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Abstract

The purpose of this work is to study the topological property of Hausdorff

closedness as a purely convergence theoretic property. It is the author’s opin-

ion that this perspective proves to be a natural one from which to study H-

closedness.

Chapter 1 provides a brief introduction to and history of the subject matter.

Chapter 2 and the first section of Chapter 3 are mainly preliminary. Here

the fundamental facts and definitions needed in the study of H-closed spaces,

convergence spaces and especially pretopological spaces are given. In Chapter

2 most proofs are omitted for the sake of brevity, however in Section 3.1,

many proofs are given in hopes of helping the reader gain an intuitive feel for

pretopologies. Original work begins in Section 3.2, where a study of perfect

maps between pretopological spaces is given.

Chapters 4 and 5 make up the heart of this work. In Chapter 4, we take an

in-depth look at the pretopology θ . This convergence, which can be defined

for any topological space, frames both H-closedness and the related property

of being an H-set as convergence properties. Upon noting this fact, in Section

4.1, we immediately see the benefits of this framing. Of particular interest to

those who have studied H-closed spaces are Theorems 4.1.5 and 4.1.8. Later

in this chapter, so-called relatively θ -compact filters, which are defined using
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the convergence θ , are used to obtain a new characterization of countable

Katětov spaces in terms of multifunctions.

Chapter 5 provides an analogue of H-closedness which can be defined for

any pretopological space. The definition of the so-called PHC spaces is due

to the author. In Section 5.1, the PHC spaces are defined and their basic

properties are investigated. In Section 5.2, we use the earlier work on perfect

maps between pretopological spaces to generate new PHC spaces. Lastly, in

Section 5.3, we study the PHC extensions of a pretopological space. In this

section we have a construction which is analogous to the Katětov extension of

a topological space. Theorem 5.3.6 points to an interesting difference between

the usual Katětov extension and our pretopological version.

We finish this work with an investigation of the cardinal invariants of pretopo-

logical spaces. We are particularly interested in obtaining cardinality bounds

for compact Hausdorff pretopological spaces in terms of their cardinal invari-

ants. Throughout the paper we seek to highlight results which distinguish

pretopologies from topologies and this chapter features several results of this

flavor.
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Chapter 1

Introduction

The purpose of the study of topology can be seen from several distinct vantage points.

In fact, this is the core from which topology derives much of its strength. The language

provided by topology is sufficiently general to be applied to various different fields. In par-

ticular, this language captures the essential components needed in the study of continuous

mappings in any setting.

In 1906, M. Fréchet [15] introduced the concept of a metric space (though not the

actual term, which was coined later by Hausdorff). As in the study of subsets of R, Fréchet

noticed the importance of sequences in capturing the the structure of subsets of metric

spaces. In both the study of R and the study of metric spaces generally, sequences and

limit points can be used to define the closure operator. That is, for metric spaces, to be

closed is to be sequentially closed. The axioms which define the open sets of a topology,

originated by F. Hausdorff [17] among others, can be seen as having grown out of the

study of subsets of R and the study of metric spaces. As K. Kuratowski noted in 1922,

[24] the lattice of open subsets τ of a topological space is uniquely determined by the

closure operator clτ . This is captured in the following theorem:
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Theorem 1.0.1. Let X be a set and c : 2X → 2X be a function satisfying:

(K1) c(∅) =∅,

(K2) A⊆ c(A) for A ∈ 2X ,

(K3) c(A∪B) = c(A)∪ c(B) for A,B ∈ 2X , and

(K4) c(c(A))⊆ c(A) for A ∈ 2X .

Then τc = {X \ c(A) : A ∈ 2X} is a topology on X. Moreover, if (X ,τ) is a topological

space and c = clτ , then τc = τ .

However, this framework is too general to guarantee that sequences in the set X fully

capture the function c. At the same time, more general types of spaces were being consid-

ered. In [5], E. Čech studies the so-called closure spaces, which are defined by a function

satisfying (K1–K3), but not necessarily (K4). These spaces would go on to be known as

pretopological spaces and will be central to this dissertation.

To regain a characterization of the closure operator in the parlance of convergence,

the concept of the filter is required. In 1948, G. Choquet [6] axiomatized the convergence

spaces, in which the filters do all of the heavy lifting in capturing the structure of the space.

In this work Choquet laid out the axioms for convergence spaces, pretopological spaces

and the newly-defined pseudotopological spaces. Topological spaces are then seen as a

particular case of each of these more general types of spaces. Upon further inspection,

important topological properties, and in particular compactness, are best captured in the

pseudotopological setting.

Along purely topological lines, in 1924 P. Alexandroff and P. Urysohn [2] defined the

Hausdorff closed spaces. Often abbreviated as H-closed spaces, these topological spaces

are defined by the property of being closed in every Hausdorff space. As such, the H-closed
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spaces are a variation of compact Hausdorff spaces. H-closedness proved itself to be

worthy of much study, in particular by those interested in studying Hausdorff topological

spaces which are not regular. In 1968, N.V. Veličko [34] framed H-closedness as a new

type of convergence property. This type of convergence went on to be widely studied, in

particular by R.F. Dickman and J.R. Porter under the name “almost convergence” in [8].

The central work of this paper is to unite this line of inquiry with the pretopological spaces

of Čech and Choquet.

A new vantage point is provided by the aforementioned unification, and one quickly

sees that H-closedness, along with the related property of being an H-set, are more natu-

rally framed as pretopological properties than as topological ones. This allows us to tackle

two interesting tasks. First, we can revisit conjectures about H-closed spaces and H-sets

which were shown to have negative answers when working in the category of topologi-

cal spaces to see if these conjectures prove to be true when working with pretopological

spaces. Secondly, we can investigate questions which have long remained open in general

topology in hopes that our shift in perspective will allow for solutions.

Having made ourselves comfortable in the realm of pretopological spaces, it seems nat-

ural to follow this path further, defining an analogue of H-closedness for all pretopological

spaces. We formulate the pretopologically H-closed (or PHC) spaces and investigate their

fundamental properties, including a study of their cardinal invariants. It is our hope that

the reader will find interest in this course of study and in particular we hope that these new

spaces can be used to gain new insight into the structure of H-closed spaces and H-sets.
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Chapter 2

Preliminaries

In this chapter we will list preliminary facts and definitions required in the rest of the

paper. We will also use this chapter as an opportunity to standardize several notations that

will be used throughout. Our focus here is two-fold. First, while we assume the reader has

knowledge of several basic notions from topology – separation axioms, compactness, etc.

– we will give the basics needed for the study of H-closed spaces. Once these preliminaries

have been given, we end this chapter by laying out the framework of convergence spaces.

We do not assume any prior knowledge of convergence spaces and hope that the parts of

the paper pertaining to this subject matter will be largely self-contained.

2.1 Topological Notations

Since we will be shifting frequently between talk of convergence spaces and that of topo-

logical spaces, we will be explicit about what type of space is being discussed. To this end,

we reserve the letter τ to stand for a topology on a set X and will usually write (X ,τ) when

discussing a topological space, dropping neither the X nor the τ . If (X ,τ) is a topological
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space and x ∈ X , then Nτ(x) is the family of neighborhoods of x. The usual topological

closure operator on subsets of X will be written clτ .

2.2 Filters

In real analysis, we learn that the topological properties of R can be defined in terms of

sequences. When dealing with general topological spaces, sequences are not powerful

enough to capture these properties. The filter is the tool which allows us to reframe topo-

logical properties in terms of convergence. Filters are of central importance in the field of

general topology and in the theory of convergence spaces filters are the essential object of

study.

Definition 2.2.1. Let X be a set and 2X denote the family of all subsets of X . Suppose that

L⊆ 2X is a lattice ordered by ⊆.

(a) A nonempty family F ⊆ L with the finite intersection property is called an L-filter

subbase.

(b) A nonempty family F ⊆ L is a L-filter base if

(F1) F ∈ F implies F 6=∅

(F2) F,G ∈ F implies H ⊆ F ∩G for some H ∈ F

(c) A nonempty family F ⊆ L is an L-filter if F satisfies (F1), (F2) and

(F3) If F ∈ F, G ∈ L and F ⊆ G, then G ∈ F.

We will make use of two choices of L. If L = 2X , then F is simply called a filter

subbase, a filter base or a filter. If (X ,τ) is a topological space and L= τ , then F is called

an open filter subbase, an open filter base, or an open filter.
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If F is an L-filter subbase or an L-filter base, let 〈F〉 be the L-filter generated by F. If

F and G are L-filter bases, we write F ≤ G if 〈F〉 ⊆ 〈G〉. In this case we say that G is finer

than F and that F is coarser than G. The relation ≤ is a partial order on the L-filter bases

on X .

Definition 2.2.2. Let F and G be L-filters on a set X . We say that F meets G if F ∩G 6=∅

for every F ∈ F and G ∈ G.

Definition 2.2.3. A filter F is called an L-ultrafilter if F ≤ G implies F = G. (i.e. F is

maximal with respect to ≤.)

The following well-known fact is a straight-forward consequence of Zorn’s Lemma.

Proposition 2.2.4. Every L-filter on X is contained in some L-ultrafilter on X.

Let (X ,τ) be a topological space. Filters are to topological spaces as sequences are to

metric spaces or R. That is to say that filters can be used to define a notion of convergence

in (X ,τ) and the usual closure operator clτ can be defined via convergent filters. Since clτ

uniquely determines the topology τ , as noted in Theorem 1.0.1, the notion of convergence

provided by filters determines the topology.

Definition 2.2.5. Let (X ,τ) be a topological space and let F be a filter on X .

(a) We say that F τ-converges to x, written x ∈ limτ F, if Nτ(x)⊆ F.

(b) The τ-adherence of F is defined to be
⋂

F∈F clτF .

If we say that a filter base F τ-converges to x, what we mean is that the filter 〈F〉

τ-converges to x.

If A⊆ X , then {A} is a filter base on X . The usual closure operator can then be defined

using the above definition since it is easily seen that clτ A = adhτ〈{A}〉. In 2.7.3, we will

see a way of defining the adherence of a filter without reference to the closure operator.
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The following well-known characterization of compactness is an example of the power

provided by filters.

Theorem 2.2.6. Let (X ,τ) be a topological space. The following are equivalent:

(a) (X ,τ) is compact

(b) Every filter on X has nonempty τ-adherence

(c) Every ultrafilter on X τ-converges to some x ∈ X.

2.3 Variations of Compactness

A Hausdorff topological space (X ,τ) is called Hausdorff closed (or H-closed for short) if

it is closed in every Hausdorff space in which is it embedded. The following well-known

characterizations of H-closed spaces are useful and will be used interchangeably as the

definition of H-closed.

Theorem 2.3.1. Let (X ,τ) be a Hausdorff topological space. The following are equiva-

lent.

(a) (X ,τ) is H-closed,

(b) Whenever C is an open cover of X, there exist C1, ...,Cn ∈C such that X =
⋃n

i=1 clτ Ci,

(c) Every open filter on X has nonempty τ-adherence,

(d) Every open ultrafilter on X τ-converges to some point in X.

Notice that if τ is regular, then (X ,τ) is H-closed if and only if (X ,τ) is compact.

Since every compact Hausdorff topolgical space is regular, the concept of H-closedness
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is often more useful than compactness when studying Hausdorff spaces which are not

regular. Veličko [34] relativized the concept of H-closedness to subspaces in the following

way:

Definition 2.3.2. If X is a Hausdorff topological space and A ⊆ X , we say that A is an

H-set in X if whenever C is a cover of A by open subsets of X , there exist C1, ...,Cn ∈ C

such that A⊆
⋃n

i=1 clτ Ci.

We note the following well-known characterizations of H-sets which mirror the char-

acterizations of H-closedness in Theorem 2.3.1.

Proposition 2.3.3. Let X be a topological space and A⊆ X. The following are equivalent.

(a) A is an H-set in X,

(b) If F is an open filter on X which meets A, then adhτ F∩A 6=∅,

(c) If U is an open ultrafilter on X which meets A, then adhτ U∩A 6=∅.

It is important to note that the property of H-closeness is not closed-hereditary. Also,

note that the definition of an H-set is dependent on the ambient space being considered. In

particular, not every H-set is H-closed. The following example, due to Urysohn, points to

this distinction. Recall that a space (X ,τ) is semiregular if the regular-open subsets of X

{intτ clτ A : A⊆ X} form an open base for τ .

Example 2.3.4. Let X = N×Z∪{+∞,−∞}. Define U ⊆ X to be open if

+∞ ∈U implies that there is nU ∈ N such that

{(n,k) ∈ N×Z : n > nU ,k > 0} ⊆U
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−∞ ∈U implies that there is nU ∈ N such that

{(n,k) ∈ N×Z : n > nU ,k < 0} ⊆U

(n,0) ∈U implies that there is some kU ∈ N such that

{(n,k) ∈ N×Z : |k|> kU} ⊆U

Then X is H-closed and semiregular.

Let A = {(n,0)∈N×Z : n∈N}∪{+∞}. Notice that A is a closed discrete subset of X

and that A is an H-set in X . To see that A is an H-set of X , suppose that C is a cover of A by

open subsets of X . For some C∞ ∈ C, it must be that +∞ ∈C∞. By definition, there exist

n∞ ∈ N such that {(n,k) ∈ N×Z : n > n∞,k > 0} ⊆ C∞. Therefore, {(n,0) : n > n∞} ⊆

clτ C∞. Let C1, ...,Cn∞
∈ C such that (k,0) ∈Ck for k = 1, ...,n∞. Then, A ⊆ clτ C1∪ ...∪

clτ Cn∞
∪ clτ C∞. Notice however, that with the subspace topology, A is homeomorphic to

N with the discrete topology, and thus is not H-closed.

When considering the H-sets of a topological space (X ,τ), it is sometimes useful to

consider (X ,τ) as a subspace of a space (Y,σ), where σ has some nice properties. The

following proposition says that we don’t lose any information about the H-sets of X in this

process.

Proposition 2.3.5. If (X ,τ) is a Hausdorff topological space, A is an H-set in X and

i : (X ,τ)→ (Y,σ) is an embedding, then i[A] is an H-set in Y .

This is particularly useful since every Hausdorff space can be embedded as a dense

subspace of an H-closed space. We will make use of the following weakening of the

definition of an H-set.
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Definition 2.3.6. Let (X ,τ) be a Hausdorff topological space. Then A⊆ X is H-bounded

if whenever C is an open cover of X , there exists a finite subfamily A ⊆ C such that

A⊆
⋃

C∈A clτ C.

Notice that if (X ,τ) is H-closed, then every subset of X is H-bounded. Therefore, being

H-bounded is strictly weaker than being an H-set. For a detailed study of H-bounded sets,

including a proof of the next theorem, see [29].

Theorem 2.3.7. Let (X ,τ) be a Hausdorff topological space and let A⊆ X. The following

are equivalent:

(a) A is H-bounded,

(b) If F is an open filter on X and F meets A, then adhτ F 6=∅,

(c) If U is an open ultrafilter on X and U meets A, then adhτ U 6=∅.

We will make use of the following variations of compactness in Section 4.1.

Definition 2.3.8. Let (X ,τ) be a Hausdorff topological space.

(a) We say that τ is minimal Hausdorff if for any topology σ on X such that σ ⊆ τ ,

σ 6= τ implies σ is not Hausdorff.

(b) The space (X ,τ) is called Katětov if there exists a topology σ ⊆ τ such that σ is

minimal Hausdorff.

(c) We say that (X ,τ) is C-compact if every closed subset of (X ,τ) is an H-set.

Theorem 2.3.9. Let (X ,τ) be a Hausdorff topological space.

(a) τ is minimal Hausdorff if and only if (X ,τ) is H-closed and semiregular.

(b) If (X ,τ) is C-compact, then τ is minimal Hausdorff.
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2.4 θ -continuity

Definition 2.4.1. Let (X ,τ) and (Y,σ) be topological spaces. A function f : (X ,τ)→

(Y,σ) is θ -continuous if for each x ∈ X and V ∈ Nσ ( f (x)), there exists U ∈ Nτ(x) such

that f [clτ U ]⊆ clσ V .

Every continuous function between topological spaces is also θ -continuous. If σ is

regular, then every θ -continuous function f : (X ,τ)→ (Y,σ) is also continuous.

In the study of H-closed spaces and H-sets, θ -continuous functions are especially use-

ful because they are precisely what is needed to preserve these properties, as witnessed by

the following proposition.

Proposition 2.4.2. Let (X ,τ) and (Y,σ) be topological spaces and f : (X ,τ)→ (Y,σ) a

θ -continuous function.

(a) If X is H-closed and f is a surjection, then Y is H-closed.

(b) If A is an H-set in X, then f [A] is an H-set in Y .

The following construction also makes use of θ -continuity. Let (X ,τ) be a Hausdorff

topological space. Let EX be the family of open ultrafilters on (X ,τ) with nonempty

adherence. Let Eτ be the topology on EX which has as a basis sets of the form

OU = {U ∈ EX : U ∈ U}.

Let kX : (EX ,Eτ)→ (X ,τ) be defined to that kX(U) ∈ adhτ U. Since τ is Hausdorff, for

each U ∈ EX , |adhτ U| = 1 and this function is uniquely defined. The space (EX ,Eτ) is

called the absolute of X .
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Theorem 2.4.3. The space (EX ,Eτ) is a zero-dimensional, extremally disconnected, Haus-

dorff topological space and the function kX is a perfect, irreducible, θ -continuous surjec-

tion.

For a full treatment of absolutes, including a proof of Theorem 2.4.3, see [30]. We will

cite an application of the absolute in Section 4.1.

2.5 H-closed Extensions of (X ,τ)

In this section we introduce two important H-closed extensions of a Hausdorff topological

space (X ,τ). The first, which is known as the Fomin extension and is denoted σX , will be

used in Section 4.4. In Section 5.3, we will develop an analogue of the second H-closed

extension, known as the Katětov extension, for pretopological spaces. More information

on each of these extensions and on H-closed extensions in general can be found in [30].

If (X ,τ) is a Hausdorff topological space, let X ′ be the collection of open ultrafilter on

X such that if U ∈ X ′, then adhτ U=∅. For an open set U ∈ τ , let

oU =U ∪{U ∈ X ′ : U ∈ U}.

Let σX = X ∪X ′ and let στ be the topology which has {oU : U ∈ τ} as a base.

Theorem 2.5.1. (σX ,στ) is an H-closed extension of (X ,τ). That is, σX is H-closed and

X is embedded as a dense subspace of σX.

The point-set of the Katětov extension of X , κX , is also X ∪X ′. However, the open

sets of κX have sets of the form {U}∪U , where U ∈ U, as a base. Call this topology κτ .

Theorem 2.5.2. (κX ,κτ) is an H-closed extension of X. Moreover, if Y is an H-closed
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extension of X, then there exists a continuous function f : κX → Y which fixes the points

of X.

2.6 Multifunctions

By a multifunction F : X ( Y , we mean a relation which assigns to each x ∈ X a subset

F(x) ⊆ Y . Analogues of the usual properties studied of function between topological

spaces will be defined in this section.

Definition 2.6.1. Let (X ,τ) and (Y,σ) be topological space and let F : X (Y be a multi-

function.

(a) F is upper-semicontinuous at x if whenever F(x) ⊆ V ∈ σ , there exists U ∈ Nτ(x)

such that F [U ] =
⋃

x∈U F(x)⊆V .

(b) F is θ -usc at x if whenever F(x)⊆V ∈σ , there exists U ∈Nτ(x) such that F [clτ U ]⊆

clσ V .

If F : X ( Y is a multifunction and F is a filter on X , then F(F) = {F [H] : H ∈ F} is

a filter base on Y . We will write F(F) to denote the filter on Y generated by this base.

2.7 Convergence Spaces

For a basic reference on convergence theory, see [10]. For an all-you-can-eat treatment

convergence theory which starts from scratch, see [13].

Given a relation ξ between filters on X and elements of X , we write x ∈ limξ F when-

ever (F,x)∈ ξ and say that x is a ξ -limit point of F. If A⊆ X , let 〈A〉 be the principal filter

generated by A. We abbreviate 〈{x}〉 by 〈x〉.
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Definition 2.7.1. A convergence is a relation ξ between filters on X and points of X which

satisfies

(C1) x ∈ limξ 〈x〉, and

(C2) if F ⊆ G and x ∈ limξ F, then x ∈ limξ G.

The pair (X ,ξ ) is called a convergence space.

Notice that, thanks to (C1), the range of the relation ξ is the whole works, X . There-

fore, the underlying set is determined by the convergence. We will make use of this fact

when it is important to note the particular convergence being discussed, but writing (X ,ξ )

is too cumbersome.

Clearly, a topological space (X ,τ) paired with the usual topological notion of conver-

gence in which x ∈ limτ F if and only if Nτ(x)⊆ F is an example of a convergence space.

Since topological convergence is determined by the topology τ , we will abuse notation and

use the symbol τ for both the family of open subsets of X and the convergence determined

by τ .

The class of convergence structures on a set X can be given a lattice structure. We say

that σ is coarser than ξ , written σ ≤ ξ if limσ F ⊇ limξ F for each filter F on X . In this

case we also say that ξ is finer than σ .

Given a convergence space (X ,ξ ), there exists a topology T ξ such that T ξ is the finest

topology which as a convergence is coarser than ξ . This is done as follows: We say that

U ⊆ X is ξ -open if and only if U ∩ limξ F 6=∅ implies that U ∈ F for each filter F on X .

If T ξ is the collection of ξ -open subsets of X , then T ξ is the finest topology on X which

is coarser than ξ . We say that a convergence ξ is topological if ξ = T ξ . The following is

Example 14 of [10] and is a convergence which is not topological.
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Example 2.7.2. A filter F is said to be sequential if there exists a sequence (xn)n∈N ⊆ X

such that for each F ∈ F, there exists N ∈ N with {xn : n > N} ⊆ F . In other word, the

tails of the sequence form a filter base and the filter generated by this base is F.

Now, we define a convergence ξ on R. Let τ be the standard topology on R. If F

is a filter on R, then x ∈ limξ F if and only if there exists a sequential filter G on R such

that G⊆ F and x ∈ limτ G. Notice that 0 /∈ limξ Nτ(0). In particular, for each U ∈Nτ(0),

|U |= 2ℵ0 . Therefore, there cannot exist a sequential filter G such that G⊆Nτ(0).

Since the topology τ is determined entirely by sequences, it can be seen that T ξ = τ .

Since 0 ∈ limτ Nτ(0) and 0 /∈ limξ Nτ(0), T ξ 6= ξ and ξ is not topological.

Definition 2.7.3. Let (X ,ξ ) be a convergence space, F a filter on X and A⊆ X .

(a) The adherence of F is defined to be

adhξ F =
⋃
{limξ G : G#F}.

We write adhξ A to abbreviate adhξ 〈A〉.

(b) The inherence of A is

inhξ A = X \ adhξ (X \A).

For A ⊆ X , adhξ A and inhξ A will function as versions of topological closure and

interior generalized to convergence spaces.

A convergence ξ is Hausdorff if every filter has at most one limit point.

Topological spaces, as we have seen, are particular instances of convergence spaces.

In fact, if (X ,τ) is a topological space, then adhτ A = clτ A for any A ⊆ X and adhτ F =⋂
F∈F clτ F . Two other important classes of convergences are pseudotopologies and pre-

topologies. If F is a filter on X , let βF denote the set of all ultrafilters on X containing
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F. A convergence ξ is a pseudotopology if limξ F ⊇
⋂
{limξ U : U ∈ βF}. In [18], Her-

rlich, Lowen-Colebunders and Schwartz discuss the categorical advantages of working in

the category of pseudotopological spaces. We will discuss the usefulness of working with

pretopological spaces to characterize H-closed spaces and H-sets in the Chapter 4.

A convergence space (X ,ξ ) is compact if every filter on X has nonempty adherence.

The following notions of compactness for filters will allow us to get at compactness of

subspaces.

Definition 2.7.4. Let (X ,ξ ) be a convergence space, F a filter on X and A ⊆ X . We say

that F is ξ -compact at A if whenever G is a filter on X and G#F, adhξ G∩A 6= ∅. In

particular, a filter F is relatively ξ -compact if it is compact at X .

If B is a family of subsets of X , then F is ξ -compact at B if whenever G#F, adhξ G#B.

A filter is ξ -compact if F is ξ -compact at itself. If we can be sure that there will be no

confusing, we may drop “ξ -” from each of the above definitions.

Using this definition, A ⊆ X is compact if whenever G is a filter on X which meets A,

we have that adhξ G∩A 6=∅. Notice that for topological spaces this also characterizes the

compact subspaces.

Definition 2.7.5. Let (X ,ξ ) and (Y,σ) be convergence spaces. A function f : (X ,ξ )→

(Y,σ) is continuous if

f [limξ F]⊆ limσ f (F)

for each filter F on X , where f (F) is the filter generated by { f [F ] : F ∈ F}.

Given A ⊆ X and a convergence ξ on X , we can define the subconvergence on A as

follows: If F is a filter on A, let 〈F〉 be the filter on X generated by F. Define limξ |A F =

limξ 〈F〉 ∩A. This is also the initial convergence of A generated by the inclusion map
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i : A→ (X ,ξ ); that is, the coarsest convergence making the inclusion map continuous.

Thus, A is a compact subset of (X ,ξ ) is equivalent to (A,ξ |A) is a compact convergence

space.
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Chapter 3

Pretopologies and Perfect Maps

Convergence spaces as defined in the previous chapter are members of a very general cate-

gory of objects. As seen in Example 2.7.2, a convergence can behave quite differently from

our usual topological notion of convergence. If we restrict ourselves to the pretopologies,

a subcategory of the category of convergence spaces, many of our topological intuitions

can be regained. In this chapter we begin by giving many of the important facts and defini-

tions needed in the study of pretopological spaces. Results which stress the ways in which

pretopologies behave similarly to topologies are highlighted. In several places we give

proofs of well-known facts in hopes of helping the reader get a feel to these spaces. We

conclude this chapter with a study of the so-called perfect maps. In Section 5.2, perfect

maps will be used to construct examples of a new type of pretopological space.

3.1 Pretopologies

Let (X ,ξ ) be a convergence space. For x ∈ X , the vicinity filter of ξ at x is defined to be

Vξ (x) =
⋂
{F : x ∈ limξ F}.
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Definition 3.1.1. Let (X ,π) be a convergence space. We say that π is a pretopology if

x ∈ limπ Vπ(x) for each x ∈ X . In this case we say that (X ,π) is a pretopological space.

As in this definition, we will reserve the Greek letter π to stand for a pretopology.

Example 2.7.2 is a convergence which is not a pretopology. Example 3.1.7 is an example

of a pretopology which is not in general a topology. Chapter 4 is an detailed study of the

pretopology seen in Example 3.1.7.

When (X ,π) is a pretopological space, the adherence of a filter can be defined similarly

to 2.2.5(b).

Proposition 3.1.2. Let (X ,π) be a pretopological space and let F be a filter on X. Then

x ∈ adhπ F if and only if F#Vπ(x).

Proof. Suppose that x ∈ adhπ F. Then, there exists some filter G such that x ∈ limπ G and

G#F. By definition, since x ∈ limπ G, we know that Vπ(x) ⊆ G. Therefore it follows that

F#Vπ(x) as well. Now suppose that F#Vπ(x). Since π is a pretopology, x ∈ limπ Vπ(x).

Thus x ∈ adhπ F by definition.

Corollary 3.1.3. Let (X ,π) be a topological space and A ⊆ X. Then x ∈ adhπ A if and

only if V ∩A 6=∅ for each V ∈ Vπ(x).

We noted in the comments following Definition 2.7.3 that when we view a topologi-

cal space (X ,τ) as a convergence space, adhτ A = clτ A for each A ⊆ X . Corollary 3.1.3

shows that when working with pretopological spaces, the adherence operator can be de-

fined similarly to the closure operator in a topological space, with Vπ(x) taking the place

of Nτ(x). The following proposition is often useful when determining the vicinities of a

point x and further extends the analogy between Vπ(x) in pretopological space and Nτ(x)

in topological spaces.
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Proposition 3.1.4. Let (X ,π) be a pretopological space. Then V ∈ Vπ(x) if and only if

x ∈ inhπ V .

Proof. Recall that inhπ V = X \ adhπ(X \V ). By Corollary 3.1.3, x ∈ inhπ V if and only if

there exists U ∈ Vπ(x) such that U ∩X \V =∅.

Let V ∈ Vπ(x). Then V ∩X \V =∅ and x ∈ inhπ V . If x ∈ inhπ V , let U ∈ Vπ(x) such

that U∩X \V =∅. Therefore, U ⊆V . Since Vπ(x) is a filter, it follows that V ∈Vπ(x).

We will also need to define vicinities for subsets of X . We will use Proposition 3.1.4

to streamline this definition.

Definition 3.1.5. Let (X ,π) be a pretopological space and A ⊆ X . We define the vicinity

filter of π at A to be Vπ(A) = {V : A⊆ inhπ V}.

Proposition 3.1.6. If (X ,π) is a pretopological space, then the adherence operator satis-

fies each of the following

(a) adhπ ∅=∅,

(b) A⊆ adhπ A for each A⊆ X,

(c) adhπ(A∪B) = adhπ A∪ adhπ B for any A,B⊆ X.

Notice that (a), (b) and (c) in Proposition 3.1.6 are equivalent to (K1–K3) in Theorem

1.0.1 with c = adhπ . Thus, Proposition 3.1.6 provides us with an intuitive way to think

about pretopological spaces. The adherence operator on subsets of a pretopological space

functions as an analogue for the closure operator on a topological space. However, adhπ

is not necessarily idempotent.
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Example 3.1.7. Let (X ,τ) be a topological space. Throughout this paper, given a topo-

logical space, let θ be the convergence on X defined by

x ∈ limθ F⇐⇒{clτ U : U ∈Nτ(x)} ⊆ F.

If there is any possibility for confusion, we will write θX . This type of convergence was

studied extensively under the name “almost convergence” in [8].

The space (X ,θ) is a pretopological space and Vθ (x) is the filter generated by {clτ U :

U ∈Nτ(X)}. For A⊆ X , adhθ A is the well-known θ -closure, as seen in [34]. Explicitly,

x ∈ adhθ A⇐⇒∀(U ∈Nτ(X))clτ U ∩A 6=∅.

Example 3.1.7 is a pretopology which is not in general a topology. Chapter 4 is an in-

depth study of this pretopology, and in particular of its important relation to H-closedness.

To see why this convergence is not in general a topology, we make use of the following

proposition which is Proposition 22 from [10].

Proposition 3.1.8. Let (X ,ξ ) be a convergence space. If ξ is a topology, then the adher-

ence operator adhξ is idempotent on subsets of X.

Example 3.1.9. Let X be the topological space defined in Example 2.3.4 equipped with

the pretopology θ described in Example 3.1.7 above. Consider the following subset B of

X :

B = {(n,m) ∈ N×Z : n ∈ N,m > 0}.

Then

adhθ B = B∪{(n,0) ∈ N×Z : n ∈ N}∪{+∞}.
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However,

adhθ adhθ B = adhθ B∪{−∞}

and by Proposition 3.1.8, (X ,θ) is not a topological space.

The following two propositions show that when working in the framework of Haus-

dorff pretopological spaces, many of our intuitions about Hausdorff topological spaces

remain applicable.

Proposition 3.1.10. If (X ,π) is a pretopological space, then X is Hausdorff if and only if

whenever x1, x2 ∈ X and x1 6= x2, there exists Ui ∈ Vπ(xi) (i = 1,2) such that U1∩U2 =∅.

Proof. Let (X ,π) be a Hausdorff pretopological space and fix x1,x2 ∈ X such that x1 6= x2.

Suppose that Vπ(x1)#Vπ(x2). Then, there exists a filter F on X such that F ⊇ Vπ(x1)∪

Vπ(x2). However, since π is a pretopology, it would then be the case that {x1,x2}⊆ limπ F.

This contradicts that (X ,π) is Hausdorff.

Now, let F be a filter on X and suppose that | limπ F| > 1. Then, there exist x1,x2 ∈

limπ F such that x1 6= x2. By assumption, we can find U1 ∈ Vπ(x1) and U2 ∈ Vπ(x2)

such that U1∩U2 = ∅. Since π is a pretopology, Vπ(xi) ⊆ F for i = 1,2. However, this

implies that U1,U2 ∈ F. Since all filters F have the finite intersection property, this is a

contradiction.

Proposition 3.1.11. If (X ,π) is a compact Hausdorff pretopological space and A ⊆ X is

compact, then adhπ A = A.

Proof. Let A ⊆ X be compact. Since A ⊆ adhπ A, we show that adhπ A ⊆ A. Let x ∈

adhπ A. Then Vπ(x)#A. By compactness, adhπ Vπ(x)∩A 6= ∅. By Proposition 3.1.10,

adhπ Vπ(x) = {x}. Therefore, x ∈ A, as needed.
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Furthermore, when working with pretopological spaces, many of the usual character-

izations of continuous functions between topological spaces are still applicable, as dis-

played by the following proposition.

Proposition 3.1.12. Let (X ,π) and (Y,σ) be pretopological spaces and f : (X ,π) →

(Y,σ). The following are equivalent

(a) f is continuous

(b) f [adhπ F]⊆ adhσ f (F) for each filter F on X

(c) f [adhπ A]⊆ adhσ f [A] for each A⊆ X

(d) f←[inhσ B]⊆ inhπ f←[B] for each B⊆ Y

(e) For each x ∈ X, if V ∈ Vσ ( f (x)), there exists U ∈ Vπ(x) such that f [U ]⊆V .

Definition 3.1.13. A collection C of subsets of a pretopological space (X ,π) is a π-cover

(or simply cover if there is no possible confusion) if for each x ∈ X , C∩Vπ(x) 6= ∅. For

A⊆ X , we say that C is a cover of A if for each x ∈ A, C∩Vπ(x) 6=∅.

Proposition 3.1.14. Let (X ,π) be a pretopological space, F a filter on X and A⊆ X. Then

F is compact at A if and only if whenever C is a π-cover of A, there exists F ∈ F and

C1, ...,Cn ∈ C such that F ⊆
⋃n

i=1Ci.

Proof. Suppose that F is compact at A. By definition, if G is a filter on X which meets F,

adhπ G∩A 6=∅. Let C be a π-cover of A. Suppose that for any finite family A⊆ C and any

F ∈F, F 6⊆
⋃

C∈AC. Then, {X \C : C ∈ C} is a filter subbase on X which meets A. Let G be

the filter generated by this subbase. It follows that G meets F and so adhπ G∩A 6=∅. Since

C is a π-cover of A, we know that A⊆
⋃

C∈C inhπ C. Notice that adhπ G= X \
⋃

C∈C inhπ C

and so it must be that A∩ adhπ G=∅ a contradiction.
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Now let G be a filter which meets F and suppose that adhπ G∩A =∅. Then, {X \G :

G∈ G} is a π-cover of A since
⋃

G∈G inhπ(X \G) = X \
⋂

G∈G adhπ G. By assumption, there

exist F ∈ F and G1, ...,Gn ∈ G such that F ⊆
⋃n

i=1 X \Gi. Since
⋃n

i=1 X \Gi = X \
⋂n

i=1 Gi,

this says that F ∩G1∩ ...∩Gn =∅. Since G1∩ ...∩Gn ∈ G, this contradicts that F meets

G.

The notion of covers has been studied before (see, for example, [10]) and it is well

known that this definition of a pretopological cover is a specific case of the more general

notion for convergence spaces. For pretopological spaces – and more generally for con-

vergence spaces – the characterization of compactness in terms of covers in Proposition

3.1.14 is weaker than the notion of cover-compactness found in Definition 3.2.3. These

characterizations coincide for topological spaces.

3.2 Perfect Maps

Much of the following can be seen as generalizing the results of [8] to pretopological

spaces. Throughout this section, let (X ,π) and (Y,σ) be pretopological spaces. The results

below will be used in the construction of the θ -quotient convergence in Section 5.2. If

f : X →Y if a function and F is a filter on Y , then f←(F) = { f←[F ] : F ∈ F} is a filter on

X .

Definition 3.2.1. A function f : (X ,π)→ (Y,σ) is perfect if f←(F) is compact at f←(y)

for each y ∈ limσ F.

In the case of topological spaces, this definition was shown by Whyburn [37] to be

equivalent to the usual definition of a perfect function for topological spaces; that is, a

function which is closed and has compact fibers.
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Proposition 3.2.2. A function f : (X ,π)→ (Y,σ) is perfect if and only if f (adhπ F) ⊇

adhσ f (F) for each filter F on X.

Proof. Suppose that f is perfect. Let F be a filter on X and let y ∈ adhσ f (F). By

way of contradiction, suppose that f←(y)∩ adhπ F = ∅. Since σ is a pretopology, y ∈

limσ Vσ (y) and since f is perfect, it follows that f←(Vσ (y)) is compact at f←(y). Since

y ∈ adhσ f (F), Vσ (y)# f (F). It follows that f←(Vσ (y))#F. Thus, it must be that adhπ F∩

f←(y) 6=∅, a contradiction. Hence, y ∈ f (adhπ F).

Conversely, suppose F is a filter on Y and y ∈ limσ F. Let G be a filter on X such that

G# f←(F). Then f (G)#F. Since y ∈ limσ F, it follows that y ∈ adhσ f (G) ⊆ f [adhπ G].

So, we can find x ∈ adhπ G such that f (x) = y. In other words, adhπ G∩ f←(y) 6= ∅, and

f←(F) is compact at f←(y).

To get a similar characterization to that of perfect functions between topological spaces

for perfect functions between pretopological spaces we need the concept of cover-compact

sets, a strengthening of compact sets. This characterization can be found in [9], but we

feel it is worthwhile to lay out the details in this less technical setting.

Definition 3.2.3. Let (X ,π) be a pretopological space and A⊆X . Then A is cover-compact

if whenever C is a cover of A, there exist C1, ...,Cn ∈ C such that A⊆ inhπ (
⋃n

i=1Ci).

Proposition 3.2.4. Let (X ,π) be a pretopological space and A ⊆ X. The following are

equivalent,

1. For any filter F on X, adhπ F∩A =∅ implies that there exists some F ∈ F such that

adhπ F ∩A =∅,

2. A is cover-compact,
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3. adhπ F ∩A = ∅ implies there exists V ⊆ X and F ∈ F such that A ⊆ inhπ V and

V ∩F =∅ for any filter F on X.

Proof. Let C be a π-cover of A. Suppose that no finite subcollection exists as needed by

the definition of cover-compact. Then F= {X \(C1∪ ...∪Cn) : Ci ∈C, i∈N} is a filter base

on X . Note that adhπ F ⊆ X \
⋃

C∈C inhπ C and as such adhπ F∩A = ∅. By assumption,

we can find F ∈ F such that adhπ F ∩A = ∅. However, F = X \ (C1∪ ...∪Cn) for some

C1, ...,Cn ∈ C, so we have that A⊆ inhπ(C1∪ ...∪Cn), a contradiction.

Suppose that F is a filter on X and adhπ F∩A=∅. Then, for each x∈A, fix Vx ∈Vπ(x)

and Fx ∈ F such that Vx∩Fx = ∅. Then {Vx : x ∈ A} is a cover of A. By assumption, we

can choose x1, ...,xn ∈ A such that A ⊆ inhπ (
⋃n

i=1Vxi). Therefore, V =
⋃n

i=1Vxi ∈ Vπ(A)

and V ∩ (Fx1 ∩ ...∩Fxn) =∅. Since Fx1 ∩ ...∩Fxn ∈ F, we have shown that (c) holds.

Lastly, let F be a filter on X such that adhπ F∩A = ∅. By assumption, we can find

V ∈ Vπ(A) and F ∈ F such that V ∩F =∅. For each x ∈ A, V ∈ Vπ(x), so x /∈ adhπ F . It

follows immediately that A∩ adhπ F 6=∅.

It is useful to note that if A⊆ X is cover-compact, then adhπ A = A.

Theorem 3.2.5. Let f : (X ,π)→ (Y,σ) be a map between pretopological spaces satisfying

(a) f [adhπ A]⊇ adhσ f [A] for any A⊆ X and (b) f←(y) is cover-compact for each y ∈ Y .

Then f is perfect.

Proof. Let F be a filter on Y which σ -converges to some y∈Y . Let G be a filter on X which

meets f←(F). Then f (G) meets F. Since y ∈ limσ F, F is compact at y. Therefore, y ∈

adhσ f (G) =
⋂

G∈G adhσ f [G]. By assumption (a), for each G ∈ G, f [adhπ G]⊇ adhσ f [G].

Therefore, adhπ G∩ f←(y) 6= ∅ for each G ∈ G. By assumption (b), f←(y) is cover-

compact, so adhπ G∩ f←(y) 6= ∅. In other words, f←(F) is compact at f←(y) and f is

perfect.
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Theorem 3.2.6. Let f : (X ,π)→ (Y,σ) be perfect and continuous. Then f satisfies (a)

and (b) of 3.17.

Proof. By Proposition 3.1.12(c) and Proposition 3.2.2, f [adhπ A] = adhσ f [A] for each

A ⊆ X . Thus, a property stronger than (a) holds. To see that (b) holds, fix y ∈ Y and let

F be a filter on X such that adhπ F∩ f←(y) = ∅. By Proposition 3.14, y /∈ f [adhπ F] ⊇

adhσ f (F). Thus, we can find V ∈ Vσ (y) and F ∈ F such that V ∩ f (F) = ∅. It follows

that f←[V ]∩F =∅. Since f is a continuous function, for each x ∈ f←(y), fix Ux ∈ Vπ(x)

such that f [Ux] ⊆ V . Then
⋃

x∈ f←(y)Ux ⊆ f←[V ] and thus
⋃

x∈ f←(y)Ux ∩ F = ∅. So,

adhπ F ∩ f←(y) =∅, as needed.

Corollary 3.2.7. A continuous function f : (X ,π) → (Y,σ) is perfect if and only if it

satisfies (a) and (b) of 3.17.
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Chapter 4

θ -convergence

Throughout this chapter, let (X ,τ) and (Y,σ) be a Hausdorff topological spaces and let θX

and θY be the pretopologies on X and Y described in Example 3.1.7. This chapter will be

an in-depth study of the pretopological convergence θ . As such, we will not need to worry

about whether the spaces under discussion are topological, pretopological, etc. Because

of this we will often write simply X and Y , knowing that in this chapter they will always

be Hausdorff topological spaces and that θ is the only non-topological convergence being

considered.

4.1 H-closedness is Pretopological

In this section we characterize both H-closed spaces and H-sets in the terms of the pre-

topological convergence θ . The following theorem is well-known. The first part is due to

Veličko [34] and the second can be found in [8]. As this fact is central to our project, we

include the proof for the sake of completeness.

Theorem 4.1.1. Let (X ,τ) be a Hausdorff topological space and A⊆ X. Then
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(a) X is H-closed if and only if adhθ F 6=∅ for every filter F on X.

(b) A is an H-set in X if and only if adhθ F∩A 6=∅ for each filter F which meets A.

Proof. We begin by proving (b). Notice that once (b) is proved, part (a) becomes a special

case where A=X . Let A be an H-set in X and let F be a filter on X which meets A. Suppose

that adhθ F∩A =∅. Then for each x∈ A fix Ux ∈Nτ(x) and Fx ∈F such that clτ Ux∩Fx =

∅. The family {Ux : x ∈ A} is a τ-cover of A. Therefore, there exist x1, ...,xn ∈ A such that

A⊆ clτ(Ux1 ∪ ...∪Uxn). Let F = Fx1 ∩ ...∩Fxn . Then F ∈ F and F ∩A =∅, contradicting

that F meets A.

Now, let C be a cover of A by open subsets of X . Suppose that for every finite collection

A ⊆ C, A 6⊆ clτ
⋃
A. Then F = {X \ clτ C : C ∈ C} is a filter subbase on X and 〈F〉 meets

A. By assumption, adhθ F∩A 6=∅. Since

adhθ F = X \
⋃

C∈C
inhθ clτ C ⊆ X \

⋃
C

this implies that A 6⊆
⋃
C, a contradiction.

We now restate Theorem 4.1.1 using Definition 2.7.4. The following then characterizes

both H-closed spaces and H-sets as pretopological notions.

Theorem 4.1.2. Let X be a Hausdorff topological space and A⊆ X.

(a) X is H-closed if and only if (X ,θX) is a compact pretopological space.

(b) A is an H-set in X if and only if A is a compact subset of (X ,θX).

In particular, A is a compact subset of (X ,θ) if and only if (A,θ |A) is a compact

pretopological space. Thus, 4.1.2(b) can be seen as a framing of the property of A being

an H-set in X as property belonging to A without reference to the ambient space.
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We will make use of the following lemma in the next section. Recall that a topological

space X is Urysohn if distinct points have disjoint closed neighborhoods. A set A is θ -

closed if adhθ A = A.

Lemma 4.1.3. Let (X ,τ) be a Hausdorff topological space.

(a) If {Aα}α∈∆ is a family of θ -closed subsets of (X ,τ), then
⋂

α∈∆ Aα is θ -closed in

X.

(b) If H is an H-set in X and A⊆ H is θ -closed, then A is an H-set.

(c) If X is Urysohn and H is an H-set in X, then H is θ -closed.

Proof. (a) Suppose x /∈
⋂

α∈∆ Aα . Then for some α ∈ ∆, x /∈ Aα . Since Aα is θ -closed,

there exists U ∈ Nτ(x) such that clτ U ∩Aα = ∅. Therefore, clτ U ∩
⋂

α∈∆ Aα = ∅ and⋂
α∈∆ Aα is θ -closed.

(b) Let C be an open cover of A by open subsets of X . For each x∈H \A, let Ux ∈Nτ(x)

such that clτ Ux∩A =∅. Then, C∪{Ux : x ∈ H \A} is an open cover of H. Since H is an

H-set, there exists C1, ...,Cn ∈ C and x1, ...,xm ∈ H \A such that H ⊆ clτ(C1 ∪ ...∪Cn)∪

clτ(Ux1∪ ...Uxm). Since clτ Uxi∩A=∅ for i= 1, ...,m, it follows that A⊆ clτ(C1∪ ...∪Cn),

as needed.

(c) Suppose that x /∈H. Since X is Urysohn, for each p∈H we can find Vp ∈Nτ(p) and

Up ∈ Nτ(x) such that clτ Vp∩ clτ Up = ∅. Since H is an H-set, we can find p1, ..., pn ∈ P

such that H ⊆ clτ Vp1 ∪ ...∪ clτ Vpn . Let U = Up1 ∩ ...∩Upn . Notice that U ∈ Nτ(x) and

clτ U ∩H =∅. Therefore, H is θ -closed.

Just as immediate as Theorem 4.1.2, but perhaps more interesting, is the case of H-sets

in Urysohn spaces. As we saw in Theorem 2.4.3, for every Hausdorff topological space

X , there exists an extremally disconnected, Tychonoff space EX and a perfect, irreducible,
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θ -continuous map kX : EX→ X . The following theorem is due to Vermeer [35] and makes

use of this construction.

Theorem 4.1.4. Let X be H-closed and Urysohn and let A⊆ X. Then A is an H-set if and

only if k←X [A] is a compact subset of EX.

In the same paper, Vermeer gives an example of an H-closed non-Urysohn space X

which has an H-set which is not the image under kX of any compact subspace of EX .

A more general phrasing of Theorem 4.1.4 of Vermeer is that if A is an H-set in an H-

closed Urysohn space, then there exists a compact Hausdorff topological space K and a

θ -continuous function f : K→ X such that f [K] = A. Vermeer then asked if this was true

for an H-set in any Hausdorff topological space; i.e. if X is a Hausdorff topological space

and A is an H-set in X , does there exist a compact, Hausdorff topological space K and

a θ -continuous function f : K → X such that f [K] = A? The answer, it turns out, is no.

This was shown first by Bella and Yaschenko in [4]. Later, in [26], McNeill showed that

it is in addition possible to construct a Urysohn space containing an H-set which is not the

θ -continuous image of a compact, Hausdorff topological space. This makes the following

observation interesting.

Theorem 4.1.5. Let X be a Urysohn topological space. Then A is an H-set if and only if

(A,θ |A) is a compact, Hausdorff pretopological space, where θ |A is the subconvergence

on A inherited from (X ,θ). In particular, if X is a Urysohn topological space and A ⊆ X

is an H-set, then there exists a compact, Hausdorff pretopological space (K,π) and a

continuous function f : (K,π)→ (X ,θ) such that f [K] = A.

The question remains – if X is a Hausdorff topological space and A is an H-set in

X , is there a compact, Hausdorff pretopological space (K,π) and a continuous function
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f : (K,π)→ (X ,θ) such that f [K] = A? More broadly, is there a pretopological version of

the absolute?

Recall from Definition 2.3.9, a topology τ on a set X is minimal Hausdorff if any

topology on X which is strictly coarser than τ fails to be Hausdorff. A topological space

(X ,τ) is Katětov if there exists a topology σ on X such that σ ⊆ τ and σ is minimal

Hausdorff. In [14] the following is shown.

Theorem 4.1.6. Let (X ,τ) be a topological space. The following are equivalent

(a) (X ,τ) is Katětov

(b) There exists a discrete space D and an H-closed extension αD of D such that (X ,τ)

is homeomorphic to αD\D.

It can be seen that 4.1.6(b) implies that (X ,τ) can be embedded as an H-set in some

H-closed space. Another question which appears in [35] is this: If (X ,τ) is a Hausdorff

topological space which can be embedded as an H-set in some H-closed space (Y,σ), is

(X ,τ) Katětov? The following is Proposition 5.2 in [35] and gives a partial answer:

Theorem 4.1.7. Let (X ,τ) be a Hausdorff topological space. The following are equiva-

lent:

(a) τ contains a coarser compact Hausdorff topology on X

(b) There exists a discrete space D and an H-closed Urysohn extension αD of D such

that (X ,τ) is homeomorphic to αD\D

(c) (X ,τ) can be embedded as an H-set in some H-closed Urysohn space.

It is important to note, however, that even if (X ,τ) is a Urysohn topological space, it

cannot necessarily be embedded in an H-closed Urysohn space. For example Q with the
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usual topology as a subspace of R cannot be embedded in an H-closed Urysohn space.

Using pretopologies, we can remove the H-closed assumption in 4.1.7(c) and a similar

result.

Theorem 4.1.8. If (X ,τ) is a topological space which can be embedded as an H-set in

a Urysohn topological space, then there exists a compact Hausdorff pretopology π on X

such that π ≤ τ .

Proof. If (Y,σ) is a Urysohn topological space and i : (X ,τ)→ (Y,σ) is an embedding

such that X is an H-set in (Y,σ), let θ be the convergence on Y described in Example

3.1.7. Then, θ |X ≤ τ and θ |X is a compact Hausdorff pretopology.

4.2 Relatively θ -compact Filters

Recall from Definition 2.7.4 that if (X ,ξ ) is a convergence space and F is a filter on X , then

F is called relatively ξ -compact if F is compact at X . The relatively τ-compact filters for a

topological space (X ,τ) have been studied, mostly under the name compactoid filters; see

[12], [25]. In this section, we investigate the properties of the relatively θ -compact filters

on a topological space (X ,τ). We begin by giving several characterizations of a relatively

θ -compact filter.

Theorem 4.2.1. Let (X ,τ) be a topological space and let θ be the usual θ -convergence

on X determined by τ . If F is a filter on X, then the following are equivalent:

(a) F is relatively θ -compact

(b) If U is an ultrafilter on X and U≥ F, then adhθ U=∅

(c) If G is a filter on X which meets F, then adhθ G∩ adhθ F 6=∅
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(d) If O is an open filter on X which meets F, then adhτ O 6=∅

(e) For any open cover C of X, there exists a finite subfamily A ⊆ C and there exists

F ∈ F such that F ⊆
⋃

C∈A clτ C

An immediate consequence of these characterizations is that if F is a filter on X and

A ∈ F is H-bounded, then F is relatively θ -compact. However, this does not characterize

the realtively θ -compact filters, as the following example shows.

Example 4.2.2. Let σ be the usual topology on Q and let F=Nσ (0). Since 0∈ limσ Nσ (0),

if U is an ultrafilter on X and U≥Nσ (0), then adhθ U 6=∅. Therefore, Nσ (0) is relatively

θ -compact.

Suppose that A ∈Nσ (0). Then we can find U ⊆ A a neighborhood of 0 which is both

open and closed in (Q,σ). Since Q is regular, U is H-closed if and only if U is compact.

Thus, U is not H-closed. If A is H-bounded and B⊆ A is such that B = clτ intτ B, then B is

H-closed. Thus, A is not H-bounded and Nσ (0) contains no H-bounded set.

If we set F = 〈A〉, then Theorem 4.2.1 gives the well-known characterizations of H-

bounded sets. However, 4.2.1(c) gives a characterization of H-bounded sets which hereto-

fore has gone unnoticed.

Corollary 4.2.3. Let (X ,τ) be a Hausdorff topological space. A subset A of X is H-

bounded if and only if adhθ F∩ adhθ A 6=∅ for any filter F on X which meets A.

In addition, we can improve on 4.2.1(e) in the following way.

Proposition 4.2.4. A filter F on X is relatively θ -compact if and only if for every τ-

cover C of adhθ F, there exists a finite subfamily A ⊆ C and there exists F ∈ F such that

F ⊆
⋃

C∈A clτ C.
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Proof. Suppose, by way on contradiction, that C is an open cover of adhθ F such that for

all F ∈ F and for each finite subcollection A, F 6⊆
⋃

C∈A clτ C. Let G= {X \clτ C : C ∈ C}.

If C1, ...,Cn ∈ C, then X \ clτ C1∩ ...∩X \ clτ Cn = X \ clτ(C1∪ ...∪Cn). By assumption,

clτ(C1∪ ...∪Cn) 6= X and thus G is an open filter subbase on X . Similarly, by assumption

it must be that G meets F. Thus, adhτ G∩ adhθ F 6= ∅, by 4.2.1(d). However, adhτ G =

X \ (
⋃

C∈C intτ clτ C)⊆ X \ adhθ F, a contradiction.

The converse follows easily since every open cover of X is also an open cover of

adhθ F.

Corollary 4.2.5. A subset A of X is H-bounded if and only if for every τ-cover C of adhθ A,

there exists a finite subfamily A⊆ C such that A⊆
⋃

C∈A clτ C.

Corollary 4.2.5 implies the following interesting fact.

Corollary 4.2.6. Let A⊆ X be closed and H-bounded. Suppose that for each x ∈ adhθ A\

A, there exists y ∈ A and U ∈ Nτ(x) such that for each V ∈ Nτ(y) (clτ U \ clτ V )∩A is

finite. Then A is an H-set.

Proof. For each x ∈ adhθ A\A, fix yx ∈ A and Ux ∈Nτ(x) such that for every V ∈Nτ(yx),

(clτ Ux \ clτ V )∩A is finite. Let C1 = {Cy : y ∈ A} be an open cover of A. Let C2 = {Ux :

x ∈ adhθ A\A}. Then C1∪C2 is an open cover of adhθ A. By Corollary 4.2.5, there exist

x1, ...,xn ∈ A and xn+1, ...,xm ∈ adhθ A \A such that A ⊆ clτ(Cx1 ∪ ...∪Cxn)∪ clτ Uxn+1 ∪

...∪ clτ Uxm . Recall that by assumption, for i = n+1, ...,m, (clτ Uxi \ clτ Cyxi
)∩A is finite.

Let yxi = yi. Thus, if

a ∈ A\ (clτ(Cx1 ∪ ...∪Cxn)∪ clτ Cyn+1 ∪ ...∪ clτ Uxm)

then a∈ clτ Uxn+1 \clτ Cyn+1 . In other words, a∈ (clτ Uxn+1 \clτ Cyn+1)∩A and A\(clτ(Cx1∪

...∪Cxn)∪clτ Cyn+1 ∪ ...∪clτ Uxm) is finite. Inductively, A\clτ(Cx1 ∪ ...∪Cxn ∪ ...∪Cym) is
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finite. Thus, choose Cm+1, ...,Cl ∈ C1 covering the remaining finitely many points and we

have

A⊆

(
n⋃

i=1

clτ Cxi

)
∪

(
m⋃

j=n+1

clτ Cy j

)
∪

(
l⋃

k=m+1

clτ Ck

)

and A is an H-set, as needed.

Proposition 4.2.4 seems very close to saying: F is relatively θ -compact if and only if

adhθ F is H-bounded. The following example shows that this is not the case.

Example 4.2.7. For each r ∈ N, let Xr be a copy of the topological space from Exam-

ple 2.3.4. Let A = {(n,0) ∈ N×Z : n ∈ N} and let X = (
⋃

r∈NXr)/A with the quotient

topology. We will write X = {(n,m,r) : n,r ∈ N,m ∈ Z}∪N∪{+∞r,−∞r : r ∈ N}. Let

B = {+∞1}∪N. Notice that B is an H-set. However, adhθ B = B∪{+∞r,−∞r : r ∈ N}

is not even H-bounded in X . Thus, if we let F = 〈B〉, then F is realtively θ -compact, but

adhθ F is not H-bounded.

Proposition 4.2.8. A filter F is relatively θ -compact if and only if the filter {clτ F : F ∈F}

is relatively θ -compact.

Proof. Let C be an open cover of X . If F is relatively θ -compact, there exists a finite

subfamily A and G∈F such that G⊆
⋃

C∈A clτ C. Thus, clτ G⊆
⋃

C∈A clτ C. Since clτ G∈

{clτ F : F ∈ F}, this filter is relatively θ -compact. The converse follows since F≥ {clτ F :

F ∈ F}.

Proposition 4.2.9. If X is a Urysohn topological space and F is a filter subbase such that

each F ∈ F is an H-set, then
⋂
F 6=∅. Moreover,

⋂
F is an H-set in X.

Proof. If each F ∈ F is an H-set, then clearly F is relatively θ -compact and thus adhθ F 6=

∅. By Lemma 4.1.3(c), for each F ∈ F, adhθ F = F and thus adhθ F =
⋂
F 6= ∅. Since
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each F ∈ F is θ -closed,
⋂
F is θ -closed. By Lemma 4.1.3(b), since

⋂
F is a θ -closed

subset of F ∈ F and F is an H-set,
⋂
F is an H-set as well.

The next example shows that if we drop the Urysohn assumption in Propositon 4.2.9,

the statement is no longer true.

Example 4.2.10. Let X be a C-compact, non-compact Hausdorff space as in Example 2

of [36]. As X is not compact, there exists a family F of closed subsets of X with the finite

intersection property such that
⋂
F = ∅. Since X is C-compact, each F ∈ F is an H-set.

Thus Corollary 4.2.9 is not in general true for Hausdorff spaces.

In [28] the following is proved: A ⊆ X is H-bounded if and only if clτ A is closed in

every Hausdorff topological space in which X is embedded. This inspires the last result of

this subsection.

Theorem 4.2.11. A filter base F on X is relatively θ -compact if and only if adhσ F ⊆ X

for any Hausdorff topological space (Y,σ) in which X is embedded.

Proof. Let Y be a Hausdorff topological space in which X is embedded and let p ∈ Y \X .

Then Op = {U∩X : U ∈Nσ (p)} is a free open filter base on X . It follows that Op does not

meet F since F is relatively θ -compact. Thus, p /∈ adhσ F. Since p ∈Y \X was arbitrarily

chosen, it follows that adhσ F = adhτ F ⊆ X .

Suppose that F is not a relatively θ -compact filter base on X . Then, there is an open

filter base O on X such that O meets F and adhτ O = ∅. Let Y = X ∪{p} where O is a

neighborhood base at p. Since O is a free open filter base on X , Y is Hausdorff. Also,

notice that since O meets F, p ∈ adhσ F. Thus, adhσ F 6⊆ X , as needed.
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4.3 θ -subcontinuity

In [33], R. Smithson extends the well-known concept of subcontinuity to multifunctions.

The definition of a subcontinuous multifunction is given in terms of a convergence. Be-

cause of this, it is straight-forward to extend the definition to the convergence θ . In [21],

J.E. Joseph used both subcontinuity and θ -subcontinuity to characterize properties of the

graphs of multifunctions. The purpose of this section is to define and characterize θ -

subcontinuous multifunctions. In the next section an application of subcontinuity will be

given. Throughout this section, let (X ,τ) and (Y,σ) be Hausdorff topological spaces and

let θX and θY be the θ -convergences on X and Y with respect to their topologies.

Definition 4.3.1. A multifunction F : X ( Y is θ -subcontinuous at x if F(F) is relatively

θY -compact for each filter F on X with x ∈ limθX F. We say that F is θ -subcontinuous if

F is θ -subcontinuous at each x ∈ X .

Theorem 4.3.2. Let F : X ( Y be a multifunction. The following are equivalent:

(a) F is θ -subcontinuous,

(b) F(VθX (x)) is relatively θY -compact for each x ∈ X,

(c) If U is an ultrafilter on X and limθX U 6=∅, then F(U) is relatively θY -compact.

(d) F(F) is relatively θY -compact for each filter F on X which is relatively θX compact.

Proof. Since θX is a pretopology, x∈ limθX VθX (x). Since F is θ -subcontinuous, it follows

that F(VθX (x)) is relatively θY -compact.

Suppose that U is an ultrafilter on X and x∈ limθX U. It follows that F(VθX (x))≤F(U).

By assumption, F(VθX (x)) is relatively θY -compact. Therefore, if W is an ultrafilter on Y
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and F(U) ≤W, then F(VθX (x)) ≤W. By the relative θY -compactness of F(VθX (x)), it

follows that adhθY W 6=∅. Hence, F(U) is relatively θY -compact.

Suppose that F is relatively θX -compact and let W be an ultrafilter on Y such that

F(F) ≤ W. Let F+(W) be the filter on X generated by {F+(W ) : W ∈ W}, where

F+(W ) = {x ∈ X : F(x)∩W 6=∅}. It follows that F+(W) meets F. Since F is relatively

θX -compact, adhθX F+(W) 6= ∅. Fix x ∈ adhθX F+(W) and fix an ultrafilter U on X such

that x ∈ limθX U and U ≥ F+(W). Then F(U) is relatively θY -compact by assumption.

Since F(U) meets W, we have that adhθY W 6=∅, as needed.

If F is a filter on X such that limθX F 6= ∅, then F is relatively θX -compact. By as-

sumption, F(F) is relatively θY -compact and so adhθY F(F) 6=∅, as needed.

Notice that since θ -subcontinuous multifunction preserve relatively θ -compact filters,

if A⊆ X is H-bounded and F : X ( Y is θ -subcontinuous, then F(A) is H-bounded in Y .

The following fact related θ -subcontinuity to θ -upper semicontinuity.

Proposition 4.3.3. Let (X ,τ) and (Y,σ) be topological spaces and let F : X ( Y be θ -

upper semicontinuous such that F(x) is compact for each x∈X. Then F is θ -subcontinuous.

Proof. Fix C a σ -cover of Y . Since F(x) is compact for each x ∈ X , we can find a finite

subfamily Ax⊆C such that F(x)⊆
⋃
A. Since F is θ -usc, there exists U ∈Nτ(x) such that

F [clτ U ]⊆ clσ
⋃
Ax. By Proposition 3.1.14, it follows that VθX (x) is relatively θY -compact

for each x ∈ X .

4.4 Čech g-spaces

In [20], subcontinuous multifunctions are used to give a characterization of Čech-complete

topological spaces. Recall that Čech-complete spaces are by assumption Tychonoff. In [7],
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the so-called Čech g-spaces and Čech f-spaces are defined, which are analoguous to the

Čech complete spaces for non-regular spaces. In [27] Čech g-spaces are used to give a

characterization of countable Katětov spaces. In this section we will use θ -subcontinuous

multifunctions to give a characterization of Čech g-spaces. As a corollary, we will have an

additional characterization of countable Katětov spaces to add to the results of [27].

Definition 4.4.1. A topological space (X ,τ) is called a Čech g-space if there exists a

sequence (Cn)n∈N of τ-covers of X such that whenever O is an open filter base on X

and for each n ∈ N, there exist Un ∈ O and Cn ∈ Cn such that Un ⊆ Cn, it follows that

adhτ O 6=∅.

The sequence of τ-covers in Definition 4.4.1 is called a Čech g-sequence. Next, we

define what it means for a space X to have the strong Čech g-property which seems as

though it is more suited to the θ convergence on (X ,τ).

Definition 4.4.2. A topological space (X ,τ) has the strong Čech g-property if there exists

a sequence (Cn)n∈N of τ-covers for X such that whenever O is an open filter base on X and

for each n ∈ N there exists Un ∈ O and Cn ∈ Cn such that clτ Un ⊆ clτ Cn, it follows that

adhτ O 6=∅. In this case we call the sequence (Cn)n∈N a strong Čech g-sequence.

Definition 4.4.3. A topological space (X ,τ) is regularly embedded in (Y,σ) if whenever

x ∈ X and X ⊆V ∈ σ , there exists U ∈ τ such that x ∈U and clσ U ⊆V .

Lemma 4.4.4. Suppose that (Y,σ) has the strong Čech g-property. If (X ,τ) is a regularly

embedded, dense, Gδ subspace of Y , then X also has the strong Čech g-property.

Proof. Let (Cn)n∈N be a Čech g-sequence for Y . Since X is a Gδ subspace of Y , fix

{Gn : n ∈ N} ⊆ σ such that X =
⋂

n∈NGn. For each n ∈ N, we define Bn, a family of

open subsets of X as follows: B ∈ Bn if and only if B = T ∩X for some T ∈ σ such that
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clσ T ⊆ Gn and clσ T ⊆ clσ Cn for some Cn ∈ Cn. Notice that each Bn is a τ-cover of X .

To see this, if x ∈ X , then there is some Cn ∈ Cn such that x ∈ Cn. Since X is regularly

embedded in Y , we can find x ∈V ∈ σ such that clσ V ⊆Un. Thus x ∈ (V ∩X) ∈Bn.

We now claim that (Bn)n∈N is a strong Čech g-sequence for X . Let O be an open

filter base on X such that for each n ∈ N, there exists Un ∈ O and Bn ∈ Bn such that

clτ Un ⊆ clτ Bn. Let P = {V ∈ σ : V ∩X ∈ O}, an open filter base on Y . It can be seen

that for each n ∈ N there exists Vn ∈ P and Bn ∈ Bn such that clτ(V ∩X) ⊆ clτ Bn. By

construction, Bn = Tn ∩X for some Tn ∈ σ such that clσ Tn ⊆ clσ Cn for some Cn ∈ Cn.

Since X is dense in Y and Vn is open in Y , clσ (Vn∩X) = clσ Vn. Then the following string

of set inequalities holds:

clσ Vn = clσ (Vn∩X)

⊆ clσ (clτ(Vn∩X))

⊆ clσ (clτBn)

= clσ (clτ(Tn∩X))

= clσ (clσ (Tn∩X)∩X)

= clσ ((clσ Tn)∩X)

⊆ clσ Tn∩ clσ X

= clσ Tn

⊆ clσ Cn

Since (Cn)n∈N is a strong Čech g-sequence for Y , adhσ P 6= ∅. Notice that for any

V ∈P and any n∈N, there is some Tn ∈ σ such that clσ Vn ⊆ clσ Tn ⊆Gn. Thus,
⋂
{clσ V :

V ∈ P} ⊆
⋂

n∈NGn = X . Since X is dense in Y , notice that adhτ O =
⋂
{clτ(V ∩ X) :
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V ∈ P} =
⋂
{clσ V : V ∈ P}∩X = adhσ P. Thus, adhτ O 6= ∅ and X has the strong Čech

g-property.

On its face, having the strong Čech g-property is stronger than being a Čech g-space.

However, the next theorem provides several equivalent characterizations of Čech g-spaces,

the strong Čech g-property among them.

Theorem 4.4.5. Let (X ,τ) be a Hausdorff topological space. The following are equiva-

lent.

(a) X is a Čech g-space,

(b) X is a Gδ set in σX,

(c) X has the strong Čech g-property,

(d) there exists a sequence (Cn)n∈N of τ-covers of X such that whenever O is an open

filter base on X such that for each n ∈ N, there exists Un ∈ O and Cn ∈ Cn such that

Un ⊆ clτ Cn, it follows that adhτ O 6=∅,

(e) there exists a sequence (Cn)n∈N of τ-covers of X such that whenever F is a filter base

on X such that for each n ∈N, there exists Fn ∈ F and Cn ∈ Cn such that Fn ⊆ clτ Cn,

it follows that adhθ F 6=∅,

Proof. If X is a Čech g-space, it is well-known that X is a Gδ set in σX . See [7] for details.

Every H-closed space immediately has the strong Čech g-property. Since X is regularly

embedded in σX and by assumption X is a Gδ subseteq of σX , we know that X has the

strong Čech g-property by Lemma 4.4.4.

Since Un ⊆ clτ Cn implies that clτ Un ⊆ clτ Cn, (c→ d) is immediate.
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Let (Cn)n∈N be as hypothesized in (d). And let F be a filter base on X such that for

each n ∈ N there exists Fn ∈ F and Cn ∈ Cn such that Fn ⊆ clτ Cn. Let O= {U ∈ τ : ∃F ∈

F.F ⊆ clτ U}. Then, O is an open filter base on X and by assumption for each n ∈ N

there exists Cn ∈ O∩Cn. Thus, O satisfies the hypotheses of (d) and adhτ O 6= ∅. It is

straight-forward to check that adhτ O= adhθ F and thus adhθ F 6=∅, as needed.

Lastly, let (Cn)n∈N be the sequence of open covers hypothesized by (e) and let O be

an open filter base such that for each n ∈ N there exists Un ∈ O and Cn ∈ Cn such that

Un ⊆ Cn. Notice that this implies the condition needed by (e) for adhθ O 6= ∅. Since

adhτ O= adhθ O, we know that adhτ O 6=∅. As such, X is a Čech g-space.

Next, we adapt Proposition 2.12 in [16] for Čech g-spaces.

Lemma 4.4.6. If (Cn)n∈N is a Čech g-sequence for (X ,τ) and F is a filter base on X

satisfying: for each n ∈ N, there exists Fn ∈ F and a finite subfamily An ⊆ Cn such that

F ⊆
⋃

C∈An
clτ C, then adhθ F 6=∅.

Proof. Suppose that F is as described. Let G be an ultrafilter on X containing F. Then G

also satisfies the assumption: for each n ∈ N, there exist Gn ∈ G and An ⊆ Cn such that

An is finite and Gn ⊆
⋃

C∈An
clτ C. However, since G is an ultrafilter, if tollows that for

some C ∈An, clτ C ∈ G. Therefore, because (Cn)n∈N is a Čech g-sequence, it follows that

adhθ G 6=∅. Since adhθ G⊆ adhθ F, we have that adhθ F 6=∅, as needed.

If F : X ( Y is a multifunction and Y is a Čech g-space, then we can weaken the

criteria for F to be θ -subcontinuous.

Proposition 4.4.7. Let F : X ( Y be a multifunction and fix x ∈ X. Suppose that Y is a

Čech g-space and let (Cn)n∈N be a Čech g-sequence for Y . The following are equivalent.

(a) F is θ -subcontinuous at x,
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(b) For each n ∈ N, there exists U ∈ Nτ(x) and a finite subfamily An ⊆ Cn such that

F [clτ U ]⊆
⋃

C∈An
clτ C.

Proof. It is immediate that (a) implies (b). To see that (b) implies (a), we proceed by

contradiction. Then there is an σ -cover C of Y such that for every U ∈ Nτ(x) and each

finite A⊆ C, F [clτ U ]⊆ clσ
⋃
A 6=∅. Therefore,

F = {F [clτ U \ clσ
⋃

A] : U ∈Nτ(x) and A⊆ C is finite}

is a filter base on Y . By assumption, for each n ∈ N there exists Un ∈ Nτ(x) and a finite

subfamily An ⊆ Cn such that F [clτ Un]⊆ clσ
⋃
An. Thus, adhθ F 6=∅. However, adhθ F⊆

Y \
⋃
{A : A is a finite subfamily of C}=∅, a contradiction.

Corollary 4.4.8. Let Y be a Čech g-space and F : X (Y a multifunction. Then, the set of

points of X at which F is θ -subcontinuous is a Gδ subset of X.

Proof. Let (Cn)n∈N be a Čech g-sequence for Y . For each n ∈ N, let

Vn = {x ∈ X : ∃U ∈Nτ(x)∃ a finite subfamily A⊆ C such that F [clτ U ]⊆ clσ
⋃

A}

Notice that each Vn is open in X and by Proposition 4.4.7, {x∈X : F is θ−subcontinuous at x}=⋂
n∈NVn.

In fact, the converse to Corollary 4.4.8 holds as well.

Proposition 4.4.9. If (Y,ρ) is a Hausdorff topological space such that for every Hausdorff

topological space X and any multifunction F : X ( Y the set of points at which F is θ -

subcontinuous is a Gδ set in X, then Y is a Čech g-space.
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Proof. Fix a point y0 ∈ Y . Let F : σY ( Y be defined so that for each O ∈ σY \Y ,

F(O) = {y0} and for y ∈ Y , F(y) = {y,y0}. Let θSC(F) denote the set of points of θ -

subcontinuity of F . We claim that θSC(F) = Y . First, notice that F is compact-valued.

By Proposition 4.3.3, if we show that F is θ -usc at each y ∈ Y , then it follows that F is

θ -subcontinuous at y. Fix V ∈ ρ such that {y,y0}⊆V . Then, oV is open in σY and y∈ oV .

Since F [clσρ
oV ] = F [oV ∪ clρ V ]⊆ clρ V , F is θ -usc at y ∈ Y .

We now show that F is not θ -subcontinuous at O ∈ σY \Y . If O ∈ σY \Y , then

adhρ O = ∅. Notice that O ≥ F(VθσY (O)) since F(VθσY (O)) ⊇ {F(oU) : U ∈ O} =

{clρ U ∪{yo} : U ∈ O}. Since adhρ O = adhθY O = ∅, F(VθσY (O)) is not relatively θY -

compact.

Corollary 4.4.8 and Proposition 4.4.9 combine to generalize results in [20] to show the

following.

Theorem 4.4.10. A Hausdorff topological space Y is a Čech g-space if and only if when-

ever X is a Hausdorff topological space and F : X (Y is a multifunction, the set of points

at which F is θ -subcontinuous is a Gδ set in X.

Using results from [27] we get the following characterization of countable Katětov

spaces.

Theorem 4.4.11. Let (X ,τ) be a countable Hausdorff topological space. The following

are equivalent.

(a) X is a Čech g-space

(b) X is Katětov and Xs is first-countable.

(c) Whenever Y is a Hausdorff topological space and F : Y ( X is a multifunction, the

set of points at which F is θ -subcontinuous is a Gδ set in Y .

45



Chapter 5

PHC Spaces

5.1 Definition and Basic Properties

In this section we will define a variation of H-closedness for pretopological spaces. After

establishing some basic facts about the so-called PHC spaces, we will describe a method

for constructing PHC pretopologies and PHC extensions. Much of this work is to appear

in [31]. The following definition appears in [11].

Definition 5.1.1. Let (X ,π) be a pretopological space. The partial regularization rπ of π

is the pretopology determined by the vicinity filters Vrπ(x) = {adhπ U : U ∈ Vπ(x)}.

Notice that if (X ,τ) is a topological space, then rτ is the θ -convergence on X explored

in Chapter 4. Thus, a Hausdorff topological space (X ,τ) is H-closed if and only if (X ,rτ)

is compact. This inspires the following definition, aiming to generalize the notion of H-

closed spaces to pretopological spaces.

Definition 5.1.2. Let (X ,π) be a Hausdorff pretopological space. The pretopology π

is PHC (pretopologically H-closed) if (X ,rπ) is compact. Without the assumption of

Hausdorff, we will use the term quasi PHC
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For n ∈ N and A ⊆ X , let inhn
π A be the nth iteration of the inherence operator on A.

Given a filter F on a pretopological space (X ,π) let

iπF = {F : inhπ F ∈ F}.

Inductively, define

inπF = {H : inhn
π H ∈ F},

and finally

iωπ F =
⋂

n∈N
inπF.

We use the convention i0πF = F and i1πF = iπF. Notice then that inπF = iπ
(
in−1
π F

)
for

each n ∈ N.

Lemma 5.1.3. Let (X ,π) be a pretopological space and let F be a filter on X such that

iπF = F. Then adhπ F = adhrπ F.

Proof. To begin, since rπ ≤ π , adhπ F ⊆ adhrπ F. Now, x /∈ adhπ F if and only if we can

find F ∈ F and U ∈ Vπ(x) such that U ∩F = ∅. Since U ∩F = ∅, if y ∈ inhπ F , then

y /∈ adhπ U . In other words, adhπ U ∩ inhπ F = ∅. Since F = iπF, inhπ F ∈ F and by

definition x /∈ adhrπ F, as needed.

Lemma 5.1.4. Let (X ,π) be a pretopological space and let F be a filter on X. Then

adhrπ inπF = adhπ in+1
π F for each n ∈ N.

Proof. We begin by showing the lemma holds for n= 0. Recall that i0πF=F. Suppose that

x /∈ adhrπ F. Then there exists U ∈Vπ(x) and there exists F ∈F such that adhπ U ∩F =∅.

So, F ⊆ X \ adhπ U = inhπ(X \U). By definition, it follows that X \U ∈ iπF. Since

U ∩X \U = ∅, we have that x /∈ adhπ iπF. Conversely, if x /∈ adhπ iπF, then there exists
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U ∈ Vπ(x) and F ∈ iπF such that U ∩F = ∅. As we have seen before, it follows that

adhπ U∩ inhπ F =∅. Since F ∈ iπF , we know that inhπ F ∈F. It follows that x /∈ adhrπ F,

as needed.

The remainder of the lemma follows easily by setting F = inπF, in which case iπF =

in+1
π F.

Definition 5.1.5. A filter F on a pretopological space is inherent if inhπ F 6= ∅ for each

F ∈ F. If U is maximal with respect to the property of being inherent, we say that U is an

inherent ultrafilter.

Theorem 5.1.6. For a Hausdorff pretopological space (X ,π), the following are equiva-

lent.

(a) X is PHC

(b) whenever C is a π-cover of X, there exists C1, ...,Cn ∈ C such that X =
⋃n

i=1 adhπ Ci

(c) each inherent filter F on X has nonempty adherence

(d) adhπ iπF 6=∅ for each filter F on X.

Proof. Let C be a π-cover of X . Without loss of generality, assume that C = {Ux : x ∈

X} where each Ux ∈ Vπ(x). Suppose no such finite subcollection exists. Then A =

{X \ adhπ Ux : x ∈ X} has the finite intersection property. Let F be the filter generated

by A. For each x ∈ X , x ∈ inhrπ adhπ U if and only if there exists V ∈ Vπ(x) such

that adhπ V ⊆ adhπ U . Therefore, for each x ∈ X , x ∈ inhrπ adhπ Ux. Thus, adhrπ F =

X \
⋃

x∈X inhrπ adhπ Ux =∅, a contradiction.

Next, let F be a filter on X such that inhπ F 6=∅ for each F ∈F. Suppose that adhπ F=

∅. Then C= {X \F : F ∈ F} is a π-cover of X . By assumption, there exist F1, ...,Fn ∈ F
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such that adhπ(X \F1∪ ...∪X \Fn) = X \ inhπ(F1∩ ...∩Fn) = X . However, F1∩ ...∩Fn ∈F

and thus by assumption F1∩ ...∩Fn has nonempty inherence, a contradiction.

Let F be a filter on X . Notice that iπF is a filter on X such that inhπ F 6= ∅ for each

F ∈ iπF. Then by assumption, adhπ iπF 6=∅.

Let F be a filter on X . Then adhrπ F = adhπ iπF 6=∅ by Lemma 5.1.4. Thus, we have

shown that (X ,rπ) is compact and the theorem is proven.

5.2 θ -quotient Convergence

Let (X ,π) be a compact Hausdorff pretopological space, Y a set and f : (X ,π)→ Y a

surjection such that f←(y) is cover-compact for each y ∈ Y . For A ⊆ X , let f #[A] = {y ∈

Y : f←(y) ⊆ A}. Define the θ -quotient convergence f #π on Y as follows: a filter F on Y

f #π-converges to y if and only if f←(F) is compact at f←(y).

Lemma 5.2.1. Let F be a filter on Y . Then y∈ lim f #πF if and only if f←(F)⊇Vπ( f←(y)).

Proof. Suppose that f←(F) is compact at f←(y). Then whenever C is a cover of f←(y),

there exists F ∈ F and C1, ...,Cn ∈ C such that f←[F ]⊆
⋃n

i=1Ci. Let V ∈ Vπ( f←(y)). By

definition, f←(y) ⊆ inhπ V . In other words, {V} is a one-element cover of f←(y). Thus,

V ∈ f←(F), as needed.

Conversely, let C be a cover of f←(y). Since f←(y) is cover-compact, we can find

C1, ...,Cn ∈ C such that f←(y)⊆ inhπ (
⋃n

i=1Ci). By definition, C =
⋃n

i=1Ci ∈ Vπ( f←(y)).

Thus, C ∈ f←(F) and there exists F ∈F such that f←[F ]⊆
⋃n

i=1Ci and f←(F) is compact

at f←(y).

Lemma 5.2.2. Let (X ,π) be a Hausdorff pretopology. If A,B ⊆ X are disjoint cover-

compact subsets of X, then there exist disjoint vicinities U ∈ Vπ(A), V ∈ Vπ(B).
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Proof. First we show this holds for B = {x}. For each z ∈ A, choose disjoint Uz ∈ Vπ(z)

and Vz ∈ Vπ(x). Since A is cover-compact, we can choose z1, ...,zn ∈ A such that A ⊆

inhπ (
⋃n

i=1Uzi). Thus, U =
⋃n

i=1Uzi ∈ Vπ(A). Also, V =
⋂n

i=1Vzi ∈ Vπ(x) and U ∩V =∅.

It is a straight-forward exercise to now show this holds for disjoint cover-compact sets, A

and B.

Proposition 5.2.3. (Y, f #π) is a Hausdorff pretopology. Furthermore, for each y ∈ Y ,

V f #π(y) = 〈{ f #[W ] : W ∈ Vπ( f←(y))}〉.

Proof. We first show that f #π is indeed a pretopology. Notice that for y ∈ Y ,

⋂
{F : y ∈ lim f #π F}=

⋂
{F : V ∈ Vπ( f←(y)) implies f #[V ] ∈ F}.

It follows that V f #π(y) is the filter generated by { f #[U ] : U ∈Vπ( f←(y))}. For any A⊆ X ,

f←[ f #[A]]⊆ A. It follows easily that f←(V f #π(y))⊇ Vπ( f←(y)). By Lemma 5.2.1, then,

y ∈ lim f #π V f #π(y) and f #π is a pretopology with the stated vicinity filters.

Now, if y1 6= y2, by Lemma 5.2.2, for i = 1,2, we can find Ui ∈ Vπ( f←(yi)) such that

U1∩U2 =∅. It is immediate that f #[U1]∩ f #[U2] =∅ and f #π is Hausdorff.

Definition 5.2.4. Let (X ,π) and (Y,σ) be pretopological spaces. A function f : (X ,π)→

(Y,σ) is strongly irreducible if there exists y ∈Y such that f←(y)⊆U ∩V for any subsets

U and V of X with nonempty inherence such that U ∩V 6=∅.

The function f is weakly θ -continuous (wθ -continuous for short) if

f : (X ,π)→ (Y,rσ) is continuous.

Theorem 5.2.5. If (X ,π) is a compact, Hausdorff pretopological space,

f : (X ,π)→ Y a strongly irreducible surjection such that f←(y) is cover-compact for
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each y ∈ Y and f #π is the θ -quotient pretopology on Y , then f : (X ,π)→ (Y, f #π) is

wθ -continuous and (Y, f #π) is a PHC Hausdorff pretopological space.

Proof. For x ∈ X , let V ∈ V f #π( f (x)). Without loss of generality, we can assume that

V = f #[W ] for some W ∈ Vπ( f←( f (x))). Note that in this case x ∈ inhπ W . Supose

that w ∈W and f (w) ∈ f #[U ] for some U ∈ Vπ( f←( f (w))). Notice that w ∈W ∩U , so

W ∩U 6= ∅. Since f is strongly irreducible, we can find y ∈ f #[U ]∩ f #[W ]. Therefore,

f (w) ∈ adhπ f #[W ]. In particular, f [W ]⊆ adhπ f #[W ] and f is wθ -continuous.

Since the continuous image of a compact space is again compact, (Y,r f #π) is compact

and by definition (Y, f #π) is PHC.

5.3 PHC Extensions of π

Let (X ,π) be a pretopological space. By an extension of π , we mean a convergence ξ on

a set Y such that (X ,π) is a subspace of (Y,ξ ) and adhξ X = Y . There is an ordering on

the family extensions of X . If ξ and ζ are extensions of π , we say that ξ is projectively

larger than ζ , written ξ ≥π ζ if there exists a continuous map f : (Y,ξ )→ (Z,ζ ) which

fixes the points of X . In the comment following the definition of a convergence, we noted

that the underlying set of a convergence space is determined by the convergence itself. For

coherence of notation, when discussing extensions of convergence spaces we will often

refer to the convergence without reference to the underlying set. This is not a problem

thanks to the aforementioned comment.

We borrow from topology the concepts of strict and simple extensions. If ξ is an

extension of π , we define ξ+ a new extension of π on the same underlying set as ξ . For

p ∈ Y ,

Vξ+(p) = 〈{{p}∪U : ∃W ∈ Vξ (p),W ∩X =U}〉.
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If ξ = ξ+, then we say ξ is a simple extension of π .

In a similar way, we define ξ #, an extension of π on the same set as ξ . If A⊆ X , let

oA = {p ∈ Y : ∃W ∈ Vξ (p),W ∩X = A}.

If p ∈ Y , then Vξ #(p) is the filter generated by {oA : ∃V ∈ Vξ (p),V ∩X = A}. If ξ = ξ #,

then we say that ξ is a strict extension of π .

Lemma 5.3.1. If ξ is an extension of π , then ξ # ≤ ξ ≤ ξ+.

Proof. In both cases it is straight-forward to check that the identity map is continuous and

fixes X .

Proposition 5.3.2. Suppose that (X ,π) is a Hausdorff pretopological space and ξ is a

pretopology and a compactification of π . Then ξ+ is PHC.

Proof. Recall that by compactification, we mean a compact extension. Fix p ∈ Y and let

{p}∪U ∈ Vξ+(p). Then adhξ+({p}∪U) = oU ∪adhπ U . So, in the partial regularization

of ξ+, the vicinity filters are generated by sets of the form oU ∪ adhπ U for U ⊆ X . In

particular, this shows that Vrξ+(p) ⊆ Vξ #(p) for each p ∈ Y . Since ξ # is a coarser pre-

topology than ξ , it follows that the partial regularization of ξ+ is coarser than ξ . Since

(Y,ξ ) is compact, so is (Y,rξ+) and by definition, ξ+ is PHC.

For any Hausdorff convergence space (X ,σ), Richardson [32] constructs a compact,

Hausdorff convergence space (X∗,σ∗) in which X is densely embedded. It should be

noted that Richardson’s definition of a convergence includes the following third axiom in

addition to the two in our definition:

If x ∈ limσ F, then x ∈ limσ (〈x〉∩F). (R)
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We will make use of assumption (R) in Theorem 5.3.6. Note that if σ is a pretopology,

then σ already satisfies (R). If σ is a pretopology, then so is σ∗. We will make use of

Richardson’s compactification only when σ is a pretopology. We detail this construction

here.

Example 5.3.3 (Richardson’s Compactification). For a pretopological space (X ,π), let

X ′ be the family of ultrafilters on X such that limπ U = ∅ for each U ∈ X ′. We define

the pretopological space (X∗,π∗). The underlying set X∗ = X ∪X ′. For A ⊆ X , let A∗ =

A∪{U ∈ X ′ : A ∈ U}. For a filter F on X , let F∗ = {F∗ : F ∈ F}. We define π∗ to be the

pretopology defined on X∗ by the following vicinity filters:

• For x ∈ X , Vπ∗(x) = Vπ(x)∗.

• For U ∈ X ′, Vπ∗(U) = U∗.

It can be shown that (X∗,π∗) is a compact Hausdorff pretopological space and that adhπ∗ X =

X∗.

It is said that (X ,ξ ) is regular if x ∈ limξ F implies that x ∈ limξ{adhξ F : F ∈ F}.

Richardson [32] proves the following:

Theorem 5.3.4. If (X ,σ) is a Hausdorff convergence space, (Y,ξ ) is a compact, Haus-

dorff, regular convergence space and f : (X ,σ)→ (Y,ξ ) is continuous, then there exists a

unique continuous map F : (X∗,σ∗)→ (Y,ξ ) extending f .

We seek to circumvent the assumption of regularity on (Y,ξ ). For a Hausdorff pre-

topological space (X ,π), let (κπX ,κπ) = (X∗,(π∗)+). By the above proposition, κπ is

PHC. Additionally, κπ has the following property.
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Theorem 5.3.5. Let (X ,π) and (Y,ξ ) be Hausdorff pretopological spaces spaces. If f :

(X ,σ)→ (Y,ξ ) is continuous, then there exists a continuous function F : (κπX ,κπ)→

(κξY,κξ ) which extends f .

Proof. For each free ultrafilter U on X , f (U) is an ultrafilter on Y . Define F(U) as follows:

• If y ∈ limξ f (U) for some y ∈ Y , let F(U) = y.

• If f (U) is free in (Y,ξ ), let F(U) = f (U).

We show that F is continuous. Since f is continuous, if x∈ X and F(x)∈Vκπ( f (x)) =

〈Vπ( f (x))〉, then we can find U ∈ Vπ(x) such that f [U ] ⊆ V . Suppose U ∈ κπX \X . If

F(U) ∈Y , let V ∈ Vπ(F(U)). Since y ∈ limξ f (U), V ∈ f (U). Therefore, for some U ∈U,

f (U) ⊆ V . It follows that F [{U}∪U ] ⊆ V . Lastly, suppose that F(U) ∈ κπY \Y and fix

V ∈ F(U) = f (U). Then for some U ∈ U, f [U ] ⊆ V . So, F [{U}∪U ] ⊆ {F(U)}∪V and

F is continuous.

The pretopological space κπX is a variation on the Katětov extension of a topological

space. However, the corresponding version of Theorem 5.3.5 does not hold for topological

spaces. What we mean to say is that it is possible to find topological spaces X and Y and

a continuous function f : X → Y which does not extend continuously to the (topological)

Katětov extensions of X and Y . See 5A in [30] for an example. Thus, Theorem 5.3.5 is

surprising in much the same way as Theorem 4.1.5 and shows the value of broadening our

perspective to include pretopological spaces when considering problems usually thought

of as topological.

In [22], it is shown that a convergence ξ has a projective maximum compactification

if and only if ξ has only finitely many free ultrafilters. In contrast with this, we have the

following facts:
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Theorem 5.3.6. If (X ,π) is a Hausdorff pretopological space, (Y,ξ ) is a compact Haus-

dorff convergence space satisfying (R) and f : (X ,π)→ (Y,ξ ) is continuous, then there

exists a continuous map F : (κπX ,κπ)→ (Y,ξ ) extending f .

Proof. We define F : (κπX ,κπ)→ (Y,ξ ) as we did in the proof of Theorem 5.3.5. How-

ever since (Y,ξ ) is compact, for each free ultrafilter U on X , there exists yU ∈ Y such that

yU ∈ limξ f (U). Let F(U) = yU. Since π is a pretopology, to show that F is continuous it

is enough to show that for each p ∈ κπX , F(p) ∈ limξ F(Vκπ(p)).

If x ∈ X , then F(Vκπ(x))⊇ F(Vπ(x)) = f (Vπ(x)). Since f is continuous by assump-

tion, we have that F(x) ∈ limξ F(Vκπ(x)).

If U ∈ κπX \X , then F(Vκπ(U)) = 〈{F(U)∪F [H] : H ∈ U}〉 = 〈F(U)〉∩ f (U)〉. By

construction, F(U) ∈ limξ f (U) and thus by (R), F(U) ∈ limξ F(Vκπ(U)), as needed.

Corollary 5.3.7. If (X ,π) is a pretopological space, then κπ ≥π ξ for any Hausdorff

compactification ξ of π .
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Chapter 6

Cardinal Invariants of Pretopologies

In this section we will employ several cardinal invariants of pretopological spaces which

parallel well-known cardinal invariants, such as the character, pseudocharacter, Lindelöf

degree and closed pseudocharacter, for topological spaces.

6.1 Background

We begin by defining the cardinal invariants of pretopologies which we will make use of.

Definition 6.1.1. Let (X ,π) be a pretopological space. We define the following invariants

of π:

(a) The character χ(π) is least cardinal κ such that for each x ∈ X , there exists a filter

base Bx ⊆ Vπ(x) with |Bx| ≤ κ .

(b) The pseudocharacter ψ(π) is least cardinal κ such that for each x ∈ X , there exists

Fx ⊆ Vπ(x) such that |Fx| ≤ κ and
⋂
Fx = {x}
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(c) The closed pseudocharacter ψ(π) is the least cardinal κ such that for each x ∈ X ,

there exists Fx ⊆ Vπ(x) such that |Fx| ≤ κ and
⋂

V∈Fx
adhπ V = {x}.

(d) The Linelöf degree L(π) is the least cardinal κ such that whenever C is a π-cover of

X there exists A⊆ C such that |A| ≤ κ and X =
⋃

C∈AC.

Notice that the closed pseudocharacter of π is only well-defined if π is Hausdorff. If π

is a topology, then each of the above invariants agree with the usual notions for topological

spaces.

In 1923, Alexandroff and Urysohn [1] asked the following question: If (X ,τ) is a

compact first-countable Hausdorff space, is |X | ≤ 2ℵ0? In 1969, Arhangel’skii [3] proved

the following famous theorem which answers their question.

Theorem 6.1.2. Let (X ,τ) be a topological space. Then |X | ≤ 2χ(τ)L(τ).

In [19], R.E. Hodel provides an excellent survey of the results which followed Arhangel’skii’s

solution to Alexandroff’s problem. In particular, Hodel isolates the techniques provided

by Arhangel’skii’s proof and gives them in purely set-theoretic terms. We will make use

of the following result, which appears as Theorem 3.3 in [19], in the next section.

Theorem 6.1.3. Let X be a set, let Y ⊆ X, and for each x ∈ X let {V (γ,x) : γ < κ} be a

colleciton of subsets of X such that x ∈V (γ,x) for each γ < κ . Assume the following:

(I) given α,β < κ , there exists γ < κ such that V (γ,x)⊆V (α,x)∩V (β ,x)

(H) if x 6= y, then there exists α,β < κ such that V (α,x)∩V (β ,y) =∅

(C) if f : X → κ , then there exists A⊆ X with |A| ≤ κ such that Y ⊆
⋃

x∈AV ( f (x),x).

Then |Y | ≤ 2κ .
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6.2 Cardinality Bounds for Pretopologies

Our first task in this section is to prove that a corresponding version of Arhangel’skii’s

Theorem holds for Hausdorff pretopologies.

Theorem 6.2.1. If X is a Hausdorff pretopological space, then |X | ≤ 2χ(π)L(π).

Proof. We make use of the framework laid out in Theorem 3.3 of [19], given as Theorem

6.1.3 above. Let χ(π)L(π) = κ and for each x ∈ X fix Bx, a filter base for Vπ(x) of

cardinality≤ κ . Setting Bx = {V (γ,x) : γ < κ} and Y = X in the afformentioned Theorem

3.3, it follows immediately that |X | ≤ 2κ . In particular, (I) is satisfied because Bx is a filter

base, (H) is satisfied because π is Hausdoff and (C) is satisfied because L(π)≤ κ .

Corollary 6.2.2. If (X ,π) is a compact Hausdorff pretopological space, then |X | ≤ 2χ(π).

In [14], it is shown that if (X ,τ) is H-closed, then |X | ≤ 2ψ(τ). Since any compact

Hausdorff topological space is also H-closed, for compact Hausdorff topological spaces

we can improve the bound in Corollary 6.2.2 to |X | ≤ 2ψ(τ). Further, since a compact

Hausdorff topological space is regular, ψ(τ) = ψ(τ) and thus |X | ≤ 2ψ(τ) for compact

Hausdorff topological spaces. However, the following example shows that this does not

hold for pretopological spaces.

Example 6.2.3. In [26], a Urysohn topological space (X ,τ) is constructed so that X has

an H-set A where |A| > 2ψ(τ). We have seen in Theorem 4.1.5 that if A is an H-set in a

Urysohn topological space (X ,τ), then when A is viewed as a subspace of the pretopolog-

ical space (X ,θ), (A,θ |A) is a compact Hausdorff pretopological space.

Let κ = ψ(τ). Then, for each x ∈ A, there exists a family Fx of open neighborhoods of

x such that |Fx| ≤ κ and
⋂

U∈Fx
clτU = {x}. Notice that if x ∈ A, then {clτU ∩A : U ∈ Fx}
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is a pseudobase for x in (A,θ |A) of cardinality κ . Thus (A,θ |A) is a compact, Hausdorff

pretopological space, κ = ψ(A,θ |A) and |A|> 2ψ(θ |A).

The fact displayed by Example 6.2.3 is not entirely surprising in the following respect:

A compact Hausdorff pretopological space (X ,π) is not necessarily regular. In fact, if

(X ,π) is a compact, Hausdorff, regular pretopological space, then π is a topology. If (X ,τ)

is a Hausdorff topological space which is not regular, it is possible for ψ(τ)< ψ(τ), so we

can make sense of the fact that the cardinality bound no longer holds. The next question,

then, is this: If X is a compact, Hausdorff pretoplogical space, is |X | ≤ 2ψ(π)? The answer

is yes. We begin with a lemma.

Lemma 6.2.4. Let (X ,π) be a compact, Hausdorff pretopological space with ψ(π) = κ .

Let H be a subset of X such that whenever F is a filter base on H with |F| ≤ κ , adhπ|H F 6=

∅. Then H is compact.

Proof. In the statement of the lemma, adhπ|H F refers to the adherence of F in H when

viewed as a subspace of (X ,π). In particular, adhπ|H F = adhπ F∩H.

Let F be an ultrafilter on H. For each x ∈ X , fix Bx ⊆ Vπ(x) such that |Bx| ≤ κ and⋂
B∈Bx

adhπ B = {x}. Since X is compact, there exists p ∈ adhπ F. If 〈F〉 is the filter

on X generated by F, then 〈F〉 is an ultrafilter. It follows that for each B ∈ Bp, there

exists some FB ∈ F such that FB ⊆ B. The family G = {FB : B ∈ Bp} is a filter base

on H of cardinality ≤ κ . By assumption, adhπ|H G 6= ∅. At the same time, adhπ|H G ⊆(⋂
B∈Bp

adhπ B
)
∩H = {p}∩H ⊆ {p}. Thus, p ∈ H and as such p ∈ adhπ|H F, rendering

H compact, as needed.

If a pretopological space (X ,π) has the property ascribed to H in the above lemma, we

say that (X ,π) is initially κ-compact.

We make use of the following definition and lemma from [23] going forward.
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Definition 6.2.5. A filter base F on a set X is of type κ if |F| ≤ κ and |F | = κ for each

F ∈ F.

Lemma 6.2.6. If X is a set and F is a filter base on X of type κ , then there exists a filter

base H on X of type κ such that H is finer than F and for each A ⊆ X, if |A| < κ , then

there exists H ∈H such that H ∩A =∅.

Notice that this lemma is purely set-theoretic, and thus applies in the setting of pre-

topological spaces.

Proposition 6.2.7. Let (X ,π) be a pretopological space. The following are equivalent.

(a) Whenever C is a π-cover of X and |C| ≤ κ , there exists a finite A ⊆ C such that

X =
⋃
A.

(b) If F is a filter base on X and |F| ≤ κ , then adhπ F 6=∅ (i.e. X is initially κ-compact)

(c) If A⊆ X and |A| ≤ κ , then there exists p∈ X such that for each V ∈Vπ(p), |V ∩A|=

|A| (i.e. p is a complete accumulation point of A)

Proof. Recall that C is a π-cover of X if for each x ∈ X , Vπ(x)∩ C 6= ∅. By way of

contradiction, suppose that F is a filter base with |F| ≤ κ and that adhπ F = ∅. Then,

{X \F : F ∈F} is a π-cover of X of cardinality≤ κ . By assumption, there exist F1, ...,Fn ∈

F such that X =
⋃n

i=1(X \Fi). However, this implies that F1∩ ...∩Fn = ∅, contradicting

that F is a filter base.

Let A ⊆ X such that |A| = λ ≤ κ . Then {A} is a filter base of type λ . Using Lemma

6.2.6, let H be a filter base of type λ with A∈H such that if B⊆ X and |B|< λ , then there

exists some H ∈H such that H ∩B =∅. By assumption, adhπ H 6=∅, so fix p ∈ adhπ H.

Suppose that there exists some V ∈Vπ(p) such that |V ∩A|< |A|. Then we can find H ∈H
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such that H∩V ∩A = (H∩A)∩V =∅. However, H∩A∈H and this implies p /∈ adhπ H,

a contradiction. Therefore, A has a complete accumulation point, as needed.

Lastly, let C be a π-cover of X which does not contain a finite subcover. Further, choose

C so that its cardinality is the least such that no finite subcover exists. Let λ = |C| and write

C= {Vα : α < λ}. If α < λ , then
⋃

β<α Vβ 6= X , by the minimality of λ (otherwise we’d

be able to find a finite subcover of {Vβ : β < α}). Moreover, |X \
⋃

β<α Vβ | ≥ λ , again by

the minimality of λ . Thus, for each α < λ , fix xα ∈ X \
⋃

β<α Vβ such that α 6= γ implies

xα 6= xγ . Let A = {xα : α < λ}. The set A has no complete accumulation point. To see

this, recall that each for each p ∈ X , there is some α < λ such that Vα ∈ Vπ(p). Since

Vα ∩A ⊆ {xβ : β < α}, it follows that for each p ∈ X , there exists V ∈ Vπ(p) such that

|V ∩A| ≤ |{xβ : β < α}| < λ = |A|. By assumption, each subset of X of cardinality ≤ κ

has a complete accumulation point. It follows that λ > κ . Since λ was chosen to be the

least cardinal such that there exists a π-cover of cardinality λ with no finite subcover, (a)

holds.

Before proceeding to the theorem, we need a lemma which generalizes a well-known

fact about topological spaces to the pretopological setting. This lemma is used in the

construction of the family {Hα : α < κ+} in the proof of Theorem 6.2.9. We omit the

proof of the lemma as it is nearly identical to the topological proof.

Lemma 6.2.8. If (X ,π) is a compact pretopological space, then every infinite subset of X

has a complete accumulation point.

Theorem 6.2.9. Let (X ,π) be a compact, Hausdroff pretopological space with ψ(π) = κ .

Then |X | ≤ 2κ .

Proof. We use a closure argument which parallels that of the proof of Theorem 4.1 in [19].

For each x ∈ X , let Bx be a family of vicinities of x witnessing the fact that ψ(π) = κ . Let
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{Hα : α < κ+} be a family of subsets of X satisfying:

1. |Hα | ≤ 2κ for each α < κ+

2. If A⊆
⋃

β<α Hβ and |A| ≤ κ then A has a complete accumulation point in Hα .

3. If A⊆
⋃
{Bx : x ∈

⋃
β<α Hβ} is finite and

⋃
A 6= X , then Hα \

⋃
A 6=∅.

How this construction works: Let H0 be an nonempty subset of X of with |H0| ≤ 2κ .

Suppose that {Hβ : β < α} have been chosen which satisfying (1–3) above. Let Gα =⋃
β<α Hβ . Notice that both [Gα ]

≤κ and F = {A⊆
⋃

x∈Gα
Bx : |A|<ω and

⋃
A 6= X} have

cardinality ≤ 2κ . By Lemma 6.2.8, each A ∈ [Gα ]
≤κ has a complete accumulation point

xA ∈ X . For each family A∈ F , let xA ∈ X \
⋃
A. Let Hα =Gα ∪{xA : A∈ [Gα ]

≤κ}∪{xA :

A ∈ F}. By construction Hα satisfies (1–3).

Let H =
⋃

α<κ+ Hα . By Lemma 6.2.4, Proposition 6.2.7 and Property (2), H is com-

pact. By Property (3) and the fact that H is compact, H = X . Since |H| ≤ 2κ by construc-

tion, |X | ≤ 2κ .

Question 6.2.10. Two further questions in this direction present themselves.

1. If (X ,ξ ) is a compact Hausdorff convergence space which is not necessarily pre-

topological, is it possible that |X |> 2χ(ξ )?

2. If (X ,π) is PHC, is it the case that |X | ≤ 2χ(π)?

The author is still investigating these questions. The end goal would be to use these car-

dinality bounds, as in [4] and [26], to answer the question: If (X ,τ) is a Hausdorff topo-

logical space and A is an H-set in X , does there exists a compact Hausdorff pretopological

space (K,π) and a continuous map f : (K,π)→ (X ,θ) such that f [K] = A?
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Chapter 7

Open Questions

The long and circuitous path to this finished dissertation began with an investigation of

the so-called Katětov spaces – those topological spaces which admit a coarser minimal

Hausdorff topology. In many ways the results of this dissertation seek to find ways to

characterize these spaces, though this is not usually mentioned explicitly. The following

question is asked by Vermeer in [35].

Question 7.0.1. If (X ,τ) is a Hausdorff topological space which can be embedded as an

H-set in some H-closed space, is (X ,τ) Katětov?

The converse to this statement is known to be true (see [14]) but as far as the author is

aware this problem is still open. Theorem 4.1.8 generalizes this question to pretopological

spaces and provides a partial solution. The following question, however, is still open.

Question 7.0.2. If (X ,τ) is a Hausdorff topological space which can be embedded as an

H-set in another Hausdorff topological space, does there exists a compact Hausdorff pre-

topology π such that π ≤ τ?

A variation of this question would instead require π to be PHC. Recall from Chapter

5, if (K,π) is a compact Hausdorff pretopological space and f : (K,π)→ (X ,τ) is a per-
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fect strongly irreducible surjection, then f #π , the θ -quotient pretopology on X is a PHC

pretopology and f #π ≤ τ . Using this as motivation, we pose the following question.

Question 7.0.3. If (X ,τ) is a Hausdorff topological space and A ⊆ X is an H-set, does

there exists a compact Hausdorff pretopological space (K,π) and a continuous function

f : (K,π)→ (X ,θ) such that f [K] = A?

There are counterexamples to this question if (K,π) is instead required to be a compact

Hausdorff topological space (see [4], [26]). These counterexamples rely on a cardinality

argument. If there is a counterexample to Question 7.0.3, we believe that its construction

will also rely on a cardinality argument. The author hopes a solution to the following

problem will point us in the right direction in determining if constructing a counterexample

is possible.

Question 7.0.4. If (X ,π) is a PHC space, is |X | ≤ 2χ(π)? Better yet, is |X | ≤ 2ψ(π)?

We showed in Chapter 6 that is (X ,π) is a compact Hausdorff pretopological space,

then |X | ≤ 2χ(π). Is this still true if we replace π with a general convegence ξ ? In particu-

lar:

Question 7.0.5. If (X ,ξ ) is a compact Hausdorff convergence space, is |X | ≤ 2χ(ξ )?

The author expects the answer to this question is “No.” However, at the time of writing

we have not worked out the details. For a definition of charcater in the general convergence

setting, we refer the reader to [13].

Outside of questions which pertain to Katětov spaces, this work has led to many inter-

esting questions about the nature of pretopological spaces. In particular we give two open

questions pertaining to pretopological extensions. It is shown in [22] that a convergence

space has a maximal compactification if and only if the space has finitely many free ul-

trafilters. This fact allows for both the space and the extensions to be convergence spaces
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in the broadest sense. The author has not been able to find information which considers

only those extensions which are themselves pretopologies. This leads to the following two

questions.

Question 7.0.6. Which pretopological spaces have a one-point compactification which is

itself a pretopology?

Question 7.0.7. Let (X ,π) be a Hausdorff pretopological space. Under what assumptions,

if any, is κπX a maximal PHC extension of X?
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