was serially 

diluted with cell culture media prior to addition to confluent monolayer of RAW264.7 cells 

in 24-well plates. Cells were immediately infected with virus at a multiplicity of infection 

(MOI) of 0.05 ~0.1. After further incubation of the cells at 37°C for 48 h, cells were frozen 
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and thawed and virus titers were determined by the 50% tissue culture infectious dose 

(TCID50) method. The 50% effective concentration (EC50) values were determined by 

GraphPad Prism (GraphPad Software, San Diego, CA) by nonlinear regression analyses of 

dose-response curves of the inhibition of virus replication against log inhibitor concentration 

(variable slope).

Animal experiments.36

The animal study was performed in accordance with a protocol approved by the Institutional 

Animal Care and Use Committee (IACUC) at Kansas State University. BALB/c mice were 

purchased from Charles River Lab (Wilmington, MA). Seven to eight week-old female 

BALB/c mice were inoculated intraperitoneally with MNV-1 at 2×106 TCID50/mouse. Mice 

were peritoneally given 50 µl of drug vehicle (10% EtOH and 90% PEG400) or compound 

16 (20 mg/kg/day) divided into two doses per day. Compound administration started 4 h 

prior to virus infection and continued daily until mice were euthanized. At 3 days post 

infection (dpi), mice were sacrificed and the small and large intestinal tracts were collected. 

The intestines were placed in PBS and the intestinal contents were gently removed by 

squeezing. The tissues were homogenized in PBS (5 or 3 mL for small and large intestines, 

respectively) and frozen at −70C until ready to use. Virus titers of the homogenized 

supernatant were determined by the TCID50 method and statistical analysis was performed 

on log-transformed TCID50 values using a two-tailed Student t-test (p<0.05). Fold changes 

in the geometric mean liver virus titers in each group were calculated by dividing virus titers 

in control group by the treated group.
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Figure 1. 
General structure of dipeptidyl inhibitor (I)
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Figure 2. 
Interaction of a cysteine protease (E-Cys-SH) with a peptidyl transition state inhibitor.
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Figure 3. 
Hydrogen bonding interactions between the inhibitor and chain B for NV 3CLpro:ligand 

(precursor aldehyde of inhibitor 44) Side chain residues are colored cyan, inhibitor is 

colored gray, and water molecules are represented as red spheres. Hydrogen bonds are 

represented as dashed lines and water mediated contacts as solid lines.
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Figure 4. 
Residues spanning Ala159-Lys162 located near the benzyl ring of precursor aldehyde of 

inhibitor 44.
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Figure 5. 
Fo – Fc map (green mesh) of precursor aldehyde derived from compound 17 bound to NV 

3CLpro contoured at 3σ.
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Figure 6. 
Hydrogen bond interactions between NV 3CLpro and precursor aldehyde derived from 

compound 17. Hydrogen bonds are represented as dashed lines and water mediated contacts 

are shown as solid lines.

Kankanamalage et al. Page 25

J Med Chem. Author manuscript; available in PMC 2015 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Surface representation of precursor aldehyde of compound 17 bound to NV 3CLpro. 

Neighboring residues of NV 3CLpro are colored yellow (nonpolar), white (weakly polar) 

and cyan (polar).
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Figure 8. 
Protease inhibitor suppresses norovirus replication in the intestinal tract in mice (effects of a 

3CLpro inhibitor treatment on murine norovirus titers in the intestinal tracts of mice). Balb/c 

mice were orally infected with MNV-1 at 2×106 TCID50 and intraperitoneally given 

compound 16 at 10 mg/kg twice daily with the first dose starting 4 hrs prior to virus 

infection. At 72 h post virus infection, the intestinal tract tissues were harvested and 

processed for determination for virus titers by the TCID50 assay. Mean and the standard 

error of the mean of virus titers in the small intestine (A) or large intestine (B) at 3 day post 

MNV-1 infection are shown. Each filled circle indicates a control mouse that was given drug 

vehicle and each empty box indicates a mouse given compound 16. Asterisk indicates 

P<0.01.
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Scheme 1. 
Synthesis of inhibitors 13–44.
aCH3OH/SOCl2/45 °C/ 3h; bCCl3O(CO)Cl/ dioxane/ reflux/ 12h; c ArCH2OH/ TEA/ 

acetonitrile/ reflux/ 2h; d1M LiOH(aq)/ THF/ RT/ 3h; eEDCl/ HOBt/ DIEA/ DMF; f2M 

LiBH4/ THF/ CH3OH; gDess-Martin periodinane/ DCM; hDiethylphosphite/ DCM/ 

DIEA; iC2H5OH/ EtOAc/ HaHSO3; jEtOAc/ HOAc/ cyclopropyl isocyanide/ K2CO3(aq)/ 

CH3OH/ 18h
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Table 3

Crystallographic data for NV 3CLpro:inhibitor structures.

NV 3CLpro:17 NV 3CLpro:44-h NV 3CLpro:44-o

Data Collection

  Unit-cell parameters (Å, °) a=124.23, c=49.97 a=121.85, c=51.50 a=37.47 b=66.91 c=126.4

  Space group P6522 P6522 P212121

  Resolution (Å)1 45.32-1.85 46.28-1.60 45.94-1.45

(1.89-1.85) (1.63-1.60) (1.48-1.45)

  Wavelength (Å) 1.0000 1.0000 1.0000

  Temperature (K) 100 100 100

  Observed reflections 384,657 579,016 371,208

  Unique reflections 19,899 30,219 57,354

  <I/σ(I)>1 14.9 (2.4) 16.3 (2.0) 18.9 (1.8)

  Completeness (%)1 100 (100) 100 (100) 100 (100)

  Multiplicity1 19.3 (18.5) 19.2 (16.9) 6.5 (6.5)

  Rmerge (%)1, 2 19.7 (150.5) 16.6 (169.2) 4.7 (105.4)

  Rmeas (%)1, 4 20.3 (154.7) 17.0 (174.5) 5.1 (114.5)

  Rpim (%)1, 4 4.6 (35.8) 3.9 (42.3) 2.0 (44.4)

  CC1/2 1, 5 0.998 (0.763) 99.9 (71.1) 100 (63.5)

Refinement

  Resolution (Å) 1 45.32-1.85 36.85-1.60 35.65-1.45

  Reflections (working/test)1 18,907/968 28,660/1,530 54,369/2,905

  Rfactor / Rfree (%)1, 3 16.3/19.7 16.3/17.5 17.3/19.9

  No. of atoms 1,236/33/129 1,319/32/160 2,444/58/218

  (Protein/Ligand/Water)

Model Quality

R.m.s deviations

  Bond lengths (Å) 0.009 0.009 0.008

  Bond angles (°) 1.229 1.234 1.020

Average B-factor (Å2)

  All Atoms 21.1 17.2 24.3

  Protein 19.9 15.6 23.6

  Ligand 25.7 18.5 25.4

  Water 29.9 19.0 32.1

  Coordinate error 0.16 0.18 0.15

  (maximum likelihood) (Å)

Ramachandran Plot

  Most favored (%) 98.8 98.3 98.5

  Additionally allowed (%) 1.2 1.7 1.5

1
Values in parenthesis are for the highest resolution shell.
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2
Rmerge = ΣhkiΣi | Ii(hkl) - <I(hkl)> | / ΣhkiΣi Ii (hkl), where Ii(hkl) is the intensity measured for the i th reflection and <I(hkl)> is the average 

intensity of all reflections with indices hkl.

3
Rfacor = Σhkl | | Fobs(hkl) | – | Fcalc(hkl) | | / Σhkl | Fobs(hkl) |; Rfree is calculated in an identical manner using 5% of randomly selected 

reflections that were not included in the refinement.

4
Rmeas = redundancy-independent (multiplicity-weighted) Rmerge[28,37]. Rpim = precision-indicating (multiplicity-weighted) Rmerge[38, 39].

5
CC1/2 is the correlation coefficient of the mean intensities between two random half-sets of data [40,41].
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