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Abstract

The herpes simplex virus type 1 (HSV-1) immediate-early phosphoprotein infected cell protein 0 

(ICP0) is a potent transcriptional activator of viral genes and is required for efficient viral 

replication and reactivation from latency. However, it is largely unknown what role specific 

cellular factors play in the transactivator function of ICP0. With the long-term goal of identifying 

these factors, we developed a cell-based assay in a 96-well format to measure this activity of 

ICP0. We designed a system using a set of HSV-1 GFP reporter viruses in which the expression of 

GFP is potently induced by ICP0 in cell culture. The initial feasibility of this system was 

confirmed over a 24-hour period by fluorescence microscopy. We adapted this assay to a 96-well 

plate format, quantifying GFP expression with a fluorescence scanner. Our results indicate that the 

cell-based assay we developed is a valid and effective method for examining the transactivating 

activity of ICP0. This assay can be used to identify cellular factors that regulate the transactivating 

activity of ICP0.
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1. Introduction

Herpes simplex virus type 1 (HSV-1) infects 70–80% of the population and commonly 

causes cold sores, although many infections are asymptomatic (Roizman, 2007). HSV-1 can 

also cause ocular infections and is the major cause of infectious blindness in western 

industrialized countries (Roizman, 2007). Initially, HSV-1 infects epithelial cells at a 

primary site, resulting in a lytic infection. The virus can then infect the sensory neurons that 

innervate the infected epithelial cells, where it establishes a life-long latent infection. 

Reactivation of latent virus can occur by different stresses, which initiates lytic infection in 

neurons and ultimately epithelial cells at the primary site of infection. This cycle of latent 
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and lytic infections leads to recurrent disease. One viral protein that is important for efficient 

for viral replication and reactivation from latency is the immediate-early (IE) protein, 

infected cell protein 0 (ICP0) (Cai and Schaffer, 1989, Harris et al., 1989, Stow and Stow, 

1986).

ICP0 is one of the five HSV-1 IE proteins and has RING finger motif (Everett, 1989, 

Meredith et al., 1995) that allows ICP0 to function as an E3 ubiquitin ligase (Boutell et al., 

2002). E3 ubiquitin ligases are components of an E1-E2-E3 biochemical pathway that 

conjugates and polymerizes chains of ubiquitin onto proteins (Kleiger and Mayor, 2014). 

This activity of ICP0 directs the degradation of specific cellular proteins (Chelbi-Alix and de 

The, 1999, Everett et al., 1998a, Lees-Miller et al., 1996, Muller and Dejean, 1999, 

Parkinson and Everett, 2000, Perusina Lanfranca et al., 2013), which in turn impairs cellular 

antiviral defenses. The E3 ubiquitin ligase activity of ICP0 is also linked to the ability of 

ICP0 to act as a potent global transcriptional activator of viral genes (Everett et al., 1998b, 

O’Rourke et al., 1998). Previous studies have shown that the transactivation activity of ICP0 

is important for efficient HSV-1 replication and reactivation from latency (Cai et al., 1993, 

Cai and Schaffer, 1992, Everett et al., 2009). Although the transactivating activity of ICP0 

has been studied in the absence of other IE genes in transient transfection assays (Davido et 

al., 2005, Everett, 1987, Jordan and Schaffer, 1997, Mostafa et al., 2013), it has not been 

extensively studied independent of other IE proteins in the context of a viral infection. A 

limited number of cellular factors have been linked to ICP0’s transactivation activity 

(Davido et al., 2002, Li et al., 2009); however, the development of a cell-based assay to 

monitor this activity would allow for the systematic identification of key cellular factors or 

activities (e.g., via siRNA knockdown) that contribute to this function.

To begin to elucidate cellular factors that affect ICP0’s transactivating activity, we have 

developed an assay that measures this activity of ICP0 in a 96-well plate format. The assay 

was developed using two HSV-1 reporter viruses that express only ICP0 of the 5 IE genes 

(d106) or none of the IE genes (d109). Both viruses have a human cytomegalovirus major 

immediate early promoter (HCMV MIEp) driven green fluorescent protein (GFP) in the 

HSV-1 ICP27 locus (Samaniego et al., 1998). Similar to other published reports (Eidson et 

al., 2002, Everett et al., 2009, Minaker et al., 2005, Preston and Nicholl, 1997), we show 

here that ICP0 is capable of transactivating the HCMV MIEp; in the case of d106, ICP0 

transactivation activity is quantified by measuring GFP fluorescence levels using a Typhoon 

Imager. To ultimately adapt this screen to use siRNAs against cell targets, we demonstrate 

that ICP0’s transactivating activity was minimally affected when cells were transfected with 

an siRNA against the cellular house keeping gene, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Using a 96-well plate format, we established that d106 (+ICP0) 

has higher levels of GFP than d109 (-ICP0), which increase from 12 to 24 h post infection 

(hpi). Lastly, we use this assay in an siRNA library screen and identify that an siRNA 

against ubiquitin activating enzyme E1-like (UBEL1) impairs the transactivation activity of 

ICP0, validating the development of our assay.
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2. Materials and methods

2.1. Cell culture and viruses

HeLa S3 (human cervical carcinoma) cells (kindly provided by Ira Blader) were utilized in 

the assay and grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 10 U/mL penicillin, 10 U/mL streptomycin, 

and 50 μg/mL gentamycin at a temperature of 37°C in 5% CO2.

HSV-1 recombinant viruses, d106 and d109 (Fig 1, modified (Samaniego et al., 1998), 

kindly provided by Neal DeLuca) were used in our cell-based assay. Of the 5 IE genes, d106 

only expresses ICP0 (+ICP0), whereas d109 does not express any IE proteins (-ICP0). Both 

viruses express the GFP gene from the human cytomegalovirus major IE promoter (HCMV 

MIEp). Both d106 and d109 viruses were grown on M17 cells, which are a derivative of 

Vero cells stably transformed with the HSV-1 ICP4 and ICP27 genes (kindly provided by 

David Leib). Adenoviral vectors, Ad-crtTA and Ad-T-ICP0, were used to infect M17 and 

transiently express ICP0 to increase titers of d109. Ad-crtTA and Ad-TICP0 were grown 

and titered as previously described (Halford et al., 2001). d106 was titered on Vero cells and 

d109 was titered on L7 cells (Vero cells that contain the ICP0 gene) (Samaniego et al., 

1997), and fluorescent forming units were counted 24 hpi. M17, Vero, and L7 cells were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 5% fetal bovine serum 

(FBS), 2 mM L-glutamine, 10 U/mL penicillin, 10 U/mL streptomycin, and 50 μg/mL 

gentamycin at a temperature of 37°C in 5% CO2.

2.2. Reverse transfection

HeLa S3 cells were reverse tranfected in BD Falcon black well clear bottom optilux 96-well 

plates (San Jose, California, catalog # 08-772-104). Ambion siRNAs (Grand Island, NY) 

were used at a volume of 10 μL per well and final concentration of 10 μM per well. The 

ubiquitin pathway siRNA library (Ambion, Grand Island, NY, Catalog number 

#AM80991V3) was used at the same volume and concentration. siRNA was pre-plated in 

wells of the 96-well plate. 0.2 μL of Lipofectamine 2000 per well was mixed with 9.8 μL 

Opti-MEM per well for 10–25 min. The Lipofectamine 2000/Opti-MEM mix is added to the 

pre-plated siRNA and allowed to incubate for 20 minutes. After the 20 min incubation, 

HeLa S3 cells were added to the wells at 8,000 cells per well in 80 μL per well in penicillin/

streptomycin free 10% FBS DMEM. Transfected and mock-transfected wells were washed 

twice with complete medium 24 h post transfection (hpt) and then 100 μL of HeLa S3 cell 

medium was added to each well. 48 hpt, medium was removed from the cells and the well 

was either infected with previously described reporter viruses or harvested for RNA 

isolation.

2.3. Infection

HeLa S3 cells were infected 48 hpt with d106 or d109 reporter viruses at a multiplicity of 

infection (MOI) of 1. Viruses were diluted in HeLa S3 medium that did not contain phenol 

red. Infections were allowed to proceed for 12, 18, and 24 hpi.
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2.4. Detection and analysis of fluorescent signals

Plates were scanned using a Typhoon image scanner (General Electric Healthcare) at 

standard settings according the manufacturer’s recommendations. Settings were chosen to 

scan green fluorescence at an excitation of 488, emission of 520, and photomultiplier tube 

(PMT) of 475 and excitation of 633, emission of 670, and photomultiplier tube (PMT) of 

475 for the deep red. Scans were done at 12, 18, and 24 hpi. At the 24 h time point for the 

siRNA screen, cells were stained with deep red mitotracker in FBS-free DMEM at a final 

concentration of 250 nM as per protocol (Invitrogen, Grand Island, NY, catalog # M22426) 

to account for cell density. The fluorescence intensity of each scanned well was analyzed in 

ImageJ by using a circle the size of the well & measuring the intensity of each well. Data 

was copied into Excel (Microsoft) software for analysis. Wells that contained only cells and 

medium were used as background controls, and this value was subtracted from values of 

infected wells. For the siRNA screen, the GFP intensity was normalized to the mitotracker 

(deep red) intensity. d106 values were set at 100% and mock transfected, GAPDH siRNA 

transfected d106, d109 values were compared to the 100% value. For the siRNA screen, 

similar calculations were done, but normalized values were used instead of GFP only values. 

Lastly, the percent average variation for all d106 signals using the data in presented in Fig. 5 

was calculated to be 3% of the mean d106 signal..

2.5. RNA isolation and reverse transcription real time PCR

Cells were lysed and harvested using Trizol (Invitrogen, Grand Island, NY) according to 

manufacturer’s recommendations. RNA was isolated using phenol-chlorform extraction. 500 

ng of RNA was reverse transcribed to make cDNA using the iScript BioRad cDNA 

synthesis kit (BioRad, Hercules, CA, catalog # 170-8890) according to manufacturer’s 

conditions. Real time PCR was done by using SYBR green master mix (Roche) and standard 

conditions were used for the cellular target, GAPDH (5′ 

CGGATTTGGTCGTATTGGGCGC 3′ and 5′ TCCCGTTCTCAGCCTTGACGGT 3′), and 

the normalization control, hTBP (5′-TGCACAGGAGCCAAGAGTGAA-3′ and 5′-

CACATCACAGCTCCCCACCA-3′)(Smith et al., 2013). Standard curves were obtained for 

the target and normalization control. Comparisons were made using the ΔΔ2CT method, 

setting the untransfected control at 100%.

3. Results

3.1. ICP0 transactivates the HCMV MIEp-GFP

With the long-term goal of identifying cellular factors that play a role in the transactivating 

activity of ICP0, we sought to develop a 96-well plate cell-based assay. We initially wanted 

to establish if the replication-defective reporter viruses, d106 (+ICP0) and d109 (-ICP0) 

(Samaniego et al., 1998), could be used in this format. Specifically, we wanted to use 

fluorescence as an output of ICP0’s transactivation activity. Both d106 and d109 viruses 

contain an HCMV MIEp-GFP reporter, and previous studies indicate that ICP0 can 

transactivate the HCMV MIEp (Fig. 1). We first tested whether the expression of GFP is 

dependent on ICP0 in HeLa cells, a cell type commonly used to study HSV-1 replication 

that is highly transfectable for nucleic acids (e.g., siRNA and DNA plasmids) (Everett, 

1987, Sarma et al., 2008). HeLa S3 cells were infected with d106 (+ICP0) or d109 (-ICP0), 
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and GFP expression was examined by microscopy at 2, 6, 12, and 24 h post infection (hpi). 

Activation of the HCMV MIEp-GFP was first detected by 6 hpi for d106 (+ICP0) and 

steadily increased until 24 hpi (Fig. 2). In contrast, activation of HCMV MIEp-GFP in d109 

(-ICP0) became apparent by 12 hpi in a subset of cells (Fig 2), with increased GFP 

expression by 24 hpi (Fig. 2). Although the GFP is induced in d109 (-ICP0)-infected cells, it 

does not reach the level, both in relative fluorescence intensity and cell number, as d106 

(+ICP0)-infected cells. This experiment indicated that ICP0 potently induced the HCMV 

MIEp-GFP reporter construct in d106; thus, we established that d106 can be used as a 

reporter virus for monitoring ICP0 transactivating activity.

3.2. siRNA depletion of GAPDH does not appear to affect ICP0’s transactivation activity by 
fluorescence microscopy

We next wanted to know if transfecting an siRNA against a cellular housekeeping gene 

would affect the transactivating activity of ICP0. For this experiment, HeLa S3 cells were 

untransfected, mock transfected, or transfected with an siRNA targeted against GAPDH. 

Mock-transfected cells were included in these experiments to determine if the transfection 

reagent alone modulated ICP0’s transactivating activity. As indicated in Figure 3, we 

observed no notable differences in GFP levels of d106 (+ICP0)- or d109 (-ICP0)-infected 

cells that were untransfected, mock transfected, and GAPDH siRNA-transfected via 

microscopy.

3.3. GAPDH transcript levels are depleted in a 96-well plate format

Once we showed that transfection of siRNAs into cells did not appear to affect GFP levels 

of d106 (+ICP0) or d109 (-ICP0)-infected cells as imaged by microscopy, we next wanted to 

confirm that we could deplete the transcript levels of a cellular target using an siRNA in a 

96-well plate format. HeLa S3 cells were untransfected, mock transfected, or transfected 

with a siRNA targeting GAPDH in triplicate wells. Forty-eight h post transfection (hpt), 

RNA from each well was isolated, reverse transcribed into cDNA, and analyzed by Real 

Time PCR. Transcript levels of GAPDH were significantly reduced to 3.4% of untransfected 

levels in the siRNA-transfected samples and to 75% in mock-transfected samples compared 

to untransfected samples, which were given the value of 100% (Fig. 4). This experiment 

shows that we are able to reduce mRNA levels of a specific cellular target in a 96-well plate 

substantially.

3.4. An siRNA against GAPDH has a minimal affect on ICP0’s transactivation activity in a 
96-well plate

After we established that an siRNA against GAPDH depleted its transcript levels using a 96-

well plate, we adapted this assay using the d106 and d109 reporter viruses to a 96-well plate 

format. HeLa S3 cells were untransfected, mock transfected, or transfected with a siRNA 

against GAPDH. At 48 hpt, HeLa S3 cells were mock infected in triplicate or infected with 

d106 or d109 at an MOI of 1. The 96-well plate was scanned for fluorescence using a 

Typhoon Imager at 12 hpi, 18 hpi, and 24 hpi. GFP expression was detected at 12 hpi for 

d106 (+ICP0) (Fig. 5A), which gradually increased at 18 and 24 hpi (Fig. 5A). For each time 

point, d106 (+ICP0) GFP levels are visibly higher than d109 (-ICP0), with d109 GFP 
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intensities were reduced 5–6 fold at 12 hpi, 9.5–12 fold at 18 hpi, and 10.4–14 fold at 24 hpi 

(Fig. 5B) relative to d106, whether in the absence or presence of the GADPH siRNA. Lastly, 

there results confirmed our microscopy studies in which an siRNA against GAPDH did not 

appreciably affect GFP intensities for d106- or d109-infected wells compared their 

respective untransfected controls (Fig. 5B). These experiments demonstrate that we can 

examine the transactivation activity of ICP0 using d106 in a cell-based assay in a 96-well 

plate format.

3.5. An siRNA agajnst UBE1L impairs the transactivation activity of ICP0

Utilizing our 96-well plate cell-based assay, we screened a small siRNA library that targeted 

components of the ubitiquitin pathway. Wells were reverse-transfected and infected with 

d106. From this screen, an siRNA against UBE1L, an E1 enzyme of the ubiquitin-

proteasome pathway, impaired the transactivation activity of ICP0 5.5-fold at 24 hpi (Fig. 

6), which began to approach d109 (-ICP0) GFP levels (Fig. 6). Thus, we demonstrate that 

this assay can be used in an siRNA screen having identified a target in the ubiquitin-

proteasome pathway.

4. Discussion

In this paper, we have demonstrated, in line with other studies (Everett et al., 2009, Minaker 

et al., 2005, Preston and Nicholl, 1997), that ICP0 can potently transactivate the HCMV 

MIEp (Fig. 2). We also found that an siRNA against the housekeeping gene, GAPDH, does 

not appear to affect the transactivation activity of ICP0 as measured by microscopy (Fig. 3) 

and that GAPDH transcripts could be depleted to significant levels in a 96-well plate format 

(Fig. 4). These results indicate that siRNA technology can be used in this cell-based assay in 

a 96-well plate format. We also established that the Typhoon Imager is a quick and valid 

method to examine ICP0’s transactivating activity in a 96-well plate format (Fig. 5), and we 

verified that the assay can be used to screen an siRNA library by identifying an ubiquitin-

proteasome pathway target, UBE1L (Fig. 6). Overall, we have concluded that the reporter 

viruses, d106 and d109, can be utilized in a cell-based assay by using a 96-well plate format 

and Typhoon image scanner.

While this system is adaptable to siRNA or small molecule inhibitor screens, this method 

also has several advantages over other established methods used to examine ICP0’s 

transactivation activity (Davido et al., 2002, Everett, 1987, Jordan and Schaffer, 1997, 

Mostafa et al., 2013). Specifically, ICP0’s transactivation activity can be monitored in the 

context of a viral infection, in the absence of other IE proteins, and at multiple time points in 

one experiment or infection by the assaying of live cells. In contrast, other methods monitor 

this activity in the context of a viral infection but in the presence of other IE proteins 

(Davido et al., 2002), which may complicate the interpretation of certain studies. Transient 

transfection reporter assays have been used to examine ICP0’s transactivation activity 

independent of other IE proteins, but these assays are not done in the setting of a viral 

infection (Everett, 1987, Jordan and Schaffer, 1997, Mostafa et al., 2013). Finally, most 

viral reporter assays and transient transfection assays can only monitor one time point per 

sample because the cells will either have to be lysed or fixed to analyze the sample, in 

contrast to our system. Thus, the d106/d109 reporter assay is advantageous because it can be 
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used to monitor multiple time points for one experiment and monitor ICP0’s transactivation 

activity in the absence of IE proteins while in the context of a viral infection. Furthermore, 

the inclusion of d109 can also be used in counter-screens to verify that targets or inhibitors 

are specific for ICP0.

In summary, we have developed a cell-based assay for ICP0 that can use siRNA technology 

or small molecule inhibitors in a 96-well plate format. This assay can also be modified for 

use in a high throughput screen with the inclusion of viability indicators such as alamarBlue 

(Osaka and Hefty, 2013). Notably, this assay will likely increase our knowledge related to 

the regulation of ICP0’s transactivating activity, which may eventually lead to potential 

treatments against HSV-1 and its recurrent diseases.
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Glossary

Ad adenovirus

CHX cyclohemiximde

DMEM Dulbecco’s modified Eagle’s medium

DMSO dimethylsulfoxide

FBS fetal bovine serum

FFU fluorescent forming units

HCMV human cytomegalovirus

hpi hours post infection

hpt hours post transfection

HSV-1 herpes simplex virus type 1

GAPDH glyceraldehyde 3-phosphate dehydrogenase

GFP green fluorescent protein

IE immediate early

ICP0 infected cell protein 0

ICP27 infected cell protein 27

MIEp major immediate early promoter

MOI multiplicity of infection

PFU plaque forming unit
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SEM standard error of the mean

siRNA small interfering RNA
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Highlights

• HSV-1 ICP0 potently transactivates an HCMV MIEp-GFP reporter construct in 

the HSV-1 mutant, d106.

• Using d106, ICP0 transactivation activity increases over time as determined by 

fluorescence microscopy and scanning.

• This reporter assay can be adapted to a 96-well plate format and is compatible 

with siRNA and inhibitor testing.
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Fig. 1. HSV-1 recombinant viruses, d106 and d109, utilized in our cell-based assay
Of the 5 IE genes, d106 only expresses ICP0 (ICP0+), whereas d109 does not express any 

IE proteins (ICP0-). Both viruses express the GFP gene from the human cytomegalovirus 

major IE promoter (HCMV MIEp). This figure is modified from Samaniego, et. al., 1998.
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Fig. 2. ICP0 transactivates the HCMV MIEp-GFP
HeLa S3 cells were seeded in a 12-well plate, and mock-infected or infected at an MOI of 1 

FFU per cell of d106 or d109 per cell. Cells were examined by fluorescence microscopy at 

2, 6, 18, and 24 h post infection (hpi), and images were captured with a digital camera. Light 

microscopy images are located on the left and fluorescent images are located on the right for 

each virus
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Fig. 3. siRNA depletion of GAPDH does not affect ICP0’s transactivation activity
HeLa S3 cells were untransfected, mock transfected or transfected with an siRNA directed 

against GAPDH. Mock transfected cells were included in these experiments to determine if 

the transfection reagent alone modulates ICP0’s transactivating activity. All samples were 

compared to the untransfected control. Forty-eight hpt, HeLa S3 cells were infected with an 

MOI of 1 with d106 or d109 for 24 h and viewed by fluorescence microscopy. Light 

microscopy images are located on the left and fluorescent images are located on the right per 

virus. Images were captured with a digital camera.
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Fig. 4. GAPDH transcript levels are depleted in a 96-well plate
HeLa S3 cells were untransfected, mock transfected, or transfected with a siRNA targeting 

GAPDH in triplicate wells in a 96-well plate. Twenty-four hpt, well were washed as 

described in materials and methods. Forty-eight hpt, RNA was isolated from each well, 

reverse transcribed into cDNAs, and analyzed by Real Time PCR. Comparisons were made 

using the ΔΔ2CT method. GAPDH transcript levels were compared between mock- and 

GAPDH-transfected cells relative to the untransfected control, which was set at 100%. Error 

bars represent SEMs. This experiment was repeated in triplicate 3 times.
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Fig. 5. An siRNA against GAPDH has a minimal effect on ICP0’s transactivation activity in a 96-
well plate format
HeLa S3 cells were untransfected, mock transfected, or transfected with an siRNA against 

GAPDH. At 48 hpt, HeLa S3 cells were mock infected or infected with d106 or d109 at an 

MOI of 1. (A) The 96-well plate was scanned using a Typhoon Imager at 12 hpi, 18 hpi, and 

24 hpi. This experiment was repeated in triplicate 2 times. (B) Comparisons of d106 and 

d109 samples – untransfected d106 samples were set at 100% for all time points, and mock 

transfected and siRNA-transfected samples were compared to it. Error bars represent SEMs.
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Fig. 6. An siRNA agajnst UBE1L impairs the transactivation activity of ICP0
HeLa S3 cells were seeded in a 96-well plate. Cells were reverse transfected as described in 

the protocol. Wells that contained siRNA against the ubiquitin ligase pathway were infected 

with d106 at an MOI of 1, 48 hpt. Cells were untransfected or transfected with GAPDH 

siRNA for controls. 48 hpt, control wells were infected d106 or d109 or mock infected. The 

96-well plate was scanned using a Typhoon Imager at 24 hpi. Comparisons were made 

relative to d106-untransfected infection, which was set at 100% (far left bar for each graph). 

UBEL1 is ubiquitin activating enzyme E1-like. Error bars represent SEMs. This experiment 

was repeated 3 times.
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