(3R,5S,7as)-(3,5-bis(4-Fluorophenyl)tetrahydro-1H-oxazolo[3,4-c] oxazol-7a-yl)methanol: A Novel Neuroprotective Agent

Kelly E. Desino†, Sabah Ansar§, Gunda I. Georg¶,* Richard H. Himes£, Mary Lou Michaelis§, Douglas R. Powell†, Emily A. Reiff¶, Hanumaiah Telikepalli¶, and Kenneth L. Audus†

†Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047
§Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
¶Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045
£Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045
∫X-Ray Crystallography Laboratory, The University of Kansas, 1251 Wescoe Hall Drive Lawrence, Kansas 66045

Abstract

Compounds that interact with microtubules, such as paclitaxel, have been shown to possess protective properties against β-amyloid (Aβ)-induced neurodegeneration associated with Alzheimer's disease. In this work, the novel agent (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c] oxazol-7a-yl)methanol was investigated for effectiveness in protecting neurons against several toxic stimuli and its interaction with the microtubule network. Exposure of neuronal cultures to Aβ peptide in the presence of 5 nM (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c] oxazol-7a-yl)methanol resulted in a 50% increase in survival. Neuronal cultures treated with other toxic stimuli such as staurosporine, thapsigargin, paraquat and H2O2 showed significantly enhanced survival in the presence of (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c] oxazol-7a-yl)methanol. Microtubule binding and tubulin assembly studies revealed differences compared to paclitaxel, but confirmed the interaction of (3R,5S,7as)-(3,5-bis(4-fluorophenyl) tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol with microtubules. Furthermore, in vitro studies using bovine brain microvessel endothelial cells experiments suggest that (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol can readily cross the blood-brain barrier in a passive manner.

Introduction

It had previously been suggested that stabilization of microtubules by anti-mitotic drugs could protect neurons from the toxic effects of β-amyloid (Aβ) peptide, a peptide believed to play a
major role in the pathogenesis of Alzheimer’s disease. Indeed, we reported a study in which we demonstrated that microtubule stabilizing drugs such as taxanes, epothilones and discodermolide had a protective effect against Aβ-induced degeneration of primary neurons in culture. However, the success of a neuroprotective agent in vivo as a pharmaceutical product depends on the ability of the compound to reach the site of action within the brain. There are a variety of barriers to brain penetration including anatomical barriers, i.e., tight junctions, reduced pinocytosis, and glycocalyx, metabolic barriers i.e. peptidases, and phase I and phase II enzymes, and an electrostatic barrier due to sulfated glycoproteins at the cell surface. Another major barrier to brain penetration is the existence of efflux transporters expressed at the brain endothelium. In 1997, Shintani et al. reported that a small synthetic compound named GS-164, stimulated microtubule assembly in vitro by a mechanism similar to that of paclitaxel. Under the conditions used by us to prepare a sample of GS-164, a mixture of two diastereoisomers was obtained, consisting of meso-compound (3R,5S,7as)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol (1), racemate (3R*,5R*)-(3,5-bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol (2) and (2-(4-fluorophenyl)oxazolidine-4,4-diyl)dimethanol (3), an incomplete condensation product (Fig. 1). Based on modeling studies, the authors had proposed that the R,R-enantiomer of compound 2 mimics parts of the paclitaxel structure and is responsible for its paclitaxel-like activity. Our laboratory has now separated the diastereoisomers present in GS-164 and has investigated the properties of the (3R,5S,7as)-isomer 1 (Fig. 1). The compound exhibits neuroprotective properties when tested with cultured neurons and passively permeates the blood-brain barrier. Interestingly, although this compound binds weakly to microtubules, it does not show paclitaxel-like microtubule stabilizing activity in vitro.

Results

Synthesis of 1

The reaction of p-fluorobenzaldehyde with tris(hydroxymethyl)aminomethane led to three products (Fig. 1) that were separable by flash chromatography. Compounds 1, 2 and 3 were produced in yields of 66%, 5%, and 21%, respectively. Single crystal X-ray diffraction was used to determine the stereochemistry of 1 and 2 (Fig. 2). Thus the major product was the 3R,5S,7as meso compound 1. The 3R,5S,7ar meso compound, although a potential product, was not formed. This is consistent with energy calculations.

Microtubule Assembly and Stability

In the original article on GS-164 the authors concluded that the compound acted on tubulin in a manner similar to paclitaxel. In addition, the authors used modeling to suggest that the 3R, 5R isomer was responsible for the paclitaxel-like activity. We have found that this isomer is a minor product in the synthesis. We sought to determine whether the major product, the 3R, 5S,7as isomer 1 had paclitaxel-like activity. We first tested the ability of 1 to stimulate tubulin assembly using microtubule protein (tubulin containing microtubule associated proteins) and pure tubulin. Microtubule assembly was measured in two different ways, using a fluorescence assay with microtubule protein without GTP (guanosine triphosphate), and a centrifugation assay with pure tubulin plus GTP, and microtubule protein without GTP. Shown in Fig. 3 are the results of the fluorescence assay. Compound 1 produced a small positive response (apparent microtubule formation) at low concentrations, but the response did not increase with increasing concentrations of 1. The maximum increase in fluorescence was about 20% of that produced by paclitaxel. In the centrifugation assays, the amount of pelleted protein in the presence of 1 ranged from 10% to 20% of that formed in the presence of paclitaxel. Electron microscopic
examination indicated some fibrous material in the presence of 1 indicating that the compound induces aggregation of tubulin, but not microtubule formation. Similar results were obtained with 2 and 3 (data not presented).

Paclitaxel is known to stabilize microtubules against cold-induced depolymerization. As another means to compare the taxane and 1, we studied the cold-stability of microtubules formed in vitro. Microtubules were formed from pure tubulin at 37 °C. Upon centrifugation, 81% of the protein was found in the pellet. When the sample was placed on ice for 15 min before centrifugation only 8% of the protein was in the pellet fraction. The addition of 20 μM paclitaxel to the microtubule suspension before the cold treatment stabilized the microtubules; the pellet contained 79% of the protein. On the other hand, the addition of 400 μM 1 had no effect on cold stability; 9% of the protein was found in the pellet. The results clearly demonstrate that 1 does not possess the paclitaxel-like property of stabilizing microtubules against cold-induced depolymerization.

Binding of 1 to Microtubules

With the use of tritiated compounds, the binding of 1 and paclitaxel to microtubules formed from microtubule protein were measured (Fig. 4). Both compounds bound to microtubules in a ratio of 7 to 8 nmol/mg protein. Since microtubule protein is about 70% tubulin, 1 mg represents 0.7 mg of tubulin or 7 nmol. Thus, both compounds bind in about a one to one molar ratio, but about 10-fold more 1 than paclitaxel was required to achieve maximum binding. To determine whether the two compounds bind to the same site in tubulin, competitive binding experiments were performed. Microtubules were formed in the presence of 100 μM [3H]-1 and 0 to 40 μM paclitaxel and in the presence of 20 μM [3H]-paclitaxel and 0 to 400 μM 1. Binding of 20 μM paclitaxel was reduced 40% by 400 μM 1. Binding of 100 μM 1 was reduced 42% by 40 μM paclitaxel. Thus, the two compounds appear to be weakly competitive of each other.

Protection of Primary Cortical Neurons Against Aβ Peptide and Cell-death Initiators

We and others have shown that exposure to Aβ induces beading, shortening, and eventual disappearance of neuritic processes presumably due to disruption of the cytoskeletal network and we have also found that paclitaxel protects against Aβ toxicity.10-12 Although 1 did not have paclitaxel activity in vitro, it did protect primary cortical neurons exposed to toxic agents. Protection against Aβ25-35 peptide is shown in Fig 5. The EC50 for 1 (concentration that lead to a 50% increase in neuronal survival in the presence of the Aβ peptide) was 5 nM. The racemic mixture 2 and the incomplete condensation product 3 had EC50 values of 50 nM and 40 nM, respectively. Although the small toxic Aβ25-35 peptide was used in the majority of studies, the observations were confirmed with exposure to Aβ1-42 peptide. Because 1 was the most effective of the three compounds and was the major product in the synthesis, further studies were restricted to this compound.

The effectiveness of 1 in protecting primary neurons against diverse toxic stimuli that lead to cell death via various pathways was also investigated. 1 was added at a concentration of 100 nM approximately 2 h before the toxic stimuli, and cell viability was determined. As shown in Fig. 6, exposure of the neurons to the Protein Kinase C inhibitor staurosporine, the sarcoplasmic-endoplasmic Ca2+-ATPase inhibitor thapsigargin, and the oxidative stress-inducing agent’s paraquat and hydrogen peroxide all led to a 50% loss in neurons within 24 h. In cultures treated with 1 before addition of the toxic stimuli, neuronal survival was significantly enhanced and, in most cases, the percentage of live cells was nearly at control levels. Thus the protective effect of 1 is not selective for the cell death pathway induced by Aβ peptides but seems to be due to a more generalized cellular response that enables neurons to withstand stressful conditions.
Effects of 1 on Rhodamine 123 Uptake

Given the promising observations seen in the neuroprotective assays, additional studies were performed to investigate the ability of 1 to cross the blood-brain barrier. The rhodamine 123 assay assesses the interaction of a compound with the efflux transporter P-glycoprotein, which is expressed at the brain endothelium and can present a barrier to brain penetration. Paclitaxel is a known substrate of P-glycoprotein (P-gp) and consequently has very minimal brain penetration.13 Compound 1 was tested in the rhodamine 123 uptake assay using bovine brain microvessel endothelial cells (BBMECs) grown in a 24-well plate. The uptake of rhodamine 123 was monitored in the presence of 1 at concentrations ranging from 1 \(\mu\)M to 50 \(\mu\)M. No significant increase in rhodamine 123 was observed, except for the positive control, cyclosporine A (CsA), a known substrate for P-gp (data not shown). These data suggest that 1 is not recognized as a substrate for the P-gp efflux transporter.

Permeability of 1

Bi-directional permeability studies were used to predict the brain permeation of 1 and to determine if 1 permeates via an active or passive process. Compound 1 (10 \(\mu\)M) with trace levels of [\(^3\)H]-1 was added to the luminal or abluminal side of the BBMEC monolayer and permeation was monitored for 1.5 h. During this time, permeation across the monolayer was linear (\(r^2 = 0.99\)) and all experiments were performed with \(n = 4\). In the luminal to abluminal direction, the Papp = 2.86 \(\times\) 10^{-4} cm/sec. In the abluminal to luminal direction, the Papp = 2.44 \(\times\) 10^{-4} cm/sec. This indicates that there is no statistical difference in permeability as a result of direction. These data suggest that the permeability of 1 is a passive process since permeation via an active process would yield directional differences in permeability.

To confirm that permeation of 1 is indeed a passive process, the permeability of 1 (10 \(\mu\)M) with trace levels of [\(^3\)H]-1 was investigated in the luminal to abluminal direction at temperatures ranging from 4 \(^\circ\)C to 37 \(^\circ\)C over 1.5 h to generate an Arrhenius plot (Fig. 7). The activation energy calculated from the slope of the Arrhenius plot was 26.3 kJ/mol, which is suggestive of a passive process since carrier-mediated processes typically fall within a range of 29-105 kJ/mol.14

Discussion

Following the report by Shantani \textit{et al.}8 that GS-164 promoted the assembly of tubulin and stabilized microtubules \textit{in vitro}, we sought to test the ability of the compound as a neuroprotective agent. When we tested the three products of GS-164 synthesis we could not find evidence that any of them promoted the assembly of tubulin. We did find that 1, the \(R,S\) stereoisomer of GS-164, binds to microtubules in a molar ratio of about one 1/tubulin molecule. However, it binds with an apparent affinity that is about 10\% that of the affinity of paclitaxel and appears to be only partially competitive with the taxane. Moreover, 1 did not stabilize microtubules \textit{in vitro}. In spite of these differences, 1, like paclitaxel, has excellent neuroprotective properties against A\(\beta\) and other toxic stimuli. Since 1 must be able to cross the blood-brain barrier to exert its neuroprotective effects in neurodegenerative diseases, the potential for 1 to penetrate the blood-brain barrier was thoroughly investigated using \textit{in vitro} methodologies. \textit{In vitro} studies performed using BBMECs as a model of the blood-brain barrier indicated that 1 had excellent potential for brain penetration. The physiochemical properties of 1 make it a potential candidate for use as a CNS drug. Compared to paclitaxel, 1 has a much lower molecular weight, possesses halogen groups that promote passive diffusion15 and is not a substrate for any of the efflux transporters expressed at the brain endothelium. All of these features are important in determining whether a drug will be able to cross the blood-brain barrier and reach a site of action within the brain.7,15,16
The observation that 1 protects neurons against Aβ toxicity is similar to what we have found with known microtubule-stabilizing drugs such as paclitaxel. The in vitro studies suggest that 1 interacts with microtubules differently than paclitaxel does. Exposure to 1 led to the preservation of the cytoskeletal integrity in primary neurons exposed to Aβ. Our previously published work using calcein labeling demonstrated that Aβ leads to the actual loss of neurites and not just a loss of tubulin labeling. The neuritic dystrophy attests to the complexity of the signaling events involved in the neuronal response to Aβ and suggests that 1 may be acting on a different pathway than paclitaxel in leading to preservation of the neurites. Furthermore, though it is reasonable to assume that paclitaxel ultimately protects neurons by stabilizing microtubules, the cellular mechanism may be more complex, possibly involving unique effects on specific signaling pathways. For example, we have found that paclitaxel prevents the Aβ-induced activation of Cdk5, one of the proline kinases strongly implicated in the abnormal phosphorylation of the Tau protein found in tangles in Alzheimer's disease brain. 18

Diverse experimental approaches have provided strong evidence that dysregulation of Ca\(^{2+}\) homeostasis is a driving force for neuronal death in neurodegenerative diseases and paclitaxel was shown to protect neurons against Ca\(^{2+}\) influx, against glutamate-induced excitotoxicity, and against Thapsigargin-induced endoplasmic reticulum stress and dysfunction, among other toxic insults. It is not yet known how this occurs, but specific Ca\(^{2+}\) signaling pathways may be sensitive to the state of the cytoskeletal network in neurons. Agents as structurally different as paclitaxel and 1 could modulate very different Ca\(^{2+}\) signaling cascades in intact cells. Although 1 does not mimic paclitaxel in vitro, this agent apparently activates unique protein interactions and signaling cascades that ultimately leads to the preservation of neuritic processes. As previously suggested, the state of the neuronal cytoskeleton may serve as a surveillance system that transduces multiple types of stress signals. Agents that invoke mechanisms that slow or prevent the neuritic dystrophy initiated by such signals give the neurons a chance to mobilize other defenses and thereby enhance their survival. Experimental strategies designed to delineate, at the molecular level, the mechanisms through which agents such as 1 and paclitaxel activate protective signaling cascades may well provide opportunities for innovative therapeutic interventions that capitalize on these targets.

Experimental Section

Chemistry. Analytical Characterization—\(^{1}\)H, \(^{13}\)C NMR spectra were recorded on a 400 MHz NMR instrument (400 and 100 MHz respectively) spectrometer. High-resolution mass spectra (HRMS) were obtained on a ZAB double-focusing mass spectrometer. IR spectra were recorded on a FTIR instrument. Melting points are uncorrected. Column chromatography was performed employing silica gel (230-400 mesh). The purities of 1 and 2 were determined by HPLC and were and found to be >95% pure. X-ray diffraction data were collected on a ccd area detector using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). See supplemental data for additional information.

Synthesis of 1—A suspension of p-fluorobenzaldehyde (27 g, 0.22 mol) and tris(hydroxymethyl)aminomethane (13 g, 0.11 mol) in toluene (350 mL) was heated at reflux temperature for 12 h with azeotropic removal of water. The reaction mixture was concentrated, stirred at room temperature and the precipitated unreacted p-fluorobenzaldehyde was removed by filtration. The residue obtained after removal of solvent was subjected to flash chromatography on silica gel using hexane:ethylacetate (4:1 and 1:1). Crystallization of the respective fractions afforded pure compounds (1, 2 and 3) in yields of 66%, 5%, and 21%, respectively. The structures of the products were assigned by spectral data and the relative stereochemistry of 1 and 2 was assigned from single crystal X-ray diffraction data.
(3R,5S,7as)-(3,5-bis(4-Fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl) methanol (1)—Crystallized from hexane as a colorless crystalline solid; mp. 90 °C; IR (CDCl₃) δ 3.50 (br s, 2H), 3.94 (d, 3J = 8.9 Hz, 2H), 4.05 (d, 3J = 8.9 Hz, 2H), 5.55 (s, 2H), 7.07 (7J = 4.4 Hz, 7J = 4.4 Hz, 4H); ¹³C NMR (CDCl₃) δ 65.63, 72.66, 74.89, 96.65, 115.41, 115.58, 128.55, 128.62, 135.26, 135.29, 161.95, 163.91; HRMS (FAB+) m/z calculated for C₁₈H₁₈NO₂F₂ [M+H] 334.1255 found 334.1237.

(3R*,5R*)-(3,5-bis(4-Fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl) methanol (2)—Crystallized from hexanes/CH₃OH (2:1) as a colorless crystalline solid; mp. 115 °C; IR (CDCl₃) δ 3.75 (m, 2H), 3.84 (d, 3J = 8.8 Hz, 1H), 3.88 (d, 3J = 8.9 Hz, 1H), 4.10 (d, 3J = 8.9 Hz, 1H), 4.20 (d, 3J = 8.8 Hz, 1H), 5.16 (s, 1H), 5.51 (s, 1H), 6.89 (m, 6H), 7.27 (m, 2H); ¹³C NMR (CDCl₃) δ 64.57, 64.98, 67.62, 68.36, 70.73, 91.79, 115.81, 116.02, 128.29, 128.37, 134.91, 162.17, 164.63; HRMS (FAB+) m/z calculated for C₁₈H₁₈NO₂F₂ [M+H] 334.1237 found 334.1236.

(2-(4-Fluorophenyl)oxazolidine-4,4-diyl)dimethanol (3)—Crystallized from isopropanol as a colorless crystalline solid; mp. 89 °C; IR (CDCl₃) δ 3440, 2870, 1604, 1512, 1420, 1384, 1226, 1155, 1076, 837; ¹H NMR (CDCl₃) δ 3.35 (m, 2H), 3.40 (d, 3J = 8.6 Hz, 1H), 5.41 (s, 1H), 7.06 (m, 2H), 7.44 (m, 2H); ¹³C NMR (CDCl₃) δ 64.57, 64.98, 67.62, 68.36, 70.73, 91.79, 115.81, 116.02, 128.29, 128.37, 134.91, 162.17, 164.63; HRMS (FAB+) m/z calculated for C₁₈H₁₈NO₂F₂ [M+H] 334.1236 found 334.1236.

Microtubule Assembly Assay—Microtubule protein (tubulin preparation containing microtubule-associated proteins, (MAPs) was obtained from bovine brain. Microtubule Assembly Assay—Microtubules were assembled in vitro using tritiated compounds. [³H]-Paclitaxel was purchased from Moraveck Biochemicals, Inc., Brea, CA and I was tritiated by ViTrax Co., Placentia, CA. Solutions (100 μL) of 2 mg/mL microtubule protein in PEM buffer containing 0.5 mM GTP and various concentrations of [³H]-1 (1 × 10⁵ cpm/nmol) or [³H]-paclitaxel (9 × 10⁴ cpm/nmol) in Beckman TLA-100 centrifuge tubes were incubated at 37 °C for 10 min. Microtubule pellets were collected by centrifugation at 100,000 × g for 4 min. The pellets were dissolved in 0.1 M NaOH and radioactivity and protein concentrations were determined.

Microtubule Binding Assay—Binding of I and paclitaxel to microtubules was measured using tritiated compounds. [³H]-Paclitaxel was purchased from Moraveck Biochemicals, Inc., Brea, CA and I was tritiated by ViTrax Co., Placentia, CA. Solutions (100 μL) of 2 mg/mL microtubule protein in PEM buffer containing 0.5 mM GTP and various concentrations of [³H]-I (1 × 10⁵ cpm/nmol) or [³H]-paclitaxel (9 × 10⁴ cpm/nmol) in Beckman TLA-100 centrifuge tubes were incubated at 37 °C for 10 min. Microtubule pellets were collected by centrifugation at 100,000 × g for 4 min. The pellets were dissolved in 0.1 M NaOH and radioactivity and protein concentrations were determined.

Neuronal Cell Culture—To prepare the primary neurons, dissociated cortical cell cultures were established from embryonic day 18 rat fetuses recovered from pregnant Sprague Dawley rats (Harlan Sprague Dawley, Inc., Indianapolis, IN). After the final precipitation step, neurons were suspended in fresh DMEM/F12 (Sigma Chemical Co. St. Louis, MO) with 10% fetal bovine serum (Atlanta Biologicals, Atlanta, GA) and plated at a density of 2.5 × 10⁵ cells in 35 mm glass bottom microwell dishes (Mat-Tek Co., Ashland, MA), coated with poly-D-lysine in fluorescence.
lysine. Serum-containing medium was removed after 24 h, and the cells were maintained in serum-free DMEM/F12 containing the N2 supplements. Cultures were grown at 37 °C in 5% CO2 and 97% humidity as described.

Treatment with Aβ Peptide and Cell-death Initiators—After five days in culture, the primary neurons were exposed to either Aβ25-35 or Aβ1-42 in the presence or absence of concentrations of 1 ranging from 0.5 nM to 60 nM. 1 was added approximately 2 h before the Aβ peptides. The Aβ25-35 was synthesized and purified in the Biochemical Research Services Lab at The University of Kansas. The reverse sequence peptide used as a control, Aβ35-25, and the Aβ1-42 peptide used in confirmatory experiments were purchased from Bachem (Torrance, CA). Prior to the addition of the peptides to the cultures, the Aβ peptide stocks (1.3 mg/ml) were diluted into 10 mM Tris/Cl, pH 7.4, and maintained at 37 °C for 24 h. Each batch of Aβ peptide was analyzed for β-sheet formation by circular dichroism, but no attempt was made to separate oligomers from fibrils. The peptides were added directly to the culture medium, at a final concentration of 10 μM. Control cultures received the DMSO vehicle alone, and the final concentration of DMSO never exceeded 0.04%. Assays were carried out 48 h following Aβ peptide addition. The effects of neurotoxic stimuli other than Aβ peptides were also used to assess the protective effect of 1 against various cell-death initiators. Neurotoxic stimuli included staurosporine (100 nM) to induce apoptosis, thapsigargin (100 nM) to cause ER stress, and paraquat (25 μM) or hydrogen peroxide (25 μM) to induce oxidative stress. All reagents were obtained from Sigma Chemical Co., St Louis, MO.

Measurement of Cell Viability—The effects of the Aβ peptides and 1 were determined by monitoring neuronal cell survival using the Live/Dead assay as previously described. Following exposure to the peptides and other compounds, cells were labeled with 20 μM propidium iodide (PI) and 150 nM calcein acetoxy-methylester (Molecular Probes, Eugene, OR) for 30 min at 37 °C, rinsed with phosphate buffered saline (PBS) and visualized under a Nikon inverted microscope (Nikon Eclipse TE200, Japan) with filters for fluorescein-isothiocyanate and Texas Red. Digital images were captured and the number of viable (green) and dead (red) neurons was determined by counting the cells in 6-12 microscopic fields per culture dish in duplicate dishes for each treatment. All experimental treatments were carried out on at least two separate embryonic neuronal preparations with approximately 1500 neurons scored under each treatment condition. The raw data from each experiment were combined and the significance of differences between cultures exposed to various treatments was determined as described using Student’s t test. Neuronal survival in the untreated control samples was considered to represent maximal viability and survival in the Aβ-only samples represents minimal viability.

Isolation and Cell Culture of Brain Endothelial Cells—BBMECs were isolated from the gray matter of bovine cerebral cortices by enzymatic digestion followed by centrifugation as described. Isolated BBMECs were seeded at a density of approximately 50,000 cells/cm2 onto 24-well culture plates or 100 mm culture dishes as previously described.

Rhodamine 123 Uptake Assay—In this assay, rhodamine 123 is used as a surrogate P-glycoprotein (P-gp) substrate. The effect of the test compound on rhodamine 123 is determined by monitoring intracellular fluorescence. If the test compound is a substrate for P-gp, then addition of the compound will increase rhodamine 123 uptake relative to the negative control. BBMECs were seeded onto 24-well culture plates and used to assay for P-gp interaction as. Briefly, BBMECs were rinsed with warm PBSA (phosphate buffered saline containing CaCl2, MgSO4, glucose and L-ascorbic acid) and allowed to acclimate for 10 min. The PBSA was removed and solutions of 1 (1 μM- 50 μM) were added to the wells and allowed to incubate for 30 min at 37 °C. Rhodamine 123 was then added to all wells at a concentration...
of 5 μM and cells were incubated for an additional 2 h. After the incubation, cells were quickly rinsed with ice cold PBS several times. Lysis buffer (0.5% v/v Triton X-100 in 0.2 M NaOH) was then added to all wells and allowed to solubilize cells for at least 30 min. Aliquots (200 μL) were taken from all wells to determine rhodamine 123 concentration and 10 μL aliquots were removed from all wells to determine the protein concentration using a Pierce BCA Protein Assay Kit (Pierce, Rockford, IL).

BBMEC Permeability Assays—BBMECs were grown on 0.4 μm Nucleopore(R) polycarbonate membranes in a 100 mm culture dish coated with rat tail collagen and fibronectin. Once cells had formed a confluent monolayer as determined by light microscopy, the membranes were transferred to Side-Bi-Side™ diffusion chambers as previously described by.\(^{31,32}\) Briefly, each chamber was filled with 3 mL of PBSA and either the luminal (blood) or abluminal (brain) donor chambers contained 10 μM of unlabeled I and a trace amount of \([3^H]-I\). The temperature was maintained at 37 °C within the chamber with an external circulating water bath and chamber contents were stirred with Teflon(R) coated magnetic stir bars driven by an external console. At various time points up to 90 min, 200 μL aliquots were removed from the receiver side and 20 μL aliquots of the donor solution were taken at time zero. The integrity of the cell monolayer was tested post experiment by monitoring the permeability of \([14C]-\)sucrose, a low permeability paracellular marker that should not readily cross the cell monolayer. All samples were analyzed by liquid scintillation counting. For temperature dependent permeability studies BBMECs were grown on 0.4 μm Nucleopore(R) polycarbonate membranes then transferred to Side-Bi-Side™ diffusion chambers as described above. I (10 μM) with trace amounts of \([^3H]-I\) was added to the luminal chambers and 200 μL samples were taken from the abluminal chamber at various time points up to 90 min. The apparent permeability of I was calculated at a range of temperatures from 4 °C to 37 °C. An Arrhenius plot was generated to determine the activation energy of transport. The integrity of the cell monolayer was tested post experiment by monitoring the permeability of \([14C]-\)sucrose and samples were analyzed by liquid scintillation counting.

Acknowledgments

We thank Jacquelyn Huff for excellent technical assistance.

Support for this research was provided by the Alzheimer's Disease and Related Disorders Association, the Institute for the Study of Aging, NIH grants HD 02528, CA 79641, and CA82801. E.A.R. acknowledges support from the NIH training grant GM 07775, the Army Breast Cancer Initiative Predoctoral Fellowship Program (DAMD 17-00-1-0303) and the American Association for Pharmaceutical Education Predoctoral Fellowship Program.

References

J Med Chem. Author manuscript; available in PMC 2010 December 10.

Abbreviations

- Aβ: β-amyloid
- BBMEC: bovine brain microvessel endothelial cells
- CsA: cyclosporine A
- DAPI: 4′,6′-diamino-2-phenylindole
- DMEM/F12: Dulbecco's Modified Eagle's Medium F12
- DMSO: dimethylsulfoxide
- GTP: guanosine triphosphate
- MAPs: microtubule-associated proteins
- PBS: phosphate buffered saline
- PBSA: phosphate buffered saline with ascorbic acid
- PIPES: EGTA, MgSO4, PEM
- P-gp: P-glycoprotein
- PI: propidium iodide
- Tris/Cl: tris(hydroxymethyl)aminomethane HCl
Fig 1.
Reaction scheme for the synthesis 1. Additional products are 2 and 3.
Fig 2.
Structures and ellipsoid drawings of meso diastereoisomer (3R,5S,7as)-1 and (3R*,5R*)-2 from X-ray diffraction.
Fig 3.
Stimulation of microtubule protein assembly by paclitaxel (top) and 1 (bottom) as determined by monitoring the increase in DAPI fluorescence. Microtubule protein (2 mg/mL) was incubated in PEM buffer containing 10 μM DAPI and varying concentrations of paclitaxel or 1 in 96-well plates for 30 min at 37 °C. Maximum fluorescence is that which is achieved by 25 μM paclitaxel.
Fig 4.
Binding of paclitaxel (top) and 1 (bottom) to microtubules. Microtubules were formed from microtubule protein (2 mg/mL) and incubated with different concentrations of 3H-paclitaxel or 3H-1 for 10 min at 37 °C. The microtubules were collected by centrifugation and dissolved in 0.1 M NaOH. Protein concentrations and radioactivity measurements were then determined.
Fig 5. Dose dependent effects of 1 on survival of primary cortical neurons exposed to the toxic β-amyloid (Aβ) peptide for 48 h. The percentage of neurons surviving was determined by the Live/Dead assay. Data are from six randomly selected fields from two neuronal preparations (n ~1,500 cells/condition). Statistical significance was determined by Students t test (# = p<0.001 for controls versus Aβ only). ** = p<0.001 for Aβ only versus Aβ + drug.
Fig 6.
Effects of 1 on toxicity induced by diverse stimuli. Primary neurons were exposed to 100 nM staurosporine (Str), 100 nM thapsigargin (Tg), 25 μM paraquat (PQ), or 25 μM H₂O₂ ± 100 nM 1. Mean percent survival was determined 24 h later, and statistical significance was assessed using Student's t test (*= p<0.05 and **= p< 0.005 for each toxic stimulus alone versus the toxic stimulus plus the drug). Data are from ~1,000 cells per condition.
Fig 7.
Arrhenius plot of the apparent permeability coefficients (P_{app}) of 1 in bovine brain microvessel endothelial cells at temperatures ranging from 4 °C to 37 °C over 1.5 h. Data ±SD, n = 4.

\[y = -3159x + 13.409 \]

\[R^2 = 0.93057 \]