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ABSTRACT 

Thin film coating flow is of importance in many fields, as well as for the design of 

polymeric drug delivery vehicles, such as anti-HIV topical microbicides. This dissertation 

describes a few models to investigate the coating flow of a microbicidal gel.  

At the beginning of this dissertation, we studied the gravity-driven thin film flow model. In 

our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only 

impacted the spreading speed of the microbicide gel, but also had an influence on the shape of 

the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. We 

focused on the capillary ridge in 2D flow and performed a series of simulations and showed how 

the capillary ridge height varies with other parameters. As shown in our results, we found that 

capillary ridge height increased with higher surface tension, steeper inclination angle, larger 

initial thickness, and more Newtonian fluids.  

In the second study, a model of fingering instability at a moving contact line was developed.  

Previous literature showed that the emergence of a capillary ridge is strongly related to the 

contact line fingering instability in Newtonian fluids. Fingering instabilities during epithelial 

coating may change the microbicide gel distribution and therefore impact how well it can protect 

the epithelium. Results from our 2D model indicated more shear-thinning fluids should have 

suppressed finger growth and longer finger wavelength, and this should be evident in linear 

stability analysis (LSA) and 3D (i.e. 2D spreading) numerical simulations. In our 3D model 
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studies, we developed a LSA model for the gravity-driven flow of shear-thinning films, and 

carried out a parametric study to investigate the impact of shear-thinning on the growth rate of 

the emerging fingering pattern. A fully 3D model was also developed to compare and verify the 

LSA results using single perturbations, and to explore the result of multiple-mode, randomly 

imposed perturbations. Both the LSA and 3D numerical results confirmed that the contact line 

fingers grow faster for Newtonian fluids than the shear-thinning fluids on both vertical and 

inclined planes. In addition, both the LSA and 3D model indicated that the Newtonian fluids 

form fingers with shorter wavelengths than the shear-thinning fluids when the plane is inclined; 

no difference in the most unstable (i.e. emerging) wavelength was observed at vertical. For the 

first time for shear-thinning fluids, these results connect trends in capillary ridge and contact line 

finger formation in 2D models, LSA, and 3D simulations.   

At the end of this dissertation, we used a more complicated constitutive model – the 

Phan-Thien-Tanner (PTT) rheological model -- to describe the viscoelastic behavior on two 

different models for the vehicle delivery process: the gravity-driven spreading model, and 

epithelial squeezing flow model. We used ANSYS POLYFLOW software package to solve the 

resulting PDEs. Elastic viscous split stress (EVSS) approach was used to split the stress tensor of 

the gel into a Newtonian solvent and an elastic polymeric contribution. Several parametric 

studies were carried out to investigate the combined effect of shear-thinning and elastic behavior 

on both flows. In the gravity-driven model, the spreading speed of the microbicide gel down an 

incline obtained from the current PTT model was slower than the one we found in the previous 
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power-law model. This is consistent with our previous numerical and experimental studies, 

which indicates the elastic effect of the microbicide gel is important and a more accurate 

constitutive model is needed than power-law model in simulating the microbicide spreading. In 

the epithelial squeezing flow model, we used the FSI (fluid-structure interaction) approach to 

study the spreading of the microbicide gel on the epithelial surface under the squeezing force of 

the vaginal tissue. The results showed that lower tissue elasticity and lower Deborah number of 

the microbicide gel can cause more epithelial deformation. Then microbicide gel flows faster 

with higher tissue elasticity during the insertion process. 

The results of this dissertation can provide us insights on how to optimize non-Newtonian 

fluid properties for better performance during the drug delivery process.  
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NOMENCLATURE 

(Note: The variables with no units indicate that they are dimensionless quantities. In Chapter 3, 

all the parameters are kept dimensionless, since the whole chapter is a non-dimensional study. ) 

p Pressure, dyn/cm
2
 

h 



Height or thickness of the thin film fluid, cm 

Surface tension coefficient, dyn/cm 

k Curvature of a surface area 



s 

p 

𝝉𝒑⏞
𝜵

 

𝝉𝒑⏞
∆

 

Stress tensor for fluids, dyn/cm
2
 

Newtonian solvent contribution of the stress tensor, dyn/cm
2
 

Polymeric contribution of the stress tensor, dyn/cm
2
 

Lower convected time derivatives of p, dyn/cm
2

 

Upper convected time derivatives of p, dyn/cm
2

 

m Consistency of power-law fluid, Ps
n-1

 

n 

D 

𝛾̇ 

𝑣̃ 

u 

Power-law index or shear-thinning index 

Shear rate tensor, s
-1

 

Characteristic shear rate 

Velocity vector, cm/s 

Velocity in the x direction, cm/s 

https://en.wikipedia.org/wiki/Dyne
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H 

U 
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Total viscosity, Poise or P 

Newtonian contribution viscosity, P  

Polymeric contribution viscosity, P 

Viscosity ratio, ηs / η 
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PTT parameter 

Inclination angle, rad 

Density, g/cm
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Standard gravity, 98.0665 cm/s
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Thickness of the precursor, cm 
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Dimensionless parameter representing the magnitude of the normal 

component of gravity force  

Capillary number 

Growth rate of the perturbation 
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Strain tensor 
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1. INTRODUCTION 

1.1. Background 

HIV and microbicides 

The human immunodeficiency virus (HIV) / acquired immunodeficiency syndrome (AIDS) 

pandemic is the world's greatest public health crisis. According to the UNAIDS Global Update 

[1], with about 2.1 million people newly infected in 2015, there are now an estimated 36.7 

million people around the world who are living with HIV in 2015. 

Although the overall growth of the global HIV/AIDS pandemic appears to have stabilized in 

the past decade, levels of new infections overall are still high [1]. Especially for women, 

HIV/AIDS is still the leading cause of death and disease among women between the ages of 15 

and 44 [2].  

 Many studies have shown that microbicides can be a promising solution for the prevention 

of HIV transmission during sexual intercourse [3-5]. Microbicides usually consist of an anti-HIV 

active agent in some delivery vehicle, such as a gel, cream or foam. They are delivered to vaginal 

and/or rectal epithelia to protect them from HIV and other sexually transmitted infections (STI) 

[6]. Microbicides may provide a physical barrier [7], amplify the normal vaginal defense, destroy 

the pathogens chemically, or inhibit viral infection [8]. Microbicides are a preventive 

intervention to provide a low-cost, controlled by women method for protection against HIV. A 

microbicide will protect women who do not have access to condoms or the ability to negotiate 
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condom protection for socioeconomic reasons. Condoms are not used consistently and correctly, 

and unprotected sex remains widespread [4]. AIDS vaccines may ultimately solve the HIV 

pandemic. However, AIDS vaccines are proving to be a technical challenge and may not be 

achieved in the immediate future. There is, therefore, an urgent need for a microbicide to prevent 

new HIV infections [3-5].   

Microbicide delivery 

 

Figure 1-1. Illustration of a microbicide gel applied to the vaginal epithelium and covering the tissue due to tissue 

elasticity.  

There are a few options for applying microbicide gels to the vaginal epithelium. The method 

shown in Figure 1-1 (a) (b) is to use an applicator. After application and removal of the 

applicator, the microbicide gel will be squeezed by the deformed epithelial surface and spread 

further to the anterior and poster fornixes, as shown in Figure 1-1 (c). To prevent HIV, we need 

the microbicide to coat the entire vaginal epithelium. Recent study has shown that the current 

gap in microbicide development is the delivery vehicle design [9]. It is challenging to design a 

drug delivery vehicle to coat the epithelial surface completely without leaving any ‘dry’ spots, 
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and remain on the surface while under external forces, such as gravity and squeezing.  

 

Engineering approach 

This dissertation is one of the components of a larger research project on examining how to 

optimize microbicides. The long-term goal of the overall project is to design delivery vehicles 

(e.g., polymer solutions or “gels”) with optimized physicochemical properties and desired 

microbicidal activity. To achieve this goal, our research group is working on the following 

subprojects: (1) determining the relationship between the vehicle physicochemical properties and 

the vehicle spreading performance/function, (2) measuring squeezing forces and the elastic 

modulus of human vaginal tissue in vivo, (3) quantifying relationships between molecular 

structure and physicochemical properties of delivery vehicles and (4) ultimately obtaining the 

molecular structure-property-function relationship for optimal design of the microbicides.  

This dissertation is a part of element (1). It is to determine the relationship between the 

physicochemical properties, e.g., rheological properties, and the vehicle spreading performance, 

e.g., contact line patterns, and the vehicle-epithelium interaction.  

As a step towards this goal, in this dissertation, we develop mathematical tools to describe 

the vehicle performance in response to several forces when microbicide gels are delivered to the 

vagina. These forces can include gravity, squeezing, shearing and surface tension. We separate 

them into two different models, the gravity-driven flow model and the squeezing flow model, to 

isolate the impacts of gravity and squeezing force and to simplify the problem. Shear stress is 
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incorporated into both flow models. Surface tension is only examined in the gravity-driven flow 

model. 

 

Gravity-driven thin film flow 

There are many industrial applications in which gravity-driven thin film flow is of interest. 

Among these are paints [10], contact lens manufacture [11] and microchip fabrication [12]. 

Gravity-driven thin film flow also occurs throughout nature, including a variety of gravity 

currents, such as lava flow and glacier flow [13, 14]. For the application of drug delivery 

vehicles, gravity can also influence the gel flow greatly along the epithelial surface due to the 

orientation of the vaginal axis and/or changes in posture.  

There are a few approaches when solving the thin film spreading problem. The lubrication 

approximation is the most commonly used approach [15, 16]. It can simplify the Navier-Stokes 

equations by assuming the thickness of the fluid is very small compared to the length of the flow 

domain. Most of our computational studies for gravity-driven flow are within the scope of 

lubrication theory. In the previous work of our research group on gravity-driven spreading, we 

developed experimental and numerical models (2D and 3D) of a finite bolus flowing down an 

incline [4, 17, 18]. 

 

Surface tension effect 

There is a tension effect in the liquid surface because of uneven molecular force of attraction 
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at or near the surface. Since discontinuous changes of fluid properties can cause rapid changes in 

molecular forces, surface tension is an inherent property between material interfaces [19].  

If no force acts normal to a tensioned surface, the surface must remain flat. But if the 

pressure on one side of the surface differs from pressure on the other side, that pressure 

difference multiplied by the surface area results in a normal force. In order for the surface tension 

forces to cancel the force due to pressure, the surface must be curved. When all the forces are 

balanced (see Figure 1-2), the resulting equation is known as the Young–Laplace equation [20]:  

 

1 1
( )

x y

p
R R

                                                               (1) 

where: 

p is the pressure difference.  

  is surface tension coefficient (dyn/cm). 

xR  and 
yR  are radii of curvature in each of the axes that are parallel to the surface.  

 

Figure 1-2. Surface tension forces acting on a tiny patch of surface. 

There is a small curvature approximation used for thin film flow [21]: 

http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
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2

2

2

h
k h

x


  


                                                           (2)         

Using the lubrication approach, we can incorporate the surface tension effect as a boundary 

condition for the pressure term of the thin film equation, as done in many studies (e.g., Refs.[16, 

22-24]). 

 

Squeezing flow 

Squeezing forces generated by vaginal tissue also have a great impact on the epithelial flow. 

One of our group’s previous studies examined the thin film flow of power-law fluids under the 

influence of tissue elasticity after the insertion of the gel , as shown in Figure 1.1 (b) and (c). In 

that study, the initial shape of the gel was assumed to be a parabola, and tissue elasticity was 

incorporated in the pressure term of the momentum equation. Chapter 4 of this dissertation will 

focus on the interaction between the elasticity of the tissue and the flow of the gel during the 

insertion process, as shown in Figure 1-1 (a) and (b). The objective is to investigate the 

interaction between tissue and gel, and to understand how important both the tissue elasticity and 

the elastic effect of the gel are on the tissue deformation and the velocity profile of the flow. 

Moreover, this study is a good supplement for our previous elastic boundary spreading study [25]. 

The results of this study can be a more practical initial condition for the later spreading process.  

In order to correctly model tissue deformation, we need to couple the previously developed 

flow model with a deformable soft tissue model. Fluid-structure interaction (FSI) models are a 
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common approach for these types of flows. To our knowledge, there are no existing FSI studies 

for vaginal epithelial coating flows. However, there are many FSI studies for blood flow, for 

example Refs. [26-28]. Those studies are focused on the effect of the flow on wall stress for 

certain tissues in the cardiovascular system, e.g., arteries and heart valves. Due to the 

complication of the problem and difficulties in solving for the moving interface, most of those 

studies used commercial CFD package, Fluent, and assumed that the fluid was Newtonian. In 

this study, we will use POLYFLOW and its built-in FSI model.  

 

Non-Newtonian rheology  

Microbicides are polymeric liquids or gels that exhibit non-Newtonian behavior. In 

mathematical models, to connect these vehicle properties to performance, we use non-Newtonian 

fluid mechanics to describe gel flow. 

Several constitutive models are considered in this dissertation. First we start with the 

power-law constitutive model [29]: 

𝜏𝑖𝑗 =  𝑚|𝐼𝐼2𝐷|
𝑛−1
2 (2𝐷𝑖𝑗)                                                                                                                        (3) 

where 𝜏̃̃ is the stress tensor, m is the consistency of the power-law fluid, n is the power-law 

index or shear-thinning index, 2𝐷̃̃ = (∇𝑣̃)𝑇 + ∇𝑣̃ is the shear rate tensor, 𝑣̃ is the velocity 

vector, and 𝐼𝐼2𝐷 = (1/2) [(𝑡𝑟2𝐷̃̃)
2

− 𝑡𝑟 (2𝐷̃̃)
2

] is the second invariant of the shear rate tensor. 

A 2D (i.e., 1D spreading in the axial direction) version can be simplified to 

1n

zx m u z u z


                                                            (4) 



- 8 - 

where u is velocity in the axial direction. 

The power-law model is a simple non-Newtonian constitutive model and can describe the 

shear-thinning behavior of microbicide gels. However, it is not very accurate at low shear-rates 

[30].  

I use the power-law model as the constitutive model for the majority of this dissertation. 

From our research group, Kheyfets also studied the Ellis model to address the limitations of the 

power-law model in the low shear-rate region [31]. The Ellis constitutive equation is: 

1

𝜂
=
1

𝜂0
(1 + [

𝜏

𝜏1/2
]

1
𝑛
−1

)                                                                                                                         (5) 

where η0 is the zero shear rate viscosity, and 𝜏1/2 is the stress at which the apparent viscosity 

has dropped to half of its zero-shear viscosity value.  

 In addition to shear-thinning, microbicide gels also exhibit viscoelastic behavior. Various 

viscoelastic constitutive models have been published. Favero et al. tested several commonly used 

constitutive models and their performance for contraction flow [32]. Among those models, 

Phan-Thien-Tanner (PTT) is considered one of the most realistic models [33].  

The constitutive equation for the PTT model [29] is 

𝝉 = 𝝉𝒔 + 𝝉𝒑                                                                                                                                                  (𝟔) 

The elastic viscous split stress (EVSS) approach is used to split the stress tensor of the gel, τ, into 

a Newtonian solvent contribution, τs , and an elastic polymeric contribution, τp.  

The constitutive equation is a combination of the two contributions: 
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𝝉𝒔 = 2𝜂𝑠𝑫 

𝑒𝑥𝑝 [
𝜖𝜆

 𝜂𝑝
(𝜏𝑝)] 𝜏𝑝 + 𝜆 [(1 −

 𝜉 

2
) 𝜏𝑝⏞
𝛻

+
 𝜉 

2
𝜏𝑝⏞
∆

] = 2𝜂𝑝𝑫                                                                        (𝟕) 

where λ is the relaxation time, 𝝉𝒑⏞
𝜵

 and 𝝉𝒑⏞
∆

 are the lower and upper convected time derivatives of 

τp,  and  are the PTT parameters, D is the rate of deformation tensor, and ηs and ηp are the 

Newtonian solvent viscosity and polymeric viscosity. The viscosity ratio ηr can be defined as ηs / 

η, where total viscosity, η is ηs + ηp. 

1.2. Motivation 

In my master thesis, I carried out numerical simulations to study the effect of surface tension 

on the gravity-driven thin film flow of Newtonian and power-law fluids down an incline. The 

major finding in that study was that a capillary ridge at the front of the fluid bolus is caused by 

the incorporation of surface tension into the 2D power-law model [34]. Previous literature shows 

that the emergence of a capillary ridge is strongly related to the contact line fingering instability 

for Newtonian fluids, e.g., Ref. [16]. Fingering instabilities during epithelial coating may change 

the microbicide gel distribution and therefore impact how well it can protect the epithelium. 

After the completion of my master study, I was still interested in the follow-up problems, such as 

the relationship between capillary ridge and the fingering instability, and the effect of 

non-Newtonian rheology on fingering instability. These interesting topics motivated the start of 

my PhD study.  

1.3. Guide to this dissertation 
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In this section, I want to outline the structure of this dissertation and explain some 

connections and logic among these relatively independent chapters. 

As the first step of my PhD work, I expanded the initial study from my master thesis with 

additional validations and more systematic analysis [35]. This extensional work was also 

considered the first objective of my PhD study:  

Chapter 2: The effect of surface tension on the gravity-driven 2D thin film flow of 

Newtonian and power-law fluids.  

In this Chapter, I developed a 2D power-law model with incorporation of surface tension for 

gravity-driven thin film flows and examined how important surface tension is in such flows.  

This work is an expansion of my master thesis, and the differences are summarized here. To 

assess of the numerical code, several validations including a convergence test, a mass 

conservation check, a similarity solution, a traveling wave solution, and a non-dimensional study, 

were added to compare with the existing results for Newtonian fluids in the literature. A more 

organized parametric study was carried out to investigate the influence of various parameters on 

the capillary ridge, caused by the surface tension effect.  

The results of this study (in Chapter 2) leads to some follow-up questions:  

(1) What’s the connection between the capillary ridge and contact line instability? We 

modeled 2D flow in Chapter 2, but how should we model 3D flow and fingering 

instabilities?  This is addressed in the study described in Chapter 3. 

(2) The power-law model can only describe the shear-thinning behavior of the gel. But like 
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other polymeric liquid solutions, microbicide formulations exhibit both viscous and 

elastic behavior. Is there a better constitutive model to describe the combined 

shear-thinning and viscoelastic behavior? And can it be incorporated into the flow 

models? This is addressed in Chapter 4. 

(3) Gravity-driven flow down an incline is assumed to simplify the mathematical modeling 

in the above-mentioned problems. But unlike the solid wall of an inclined surface, 

elasticity of the tissue may have a big influence on the epithelial spreading. Is it possible 

to develop a model to describe the interaction between the gel flow and the tissue 

deformation? This iss addressed in Chapter 4. 

 

 

Chapter 3: Contact line instability of gravity-driven flow of power-law fluids.  

Chapter 3 presents a contact line model using linear stability analysis to study the 

relationship between the capillary ridge and fingering instabilities, and how the shear-thinning 

effect influences the fingering instabilities. This chapter also expanded the current 2D model into 

3D to simulate the fingering instabilities; and parametric studies were performed to investigate 

how contact line instability is affected by various fluid properties.  

 

Chapter 4: Numerical analysis of gravity-driven spreading and epithelial squeezing flow of 

microbicide drug delivery using PTT constitutive model. 
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The objective of Chapter 4 was to incorporate a better constitutive model into our 

gravity-driven thin film flow and epithelial squeezing flow models, in order to study the impact 

of the viscoelastic behavior of the fluids on both flows. 
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2. THE EFFECT OF SURFACE TENSION ON THE GRAVITY-DRIVEN 

2D THIN FILM FLOW OF NEWTONIAN AND POWER-LAW FLUIDS  

The study described in this chapter has been published as Ref. [35]:   

Hu, B. and S.L. Kieweg, The effect of surface tension on the gravity-driven thin film flow of 

Newtonian and power-law fluids. Computers & Fluids, 2012. 64: p. 83-90. 

2.1. Introduction 

As mentioned in the introductory chapter, the optimal design of microbicides during 

epithelial spreading is the reason we want to study gravity-driven thin film flow. But this study is 

not limited in the application of drug delivery vehicles. There are many industrial applications in 

which gravity-driven thin film flow is of interest. Among these are paints [10], contact lens 

manufacture [11] and microchip fabrication [12]. Gravity-driven thin film flows also occur 

throughout nature, including a variety of gravity currents, such as lava flow and glacier flow [13, 

14]. All of these flows can be modeled using very similar methods. However, since the study of 

these flows focuses on tracing the change of the free surface, a question must be raised here: is 

surface tension important? This chapter is intended to develop a mathematical tool for 

understanding how important a role the surface tension plays in such flows. 

In the previous work of our research group on gravity-driven spreading, we developed 

experimental and numerical models (2D and 3D) of a finite bolus of non-Newtonian fluid 
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(power-law or Herschel-Bulkley) flowing down an incline [4, 17, 18]. The study in this chapter 

considers the effect of surface tension of the liquid in the 2D power-law model.  

To simulate surface tension, many studies have used the volume of fluids (VOF) Method 

coupled with the continuum surface force (CSF) method [36-40], which was originally 

developed by Brackbill et al. [19]. Basically, they treat surface tension as a volumetric force 

acting on a fluid near an interface and incorporate the surface tension effect as a source term in 

the Navier-Stokes equations. Therefore, VOF+CSF can be used to solve full Navier-Stokes 

equations for general fluid dynamics problems. However, for the thin film flow problems we are 

studying, we can reduce the Navier-Stokes equations to a single thin film equation using the 

well-known lubrication approximation. Through this approach, we used the Young–Laplace 

equation, which states that surface tension results in a net normal force directed toward the center 

of curvature of the interface. Thus, we can incorporate the surface tension effect as a boundary 

condition for the pressure, as done in many studies (e.g., [16, 22-24]). Although the 

computational scheme and post-analysis can both benefit from the simplified model, the 

limitation for this method is that it is hard to simulate the influence of contact angle. However, 

contact angles vanish when assuming complete wetting, as done in this study.  

Previous literature using linear stability analysis (LSA) has shown that the “capillary ridge” 

occurring in the lengthwise direction was strongly related to the contact line “fingering 

instability” in the transverse direction [15, 16, 24, 41-43]. The term capillary ridge describes the 

bump showing at the front of the spreading fluid, while fingering instability describes how the 

http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
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moving contact line at the front corrugates during flow. Schwartz [44] studied contact line 

instability numerically and for the first time showed that surface tension effects controlled the 

instability. Troian et al. [43] initially developed LSA on thin film flow and illustrated that the 

“bump” was responsible for the linear instability. Bertozzi and Brenner [16] showed that the 

transient growth of contact line instability explained why the critical inclination angle observed 

in LSA did not match experiments. They also verified that when a capillary ridge in the profile 

disappeared, the front contact line was linearly stable. Kondic and his research group [15, 16, 24, 

41, 45, 46] also numerically studied 3D flow to simulate fingering instability in the transverse 

direction. These studies provided insights for our 3D flow study. Recently, Lin and Kondic [47] 

studied the instability of a thin film flowing down an inverted incline. Because hanging flow also 

occurs in microbicide epithelial coating processes, it is also one of our future research interests.  

All of the above mentioned studies were done using a constant flux assumption, which 

means that the thickness of fluid behind and in front of the contact line is constant [15, 24, 41, 42, 

45, 47, 48]. The constant flux assumption is not appropriate in our case, because the epithelial 

spreading flow case is “constant volume,” rather than “constant flux”, and the fluid layer thins over 

time. There are some limitations and complications to apply LSA on constant volume flow. 

Gonzalez et al. [49] developed a predictive model for the constant volume case by applying LSA 

results of the constant flux case. Gomba et al. [50] developed an integral method to study the linear 

stability of constant volume flow.   
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The above-mentioned studies inspired the idea of using the capillary ridge as an indicator for 

fingering instability and motivated this study, because when we add the surface tension effect to 

our 2D numerical simulation of a power-law fluid, in some cases we observe a capillary ridge in 

the 2D profile at the front of the fluid bolus. We also found that most of the studies mentioned 

above have assumed Newtonian fluids [15, 16, 24, 41-47, 49, 50], except Balmforth et al. [48] 

studied the instability of Bingham fluids using LSA and showed the effect of yield stress 

stabilized the contact line. To the authors’ knowledge, the connection between surface tension 

effect and shear-thinning rheological properties for non-Newtonian fluids has not appeared in the 

literature. But the capillary ridge and fingering instability can also be observed in our 

experimental studies for shear-thinning fluids.  

The goal of this study is to incorporate surface tension in the numerical 2D power-law 

model and use it for a parametric analysis. The main research questions are: (1) Under what flow 

parametric conditions does surface tension have an influence on shape or spreading? (2) When 

and under what kind of circumstances does the capillary ridge occur and increase?  

2.2. Methods  
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2.2.1. Evolution equation 

 

Figure 2-1. Coordinate system diagram for 2D model of flow down an incline. 

 

In this section, we develop an evolution equation to apply numerical methods for flow 

calculations. The equation uses the height of the fluid as a function of spatial location and time 

(h(x, t)) to describe the movement of the fluid’s free surface. Figure 2-1 illustrates the coordinate 

system for flow down an incline with inclination angle . Only x and z directions are considered 

in this 2D model. 

We follow the theoretical approach from our previous work [4, 34], and combine 

conservation of momentum and mass, the no-slip boundary condition, thin film lubrication 

approximations [51], and the power-law constitutive equation, 
1n

zx m u z u z


     , where τ 

is shear stress tensor, u is velocity in the axial direction, m is consistency, and n is the 

shear-thinning index. 
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To incorporate the surface tension effect, we use the Young–Laplace equation [19] p k   

to get pressure equilibrium at the free surface, where p  is the pressure difference at the 

fluid-air interface, γ is surface tension coefficient, and k is curvature of the interface. The free 

surface in this study is a 1D curve. The curvature for a 1D curve is '' ' 2 3 2( ) (1 ( ) )k h x h x  , 

which is positive and indicates 0p   in the Young–Laplace equation. Because surface tension 

results in a net normal force directed toward the center of curvature of the interface [19], the 

pressure formulation at the gel-air interface is, 

''

3

' 2 2

( )
.

(1 ( ) )

gel air

h x
p p

h x

 



                                                (1)                                                                                                  

This holds for both the convex curve ( ''( ) 0h x  ) and the concave curve ( ''( ) 0h x  ).  

A small slope is assumed according to the thin film approximation, and Eq. (1) reduces to 

''( ).gel airp p h x                                                           (2)  

 

                           

We used this pressure formulation (Eq. (2)) for the pressure term in the conservation of 

momentum equation, and we derived our governing evolution equation. Refer to [34, 52, 53] for 

more details about the derivation. 

 

1
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http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
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                                                     (3) 

All of the parameters in Eq. (3) were kept in dimensional form for the rest of this study 

because we want this study to provide insight into our future experimental work. Thus, showing 

isolated parameters and the critical values of these parameters in dimensional form is very 

important to this analysis. In Appendix D, which also utilizes Appendices A-C, a 

non-dimensional study of Eq. (3) is carried out and compared to existing Newtonian results in 

the literature.  

2.2.2. Numerical method 

The numerical method used to solve this nonlinear PDE (3) was an implicit finite difference 

scheme. We applied backward difference for the time derivative and central difference for the 

space derivatives. We then used Newton’s method to solve the full set of nonlinear algebraic 

equations resulting from finite difference discretization. Each iteration of Newton’s method then 

involved a large set of linear equations, which was solved by the LU decomposition method. 

These processes were coded using C++. 

The computational domain for the simulations in this study was 10 cm long [0, 10 cm] in the 

x-direction. We used a parabolic initial condition profile to start the flow. The free surface for this 

parabolic initial condition can be described as a function, 

2(1 ( 2) ), 1 3
( )

,

H x x
h x

b other domain

   
   , 
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where H is the initial center height of the parabola, and b is the thickness of the thin film 

preceding the front, called the precursor. We added a precursor because there is a surface tension 

singularity caused by the 4
th

-order derivatives in Eq. (3). Refer to [54] for details. We used 

b=0.01cm for all simulations in this study. Appendix A shows the sensitivity study of the 

precursor thickness b. The tolerances for the LU decomposition method and Newton’s method 

were both set to le-4. The time step, t , was set to 0.001 s, and the spatial mesh interval was 

0.002 cm. 

2.2.3. Model validation 

We validated our new model in the following four ways: 

1) We performed a convergence test. The free surface height h(x, t) converges for both space 

and time mesh refinement. 

2) We monitored the total volume of the gel as a function of time, and the results showed it 

holds for conservation of mass.  

3) The results of the new surface tension model for γ=0 agreed with the similarity solution for 

power-law fluids, as well as the results of the previous model for a power-law fluid 

without consideration of surface tension [4]. Comparison between the numerical model 

results and the similarity solution is discussed in Appendix B.  
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4) By assuming a simplified constant flux flow, we compared the result from our numerical 

model to the traveling wave solution. We found that they agreed well with each other.  

Please refer to Appendix C for details. 

2.3. Results and discussion  

In Sec. 2.3.1, we highlight the surface tension effect and appearance of the capillary ridge. In 

Sec. 2.3.2, first, we isolated the effect of surface tension on capillary ridge height and the 

spreading speed for both Newtonian and shear-thinning fluids. We also selected a surface tension 

coefficient value for the other parametric studies. Then, we explored how the other terms in the 

evolution equation (Eq. (3)) interact with each other and impact the capillary ridge height. The 

relevant parameters in the evolution equation (Eq. (3)) are: 

m: consistency of the gel, 

n: shear-thinning index of the gel, 

α : inclination angle, 

H: initial thickness, and 

γ : surface tension coefficient. 

2.3.1. Capillary ridge 

As mentioned in introduction, surface tension dominates at the front of the flow and 

therefore causes the capillary ridge. We also witnessed this phenomenon in our simulations when 

we added the surface tension effect. 
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The following simulations use a Newtonian fluid with initial thickness H=0.3 cm, 

consistency m=100 Ps
n-1

, shear-thinning index n =1, inclination angle  α=60
o
 and surface 

tension coefficient γ =70 dyn/cm, as an example. A variety of parametric studies for 

non-Newtonian fluids are covered in the parametric study section.  

Figure 2-2 shows the free surface plot from the new surface tension model during a 110 s 

period with 10 s time sampling. A very similar side profile is also obtained in Gomba et al.’s 

constant volume study for Newtonian fluids [50]. We compare our new surface tension model 

with our previous model [4] in Figure 2-3.  

 

Figure 2-2. Evolution of free surface, total time=110 s, sampling=10 s. (Parameters used in the 

simulation: m= 100 Ps
n-1

, n=1, α=60
o
, γ=70 dyn/cm, H=0.3 cm, b=0.01 cm) 

 

 

 

Figure 2-3. Comparison of free surfaces between the model without surface tension effect (black 
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solid) and the surface tension model (red dashed)  at t=20 s. (Parameters used in the simulation: 

m= 100 Ps
n-1

, n=1, α=60
o
, γ=70 dyn/cm, H=0.3 cm, b=0.01 cm) 

 

We can see that the capillary ridge occurs in the new model after incorporating the surface 

tension effect. In Figure 2-3, the red dashed plot shows a capillary ridge at the front of the flow. 

Moreover, the surface tension effect influences the spreading speed by holding the fluid and 

making it flow slower.   

 

2.3.2. Parametric study 

In this section, a series of simulations were carried out to investigate how the parameters 

influence the capillary ridge size. Here, we first focused on our main subject – surface tension. 

Then, we examined how the other terms in the evolution equation interact with each other and 

influence the capillary ridge. 

We defined the capillary ridge height function as 
max max 0|crh h h    , where hmax is the 

maximum height of the free surface for a given case, and 
max 0|h  

 is the maximum height of the 

free surface under the assumption that all other parameters in the simulation are the same, and 

only surface tension effect is not incorporated. Note that this calculation of hcr is only an 

approximation of the capillary ridge height due to the flow behavior difference between the 

non-zero surface tension case and zero surface tension case. An alternate definition can be 
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defined using a true capillary ridge height, but we did not select that method because it requires 

an arbitrary selection of the beginning of the ridge.  

 Due to different values of parameters, the spreading shape and speed of the simulations were 

very different. So for a better comparison, we didn’t choose a certain instance in time to compare 

the differences among these cases. Instead, we calculated the capillary ridge height for each case 

when the flowing front reached the same position: x=4 cm. 

 Because surface tension is the actual cause of the capillary ridge, first, we varied the surface 

tension coefficient γ to examine the sensitivity. A large range of values [0, 0.01, 0.1, 1, 10, 100 

dyn/cm] for the surface tension coefficient γ were investigated.  Surface tension coefficient is 

generally much bigger than 0.01 dyn/cm and 0.1 dyn/cm for the polymer solutions we studied, 

typically in the range of 40 to 80 dyn/cm. However, as a theoretical study, we wanted to see how 

surface tension affects capillary ridge height over a large range. 

Figure 2-4 shows the results of changing capillary ridge height (black solid and dotted lines, 

left axis) and spreading time (red dashed and dash-dot lines, right axis) with different surface 

tension coefficients γ for both Newtonian (n=1) and shear-thinning fluids (n=0.5). 
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Figure 2-4. Plot of the capillary ridge height hcr (black solid and dotted lines, left axis) and 

spreading time (red dashed and dash-dot lines, right axis) as a function of surface tension 

coefficient γ  for both Newtonian (n=1, solid and dashed lines) and shear-thinning fluids (n=0.5, 

dotted and dash-dot lines). (Parameters used in the simulation: m=100 Ps
n-1

, α=60
o
, H=0.3 cm, 

b=0.01 cm) 

 

 For both Newtonian and shear-thinning fluids, the capillary ridge height increased with 

increasing surface tension coefficient. The impact of surface tension on capillary ridge height 

had a sharper increase in the range of [0.1, 10] dyn/cm than in other regions. The figure also 

showed that the capillary ridge height of a shear-thinning fluid is less sensitive to changes in 

surface tension than for Newtonian fluids. Moreover, it took longer time for a larger surface 

tension fluid to reach to x=4 cm, which means the surface tension can restrain the spreading. In 

addition, surface tension slowed the shear-thinning fluids more than the Newtonian fluids. In the 

range of [0, 0.1] dyn/cm, the surface tension was not very important for both the spreading shape 
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and time. 

We can conclude that an increase in surface tension coefficient will increase the capillary 

ridge height. So for the rest of this study, we also want to know how capillary ridge height 

depends on the other parameters: gel consistency m, shear-thinning index n, initial thickness H, 

and incline angle α, for a constant surface tension coefficient γ. We used γ =70 dyn/cm for the 

rest of the simulations, referring to the surface tension coefficient measured for a 

hydroxyethylcellulose (Sigma-Aldrich, viscosity average molecular weight, Mv=250,000) 

polymer solution. 

Over many cases of parametric study, we found that gel consistency m affected the capillary 

ridge very slightly. Therefore, we considered gel consistency as constant for the following 

simulations as well. We chose m=400 Ps
n-1

, approximately mid-range of consistency for typical 

gels used in our lab’s experiments (range of [91.95, 506.58] Ps
n-1

). 

In order to better monitor how the capillary ridge height changes with respect to the other 

three parameters n, H, and α, we set up coupled parametric studies. The approach is to take one 

of these parameters as a constant and vary the other two parameters as one series of studies. In 

total, there are three series varying the following parameter sets:   

1). n and H  

2). α and H  

3). n and α  

The range for the shear-thinning index n was set to [0.5, 1] at 0.1 increments, which brackets 
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the range of n values for typical gels used in our experiments. The range for initial thickness H 

was [0.2, 0.45] cm at 0.05 increments, because 0.5 cm is the biggest thickness to which is still 

within the lubrication approximation scope. We also varied the inclination angle α from 10
o
 to 

90
o
 at 10

o
 increments (5

o
 increments from 10

o
 to 30

o
).  

In total, there are 360 cases involved in this parametric study. For efficiency, these 

simulations were run on the Bioinformatics cluster at the KU Information and 

Telecommunication Technology Center (ITTC).  

2.3.2.1. Effect of shear-thinning index (n) and initial thickness (H) 

 

Plots of capillary ridge height for the n and H coupled parametric study are shown in Figure 

2-5. We can see that the height of the capillary ridge increased for both increased shear-thinning 

index n and initial thickness H.  

 

 

Figure 2-5. Plot of the capillary ridge height hcr (cm) as a function of n for different values of 
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initial thickness H, with constant m= 400 Ps
n-1

, α=60
o
, γ=70 dyn/cm. 

 

First, we compare between Newtonian fluids (n=1) and non-Newtonian shear-thinning fluids 

(n<1). If we look at the H=0.3 cm line in Figure 2-5 and take the two ends n=0.5 and n=1 as 

examples, we can see the difference of the capillary ridge height between the two cases, as 

shown in the free surface profiles in Figure 2-6. Obviously, a bigger capillary ridge occurred for 

the Newtonian fluid (red dashed) than for the non-Newtonian fluid (black solid) with the same 

other parameters.  The capillary ridge height is 0.0422 cm for the n=0.5 case, and 0.0530 cm for 

the n=1 case. 

  

 

Figure 2-6. Comparison of free surfaces between shear-thinning index n=0.5 (black solid) and 

n=1 (red dashed) when gel reaches x=4 cm, with constant m= 400 Ps
n-1

, α=60
o
, γ=70 dyn/cm and 

H=0.3 cm. 

 

Likewise, we can compare between a thicker film and a thinner film – for example, H=0.2 

cm and H=0.45 cm cases at the n=0.7 in Figure 2-5. Figure 2-7 shows the difference of the 

capillary ridge profile between the two cases.  We found that the thicker film (red dashed) had a 
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much bigger ridge than the thinner film (black solid). The capillary ridge height is 0.0311cm for 

the H=0.2 cm case, and 0.0652 cm for the H=0.45 cm case. 

 

 

Figure 2-7. (Color online) Comparison of free surfaces between initial thickness H=0.2 cm 

(black solid) and H=0.45 cm (red dashed) when gel reaches x=4 cm, with constant m= 400 Ps
n-1

, 

n=0.7, α=60
o
 and γ=70 dyn/cm. 

 In summary, increasing shear-thinning behavior reduces the capillary ridge height. Also, a 

thinner initial thickness will reduce the capillary ridge height as well. In addition, for thicker 

films, a change in shear-thinning behavior has more impact than for thinner films. 

 

2.3.2.2. Effect of inclination angle (α) and initial thickness (H) 

As shown in Figure 2-8, the capillary ridge height is an increasing function for both increasing 

𝛼 and H. Inclination angle α plays a more important role than H, and the inclination angle’s 

impact on the capillary ridge height increased at higher initial thickness. In addition, in the range of 

[40
o
, 90

o
], H starts to have more influence than it does in the range of [10

o
, 30

o
]. Moreover, in the 

range of [5
o
, 15

o
], the capillary ridge height is very small. An alternate definition of hcr using the 
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actual ridge height, as well as a side profile plot, indicated insignificant capillary ridge in the 

range of [5
o
, 15

o
].  Some previously published studies for Newtonian fluids [16] showed there 

existed a critical angle where the capillary ridge just started to appear. This implies that we can 

control the inclination angle in experiments to prevent the appearance of a capillary ridge. In 

summary, both α and H can be controlled to impact capillary ridge height. 

 

Figure 2-8. Plot of the capillary ridge height hcr (cm) as a function of α for different values of 

initial thickness H, with constant m= 400 Ps
n-1

, n=0.7 and γ=70 dyn/cm. Note: a finer mesh 

between 10
o
 and 40

o
 for α was applied to handle the rapid change. 

2.3.2.3. Effect of shear-thinning index (n) and inclination angle (α) 

Similarly, Figure 2-9 shows the capillary ridge height is an increasing function for both 

increasing n and α. In other words, as the fluid becomes more Newtonian or is on a steeper incline, 

the capillary ridge gets bigger. Inclination angle α has more influence on the capillary ridge 

height than n. At greater inclination angles, shear-thinning behavior has a slightly greater impact 

than at smaller inclination angles. In summary, both changes in inclination angle and 
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shear-thinning index can be used to control the capillary ridge height of a film, but the inclination 

angle has much greater influence. 

 

 

Figure 2-9. Plot of the capillary ridge height hcr (cm) as a function of α for different values of n, 

with constant m=400 Ps
n-1

, H=0.3 cm and γ=70 dyn/cm. Note: a finer mesh between 10
o
 and 40

o
 

for α was applied to handle the rapid change. 

 

 

2.4. Conclusions 

In summary, according to our numerical model of spreading of power-law fluids on an 

incline, surface tension effect influences both the spreading shape and speed of the fluid. The 

dramatic difference between this surface tension model and the previous model is the capillary 

ridge at the front of the gel. We found in our parametric analysis that capillary ridge height is an 

increasing function of surface tension coefficient γ, inclination angle α (when α > critical angle), 

initial thickness H, and shear-thinning index n. We also found that gel consistency m affects the 
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capillary ridge very slightly. Furthermore, a fluid flows slower if the surface tension coefficient γ 

increases. 

 In addition, our parameter analysis provided some useful conclusions about the relative 

impact of the parameters on capillary ridge height. The capillary ridge height of a shear-thinning 

fluid is less sensitive to changes in surface tension than for Newtonian fluids. In thicker films, a 

change in shear-thinning behavior has more impact than it does for thinner films. Inclination 

angle plays a more important role than initial thickness, and the angle’s impact is greater for 

thicker films. Initial thickness has a greater influence at steeper angles than flatter angles. There 

exists a critical angle where the capillary ridge just started to appear. Inclination angle also has a 

greater impact than shear-thinning behavior. But at steeper angles, shear-thinning behavior has a 

little more influence than at flatter angles. 

All of these conclusions directly inform the experimental design for our planned 

experimental analysis of these flows, (refer to Appendix E for details). These conclusions are 

also very important because we can use them to optimize a polymer solution’s properties for 

optimal flow and surface coverage. The literature suggests that the emergence of a capillary ridge 

may indicate fingering instabilities at the spreading front [16]. In our specific application in 

microbicide coating of epithelial surfaces, fingering instabilities during epithelial coating may 

change the microbicide gel distribution and impact how well it can protect the epithelium. 

Therefore, our study indicates we can control the inclination angle or optimize the shear-thinning 

index n to prevent the appearance of the fingering instabilities. For example, inclination angle 
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results could be translated to package instructions for posture during microbicide gel application 

by the user. Additionally, gel structure or components could be altered to yield rheological 

parameters for optimal spreading with no fingering. The utility of this study’s conclusions is not 

limited to drug delivery applications. The results are applicable to other fields where 

gravity-driven thin film flows of shear-thinning fluids are present.  
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3. CONTACT LINE INSTABILITY OF GRAVITY-DRIVEN FLOW OF 

POWER-LAW FLUIDS 

The study described in this chapter has been published as Ref. [55]: 

Hu, B. and S.L. Kieweg, Contact line instability of gravity-driven flow of power-law fluids. 

Journal of Non-Newtonian Fluid Mechanics, 2015. 225: p. 62-69. 

3.1. Introduction 

Gravity-driven thin film flow with fingering instability is of interest in many fields, such as 

industry (paints [10], contact lens manufacture [11], and microchip fabrication [12]), nature (lava 

flow [13] and glacier flow [14]), and biomedical applications (microbicidal drug delivery [35, 

56], eye tears and substitutes [57]). In many applications, a uniform coating is desired with no 

dry spots. Thus, it is very important to understand the mechanics of fingering instability at the 

moving contact line of a spreading thin film. 

Numerous experimental and analytical/numerical studies have examined the dynamics of a 

gravity-driven contact line following the famous study of Huppert [58]. Schwartz [44] proved 

that contact line instability is controlled by surface tension effects. Troian et al. [43] carried out 

linear stability analyses (LSA) on thin film flow and derived the formulation under the limit of 

small wavenumber to show that the capillary ridge was responsible for the instability. Bertozzi 

and Brenner [16] verified the LSA numerically and developed the transient model to investigate 

the transient growth of the fingering instability. Lin and Kondic [47] studied the instability of the 
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thin films flowing down an inverted incline. These studies all assumed a constant flux 

configuration, however, in practical applications, a constant-volume configuration is often 

needed. In our previous 2D study [35], we showed how the capillary ridge at the front of the flow 

evolves for a constant volume configuration. Espin and Kumar developed a 2D constant-volume 

model to study the thin film flow of colloidal suspensions, and showed that both particle 

concentration and evaporation have a large impact on a front interface [59, 60].  Gonzalez et al. 

and Gomba et al. developed predictive models and integral method to study the linear stability of 

constant volume flow [49, 50]. All of these studies provide a systematic approach to deal with 

the capillary ridge and contact line instability problem.  

However, most of those previous studies were for Newtonian fluids. The fluids used in the 

above mentioned industrial and biomedical applications usually exhibited non-Newtonian 

behavior, especially shear-thinning behavior. There are few published studies on contact line 

instability of non-Newtonian fluids. Balmforth et al. [48] studied the instability of Bingham 

fluids using LSA and showed that yield stress stabilized the contact line. Spaid and Homsy [61, 

62] used energy analysis for viscoelastic fluids to show that elasticity has a stabilizing effect on 

the capillary ridge. It is still unknown how shear-thinning behavior for non-Newtonian fluids can 

affect contact line instability.  

In chapter 1 [35], we completed a 2D analysis of shear-thinning fluids. Using travelling 

waves and numerical simulations of one-dimensional spreading, we found that increasing the 

shear-thinning behavior of polymer solutions decreased the capillary ridge height.  This leads to 
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the hypothesis for this study: that more shear-thinning fluids should have suppressed finger 

growth and longer finger wavelengths, and that this should be evident in linear stability analysis 

and 3D numerical simulations. In summary, the relationship between the emergence and height 

of a capillary ridge in a 2D shear-thinning model has not previously been related to linear 

stability analysis and the 3D numerical model of contact line instability. To solve this issue, it is 

important to develop a contact line model of power-law fluids and to identify the importance of 

different factors affecting fingering instability. 

To verify the linear stability analysis of a Newtonian fluid, Kondic and Diez [15, 24, 41, 45, 

46] numerically studied the 3D flow needed to simulate fingering instability in the transverse 

direction. Lin et al. [63] studied 3D simulations for fluids on an inverted incline for unevenly 

distributed fluid viscosity. Those studies were also only for Newtonian fluids. Our research group 

has developed a 3D model for power-law fluids [64] and Ellis fluids [31] to study the spreading 

speed of a polymeric solution and compared the results with experiments. However, those 

models did not incorporate surface tension effect, and therefore cannot simulate fingering 

instability.  

The goals of this study are to: (a) develop a contact line model using LSA (section 3.2), and 

study how the shear-thinning effect would influence the finger growth, and (b) expand to 3D 

flow simulations with various perturbations in order to verify the LSA results (Section 3.3).  

 

3.2. Linear stability analysis 
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3.2.1. Methods of linear stability analysis 

 The fluid is described by the power-law constitutive model [29] : 

𝜏𝑖𝑗 =  𝑚|𝐼𝐼2𝐷|
𝑛−1
2 (2𝐷𝑖𝑗) 

where 𝜏̃̃ is the stress tensor, m is the consistency of the power-law fluid, 2𝐷̃̃ = (∇𝑣̃)𝑇 + ∇𝑣̃ is 

the shear rate tensor, 𝑣̃ is the velocity vector, and 𝐼𝐼2𝐷 = (1/2) [(𝑡𝑟2𝐷̃̃)
2

− 𝑡𝑟 (2𝐷̃̃)
2

] is the 

second invariant of the shear rate tensor. 

To describe the movement of the fluid’s free surface flow down an incline, a wetting flow 

assumption and the thin film lubrication approximation are commonly used. A non-dimensional 

partial differential equation (PDE) for the 3D flow (i.e., 2D spreading) of power-law fluids can 

be obtained for the height of the fluid as a function of space and time, ℎ(𝑥, 𝑦, 𝑡).  A similar 

detailed derivation was shown in Perazzo and Gratton [52] and our previous publications on  

power-law models [35, 64]. We used similar approach to non-dimensionalize the 3D evolution 

equation as we did for the 2D one in Chapter 2, refer to detailed derivation in Appendix D. The 

resulting non-dimensional thin film equation for a power-law fluid is: 
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where n is the power-law index and 𝑛 < 1 indicates shear-thinning fluids. The dimensionless 

parameter 𝐷 = 𝑐𝑜𝑡𝛼(𝐶𝑎)
1/3 reflects the magnitude of the normal component of gravity force 

(e.g., 𝐷 = 0 is vertical, 𝐷 = 1 is inclined). The dimensionless parameter 𝐶𝑎 = 𝜇0𝑈/𝛾 is the 

power-law capillary number, 𝛼 is the inclination angle, and 𝛾 is the surface tension coefficient. 

U is a characteristic velocity and 𝜇0 is a characteristic viscosity incorporating the power-law 

terms.  These latter terms follow the dimensionless groups used for Newtonian fluids [15, 16], 

and were further modified for the power-law variation as described in more detail in Appendix 

D. 

To conduct a linear stability analysis (LSA), we first determine a traveling wave solution.  

The method described here for traveling waves and LSA follows the general approach described 

in detail for Newtonian fluids by previous authors, e.g., in [15, 16]. To find a traveling wave 

solution, we assume ℎ(𝑥, 𝑦, 𝑡) is y-independent to reduce Eq. (1) to its 2D form. Then, we 

assume constant flux boundary conditions such that the fluid height is flat far from the moving 

front: 𝑥 → −∞, ℎ → 1  and 𝑥 → ∞, ℎ → 𝑏, where 𝑏 ≪ 1 is the thickness of the precursor. 

This boundary condition leads to a traveling wave solution ℎ0(𝑥, 𝑡) in the x-direction. Using a 

moving reference frame, 𝑥∗ = 𝑥 − 𝑈𝑡 traveling with velocity U, the following ODE for 

ℎ0(𝑥
∗, 𝑡) is obtained (dropping * from here forward)  

−𝑈ℎ0 + {ℎ0

1
𝑛
+2
{[1 − 𝐷(ℎ0)𝑥 + (ℎ0)𝑥𝑥𝑥]

2}
1
2𝑛
−
1
2[1 − 𝐷(ℎ0)𝑥 + (ℎ0)𝑥𝑥𝑥]} = 𝑓                                                            (2)   

where the boundary conditions also result in the following expressions 

𝑈 =
1−𝑏

1
𝑛+2

1−𝑏
,       𝑓 =

−𝑏+𝑏
1
𝑛+2

1−𝑏
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Eq. (2) was numerically solved (see Appendix C) for the traveling wave solution, which may 

form a capillary ridge. The presence and height of the ridge depends on many factors, such as D 

and the power-law index, n [35]. 

Next, we can use this traveling wave solution as the ‘base’ solution in the x direction. When 

we try to expand to the transverse y direction, we can simply assume the solution is in the form 

of a base state ℎ0 with a perturbation ℎ1, ℎ(𝑥, 𝑦, 𝑡) = ℎ0(𝑥) + 𝜖ℎ1(𝑥, 𝑦, 𝑡), where ℎ0 , ℎ1 are 

of 𝑂(1) and 𝜖 ≪ 1, and substitute it into the thin film PDE (Eq (1)). Only terms that are on the 

order of 𝜖 are kept in the resulting equation, and ℎ1 can be expressed as a Fourier transform 

using the superposition principle, ℎ1(𝑥, 𝑦, 𝑡) = ∫ 𝑔(𝑥, 𝑡)𝑒𝑖𝑞𝑦𝑑𝑞
0

−∞
, where q is the wavenumber. 

We apply a Taylor series to expand the power terms in Eq. (1). The Taylor approximation is kept 

in the same order of 𝜖. We also use the traveling wave solution of Eq. (2) to substitute for the 

higher order terms. After simplification, the PDE for 𝑔(𝑥, 𝑡) is 
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(3) 

 

The solution of Eq. (3) provides information about the growth of an imposed perturbation, and 
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how that growth depends on the wavenumber.  The growth rate, 𝜎, of 𝑔(𝑥, 𝑡) is defined from 

the exponential time dependence of 𝑔 = 𝜑(𝑥)𝑒𝜎𝑡 due to the homogeneity of Eq. (3), and that 

growth rate will be a function of the wavenumber. In the following sections, this PDE is solved 

using both analytical and numerical methods.  

3.2.2.1. Small wavenumber analysis 

To obtain an analytical solution of Eq. (3) for g(x,t), we follow the approach in Refs. [15, 43], 

summarized as follows. We first need to assume that the wavenumber q is small, so we can write  

𝑔 = 𝑔0 + 𝑞
2𝑔1                                                  (4)                                                                                                           

 

and the growth rate is thus 

 

𝜎 = 𝑞2𝜎1                                                       (5)                           

 

We substitute Eq. (4) and Eq. (5) into Eq. (3), and the second order, 𝑂(𝑞2), terms give 
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We can integrate Eq. (6) over the domain in x [−∞, 0], and substitute  𝜑0 for ℎ0,𝑥 . After 

applying the traveling wave solution and 𝜑1 → 0 at the boundary, we obtain the growth rate as 

a function of a base solution, h0: 

 

𝜎1 = ∫ ℎ0(ℎ0
1+𝑛 − 1)𝑑𝑥

0

−∞
                               (7)                                                                                     

               

Note, we assume precursor 𝑏 = 0 to further simplify the problem, and directly compare to the 

result for Newtonian fluids in Ref. [15]. 

 

Eq. (7) is used in this small wavenumber analysis to show why the capillary ridge examined 

in our previous 2D study [35] is important. When the base solution has a capillary ridge (i.e., 

ℎ0(𝑥) > 1), Eq. (7) indicates that the growth rate is positive, and thus the contact line is unstable. 

If the growth rate is negative, the perturbation does not grow, and the fingering instability is 

suppressed. This conclusion from Eq. (7) for shear-thinning fluids is consistent with the studies 

for Newtonian fluids [15, 43]. The conclusion of this analytical solution for small wavenumbers 

connects this LSA analysis to our previous 2D model [35], where we investigated how the 

capillary ridge is affected by the shear-thinning effect and D, which in turn impact the base 

solution and thus growth rates. To completely and further examine the impact of these terms on 

the growth rate, we numerically solved Eq. (3) for all wavenumbers as described in the next 

section. 
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3.2.2.2 Numerical approach 

Following the procedure outlined by Kondic [15] for Newtonian fluids, the PDE for g(x,t) 

(Eq. (3)) for arbitrary perturbation wavenumbers can be numerically solved using the following 

steps: 

1. Obtain the traveling wave base solution, ℎ0(𝑥), using numerical methods for a 

constant-flux condition (as in our previous 2D power-law study [35]). 

2. For a given wavenumber q and known base solution, ℎ0(𝑥), the PDE for 𝑔(𝑥, 𝑡) (Eq. (3)) 

can be solved numerically. We developed a C code to solve the PDE (Eq. (3)) using an 

implicit finite difference scheme. We applied the Crank–Nicolson method for the time 

derivative and central difference for the space derivatives. Newton’s method was used to 

solve the algebraic equations resulting from finite difference discretization. 

3. Once 𝑔(𝑥, 𝑡) is obtained, the growth rate σ as a function of wavenumber can be calculated 

by assuming 𝑔(𝑥, 𝑡) depends exponentially on time using:  

𝜎 =
1

𝑔

𝜕𝑔

𝜕𝑡
 

4. Solve for other q values for all modes by repeating 2-3, and plot growth rate σ as a function 

of wavenumber q. 

3.2.2. Results and discussion: LSA 

Figure 3-1 shows the LSA results for Newtonian (𝑛 =  1) and shear-thinning fluids 
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(𝑛 =  0.6, 0.8).  If the growth rate is positive, this indicates that the contact line is not stable. 

We can see the growth rate is bigger on the vertical plane (𝐷 = 0) than for the less-inclined 

planes (𝐷 = 0.5 and 1) for all three fluids.  Also, the growth rates are larger for Newtonian 

fluids than shear-thinning fluids. For 𝐷 = 2, the growth rate is never positive, indicating that 

fingering instability is suppressed. The Newtonian results agree with the existing studies in the 

literature [15, 16]. It is interesting to see the most unstable wavenumbers for all three types of 

fluids on the vertical plane (𝐷 = 0) are the same, while for the flatter planes (𝐷 = 0.5 and 1), 

the most unstable wavenumbers for shear-thinning fluids are smaller than for the Newtonian 

fluid. We will further discuss this in section 3.3, in conjunction with the 3D results. 
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Figure 3-1. The LSA growth rate as a function of wavenumber q and power-law index n. 

Comparison among different dimensionless numbers: 𝐷=0 (a), 𝐷=0.5 (b), 𝐷=1 (c) and 𝐷=2 

(d). Figures (b), (d) and the vertical lines in Figures (a) and (b) will be discussed later in Section 

3.3 in conjunction with 3D simulations.  (Other simulation parameters: precursor 𝑏=0.1, 

∆𝑥=0.01, ∆𝑡=0.01.)  

The impact of the precursor thickness on fingering instability has been investigated in 

previous studies for Newtonian fluids. Both numerical [16, 50] and experimental [65] studies 

indicated that increasing the thickness of the precursor can suppress fingering instability of 

Newtonian fluids.  The growth rate curves of a shear-thinning fluid (𝑛 = 0.8) shown in Figure 

3-2 indicate that the same trend holds for the power-law fluid. As the precursor thickness 

increases, the growth rate decreases. 

 

 

Figure 3-2. Effect of precursor thickness on LSA growth rate for a shear-thinning fluid: b=0.01 

(black solid), b=0.025 (green dotted), b=0.05 (red circled), and b=0.1 (blue dotted). (Other 

simulation parameters: n=0.8, D=0, ∆𝑥=0.01, ∆𝑡=0.01) 
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In our previous 2D study [35], we found that capillary ridge height increases with increasing 

power-law index n, but decreases with  increasing precursor thickness b. Those conclusions 

match these LSA results very well. This numerically shows that capillary ridge is directly related 

to contact line fingering instability, which is consistent with the analytical analysis in Section 

2.1.1. 

3.3. 3D simulations  

To further study fingering instability, we decided to expand to the third, transverse direction 

and numerically solve the 3D thin film PDE (Eq (1)). The Finite Element Method (FEM) was 

used for this part of the study. A finite element solver, Dolfin [66], was used for automated 

assembly of the variational forms of the thin film equation (Eq (1)) over the computational 

domain. Some other libraries used in this study along with Dolfin are components of the open 

source FEniCS Project [67].  

3.3.1. Finite element formulation 

The weak form of the equations can be derived from Eq. (1) as follows: 

∫𝑞ℎ𝑑Ω −∫𝑞ℎ′𝑑Ω + ∆𝑡∫ 𝑞 [
𝜕

𝜕𝑥
(𝑇) −

𝜕

𝜕𝑦
(𝐾)] 𝑑Ω −∫𝑈

𝜕ℎ

𝜕𝑥
𝑑Ω = 0 

 

∫ 𝑣𝑇𝑑Ω − ∫𝑣ℎ
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𝜕𝑥
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𝑛
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∫ 𝑜𝐶𝑑Ω +∫𝛻𝑜 ∙ 𝛻ℎ𝑑Ω = 0 

 

where q, v, p and o are test functions, and  ℎ′is from the previous time step. 

3.3.2. Numerical parameters 

As shown in Figure 3-3, the flow is from left to right along the x-direction. The boundary 

conditions in the flow direction are implemented as: 

ℎ(0, 𝑦, 𝑡) = 1,   ℎ𝑥(0, 𝑦, 𝑡) = 0 

ℎ(𝐿𝑥, 𝑦, 𝑡) = 𝑏,   ℎ𝑥(𝐿𝑥, 𝑦, 𝑡) = 0 

where 𝐿𝑥 is the dimensionless length of the computational domain.  In the lateral y-direction, a 

periodic boundary condition is specified at 𝑦 = 0 and 𝑦 = 𝐿𝑦: 

ℎ(𝑥, 0, 𝑡) = ℎ(𝑥, 𝐿𝑦, 𝑡)  

  

Figure 3-3. Schematic of the boundary bonditions (BCs) for the 3D numerical simulation.  The 

subscript on h indicates derivative.  Flow is in the 𝑥-direction downhill to the right, and the 

domain width is 𝐿𝑦 in the 𝑦-direction. The constant flux condition is the non-dimensional 

ℎ =  1 at 𝑥 = 0 for all time. The precursor boundary condition is indicated with ℎ =  𝑏 <<

 1 at the domain boundary 𝑥 =  𝐿𝑥 for all time. 
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For the initial condition, we used a step function similar to our 2D [35] and LSA studies (see 

Section 3.2): ℎ = 1  at 𝑥 = [0,
𝐿𝑥

2
], and ℎ = 𝑏 at 𝑥 = [ 

𝐿𝑥

2
, 𝐿𝑥].  To ease the simulation, the 

step function for the initial profile is smoothed as follows:

 

ℎ(𝑥, 𝑦, 0) = 𝑀𝑎𝑥(
1

1 + 𝑒𝑥𝑝 (−4 (𝑥 −
𝐿𝑥
2 ))

, 𝑏) 

To impose a perturbation at the contact line, we substitute  𝑥 = 𝑥0 − 0.2𝑐𝑜𝑠(2𝜋𝑦/λ)  into the 

above equation, so the contact line is slightly convex into the flow direction, where 𝜆 is the 

single mode wavelength of the perturbation. The width of the computational domain for single 

mode simulations is set to the specified wavelength of the simulation. To simulate randomly 

imposed perturbations, we used a 50-mode sinusoidal function to perturb the contact line: 

𝑥 = 𝑥0 −∑𝐴𝑖𝑐𝑜𝑠(2𝜋𝑦/λ𝑖)

50

𝑖=1

 

characterized by λ𝑖 = 2𝐿𝑦/𝑖 , where 𝑖 = 1,2, … 50 and 𝐿𝑦 = 96. The amplitudes 𝐴𝑖 of the 

sinusoidal functions are random numbers from [-0.2, 0.2].  

  All 3D simulations were performed on a Lagrange linear polynomial space with continuous 

Galerkin method, using element sizes of ∆𝑥 = ∆𝑦 = 0.2. For the time space, we used the 

Crank–Nicolson method with ∆𝑡 = 0.01. Both the spatial mesh size and the time step were 

determined through convergence studies and consideration of computational run time. 
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3.3.3. Results and discussion: 3D simulations 

3.3.3.1. Comparison with LSA 

In this section, we test three perturbation wavelengths on both a Newtonian fluid (𝑛 = 1) and 

shear-thinning fluid (𝑛 = 0.6) to compare with the LSA results presented in Section 2. Both the 

vertical plane case (𝐷 = 0) and less-inclined plane case (𝐷 = 1) are investigated in this section. 

Note, we use a single mode perturbation by making the single wavelength equal to the domain 

length 𝐿𝑦 in the y direction: 𝜆 = 𝐿𝑦.   

𝑫 = 𝟎 Case: 

We first show the simulation results for the vertical plane. Three wavelengths of perturbation 

are chosen for this series of simulations and are indicated with vertical lines in the LSA results 

for 𝐷 = 0 (Figure 3-1a): 48.7, and 2.  These were selected because the growth rates 

for the Newtonian fluid (𝑛 = 1) and shear-thinning fluid (𝑛 = 0.6) are either both positive at 

4or both negative at 2. 8.7 was selected because the Newtonian fluid has the 

positive growth rate, whereas the shear-thinning fluid’s growth rate approaches zero. 

Figure 3-4 demonstrates the results of the 3D simulations over time with 4and 

2wavelengths. For the top three cases (both Newtonian and shear-thinning fluids cases at 

4, Newtonian fluid case at 8.7), the perturbed contact lines evolved into growing fingers. 

This matches the LSA results in Figure 3-1a, which indicate that growth rates for these three 

cases are greater than zero. The simulations in Figure 3-4 also show that the perturbations of the 
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Newtonian fluid (𝑛 = 1) grows faster than these of the shear-thinning fluid (𝑛 = 0.6) for 

𝜆 = 4π and 8.7.  Again, those trends match the LSA results (Figure 3-1a) showing that the 

growth rate is bigger for Newtonian fluids at these wavelengths.  As expected from the negative 

growth rate for the 2LSA results, the perturbations in the bottom two rows of Figure 3-4 

are suppressed. 

 

Figure 3-4. Time series of 3D simulations with single mode perturbation, for 𝐷 = 0.  Growth 

of the fingering patterns for both Newtonian (Rows 1, 3, 5) and shear-thinning fluids (Rows 2, 4, 

6) on a vertical plane (𝐷 = 0) with perturbations of different wavelengths 4and 

2From left to right:  t = 0, 50, and 100. 𝐿𝑥 = 20, 𝐿𝑦 = 𝜆 for each simulation. 

 

D=1 Case: 
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Similar trends and comparisons to LSA can be found on a less-inclined plane (𝐷 = 1). The 

LSA results in Figure 3-1c indicate vertical lines at the three wavenumbers selected for analysis 

here. The corresponding three wavelengths were: 8and 4.  The growth rate for the 

Newtonian fluid (𝑛 = 1) and the shear-thinning fluid (𝑛 = 0.6) are either both positive at 

8or both negative at 4.  At 18, only a Newtonian fluid has the positive growth 

rate, whereas the most shear-thinning fluid’s growth rate approaches zero. The 3D simulations 

for these three single wavelength perturbations are shown in Figure 3-5. The simulations 

demonstrate that for cases with positive growth rates in the LSA results (Figure 3-1c), all contact 

lines evolve into fingers (top three rows in Figure 3-5). For those cases with zero or negative 

growth rates in the LSA results, the contact lines remain unchanged or become flat.  In addition, 

as seen in the vertical case (𝐷 = 0, Figure 3-4), the contact line of the Newtonian fluid at 𝐷 = 1 

is more unstable than that of the shear-thinning fluid. 
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 Figure 3-5. Time series of 3D simulations with single mode perturbation, for 𝐷 = 1.  Growth 

of the fingering patterns for both Newtonian (Rows 1, 3, 5) and shear-thinning fluids (Rows 2, 4, 

6) on a less-inclined plane (𝐷 = 1) with perturbations of different wavelengths and 

4From left to right: t=0, 100, and 200.  𝐿𝑥 = 20, 𝐿𝑦 = 𝜆 for each simulation. 

However, there is an important difference between the vertical and less-inclined cases. From 

the LSA results in Figure 3-1, we notice that the corresponding wavelength of the largest growth 

rate for the vertical case (4 for Newtonian) is much smaller than the most unstable 

𝑡 = 0 𝑡 = 100 𝑡 = 200 
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wavelength for the less-inclined case (e.g., 18 for Newtonian). This trend agrees with 

published laboratory experiments for Newtonian fluids [15]:  the distances between emerging 

fingers were smaller on a vertical plane than on a less-inclined plane. That trend also occurred 

for shear-thinning fluids:  the most unstable wavelength for the vertical case (4 for 

shear-thinning) is much smaller than the one for the less-inclined case (e.g., 8 for 𝑛 = 0.6 

shear-thinning). The LSA results also show that the most unstable wavelength increases for more 

shear-thinning fluids, but that is only observed at smaller inclinations. In Section 3.3.3.2 below, 

we look for the same trends using 3D simulations with multiple mode perturbations, to better 

simulate a physical experiment. 

To further compare growth rates, Figure 3-6 quantitatively compares the growth rate of a 

finger from 3D simulations and the growth rate of a perturbation from LSA results. The finger 

length, L, in the simulation is measured from tip to root and is normalized by the initial finger 

length L0 from the imposed initial condition. For early times, we can see the growth rate of the 

finger length from the 3D simulation matches very well with the LSA results.  But at later times 

in the 3D simulation, the finger growth slows and approaches a slower constant speed. This 

behavior is because at longer times, only a small domain at the front is affected by surface 

tension.  Thus, the overall traveling speed is therefore decided by the traveling wave speed of 

the constant flux condition. This speed can be calculated using the similarity solution [35].  

Similar results for Newtonian fluids can be found in the experimental study in [15], where 

comparison is made between experimental data and LSA.     
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Figure 3-6. Comparison of growth rates from LSA (solid lines) and single mode 3D simulations 

(symbols).  The figure shows the finger length (normalized to initial length) vs. time for four 

cases:  𝑛 = 1, 𝐷 = 0;  𝑛 = 1, 𝐷 = 1;  𝑛 = 0.6, 𝐷 = 0; and  𝑛 = 0.6, 𝐷 = 1.  For each case, 

the calculated growth from the 3D simulations (symbols) is compared to LSA prediction (solid 

lines).  (All 3D simulations and LSA results used perturbations of wavelength which 

provides a positive growth rate for all simulations.) 

3.3.3.2. Simulation of multiple mode, randomly imposed perturbations 

In addition to single mode perturbation, it’s also interesting to look at how the contact line is 

affected by multiple-mode, randomly imposed perturbations.   Figure 3-7 shows the 𝐷 = 0 

vertical case as an example to demonstrate how the initial perturbed contact line evolves into 

finger-like rivulets over time a for Newtonian fluid (Figure 3-7a, 𝑛 =  1) and a shear-thinning 

fluid (Figure 3-7b, 𝑛 =  0.6). The randomly perturbed contact line will corrugate into fingering 

patterns with similar distances between each finger, for a given simulation. The exceptions are 
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the areas where two fingers with similar wavelengths merge to form an ‘abnormal’ wider finger. 

This can also be observed in our laboratory experiments. An interesting finding is that the 

merging of the two fingers occurs earlier for the shear-thinning fluid (𝑛 = 0.6) in Figure 3-7b 

than for the Newtonian fluid (𝑛 = 1) in Figure 3-7a. Although two fingers in the Newtonian case 

emerge at earlier times (not shown), they grow faster and stay independent longer as compared to 

the shear-thinning fingers, and this makes them more resistant to merging.  
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Figure 3-7. Time-series of 3D simulations with multiple-mode, random perturbations for 𝐷 = 0.  

Comparison between (a) Newtonian 𝑛 = 1 and (b) shear-thinning 𝑛 = 0.6 on a vertical plane 

(𝐷 = 0, 𝐿𝑥 = 40, 𝐿𝑦 = 96). (Left to right, for t = 0, 60, and 120.) 

 

The typical distance between the fingering patterns is related to the most unstable 

wavenumber in LSA results, according to the existing literature for Newtonian fluids [15, 63]. To 

check this for shear-thinning fluids, we can use the two 𝐷 = 0 cases in Figure 3-7 to compare 

(a) 𝑛 = 1 

(b) 𝑛 = 0.6 

𝑡 = 0 𝑡 = 60 𝑡 = 120 
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with the LSA results. According to Figure 3-6, LSA results are accurate at early times. Therefore, 

for the 𝐷 = 0 cases, we chose 𝑡 = 60 for the comparison. From Figure 3-7 at 𝑡 = 60, there 

are seven fingers (prior to merging) across the width (of 96) at the contact line for both the 

Newtonian and shear-thinning cases. Therefore the average wavelength is approximately 

96/7 ≈ 13.7. That is about 9% different from the most unstable wavelength (4𝜋) for both 

𝑛 = 1 and 𝑛 = 0.6, found from the 𝐷 = 0 LSA results shown in Figure 3-1a.     

Similar results can be found for the other 3D simulation cases of D and n, and are 

summarized in Figure 3-8 and Table 3-1. Figure 3-8 compares 3D simulations at one time point 

for all values of D and n. The times chosen for the contact line patterns in Figure 3-8 are based 

on the growth rate results shown in Figure 3-6 such that a time point is selected in the range 

when LSA corresponds to the 3D simulation. Similar to the 𝐷 = 0 case, the average wavelength 

calculated from 3D simulations matches the most unstable wavelength from LSA results 

quantitatively. However, unlike the 𝐷 = 0 case, where the average distance between fingers are 

the same for the three types of fluids, the finger wavelength can vary as a function of 

shear-thinning for the less-inclined cases.  For less-inclined simulations (𝐷 = 0.5 and 1), the 

𝑛 = 1 and 0.8 simulation finger patterns have one more finger than the 𝑛 = 0.6 case. In the 

simulation for 𝐷 = 2, the flattest inclination, the contact lines are completely stable. This is very 

apparent in the bottom row of Figure 3-8, and also evident in the LSA results (Figure 3-1d), 

where the growth rate is negative for all 𝐷 = 2 simulations.  Finally, the 3D simulations in 

Figure 3-8 and comparisons to LSA in Table 3-1 also confirm the results from single-mode 
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simulations and published Newtonian LSA results: as the inclination approaches vertical, the 

finger wavelengths are smaller, and the growth rate is faster, and this is true for shear-thinning 

fluids as well. 

 

Figure 3-8. A summary of contact line patterns for 12 simulation cases, each showing only one 
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time point.   The points selected were: t = 60, 80, 100 and 120 for D = 0, 0.5, 1 and 2, 

respectively.  These time points are in the regime when the LSA results correspond to the linear 

portion of the 3D numerical simulations in Figure 3-6.  (𝐿𝑥 = 40, 𝐿𝑦 = 96). 

 

D 

             

n 

0 0.5 

 

1 2 

1 2/0.5=12.566 

96/7=13.714 

2/0.4=15.708 

96/6=16 

2/0.35=17.950 

96/5=19.200 

2/0=∞ 

No finger 

0.8 2/0.5=12.566 

96/7=13.714 

2/0.4=15.708 

96/6=16 

2/0.3=20.944 

96/5=19.200 

2/0=∞ 

No finger 

0.6 2/0.5=12.566 

96/7=13.714 

2/0.35=17.952 

96/5=19.200 

2/0.25=25.133 

96/4=24 

2/0=∞ 

No finger 

Table 3-1. A summary of comparison between LSA most unstable wavelength (black – top line 

of each cell) and 3D characteristic wavelength (italic blue – bottom line of each cell). For the top 

line in each cell, the most unstable wavelength from LSA results (summarized in Figure 3-1a-d 

for four D values)) was calculated as 2 divided by the wavenumber at the maximum growth rate.    

For the bottom line of each cell, the characteristic wavelength of multi-mode simulations was 

calculated as the simulation width (96) divided by the number of fingers observed in the 

simulation.   For the vertical case, no difference was observed between Newtonian and the 

most shear-thinning.  For the inclined cases with fingering, the most unstable (LSA) and 

characteristic (3D) wavelength was longest for the most shear-thinning fluid. 

 

3.4. Conclusions 

In summary, the LSA results show that the contact line of a gravity-driven spreading front 

tends to be more unstable for a vertical plane (𝐷 = 0) than for a less-inclined plane (𝐷 = 1). 

This trend is observed for both Newtonian fluids and power-law fluids. We also found that, for 

the same conditions, the growth rate for shear-thinning fluids is smaller than that of Newtonian 

fluids. These findings are further verified in our 3D simulation by comparing the growth rate of 

the finger length for a single-mode perturbation to the growth rate for the same wavelength in the 
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LSA results. Simulations with multiple-mode, randomly imposed perturbations showed how 

fingers with a typical pattern distance are formed. This typical pattern wavelength is considered 

relevant to the most unstable growth rate in LSA results according to previously published 

studies for Newtonian fluids. We carried out a parametric study for different D and n and showed 

that the average distance between finger patterns in our multiple-mode 3D simulations matched 

the LSA results. We also found that this typical wavelength is the same for both Newtonian and 

shear-thinning fluids in the vertical case, but is different in the less-inclined cases – the 

wavelength for a shear-thinning fluid is greater than that for a Newtonian fluid. The 

multiple-mode 3D simulations also showed the merging of fingers forming atypical patterns 

commonly observed in actual coating flows and experiments.    

Practically, this study can be used in coating flow applications to help avoid the occurrence 

and/or magnification of the fingering patterns. To improve the coating processes in industrial and 

biomedical applications, we could optimize the fluid’s shear-thinning properties in order to 

suppress fingering instability and widen finger wavelength. Additionally, since the connection 

between fingering instability and the capillary ridge was obtained here for shear-thinning fluids, 

the occurrence of the capillary ridge in our previous 2D model can be used for quick assessment 

of predicted fingering instability at the contact line. Future studies will use this study as a 

framework to explore more complex contact line physics and rheological models, such as the 

Ellis model description of the Newtonian plateau observed at low shear rates in shear-thinning 

fluids. 
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4. EFFECT OF VISCOELASTICITY ON SPREADING IN 

GRAVITY-DRIVEN AND SQUEEZING FLOWS 

4.1. Introduction  

Microbicide gels are polymeric fluids that exhibit non-Newtonian behavior. Our research 

group has developed several mathematical tools to understand the flow mechanics in the female 

vaginal cavity [31, 35, 55, 64]. In those studies including Chapter 2 and 3, we assumed fluids 

were released on an incline, and used a thin film lubrication approach to simplify the problem.  

Simpler constitutive models, e.g., power-law and Ellis models, were used due to the 

shear-thinning rheology of the microbicide gels. However, the spreading speed obtained from 

previous simulations using these constitutive models didn’t match the experimental results well, 

especially at the early time of the spreading [64]. The early spreading speed was always faster in 

simulations than that observed in experiments. Since microbicide gels exhibit both viscous and 

elastic behavior, it is possible that the elastic behavior of the fluid is responsible for differences 

between previous models and experiments. This is considered as a reasonable assumption, 

because Khayat also found that gel elasticity may diminish the initial velocity increase for flow 

inside thin cavities [68]. Very few published studies have been found about the gravity-driven 

flow of viscoelastic fluids. This is probably because the mathematical modeling of gravity-driven 

flow with complex constitutive equations is challenging. A few studies were found using simpler 
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models, e.g., Pavlidis et al. studied the viscoelastic film flow down a vertical cylindrical wall and 

assumed  fully developed flow to avoid modeling the free surface [69].  

The first objective of this study was to develop a gravity-driven flow simulation using a 

more accurate viscoelastic constitutive model. Various viscoelastic constitutive models have been 

used in recent numerical studies. Favero et al. tested several commonly used constitutive models 

and their performance for contracting flow [32]. Among these models, Phan-Thien-Tanner (PTT) 

is considered one of the most realistic models [33]. We used the PTT model for this study. 

According to existing literature, to simulate non-Newtonian free surface flow, there are several 

different approaches. First, there is the thin film lubrication approach we used in the previous 

studies as in Chapter 2 and 3 [31, 35, 55, 64]. However, using this approach, it is not possible to 

solve the resulting evolution equation because of the form of the PTT equation. Second, Fourier 

analysis and a Galerkin projection method are used [70]. However, that approach uses only 

minimal modes, and it can only be applied to a non-zero initial velocity flow. The most common 

approach is using free surface models, such as Volume of Fluid (VOF) [71], Level Set [72], and 

Arbitrary Lagrangian-Eulerian (ALE) [73]. These models require the solution of the full 

Navier-Stokes equation, therefore they are very accurate and the limitations are fewer compared 

to the other approaches. Due to the complexity of the problem, we decided to take advantage of 

the CFD software POLYFLOW [74], which uses the ALE method for free surface modeling. 

Besides gravity, squeezing forces from vaginal and underlying tissues also act to distribute 

and retain the microbicide gels during application. Thus, the second objective of this study is to 
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model squeezing flow and examine the impact of the viscoelastic behavior of microbicide gels 

using the same PTT fluid model. Two of our previous studies investigated thin film flow of 

power-law fluids under the influence of tissue elasticity after gel insertion [25, 75], as shown in 

Figure 4-1(b) and (c). In those studies, the initial shape of the gel was assumed to be parabolic, 

and tissue elasticity was incorporated in the pressure term of the momentum equation. The study 

here focuses on the interaction between the elasticity of the tissue and gel flow during the 

insertion process, as shown in Figure 4-1 (a) and (b). The objective is to model squeezing flow 

and examine the impact of the viscoelastic behavior of a microbicide gel and the elasticity of the 

tissue. In particular, the model will show how the gel is distributed after insertion. 

In order to correctly model tissue deformation, we need to couple the PTT flow model with a 

deformable soft tissue model. Fluid-structure interaction (FSI) models are commonly used for 

this type of flow. There are no existing FSI studies for vaginal epithelial coating flows according 

to the authors' knowledge. However, FSI studies are common for blood flow, e.g., Refs. [26-28]. 

Those types of studies are focused on the effect of the flow on the wall stress for certain tissues 

in the cardiovascular system, e.g., arteries and heart valves. Due to the complication of the 

problem and difficulties in solving for the moving interface, most studies use a CFD commercial 

or open-source packages, e.g., Fluent or SimVascular, and a Newtonian constitutive model or 

simple shear-thinning models, e.g. power-law and Casson models. In this chapter, we will still 

use POLYFLOW and its built-in FSI model. It allows coupling of the FSI model with the PTT 

viscoelastic constitutive model. 
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Figure 4-1. Illustration of a microbicide gel applied to the vaginal epithelium and covering of the 

tissue due to tissue elasticity.  

4.2. PTT constitutive model 

Section 4.3 and 4.4 will present the gravity-driven flow model and the squeezing flow model. 

Here, we describe the viscoelastic model representing the fluid, used in both section 4.3 and 4.4.  

To describe the viscoelastic behavior of the microbicide gel, an elastic viscous split stress 

(EVSS) approach was used to split the stress tensor of the gel, τ, into a Newtonian solvent 

contribution, τs , and an elastic polymeric contribution, τp,  

𝝉 = 𝝉𝒔 + 𝝉𝒑 

and the PTT model was considered as the constitutive equation [29], 

𝝉𝒔 = 2𝜂𝑠𝑫 

𝑒𝑥𝑝 [
𝜖𝜆

 𝜂𝑝
(𝜏𝑝)] 𝜏𝑝 + 𝜆 [(1 −

 𝜉 

2
) 𝝉𝒑⏞
𝜵

+
 𝜉 

2
𝝉𝒑⏞
∆

] = 2𝜂𝑝𝑫 

where λ is the relaxation time, 𝝉𝒑⏞
𝜵

 and 𝝉𝒑⏞
∆

 are the lower and upper convected time derivatives of 

τp,  and  are the PTT model parameters, D is the rate of deformation tensor, and ηs and ηp are 
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the Newtonian solvent viscosity and polymeric viscosity. The viscosity ratio ηr can be defined as 

ηs / η, where total viscosity, η= ηs + ηp. The objective of this study is to use parametric analysis 

to determine the effects of these PTT parameters on microbicide gel spreading behavior under 

either gravity-driven flow or squeezing flow.   

   

4.3. Gravity-driven spreading model 

4.3.1. Problem description 

We simplified the problem by releasing the gel on an incline to study the flow of gel in 

response to gravity and viscoelastic effects. Figure 4.2 illustrates the side-profile spreading down 

an incline. We used a parabolic initial condition to start the flow, which is consistent with our 

previous gravity-driven flow models. In this study, we focus on how the fluid’s viscoelastic 

behavior affects the spreading length, which describes the spreading speed and how well the gel 

can cover the target tissue.  
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Figure 4-2. Illustration of 2D viscoelastic flow down an incline. The side profile of the fluid is 

shown in dark blue. The white incline is a 60
o
 inclination with respect to horizontal.  

 

 

4.3.2. Numerical methods 

To develop the numerical solution, the first issue is to determine how to track the free 

surface. We used the Arbitrary Lagrangian-Eulerian method, also called ALE method, in which 

the computational system is not fixed in space (e.g., an Eulerian representation) or attached to 

material (e.g., a Lagrangian representation).  

We coupled the PTT constitutive equation with the momentum conservation equation and 

mass conservation equation to solve for the velocity, pressure, stress and strain rate fields, as well 
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as the mesh nodal positions in POLYFLOW (ANSYS, commercial CFD code).  

For the numerical implementation, we used implicit Euler for the integration method. We 

used quadratic and linear interpolation for velocity and pressure fields, respectively. We also 

used a Lagrangian method for remeshing and an adaptive meshing method to generate a high 

quality mesh. 

4.3.2. Results and discussion 

In this section, a series of simulations was carried out to investigate how the microbicide gel 

parameters influence the spreading speed of microbicide flow down an incline. The parameters 

we focused on are relaxation time λ, viscosity ratio ηr, and PTT model parameters ε and 

Among these four parameters, the shear-thinning effect is described through  and  

Although they both have elastic and shear-thinning effects,  is more important in shear free flow, 

while  is more important in shear flow. A non-zero  leads to a bounded extensional viscosity.  

To study the combined effect of these four parameters, we divided them into two groups: 

(1) combined effect of λ, ηr and ε 

(2) combined effect of and 

The approach is to keep the other parameters constant and only vary the grouped parameters. 

Group (1) parameters are considered more important in describing the elastic effect, while Group 

(2) parameters convey more information about the shear-thinning behavior.  
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Parametric analysis 1: Combined effect of λ, ηr and ε 

 

In the first set of results, we studied the parameters that are highly related to the elastic effect. 

We varied the values of relaxation time λ, viscosity ratio ηr, and PTT parameter ε, and held the 

other parameters constant. Table 4-1 shows the parametric settings for the first set of simulations. 

In this section and the next, as a theoretical study, the range of values for these parameters was 

not limited to the experimental data of microbicide gels. It’s interesting to see how these 

parameters affect the results over a larger range; and therefore, this study can be helpful for more 

generic fluids.  In a later section, we will show some simulations with real curve fitting values 

of the PTT constitutive equation using rheological data of one of our laboratory polymeric gels.   

 

Case λ ηr ε 

1 0.1 0.1 0.01 

2 0.1 0.1 0.1 

3 0.1 0.2 0.01 

4 0.1 0.2 0.1 

5 1 0.1 0.01 

6 1 0.1 0.1 

7 1 0.2 0.01 

8 1 0.2 0.1 

 

Table 4-1. Parameter settings for the first set of simulations, where λ is relaxation time, ηr is 

viscosity ratio, and ε is PTT model parameter, and total viscosity η and PTT parameter are kept 

as constant, η=200 P
 
and  
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Figure 4-3. Transient result of gravity-driven flow spreading length with varying parameters 

from Group (1) listed in Table 4-1. 

Figure 4-3 shows the results of the parametric cases listed in Table 4-1. In general, spreading 

length increased with increasing λ and ε, and with decreasing ηr. Relaxation time λ has a larger 

impact than ε and ηr. At lower λ (λ=0.1 s), varying ε and ηr doesn’t affect the spreading speed 

much, while at larger λ (λ=1 s) the gel travels faster with increasing ε, and with decreasing ηr. 

This means relaxation time is a stronger determinant, and the effects of ε and ηr are highly related 

to the relaxation time. 
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Parametric analysis 2: Combined effect of and 



In this set of results, we studied the effects of  and , which are more important to the 

shear-thinning effect. Figure 4-4 shows a multiple-curve plot of spreading length at 10 sec. 

Noticed that spreading length increases with increasing  and . They both have more impact in 

the range of 0.1 to 1.  becomes more dominant than  when they approach 1. 

 

 

Figure 4-4. Spreading length for different PTT parameters  and ; with constant η=200 P, λ=1 s 

and ηr=0.2. 

 

Although parametric Groups (1) and (2) results are helpful in showing how sensitive the 
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spreading speed of the microbicide gels is to the varying values of the PTT parameters, the 

elastic effect and the viscous effect are not separated satisfactorily. Non-dimensional study and 

the Deborah number are commonly used for this purpose, identifying whether the viscous effect 

or the elastic effect dominates the flow. However, Dealy indicated that Deborah number and/or 

Weissenberg number are only useful under very strict conditions [76]. Due to the nature of the 

flow in this study, where shear rate and strain rate vary for both positon and time, it’s impossible 

to define a characteristic shear rate or observation time. Therefore, dimensionless groups and 

non-dimensional studies cannot be appropriately used for this work.  To answer the question we 

raised in the introduction section as to the elastic effect being responsible for the discrepancy 

between power-law simulation results and experiments, we used PTT parameters from 

rheological data to run simulations. 

 

Simulation results for 2.0 % CMC gel using experimental data 

In this section, a real case simulation is performed using our laboratory rheological data [77] 

for a 2.0 % Sodium carboxymethylcellulose (Blanose 7HF) gel; and results are compared using 

PTT vs. power-law models.  First, the data obtained from experimental measurements of 

rheology of the CMC gel was curve-fitted. Curve fitting was done using both PTT and 

power-law constitutive equations. The results are shown in Figure 4-5. The experimental curves 

are plotted as the dotted curves. They are shear viscosity, η vs. shear rate curve (dotted blue), 

storage modulus, G’, vs. frequency curve (dotted black) and loss modulus, G’’, vs. frequency 
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curve. For the PTT model, all three experimental curves are needed. We used a 4-mode model to 

improve the fitting accuracy. The results are plotted as the solid lines. The coefficients of 

determination of the fit, R
2
, are 91.82%, 99.01% and 91.55% for the three experimental curves. 

The 4-mode parameter values are listed in Table 4-2. For the power-law model, only the shear 

viscosity curve is needed, and the fit is plotted as the dashed blue line.  We obtained two 

parameters from the power-law model curve fitting, gel consistency, m=125.65Ps
n-1

 and 

shear-thinning index, n=0.5059. 

 
Figure 4-5. Rheological data for a 2.0 % sodium carboxymethylcellulose gel. The dots indicate 

experimental rheological data, the solid lines show curve-fitting to the PTT constitutive equation, 

and the dotted line shows curve-fitting to the power-law constitutive equation. 
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Mode η λ   ηr 

1 0.5052e-05 0.1000e-01 0.1197e-01 0.1915 0.6911e-01 

2 0.1220e+02 0.2154 0.5354 0.5158e-04 0.6911e-01 

3 0.5764e+02 0.4642e+01 0.9358e-02 0.9282 0.6911e-01 

4 0.1283e+03 0.1000e+03 0.9325e-02 0.9260 0.6911e-01 

 

Table 4-2. Curve fitting results for the parameters of 4-mode PTT model. 

 

We used these parameters to run flow simulations for both the PTT model and the power-law 

model. The results are shown in Figure 4-6 as spreading length vs. time. To validate the 

power-law model results, we also plotted the results using our previous power-law simulation 

[35], and the new POLYFLOW power-law model result was plotted in red curve. The results 

show there is only a slight difference between the two power-law model simulations, which 

differ in their mathematical model. The difference may be because the POLYFLOW simulation 

of the power-law fluid flow solved the full Navier-Stokes equations and used the ALE method to 

track the free surface, while in our previous power-law code, we used a lubrication approach to 

neglect the inertial terms of the Navier-Stokes equations and the free surface was calculated 

using the thin film equation [35].  
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Figure 4-6. Results of microbicide gel spreading for different models. The blue curve indicates 

the spreading speed from the PTT model simulation, while the red and black curves are the 

results from power-law models.  

Figure 4-6 also shows that compared to the power-law results, we can conclude that in the 

PTT model, the microbicide gel spreads slower, especially at the beginning of the flow. A way to 

explain the differences in flow using power-law vs. PTT is to use an energy analysis. 

Gravitational potential energy is transferred to kinetic energy during the gravity-driven flow 

process. In the PTT model, a portion of the total energy is stored in the fluid due to the elastic 

effect, while in the power-law model, there is no energy stored. Assuming the two models have 

similar amounts of energy dissipated as heat, since they have similar viscosity curves, the 
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power-law model transferred more energy to kinetic energy; therefore, it spreads faster. 

The observations from our previous numerical and experimental studies using the power-law 

model [64] are consistent with this study because the PTT model indicates the elastic effect of 

the fluid may slow the initial flow as observed experiments.  This indicates that the elastic 

effect of a microbicide gel is important, and a more accurate constitutive model than power-law 

model, such as the PTT model, should be used in simulating the microbicide spreading.   

 

4.4. Epithelial squeezing flow model 

4.4.1.  Problem and methods 

 

Both gravitational and squeezing forces are important in the microbicide delivery process.  

In this section, the goal was to model the spreading of the microbicide gel on the epithelial 

surface under the squeezing force of vaginal tissue. As mentioned in the introduction and shown 

in Figure 4-1 (a) and (b), we focus on the fluid and tissue interaction during the delivery process 

of microbicide gels.      

 Figure 4-7 shows the geometry and boundary condition used to approximate the application of 

a gel to a human vagina. During the insertion process, the epithelial tissue is deformed and the 

fluid-tissue interface needs to be recalculated. Zero displacement is imposed on the other three 

boundaries of the epithelial tissue.  Steady-state and isothermal conditions are assumed for the 

system. We use the PTT fluid model to describe the flow in the fluid region.  
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Figure 4-7. Geometry and boundary condition of the model describing insertion of a microbicide 

gel (“fluid” in diagram) between the vaginal epithelial tissue. 

 We use a fluid-structure interaction (FSI) model to take into account the elasticity of a solid 

region (the vaginal tissue surrounding the vaginal lumen) coupled with the adjacent flow problem 

(the microbicide gel in the vaginal lumen). With body force f, the motion equation for 

displacement in the solid region is,  

𝜵 ∙ 𝝈 + 𝑓 = 0 

The transient term is neglected, since we assume steady-state flow. For a small deformation, the 

stress tensor is defined by the following constitutive equation: 

𝝈 =
𝐸

1 + 𝑣
(

𝑣

1 − 2𝑣
𝑡𝑟(𝝐)𝑰 + 𝜺) 

 

where E is Young’s modulus, v is Poisson’s ratio, and ε is the strain tensor, defined by 

displacement d,  
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𝜺 =
1

2
((∇𝑑)𝑇 + ∇𝑑) 

 Although vaginal epithelial tissue may exhibit viscoelastic behavior, we used the pure elastic 

constitutive model as the first step of the study to approximate the tissue deformation. 

Additionally, due to the capability of the POLYFLOW software, it is not possible to simulate the 

viscoelastic deformation in the solid region using the FSI model. For tissue elasticity, we chose a 

range based on published literature estimating tissue elasticity under compression in [78]. In that 

study, the authors found the average values for tissue elasticity for the anterior and posterior 

compartments for normal conditions were 7.4±4.3 kPa, 6.2±3.1 kPa, and1.8±0.7 kPa and 1.8±0.5 

kPa for prolapsed ones. 

These formulations were coupled with the momentum conservation equation and mass 

conservation equation to solve the complex problem with FSI and viscoelasticity included. The 

same numerical methods were used for the fluid region. The only difference is that an elastic based 

remeshing method is used instead of Lagrangian remeshing method of Section 4.3. 

 

4.4.2. Results and discussion 

 

 A series of parametric analyses were performed to study the influence of the tissue elasticity 

and the elastic effect of the gel on tissue deformation and the velocity profile of the flow. The 

elastic effect of the gel is characterized by the dimensionless Deborah number, which is defined as,  

𝐷𝑒 =  𝜆𝛾̇ 
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where 𝛾̇ is the characteristic shear rate, given by, 

𝛾̇ =
𝑢

ℎ
 ,   𝑢 =

𝑄

2𝐿ℎ
 

and where u is the average velocity, and L and h are the width and thickness of the flow region, and 

Q is the volumetric flow rate.  

 The effect of tissue elasticity is examined first. According to Ref. [78], we chose E=5 kPa for 

the majority of the simulations, and chose E=0.5 kPa for the comparison purposes. In Figure 4-8, 

the results are shown for two cases, with all other parameters held constant. The plots show both 

the tissue shape (as contours of displacement) and the fluid velocity. The displacement of the 

tissue increased for the less stiff (lower E) tissue. In the flow region, the velocity increased with 

increasing stiffness (higher E).  

 

 



- 79 - 

Figure 4-8. Contours of displacement in the tissue region (left contour map) and velocity in the 

fluid region (right contour map) for different tissue elasticities, with constant E=5 kPa (top) and 

E=0.5 kPa (bottom), with constant Q=1 cm
3
/sec, v=0.25, η=200 P, ηr=0.2, λ=1 s, and 

. 

 Poisson’s ratio is also an important material parameter of human tissue. We chose 0.495 as a 

characteristic value for the tissue region, according to typical values for biological soft tissues (e.g. 

Ref. [79]), and 0.25 as a reference value for the comparison purposes. Figure 4-9 shows results for 

the two Poisson’s ratios. Displacement of the tissue decreased for a higher Poisson’s ratio. This is 

because the deformation is absorbed more in the other direction for higher Poisson’s ratio. 

 

 

Figure 4-9. Contours of displacement in the tissue region and velocity in the fluid region for two 

Poisson’s ratios, with constant Q=1 cm
3
/sec, E=5 kPa, η=200 P, ηr=0.2, λ=1 s, and 

. 
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 Figure 4-10 shows how inflow rate influences the results. The results are as expected: as inflow 

rate increased, both the displacement of the tissue and the velocity of the flow increased.  

Compared to the tissue elasticity results in Figure 4-8, the impact of the tissue elasticity on the 

deformation is more dramatic than the inflow rate for these particular parametric settings.  

 

 

 

Figure 4-10. Contours of displacement in the tissue region and velocity in the fluid region for 

two inflow rates, with constant E=5 kPa, v=0.25, η=200 P, ηr=0.2, λ=1 s, and . 

 

 It’s also interesting to see how the gel’s viscoelasticity affects tissue deformation of the tissue, 

and thus the distribution of the fluid over the tissue. Figure 4-11 shows displacement at the 

fluid-solid interface vs. the x-direction position for three values of Deborah numbers (obtained by 

changing ). Displacement of the tissue decreases with increasing Deborah number. A higher 
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Deborah number indicates that the fluid more elastic, i.e. it has a higher elastic component than a 

fluid with a lower Deborah number. This result can be interpreted as the more elastic gel deforms 

surrounding tissue less than the less elastic gel. This is because for the same inflow rate and the 

same systematic energy, more elastic fluid can store more and dissipate less energy. Therefore, 

less work is done on pushing the tissue wall. The differences seen in Figure 4-11 indicate that the 

elasticity of the gel will influence the evenness of the gel distribution of the tissue during 

application. 

 

 
Figure 4-11. Plot of displacement in the tissue region for different Deborah numbers and constant 

Q=1 cm
3
/s, E=5 kPa, v=0.25, η=200 P, ηr=0.2, and .  
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4.5. Summary 

Two mathematical models were developed in this chapter to investigate the viscoelastic 

effect of microbicide gels during the drug delivery process. In the gravity-driven flow model, 

several parametric studies were carried out to show how the PTT parameters influence the 

spreading speed of thin film flow. We also compared the PTT flow simulation to the simple 

shear-thinning power-law simulation result using rheological data as input. The simulations 

showed a slower spreading speed with the PTT fluid than the power-law fluid, because more 

energy is stored in the PTT fluid due to the elastic behavior. These results may explain previous 

experimental observations that power-law simulations do not represent the early slow flow 

observed in experiments.  

In the squeezing flow model, we examined the displacement of the epithelial tissue under 

different parametric settings. We found Simulations showed that less stiff tissue and fluids with 

lower Deborah number can cause more epithelial deformation. The shape of the epithelial 

deformation upon gel insertion determined the distribution of the gel over the epithelium.  

These results provide insights into how to design the optimal properties of microbicide gels. First, 

differences in tissue elasticity may result in different flow characteristics and different gel 

coverage.  Thus, different women with different tissue elasticities should have options for 

specifically designed gels.  Second, according to the study of the inflow rate, speed of 

microbicide gel insertion can be optimized for different women with different tissue elasticities 

and different designed gels. Such information could lead to improved labelling instructions for 
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use to achieve a more even distribution of the gel upon insertion. Moreover, this study is a good 

supplement to our previous elastic boundary spreading study [25, 75]. The result of this study 

can be a more practical initial condition of the later spreading process, rather than using an 

arbitrary initial shape of the gel after insertion.   
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5. CONCLUSIONS AND FUTURE WORK 

5.1. General conclusions 

In summary, this PhD dissertation is intended to contribute to the overall goal of optimizing 

a polymer solution for optimal flow performance and coverage on epithelial surfaces. This work 

was focused on mathematical modeling and numerical simulation. The objective of this 

dissertation was to examine the effect of a fluid’s properties (e.g., surface tension and rheology) 

on the fluid’s spreading and coating characteristics (e.g., fingering instabilities and spreading 

speed). A few mathematical models were developed towards this goal, including 2D, LSA, 3D 

power-law models and a 2D PTT model for the gravity-driven flow and FSI model for the 

squeezing flow. These mathematical tools can be used to: 

 Identifying the surface tension effect on microbicide coating flow 

 Examining how a fluid’s properties affect the fingering instabilities and ways to suppress the 

fingering coating in order to avoid uncovered “bare” spots 

 Identifying the viscoelastic effect of microbicide gels on both gravity-driven flow and 

squeezing flow 

 Evaluating the flow behavior of the microbicide under the epithelial tissue deformation 

The results from these studies are very useful for microbicide development. First, these 

studies can be used to specify target properties for optimal flow behavior. For example, we 

should design the vehicle for less shear-thinning to avoid the occurrence of the fingering 
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instabilities. Another research component of our lab, computational molecular design, can be 

incorporated here to achieve this goal. For example, the structure of the drug delivery can be 

designed to achieve those target properties.  Additionally, the studies can be used to specify to 

users how to improve the use of the microbicide. For example, posture during microbicide gel 

application can be optimized, due to our parametric study on the inclination angle in Chapter 2.   

Such information could lead to improved labelling instructions for use.  In a similar example, 

different women with different tissue elasticities can choose the specifically designed gels, 

according to our simulation results on the tissue elasticity in Chapter 4.  

 

5.2. Limitations and future work 

 

There are some limitations to this study, which can guide and improve our future studies. 

Effect of contact angle on the surface tension models 

I assumed complete wetting in all the models using thin film lubrication approach. However, 

we expect the contact angle can also affect the microbicide coating. It is interesting to know how 

the different contact angles can influence the spreading speed of the fingering instabilities. 

Because we added surface tension through the pressure term of the conservation of momentum 

equation, it is challenging to incorporate the contact angle, especially the dynamic contact angle. 

According to the published work in literature, the majority of the studies using lubrication 

approximation assumed a complete wetting substrate. To incorporate contact angle to our 
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mathematical models in future, I suggest to introduce more approximations for the fluid-solid 

contact interaction at the contact line. A similar approach can be found in the droplet studies, e.g., 

[37].  

Limitation of power-law model 

As we addressed in Chapter 2 and 3, the power-law rheological model is a simple constitutive 

model to describe the shear-thinning behavior of the microbicide gels. However, it’s not very 

accurate at the low shear rate region. Others in our research group have improved the current 

gravity-driven flow models using better constitutive models. Kheyfets developed an Ellis model to 

address the inaccuracy of the power-law model at the low shear rate [31]. Anwar incorporated 

yield stress using Herschel–Bulkley model [75]. In the future, we want to keep improving out 

constitutive models using our own code. As discussed in Chapter 4, it is challenging to use a 

complicated viscoelastic model, e.g., PTT model using the current lubrication approach, which is 

our ultimate goal. But it’s achievable to incorporate simpler viscoelastic models into our current 

models in the near future. 

 

Limitation of using a commercial CFD package. 

As mentioned in Chapter 4, due to the complexity of the problems, we decided to use CFD 

software as the solver to simulate the viscoelastic behavior of the microbicide and the FSI 

squeezing flow. This provides an easy way to solve a broad scope of complicated fluid problems. It 

reduced the numerical manipulation and let us focus on the physical modeling. However, we had 
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less control and freedom due to the limitations of the software package. For example, it’s 

interesting to know how the viscoelastic parameters affect the fingering instabilities. We 

developed a 2D PTT model using POLYFLOW, but due to the capability of the package, it’s hard 

to carry out a linear stability analysis for the fingering instabilities, similarly to what we presented 

in Chapter 3. As I just mentioned, we are in process of improving our own simulation codes. 

Understanding how these CFD programs work is helpful in developing our own codes. The CFD 

packages can also be used to verify the correctness of the codes we are going to develop in future.  

 

 

Non-dimensional study of the gravity-driven flow of viscoelastic fluids 

As discussed in Chapter 4, the Deborah number is a useful dimensionless group for 

interpreting viscoelastic fluid flow. It quantifies how important the elastic behavior is compared to 

viscous behavior. However it’s not appropriate to use it in our current gravity-driven flow model, 

which was pointed out by Dealy [76]. We carried out dimensional studies and compared our PTT 

model to the previous power-law model. The results can reflect the elastic effect of the microbicide 

gels in the gravity-driven flow as we discussed in Chapter 4. However, we couldn’t isolate the 

elastic effect well from the PTT model itself. Future work will involve more approximations and 

developing our own code using the non-dimensional equations. 

 

Combination of gravity-driven flow model and the squeezing flow model 
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Gravity-driven flow and squeezing flow models are independently studied to simplify the 

problem. By using the CFD packages, it’s possible to combine the two models into one to see the 

combined effect of gravity and squeezing forces. Additionally, in the future, we can model a more 

realistic vaginal cavity geometry to investigate the effect of the vaginal structure.  

 

Incorporations in the research group 

As a parallel research component, this study can be incorporated with other research topics in 

our research group. For example, more realistic tissue elasticity and/or viscoelasticity can be 

obtained from Mark Pacey’s experimental apparatus, developed to measure the elasticity of 

vaginal tissue in vivo [80]. The ultimate goal of this study is to obtain the molecular 

structure-properties-function relationship for the optimal design of the microbicides. A 

preliminary attempt in this direction has been done by Anwar from our research group [75]. In his 

study, he was able to identify a set of target properties, e.g., tissue elasticity and yield stress of the 

microbicide gels, for the target flow behavior, e.g., maximal retention and target coating length. 

Similarly, the numerical results presented in this dissertation are helpful for another branch of the 

lab research, computational molecular design carried by Thora Whitmore [77]. However, the 

parametric range in the current study is set for the purpose of theoretical analysis. To better serve 

the molecular design, more realistic values are needed to find the target values. 
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5.3. Summary 

The analysis in this dissertation presented several new mathematical models to simulate the 

spreading of microbicide gels during the drug delivery process. Power-law and PTT constitutive 

models were used for the non-Newtonian behavior of the microbicide gels. Both gravity-driven 

flow and squeezing flow models were studied for the first time. This dissertation provided insight 

into how to design microbicide gels with optimal properties for target performance.  

The use of the mathematical models presented in this dissertation is not limited to the 

microbicide development. Other thin film coating flow applications can also benefit from this 

study, e.g., paints, contact lens manufacture and microchip fabrication, etc.  
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6. APPENDIX  

Appendix A: Sensitivity study of precursor thickness 

Many previous works have studied the influence of the precursor thickness. Both numerical 

[16, 50] and experimental [65] studies have indicated that increasing the thickness of the 

precursor can decrease the size of the capillary ridge and suppress the contact line instability.   

Figure A.1 shows the comparison between different precursors: b=0.001cm (black solid), 

b=0.01cm (blue dotted) and b=0.05cm (red dashed). 

 

Figure A.1. (Color online) Comparison of the free surfaces between the results for different 

precursor thicknesses: b=0.001 cm (black solid), b=0.01 cm (blue dotted) and b=0.05 cm (red 

dashed). (Parameters used in the simulation: m=100 Ps
n-1

, n=0.8, α=60
o
, γ=70 dyn/cm, H=0.3 

cm) 

We can see the capillary ridge height goes down when we increase the precursor thickness b. 

This agrees with the previous literature. 
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Appendix B: Similarity solution for power-law fluids 

Far behind the front region where surface tension dominates, the height profile of the gel can 

be described by a similarity solution. For Newtonian fluids, a similarity solution was obtained by 

Huppert [58], 

( , ) .
sin

x
h x t

g t



 
  

This expression indicates that the thickness of the free surface decreases on the scale of 

𝐻𝑁~𝑡
−1/3 at a relatively long time after initial condition, and it is independent of the initial 

condition. 

Following the method outlined in [58], we can obtain the similarity solution for the 

power-law fluid as 

1

1 1

( , ) .
sin

n

n nm x
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g t 

    
    

  
                                  (B.1)                                                              

By setting n=1, this expression reduced to Huppert’s Newtonian similarity solution. 

 Assuming a zero surface tension in our model (γ=0), we compared the result from our 

numerical model to this power-law similarity solution. We compared for both Newtonian fluids 

(Figure B.1) and shear-thinning fluids (Figure B.2) using two different initial conditions 

H=0.2cm and H=0.45cm.  As shown in the figures, all four cases agree with the similarity 

solution. We can see the gels start from different initial conditions, and after a relatively long 

spreading time (110 s), the free surfaces approach the similarity solution profile. Although the 

Newtonian gels flow faster than the shear-thinning gels for these settings, the similarity solution 
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very accurately describes the difference. Thus, through this study, we verified our numerical 

model using the similarity solution.  

 
Figure B.1. Comparison of the free surface spreading of the similarity solution (black solid) and 

the numerical model at 110 s for Newtonian fluids. Two different initial conditions: H=0.2 cm 

(red dashed) and H=0.45cm (blue dotted). Parameters: m= 100 Ps
n-1

, n=1, α=60
o
 and γ=0dyn/cm. 

 

 
Figure B.2. Comparison of the free surfaces spreading of the similarity solution (black solid) and 

the numerical model at 110 s for shear-thinning fluids. Two different initial conditions: H=0.2cm 
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(red dashed) and H=0.45cm (blue dotted). Parameters: m=100 Ps
n-1

, n=0.5, α=60
o
 and γ=0 

dyn/cm. 

 

Appendix C: Traveling wave solution for power-law fluids 

By assuming a simplified constant flux flow, we compared the result from our numerical 

model to the traveling wave solution. We used the constant flux boundary conditions 

, 1x h   and ,x h b   for Eq. (3) in Chapter 2 (where b is thickness of the 

precursor). This boundary condition leads to a traveling wave solution h(x, t) for Eq. (3). If we 

define 
*

0( , ) ( )h x t h x , where 
*x x Ut  , and U is the velocity of the traveling wave, then the 

function 
*

0 ( )h x  must satisfy 
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Refer to [15] for more details about traveling wave solution of the thin film equation. 

Applying the two boundary conditions, 
*

0, 1x h   and 
*

0,x h b  , we can get 
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Using the 2D numerical model developed in this study, we can compare the result of our 

numerical solution to the traveling wave solution.  We used a smooth step function as the initial 

condition,  

 

1
0 10

1 exp( 4( ( 10)))( )

10 40

x
xh x

b x
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 

, 

 in our 2D model. Figure C.1 shows the numerical simulation results plotted over 10 seconds.  

 
Figure C.1. Evolution of free surface using constant flux in the numerical simulation, total 

time=10s, sampling=1s. (Parameters used in the simulation: m= 200Ps
n-1

, n=0.9, α=60
o
, 

γ=40dyn/cm, b=0.01cm) 

 

The velocity calculated in the simulation (U=1.6200) had a great agreement with the 

traveling wave solution (U=1.6178) (Eq. (C.1)). 

Appendix D: Non-dimensional study for 2D power-law fluids 

Following the non-dimensionlization in [16], the dimensionless variables can be introduced 
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using the characteristic film thickness HN, film length L, time T and velocity U: 
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Here,  HN  is the thickness of the profile described in the power-law similarity solution, as 

introduced in Appendix B. 
1 3

( )N aL H C , where 
0aC U   is the power-law capillary 

number and  
1

0

n

Nm U H
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  is the characteristic viscosity.  

 Because the flow field away from the front determines the characteristic velocity, we can 

estimate the characteristic time scale, T, using the power-law similarity solution (Eq. (B.1)),  
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so that the characteristic velocity ~U L T , and the capillary number can be approximated as 
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Substituting these dimensionless variables as well as the capillary number Ca into Eq. (3), 

we get the non-dimensional evolution equation: 

1
1

1 13 31
2

3 3
3 3

1 cot 1 cot 0.
2 1

n

n
a a

h n h h h h
h C C

nt x x xx x
 





 
       

       
      

 

                  

(D.1) 

 

If we define
1/3cot aD C , which is an important quantity indicated in [16],  then Eq. (D1) 

becomes only dependent on two dimensionless parameters: D and shear-thinning index n. 

  To directly compare to the literature, Eq. (D.1) was solved with the constant flux condition 

as introduced in Appendix C. The result is similar in shape to the result shown in Figure C.1. The 

dependence of the dimensionless maximum height of the flow profiles on D and n is shown in 

Figure D.1.   
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Figure D.1. Dimensionless maximum height of the flow profiles as a function of D for different 

values of shear-thinning index n.  

 

 Because we used a constant flux setup, the capillary ridge height can be simply calculated by 

max 1crh h  . As we can see from Figure D.1, for both Newtonian fluids (n=1) and 

non-Newtonian fluids (n<1), the capillary ridge height reduces as D increases. This result agrees 

with the parametric study of D for Newtonian fluids in [16]. Moreover, it indicates that the more 

shear-thinning the fluid is, the smaller capillary ridge occurs, as also found in our dimensional 

study. 

Appendix E. Fluorescence Imaging Measurement  

Henry M. Clever and I worked together on this study, with the guidance of Dr. Sarah L. 

Kieweg and contributions from Dr. Carey K. Johnson (Chemistry, KU).  I first identified the 

experimental approach and ideas, and built the initial apparatus.   Henry worked with me and 

Dr. Kieweg on the details of the experimental approach, and to modify the experiment for images. 

I also supervised Henry on the development of MATLAB code to process and analyze the 

images. This work may be submitted for publication. Here, I summarize the overall work, and 

identify the challenges with these experiments. 

The motivation of this study was to develop an experiment to observe and compare the 

contact line fingering instabilities we discussed in Chapter 2-3. After I developed the original 

ramp apparatus, we were able to observe various contact line fingering patterns along with the 
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capillary ridge at the front under different flow conditions, as shown in Figure E.1. In order to 

quantitatively measure the experimental data, e.g., fluid thickness and flow speed, I proposed the 

idea of developing a fluorescent imaging system using green LED. Henry joined to this project 

through an undergraduate research program in Dr. Kieweg’s laboratory. Henry and I worked 

together on the experiment design, such as selecting the flourescent dyes, building the 

illumination and filtering system, developing the image processing algorithm, etc. Under my 

mentorship, Henry developed the calibration and normalizing methods, and carried out most of 

the experiments independently.  

 

 

Figure E.1. Example of the fingering patterns observed using the original ramp apparatus. 

In this study, we developed an imaging system with fluorescent dye to image fluids as they 

flow down an incline. Instead of using the currently widely used laser-induced fluorescence (LIF) 

method, we tried to create a much more inexpensive system using LEDs as a form of 

illumination. We chose green LEDs to excite the dye and captured the imaging of the light 

http://en.wikipedia.org/wiki/Laser-induced_fluorescence


- 99 - 

emitted by the dye using a digital camera. The light/pixel intensity of the image can be converted 

to the fluid depth using previously published formulations. The flow area we try to measure in 

this study is relatively large compared to the studies in literature. To get evenly distributed 

illumination of the target surface area, we need to conquer two challenges, the first being the 

orientation of LED lighting around the surface of fluid. Next, camera images are subject to 

vignetting, a phenomenon that and occurs due to lens aperture size. We developed a normalizing 

method to solve these issues. 

By using the imaging system we developed in this study, we can measure the depth of fluid 

in a large target area. Additionally, the changing pattern and moving speed of the contact line can 

also be obtained and calculated. Therefore, in future, we can further verify the results we 

obtained in Chapter 2 and 3. Two examples of the applications are shown in Figure E.2 and 

Figure E.3. 

 

 

Figure E.2. Cross depth plot showing the evolution of free surface at the front of a finger, which 

can be used to compare the results in Chapters 2 and 3, e.g., Figure 2-2 and Figure C.1. 
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Figure E.3. 3D plot of a single propagating finger obtained and calculated using fluorescence 

imaging. 

There are a few challenges for this study. The experimental setting requires loading the gel 

in the trough repeatedly. To quantitatively compare the simulations, e.g., power-law model 

results, we need to use the controlled value of m and n for the comparison purpose, which is 

impossible when we try to make gels in reality. 
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