Multi-criteria analysis of landslide susceptibility, Afghanistan

Nathan Schlagel1,2, Ashlee Dere2, William Johnson3, John F. Shroder2
1 Department of Geology, University of Kansas; 2 Department of Geology, University of Nebraska - Omaha; 3 Department of Geography and Atmospheric Science, University of Kansas

Abstract

Landslides are among the most destructive forces of nature. Estimating susceptibility through modeling is an essential tool for planning and mitigation efforts. Some regions, however, are too dangerous or lack the capacity to develop extensive inventories for rigorous analyses. Remote sensing and GIS allow for initial risk assessment and hazard planning. Data derived primarily from remote sensing, or developed before and during war efforts of the last few decades were used for this study of landslide susceptibility in Afghanistan.

Methods

Lithology, fault, river, and road data compiled by the USGS were derived from both pre- and mid-war sources of varying detail. A 10 year subset of earthquake data was used to reduce processing time; earthquake density was weighted by magnitude. An NDVI tile was used as vegetation data covering most of the country. Slope and aspect data were derived from 90m SRTM. Aspect and earthquake density diagrams not included because of their small scale features.

Each factor was assigned weights for their own min-max range, and expected contribution to landslide susceptibility relative to each other developed through literature review. Layers were combined as a weighted overlay to create a landslide susceptibility index (LSI). Published studies of known landslides and corresponding Google Earth imagery were compared to same locations in the landslide susceptibility map.

Lake Shewa Landslide Dam

Loess failures in Takhar and Badakhshan

Above: Satellite (left) and LSI comparison (middle). At right, blue outlines the dominant scarp face; green the steep front of a possible rock glacier formed within slide deposits; orange, main slide deposit associated with Lake Shewa Dam; yellow, reactivation of slopes possibly as a result of water flow through the dam. Satellite images from Google Earth.

Left: Arrow for approximate spatial reference; base at same coordinates. Blue outlines assumed similar features. DEM of insufficient resolution to show debris flow deposit, red outline on satellite imagery. Satellite image from Google Earth.

Observations

- Model results show high LSI values in areas with observed failures (left, right, top-right). Loess, granite, and schist/gneiss are the most susceptible lithologies with greatest risks in regions of high seismicity and faulting.
- Results appear to show slide deposits as lower susceptibility, and source slopes as higher, which may be used to assess reactivation potential.
- Such techniques can be widely applied. However, the uniqueness associated with assignment of relative weights to contributing factors makes models for any given location unique and inapplicable to other areas without alteration.

Conclusion

Although advances in methodology and data quality would allow for improvements in landslide susceptibility analyses, comparisons in this study show that reasonable approximations can still be made with relatively coarse data sets.