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Abstract

Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for 

AD has been largely associated with the loss of ovarian sex hormones during menopause. This 

review examines current understanding of the role of estrogen receptor β (ERβ) in the regulation 

of neurological health and its implication in the development and intervention of AD. Since its 

discovery in 1996, research conducted over the last 15-20 years has documented a great deal of 

evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from 

development to aging. ERβ genetic polymorphisms have been associated with cognitive 

impairment and increased risk for AD predominantly in women. The role of ERβ in the 

intervention of AD has been demonstrated by the alteration of AD pathology in response to 

treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and 

tangle histopathological presentations as well as learning and memory deficits. Future studies that 

explore the potential interactions between ERβ signaling and the genetic isoforms of human 

apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically 

needed. The current trend of lost-in-translation in AD drug development that has primarily been 

based on early-onset familial AD (FAD) models underscores the urgent need for novel models that 

recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD 

representing more than 95% of the current human AD population. Combining the use of FAD-

related models that generally have excellent face validity with SAD-related models that hold more 

reliable construct validity would together increase the predictive validity of preclinical findings for 

successful translation into humans.
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1. Introduction

As the leading cause of dementia and rated as the most feared human disease by the 

American public, Alzheimer's disease (AD) currently affects 35 million people worldwide, 

including 5.4 million Americans (Thies and Bleiler, 2013). These numbers are predicted to 

triple by 2050, with one new case of AD expected to develop every 33 seconds, or nearly a 

million new cases per year (Thies and Bleiler, 2013). As the number of people affected by 

AD increases so will costs of health care. In the US alone, it was estimated that $214 billion 

were spent on AD care in 2014, and the cost is projected to rise to 1.2 trillion in 2050 (Thies 

and Bleiler, 2013). There is no cure currently available, and no success has been found from 

over 100 human trials aimed at AD treatment that were conducted over the last decade 

(McBride, September 14, 2012; Schnabel, July 8, 2013). These unprecedented challenges 

stress the significance and imperativeness for the development of new strategies targeted for 

AD prevention and early intervention (Mullard, 2012; Rice, January 25, 2014). It has been 

estimated that a treatment that delays the onset of AD by just 5 years could reduce the 

number of people with the disease by nearly 50% in 50 years (Thies and Bleiler, 2013).

2. Sex differences in AD

AD disproportionally affects women and men (Carter et al., 2012; Regitz-Zagrosek and 

Seeland, 2012). Of the current AD cases, nearly two-thirds are women (Brookmeyer et al., 

2011). After age 65, the lifetime risk of AD is 1 in 6 for women (16.7%), whereas 1 in 11 

for men (9.1%) (Thies and Bleiler, 2013). In addition, sex is found to influence the 

development, progression and clinical manifestation of AD. For instance, depression is 

associated with a 2-fold increased risk for AD in women but not in men; whereas, stroke is 

associated with a 3-fold increased risk for AD in men but not in women; (Artero et al., 

2008). Moreover, AD pathology appears more likely to be clinically expressed as dementia 

in women than in men (Barnes et al., 2005). AD women tend to exhibit a broader spectrum 

of dementia-related behavioral symptoms, and experience greater cognitive deterioration 

than men in the progression of the disease (Chapman et al., 2011; Hall et al., 2012; Irvine et 

al., 2012a; Schmidt et al., 2008). A recent meta-analysis of neurocognitive data from 15 

published studies revealed a consistent male advantage on verbal and visuospatial tasks, and 

tests of both episodic and semantic memory. It was concluded that women with AD showed 

worse mental deterioration than men with the disease, even when at the same stage of the 

condition. In stark contrast, men with AD consistently performed better than women with 

the disease across the five cognitive areas examined. Most remarkably, the verbal skills of 

women with AD were worse when compared to men with the disease, which is a striking 

difference from the profile for the healthy population where females have a distinct 

advantage (Irvine et al., 2012b).

Sex affects AD at the genetic level as well. First, cognitively normal individuals with a 

maternal family history of AD were found to express greater phenotypic changes in AD-

vulnerable brain regions suggesting a higher risk for developing AD as compared to those 

with a paternal history or no family history (Berti et al., 2011; Honea et al., 2011; Mosconi 

et al., 2010). Second, some genetic variants appear to carry a different risk for developing 

AD in women than in men. As an example, the anti-AD ε2 allele of the apolipoprotein E 
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gene (APOE2), has been indicated to confer a greater protection against AD in men than in 

women (Johnson et al., 1998). In contrast, the pro-AD ε4 allele of the APOE gene (APOE4) 

has been associated with a far more pronounced risk for AD in women than in men (Bretsky 

et al., 1999; Mortensen and Hogh, 2001; Payami et al., 1996). A meta-analysis found that 

women with one APOE4 allele had a 4-fold increased risk for AD when compared to 

women homozygous for the APOE3 allele. However, men with one APOE4 allele had little 

to no bump in risk (Farrer et al., 1997). The sex-APOE interaction evidenced in those case-

control studies was further demonstrated in a recent analysis of the large, longitudinal aging 

and dementia dataset collected by the National Alzheimer's Coordinating Center (NACC) 

and from the Alzheimer's Disease Neuroimaging Study (ADNI) involving a total of 5,496 

healthy controls and 2,588 mild cognitive impairment (MCI) patients. The analysis found 

that the risk of clinical conversion associated with APOE4 was significantly greater in 

women than in men, and such an interaction was present in both the conversion from healthy 

aging to MCI and in the conversion from MCI to AD (Altmann et al., 2014; Ungar et al., 

2014). Moreover, consistent with the findings from the case-control study (Johnson et al., 

1998), a significant interaction between APOE2 and sex was also revealed in recent clinical 

studies in which a protective role of APOE2 was detected in male but not female subjects 

(Altmann et al., 2014; Ungar et al., 2014).

Furthermore, increasing evidence indicates that sex alone or in combination with APOE 

genetic status modifies the response effect of AD treatment. A population-based study that 

examined the effects of FDA-approved medications for AD on clinical progression found a 

positive association between use of cholinesterase inhibitors and slower progression only in 

women, particularly in those with an APOE4 allele; in contrast, use of these medications 

was associated with faster progression in males (Mielke et al., 2012). This sex-specific 

benefit of AD treatment has also been clinically indicated in treatment effect of intranasal 

insulin in adults with MCI or AD, and the sex difference was most apparent for APOE4 

negative individuals. Specifically, it was found that APOE4 negative men showed cognitive 

improvement in response to a higher dose of insulin while APOE4 negative women showed 

worsened performance; however, functional abilities were relatively preserved for women 

compared with men (Claxton et al., 2013). As reviewed later, another notable area that 

demonstrates an apparent sex-APOE-treatment interaction is estrogen-containing therapy 

although the results have been inconsistent. In addition to the interaction with sex, a recent 

study indicated that APOE also interacts with age to modify the rate of decline in cognitive 

and brain changes in AD; the presence of an APOE4 allele had a more deleterious effect on 

the young group of AD patients than the old group of AD patients (Chang et al., 2014). 

Taken together, these findings underscore the importance of integrating an individual's age, 

sex and genetic susceptibility and their interaction when examining the clinical efficacy of 

an AD treatment, although it may present a challenge to the efficiency of the study 

(Kennedy et al., 2014).

3. Female susceptibility for AD

It is generally conceived that the female susceptibility for AD is due to their longer life 

expectancy and hence the higher age-associated risk for AD, which, however, is true to a 

minimal extent. Statistics show that the age difference between females and males is not as 
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large as traditionally thought. Currently, the worldwide life expectancy for all people is 64.3 

years, 62.7 years for males and 66 years for females, a difference of approximately three 

years, while the average duration of AD can last 8-12 years from the diagnosis. The age 

difference between sexes appears to be even smaller in rodents; in C57BL/6 mice, female 

mean life span was 789 ± 42 days, and male was 801 ± 39 days (Selman et al., 2009). 

Furthermore, results from a meta-analysis of seven sex-specific studies concluded that 

women were 1.5 times more likely to develop AD than age-matched men (Gao et al., 1998), 

which is consistent with data derived from the Cache County study that showed a clear 

increase in the incidence of AD in the female gender (Zandi et al., 2002b). These findings 

suggest that age does not account, at least not solely, for the sex differences in the 

prevalence of AD; hence there must be other factors that play a greater role in predisposing 

females at a higher level of risk for the development of AD.

Research conducted over the last 20 plus years has documented a great deal of evidence that 

supports the notion that the female vulnerability to AD is largely associated with loss of 

ovarian hormones during menopause (Zhao and Brinton, 2009; Zhao et al., 2005). 

Numerous studies have demonstrated that estrogen regulates a wide range of activities 

throughout the brain including neural development and survival (McEwen, 2002; Simpkins 

et al., 2005). Estrogen-containing therapy (ET) has been associated with a significantly 

reduced risk for the development of AD in women when initiated soon after menopause; 

however, such a benefit disappears and the therapy may even impose an adverse impact if 

started many years later after menopause during which the hypoestrogenic state might have 

caused neuronal damage that cannot be reversed by ET (Brinton, 2005, 2008). In support of 

this “healthy cell bias” of estrogen action, the Cache County Study and the Research Into 

Memory, Brain Function and Estrogen Replacement (REMEMBER) pilot study found that 

women who had received ET at the time of menopause and continued for 10 years had a 3-

fold lower risk of developing AD (MacLennan et al., 2006; Zandi et al., 2002a). However, 

as found in the recent Women's Health Initiative Memory Study (WHIMS) that involved 

high average age of women, when started 10 years after menopause, ET was either to be of 

no benefit (estrogen-alone) or to afford a negative impact (estrogen plus progestin) on global 

cognition (Espeland et al., 2004; Rapp et al., 2003; Shumaker et al., 2004; Shumaker et al., 

2003). Further follow-up analyses found that among the WHIMS study participants, women 

who reported using any form of ET before reaching 65 years had a 50% reduction in risk for 

developing AD or other types of dementia than women who did not use the therapy by that 

age (Neurology, 2007). In contrast, women who began estrogen-alone therapy after the age 

of 65 years had an approximately 50% increased risk of developing dementia; and the risk 

was nearly double among women using the combined estrogen plus progestin therapy 

(Neurology, 2007). Together, these findings indicate that the timing of initiation in relation 

to menopause could be a significant regulator of the health impact of ET in postmenopausal 

women (Manson et al., 2007; Neurology, 2007; Rossouw et al., 2007).

To understand the molecular bases underlying the greater risk associated with the female sex 

for the development of AD, we recently conducted a pilot study designed to elucidate sex 

differences in hippocampal aging as demonstrated by the expression profile of a focused set 

of approximately 180 genes involved in mitochondrial bioenergetics and amyloid 

metabolism in light of their accentuated roles in preclinical development of AD (Brinton, 
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2009; Mosconi et al., 2006; Selfridge et al., 2013; Swerdlow et al., 2013; Yao et al., 2009). 

The results revealed significant disparities in the trajectory of changes with age between 

female and male brains. The female brain appeared to express a more reproductive aging 

related profile, whereas the male brain exhibited an aging profile that more closely followed 

chronological patterns. In the female brain, 44.2% of genes significantly changed during a 

window of time likely representing the reproductive transition from premenopause to 

perimenopause. The changes that occurred during this transition were indicative of 

decreased bioenergetic capacity and increased amyloid dyshomeostasis. In contrast, in the 

male brain, only 5.4% of genes were altered during this time period. Subsequent changes in 

the female brain were relatively small; however, in the male brain, most changes occurred at 

a much older age. Bioinformatics gene network analysis revealed that insulin-like growth 

factor 1 (IGF1) appeared to serve as a central driver leading to the overall reduced energy 

metabolism associated with early aging in the female brain. Together, these findings indicate 

that, first, female brain ages markedly different from male brain. Second, female brain starts 

to exhibit age-related changes much earlier than male brain, and these changes appear to be 

closely related to the reproductive stage. Third, the transition from premenopause to 

perimenopause and the resulting perturbed estrogen signaling may serve as a critical change 

point that potentially switches a female brain from a metabolically active and healthy status 

to a hypometabolic and oxidative state, which could be further exacerbated by other genetic 

and environmental stressors, for example, APOE4 and depression, eventually leading to the 

onset of AD. Therefore, from the therapeutic perspective, in order to prevent or halt the 

biological transformations occurring in a female brain that could result in phenotypes at risk 

for the development of AD pathology, an intervention must be initiated prior to or at the 

onset of perimenopause, which is much earlier than traditionally thought. Lastly, these 

findings offer new perspectives for further in-depth studies aimed at understanding and 

modulating the impact of age-related endocrine changes along with genetic and 

environmental challenges on the adaptation of the brain and its defense against 

neurodegeneration. The insights gained from these mechanistic investigations will 

potentially lead to effective strategies for the prevention, risk reduction, or at least delaying 

the onset of AD, particularly in the high-risk population of older women.

4. ERβ in the brain: from expression to function

Estrogen receptors exist in two major subtypes, ERα and ERβ. ERβ, first discovered in rat 

prostate and ovary in 1996, is encoded by a gene located on chromosome 14 (Kuiper et al., 

1996), which is separate from the ERα gene on chromosome 6 (Green et al., 1986). ERα and 

ERβ are widely distributed in a tissue and cell type-specific pattern in both rodents and 

humans, thus providing an explanation for their distinct regulatory patterns of estrogen 

action. ERα is expressed at high levels in the “classical” estrogen target tissues such as the 

uterus, mammary gland, placenta, liver, bone, and cardiovascular system. ERβ, on the other 

hand, is mainly expressed in “non-classical” target tissues, such as the brain, prostate, ovary, 

lung, muscle, and urinary tract (Weihua et al., 2003).

In the human brain, it was found that, although both ERs were predominantly expressed in 

limbic-related areas, the highest expression of ERα mRNA was restricted to areas such as 

the amygdala and the hypothalamus, whereas ERβ mRNA expression was abundant in areas 
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such as the hippocampal formation, cerebral cortex, and thalamus (Osterlund et al., 2000a; 

Osterlund et al., 2000b). It should be noted, however, that the findings pertaining to 

immunolocalization of ERs in the human brain are variable across laboratories using 

different antibody preparations (Savaskan et al., 2001; Taylor and Al-Azzawi, 2000). In 

addition to their primary nuclear localization, both ERs are expressed in extranuclear sites as 

well. For example, both ERα and ERβ were detected in the cytoplasm and neuronal 

processes of rat hippocampal neurons (Adams et al., 2002; Milner et al., 2001). ERβ was 

also detected in the mitochondria of rat hippocampal neurons (Yang et al., 2004), as well as 

in the synaptosomal and synaptic membrane of mouse hippocampal neurons (Nishio et al., 

2004). Moreover, the cellular expression and subcellular distribution of ERs can be modified 

by sex, age and health status. Studies in both rodent and human brains indicate that the 

expression of ERβ is more subject to a decrease with age; in contrast, the level of ERα is 

relatively immune to the effect of age (Wilson et al., 2002; Yamaguchi and Yuri, 2012). 

Nevertheless, aging has been associated with translocation of ERα from the nucleus to the 

cytoplasm in female but not male brains, and the occurrence of AD neuropathology was 

accompanied by a high level of nuclear ERα in both female and male brains compared to the 

level in control subjects (Hestiantoro and Swaab, 2004; Kalesnykas et al., 2005).

Many studies, including our own, demonstrate that both ERα and ERβ contribute to 

estrogen-induced increased neuronal survival against neurodegenerative insults and the 

underlying mechanisms, including promotion of mitochondrial viability via regulation of 

calcium signaling and antiapoptotic protein-mediated signaling cascades (Nilsen and 

Brinton, 2004; Simpkins and Dykens, 2008; Zhao and Brinton, 2007a; Zhao et al., 2004). 

However, ERβ appears to play a greater role than ERα in mediating some of the estrogen-

exerted neuroprotective actions in the brain. For instance, insulin-degrading enzyme (IDE), 

a major mechanism involved in β-amyloid degradation in the brain that is decreased in both 

APOE4 and AD brain, was upregulated by 17β-estradiol treatment mediated by ERβ and the 

downstream PI3K-AKT pathway, while activation of ERα did not yield a significant result 

(Zhao et al., 2011b). Moreover, ERβ appears to have a broader involvement in mediating the 

effects of estrogen on brain development and neural plasticity. The crucial role of ERβ in 

brain development was first evidenced by the morphological abnormalities, including 

regional neuronal hypocellularity, especially in the cerebral cortex, and neuronal deficits in 

the brains of adult ERβ knockout mice. These abnormalities occurred as early as 2 months of 

age in these mice and progressed with age (Wang et al., 2001). ERβ plays a pivotal role in 

late embryonic development of the brain as well. In addition to the smaller size of the brains 

and their fewer neurons in ERβ knockout mice at embryonic day 18.5, compared to those of 

their wild type littermates, fewer migrating neurons in cortical layers and elevated number 

of apoptotic cells in the ventricular zones of cerebral cortex were observed in ERβ knockout 

mice, indicating that ERβ may promote brain development by enhancing neuronal migration 

and neuronal survival (Wang et al., 2003).

One particular area that demonstrates the role of ERβ in the neural plasticity is its regulation 

of brain-derived neurotrophic factor (BDNF). As a prototypic neurotrophin, BDNF is 

structurally related to nerve growth factor but appears to have a greater expression and wider 

distribution in the CNS, with the greatest concentration found in the hippocampal formation 

(Murer et al., 2001). A large body of evidence indicates that BDNF plays an essential role in 
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promoting neuronal survival and differentiation in developing brain (Binder and Scharfman, 

2004). In mature brain, BDNF regulates synaptogenesis, synapse maturation and plasticity, 

and solidifies memory formation and storage (Lu, 2003; Tapia-Arancibia et al., 2008; Yoshii 

and Constantine-Paton, 2010). In the forebrain, colocalization of ERs, BDNF, and its high 

affinity membrane receptor, tyrosine receptor kinase B (TrkB), as well as the fact that the 

BDNF gene contains an estrogen-sensitive response element suggests potential crosstalk 

between ERs and BDNF-TrkB signaling (Sohrabji et al., 1995; Toran-Allerand et al., 1992). 

Our recent analyses found that both BDNF and TrkB protein levels were significantly 

reduced in the hippocampus of ERβ but not ERα knockout adult mice. Additional studies 

demonstrated that ERβ was necessary for estrogen-mediated upregulation of BDNF in both 

neuronal cells and brain tissues, and activation of ERβ induced a robust increase in BDNF 

protein level in experimentally-induced menopausal mouse brains (Aguirre et al., 2010; 

Aguirre and Baudry, 2009; Zhao et al., 2011a).

The role of ERβ in neural plasticity is paralleled by its modulation of learning and memory. 

In a Morris Water Maze model, Rissman and colleagues reported that ERβ knockout mice, 

following 17β-estradiol treatment, exhibited delayed learning acquisition or failed to learn 

the task, whereas wild type animals displayed significant learning, suggesting that ERβ 

mediates the estrogen-induced enhancement of learning and memory (Rissman et al., 2002). 

Similarly, in a hippocampus-mediated fear-conditioning paradigm, ERβ deficiency was 

associated with profound synaptic deficits and memory impairment compared to wild type 

controls (Day et al., 2005). ERβ activation increased synaptic protein expression, enhanced 

long-term potentiation, and improved performance in hippocampus-dependent memory 

tasks; however, these effects disappeared when ERβ was absent or only ERα was activated 

(Jacome et al., 2010; Liu et al., 2008; Walf et al., 2008). Further studies indicated that ERα 

appeared to be more involved in aggressive and sexual behavior, whereas ERβ appeared to 

be more involved in the regulation of emotional, including anxiety and depression, and 

cognitive behavior (Gustafsson, 2003; Rhodes and Frye, 2006; Walf and Frye, 2007).

In the aged brain, the retention of estrogen-sensitive ERβ actions may offer an important 

route for maintaining steroid homeostasis and altering plasticity, suggesting that ERβ may 

be a major target for estrogen therapy in female aging brain (Waters et al., 2011; Zhao et al., 

2011a). The role of ERβ in the development and intervention of AD has been supported by 

several recent studies. Overexpression of ERβ in a rat AD model reduced Aβ deposition in 

the hippocampus and improved learning and memory of AD rats (Tian et al., 2013). Long et 

al reported that the frontal cortices of female human AD brains exhibited significantly 

reduced ERβ, particularly in neuronal mitochondria, which was accompanied with reduced 

mitochondrial cytochrome C oxidase activity and increased protein carbonylation, 

suggesting that ERβ deficiency may play an important role in AD pathogenesis in females 

by contributing to mitochondrial dysfunction (Long et al., 2012). Moreover, our recent study 

demonstrated that early intervention with an ERβ agonist prolonged the survival, improved 

the spatial recognition memory, and slowed progression of amyloid pathology in a female 

AD mouse model (Zhao et al., 2013). Additional evidence that supports the potential of an 

ERβ-targeted therapy for AD include a recent report which showed that treatment with an 

ERβ agonist decreased cognitive deficits and β-amyloid levels in a mouse model of AD 

(George et al., 2013). Together, these results provide the proof-of-concept support that ERβ 
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could serve as a viable therapeutic target for delaying the aging process of the brain, 

reducing the risk for the development and delaying the progression of early pathology of AD 

particularly in females, although it could also benefit male brains (George et al., 2013).

5. ERβ polymorphisms in AD

Since the first study published in 2001, there have been a total of 13 reports that examined 

the association between ERβ polymorphism and AD risk over the last 15 years (Table 1). 

Though conflicting evidence exists, the majority of the studies indicate that genetic variation 

in ERβ increases the risk of AD and this association may be age and sex-dependent with a 

greater impact in females. For instance, a 4-year prospective cohort study carried out in 249 

women with Down syndrome who were non-demented at baseline, showed a 2-fold increase 

in the risk for AD in women carrying 1 or 2 copies of the minor allele at 3 single nucleotide 

polymorphisms (SNPs) in introns 6 (rs4365213 and rs12435857) and 7 (rs17766755), and 

one SNP in intron 8 (rs4986938) of ERβ. Furthermore, this study showed that the 

association of these four SNPs with an increased risk for the development of AD was 

observed solely in postmenopausal women (Zhao et al., 2011c). Additionally, a separate 

case-control study involving 246 Jewish women aged above 80 years old demonstrated that 

women who were carriers of the minor allele of the ERβ variant, rs4986938, had a 1.7 fold 

increased risk for developing vascular dementia. This association was specific to the ERβ 

variant and no association with ERα genotypes or haplotypes was found (Dresner-Pollak et 

al., 2009). Likewise, a study conducted in 387 subjects with clinically diagnosed probable 

AD and 467 cognitively normal individuals derived from eastern Finland found that female, 

but not male, subjects carrying two copies of the ERβ variants, rs1271573 or rs1256043, 

exhibited a nearly 2-fold increase in the risk of developing AD; a risk which remained 

significant after adjustment for the APOE genotype and age (Pirskanen et al., 2005). 

However, contrary to data from previously discussed studies (Dresner-Pollak et al., 2009; 

Zhao et al., 2011c), the data from this study showed no independent association of the ERβ 

variant, rs4986938, with the risk of developing AD in either men or women (Pirskanen et 

al., 2005). The gender differences were further demonstrated in a large cohort study, the 

Health, Aging and Body Composition (Health ABC) study that involved 1184 male and 

1343 female elders living in the US. The study found that one ERβ SNP, rs1256030, was 

associated with cognitive impairment in both genders, however, two other SNPs exhibited a 

gender-specific impact, with an increased risk associated with rs1256065 in women and 

rs1255998 in men (Yaffe et al., 2009). Moreover, a study conducted in Swedish population 

that focused on a CA repeat in intron 5 of the ERβ gene found that the allele 5 was 

associated with a decreased risk of developing AD in men but not in women (Forsell et al., 

2001).

In addition to gender, the impact of ERβ polymorphism on risk of AD appears to be related 

to ethnicity as well. A recent study conducted in a multiethnic female cohort involving a 

total of 1,686 women enrolled in the Washington Heights Inwood Columbia Aging Project 

(WHICAP), reported that increased risk for AD was associated with four ERβ SNPs 

(rs944045, rs1256062, rs10144225, and rs2274705) in women of predominantly Caucasian 

AIMS-defined ancestry. Additionally, when vascular risk factors are taken into 

consideration, a separate SNP (rs1256059) was associated with increased risk for AD in 
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women of admixed/Hispanic ancestry. Interestingly, the data reveal a single SNP 

(rs10137185) that was associated with decreased risk for AD in women who identified 

themselves as Black. The authors speculate that these findings suggest that the varied effects 

of risk alleles could be due to different linkage disequilibrium patterns or differences in 

comorbid risk factors mediating SNP effects on risk for AD by group (Janicki et al., 2014). 

Moreover, a study carried out in 126 AD subjects of German and Austrian descent and 111 

healthy controls indicated that the susceptibility for AD was encoded by the ERβ SNPs 

rs4986938 and rs1255953 but not rs1255998 despite strong linkage disequilibrium 

(Luckhaus et al., 2006).

The association between ERβ polymorphism and AD predisposition is further supported by 

the findings from the multicenter longitudinal Three City (3C) study carried out in a 

population of 3799 non-demented elderly French women. The data from this study indicate 

that ERα polymorphisms were not significantly associated with the risk of decline on any of 

the cognitive tasks. However, significant associations with the ERβ polymorphism, 

rs1256049, were identified including an increased risk of substantial decline in visual 

memory, psychomotor speed, and on the incidence of MCI (Ryan et al., 2013). Further 

analysis indicated that, in support of the initial finding of a significant interaction between 

ERα and ERβ polymorphisms and the risk for AD (Lambert et al., 2001), the association 

between ERβ polymorphism and AD appeared to be modified by ERα polymorphism (Ryan 

et al., 2014). Interestingly, the same study showed a slight association between the minor 

allele of the ERβ SNP, rs4986938, and a decreased risk of decline in psychomotor speed 

(Ryan et al., 2013).

The aforementioned studies indicate an association between ERβ SNPs and increased 

susceptibility to developing AD, however, these studies have been contradicted by others. A 

cohort study performed in 79 amnestic mild cognitive impairment (MCIa) patients and 144 

healthy controls examined the association between the ERβ SNP rs4986938 and the 

development of MCIa as well as the interaction between rs4986938 and APOE4 in the 

progression of AD. The investigators reported that the presence of the APOE4 allele, and 

not the alleles of the ERβ SNP, is a risk factor for the conversion of MCIa to AD 

(Elcoroaristizabal Martin et al., 2011). Later, the same investigators conducted a case-

control study that examined the association between rs4986938 and the risk of MCIa or AD 

and no association was found (Fernandez-Martinez et al., 2013). Consistent with these two 

reports, a recent French case-control study that examined 5 different ERβ SNPs (rs4986938, 

rs867443, rs10144225, rs7154455 and rs1952586) in a population of 1007 AD cases and 

647 controls failed to detect a significant association between any ERβ SNPs with AD risk 

(Goumidi et al., 2011).

In summary, 8 out of the total of 13 reports have shown that genetic polymorphism in ERβ is 

a component of AD susceptibility; however, 5 reports did not find such an association 

(Table 1). One major factor that may have contributed to the disparities among studies could 

be the composition of the study population. One common feature shared in 4 of the 5 reports 

that failed to find an association is that those studies were all based on a mixed population of 

both genders (Elcoroaristizabal Martin et al., 2011; Fernandez-Martinez et al., 2013; Ryan et 

al., 2014). In contrast, of the 8 studies that showed a positive result, 7 studies were either 
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conducted only in women (Dresner-Pollak et al., 2009; Janicki et al., 2014; Luckhaus et al., 

2006; Ryan et al., 2013; Zhao et al., 2011c) or stratified by gender (Pirskanen et al., 2005; 

Yaffe et al., 2009), and all showed a significant association between ERβ polymorphisms 

and AD susceptibility in women. Taken together, despite the differences among studies, it is 

clearly indicated that ERβ polymorphisms increase the risk for cognitive impairment and/or 

AD in women, providing further support of a role for ERβ signaling in the maintenance of 

neurological health and the modulation of AD predisposition predominantly in the female 

population. With respect to a possible role of ERβ in male brain, three studies reported 

mixed results showing that certain genetic variations of ERβ increased (Yaffe et al., 2009) or 

decreased (Forsell et al., 2001) or had no effect (Pirskanen et al., 2005) on the likelihood for 

developing cognitive impairment or susceptibility for AD in men. Therefore, further 

investigations are needed in order to reach a clear conclusion.

6. ERβ and human APOE isoforms

APOE mediates the redistribution of lipids among cells and is expressed at highest levels in 

brain and liver. Human APOE gene exists in three major isoforms coded by three distinct 

alleles, ε2, ε3, and ε4. APOE2 is relatively rare, with only 5% incidence, and it is recognized 

as a protective variant against AD (Kim et al., 2009; Liu et al., 2013). APOE3 is the most 

common isoform present in 75% of the population, and it is considered to be risk-neutral in 

AD. APOE4 occurs in only 20% of the population, however, it accounts for approximately 

65% of AD cases (Kim et al., 2009; Liu et al., 2013). As the greatest genetic risk factor for 

AD, APOE4 increases the risk of preclinical cognitive decline, lowers the age of onset of 

AD, and decreases the response to AD treatments (Corder et al., 1993; Poirier et al., 1993; 

Ward et al., 2012; Yaffe et al., 1997).

As reviewed earlier, increasing evidence indicates that the link between APOE4 and AD is 

far more prominent in women, suggesting that female sex hormones play a role in 

modulating the effect of APOE4 in the development of AD. This concept is supported by 

several lines of research findings. APOE expression is modified by the genetic variants of 

APOE; APOE4 is associated with a lower level of APOE in the brain compared to both 

APOE2 and APOE3 brains. APOE expression is regulated by a genomic mechanism 

involving ER as a result of the presence of an estrogen response element (ERE) on the 

promoter of the APOE gene (Lambert et al., 2004). 17β-estradiol increases the expression of 

APOE in brain regions responsible for learning and memory, including hippocampus and 

cortex (Levin-Allerhand et al., 2001). APOE expression in the brain is also affected by the 

estrous cycle in a brain region specific manner, and regional variability in APOE protein 

level appears to vary as a function of the ER subtype (Struble et al., 2003). Differential 

regulation of APOE protein expression by ERα and ERβ is further demonstrated in both 

cultured neurons and brain tissues (Wang et al., 2006; Zhao et al., 2011a).

Interaction between female sex hormones and APOE genotype has also been demonstrated 

by studies that investigated APOE modulation of the effects of estrogen in the brain under 

both normal and pathological conditions (Struble et al., 2008; Yaffe et al., 2000). 17β-

estradiol increased the extent of neurite outgrowth in cultured adult mouse cortical neurons 

that expressed the human APOE2 or APOE3 genes, but had no effect on neurons from non-
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expressing mice or in those supplied with exogenous APOE4 protein (Nathan et al., 2004). 

Similarly, in a familial AD mouse model expressing human APOE gene isoforms, treatment 

with 17β-estradiol decreased amyloid deposition in the brains of APOE2 and APOE3-

bearing mice, whereas amyloid deposition was increased in the brains of APOE4-bearing 

mice (Kunzler et al., 2014). Consistent with the findings in animal models, a study 

conducted in 2,716 elderly women found that ET use was associated with less cognitive 

decline in APOE4-negative but not APOE4-positive individuals (Yaffe et al., 2000). 

Similarly, in a cross-sectional study, women who were non-APOE4 carriers exhibited the 

highest level of learning and memory performance after ET, while women who were 

APOE4 carriers performed no better after ET than did APOE4 carriers who did not receive 

ET (Burkhardt et al., 2004). ET appears to interact with APOE genetic variants in AD brain 

as well. As demonstrated by a 12-month randomized and placebo-controlled AD study, 

women patients without APOE4 exhibited better mood and cognition with ET treatment 

(Valen-Sendstad et al., 2010). In addition to the nullification of the benefits of ET, the 

APOE4 status could also transform ET into a toxin, as found in the Nurses' Health Study in 

which ET was associated with a worse rate of cognitive decline among APOE4 carriers 

(Kang and Grodstein, 2012).

Together, these findings indicate that estrogen may have a dual effect in the brain modulated 

by APOE genotype, and it tends to exert a positive outcome when APOE4 is absent while an 

opposite outcome could happen when APOE4 is present. This conclusion, however, is 

contradicted by studies that found that estrogen use was associated with a beneficial effect in 

APOE4 carriers (Jacobs et al., 2013; Ryan et al., 2009; Yue et al., 2007). Current HT was 

associated with a decreased risk of dementia associated with APOE4 (Ryan et al., 2009), and 

no effect was found when APOE4 is absent (Jacobs et al., 2013). In line with these findings, 

a study conducted in a Chinese population found that long-term, low-dose ET was beneficial 

in women APOE4 carriers, and no significant difference was found between HT treatment 

and control groups among women APOE3 carriers (Yue et al., 2007). The discrepancy could 

be caused by potential confounding factors, which warrants further investigations that can 

lead to a clear understanding of this very important phenomenon.

Interestingly, despite the increasing number of studies that demonstrated an interaction 

between estrogen and APOE isoforms, there have been nearly no studies that examined the 

involvement of the ER subtype. Our recent analyses demonstrated, for the first time, that 

activation of ERβ differentially regulated insulin/IGF1 signaling pathways in mouse brains 

expressing human APOE2, APOE3 or APOE4. Activation of ERβ increased the metabolic 

activity in both APOE3 and APOE4 brains, whereas the impact was substantially lower in 

APOE2 brain. These data provide preliminary support for the role of the potential 

interaction of ERβ signaling with APOE genotype in modulation of susceptibility to AD. 

ERβ signaling deficiency resulted from age, menopause, or genetic polymorphisms 

contribute to the increased risk of AD in elderly women, and the extent of the risk could be 

modified by the APOE genetic status. Future studies of the interactive effects, at the 

molecular level, of APOE genotype with sex, female sex hormones, and ERβ signaling, is 

critically needed. These investigations will very likely lead to sex and APOE genotype-

specific targets for AD prevention and risk reduction particularly in high-risk population of 

female APOE4 carriers.
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7. ERβ-targeted therapeutics for AD and beyond

One of the major problems inherent in the traditional ET formulations is that they act non-

selectively as agonists in all tissues that contain ERs, which leads to both desirable and 

unwanted outcomes (Zhao and Brinton, 2006b, 2007b). On one hand, ET has been 

established as the most effective therapy to treat menopausal symptoms such as hot flashes. 

Moreover, ET has been well demonstrated for its important role in maintaining bone health, 

for example, prevention of hip fracture as found in WHI studies. On the other hand, this 

non-selective agonistic nature increases the risk of breast and endometrial cancer and 

thromboembolism. In the search for a non-feminizing and safe estrogen alternative therapy 

for long-term use to sustain neurological health, two venues of approach have been pursued: 

one is the development of and assessment of tissue-selective ER modulators and the other is 

the development and evaluation of ERβ-selective agonists, as exemplified by our own work 

(Zhao and Brinton, 2005, 2006a, 2009; Zhao et al., 2007; Zhao et al., 2009; Zhao et al., 

2013; Zhao et al., 2011a; Zhao et al., 2005; Zhao et al., 2006).

Therapeutically, an ERβ-targeted approach presents several major advantages. First, 

selective activation of ERβ reduces potential antagonistic interactions between the two ERs. 

ERα and ERβ have been shown to work in a complex manner, both complementary and 

sometimes antagonistic, in a number of biological systems. Our earlier study showed that 

activation of both ERα and ERβ by different agonists led to decreased neural responses 

indicating an antagonistic interaction (Zhao and Brinton, 2007a; Zhao et al., 2004). Second, 

selectively targeting ERβ minimizes undesirable events mediated by ERα in reproductive 

tissues. In comparison with their impact with a large degree of overlaps in the brain, ERα 

and ERβ play a more differential role in reproductive systems. ERα has been shown to serve 

as the primary mediator of sexual development and modulation, and promote cell 

proliferation in response to estrogens; whereas ERβ has a much smaller impact on these 

processes and has been shown to be anti-proliferative in breast and uterine tissues. These 

differential regulatory patterns present an optimal opportunity for an ERβ-selective agonist 

to reap the health benefits associated with ERβ without activating untoward effects mediated 

by ERα (Zhao and Brinton, 2006a). Moreover, the lack of uterotrophic activity associated 

with an ERβ agonist eliminates the need to combine with a progestogen in the treatment, 

which has been proven as a compounding factor for the effectiveness of ET, for example, 

the presence of a progestogen and a different treatment schedule could exert an inhibitory 

effect against estrogen-mediated neural responses (Aguirre et al., 2010; Nilsen et al., 2005; 

Zhao et al., 2012). Together, these therapeutic advantages make ERβ a promising and safe 

target for the development of therapeutic agents that could benefit various indications in 

which ERβ plays a role.

The therapeutic potential of an ERβ-based intervention for AD has been directly 

demonstrated in both female and male AD mouse models as reported in two recent articles. 

One came from a recent study from our group, in which we demonstrated that in a female 

triple transgenic AD (3×Tg-AD) mouse model, when initiated prior to the appearance of AD 

pathology, a 9-month dietary supplementation with an ERβ-selective phytoestrogenic 

(phyto-β-SERM) formulation promoted physical health, prolonged survival, improved 

spatial recognition memory, and attenuated Aβ deposition and plaque formation in the brains 

Zhao et al. Page 12

Ageing Res Rev. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of AD mice (Zhao et al., 2013). This formulation is currently being assessed in phase I/IIa 

human trials designed to evaluate the dosage, safety, pharmacokinetics, and proof-of-

concept efficacy for mitigation of memory complaints in menopausal women. The other 

report demonstrated the efficacy of an ERβ agonist in male AD animals. It was found that 

chronic co-administration of a selective androgen receptor (AR) modulator (SARM) and a 

selective ERβ agonist in gonadectomized male 3×Tg-AD mice improved long-term memory, 

reduced anxiety-like behavior, increased the expression of Aβ-degrading enzymes, and 

reduced soluble Aβ levels (George et al., 2013). In addition, the combination treatment 

increased the level of AR in the hippocampus of male AD mice likely via ERβ since 

treatment with the SARM alone did not yield a significant effect (George et al., 2013). 

These compelling data warrant further investigations of the therapeutic potential of an ERβ-

based approach for AD stratified by disease status, sex/gender, ApoE genotype, and ERβ 

polymorphisms, to address the important questions including: 1) Would there be a “critical 

window of opportunity” for an ERβ-targeted therapy to exert a neuroprotective effect? In 

other words, would an ERβ-targeted therapy be potentially effective in preventing or 

delaying the onset of AD, slowing the progression of early-stage AD, or would it also 

provide some benefits in treatment of mid-to-late stage AD? 2) Would an ERβ-targeted 

therapy be potentially effective in female brain only, or would it also exert some benefits in 

male brain as suggested by the study discussed above (George et al., 2013)? 3) Would the 

therapeutic effects of an ERβ-targeted therapy be potentially modulated by ApoE genetic 

status? 4) Would there be a potential interaction between an ERβ-targeted therapy and ERβ 

risk alleles? Ultimately, in order to increase the possibility of translational success, 

preclinical findings need to be further validated in non-familial AD (FAD) models that are 

more in line with the pathophysiological conditions of the majority of human AD cases, i.e., 

the late-onset sporadic AD (SAD), the most common form of AD representing over 95% of 

current human AD population.

To date, several dozen AD models that mimic the genetic cause of AD have been developed, 

including the widely used models such as PDAPP (hAPPV717F) (Games et al., 1995), 

Tg2576 (hAPPK670N,M671L) (Hsiao et al., 1996), J9 (hAPPK670N,M671L,V717F) (Hsia et al., 

1999), 5×FAD (hAPPK670N,M671L,I716V,V717I + hPS1M146L,L286V) (Oakley et al., 2006), 

3×Tg-AD (hAPPK670N,M671L + hPS1M146V + hTauP301L) (Oddo et al., 2003), and the 

recently developed human neural stem cell derived three-dimensional culture system 

((hAPPK670N,M671L,V717I, PS1-dE9) (Choi et al., 2014). A common feature of these models 

is that they all carry some mutant form of human genes related to FAD that lead to 

overproduction of neurotoxic Aβ peptides and amyloid plaques as well as neurofibrillary 

tangles in some models. These models have proven valuable in understanding the 

mechanisms underlying certain aspects of AD pathology and preclinical evaluation of the 

therapeutic effects of AD candidate drugs, for instance, the effects on amyloid pathology 

and cognitive function. Overall, since these FAD-related models accurately simulate the 

histopathological hallmarks of AD, they generally hold excellent face validity; however, 

they have shown poor predictive validity that could be closely associated with their 

unreliable construct validity. First, since human SAD is not caused by genetic mutations 

related to amyloid or tau production, it is very likely that the findings derived from FAD-

related animal models are not replicated in human SAD patients. Second, aging is the 
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greatest risk factor for human SAD, however, in FAD-related animal models, 

overexpression of human mutant genes accelerate the onset of AD-like pathology, with 

amyloid plaques appearing even when the animals are 2-months old (Lee and Han, 2013), 

which compromises the role of the age factor in the pathogenesis and intervention of AD. It 

has been proposed that the current trend of deficits in AD translational research could in part 

be attributed to the discord between preclinical studies that were mostly conducted in FAD-

related animal models and clinical studies that were carried out in patients mostly with late-

onset SAD (Franco and Cedazo-Minguez, 2014; Laurijssens et al., 2013). Therefore, there is 

an urgent need for novel models that more adequately reflect the underlying etiology of 

human SAD, which would increase the construct and thus predictive validity of the models. 

Such models will be crucial for successfully translating preclinical findings to humans in the 

future.

In addition to neurodegenerative diseases like AD, the diverse influence of ERβ in the 

human body has made it a potential target for a multitude of other conditions as well, 

including menopausal symptoms, cardiovascular disease, multiple sclerosis, depression, and 

endocrine-related cancers (Nilsson et al., 2011; Zhao and Brinton, 2006a). MF101 is an oral, 

botanically derived extract that selectively regulates ERβ, and is demonstrated by both 

preclinical and clinical data for its therapeutic promise for treating postmenopausal 

vasomotor symptoms without increasing cancer risks (Grady et al., 2009; Leitman and 

Christians, 2012). Our own research has provided further support for the therapeutic 

potential of an ERβ-based therapy for the improvement of both physical and neurological 

health during menopause (Zhao et al., 2009; Zhao et al., 2011a). Another major application 

associated with ERβ is its potential utility as a target for the development of cancer therapy 

(Fox et al., 2008; Hartman et al., 2012). In breast tissue, ERα promotes cell proliferation in 

response to estrogens, whereas ERβ exerts anti-proliferative effects (Hartman et al., 2009). 

The presence of ERβ is associated with favorable outcomes in women with breast cancer 

treated with adjuvant tamoxifen (Younes and Honma, 2011). In males, as the predominant 

ER in the prostate gland, ERβ regulates prostate growth by down-regulating AR expression 

(Prins and Korach, 2008). Selective activation of ERβ induced apoptosis in epithelium and 

stroma of benign prostatic hyperplasia, as well as androgen-independent tumor cells 

implicated in recurrent prostatic cancer (McPherson et al., 2010). Therefore, it is reasonable 

to speculate that imbalanced or loss of ERβ expression could play a pivotal role in tumor 

development and progression (Bardin et al., 2004; Gallo et al., 2012). In support of this 

hypothesis, overexpression of ERβ has been shown to act as a tumor suppressor by 

modulating the transcription of genes involved in cell growth control, cell cycle progression 

and apoptosis, and is associated with longer patient survival (Pinton et al., 2009; Pinton et 

al., 2010). Again, given these positive findings, the therapeutic potential of ERβ-selective 

agonists for treating these conditions needs to be further explored in appropriate animal 

models before moving into human studies.

8. Concluding remarks

Since its discovery in 1996, ERβ has been widely demonstrated for its role in the regulation 

of a broad spectrum of brain activities from development to aging. ERβ polymorphisms have 

been associated with accelerated brain aging and increased risk for the development of AD 
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predominantly in women. Future studies to examine the interactive impact of ERβ signaling 

deficits and genetic or environmental stressors on the adaptation and defense of the brain 

against neurodegeneration are critically needed. The current trend of lost-in-translation in 

AD drug development underscores the urgent need for novel models that recapitulate the 

etiology of human late-onset SAD, the most common form of AD representing over 95% of 

all current human AD cases. Combining the use of FAD-related models that generally have 

excellent face validity and SAD-related models that hold more reliable construct validity 

would together increase the predictive validity of preclinical findings for successful 

translation into humans.
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Highlights

• AD differentially affects women and men.

• Sex interacts with APOE genetic isoforms to modulate the risk for AD.

• ERβ is involved in a broad spectrum of brain activities from development to 

aging.

• ERβ polymorphisms are associated with increased risk for cognitive impairment 

and AD in women.

• ERβ-based approach holds therapeutic promise for AD prevention, risk 

reduction, and early intervention.

• Human late-onset sporadic AD models are critically needed for successful 

translation of preclinical findings into humans.
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