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The cerebellum has been repeatedly implicated in gene expression, rodent model and

post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular

anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear.

Separate circuits of the cerebellum control different sensorimotor behaviors, such as

maintaining balance, walking, making eye movements, reaching, and grasping. Each

of these behaviors has been found to be impaired in ASD, suggesting that multiple

distinct circuits of the cerebellum may be involved in the pathogenesis of patients’

sensorimotor impairments. We will review evidence that the development of these

circuits is disrupted in individuals with ASD and that their study may help elucidate the

pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical

studies of monogenetic conditions associated with ASD also have identified selective

defects of the cerebellum and documented behavioral rescues when the cerebellum is

targeted. Based on these findings, we propose that cerebellar circuits may prove to be

promising targets for therapeutic development aimed at rescuing sensorimotor and other

clinical symptoms of different forms of ASD.

Keywords: autism spectrum disorder, cerebellum, sensorimotor, genetics, pathophysiology, oculomotor,

precision grip, gait

Cerebellar Pathology in Autism Spectrum Disorder

The majority of in vivo brain studies of individuals with autism spectrum disorder (ASD) have
focused on neural networks involved in social behavior, language, and behavioral and cognitive
flexibility—the defining features of the disorder (American Psychiatric Association, 2013). Still, the
full extent of neural systems impacted by ASD is not yet well understood, and pathophysiological
mechanisms associated with the disorder remain elusive. There are multiple factors that have
limited progress toward identifying brain mechanisms in ASD including the complexity of
the psychological/behavioral constructs that have been most systematically investigated (e.g.,
theory of mind processing), limited knowledge about their neural underpinnings, clinical, and
neurobiological heterogeneity across the autism spectrum, a lack of integration of knowledge about
the developmental neurobiology of relevant brain systems, and failures to link in vivo case-control
studies of psychological dimensions with what is known about histopathological and molecular
mechanisms associated with ASD.
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The cerebellum remains an understudied area in clinical
investigations of ASD. It is perhaps the most consistently
implicated brain region in post-mortem studies. Reports have
indicated 35–95% fewer cerebellar Purkinje cells in ASD brains
compared to controls (Bauman and Kemper, 1985; Arin et al.,
1991; Bailey et al., 1998; Whitney et al., 2008, 2009; Wegiel
et al., 2014), and remaining cells appear to be reduced in size
(Fatemi et al., 2002a). The majority of cases studied to date
(30/45) show reduced Purkinje cell density in posterior lateral
hemispheres of the cerebellum, but fewer studies have found
these anomalies in the vermis. A recent examination of eight
patients found that Purkinje cell density reductions were more
severe in Crus I–II, but that they were still present in lobules
IV–VI and lobule X as well (Skefos et al., 2014). Deep cerebellar
nuclear cells to which Purkinje cells project also are abnormal
in ASD showing enlargement during childhood and subsequent
reductions in size and number during adolescence and adulthood
(Bauman, 1991). Therefore, patterns of cerebellar pathology may
be regionally specific as well as variable across development.
Levels of glutamic acid decarboxylase (GAD) 65 and 67 proteins
involved in converting glutamate to GABA are reduced in the
cerebella of individuals with ASD (Fatemi et al., 2002b; Yip et al.,
2007, 2008). Reductions in GABAAα1 protein levels and GABAB

R1 receptor density in cerebella of ASD patients also have been
documented (Fatemi et al., 2010).

Studies of etiopathologic mechanisms associated with
ASD have consistently implicated the cerebellum as well.
Computational studies have found that ASD susceptibility genes
are co-expressed in human cerebellum between the neonatal
period and age 6 years (Willsey et al., 2013), particularly within
the granule cell layer (Menashe et al., 2013). Further, many
syndromic forms of ASD involve cerebellar alterations including
Phelan-McDermid Syndrome, Fragile X Syndrome (FXS),
Tuberous Sclerosis (TSC), and patients with 15q11 duplication
syndrome (Abrahams and Geschwind, 2010; Mosconi et al.,
2011; Kloth et al., 2015). Cerebellar alterations also appear to
be specifically associated with ASD features. For example, while
FXS is associated with ASD and involves disruptions of multiple
brain systems, posterior vermis lobules VI–VII are affected only
in individuals with FXS with comorbid ASD (Kaufmann et al.,
2003). In the context of structural MRI studies showing that
posterior vermis lobules VI–VII also are reduced in volume
in idiopathic ASD, these findings provide strong evidence that
posterior vermal alterations may be uniquely associated with
ASD (see Stanfield et al., 2008 for a meta-analysis). Additional
evidence for cerebellar anomalies being selectively involved in
ASD comes from studies of individuals with TSC, a genetic
disorder caused by mutations of either TSC1 or TSC2 genes and
characterized by hamartomas in the brain and other organs.
Approximately 40% of individuals with TSC also are diagnosed
with ASD, and those individuals with TSC and cerebellar lesions
have more severe ASD features than those with lesions affecting
other brain regions (Eluvathingal et al., 2006). Studies of children
who have experienced perinatal cerebellar injuries further
support a central role of the cerebellum in the development
of ASD. These children experience a 36-fold increased risk of
developing ASD, making perinatal cerebellar damage the greatest

known non-genetic risk factor associated with the disorder
(Bolduc and Limperopoulos, 2009; Limperopoulos et al., 2009;
Bolduc et al., 2011; Wang et al., 2014).

Despite evidence for a primary role of the cerebellum in the
pathophysiology of ASD, the literatures describing the cerebellar
circuitries that are affected in patients and how they relate to
clinical impairments remain in their infancy. Afferent processes
to pontine nuclei originate from widespread regions of neocortex
and are relayed to different lobules of cerebellar cortex via
mossy fiber inputs (Eccles et al., 1967). These inputs arrive
from motor, sensory, posterior parietal, prefrontal, cingulate,
orbitofrontal, and temporal cortices as well as basal ganglia
nuclei (Dum and Strick, 2003). Output from the deep nuclei
of the cerebellum (dentate, interpositus, and fastigial) innervate
different subdivisions of ventrolateral thalamus (Percheron
et al., 1996) and then project to multiple neocortical areas
(Leiner et al., 1991, 1993). These cortical-pontine-cerebellar-
thalamic-cortical loops are highly segregated and support distinct
behavioral and cognitive functions including sensorimotor,
language, affective, and executive abilities (Habas et al., 2009;
Krienen and Buckner, 2009). Defects of the cerebellum thus could
have a pervasive impact on behavioral and cognitive development
while increasing risk for ASD by disrupting the maturation
and function of these cortical-cerebellar loops. If pathology in
the cerebellum is localized, cerebellar anomalies could have a
selective impact on different circuitries and thus contribute to
symptom heterogeneity in ASD.

There is accumulating evidence that multiple cortical-
cerebellar circuits are anatomically and functionally abnormal
in patients with ASD (Table 1). Diffusion tensor imaging (DTI)
studies have identified white matter alterations of the primary
output pathway from the cerebellum, the superior cerebellar
peduncle, and the primary cortical input pathway to the
cerebellum, the middle cerebellar peduncle (Catani et al., 2008;
Shukla et al., 2010; Sivaswamy et al., 2010). While these studies
suggest that cerebellar input and output processes connecting it
to neocortical areas are atypical in ASD, current DTI methods are
not able to discern the extent to which these anomalies selectively
involve different cortical-cerebellar loops.

A recent meta-analysis highlights a unique profile of
volumetric reductions in cerebellar gray matter of individuals
with ASD that is distinct from alterations found in attention
deficit-hyperactivity disorder (ADHD) and developmental
dyslexia (Stoodley, 2014). ASD-specific reductions in volume
were found in inferior lobule IX, left lobule VIIIB, and
Crus I. These regions also showed functional connectivity
with frontoparietal, default mode, somatomotor, and limbic
areas, consistent with the idea that different forms of cerebellar
pathology may differentially impact multiple brain networks
and cause varying developmental dysfunctions. Accordingly,
atypical patterns of cortical-cerebellar activation and functional
connectivity have been demonstrated in ASD during tests of
simple motor skills (Mostofsky et al., 2009), language (Hodge
et al., 2010; Verly et al., 2014), and emotion processing (Critchley
et al., 2000). Importantly, a recent resting state fMRI study of
individuals with ASD documented overconnectivity of cortical-
cerebellar circuits involved in sensorimotor control, as well as
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TABLE 1 | Summary of findings from prior ASD studies of different sensorimotor cerebellar circuits.

Oculomotor circuits Upper limb circuits Gait/Posture circuits

Histopathology • Minority of cases show reduced PC

density in vermis, though not as

prominent as in hemispheres

• Consistent reports of reduced PC density

in lob. IV–VI extending into lateral areas

including Crus I–II

• Reduced PC density in spinocerebellum,

though less prominent than in anterior or

lateral lobs

MRI anatomy • Findings of vermal hypoplasia involving

lobules VI–VII

• Consistent findings of overgrowth

throughout hemispheres

• Reduced volumes found in inferior lob. IX

Sensorimotor behavior • Increased amplitude of saccadic

intrusions during gaze fixation

• Reduced saccade accuracy

• Increased saccade amplitude variability

• Reduced rates of saccade adaptation

• Reduced closed-loop smooth pursuit gain

• Reduced gain of rightward eye

movements during open-loop phase of

smooth pursuit (first 100ms)

• Atypical reaching kinematics

• Slower, less smooth reach-to-grasp

movements

• Reduced coordination of grip and lift

forces during grasping

• Excess grip force during initial gripping

• Increased force variability during

sustained gripping

• Increased reliance on proprioceptive

feedback during motor learning

processes

• Impairments in visual feedback

processing during gripping and motor

learning

• Reduced anterior postural adjustments

during self-timed loading/unloading

• Increased postural sway, esp. in

mediolateral directions, during quiet

stance

• Reduced postural sway when trying to

initiate and maintain a dynamic stance

• Increased stride width, decreased stride

length, atypical walking kinematics

Functional imaging • Reduced BOLD activation during

saccades and smooth pursuit eye

movements

• Reduced and increased anterior and

lateral cerebellar BOLD activity found

during finger tapping and button pressing

sequencing tasks

• No studies reported

PC, Purkinje cells; ms, milliseconds; lob, lobule(s).

underconnectivity of cerebellar circuits involved in cognitive
and higher-order operations (Khan et al., 2015). These findings
provide important functional evidence that while cerebellar
pathology in ASD may affect multiple cortical and deep nuclear
circuits, distinct cortical-cerebellar loops or circuits may be
altered in different ways.

Studies of sensorimotor behaviors offer perhaps the most
direct approach for understanding the functional integrity
of different cerebellar circuits in ASD patients. Sensorimotor
tasks are highly translational, precisely quantifiable in both
spatial and temporal domains, and readily studied across wide
age ranges and developmental levels. The cerebellar networks
supporting sensorimotor development are relatively well defined
and include motor and parietal cortices as well as basal ganglia
nuclei (Gazzaniga and Mangun, 2014)—regions that have been
repeatedly implicated in ASD (Sears et al., 1999; Stanfield et al.,
2008; Mostofsky et al., 2009; Wolff et al., 2013).

Sensorimotor control is understudied in ASD, but there
is a growing literature showing that cerebellar-dependent
sensorimotor behaviors are compromised in ASD patients.
Sensorimotor deficits are found in the majority of individuals
with ASD (Fournier et al., 2010a), and these impairments can
emerge and be detected as early as infancy (Brian et al., 2008;
Lebarton and Iverson, 2013; Ben-Sasson and Gill, 2014; Leonard
et al., 2014; Ozonoff et al., 2014; Sacrey et al., 2015). They also
appear to be familial, suggesting that they may serve as useful
endophenotypes for advancing gene discovery (Mosconi et al.,
2010). In the present paper, we will describe what is known

about the distinct cerebellar circuitries involved in sensorimotor
behaviors and their functional integrity in ASD. Approaches for
understanding these circuitries in animal models of ASD and
determining their utility as targets for treatment development
also will be discussed.

Cerebellar Circuits Supporting
Sensorimotor Behaviors

More than half of all mature neurons in the brain are located
in the cerebellum (Butts et al., 2012), and many of the
circuits formed by these cells are involved in various aspects
of motor control (Ito, 1984). The precise role of these circuits
in controlling motor behavior remains debated, as various
zones of the cerebellum appear to make distinct contributions
including controlling the timing of movements, simultaneously
coordinating the movement dynamics of different effectors
(e.g., shoulder, elbow, and wrist joints during reaching), and
integrating multiple cortical signals and sensory inputs (Holmes,
1917; Bower, 2002; Jacobson et al., 2008; D’angelo and De Zeeuw,
2009; De Zeeuw et al., 2011). One prominent and unifying
framework hypothesizes that the cerebellum serves as a forward
controller of motor and cognitive activity (Ito, 1983, 2008; Miall
and Reckess, 2002). According to this model, the cerebellum
provides forward models used to predict the position and motion
of body parts based on an internal model of the dynamics
required to complete a given task. Forward control allows for
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rapid action as sensory feedback processes often occur too slowly
to guide initial or dynamic movements. After a motor command
is generated by the motor cortex, a copy of this command is
sent to the cerebellum (efference copy). The cerebellum then
uses its forward model to predict the sensory consequences
of the action (corollary discharge). The sensory predictions
are subsequently compared to actual sensory feedback and the
cerebellum generates corrective commands to refine the ongoing
movement (Wolpert et al., 1998). When the action repeatedly
deviates from the expected outcome, the forward model of
the cerebellum undergoes refinement to ensure the accuracy of
subsequent output (Scudder, 2002; Izawa et al., 2012a; Herzfeld
et al., 2014).

A unifying framework for the cerebellum appears plausible
in the context of its relatively invariant cellular architecture
that contrasts the diversity of cellular composition across
different neocortical areas. The cerebellar cortex consists of
numerous “microcomplexes” that are structured similarly across
lobules and different subregions (Ito, 2008) (Figure 1). These
microcomplexes are comprised of mossy fiber inputs, primarily
originating from pontine nuclei but also from vestibular nuclei,
the spinal cord, and reticular formation. Mossy fibers innervate
Purkinje cells of the cerebellar cortex via granular cells and
parallel fibers as well as feedback collaterals from deep cerebellar
nuclei. Excitatory mossy fiber inputs provide information from
neocortical regions as well as the spinal cord (Vogel et al., 1996;

Ramnani, 2006; Geborek et al., 2014). Climbing fibers originating
in the inferior olive communicate instructional or “teaching”
signals directly to Purkinje cells and initiate a process of long-
term depression (LTD) that selectively prunes parallel fiber-
Purkinje cell synapses and modifies the strength of inhibitory
output from Purkinje cells to deep nuclei (Nguyen-Vu et al.,
2013). This process is the basis of cerebellar learning and it allows
the cerebellum to consolidate and then modify internal models
of action that are used to predictively control motor behavior
(Wolpert et al., 1998).

Despite the similarity of these learning units across the
cerebellar hemispheres and vermis, there is considerable
anatomical specificity for different types of movements and
different aspects of movement control (Figure 2). Within the
cerebellum, somatic representations similar to those localized
in motor cortex have been demonstrated both in the cerebellar
cortex and in the deep nuclei (see Manni and Petrosini,
2004 for a review). Microzones consisting of parasagittally
aligned Purkinje cell populations form functional units that
innervate discrete areas of deep cerebellar nuclei and receive
segregated projections from the inferior olive (Cerminara,
2010; Oberdick and Sillitoe, 2011). Thus, the geometry of
the cerebellum is largely invariant at the cellular level, but
highly specialized and segregated functional units are found
at an intermediate level and at the level of cortical-cerebellar
networks.

FIGURE 1 | The microstructural organization of the cerebellar cortex showing the presence of three layers and the relative position of Purkinje,

basket, stellate, and Golgi cells and the main inputs (mossy and climbing fibers) of the cerebellum. There are two main afferents to the cerebellar cortex:

climbing fibers, which make direct excitatory contact with the Purkinje cells, and mossy fibers, which terminate in the granular layer and make excitatory synaptic

contacts primarily with granule cells, but also with Golgi cells. The ascending axons of the granule cells branch in a T-shaped manner to form the parallel fibers, which,

in turn, make excitatory synaptic contacts with Purkinje cells and molecular layer interneurons including stellate and basket cells.
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FIGURE 2 | Posterior view of the human cerebellum, showing the cerebellar fissure, lobular organization, and deep nuclei embedded within the

cerebellar cortex. Deep nuclei are located bilaterally but shown only in the left hemisphere for clarity purposes. Saccadic and smooth pursuit eye movements are

controlled by the oculomotor vermis including posterior lobules VI–VII, Crus I–II of the ansiform lobule, and their outputs in caudal fastigial nuclei. Upper limb

movements primarily involve anterior lobules I–V as well as more lateral areas of lobules V–VI extending into Crus I–II. Cerebellar circuits involved in controlling balance

and gait have been identified in the vermis and intermediate cerebellum (not shown).

The distinct cerebellar regions that support different types
of motor behavior have been well described in human imaging
and lesion studies as well as single-cell recordings of non-
human primates. These studies have identified discrete circuits
supporting eye movements, limb movements, and posture/gait.
Saccadic eye movements, or rapid shifts in eye gaze, as
well as smooth pursuit eye movements are controlled by the
oculomotor vermis including posterior lobules VI–VII, Crus I–
II of the ansiform lobule, and their outputs in caudal fastigial
nuclei (Takagi et al., 1998; Alahyane et al., 2008; Panouillères
et al., 2012). Crus I–II of ansiform lobule, the flocculus and
paraflocculus, uvula and nodulus are critically involved in steady
gaze fixation, smooth pursuit eye movements, and the vestibular-
ocular reflex (VOR) that is used to maintain fixation during
head rotation (Robinson et al., 1993; Hashimoto and Ohtsuka,
1995; Baier et al., 2009). Upper limb movements are under
the supervision of the intermediate and lateral zones of the
cerebellar cortex and their targets in the interposed and dentate
nuclei (Thach et al., 1992; Thach, 1997; Kuper et al., 2012;
Maderwald et al., 2012; Stefanescu et al., 2013). Circuits located
more medial in the vermis and intermediate cerebellum receive
neocortical input as well as direct spinal input to control
balance and gait (Brooks and Thach, 1981; Sullivan et al., 2010;
Vassar and Rose, 2014). Further, there appear to be distinct
subregions within these circuits to control different aspects of
motor output. For example, Neely et al. (2013) found that
cerebellar areas controlling initial manual motor output based
on internal action representations appear to be anterior to those

involved in continuous control of motor behavior based on visual
feedback. The high degree of functional specialization of these
distinct circuits suggests that their study in ASD may provide
key insights into the developmental neurobiology of this disorder
and the pathogenesis of sensorimotor issues and perhaps broader
behavioral and cognitive deficits.

Oculomotor Control in ASD

Studies of oculomotor control may be highly informative
regarding cerebellar function in ASD owing to their well-defined
neurophysiological substrates, quantitative nature, high degree
of heritability (Bell et al., 1994), and stability over time (Yee
et al., 1998; Reilly et al., 2005; Irving et al., 2006; Lencer et al.,
2008). Abnormalities of eye gaze also are part of the diagnostic
criteria for ASD, and while these deficits have been well studied
during social interactions, it is possible that more fundamental
and earlier emerging alterations of oculomotor control could
contribute to atypical patterns of eye gaze coordination among
affected children (Bryson et al., 2007; Elison et al., 2013).

Gaze fixation is an active process used to stabilize the fovea on
an image or object. While the eye undergoes naturally occurring
drift during the process of visual fixation, the oculomotor system
generates microsaccades to counter this drift and maintain
fixation (Zuber et al., 1965; Epelboim and Kowler, 1993). Visual
fixation is supported by the reciprocal balance of excitatory
burst and inhibitory omnipause neurons within the pons of
the brainstem as well as inputs from the frontal eye fields and
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superior colliculus that actively suppress saccades away from the
object of interest (Leigh and Zee, 2006). Pontine nuclei innervate
Purkinje cells of cerebellar vermis lobules VI–VII, and inhibitory
output from the oculomotor vermis helps suppress unwanted eye
movements and maintain an image on the fovea (Kase et al.,
1980). Abnormalities during visual fixation including slow, large
amplitude ocular drift, square wave saccadic intrusions, and gaze-
evoked nystagmus (repetitive, to-and-fro movements of the eyes)
each have been documented in patients with cerebellar lesions
(Jeong et al., 2007; Serra et al., 2008; Shaikh et al., 2009; Baier and
Dieterich, 2011).

Structural MRI and post-mortem studies have documented
abnormalities of the pons (Gaffney et al., 1988; Hashimoto et al.,
1991, 1993; Hashimoto and Ohtsuka, 1995; Bailey et al., 1998;
Jou et al., 2013) and cerebellar vermal lobules VI–VII in ASD
(Courchesne et al., 1988; Murakami et al., 1989; Hashimoto et al.,
1995; Fatemi et al., 2002a; Stanfield et al., 2008). Studies of
visual fixation in ASD have demonstrated increased amplitude
and reduced inter-saccade intervals of square-wave jerk saccades
relative to healthy controls (Nowinski et al., 2005; Aitkin
et al., 2013) suggesting increased excitation in ponto-cerebellar
circuitry in patients.

Saccades, or rapid shifts in eye gaze, are controlled by highly
specialized cortical-cerebellar circuits that also involve posterior
vermis and caudal regions of fastigial nuclei. The initiation of
saccades relies on the inverse process of visual fixation control via
the pons described above. In order for a saccade to be initiated,
the tonic inhibition of pontine burst cells must be simultaneously
released by omnipause cells while also being driven by excitatory
signals from the superior colliculus (Robinson, 1975; Leigh and
Zee, 2006). The dynamics of saccadic eye movements are directly
related to the firing rates of the burst cells and their interactions
with cerebellar output that predictively controls the amplitude
and accuracy of the movement (Luschei and Fuchs, 1972; Van
Gisbergen et al., 1981; Yoshida et al., 1999).

Reduced accuracy (Rosenhall et al., 1988; Takarae et al., 2004b;
Luna et al., 2007; Johnson et al., 2012; Schmitt et al., 2014) and
increased trial-to-trial accuracy variability (Takarae et al., 2004b;
Stanley-Cary et al., 2011; Johnson et al., 2012; Schmitt et al., 2014)
of saccadic eye movements have been repeatedly documented in
individuals with ASD. These results implicate forward control
mechanisms of the oculomotor vermis in ASD and a reduced
ability to precisely update internal representations used for
forward control. This profile of deficits in saccade control is
similar to what is seen in non-human primates following ablation
of the oculomotor vermis (Takagi et al., 1998) and patients with
spinocerebellar (Federighi et al., 2011) and Friedreich’s Ataxia
(Kirkham et al., 1979). Studies of saccade dynamics in ASD
have identified reduced velocities (Johnson et al., 2012; Schmitt
et al., 2014), increased duration (Rosenhall et al., 1988; Stanley-
Cary et al., 2011; Schmitt et al., 2014), and prolonged periods of
movement acceleration during the saccade (Schmitt et al., 2014)
suggesting an imbalance of pontine excitatory and inhibitory
processes that reciprocally interact with the cerebellum.

In the only known ASD study to directly examine brain
systems underlying saccade control, Takarae et al. (2007)
used fMRI to show reduced activation of frontal eye fields,

posterior parietal cortex, and cerebellar vermis and hemisphere
lobules VI–VII in patients making visually guided saccades.
Individuals with ASD also demonstrated increased activation
within frontal-striatal regions including the thalamus, caudate
nucleus, dorsolateral prefrontal cortex, and anterior cingulate
cortex. These results provide direct evidence for cortical-
cerebellar dysfunctions during eye movements in ASD, and also
suggest that frontostriatal systems typically dedicated to higher-
order cognitive processes may become more involved in simple
motor actions to compensate for cortical-cerebellar alterations in
ASD patients.

The oculomotor vermis also is involved in controlling smooth
pursuit eye movements used to track slowly moving targets.
Smooth visual pursuit relies on the rapid and temporally precise
integration of information frommultiple brain regions including
extrastriate areas of the visual cortex responsible for processing
visual motion, cortical eye fields and the cerebellum responsible
for translating sensory information into motor commands, and
the striatum and brainstem responsible for initiating motor
commands (Lisberger et al., 1987; Keller and Heinen, 1991; Ilg,
1997; Berman et al., 1999; Rosano et al., 2002). The initial phase
of visual pursuit is open-loop (typically defined as the first 100ms
of pursuit) and is driven solely by feedforward mechanisms.
The latter phase of smooth pursuit is closed-loop (occurring
after 100ms of pursuit) and is defined by online refinements of
eye velocity and position based on sensory feedback processes
encoded in the striate cortices and projected to posterior parietal
cortices and then to medioposterior cerebellar lobules VI–VII
(Ritchie, 1976; Fuchs et al., 1985; Stein, 1986; Kawato et al., 1987;
Noda et al., 1990; Takagi et al., 1998; Chen-Harris et al., 2008).

Reduced pursuit accuracy has been documented in ASD
during both the open-loop (Takarae et al., 2004a) and closed-
loop phases (Takarae et al., 2004a; Aitkin et al., 2013) implicating
both forward control and visual feedback processes. Deficits
in open-loop pursuit were lateralized in ASD affecting only
rightward movements. While suggesting a lateralized deficit, this
finding (also present in unaffected parents) (Mosconi et al.,
2010) is broadly consistent with diverse evidence indicating that
hemispheric specialization for motor functions may be disrupted
in patients (Escalante-Mead et al., 2003; Lindell and Hudry, 2013;
Seery et al., 2013; Forrester et al., 2014). Further, the amplitude of
saccadesmade to “catch up” tomoving targets during pursuit also
appears to be increased in ASD (Takarae et al., 2004a; Aitkin et al.,
2013). However, it should be noted that some studies have found
no differences in pursuit accuracy in ASD (Scharre and Creedon,
1992; Kemner et al., 2004), which may be related to findings that
older individuals with ASD demonstrate more similar closed-
loop tracking accuracy compared to healthy controls (Takarae
et al., 2004a). Still, cortical-cerebellar dysfunctions appear to
persist in adulthood as demonstrated by an fMRI study of smooth
pursuit eye movements that found reduced activation in frontal
eye fields, posterior partietal cortex, cingulate motor area, pre-
supplemental motor cortex, and cerebellar lobules VI–VII in
individuals with ASD (Takarae et al., 2007).

Perhaps the most sensitive probe of cerebellar circuits
supporting oculomotor control is to systematically induce error
into the system and then quantify the extent and rate at
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which the system adapts in order to evaluate plasticity in
forward control mechanisms. Tests of saccadic adaptation have
been used to assess cerebellar motor learning in non-human
primates and patients with cerebellar lesions. In prototypical
saccade adaptation tests, the visual target used to elicit a saccade
is displaced by a consistent amplitude close to the time of
movement initiation. Due to saccadic suppression of visual
information during the movement, target displacement is seldom
detected by the subject, but the amplitude of the saccade is
adjusted over subsequent trials to land more closely to the
displaced target rather than the original location. Adaptation
mechanisms have been localized to the oculomotor vermis during
this test (Desmurget et al., 1998; Barash et al., 1999), and
reduced rates of adaptation and increased variability of saccade
amplitudes have been found in individuals with cerebellar lesions
that include the vermis (Golla et al., 2008; Xu-Wilson et al., 2009).
Importantly, patients with non-vermal cerebellar damage show
spared adaptation abilities.

Two recent ASD studies revealed reduced rates of saccade
adaptation in affected individuals (Johnson et al., 2013; Mosconi
et al., 2013). In addition, increased variability of saccade accuracy
(Mosconi et al., 2013) and reduced time to peak saccade velocity
(Johnson et al., 2013) also were reported. Importantly, Mosconi
et al. (2013) found that 27% of subjects with ASD failed to
show any level of adaptation compared to only 6% of controls,
suggesting that a subset of patients may showmore severe defects
in cerebellar learning processes.

Studies of oculomotor control in ASD thus suggest alterations
within cortical-ponto-cerebellar circuits involving the posterior
vermis. These dysfunctions appear to be familial. Mosconi
et al. (2010) demonstrated that unaffected family members
of individuals with ASD show profiles of eye movement
abnormalities similar to those described in individuals with ASD.
Specifically, this study reported increased saccade error and
saccade error variability and reduced pursuit accuracy during
both closed- and open-loop phases suggesting that defects of
cortical-cerebellar circuits involved in oculomotor control may
contribute to the pathophysiology of ASD. Studies assessing
the extent to which these deficits co-segregate within different
families will be important for determining their utility as
endophenotypes in family genetic studies. Similarly, studies
showing direct linkages between these sensorimotor alterations
and pathology in discrete cerebellar circuits may help sort out
heterogeneity in the syndrome of autism based on biological
parameters for which there is mechanistic understanding.

Upper Limb and Manual Motor Control in
ASD

Control of upper limb movement and force generation is
supported by frontoparietal cortices and their targets in the
cerebellar cortex and deep nuclei. The circuits that control
various body parts are segregated at the levels of neocortex,
cerebellar cortex, and within the deep nuclei (Grodd et al., 2001).
Upper limb movements primarily involve anterior lobules I–V as
well as more lateral areas of lobules V–VI extending into Crus

I–II (Vaillancourt et al., 2006). Within these circuits, separate
zones have been found to be differentially involved in controlling
the amplitude, duration, and timing of movements (Mai et al.,
1988; Spraker et al., 2012; Neely et al., 2013).

The most prominent feature of upper limb movements and
manual motor control in patients with cerebellar lesions is
dysmetria which frequently is characterized by overshooting
of the target (Flament and Hore, 1986; Goodkin et al., 1993).
Patients also show increased accuracy variability from trial to
trial, impaired timing of their movements, overall slowness,
and increased curvature of movement trajectories (Hallett et al.,
1975; Bares et al., 2010). Upper limb and manual motor deficits
are associated with atrophy of the intermediate and lateral
cerebellum. Upper limb ataxia is found in patients with lesions of
lobules IV–VI, whereas lower limb ataxia appears to result from
defects in lobules III–IV (Schoch et al., 2006). Limb ataxia also
is correlated with lesions affecting the interposed or dorsomedial
dentate nuclei.

Limb movement abnormalities consistent with those seen in
cerebellar patients have been found in individuals with ASD.
When reaching toward targets, arm movements of individuals
with ASD show increased temporal and spatial variability as
well as atypical kinematic profiles characterized by reduced
velocities and rates of acceleration as well as increased latencies
of peak velocity (Glazebrook et al., 2006, 2009). The authors
hypothesized that individuals with ASD compensate for deficits
in forward control by slowing their reach and allowing more
time for sensory feedback control processes to help guide the
movement. Similar deficits in forward control have been shown
for children with ASD when reaching for objects on large (easy)
or small (hard) targets (Fabbri-Destro et al., 2009). While control
subjects slowed the speed of their movement when reaching
for smaller objects (in the more difficult condition), individuals
with ASD failed to modulate their movement speed to account
for the increased difficulty of the task. This finding suggests a
compromised ability to appropriately modulate the action plan
according to different task conditions.

Deficits in the sustained control of reaching movements
also have been found in ASD. Glazebrook et al. (2009)
found that reaching movements of individuals with ASD were
more severely affected when they required greater visual-
proprioceptive integration. These results suggest that individuals
with ASD show a reduced ability to simultaneously process and
integrate multisensory information, a process involving posterior
cerebellar circuits that translate sensory feedback information
into refined motor commands (Stein and Glickstein, 1992).
Further, Gowen and Miall (2005) showed that individuals with
ASD do not benefit from increased movement time in terms
of their end-point accuracy during rapid targeted pointing. A
more recent analysis of sinusoidal arm movements in ASD
similarly found that patients show atypical kinematic profiles
characterized by decreased movement smoothness (Cook et al.,
2013). Unlike targeted movements, these oscillatory movements
of individuals with ASD were increased in velocity and rate
of acceleration. One possible explanation for the reduced
smoothness of patients’ movements is a failure to anticipate the
point at which theymust change the direction of their movement,
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or difficulties using predictive mechanisms to modulate action
kinematics. Further, it is possible that patients were not able to
precisely and consistently modulate the timing of the onset and
offset of agonist and antagonist muscles across joints to facilitate
smoother movements (Vilis and Hore, 1980; Nowak et al., 2004).

Prehension
Prehension involves the coordinated act of reaching and
grasping, and it is central to many daily living activities that
are difficult for individuals with ASD (Brisson et al., 2012;
Mulligan and White, 2012; Libertus et al., 2014). The ballistic
acts of reaching and positioning the hand, affected by upper
arm and forearm musculature, are largely independent from
mechanisms subserving grasping actions, i.e., hand opening and
then closing upon the object (Jeannerod, 1981, 1984). The two
neural channels are assumed to be activated in parallel so that
they can be functionally coupled during the act of reaching to
grasp (Jeannerod, 1981, 1984). The “arm reaching” channel is
believed to extract information about the spatial location of the
object for transformation into motor patterns that bring the hand
appropriately toward the object. The “grasp” channel extracts
information about the intrinsic properties of the object for the
determination of a suitable grasping position and appropriate
level of force generation.

Slower reach-to-grasp movements have been found in
individuals with ASD and comorbid intellectual disability
(Mari et al., 2003). These movements were characterized by
longer durations, greater temporal delay between peak reach
velocity and peak grip aperture, a prolonged deceleration phase,
reduced reaching velocity and prolonged time to maximum
hand aperture. However, these deficits in forward control and
movement coordination were not evident in individuals with
ASD whose IQ was in the average range, suggesting that
cerebellar dysfunctions may vary across the autism spectrum
in relation to general cognitive ability. Still, others have found
that individuals with ASD decompose reaching and grasping
movements, and that these deficits are evident across the autism
and IQ spectra (Cattaneo et al., 2007; Fabbri-Destro et al., 2009).
These findings suggest that instead of translatingmovement goals
into a chain of smoothly synchronized motor acts, individuals
with ASD independently execute each component of the goal in a
more sequential manner (Mari et al., 2003; Nazarali et al., 2009).

Studies of the grasping component of prehension provide
a unique opportunity to investigate distinct motor control
mechanisms in ASD that are linked to different circuits of the
cerebellum. Neely et al. (2013) identified separate cerebellar
circuits associated with dynamic aspects of gripping and
sustained feedback control of grip. Spraker et al. (2012) also
found that cerebellar regions that scaled with force amplitude
could be segregated from those associated with the duration of
force output. By examining different components of precision
grip control in ASD, it thus may be possible to localize cerebellar
circuit dysfunctions.

Prior studies of patients with cerebellar lesions have
documented patterns of deficit during precision gripping
including excess initial force output, increased sustained force
variability, and decreased rates of force relaxation (Mai et al.,

1988; Müller and Dichgans, 1994; Serrien and Wiesendanger,
1999; Fellows et al., 2001; Nowak et al., 2002, 2004). Forward
control deficits would limit individuals’ ability to form accurate
initial movements, and sensory feedback processes would need
to compensate to steer the movement back to the intended
goal following afferent delays. Given the delays in sensory
feedback, movement corrections can never be optimal (increased
movement variability), because they are always computed for
a portion of the trajectory that occurred in the past. Thus, a
strategy emphasizing feedback over forward control processes
may contribute to reduced precision or increased variability of
motor output (Bastian, 2006).

Precision gripping studies have been performed to analyze
forward control and feedback mechanisms. When an object is
lifted using a pinch grip, grip force (against the object) increases
simultaneously with load force (lifting of the object) prior to
picking up the object (Johansson and Westling, 1984, 1988;
Westling and Johansson, 1984). The rate of grip force increase
and the grip force amplitude each depend on the object’s weight
and its surface texture. Therefore, grip force must be timed
correctly with respect to the anticipated object load. During a
test of precision gripping, Johansson and Westling (1984) found
that participants’ final grip force was greater when lifting heavier
or more slippery objects suggesting that increases in grip force
during the loading phase are planned in anticipation of the
properties of the object.

Assessing grip and load force timing in individuals with ASD,
David et al. (2009, 2012) found significant increases in grip to
load force onset intervals suggesting temporal dyscoordination
of these component processes. The authors also documented
increased grip force at load force onset that may reflect
either patients’ inability to correctly time the grip force with
respect to the anticipated load, or a compromised ability to
use prior experience to correctly predict the required load
force. In contrast, Gowen and Miall (2005) failed to identify
forward control deficits in adults with ASD during precision
gripping. Differences between these findings could reflect the
non-overlapping age distributions across the studies. Gowen and
Miall studied an older cohort (ages 18–49 years), and recent
work has suggested that deficits in forward control of precision
grippingmay become less pronounced with age in ASD (Mosconi
et al., 2015). Further, the nature of the different tasks used in
these studies could have led to the discrepant findings. Gowen
and Miall (2005) had subjects lift an object repeatedly allowing
them to have greater experience with the load force required and
thus providing sufficient information for individuals with ASD to
adjust their force output. This would suggest that patients may be
able to accurately calibrate forward controllers, but that they may
need more practice than healthy individuals.

Using a novel analysis approach adopted from prior reaching
studies, Wang et al. (2015) recently found that individuals with
ASD show distinct patterns of initial gripping strategies. By
measuring the derivatives of individual force traces, the authors
identified inflections in force output reflecting changes to the
initial motor plan putatively based on visual, somatosensory, and
proprioceptive feedback inputs (Novak et al., 2000; Wisleder and
Dounskaia, 2007; Grafton and Tunik, 2011). Three different types
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of feedforward control processes were identified: Type 1 pulses
were associated with target overshooting and were characterized
by rapid increases in force followed by a rapid force reduction to
match the target; Type 2 pulses were defined by a more gradual
increase in force followed by a pause and then a secondary force
increase to reach the target; Type 3 pulses were distinguished
by a series of temporally overlapping pulses used to reach the
target force level. While controls showed a bias toward Type
1 pulses at low target force levels and trials that were shorter
in duration, they utilized the more efficient Type 2 pulses to
gradually reach their target levels when the target force or trial
duration were increased. Individuals with ASD, in contrast, did
not adapt their primary force strategy as flexibly, showing a
persistent bias toward Type 1 pulses at both higher force levels
and during trials of longer duration. These findings suggest that
the internal representations used to predictively guide initial
motor output are more stereotyped for individuals with ASD and
thus may limit their ability to adapt motor skills to new and more
complex task demands.

Further evidence for deficits in anticipatory control of motor
output in ASD is seen in an analysis of force relaxation during
precision gripping (Wang et al., 2015). The authors found that
individuals with ASD show reduced rates of force relaxation
after receiving visual cues that they should release their force
level. To initiate grip relaxation, antagonist, and agonist muscles
of the fingers must be synchronously activated and deactivated,
respectively, within a rapid time frame. Reduced rates of grip
force relaxation in ASD may reflect impairments in generating
or executing coordinated muscle activities as seen in patients
with cerebellar lesions (Küper et al., 2011). Studies directly
examining muscle activities during precision gripping using
electromyography (EMG) will be important for elucidating
the mechanisms contributing to deficits in anticipatory motor
processes in ASD.

Feedback control of sustained precision grip also appears
to be disrupted in ASD. During sustained control of grip,
visual feedback information from visual cortex is projected to
posterior parietal cortex, and then anterior to premotor and
primary cortices (Glickstein and Stein, 1991). A more efficient
subcortical route through posterior cerebellum also is used to
translate visual-spatial feedback information into a more precise
motor command executed by motor cortex (Glickstein and Stein,
1991; Stein and Glickstein, 1992). Mosconi et al. (2015) and
Wang et al. (2015) each found that individuals with ASD show
increased sustained force variability during a precision gripping
test in which they receive online visual feedback about their
performance (Figure 3). In these studies, participants pressed on
two opposing load cells with their thumb and index finger while
a horizontal force bar moved upwards with increased force. They
were instructed to press on the load cells so that the force bar
reached the same level as a static target bar, and then to keep
it there as steadily as possible. Individuals with ASD showed
increased variability of their force output over time that became
more severe at higher force levels and in relation to the gain
of visual feedback (Mosconi et al., 2015). Elevations in force
variability were evident both at the lowest and highest visual
gains, suggesting that individuals with ASD have a reduced ability

FIGURE 3 | To assess precision gripping control during rise, sustained,

and relaxation phases, individuals pressed against two opposing load

cells while receiving visual feedback from the monitor in front of them.

Individuals viewed two horizontal bars: a red/green target bar and a white force

bar. The white force bar moved upward with increased force, and individuals

were instructed to press on the load cells as quickly as possible when the

target bar turned green so that the force bar reached the height of the target

bar. They also were instructed to keep the force bar as close as possible to the

target bar until the target bar turned red again, and then to release the load

cells as fast as possible. Adapted with permission from Wang et al. (2015).

to process highly degraded and highly magnified visual feedback
information.

Mosconi et al. (2015) also found that individuals with ASD
showed less complexity in the time-dependent structure of
their force output, suggesting a failure to utilize the multiple
control processes required to rapidly and precisely adjust motor
behavior, including visual, proprioceptive, somatosensory, and
forward mechanisms. Analyses of spectral profiles identified
increased power in the 0–4Hz range for individuals with ASD
and relatively decreased power at higher frequencies (4–12Hz)
indicating an overreliance on slower feedback mechanisms. This
is an inefficient strategy during large force productions for
which rapid corrections are necessary to reduce larger errors
in behavioral outputs. As the time delay of the motor response
is increased, there would be a greater grip force deviation
from the target if slower mechanisms are used exclusively.
Therefore, individuals with ASD appear to show central deficits
in integrating sensory feedback information and dynamically
adjusting motor output consistent with defects of neocortical-
posterior cerebellar circuitry. Thus, deficits in feedback control
processes supporting online motor adjustments also appear to be
present in ASD.

Motor Learning
Cerebellar processes involved in learning and updating internal
action representations of upper limb movements appear to
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be compromised in ASD. During adaptation, error signals
relayed via climbing fiber inputs to Purkinje cells invoke LTD
that modifies the strength of population firing of GABAergic
output from zones of Purkinje cells (Antunes and De Schutter,
2012). Initial studies of adaptation suggested that cerebellar
learning occurs at a similar rate in ASD relative to healthy
controls (Mostofsky et al., 2004; Gidley Larson et al., 2008).
However, subsequent studies have indicated that individuals
with ASD acquire new motor skills differently than controls. In
a series of studies, Mostofsky and colleagues had participants
complete a reaching adaptation task in which they moved a
robotic handle toward a target. During this test, participants’
moving arm was shielded from view, but they received visual
feedback on a screen in front of them about the location of
the handle and the target. Force perturbations were introduced
perpendicular to the moving arm, and subjects thus changed
the trajectory of their movement to counteract these forces and
move as directly as possible to the target on subsequent trials.
Participants then completed trials without force perturbations
in which they demonstrated their ability to generalize their
learned movement trajectories using an identical joint rotation
(proprioceptive feedback) or hand motion (visual feedback) as
the training movements. Haswell et al. (2009) and Izawa et al.
(2012b) each found that individuals with ASD generalized their
movements in proprioceptive coordinates to a greater extent than
controls suggesting an overreliance on proprioceptive feedback
information. Izawa et al. (2012b) and Marko et al. (2015) also
found that individuals with ASD showed weaker generalization
in visual space compared to controls implicating a reduced
ability to integrate visual feedback information during motor
learning. The latter study showed that reduced learning rates
in ASD in visual coordinates were related to reduced volumes
of anterior cerebellar lobules extending into lobules VI and
VIII. Further, patients’ over-reliance on proprioceptive feedback
in acquiring new motor skills was associated with social and
imitation impairments suggesting that fundamental deficits in
motor control and learning may contribute to deficits in more
complex social-motor skills in ASD (Haswell et al., 2009; Cook
et al., 2013).

In summary, studies of upper limb movements, manual
motor control, and motor learning implicate defects of forward
control, sensory feedback control, and cerebellar dependent
learning in ASD. These processes are supported by distinct
zones of the cerebellum and their interactions with frontal and
parietal cortices. Few functional MRI studies have examined
cortical-cerebellar contributions to upper limb control. Allen
and Courchesne (2003), Allen et al. (2004) each found increased
anterior cerebellar activation and atypical contralateral and
posterior cerebellar activation in subjects with ASD during a self-
paced finger tapping test. During finger tapping tests in which
participants follow a visual prompt, anterior, and ipsilateral
cerebellar lobules show reduced activation in ASD (Müller et al.,
2001; Mostofsky et al., 2009). Further, reduced activation was
seen in thalamic and motor cortical targets in ASD and reduced
functional connectivity between these motor regions also was
documented (Müller et al., 2001; Mostofsky et al., 2009). Anterior
cerebellar lobules IV–VI and their connections with frontal and

parietal motor regions thus appear to be compromised in ASD.
These effects may disrupt control and learning of upper limb and
manual motor actions, and they could impact the development of
more complex social motor skills that are central to the disorder.

Gait and Postural Control in ASD

Cerebellar circuits involved in controlling balance and gait
have been identified in the vermis and intermediate cerebellum
(Haines and Mihailoff, 2002; Apps and Garwicz, 2005; Ramnani,
2006). These regions receive afferent input both from motor
and parietal cortices as well as direct innervation from the
spinal cord (Apps and Garwicz, 2005). Afferent relays to the
spinocerebellum originate from interneurons in the spinal gray
matter that terminate as mossy fiber inputs in the vermis or
intermediate cortex (Apps and Garwicz, 2005; Ramnani, 2006).
Spinocerebellar inputs provide rapid proprioceptive feedback
information that can be integrated with somatosensory, visual
and vestibular feedback to maintain postural stability. Based
on these inputs, individuals are able to align the projection
of their body’s center of mass within their base of support by
actively manipulating the center of pressure under their feet
while standing (Riccio, 1993;Winter, 1995; Horak, 2006). During
walking, ventral spinocerebellar tracks carry internally generated
information about movement rate and trajectories as well as
the rhythmic discharge of somatic receptors to the cerebellum
whereas the dorsal track provides sensory feedback information
during the movements (Jahn et al., 2004; Hoellinger et al., 2013).

During walking, patients with spinocerebellar atrophy show
an increased postural sway path along the anterior-posterior axis
(Diener et al., 1985). Increased stride width and stride length
variability are hallmark signs of ataxia evident in the majority
of cerebellar patients during walking (Cavallari et al., 2013;
Kafri et al., 2013). Patients with anterior cerebellar lesions also
demonstrate issues when trying to maintain postural control
while standing. In response to externally triggered perturbations,
patients with alcohol-induced anterior cerebellar lobe syndrome
showed increases in the magnitude of their EMG responses and
overshooting of their initial postural compensation suggesting
imprecision of forward control mechanisms (Horak and Diener,
1994). Abnormal EMG latencies recorded from anterior tibial
and triceps surae muscles also have been observed in patients
with anterior lobe atrophy as well as those with vestibulo-
cerebellar lesions and Friedreich’s ataxia (primarily affecting the
spinocerebellar pathway) in response to unexpected rotations
of a platform on which they were standing (Diener et al.,
1984). These results suggest alterations in sensory feedback
control processes that reactively adjust muscular forces used to
maintain postural stability. These deficits differ somewhat from
those reported in patients with basal ganglia or motor cortical
dysfunctions suggesting that the cerebellum plays a highly
specialized role in forward and feedback control of postural
and balance mechanisms, and in coordinating the timing and
amplitude of movements during walking.

General balance preservation when standing is a continuous
process driven primarily by lower limb muscular reflexes (a
feedback control process) that involve minimal effort or attention
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(Woollacott and Shumway-Cook, 2002). When self-initiated
(e.g., leaning forward) or externally triggered perturbations to the
system are predicted, forward control processes are invoked to
make anticipatory postural adjustments (APAs) and dynamically
ensure balance (for details, see reviews by Massion, 1992; Aruin,
2002). For example, APAs allow an individual to release an object
without falling over by initiating a compensatory backward sway
through deactivation of postural flexor muscles (i.e., erector
spinae and soleus) and activation of extensor muscles (i.e., rectus
abdominis, rectus femoris, tibialis anterior), respectively (Aruin
and Latash, 1995). Comparatively, if the load is slowly taken away
by the experimenter, the backward postural sway and muscle
activities will be attenuated or absent.

Few studies have examined APA mechanisms in ASD.
Studying a small sample of children with ASD, Schmitz
et al. (2003) found a unique pattern of atypical muscle
activation/deactivation during a task of postural control. During
this test, participants were seated in a chair with their left elbow
flexed at 90◦ while their forearm rested on a support attached to
the chair. A load was attached to a bracelet on the participant’s left
wrist. In trials of self-initiated unloading, participants unloaded
the bracelet using their right hand when they felt ready. To
stabilize their left forearm after unloading, healthy controls
showed anticipatory adjustments involving activity in the biceps
brachii 15ms before unloading the weight. This change was
followed by a stretch reflex of triceps brachii after the onset of
unloading. In contrast, children with ASD showed delayed biceps
brachii activation with its onset 58ms after unloading and triceps
activity attenuation throughout the trial. Results thus indicate
that individuals with ASD are less able to use APA mechanisms
to maintain postural control during self-initiated activities.

The neurophysiological substrates of APA have been
examined in ASD using electroencephalogram (EEG) during
imposed and self-initiated unloading tasks (Martineau et al.,
2004). While EEG provides high frequency information on
neocortical activity, it is less suitable for directly studying
cerebellar mechanisms. However, given the known effects of
cerebellar activity on motor and parietal cortical activity, analysis
of EEG data during tests of APA and postural control may offer
some insight into cortical-cerebellar functions in ASD (Manto
et al., 2012).

During an externally-imposed unloading task, decreased
power density at 6–8Hz was observed after unloading
corresponding to the cortical responses recorded during
involuntary arm reflexes. This cortical response was identified
bilaterally over motor cortices (i.e., C3 and C4) in both control
children and children with ASD suggesting that unloading
reflexes are intact in ASD (Schmitz et al., 2003). During a
self-initiated bimanual unloading task, control children showed
a significant decrease in power density above C3 and C4
400–500ms before the onset of the action. However, children
with ASD did not show corresponding anticipatory decreases in
power density suggesting deficits in cortical systems involved in
forward control mechanisms supporting APAs as well as possibly
their cerebellar targets. However, this pattern of deficit appears
to be different from what has been reported for patients with
cerebellar lesions (Horak and Diener, 1994). While individuals

with ASD show antagonist muscle activations that are largely
delayed and depressed, postural corrections in patients with
cerebellar lesions show a pattern of overshooting. Determining
the mechanisms contributing to deficits in forward control
processes involved in postural stability will be important for
identifying abnormal circuits in ASD. This information may be
particularly important in the context of findings that postural
stability provides a critical foundation for a range of more
complex and fine-grained motor behaviors.

During studies of balance, individuals with ASD have been
found to show increased postural sway across the lifespan
(Molloy et al., 2003; Minshew et al., 2004; Chang et al., 2010;
Fournier et al., 2010a; Radonovich et al., 2013; Memari et al.,
2014). An important observation from these studies is that
children with ASD showed greater medio-lateral as opposed to
anterior-posterior postural sway, and that their medio-lateral
range of motion was greater than that for typically developing
controls (Kohen-Raz et al., 1992; Chang et al., 2010; Fournier
et al., 2010a; Memari et al., 2014). Increased postural sway
in medio-lateral directions during quiet stance is commonly
observed in young children under the age of 10 years who
show a reduced ability to maintain balance in the anterior-
posterior direction causing them to increase their base of
support in medio-lateral directions to compensate from internal
perturbations (Maki et al., 1990; Riach and Starkes, 1994;
Slobounov and Newell, 1994; Prieto, 1996). Studies documenting
postural instability in ASD thus suggest that this system
remains immature throughout development (Minshew et al.,
2004).

When required to stand as still as possible under naturalistic
conditions, healthy controls primarily rely on somatosensory
information, followed by vestibular and then visual feedback
(Peterka, 2002; Horak, 2006). Increased weighting toward
vestibular and visual information can be induced by reducing the
stability of the standing surface and thus limiting somatosensory
feedback (Massion, 1994; Peterka, 2002; Horak, 2006). When
asked to stand on a foam board to provide an unstable surface,
individuals with ASD showed increased variability of their center
of pressure over time and a reduction of postural stability
compared to healthy controls (Molloy et al., 2003). This deficit
became more severe when participants kept their eyes shut
suggesting a greater reliance on visual feedback control processes
and a reduced ability to utilize vestibular information to help
preserve balance.

During tests of dynamic standing in which participants
attempt to maintain balance in a virtual environment with
oscillatory visual feedback information, healthy controls are able
to optimize the frequency of their postural sway to match that
of visual feedback (Slobounov et al., 1997, 1998). In contrast,
individuals with ASD showed attenuated postural sway at 0.2Hz
(Gepner et al., 1995; Gepner and Mestre, 2002). Greffou et al.
(2012) also found that younger participants with ASD (ages
12–15 years old as opposed to 16–33 years old) displayed
significantly less postural sway than controls when visual stimuli
oscillated at 0.5Hz. These findings indicate that visual feedback
mechanisms used to help dynamically support postural control
are compromised in individuals with ASD.
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Gait
At the initiation of walking, there is a purposeful uncoupling of
the center of pressure and center of mass (Winter, 1983, 1995;
Remelius et al., 2014). The center of pressure shifts posteriorly
to generate forward momentum and propel the center of mass
forward. The center of pressure also shifts initially toward the
swing leg as a result of the unloading of the stance leg generating
the initial lateral acceleration of the center of mass toward the
stance leg (Winter, 1995). Studying gait initiation, (Fournier et al.,
2010b) found that individuals with ASD showed intact center
of pressure posterior shifts but a significantly reduced center of
pressure lateral range of motion indicating a reduced capacity
to generate lateral momentum and propel the upper body from
side-to-side.

Walking has been described as a “throw-catch up” process
during which the body propels the center of mass into an unstable
state beyond the anterior limit of the base of support in what
is often called a “controlled fall” (Winter, 1983, 1995; Remelius
et al., 2014). The catch up process then involves taking a step
forward to slow momentum and create a new base of support.
Early studies of gait in ASD identified Parkinsonian features
including dystonia, involuntary dyskinesia of the extremities,
abnormalities in muscle tone, rigidity, hypertonia, and decreased
coordination of arm and leg movements. Studying individuals
with ASD, Vilensky et al. (1981) observed reduced stride length,
increased stance duration, increased hip joint flexion at “toe-
off” and reduced knee extension and ankle dorsiflexion at initial
contact. Additional features reported in a series of observational
studies included toe-striking, strides in which the whole foot
was simultaneously placed on the ground at the phase of
initial contact rather than as a heel-strike, “striatal” toes (i.e.,
spontaneous upward movement of the big toes similar to
the Babinski reflex), claw toe and hand posture (Walker and
Coleman, 1976; Folstein and Rutter, 1977; Damasio and Maurer,
1978; Teitelbaum et al., 1998; Esposito and Venuti, 2008).
Vernazza-Martin et al. (2005) reported significant increases in
ASD patients’ head, shoulder, trunk, and hip angular motion that
were associated with an increased variability in the trajectories
of their walking paths. Increased stride length and stride width
variability also have been commonly observed in individuals with
ASD (Blin et al., 1990; Vernazza-Martin et al., 2005; Rinehart
et al., 2006).

The mechanisms that contribute to walking abnormalities
remain unclear as patterns do not cleanly fit with models of
ataxia, basal ganglia dysfunction, or other neurological disorders.
However, sensory processing and integration disturbances
appear to play a significant role in the walking disturbances
observed in individuals with ASD. Rinehart et al. (2006) studied
participants with ASD who were instructed to walk either
at their own preferred speed (stride length) or with strides
that were 20% greater than their average stride length. For
the longer stride condition, participants walked either utilizing
visual cues indicating how long to stride, or without visual
cues. In contrast to healthy controls, individuals with ASD
showed significant increases in stride-length variability for both
preferred and visually cued conditions indicating an impaired
ability to consistently anticipate the amplitude of the targeted

movement or to use visual feedback to guide the amplitude of the
movement.

In summary, studies of posture, gait initiation and walking in
ASD implicate gross motor impairments consistent with deficits
of both forward control and sensory feedback mechanisms
involving medial and intermediate cerebellar circuits. These
deficits may reflect alterations in spinocerebellar tracts that
innervate the cerebellum primarily through the inferior
cerebellar peduncle (Cheng et al., 2010). Further studies
examining spinocerebellar circuit anatomy and function are
needed to better understand the integrity of these networks in
ASD and their relation to gross motor abnormalities in patients.

Early Dysmaturation of Sensorimotor
Systems in ASD

Multiple cerebellar circuits involved in sensorimotor control thus
appear to be compromised in ASD. These circuits undergo rapid
refinement during the early postnatal period that, if derailed,
could have a significant impact both on sensorimotor behavior
and other aspects of development (Ashwell and Zhang, 1992).
The cerebellum undergoes rapid growth during the last trimester
and early postnatal period. Mossy fibers form transient contacts
with developing Purkinje cells during embryonic development,
but they do not form their parasagittal zones with Purkinje
cells until shortly after birth (Arsénio Nunes and Sotelo, 1985).
Climbing fibers become organized into parasaggital stripes by late
embryogenesis in the rat and mouse (Sotelo et al., 1984; Chedotal
and Sotelo, 1992; Paradies et al., 1996). At a more macroscopic
level, the cerebellum has been shown to undergo the greatest
amount of volumetric increase among all studied brain regions
during the first 30 days of life (Holland et al., 2014). Perinatal
disruptions of neurodevelopment could selectively affect these
processes that are occurring rapidly around birth.

To add to the vulnerability of the cerebellum, Purkinje cells
are a relatively large (50–80µm) class of neurons whose synapses
with olivary climbing fibers form some of the most energy
demanding connections in the brain (Sugimori and Llinás, 1990;
O’hearn and Molliver, 1997; Welsh et al., 2002). As a result of
the high level of excitatory amino acid synaptic connections and
the response of the Purkinje cell that is mediated by voltage-
gated and receptor-gated calcium channels, the Purkinje cell has
an exceptionally high metabolic demand. This high metabolic
demand combined with constant input from the inferior olive
and large amounts of calcium stores and influx makes the cell
particularly vulnerable to excessive rises in intracellular calcium
that are associated with excitotoxicity and cell death (Vajda,
2002).

These factors may help explain the repeated findings of
Purkinje cell pathology in ASD. Studies of other cerebellar cells
provide insight into possible timing and mechanisms. Purkinje
cells synapse with basket and stellate interneurons to support
their survival. In the lone study to count the number of basket
and stellate cells in brain tissue from individuals with ASD,
no difference in the number of these interneurons were found
suggesting that Purkinje cells were generated, migrated to their
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proper location and then atrophied or died (Whitney et al.,
2009). There also is no apparent loss of climbing fibers from the
inferior olive (Whitney et al., 2008). Climbing fibers synapse with
Purkinje cells shortly before birth but die off if there is Purkinje
cell loss (Holmes and Stewart, 1908; Whitney et al., 2008).
Findings that there is no loss of climbing fiber inputs suggest that
Purkinje cell loss occurs prenatally, rather than as a regressive
effect of later alterations in cortical feedback. Consistent with this
hypothesis, Bauman and Kemper (1985) report an absence of
gliosis. However, Bailey et al. (1998) reported gliosis in a subset
of post-mortem tissue of individuals with ASD that could be
associated with postnatal loss of Purkinje cells. Further research
is needed to resolve this important discrepancy.

Sensorimotor abilities also undergo rapid maturation during
the early postnatal period. These skills form the basis for
multiple aspects of cognitive and language development,
and their disruption could directly contribute to the social-
communication deficits that define ASD (Lebarton and Iverson,
2013). Sensorimotor impairments have been repeatedly shown
to be associated with social and language impairments in ASD
(Takarae et al., 2004b; Haswell et al., 2009; Mosconi et al.,
2009, 2015; Cook et al., 2013) and variable in terms of their
severity over the course of development (Takarae et al., 2004b;
Luna et al., 2007; Mosconi et al., 2015). Both retrospective
videotape analyses and prospective studies of infant siblings of
children with ASD have documented abnormal sensorimotor
development within the first year of life affecting postural control,
crawling and early walking, fine motor movements, prehension,
and eye movements (Brian et al., 2008; Lebarton and Iverson,
2013; Ben-Sasson and Gill, 2014; Leonard et al., 2014; Ozonoff
et al., 2014; Sacrey et al., 2015). Evidence that sensorimotor
deficitsmay be present before the defining features of the disorder
further indicates that their study in infancy may be highly
informative for early diagnostic efforts aimed at guiding early
interventions.

Preclinical Modeling of Cerebellar
Involvement in ASD

In addition to being affected in idiopathic ASD, the cerebellum
has been consistently implicated in several monogenetic
syndromes associated with ASD (e.g., FXS, Phelan-McDermid
Syndrome). And, its disruption appears to be selectively related
to the severity of patients’ ASD symptoms (Kaufmann et al., 2003;
Eluvathingal et al., 2006; Aldinger et al., 2013). These findings
suggest that preclinical genetic models may advance a more
mechanistic understanding of the cerebellum’s contributions
to the pathogenesis of ASD. Preclinical models also provide
a means to develop and ultimately test targeted therapeutics
that will benefit sensorimotor and behavioral dysfunctions in
ASD. To this end, multiple preclinical models have emerged
that have shed light on the underlying pathophysiology of
ASD. Here, we will focus on several models of known
monogenetic disorders in which a disproportionate number
of patients meet criteria for ASD, and chromosomal or gene
abnormalities associated with high rates of ASD. Sensorimotor

impairments have been reported for many of these models,
and cognitive and behavioral dysfunctions consistent with
and pathognomonic for cerebellar dysfunction also have been
reported.

Fragile X Syndrome (FXS)
FXS is caused by expansion of CGG trinucleotide repeats in the
Fragile X mental retardation 1 (FMR1) gene, which codes for
the Fragile X Mental Retardation Protein 1 (FMRP1). Resulting
methylation of the FMR1 promoter results in the absence of
functional FMRP1 protein product. Individuals with FXS show
developmental/intellectual disability and high rates of ASD and
account for ∼1–2% of total ASD cases. Fmr1 knockout mice
display hyperactivity, repetitive behaviors, impaired learning and
memory, and variable social impairments (1994; Koekkoek et al.,
2005; Spencer et al., 2005; McNaughton et al., 2008; Moy et al.,
2009). Mutant mice also demonstrate cerebellar abnormalities
with elongated spines and enhanced LTD (Koekkoek et al., 2005)
consistent with enhanced plasticity in other brain regions (Bear
et al., 2004). Fmr1 global knockout mice as well as Purkinje cell
specific fmr1 knockouts demonstrate impairments in eyeblink
conditioning, a form of associative learning requiring intact
cerebellar function (Freeman and Steinmetz, 2011). Patients
with FXS demonstrate similar deficits in eyeblink conditioning
(Koekkoek et al., 2005) as well as cerebellar-associated motor
dysfunctions (Zingerevich et al., 2009). Taken together with
studies showing abnormal eyeblink conditioning in human
studies of patients with idiopathic ASD (Sears et al., 1994;
Oristaglio et al., 2013), these data support the presence of
abnormal cerebellar function in patients with idiopathic ASD and
ASD associated with Fragile X disorders.

Tuberous Sclerosis Complex (TSC)
TSC, like FXS, is a monogenetic disorder associated with
intellectual and neurodevelopmental disability, seizures, and
ASD (∼50%), contributing to 1–2% of ASD patients. This
disorder results from mutations of a single copy of either TSC1
or TSC2, whose protein products heterodimerize and act to
negatively regulate the mechanistic target of rapamycin (mTOR)
protein, a critical regulator of protein translation (Kelleher and
Bear, 2008; Thoreen et al., 2012). Patients with TSC show fine
motor impairments (Jeste and Geschwind, 2014), and patients
with mutations in the TSC2 gene have demonstrably smaller
cerebella (Weisenfeld et al., 2013). Moreover, cerebellar lesions
associated with ASD in TSC and the deep cerebellar nuclei have
been found to be abnormal in patients with ASD and TSC (Weber
et al., 2000; Eluvathingal et al., 2006), suggesting that cerebellar
dysfunction may play a selective role in the pathogenesis of ASD
in TSC (Asano et al., 2001).

To better understand whether cerebellar dysfunction was
sufficient to cause ASD behaviors, Tsai et al generated a
mouse model lacking tsc1 in cerebellar Purkinje neurons.
These mutant mice demonstrated behaviors associated with
ASD—social impairment, repetitive behavior, inflexible behavior,
vocalization abnormalities—in addition to electrophysiologic
abnormalities and cellular pathology similar to that seen in TSC
patients (Tsai et al., 2012). In addition, abnormalities in delayed
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eyeblink conditioning similar to those seen in patients with
ASD and FXS are seen in these mice (Kloth et al., 2015). Early
postnatal treatment of these mutant mice with the mTOR specific
inhibitor rapamycin prevented the development of motor and
ASD behaviors and the development of cerebellar pathology (Tsai
et al., 2012). These findings were subsequently replicated in a
mouse model where tsc2 was deleted in cerebellar Purkinje cells
(Reith et al., 2013). Whether later treatment will be efficacious in
treatment of these abnormalities remains an interesting avenue
for further study.

Shank 3
SH3 and multiple ankyrin repeats 3 (Shank3)/proline rich
synapse associated protein 2 (ProSap2) has been implicated to
be the critical, pathologic gene responsible for Phelan-McDermid
Syndrome in patients with 22q13 deletions/mutations. Phelan-
McDermid Syndrome is characterized by elevated rates of
neurodevelopmental disability, seizures, sleep disorders, and
ASD (Phelan and McDermid, 2012; Soorya et al., 2013; Sarasua
et al., 2014). Although mutations can be causal in Phelan-
McDermid Syndrome, SHANK3 mutations have also been
identified in several cases of idiopathic ASD. SHANK3 is
a postsynaptic scaffolding protein that plays critical roles in
excitatory synaptic transmission (Zoghbi and Bear, 2012) and is
expressed widely throughout the brain, including the cerebellum
(Peça et al., 2011). Rodent models with loss of Shank3 display
social impairments, repetitive behaviors, abnormal vocalizations,
and impaired learning (Bozdagi et al., 2010; Peça et al., 2011;
Wang et al., 2011). Although the precise role for cerebellar
Shank3 has not been studied, Shank3 mutant mice demonstrate
significant abnormalities in cerebellar anatomy (Ellegood et al.,
2014) and deficits in cerebellar function with impaired delayed
eyeblink conditioning (Wang et al., 2014).

15q11-13 Duplication
15q11-13 duplication has been identified in up to 3% of cases
of ASD, making it the most frequently identified chromosomal
abnormality in ASD (Urraca et al., 2013). This region is
genetically complex as maternal deletion of the region results
in Angelman’s Syndrome while paternal deletion results in
Prader-Willi syndrome. Patients with 15q11-13 duplications
have elevated rates of motor dysfunction (Urraca et al., 2013),
while both deletion related syndromes (Angelman’s and Prader-
Willi) also are characterized by profound motor abnormalities
(Buiting, 2010). Mouse models of paternal 15q11-13 duplication
demonstrate autistic-like behaviors including social dysfunction,
behavioral rigidity, and abnormal vocalizations (Nakatani
et al., 2009). To investigate cerebellar contributions to these
behaviors, Piochon et al. (2014) examined these mice and
identified abnormalities in motor learning, reduced eye blink
conditioning, impaired parallel fiber-Purkinje cell LTD, and
impaired elimination of surplus climbing fiber inputs to Purkinje
cells.

Neuroligin 3
Cerebellar dysfunction also has been implicated in models of
nonsyndromic ASD. Neuroligin 3 (nl3) encodes a postsynaptic

adhesion molecule involved in synapse assembly (Südhof,
2008). Mutations (both point mutations and deletions) have
been identified in ASD patients (Jamain et al., 2003; Levy
et al., 2011; Sanders et al., 2011). Nl3 mutant mice (either
point mutation knockin or deletions) demonstrate autistic-like
behaviors including motor coordination impairments, social
impairments, repetitive behaviors, and abnormal vocalizations
(Baudouin et al., 2012), while mice with a nl3 knockin mutation
demonstrate changes in cerebellar anatomy on MRI (Steadman
et al., 2014). Purkinje cell specific nl3 mutant mice demonstrate
increased hyperactivity (Rothwell et al., 2014), while Purkinje cell
specific expression of nl3 rescued motor coordination deficits in
knockout mice, consistent with a critical role for cerebellar nl3 in
the pathogenesis of ASD behaviors (Baudouin et al., 2012).

Engrailed 2
ENGRAILED 2 (En2) is a homeobox transcription factor that has
been implicated in ASD through numerous genetic association
studies (Gharani et al., 2004; Benayed et al., 2005). En2 is
highly expressed in the cerebellum and abnormalities in En2
expression levels have been identified from postmortem ASD
cerebellum (James et al., 2013; Choi et al., 2014). En2 transgenic
mice demonstrate abnormal cerebellar development while En2
knockout mice display reduced cerebellar volumes, reduced
Purkinje neuronal numbers, and abnormalities in cerebellar
foliation (Millen et al., 1994; Ellegood et al., 2014). Knockout
mice display motor and social impairments but demonstrate
normal vocalizations and grooming behaviors (Brielmaier et al.,
2012). They also demonstrate reductions in noradrenergic
levels. When targeted with norepinephrine reuptake inhibitor
therapy, amelioration of abnormal behaviors results, suggesting
a potential avenue of targeted therapy (Brielmaier et al., 2014).

CADM1
Cell Adhesion molecule 1 (Cadm1) is a synaptic cell adhesion
molecule that has been identified as a rare genetic cause of
ASD (Zhiling et al., 2008). Cadm1 is highly expressed in the
dendritic arbor of Purkinje neurons and Cadm1 knockout mice
demonstrate reductions in cerebellar size (Fujita et al., 2012)
and abnormal social behaviors, abnormal vocalizations, increased
anxiety, and abnormal motor coordination (Takayanagi et al.,
2010; Fujita et al., 2012).

RORα

Retinoic Acid receptor-related orphan receptor alpha (Rorα)
has been implicated in sporadic cases of ASD. The naturally
occurring staggerer mouse has a mutation in this gene, and as
its name suggests, it displays profound motor dysfunction and
ataxia (Sotelo and Changeux, 1974; Steinmayr et al., 1998). Loss
of this gene results in subsequent cerebellar hypoplasia with
marked loss of Purkinje neurons (∼80%) and a comparable
loss of granule cells. In addition to motor deficits, these mice
demonstrate abnormal learning and aberrant responses to novel
stimuli (Goldowitz and Koch, 1986; Lalonde et al., 1996a,b),
although these abnormalities are potentially adversely affected by
the profound motor dysfunction seen in these animals.
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Integrin 3
Hyperserotonemia has been identified in ∼30% of sporadic
ASD cases, and Integrin 3β (ITGB3) has been implicated in
genetic regulation of serotonin levels through interactions
with serotonin transporters. Certain haplotypes of itgb3 are
associated with ASD (Weiss et al., 2006; Napolioni et al.,
2011) while a mutation in itgb3 has been identified in a
patient with ASD (O’roak et al., 2012). Because of critical
roles for itgb3 in platelet function, autistic behaviors in
knockout models have not been fully evaluated, although
cerebellar anatomy has been shown to be reduced in
these mutant mice (Steadman et al., 2014). However,
heterozygous itgb3 mutants display both abnormal social
behaviors and increased repetitive behaviors (Carter et al.,
2011), implicating potential roles for cerebellar ITGB3 in the
pathogenesis of ASD.

Valproic Acid
Environmental exposures have also been linked to elevated ASD
risk. One such model that has been widely examined is exposure
to valproic acid (VPA). VPA is widely used as an antiepileptic
medication and/or for its mood stabilization properties in the
treatment of bipolar disorders. In utero exposure to VPA during
the first trimester has been linked to increased risk of congenital
malformations including neural tube defects but has also been
linked to increased risk of ASD development (reviewed in Roullet
et al., 2013). Numerous rodent models of VPA exposure have
demonstrated impairments in motor, social, and communication
behaviors in addition to increased repetitive behaviors (Roullet
et al., 2013). Reductions in Purkinje cell numbers and cerebellar
size have been demonstrated in these models (Ingram et al.,
2000), and abnormal eye blink conditioning has been observed in
mice with early VPA exposure (Stanton et al., 2007). Interestingly,
motor activity has been reported to ameliorate VPA induced
behavioral alterations while exposure to the antioxidant piperine
has been reported to ameliorate behavior and pathology in the
cerebellum (Pragnya et al., 2014). As markers of oxidative stress
are noted to be increased in the cerebellum in postmortem studies
of ASD brains (Sajdel-Sulkowska et al., 2009, 2011) and in genetic
models of ASD (Tsai et al., 2012), these findings suggest the
possibility of shared mechanisms in the pathogenesis of ASD.

Future Studies

Findings from histopathology, gene expression, in vivo
imaging and sensorimotor studies each suggest a critical
role for the cerebellum in the pathophysiology of ASD.
Comparisons across studies suggest that different cerebellar
circuits may be variably affected in different patients. Given
the crucial problem of resolving biological heterogeneity in
ASD, clarification of patterns of altered function in these
different circuits may provide a much needed window
into biological mechanisms affecting different patients or
patient subgroups and their clinical implications. Studies
aimed at determining the regional specificity of cerebellar
pathology across different lobules and subregions are
necessary for identifying whether cerebellar defects are

more diffuse or specific to distinct circuits. Comprehensive
assessments of multiple distinct sensorimotor abilities and
their development over early childhood in ASD are needed.
Further, integrated analyses across different levels including
combined preclinical and clinical assessments are needed to
better understand how genetic and molecular processes relate
to cellular and brain system anomalies as well as clinical
symptoms.

Rodent models of ASD provide an important means
through which the contribution of cerebellar dysfunction to the
pathogenesis of ASDs can be better understood. However, most
studies thus far have been limited to describing evidence of
cerebellar dysfunction in global models of ASD (Zingerevich
et al., 2009; Baudouin et al., 2012; Roullet et al., 2013;
Brielmaier et al., 2014; Ellegood et al., 2014; Piochon et al.,
2014; Steadman et al., 2014). Only a few studies have
specifically examined the effects of targeted disruption of
cerebellar neurons on sensorimotor functions, cerebellar learning
paradigms such as eye blink conditioning (Koekkoek et al.,
2005; Kloth et al., 2015), ASD defining behaviors (Tsai et al.,
2012; Reith et al., 2013), and other behaviors associated with
neurodevelopmental disorders (Rothwell et al., 2014). As these
models are further evaluated, the contributory role for the
cerebellum in motor and non-motor behavioral dysfunction can
be elucidated.

The neuronal circuitry by which the cerebellum regulates
these diverse behaviors and aspects of development also remains
to be further clarified. Studies demonstrate connections between
the cerebellum and medial prefrontal cortices in rodents and
primates, with ASD models demonstrating dysfunction in these
cerebellar mediated circuits (Rogers et al., 2011, 2013; Bostan
et al., 2013). Technology has been developed to pair genetic
tools with neuromodulatory paradigms through chemical means
(Sternson and Roth, 2014) or light based approaches (Steinberg
et al., 2015) for use in vitro and for in vivo preclinical animal
studies. These technologies provide a promising approach for
teasing apart circuit based mechanisms underlying complex
behaviors, such as those dysregulated in ASD. In combination
with cerebellar targeting, these technologies offer intriguing
potential to identify the pathogenic cerebellar circuits mediating
behaviors that are dysregulated in neurodevelopmental disorders
such as ASD, and they raise the possibility of targeted, cerebellar
mediated therapeutic development.

Mouse models, as demonstrated, provide a powerful model
system to further explore the contribution of cerebellar
dysfunction to sensorimotor and cognitive/behavioral
dysfunction in patients with ASD. With sensorimotor
behavioral paradigms in combination with cerebellar learning
modalities (eye blink conditioning) and cerebellar mediated
reflexes (oculocephalic reflex), these models provide tools to
better delineate cerebellar dysfunction in ASD. Considering
that some of these paradigms—motor function, eye blink
conditioning as examples—can be tested during early
development or even during the neonatal period (Little
et al., 1984; Fifer et al., 2010), these modalities could also
emerge as biomarkers that could contribute to early ASD
diagnosis.
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Summary

Converging clinical and preclinical data identify an important
role for the cerebellum in the pathogenesis of both monogenic
syndromes associated with ASD and idiopathic ASD. These
data identify anatomical and functional alterations of multiple
distinct cerebellar circuits involving areas of neocortex and
subcortical regions such as the basal ganglia. The cerebellum’s
rapid postnatal growth suggests that there may be critical
periods of development during which it helps to scaffold the
specialization of association cortices and other later developing
brain systems (Rice and Barone, 2000). While gene expression
studies show that ASD implicated networks are highly expressed
in postnatal cerebellum, the timing of cerebellar defects across
circuits has not yet been assessed. Narrowing the window
during which these genetic and epigenetic events may disrupt
cerebellar maturation will be critical for developing biomarkers
and effective therapeutics for different forms of ASD. Evidence
from preclinical model studies shows the possibility for selective
rescue of cerebellar pathology in TSC (Tsai et al., 2012) and
perhaps other forms of ASD. Increased attention to the role
of cerebellar pathology in sensorimotor and other ASD-related
behaviors may thus provide critical insights into pathogenic

mechanisms as well as novel targeted molecular, cellular, and
anatomic based therapeutics.
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