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Abstract

Plasmas with sub-Larmor-scale (“small-scale”) electromagnetic fluctuations are a

feature of a wide variety of high-energy-density environments, and are essential to

the description of many astrophysical/laboratory plasma phenomena. Radiation

from particles, whether they be relativistic or non-relativistic, moving through

small-scale electromagnetic turbulence has spectral characteristics distinct from

both synchrotron and cyclotron radiation.

The radiation, carrying information on the statistical properties of the turbulence,

is also intimately related to the particle diffusive transport. We investigate,

both theoretically and numerically, the transport of non-relativistic and trans-

relativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale

magnetic turbulence – both with and without a mean field component – and its

relation to the spectra of radiation simultaneously produced by these particles.

Furthermore, the transport of particles through small-scale electromagnetic tur-

bulence – under certain conditions – resembles the random transport of particles

– via Coulomb collisions – in collisional plasmas. The pitch-angle diffusion co-

efficient, which acts as an effective “collision” frequency, may be substantial in

these, otherwise, collisionless environments. We show that this effect, colloquially

referred to as the plasma “quasi-collisionality”, may radically alter the expected

radiative transport properties of candidate plasmas. We argue that the modified

magneto-optic effects in these plasmas provide an attractive, novel, diagnostic

tool for the exploration and characterization of small-scale electromagnetic tur-

bulence. Lastly, we speculate upon the manner in which quasi-collisions may
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affect inertial confinement fusion (ICF), and other laser-plasma experiments.

Finally, we show that mildly relativistic jitter radiation, from laser-produced

plasmas, may offer insight into the underlying electromagnetic turbulence. Here

we investigate the prospects for, and demonstrate the feasibility of, such direct

radiative diagnostics for mildly relativistic, solid-density laser plasmas produced

in lab experiments.

In effect, we demonstrate how the diffusive and radiative properties of plasmas

with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful

tool for the diagnosis of laboratory, astrophysical, and space plasmas.
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Chapter 1

General Introduction

Electromagnetic turbulence is an ubiquitous phenomenon. In the laboratory setting, under-

standing and controlling electromagnetic turbulence is critical to fusion energy science and

the inertial confinement concept (Ren et al., 2004; Tatarakis et al., 2003). Plasma/electro-

magnetic turbulence is a critical element in the development and evolution of supernovae

blast waves (Fan et al., 2011), shocks in the interplanetary medium (Gurnett et al., 1979),

jets of quasars (Mao & Wang, 2007; Gurnett et al., 1979), and solar flares (McAteer et al.,

2009).

Turbulence in electromagnetic fields is the byproduct of instability. Many plasma pro-

cesses are susceptible to exponential (sometimes, non-linear) growth when sufficient free-

energy is available (Treumann et al., 1997). High-energy-density (HED) environments can

readily provide this energy, as these conditions are often the product of forces driving the

system towards great extremes of pressure, density, temperature, etc. Many of these envi-

ronments are, in fact, “collisionless”. A plasma is collisionless if the spatial and time scales

which characterize the system are much less than the Coulomb mean free path and time,

respectively. Collisionless plasmas evolve in time, not by hydrodynamic-like binary Coulomb

interactions, but by collective plasma effects (i.e. plasma waves, macroscopic electromagnetic

fields, etc.). This often requires a full kinetic treatment.
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1.1 GRB Collisionless Shocks and Jitter Radiation

One particular, fully kinetic, plasma instability known as the “Weibel-filamentation insta-

bility” (Weibel, 1959; Fried, 1959) garnered renewed interest when it was proposed that the

instability may play an essential role in the explanation of the enigmatic, gamma-ray burst

(GRB). GRB’s are intensely energetic explosions, ∼ 1051 − 1054 ergs, of cosmological ori-

gin (Medvedev & Loeb, 1999). These events have been shrouded in mystery ever since their

serendipitous discovery during the heart of the Cold War in the 1960’s. The “standard model”

of GRB’s considers a particularly violent astrophysical event (e.g. neutron star merger or

black hole birth) as a “progenitor” for the creation of a “fireball”. These fireballs are thought

to consist principally of radiation and electron-positron pairs. The fireball accompanies the

creation of internal and external (i.e. the upstream is the surrounding interstellar medium)

relativistic collisionless shocks. It is believed that the GRB event (i.e. the observed gamma-

rays) and “afterglow” effect (in x-rays, all the way down to radio emissions) are produced

by the Compton scattering and synchrotron emission of relativistic electrons moving in the

“post-shocked” magnetic field. The acceleration of these electrons is thought to occur via

first-order Fermi acceleration, mediated by multiple crossings with the shock barrier. The

shock, itself, must be the site of an intense magnetic field. Indeed, observations suggest that

strong magnetic fields must exist in the up and downstream of the shock. To explain the ori-

gin of these strong magnetic fields, Medvedev & Loeb proposed a relativistic generalization

of the Weibel instability as a mechanism. In this proposal, the counter-streaming electrons

(in the shock frame) will mediate the shock by the creation of a strong magnetic field.

“Weibel fields” possess a number of favorable properties. First, Weibel magnetic fields

are created spontaneously – without the need for the existence of a “pre-magnetized” en-

vironment. All that is needed to create these fields is an initial perturbation (seed field),

which naturally arises from simple thermal fluctuations of the plasma. Next, the strength of

these magnetic fields is owed to the Weibel instability’s inherently non-resonant nature. The

Weibel instability involves the participation of the plasma as a whole, i.e. there is no partic-
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ular sub-population of plasma particles that are responsible for maintaining the instability.

Consequently, the Weibel instability can transform a significant fraction of the particle ki-

netic energy into magnetic field energy. Additionally, the randomness of the initial seed field

ensures that the resulting magnetic field is turbulent; thus, the fields may effectively scatter

particles at the shock front. Finally, the Weibel instability is approximately aperiodic. This

indicates that its saturation requires the influence of non-linear processes – i.e. kinetic effects,

such as Landau-like damping, cannot stop its growth (Medvedev & Loeb, 1999).

Large-scale, state of the art, particle-in-cell (PIC) codes have confirmed that the Weibel

instability, indeed, plays a role in the formation of relativistic (Silva et al., 2003; Nishikawa

et al., 2003; Frederiksen et al., 2004; Spitkovsky, 2005, 2008) and nonrelativistic collisionless

shocks (Medvedev, 2006b; Fiuza et al., 2012).

Medvedev, subsequently, considered the radiation from particles moving in this “Weibel

turbulence”. Weibel generated magnetic turbulence has a small correlation length – a few

orders of the plasma skin-depth. Since the skin-depth is, typically, of comparable order to

the Larmor curvature radius, this has immediate implications for particle transport – and

therefore – radiation production in these plasmas.

The Synchrotron Shock Model (SSM) posits that the basic radiation mechanism involved

in GRB’s is synchrotron radiation emitted by relativistic electrons. This treatment is valid

for magnetic fields with correlation lengths greater than the electron’s average Larmor/gyro-

radius. However, the Weibel-mediated magnetic fields have correlation lengths comparable

to, or less than, the Larmor-scale; they are sub-Larmor-scale or “small-scale” fields. Thus,

the radiation these electrons emit is distinct from synchrotron radiation.

The radiation from relativistic electrons in sub-Larmor-scale magnetic turbulence is called

jitter radiation (Medvedev, 2000). Unlike synchrotron radiation, which is principally deter-

mined only by the strength of the magnetic field (which, in turn, determines the Larmor

curvature radius), the spectral characteristics of jitter radiation are directly related to the

statistical properties of the magnetic spectral distribution and particle distribution functions.
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Three-dimensional jitter radiation has been observed in connection to the Weibel insta-

bility in PIC simulations (Medvedev et al., 2011; Mizuno et al., 2008; Frederiksen et al.,

2010). Additionally, there is considerable observational support for the jitter mechanism as

an explanation of the GRB “afterglow” (Medvedev, 2006). It was the Burst and Transient

Source Experiment (BATSE) on the Compton Gamma Ray Observatory that first discov-

ered a discrepancy in the SSM from GRB light curves. The SSM places a strict upper limit

on the photon number spectral index, α, for low energies. The model considers the photon

spectrum, dN/dE ∝ Ea, where N is the number of photons with energy, E. The, so called,

“synchrotron line of death” requires a . −2/3. According to BATSE’s initial measurements,

23 of the 100 observed bright GRB’s violated the −2/3 limit (Preece et al., 1998). In con-

trast, the jitter mechanism can account for this discrepancy. Moreover, the jitter theory

explains the abundance of a specific spectral index (namely, a ∼ 1) in the observational

data; which, by no means, is favored by the SSM (Medvedev et al., 2009).

1.2 Research Overview

The intimate connection between jitter radiation and the transport of electrons/ions through

the turbulence may be exploited as well. The first-order Fermi acceleration mechanism must

appeal to the magnetic fields near shocks as the driving factor. Consequently, understanding

the transport of plasma particles in the turbulent magnetic fields, via pitch-angle diffusion

and energy diffusion, is essential to probing the particle acceleration. It is the elucidation

of this inter-connection between transport and radiation production in small-scale magnetic

turbulence that has directed our initial research efforts (Keenan & Medvedev, 2013). Our

main interest has been the exploitation of this connection for general plasma diagnostic

purposes.
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1.2.1 Non-Relativistic Jitter Radiation

Nonetheless, electrons and ions in many suitable environments are non-relativistic (or mildly

relativistic). The jitter theory is, formally, applicable to ultrarelativistic particles; thus, it

may not adequately capture the transport/radiative properties of laboratory collisionless

shocks, laser-plasmas, etc. The major component of this work includes the development of

the non-relativistic, small-angle, jitter theory. Specifically, we derived the non-relativistic

jitter (“pseudo-cyclotron”) radiation spectrum and precise analytic estimates for the non-

relativistic generalization of the pitch-angle diffusion coefficient. Additionally, we confirmed

our analytic results with first-principle numerical simulations (Keenan et al., 2015).

1.2.2 Small-Scale Fields in Magnetized Plasmas

Our initial studies strictly considered a “Weibel-like” magnetic turbulence. This means that

we treated the electromagnetic turbulence as static, i.e. with zero real frequency. Addi-

tionally, we extended our model to include sub-Larmor-scale electromagnetic turbulence in

plasmas with ambient magnetic fields. The instabilities, in this case, are usually driven with

non-zero real frequency, and thus, they induce random electric fields. For this reason, we

not only considered stochastic transport via (magnetic) pitch-angle diffusion, but transport

via (electric) energy diffusion as well. We showed that the energy diffusion coefficient is pro-

portional to the (sub-Larmor-scale) pitch-angle diffusion coefficient (Keenan et al., 2016).

The exploitation of the inter-relation between the transport and radiative properties of these

plasmas may provide a powerful diagnostic tool for examination of small-scale turbulence in

“magnetized” plasmas.

We, furthermore, considered the transport of, and radiation production by, relativistic

electrons moving through “small-scale” electric turbulence (Keenan et al., 2016). We, prin-

cipally, focused on realizations of Whistler-mode turbulence, because Whistler waves are

regularly seen in a very wide variety of magnetized environments. Given certain conditions,

the (temperature anisotropy) Weibel instability – in pre-magnetized plasmas – may evolve
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into a Whistler-mode instability (Palodhi et al., 2010); thus, for example, Whistler-modes

may spontaneously appear in environments where Weibel-like instabilities may take hold.

Many examples of Whistler waves in space and astrophysical plasmas exist. Whistler

waves near collsionless shocks in the solar system, in particular, have been observed in situ for

decades. These wave-modes have, addtionally, been strongly associated with interplanetary

shocks – appearing both in the upstream and downstream regions (Fairfield, 1974; Tsurutani

et al., 1983; Ramírez Vélez et al., 2012). The solar wind turbulence, as well, appears to host

Whistler-modes (Lengyel-Frey et al., 1996; Lin et al., 1998).

1.2.3 Jitter Radiation in Laser-Plasma Experiments

An obvious application of mildly relativistic jitter radiation is offered by laser-plasma exper-

iments. For over a decade, the production of strong (> megaGauss) magnetic fields/turbu-

lence in solid-density plasmas, generated by the irradiation of a target with high-intensity

lasers, has been observed in a diverse set of laboratory experiments (Sandhu et al., 2002; Sarri

et al., 2012; Wagner et al., 2004; Gopal et al., 2013; Mondal et al., 2012). Understanding

and controlling electromagnetic turbulence in these environments is critical to studies in the

fusion energy sciences, and for the inertial confinement concept (Ren et al., 2004; Tatarakis

et al., 2003), in particular.

These magnetic fields can be generated by a number of mechanisms – e.g., by the misalign-

ment in plasma temperature and density gradients (Biermann Battery), or by an induction

field produced by the flux of fast electrons via the ponderomotive acceleration (Belyaev et

al., 2008). At relativistic intensities (> 1018 W/cm2) and ultrashort pulse durations (< 1 ps),

magnetic fields can also be generated via an electron-driven Weibel-filamentation instability

(Belyaev et al., 2008; Sarri et al., 2012). The instability is initiated by counterstreaming elec-

tron beams consisting of a “hot” beam (arising immediately following the target’s interaction

with the high-intensity laser) and a returning (shielding) “cold” electron beam. Initially,

the net current is zero; however, the Weibel-like instability subsequently grows, leading to
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the formation of separated current filaments – the source of a quasi-static magnetic field

configuration. The current filaments may further evolve, as they may in the astrophysical

setting, via coalescence/tearing/screw instabilities, into current channels (Medvedev et al.,

2005; Polomarov et al., 2008; Shvets et al., 2009), which further initiate filamentary magnetic

structures (Mondal et al., 2012).

It is worth noting that there is considerable overlap between astrophysics and laboratory

plasma physics. For example, the creation of a collisionless shock in the laboratory setting

is a major goal of experimental astrophysics. It is strongly believed that presently existing

laser facilities, such as OMEGA/OMEGA EP and NIF, will eventually observe these Weibel-

mediated shocks in the laboratory – i.e. to make a “gamma-ray burst in a lab” (Medvedev,

2007, 2008; Medvedev & Spitkovsky, 2009). In contrast to the aforementioned solid-density

plasmas, these plasmas flow freely in-between laser ablated metal plates (Fox et al., 2013;

Sakawa et al., 2013; Bret et al., 2014; Huntington et al., 2015; Park et al., 2015). This is

achieved via weaker laser intensities and longer pulse durations (∼ 1014 W/cm2 and ∼ 1 ns,

for a recent Omega laser experiment) – although higher intensities are believed to be required

for the creation of a shock (Sakawa et al., 2013; Huntington et al., 2015). Recently, the

formation of filamentary structures indicative of ion-driven Weibel-like magnetic fields has

been observed in a scaled laboratory experiment at the Omega Laser Facility (Fox et al.,

2013; Huntington et al., 2015; Park et al., 2015).

We showed that the direct observation of mildly relativistic jitter radiation may be feasible

in the laboratory setting (Keenan & Medvedev, 2015b). We focused our attention upon

the 2012 Mondal experiment (Mondal et al., 2012). This experiment provides a concrete

example of an applicable laser-plasma. Additionally, the Mondal experiment constructed,

directly from data, the magnetic (spatial) power spectrum – an estimate of which is necessary

to predict the jitter radiation spectra. A considerable amount of what is explored here is

applicable to (short duration) relativistic laser-plasma experiments, in general.
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1.2.4 Small-Scale Turbulence and Quasi-Collisionality

Despite much variation in the origin of the electromagnetic turbulence (e.g., the Weibel or

filamentation instabilities), most of these plasmas have one thing in common: their configura-

tion is such that binary Coulomb collisions are negligible; i.e., the plasmas are “collisionless”.

Nonetheless, some of these environments, such as plasmas at “collisionless” shocks, display

phenomena that resemble conventional collisional interactions. Hereafter, we colloquially

refer to these phenomena as “quasi-collisional”.

We showed that sub-Larmor-scale (“small-scale”) magnetic turbulence (Keenan et al.,

2015a), and small-scale electric turbulence (Keenan et al., 2016a), induces particle dynamics

reminiscent of binary Coulomb interactions. In fact, the random small-angle deflections

of electrons by small-scale magnetic and electric fields leads to an effective collisionality

with the effective “collision” frequency being equal to the (small-angle) pitch-angle diffusion

coefficient.

Random magnetic fields are known to lead to effective diffusion. Particularly, braided

fields, for example, can cause anomalous transport in tokamaks near destroyed rational

magnetic surfaces (Rechester & Rosenbluth, 1978) and in turbulent plasmas inside galaxy

clusters (Chandran & Cowley, 1998; Narayan & Medvedev, 2001; Malyshkin & Kulsrud,

2001; Malyshkin, 2001; Medvedev, 2007b). The key difference in our work, from previous

works, is that they considered that the correlation length of the field (or equivalently the

chaotic Lyapunov exponent) is substantially larger than the Larmor scale (hence the term

“braided”), whereas we considered the case of the fluctuating field having a correlation length

smaller than the Larmor scale.

This “quasi-collisional” effect, if real, would produce a distinct (anomalous) signature

in Faraday rotation measures of astrophysical magnetic fields (that is, if they contain any

non-negligible small-scale component). This effect significantly alters the reflection and

absorption coefficients of laser-plasmas with small-scale fields, as well. In fact, if the effect is

sufficiently large, it may effectively render the plasma medium transparent; i.e. the “critical
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surface”, at which absorption/reflection principally occurs, disappears (or, at the very least,

is pushed further into the material). This may be important for inertial confinement fusion

(ICF), in particular. The deposition of momentum within the target is required for implosion

to occur; thus, this deposition depends upon the reflection coefficient. Additionally, excess

absorption, with its accompanying increase in temperature, may be problematic.

1.3 Chapter Organization

This work is organized as follows. In Chapters 2 & 3, we provide the theoretical background

needed to understand the proper context of our research efforts. Many of the concepts

discussed, therein, will appear throughout this work. In Chapter 4, we present details on

the first-principle numerical simulations employed. Chapters 5 & 6 present the analytic

theory, and simulation results, for the transport and radiation production of particles mov-

ing through small-scale electromagnetic turbulence. In Chapters 7 & 8, we discuss quasi-

collisionality in small-scale magnetic and electric turbulence, respectively. Chapter 9 presents

our work on the possible observation of jitter radiation in laser-plasma experiments. Finally,

Chapter 10 presents our general conclusions. All equations are in cgs units.
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Chapter 2

Theoretical Background

In this Chapter, we discuss the basic concepts underlying the kinetic theory of collisionless

plasmas. These concepts, in one form or another, will appear throughout this work.

2.1 The Classical Plasma

Colloquially, a plasma is a rarefied gas of fully ionized electrically charged particles. However,

for our purposes, we will need a more specific, i.e. formal, definition. This require some

development.

The plasmas we will consider are governed by classical physics. Essentially, the particles

that compose a plasma behave like “particles”, i.e. their field and wave-like properties are

suppressed. This means that the characteristic spatial scales of plasmas are much larger

than length scales at which quantum phenomena become important. We will now estimate

these characteristic scales. We will treat the electron scales only, since the equivalent ion

scales are far shorter.

The shortest electron length is that for which “renormalization” becomes important in

Quantum Electrodynamics (QED); this is, roughly, the classical electron radius (Landau &

Lifshitz, 1975). This scale is connected to the electron’s, so called, self-energy. In classical

physics, the idea of a point-like electron is actually a source of contradiction, since the
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electron’s self-energy must be infinite if it were the size of a point. One may reach this

conclusion by considering an electron as a distribution of charge. If we bring in the bits of

charge to form the electron from infinity, then work must be done against these bits’ mutual

electrostatic (Coulomb) repulsion. That work then becomes the rest mass energy of the

electron, mec
2 (where me is the electron mass and c is the speed of light in a vacuum). Thus,

since the electron mass is finite, the electron radius must be finite as well. Consequently, the

electron’s radius must be given by the equality: e2/re = mec
2 – where e2/re, the Coulomb

potential energy (zeroed at infinity), which is the work required to assemble a charge of e

with radius, re. Thus, the classical electron radius is defined as:

re ≡
e2

mec2
. (2.1)

This is a very short length; re ≈ 2.82 × 10−15 m. The average separation between plasma

particles, d̄ is much, much greater than this length scale.

Next, the spatial scale at which QED, itself, becomes important is dictated by the Comp-

ton wavelength. This is the wavelength of a photon with sufficient energy, Wph, to produce

an electron or positron, i.e. Wph = mec
2. The energy of a photon is given by: Wph = hc/λ

– where h is Planck’s constant and λ is the photon’s wavelength. Thus, the Compton wave-

length follows as:

λcompton ≡
~
mec

, (2.2)

where ~ ≡ h/2π is the reduced Planck’s constant. The Compton wavelength, λcompton ≈

2.43×10−12 m, defines the characteristic spatial scale at which electron and positron creation

and annihilation become important; equivalently, it dictates the energy-scale at which QED

is necessary for the complete description of the plasma.

The final quantum scale is dictated by the wavelength of an electron. If the characteristic

length of the plasma (which is, presumably, larger than d̄) is much greater than the quantum

wavelength, then we may legitimately treat the electrons and ions as point-like “particles”.
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The wavelength of an electron is, roughly, given by its de Broglie wavelength, i.e. λdebroglie =

h/p – where p is the electron’s momentum. Thus, we require that:

h

p
� d̄. (2.3)

The de Broglie wavelength will depend upon the plasma temperature, i.e. the average

kinetic energy of each particle, W̄e ∼ kBT – where kB is the Boltzmann constant and T is

the absolute temperature. We may relate d̄ to the average electron number density, ne, by

noting that: ne ∼ d̄−3. Thus, the inequality may be expressed, alternatively, as:

n−1/3
e

√
mekBT/h� 1, (2.4)

where we have used p2/me ∼ W̄e
1 A more convenient representation is given by:

n−1/3
e

√
θeV � 2× 10−7 cm eV 1/2, (2.5)

where the electron temperature, θeV, is in electron-volts. In Figure 2.1 (where n ≡ ne), we

see parameter values for some typical plasmas (we will discuss the nature of each parameter

in the following sections). For each plasma setup, Eq. (2.5) holds well – up to, at least, an

order of magnitude. Thus, many plasmas permit the classical prescription. For this reason,

we will presuppose the classical picture for everything to follow.

2.1.1 The Boltzmann Transport Equation

Eq. (2.3) implies that electrons and ions in a plasma behave like particles. This means that

each particle has a rather well-defined position and momentum. The complete description

of their motion is given by the Hamilton, H; which is a function of generalized coordinates
1Strictly, this applies only for non-relativistic plasmas. Relativistic plasmas, on the other hand, will more

easily satisfy the general inequality. Although, when the energy-scales exceed the Compton limit, quantum
processes like pair production may become important.
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Figure 2.1: Approximate magnitudes of characteristic parameters in some typical plasmas.
Source: The NRL Plasma Formulary (2013 Revision).
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and canonical momenta. The particles obey Hamilton’s Equations:

 ∂H/∂qi = −ṗi,

∂H/∂pi = q̇i,
(2.6)

where pi and qi are the ith particle’s momentum and position, respectively. Thus, for a

collection of N particles, we have 6N equations. Since these particles obey Hamilton’s

equations, the 6N -dimensional phase space volume element:

ΠN
i=1dqidpi, (2.7)

is a conserved quantity when the Hamiltonian is not an explicit function of time – a fact

which underlies Liouville’s Theorem (Lifshitz & Pitaevskii, 1981). In principle, these 6N

equations wholly determine the state of the system. Nonetheless, they are too numerous to

deal with in practice, so we require something simpler. We may reduce the complexity by

moving from this 6N -dimensional phase space to that of a single particle. We define the

single particle distribution function as:

f(x,p, t) ≡ d2N

dxdp
, (2.8)

where dxdp is the volume element of the 6-dimensional phase space for one particle. Thus, f

specifies the number of particles within an infinitesimal volume of phase space. Integration

of f over all of phase space then gives the total number of particles. There will be, in fact,

a distribution function for each plasma species, but we will consider (for simplicity) just one

species at this time. Implicit in this definition is the assertion that the plasma contains a

very large number of particles, and that their physical separation is sufficiently small enough

that we may treat the distribution function as a continuous function of x and p.

Next, the evolution equation for f may be conceptualized by first considering the lim-
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iting case of zero “interactions”. If each particle may be treated as its own “sub-system”,

it will individually obey Liouville’s theorem. Thus, the number of particles occupying an

infinitesimal volume of phase space is conserved; hence:

d

dt
[f(x,p, t)dqdp] =

df(x,p, t)

dt
dqdp + f(x,p, t)

d

dt
[dqdp] = 0. (2.9)

Thus, because d
dt

[dqdp] = 0:
df

dt
= 0. (2.10)

With the introduction of “collisions”, this condition fails. We correct Eq. (2.10) for collisions

with:
df

dt
=

(
∂f

∂t

)
coll.

, (2.11)

where the functional form of (∂f/∂t)coll. depends upon the collisional model chosen. Thus,

we write the Boltzmann transport equation by expanding df/dt, i.e.

∂f

∂t
+
∂f

∂x
· ẋ +

∂f

∂p
· ṗ =

(
∂f

∂t

)
coll.

, (2.12)

Next, we must interpret the ṗ term in Eq. (2.12) and the meaning of “collisional” inter-

action in the transport equation. Unless otherwise stated, we will assume a non-relativistic

plasma for the following derivations.

2.1.2 The Vlaslov Equations

In essence, Liouville’s theorem states that the total energy of a closed system is conserved.

Thus, Eq. (2.10), which asserts that a single particle acts as “closed” sub-system, implies

that the total energy of a single plasma particle must be conserved. Consequently, the only

“forces” acting on the particle must be conservative.

Since a plasma is composed of electric charges, it responds to the application of electric

and magnetic fields. We interpret the ṗ term in Eq. (2.12) as a force applied to each plasma
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particle by external fields – which conserve particle energy. The equation of motion of a

charged particle in external electromagnetic fields is given by the Lorentz force, i.e.

ṗ = e
(
E +

v

c
×B

)
, (2.13)

where E, B, and v are the external electric field, magnetic field, and particle velocity,

respectively.2 The electric field, if it does not possess any explicit time-dependence, conserves

the total (single) particle energy. Thus, the application of E does not violate Eq. (2.12). In

general, a force-field that depends explicitly upon the particle velocity is non-conservative.

However, since v/c×B is always perpendicular to v, the magnetic field will always impose

a transverse acceleration. As a result, the particle speed, v, remains constant; therefore, the

kinetic energy is unaffected by B.

Thus, since the Lorentz force does not affect the total energy of a single particle, it does

not violate Eq. (2.10). Collisions, on the other hand, are conceptually distinct. When a

particle “encounters” another particle, we say that they will have a Coulomb interaction.

This interaction is, generally, non-conservative (for a single particle) – since it may involve

an exchange of energy from one particle to another.

The notion of an “external” field, as we have discussed, implicitly entails that the “self-

field” of the plasma particle has no effect on the “source” of the external fields – thus, no

exchange of energy between the particle and the “source” occurs.3 As we will show in the

next section, the Coulomb fields of each plasma particle cannot be completely “screened out”.

Rather, they effectively add to produce an overall “macroscopic” field. It is these fields which

we treat as external, because a single plasma particle has very little influence on the fields
2Formally, the momentum variable should be the canonical momentum, P = p − e/cA(x, t) – where

A(x, t) is the magnetic vector potential and p = mv is the “kinetic momentum”. However, the action of A is
simply to change the zero of momentum at each point in space and time. This leaves the phase space volume
unchanged; in other words, dPdx = dpdx. Thus, we legitimately make the switch: f(x,P, t) → f(x,p, t)
(Lifshitz & Pitaevskii, 1981)

3Technically, a charge loses energy in an external field too – since the particle radiates electromagnetic
waves whenever it experiences acceleration. Nonetheless, if the radiated energy is much less than the total
particle energy, then we may safely ignore radiative losses.
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produced by the plasma as a whole.

Formally, if the average distance a particle travels before “colliding”, i.e. the mean-free

path, is much greater than the characteristic size of the plasma, then we can ignore collisions.

Likewise, we may ignore collisions if the plasma processes of interest happen on a time-scale,

Ω−1, which is much less than the collisional mean-free time, τmfp. We call plasmas which

meet any of these criteria collisionless.

Many plasmas, especially those considered in this work, fit the collisionless criteria; thus,

they will be our main focus. We will formalize the notion of a collisionless plasma in the

following sections, but first we will define the fundamental equations that govern their dis-

tribution function. First, since the plasmas are collisionless, the RHS of Eq. (2.12) is zero.

Thus, we write the Collisionless Boltzmann equations as such:

∑
s

∂fs
∂t

+
∑
s

∂fs
∂x
· ẋ + e

[
E +

v

c
×B

]
·
∑
s

Zs
∂fs
∂p

= 0, (2.14)

where s denotes the plasma species (e.g. electron or proton) and Zs is the ratio of the

particle’s charge to e (i.e. 1 for a proton, −1 for an electron, 2 for a Helium nucleus, and so

forth).

Next, these external fields must be calculated from Maxwell’s Equations using the plasma

charge density, ρ, and the current density, J. In cgs units, we write:

∇ · E = 4πρ (2.15a)

∇× E = −1

c

∂B

∂t
(2.15b)

∇ ·B = 0 (2.15c)

∇×B =
4π

c
J +

1

c

∂E

∂t
(2.15d)

We wish to obtain solutions that are consistent with a distribution function, f , and Eq.

(2.14). To this end, we take “moments” of the distribution function to define effective current
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and charge densities; these are:

ρ(x, t) = e
∑
s

Zs

ˆ
fs(x,p, t) dp (2.16a)

J(x, t) = e
∑
s

Zs

ˆ
fs(x,p, t)v dp (2.16b)

Eqs. (2.14)-(2.16) form a complete, self-consistent, set of equations for the solution of the

distribution functions, fs (Lifshitz & Pitaevskii, 1981). As a set, these are called the Vlaslov

equations – although, the literature sometimes applies the term exclusively to Eq. (2.14).

With the Vlaslov Equations, we have very nearly defined what we mean by a plasma;

nonetheless, there is still much to discuss.

2.1.3 The Debye Length

Consider a collisionless plasma that is in “thermal equilibrium”. That is to say, the plasma

species possess a definite temperature, Ts, that is fixed in time. Let us, further, assume that

the plasma is isotropic; i.e. f(p) = f(p) – where p ≡ |p|. One solution to Eq. (2.14) which

fits these criteria is the Maxwell-Boltzmann distribution (Cravens, 1997):

fsM(x, p) ∝ exp
[
− Ws

kBTs

]
, (2.17)

where Ws is the total energy of a single particle of species, s. Let us suppose that the

plasma is permeated by a macroscopic electrostatic field, E(x) = −∇Φ(x). For electrons,

We = p2/2me + eΦ(x); thus:

feM(x, p) ∝ exp
[
− p2

2mekBT

]
exp

[
−eΦ(x)

kBTs

]
. (2.18)

The physical meaning of the potential term becomes clear when we consider the difference

between an equilibrium plasma and the standard ideal gas. Consider, for simplicity, a plasma
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composed exclusively of electrons and protons. Furthermore, assume that the protons are

relatively immobile, and that the electrons move freely.

The equilibrium configuration of this plasma will be such that the electrons “bunch”

together into clouds surrounding nearest protons. Eq. (2.18) suggests the electron number

density, ne(x), that this equilibrium position will assume; namely:

ne(x) = ne0exp
[
−eΦ(x)

kBTe

]
, (2.19)

where ne0 ≡ ne(Φ = 0). We assume that the plasma is composed of, roughly, an equal

number of protons and electrons; thus, np = ne0 – where np is the proton number density.

Since the protons are relatively immobile, their number density will largely not be affected

by the macroscopic field.

Next, if the plasma is homogeneous, then we may choose the origin of our coordinate

system at the center of a single proton and use the radius vector, r. Thus, the total charge

density surrounding a proton will be:

ρ(r) = e [np − ne] = ene0

[
1− exp

(
−eΦ(r)

kBTe

)]
. (2.20)

Now that we have the charge density, we may solve for the potential using:

∇ · E = −∇2Φ = 4πρ. (2.21)

Applying Eq. (2.20) yields:

∇2Φ(r) = −4πene0

[
1− exp

(
−eΦ(r)

kBTe

)]
. (2.22)
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Since the plasma is isotropic, Φ(r) = Φ(r). Hence, in spherical coordinates, we may write:

∇2Φ(r) =
1

r2

d

dr

(
r2dΦ

dr

)
= −4πene0

[
1− exp

(
− eΦ

kBTe

)]
. (2.23)

Next, let us assume that the electrons’ kinetic energy,

We ∼ kBTe � e|Φ|. (2.24)

With this assumption, the argument of the exponential in Eq. (2.23) is much less than unity.

For this reason, we may expand the exponential; keeping only the first-order term. This

considerably simplifies the expression, leading to:

1

r2

d

dr

(
r2dΦ

dr

)
≈
(

4πe2ne0
kBTe

)
Φ. (2.25)

Finally, the solution of Eq. (2.25) is given by (Cravens, 1997):

Φ(r) =
e

r
exp

(
− r

λD

)
, (2.26)

where,

λD ≡
√

kBTe
4πne0e2

(2.27)

is the electron Debye length.

Eq. (2.26) admits a simple physical interpretation – in its limits. As r →∞, the potential

tends to zero. Hence, the electric field of the plasma is completely “screened out” at spatial

infinity. In the opposite limit, i.e. r → 0, the potential resembles the standard Coulomb

potential: Φ = e/r.

The Debye length is the characteristic spatial scale that roughly divides these two regimes.

In other words, the large-scale electric fields in an equilibrium plasma only dominate spatial

scales comparable to λD. For this reason, it is an important plasma parameter; one which
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is critical to the definition of a “good” plasma – a term we will formally define in the next

section.

2.1.4 The “Good” Plasma

The Debye length is a valid concept if the plasma contains a sufficiently large number of

particles. This ensures that we may define an average particle number density that is actually

statistically meaningful. It is, especially, important that the number of particles within a

Debye radius is large. This motivates the introduction of ND – which we define as the number

of particles occupying a sphere of radius, λD. Hence:

ND ≈ ne0
4π

3
λ3
D. (2.28)

We now define a new plasma parameter:

gplasma ≡ 1/ND. (2.29)

Thus, we require that gplasma � 1 to ensure the meaningfulness of λD.

Recall that n−1/3
e ∼ d̄, where d̄ is average separation between plasma particles. With this

relation, an alternative interpretation of gplasma is given by:

gplasma ∼
3

4π

(
d̄

λD

)3

. (2.30)

Hence, gplasma � 1 implies that λD � d̄.

Next, the plasmas we will consider are typically characterized by quasi-neutrality. This

is the concept that, on the largest scales of plasma, the system is basically neutral. In other

words, no electric fields exist on the scale of the system as a whole, L. This condition holds

if the system size is much greater than the Debye length.

Finally, we define a plasma as “good” [for our purposes] if it satisfies the Vlaslov Equations,
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and these criteria: 
λD � L→ (Quasi-Neutrality)

gplasma � 1→ (Statistical Validity)

Ωτmfp � 1→ (Collisionless Plasma)

(2.31)

We have included the latter condition because our plasmas are typically collisionless. We

will, nonetheless, relax this condition in Chapter 7.

Referring back to Figure 2.1, nλ3
D is approximately ND – whereas, νei is the electron-

ion collision frequency. From the table, we see that a few plasmas are obviously not

“good”. Laser-plasmas, in particular, violate both the Statistical Validity condition and

quasi-neutrality. They are, additionally, weakly collisional. Nonetheless, most Space and

Astrophysical plasmas (e.g. interstellar gas) are “good”.

2.1.5 The Plasma Dielectric Tensor

Sources of free energy can drive a plasma away from equilibrium. This may promote the

growth of instabilities, electromagnetic fluctuations/waves, and turbulence. Even in isotropic

plasma, there are fluctuation processes, e.g. Langmuir oscillations, that would go unnoticed

if we restricted our attention to the “good” plasma description. To fully appreciate the

non-equilibrium dynamics of plasmas, we must utilize the plasma dielectric tensor.

We may derive the dielectric tensor by considering the response of a plasma due to the

application of an external electric field, E. To that end, we define the polarization vector,

P, thusly:  ∂P/∂t = J,

∇ ·P = −ρ.
(2.32)

These implicit relations for P are compatible, since they follow immediately from the charge

continuity equation (Lifshitz & Pitaevskii, 1981).

Next, we define the displacement field, D ≡ E+4πP. This may be interpreted as the field

produced by the plasma in response to E. This definition, additionally, allows the expression
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of Maxwell’s Equations symmetrically (i.e. without the presence of currents and charge

densities which underlies the distinction between the “homogeneous” and “inhomogeneous”

equations). With these relations, Eqs. (2.15) become (Lifshitz & Pitaevskii, 1981):

∇ ·D = 0 (2.33a)

∇× E = −1

c

∂B

∂t
(2.33b)

∇ ·B = 0 (2.33c)

∇×B =
1

c

∂D

∂t
(2.33d)

We wish to write a general expression for the plasma response. To do this, we must realize

that the plasma does not respond instantaneously to the applied field. Consequently, D(r, t)

will depend upon on the development of E throughout all of its history.

Furthermore, we wish to treat the plasma self-consistently. For this reason, we treat the

“external” electric field as emanating from the plasma itself. This means that D will depend

upon E in a non-local way; thus, D at r will be determined by E throughout the entirety of

the plasma.

With these stipulations, the most general expression that we may write for the relation

between E and D – at the point, r, during time, t – will have the component form (Lifshitz

& Pitaevskii, 1981):

Dα(r, t) = Eα(r, t) +

ˆ t

−∞

ˆ
V

Kαβ(r, t | r′, t′)Eβ(r′, t′) dt′ dr′, (2.34)

where V is the volume of the space, and Kαβ is a kernel function which depends upon the

dielectric properties of the plasma under consideration.

If the plasma is spatially homogeneous, then the lack of a preferred coordinate origin

implies that K will only depend upon r − r′. Likewise, temporal homogeneity implies that

the response of the plasma will depend upon the duration from t′ to t, i.e. t − t′. Thus,
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assuming homogeneity in time and space, we may write (Lifshitz & Pitaevskii, 1981):

Dα(r, t) = Eα(r, t) +

ˆ ∞
0

ˆ
V

Kαβ(ρ, τ)Eβ(r− ρ, t− τ) dτ dρ, (2.35)

where ρ ≡ r− r′ and τ ≡ t− t′.

Let us suppose plane wave solutions for E and D; namely:

 D(r, t) = D(Ω,k)exp(ik · r− iΩt),

E(r, t) = E(Ω,k)exp(ik · r− iΩt).
(2.36)

With these expressions, Eq. (2.35) is:

D(Ω,k)eik·r−iΩt = E(Ω,k)eik·r−iΩt +

[ˆ ∞
0

ˆ
V

Kαβ(ρ, τ)eiΩτ−ik·ρ dτ dρ

]
E(Ω,k)eik·r−iΩt.

(2.37)

We define the plasma dielectric (permittivity) tensor, εαβ(Ω,k), such that:

Dα(Ω,k) = εαβ(Ω,k)Eβ(Ω,k), (2.38)

so, from Eq. (2.37), the dielectric tensor must be defined by:

εαβ(Ω,k) ≡ δαβ +

ˆ ∞
0

ˆ
V

Kαβ(ρ, τ)eiΩτ−ik·ρ dτ dρ, (2.39)

where δαβ is the Kronecker delta.

The dielectric tensor encapsulates the fundamental response of a plasma to instability,

waves, etc. Specifically, the solution to Eq. (2.38) – which is found, non-trivially, by solving

the characteristic equation which results from taking the determinant of εαβ – gives us a

dispersion relation, which is an expression that relates Ω and k. Thus, to examine waves

and instabilities in plasmas, we must construct the dielectric tensor. To that end, we solve

the Vlaslov Equations, under assumptions appropriate for the “disturbance” in question.
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Chapter 3

The Characterization of Waves,

Turbulence, and Instabilities in

Collisionless Plasmas

3.1 Introduction

In this Chapter, we will use the tools we developed to describe the plasma processes (waves,

instabilities, and turbulence) which will play an important role in the plasmas that we

will consider later. Once completed, our unique contribution to the study of small-scale

electromagnetic turbulence, as detailed in the Chapters to follow, may be sufficiently grasped.

Unless otherwise specified, the dynamics of the plasmas we will explore are dominated

by electrons. That is to say, the electrons will principally respond to changes in the fields,

distribution, etc. – whereas, any ion populations present will be largely unresponsive; they

will merely provide a neutralizing, fixed background. Such a plasma is, colloquially, known

as an electron plasma.
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3.2 The Permittivity of an Isotropic Collisionless Plasma

The simplest plasma is isotropic, homogeneous, collisionless, and non-magnetized. The latter

term refers to the lack of a large-scale, i.e. “external”, magnetic field in the plasma. As we

will see later, this is a rather imprecise definition, but it will service our immediate needs.

Let us consider small electromagnetic perturbations to the plasma, δE and δB. The

response of the plasma to these fields is to perturb the electron distribution function by

δf . Thus, we write the new distribution function as f = f0 + δf – where f0 is the initial,

“equilibrium” distribution.

Thus, with these substitutions, and dropping terms second-order and above, Eq. (2.14)

becomes:
∂(δf)

∂t
+
∂(δf)

∂x
· ẋ = e

[
δE +

v

c
× δB

]
· ∂f0

∂p
. (3.1)

Since f0(v) = f0(v), for an isotropic plasma, the ∂f0/∂p term is in the same direction as v.

Consequently, ∂f0/∂p · (v× δB) = 0. Thus, the magnetic perturbation has no effect on the

distribution.

Assuming, once more, plane wave solutions in δf and δE, we have the result (Lifshitz &

Pitaevskii, 1981):

δf =
eδE

i(k · v − Ω)
· ∂f0

∂p
. (3.2)

Next, we wish to obtain the dielectric tensor, à la Eq. (2.38). We presume that the initial

distribution is, on the whole, electrically neutral and devoid of any currents (i.e. “quasi-

neutral”). Additionally, the new current and charge density is the result of the perturbed

electron distribution. Thus, using Eq. (2.16), we may write:

ρ = −e
ˆ
δf dp, (3.3a)

J = −e
ˆ

vδf dp. (3.3b)

Since δf is a plane wave function, J and ρ will also be proportional to exp(ik · r − iΩt).
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Thus, using Eq. (2.32), The polarization vector is indicated by the relations:

ik ·P = −ρ, (3.4a)

−iΩP = J. (3.4b)

To proceed, we must address a problem. Eq. (3.2) has a pole when Ω = k · v. Since

δf blows up at this point, it clearly violates our assumption that the perturbation is small

(which permitted our initial “linearization” of the Boltzmann equation).

To deal with this pole, we may employ the Landau prescription which opts for the

substitution: Ω→ Ω + iδ – followed by taking the limit: δ → 0. This rule is used for solving

integrals of the form (Lifshitz & Pitaevskii, 1981):

I =

ˆ ∞
−∞

f(z)

z − iδ
dz, (3.5)

where δ > 0. The contour integration is done below the pole at z = iδ. For δ → 0, we write

the result as: ˆ ∞
−∞

f(z)

z − i0
dz = P

ˆ ∞
−∞

f(z)

z
dz + iπf(0), (3.6)

wherein P signifies the “principal value” of the, formally, divergent integral of f(z)/z.

Next, using Eqs. (3.2)-(3.4), we write:

ik ·P = −e2δE ·
ˆ
∂f0

∂p

1

(k · v − Ω− i0)
dp. (3.7)

Consider a purely longitudinal mode, i.e. δE ‖ k. In this case, the dielectric tensor assumes

a scalar value, εl. Thus, 4πP = (εl− 1)E. With these considerations, the scalar permittivity

for a purely longitudinal “wave-mode” is (Lifshitz & Pitaevskii, 1981):

εl = 1− 4πe2

k2

ˆ
k · ∂f0

∂p

1

(k · v − Ω− i0)
dp. (3.8)

27



Next, we will interpret the complex nature of this expression.

3.2.1 Landau Damping

Let us examine the imaginary part of Eq. (3.8); using Eq. (3.6), we find (Lifshitz & Pitaevskii,

1981):

=[εl] = −4πe2

k2

ˆ
k · ∂f0

∂p
δ(Ω− k · v) dp. (3.9)

Choosing k along the x-axis, we may write this as:

=[εl] = −4π2e2me

k2

[
df(px)

dpx

]
vx=Ω/k

, (3.10)

where px = mev and

f(px) ≡
ˆ
f(px, py, pz) dpydpz, (3.11)

is the one-dimensional distribution function.

An imaginary permittivity implies dissipation, or the growth, of energy in the electric

fluctuations. The mean energy loss per unit time, Q, experienced by a plane electric wave,

E, moving through an anisotropic medium is given by the general expression (Lifshitz &

Pitaevskii, 1981):

Q =
iΩ

16π

[
ε∗βα(Ω,k)− εαβ(Ω,k)

]
E∗αEβ. (3.12)

If εαβ is symmetric, which it must be in this longitudinal case, then:

Q =
Ω

8π
=[εl]|E|2 = −|E|2πmee

2Ω

2k2

[
df(px)

dpx

]
vx=Ω/k

. (3.13)

In may be shown that df(px)/dpx = −2πpxf(p2
x), when the plasma is isotropic (Lifshitz &

Pitaevskii, 1981). Consequently, Eq. (3.13) must always be positive, indicating a damping of

the wave when the electron velocity is equal to the wave phase velocity, Ω/k. This dissipation,

which happens even in collisionless media, is known as Landau damping.
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Landau damping, naturally, works to stabilize the plasma by removing energy from lon-

gitudinal fluctuations. Interestingly, if the distribution is anisotropic, then Q < 0 is possible;

a negative Q implies the growth of plasma waves. This is a recipe for plasma instability.

Intuitively, damping or growth of these longitudinal modes depends upon the relative

velocity between the electrons and the waves. Much like a surfer on an ocean wave, if

vx < Ω/k, then the electron gains energy from the wave. In contrast, if vx > Ω/k, then the

electron losses energy to the wave. The relative abundance of these electron populations,

faster or slower than the phase velocity, determines whether the effect, on the average,

dissipates wave energy or grows it (Lifshitz & Pitaevskii, 1981).

In the next subsection, we will investigate the real part of the permittivity for a Maxwell-

Boltzmann distribution of electrons.

3.2.2 Langmuir Oscillations

Assume a Maxwell-Boltzmann (Maxwellian) electron distribution in the x-direction:

f(px) =
ne

(2πmekBTe)
1/2

exp
(
− p2

x

2mekBTe

)
. (3.14)

Substitution of this function into Eq. (3.8) gives the result (Lifshitz & Pitaevskii, 1981):

εl(Ω, k) = 1 +
1

(kλD)2

[
1 + F

(
Ω√

2kvTe

)]
, (3.15)

where vTe ≡
√
kBTe/me is the electron thermal speed and the F (x) is given by:

F (x) =
x√
π

ˆ ∞
−∞

e−z
2

z − x− i0
dz. (3.16)

With Ω/kvTe � 1, it may be shown that (Lifshitz & Pitaevskii, 1981):

εl = 1−
ω2
pe

Ω2

(
1 +

3k2v2
Te

Ω2

)
+ i

√
π

2

Ωω2
pe

(kvTe)
3
exp

(
− Ω2

2k2v2
Te

)
, (3.17)
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where

ωpe ≡ vTe/λD =
√

4πnee2/me, (3.18)

is the electron plasma frequency or Langmuir frequency. This is, in general, a very important

plasma parameter – as we will see later.

The generalization of Eq. (3.15), accounting for the ion contribution, nicely meets our

expectations; it is (Lifshitz & Pitaevskii, 1981):

εl = 1 +
1

(kλD)2

[
1 + F

(
Ω√

2kvTe

)]
+
∑
s

1

(kλDs)
2

[
1 + F

(
Ω√

2kvTs

)]
, (3.19)

where vTs ≡
√
kBTs/ms, ωps ≡

√
4πnsZ2

s e
2/ms, and λDs ≡ vTs/ωps.

Allowing k → 0, Eq. (3.17) becomes simply: Ω ≈ ωpe – note that we have used

<[
√
ε] = n = kc/Ω, where n is the index of refraction. Thus, isoptropic plasmas admit

non-progagating longitudinal wave-modes; these are known as plasma oscillations or Lang-

muir oscillations. Incidentally, the same oscillations appear in the limit of vTs → 0 – thus,

the solution is also Ω ≈ ωpe in the limit of negligible thermal speed. In Chapter 8, we will

explore the motion of relativistic electrons moving through, so called, small-scale Langmuir

turbulence with precisely this dispersion relation.

3.3 The Dielectric Properties of Magnetized Plasmas

When an “external” magnetic field, B0, is introduced in a plasma, new degrees of freedom

may appear. The plasma is, by construction, no longer isotropic, since the response of the

plasma perpendicular and parallel to B0 may be different. We will now investigate the

richness that this differential response entails.
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3.3.1 The Motion of a Charge in an External Magnetic Field

To understand the plasma response, we examine the magnetic component of the Lorentz

force equation; i.e., v/c × B0. If we write v in terms of components perpendicular, v⊥,

and parallel, v‖, to the magnetic field, then we immediately see the result of the magnetic

Lorentz force on species, s:

Fmag = Zse(v⊥ + v‖)×B0/c = Zsev⊥/c×B0. (3.20)

Hence, the parallel component of the velocity is unaltered by the magnetic field. The per-

pendicular velocity, however, is constantly acted upon. The cross product between the

magnetic field and the perpendicular velocity indicates that the magnetic Lorentz force is

perpendicular to both B0 and v⊥.

If B0 is uniform, then Fmag will behave as a (perpendicular) centripetal force. The

resulting trajectory is helical in shape, with an axis along the magnetic field. In the frame

moving with v‖, the particle traces a circle. The radius of this circle, known as the Larmor

radius, is a characteristic spatial scale. We obtain this length by equating the centripetal

force with the magnetic Lorentz force, i.e.

msv
2
⊥

rL
= Zsev⊥B0/c, (3.21)

where |v⊥| ≡ v⊥, |B0| ≡ B0, and rL is the Larmor radius. Thus,

rL ≡
msv⊥c

ZseB0

. (3.22)

The corresponding Larmor frequency or gyro-frequency is:

Ωcs ≡ v⊥/rL =
ZseB0

msc
. (3.23)
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It is noteworthy that the relativistic generalizations of these expressions is given by the

subtitution: ms → γsms – where γs ≡ 1/(1 − v2/c2) is the Lorentz “gamma” factor for

species, s.

3.3.2 The “Linearized” Vlasov Solution for Magnetized Plasmas

Now that we understand the basic plasma response to B0, we may discern the proper equi-

librium distribution function, fs0. The division of motions perpendicular and parallel to the

external, or “ambient”, magnetic field suggest that:

fs0(p) = fs0(p⊥, p‖). (3.24)

Thus, assuming once more that the equilibrium distribution is slightly perturbed by δf(r,p, t),

the Boltzmann equation, for each species, simplifies to:

d(δfs)

dt
=
∂(δfs)

∂t
+
∂(δfs)

∂x
· ẋ+eZs

(v

c
×B0

)
· ∂(δfs)

∂p
= −eZs

[
δE +

v

c
× δB

]
· ∂fs0
∂p

. (3.25)

Notice that since the initial distribution function is not isotropic, the magnetic terms are

not zero. Thus, the magnetic field, and its perturbation, will influence the new distribution.

If we suppose that B0 � δB, then the “unperturbed” motion of plasma particles will be

characterized by the helical trajectories described in the previous section. Thus, we consider

a new set of coordinates – r′, v′, and t′ – defined by the solution to the “unperturbed” motion,

i.e.
dv′

dt′
=
eZs
ms

(
v′

c
×B0

)
, (3.26)

with dr′/dt′ = v′. We may solve Eq. (3.25) by treating the problem in these new coordi-

nates; in other words, by integrating along the path of the unperturbed particle “orbits”.

Assuming that the perturbations grow from infinitesimally small values in the distant past,
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the prescribed solution will have the form (Brambilla, 1998):

δfs(r,p, t) =

ˆ t

−∞

[
δE(r′, t′) +

v′

c
× δB(r′, t′)

]
· ∂fs0
∂p′

dt′, (3.27)

where r′(t′ = t) = r, v′(t′ = t) = v, and p′(t′ = t) = p.

The dielectric tensor for this magnetized plasma may be obtained by following a procedure

similiar to that used in Section 3.2. Rather than repeat the cumbersome solution, we will

merely report the result (Brambilla, 1998):

εij(Ω,k) = δij −
∑
s

Ω2
ps

Ω2

ˆ ∞
0

v⊥dv⊥

ˆ ∞
−∞

dv‖

[
∞∑

n=−∞

2πΩ

Ω− nΩcs − k‖v‖
Qs,n
ij (v⊥, v‖,k,Ω)

]
,

(3.28)

where ‖ and ⊥ refer to the directions parallel and perpendicular to B0 (respectively), and

Qs,n
ij (v⊥, v‖,k,Ω) is a function of fs0 and its derivatives.

One noteworthy property of this tensor is that it satisfies the Onsager symmetry relations;

which are (Brambilla, 1998): 
εxy = −εyx,

εxz = εzx,

εyz = −εzy.

(3.29)

These relations are an important feature of the limiting case of Eq. (3.28) called the Cold

Plasma Approximation – which we will now address.

3.3.3 The “Cold” Plasma Approximation

For a Maxwellian plasma, two parameters characterize the dielectric tensor for a magnetized

plasma. These are:  λs =
k2⊥v

2
Ts

2Ω2
cs

xn, s = Ω−nΩcs
k‖vTs

,
(3.30)
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The “cold” plasma approximation assumes the limits to these parameters which occurs when

vTs → 0; that is, λs → 0 and |xn, s| → ∞. Given these limits, the non-vanishing components

of the dielectric tensor simplify to (Brambilla, 1998):


εxx = εyy = S = 1

2
(R + L)

εxy = −εyx = −iD = 1
2i

(R− L),

εzz = P,

(3.31)

where:

S = 1−
∑
s

Ω2
ps

Ω2 − Ω2
cs
, (3.32a)

D =
∑
s

Ωcs

Ω

Ω2
ps

Ω2 − Ω2
cs
, (3.32b)

P = 1−
∑
s

Ω2
ps

Ω2
, (3.32c)

and where

L = 1−
∑
s

Ω2
ps

Ω2

Ω

Ω− Ωcs
, (3.33a)

R = 1−
∑
s

Ω2
ps

Ω2

Ω

Ω + Ωcs
, (3.33b)

signify the components corresponding to left- and right-circular polarizations of the electric

field perpendicular to the magnetic field (these representations will prove useful in Chapter

7).

Next, we will consider a solution to these equations which we will make use of in Chapters

5 and 6.
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3.3.4 Whistler-Mode Waves in Cold Plasmas

Consider a “cold”, magnetized, electron plasma in the frequency range:

Ωci � Ωr � Ωce (3.34)

where Ωci is the gyro-frequency for ion species, i, Ωr is the “real” wave frequency, and Ωce

is the electron gyro-frequency. The inequality is understood to hold for all ion species.

If, additionally, we assume that ωpe � Ωce, then one possible solution to the cold plasma

equations is given by (Sazhin, 1993):

Ωr(k) = Ωce
k2c2

k2c2 + ω2
pe
cos(θk), (3.35)

where θk ∈ (0, π/2), is the angle between the wave-vector, k, and the ambient magnetic field,

B0. These wave-modes are known as Whistler waves.

Additionally, the equations specify the polarization of the wave-modes. Given obliquely

(with respect to the ambient magnetic field) propagating whistler waves, the magnetic com-

ponent will be right-circularly polarized with the following relations among its components

(Sazhin, 1993)

δBx = − 1

tan(θk)
δBz = icos(θk)δBy, (3.36)

where B0 is along the z-direction, and the wave-vector is in the x-z plane. Because the

magnetic field is divergenceless, k ⊥ δB. Given these conditions, the magnetic field will

rotate about the direction of the wave-vector.

Next, the Whistler electric field is (generally) elliptically polarized. It obeys the following

relations (Sazhin, 1993; Verkhoglyadova et al., 2010) :

 Ex/Ey = −iΘ1

Ez/Ex = Θ2,
(3.37)
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where  Θ1 ≡ k2c2sin(θk)cos(θk)
ω2

pe+k2c2sin2(θk)

Θ2 ≡
Ω2

rω
2
pe+(Ω2

r−Ω2
ce)k2c2

Ωrω2
peΩce

.
(3.38)

These equations suggest that the electric field parallel to the ambient magnetic field may be

expressed in terms of the magnetic fluctuations via the relation (Sazhin, 1993):

E‖ =
Ω2
r

Ωcekc
|B|tan(θk). (3.39)

With these equations, the wave pattern of a Whistler-like disturbance can be completely

specified. As we will argue later, electromagnetic turbulence may be conceived as a super-

position of various wave-modes with random relative phases and polarizations. Thus, we

may construct a turbulent spectrum of Whistler waves by adding a large number of Whistler

wave-modes – which are specified by their unique polarization and wave dispersion relation

– with random wave-vectors and phases.

3.3.5 The Validity of the “Cold” Plasma Approximation

Since we rely heavily upon the cold plasma approximation throughout this work, we are

beholden to justify its validity. As mentioned before, these are conditions sufficient for the

proper application of the approximation:


k2⊥v

2
Ts

Ω2
cs
� 1∣∣∣Ω−nΩcs

k‖vTs

∣∣∣� 1.
(3.40)

The meaning of the first condition will become clearer as we develop the notion of a “small-

scale”, or “sub-Larmor-scale”, magnetic field. For now, we will only say that this condition

implies magnetic fluctuations that are “super-Larmor-scale” (in the perpendicular plane) with

respect to the “fluctuation-generating” population of plasma particles – since the condition

is equivalent to r2
Lth.

k2
⊥ � 1, where rLth.

≡ vTs/Ωcs is the “thermal” Larmor radius.
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The last condition is more complicated, since n is any integer. Fortunately, the influence

of terms with |n| > 2, when the first condition holds, are negligible – thus, we will only

consider 0, 1, 2.

If n = 0, the condition (in part) implies that the wave phase velocity is much greater

than the thermal speed, vTs . This condition is equivalent to the statement that the cold

plasma approximation ignores spatial dispersion. Spatial dispersion refers to the dependence

of the dielectric tensor on the spatial history of constituent plasma particles; i.e. it refers to

the k-dependence of εαβ.

As we saw before with electrostatic (longitudinal) waves in isotropic plasmas, resonances

can occur when the particle velocity is in phase with the wave. The same is true here, but

additional resonances occur with n = 1, 2; this is because resonance effects between the

gyration of the plasma particles and the waves is now possible (cyclotron resonance). Thus,

the latter condition in Eq. (3.41) implies that an exponentially small number of plasma

particles have velocities comparable to any “wave-particle resonance” velocities (Brambilla,

1998). This suggests that wave-particle energy exchange is negligible.

Despite these, more obvious, conditions for valid usage of the cold plasma approximation,

there exists another set for frequencies higher than the gyro-frequency. These are (Brambilla,

1998): 
k⊥vTs

Ωcs
� 1,

Ω
k⊥vTs

� 1,

Ω
k‖vTs

� 1.

(3.41)

The latter two conditions, as before, ensure that spatial dispersion is negligible. The first, on

the other hand, implies quite the opposite condition as presumed before. With rLth.
k⊥ � 1,

the plasma particles move in a manner that is largely unresponsive to the magnetic field. In

this sense, we say that plasma particles which satisfy this condition are “unmagnetized” or

“weakly magnetized”. In fact, these plasma particles are sub-Larmor-scale with respect to

the magnetic field. As we will see later, these particles do respond to the magnetic field –
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but it is in a manner which is very distinct from the basic gyro-motions of old.

3.4 Weibel-like Instabilities

It is clear from our initial discussion of Debye shielding, and later Laudau damping, that

plasmas largely resist the creation of electric fields on electron spatial scales. Magnetic fields,

on the other hand, are not so easily removed. But the question remains: how are plasmas

magnetized in the first place?

Although there are a number different mechanisms for creating and/or strengthing pre-

existing magnetic fields in plasmas (e.g. turbulent dynamos), Weibel-like instabilities will be

the principal focus of this work. For this reason, we will discuss the creation of “Weibel-like”

magnetic fields next.

3.4.1 The “Classic” Weibel Instability

In 1959, Weibel proprosed a novel mechanism for generating “transverse”, self-excited, electron-

driven, wave-modes in anisotropic plasmas. This is analogous to the self-excitation of lon-

gitudinal modes in isotropic plasmas that we saw earlier, and the procedure for identifying

them is very similar. As before, we first turn our attention to the linearized Boltzmann

Equation, Eq. (3.25).

Next, Weibel supposed plane wave solutions in all fluctuating variables, and used Maxwell’s

equations to eliminate δB. The result of this procedure was (Weibel, 1959):

i(Ω + k · v)δf − eB0

mec
·
[
v × ∂(δf)

∂v

]
= − e

meΩ

[
ΩEk,Ω ·

∂f0

∂v
+ (k× Ek,Ω) ·

(
v × ∂f0

∂v

)]
,

(3.42)

where v = p/me and Ek,Ω is the component of δE with frequency, Ω, and wave-number, k.

The essential term in Eq. (3.42) is: (k× Ek,Ω) ·(v × ∂f0/∂v). The cross product between

the wave-vector and the electric field, in essence, selects transverse electric modes (i.e. modes
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perpendicular to k). Thus, quite independently of B0, these modes exist if v × ∂f0/∂v is

non-zero.

Weibel then selected a distribution of the form:

f0(v) = f(v0, vz), (3.43)

where v0 =
√
v2
x + v2

y , and both B0 and k are along the z-direction. Additionally, the electric

field was chosen to be purely transverse – i.e. Ek,Ω ⊥ k.

Under these conditions, Weibel obtained the general dispersion relation (Weibel, 1959):

k2c2 − Ω2 =
πe2c

me

ˆ ∞
0

v2
0dv0

ˆ ∞
−∞

dvz
(Ω + kvz)∂f0/∂v0 − v0k∂f0/∂vz

(Ω + kvz)± (eB0/mec)
. (3.44)

Suppose an initial distribution with an anisotropic temperature profile, namely:

f0 =
ne

v2
T0
vTz(2π)3/2

exp

[
−
(
v2

0

2v2
T0

+
v2
z

2v2
Tz

)]
, (3.45)

where v2
T0
≡ kBTe0/me and v2

Tz
≡ kBTez/me are the thermal speeds in the perpendicular

plane and parallel direction, respectively. The solution to Eq. (3.44) for this distribution is

given by (Weibel, 1959):

k2c2 − Ω2 = ω2
pe

[
A−

(
A

Ω± Ωce

vTzk
+

Ω

vTzk

)
φ

(
Ω± Ωce

vTzk

)]
, (3.46)

where:

φ(z) = exp
(

1

2
z2

) ˆ z

−i∞
exp

(
1

2
ψ2

)
dψ, (3.47)

and A = (vT0/vTz)
2−1. In the limit that spatial dispersion may be ignored in the z-direction,
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i.e. vTz � Ω/k1, there exists a B0 = 0 solution (Weibel, 1959):

Ω = −

√
1

2

[
ω2
pe + k2c2 −

((
ω2
pe + k2c2

)2
+ 4v2

T0
ω2
pek

2
)1/2

]
, (3.48)

such that Ω is purely imaginary, and negative; which is more apparent in the approximation:

Ω ≈ −i vT0k

(1 + k2d2
e)

1/2
, (3.49)

where de ≡ c/ωpe is the electron skin-depth. Thus, Eq. (3.49) implies the growth of transverse

wave-modes with zero real frequency (i.e. Ωr = 0).

Via Faraday’s law, i.e.

ik× Ek,Ω = −iΩBk,Ω/c, (3.50)

we know that magnetic modes must, also, exist here. Using Eq. (3.49), we can express the

ratio of the electric and magnetic fields as:

|Ek,Ω|2

|Bk,Ω|2
≈

v2
T0
/c2

1 + k2d2
e

. (3.51)

The thermal speed, vT0 � c – since we are considering the non-relativistic regime. Thus,

|Bk,Ω|2 � |Ek,Ω|2. Therefore, the Weibel instability, via a temperature anisotropy, can grow

magnetic fluctuations spontaneously. Next, we will explore the generalizations of the Weibel

instability.

3.4.2 Generalizations of the Weibel Instability

In the same year that Weibel wrote his seminal paper, Fried (Fried, 1959) proposed an alter-

native – yet analogous – mechanism for generating spontaneous magnetic fields in, previously,

unmagnetized media. This Weibel-Filamentation instability, as it may be called, offers an
1This condition implies that vT0

� vTz
.
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attractive mechanism for the mediation of collisionless shocks – both in the laboratory and

astrophysical settings.

Consider counter-streaming electrons moving across a fixed ion background with an ini-

tial seed magnetic field in the plane perpendicular to the streaming particles. The seed

field (which may be imagined, for simplicity, as sinusoidal) reinforces the tenuous streaming

particle “filaments” by way of the Lorentz force (see Figure 3.1). These larger filaments then

proceed to grow the initial magnetic perturbation, which then increases the current density

of the filaments, which grows the magnetic field, and so on. The magnetic field can acquire

great strength by way of the Weibel-Filamentation instability. Saturation will occur when

the transverse deflections of the particles become too large to support their free streaming.

This occurs when the electrons become trapped by the field, i.e. when krL ∼ 1. The rela-

tivistic Weibel instability may undergo saturation later in a non-linear stage of development

in which the current filaments coalesce (Medvedev et al., 2006); eventually, the ions may

participate as well (Medvedev & Loeb, 1999).

Referring back to Eq. (3.49), if kde � 1, then Ω ∼ (vT0/c)ωpe. Remarkably, by selecting

an appropriate anisotropic electron distribution, this (maximum) growth rate is retained

for the relativistic regime, with the substitution ωpe → ωpe/
√
γe – where γe is the electron

lorentz factor (Yoon & Davidson, 1987). Similarly, the maximum fluctuation wave-number,

kmax, is indicated by the skin-depth. The relativistic expression for kmax is given by (Yoon

& Davidson, 1987):

kmax ∼
ωpe√
γec

(
1− v2

⊥/c
2
)1/4

, (3.52)

where ⊥ refers to the plane hosting the initial magnetic perturbation, i.e. the plane perpen-

dicular to the particle streaming direction. This result assumes that p‖ � p⊥. Consequently,

kmax ∼ d−1
e /
√
γe – which is the relativistic skin-depth.

Finally, the instability’s saturation condition, krL ∼ 1, suggests that the Weibel magnetic

fields contain fluctuations on sub-Larmor-scales.
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Figure 3.1: Image adapted from: http://www.icra.it/MG/mg12/talks/anm8_medvdedev.
pdf. Counter-streaming currents pass through the plane with an initial magnetic perturba-
tion.
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3.4.3 Weibel-like Instabilities in Real Plasmas

Environments where the formation of Weibel-like instabilities is very favorable include Gamma-

ray bursts, relativistic pulsar winds, supernovae shocks, sites of magnetic reconnection, rel-

ativistic jets from quasars, plasmas generated via high-intensity lasers, and many more. All

these diverse HED environments share a propensity for the development of spontaneous

magnetic fields. The generation and evolution of the Weibel instability has been studied

extensively with particle-in-cell (PIC) codes which agree very closely with theory. An ex-

ample of the complicated magnetic fields that emerge from the Weibel instability can be

seen in Figure 3.2. This plot, obtained from Medvedev, Silva, Kamionkowski (Medvedev et

al., 2006), shows the three-dimensional structure of the self-generated magnetic field that

originates from the saturated non-relativistic Weibel instability. PIC simulations addition-

ally reveal, in confirmation of the theory first developed by Medvedev & Loeb, the role of

the Weibel instability in collisionless relativistic shocks – like those believed to be created

in gamma-ray burst (GRB) events. These shocks are “collisionless" because the scale of the

shock system is much smaller than the coulomb mean-free-path. As Figure 3.2 indicates, the

structure of the Weibel generated magnetic field is quite random. Indeed, since the initial

perturbation (seed) field is random – since it is the product of random thermal fluctuations

– Weibel magnetic fields are, also, very random. In fact, these fields are turbulent.
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Figure 3.2: The magnetic field of the non-relativistic Weibel instability at saturation (with
periodic boundary conditions). The energy density of the field is indicated by the blue iso-
surfaces. The magnitude of B2 along the x1-direction is the x2-x3-plane projection. Peaks
in B2 are indicated with red.
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3.5 The Meaning of Turbulence

Turbulence in fluids may be conceived as a state in the which the collective degrees of

freedom of constituent particles are random and strongly excited (Tsytovich, 1977). The

key feature of turbulence, which distinguishes it from regular random fluid fluctuations, is

this stipulation that the degrees of freedom are strongly excited – i.e. the energy possessed

in these fluctuations must be well above their average statistical equilibrium values. The

macroscopic identifiers of the state of a turbulent fluid are sensitive to the initial conditions

of these particles – thus, fluid turbulence is directly related to the chaotic trajectories of

individual fluid particles.

The concept of turbulence may be generalized to include plasmas. Magnetohydrodynamics

(MHD) is an approach to plasmas which treats them, essentially, as fluids. Of course, this

picture is complicated by the existence of the electromagnetic nature of plasmas; for this

reason, MHD fluids include a richer variety of phenomena than “neutral” fluids. In fact,

MHD turbulence is two-fold. The plasma fluid, itself, may assume a turbulent configuration,

and the electromagnetic fields in the plasma – as they are often “tied” to individual fluid

elements in this approximation – will be turbulent as well.

As we saw in the previous section, however, random magnetic and electric fluctuations

are possible in plasmas that are not themselves turbulent. Random magnetic fields produced

by the Weibel instability, for example, are random of their own accord. Furthermore, this

form of turbulence is distinct from MHD turbulence, since the MHD approximation breaks

down on spatial scales comparable to the skin-depth (which is the characteristic domain of

Weibel magnetic fields). We will refer to these realizations of electromagnetic turbulence as

kinetic-scale turbulence. They will be the principal focus of this work.

The mathematical description of turbulence, nonetheless, is largely the same for kinetic-

scale, MHD, etc. One useful statistical quantity, which we will use extensively, is the two-

point Autocorrelation Tensor.
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3.5.1 The Two-Point Autocorrelation Tensor

Turbulent fields are only random at some characteristic spatial and temporal scales. This is

evident by the simple fact that turbulent motions are maintained by discrete, non-continuous,

particles. Thus, there exists some correlation between field points in turbulent electromag-

netic fields.

Let us consider a random magnetic field, δB. We define a two-point autocorrelation

tensor:

Rij(r, t) ≡ 〈δBi(x, τ)δBj(x + r, τ + t)〉x,τ . (3.53)

Essentially, this quantity specifies the degree of correlation between the magnetic field at

(r, t) and all other field points. Spatially, the correlation will, largely, be zero beyond a

characteristic length, which we call the correlation length. We formally define the path and

time-dependent “correlation length tensor” as:

λijB(r̂, t) ≡
ˆ ∞

0

Rij(r, t)

Rij(0, 0)
dr. (3.54)

Note that we make no distinction between co-variant and contra-variant components; the

usage of upper and lower indices is only for convenience.

To evaluate Eq. (3.54), we must consider the physics involved. In magnetic deflections,

only the component of the magnetic field transverse to the particle velocity is involved in the

acceleration. Thus, for magnetic fields, we only consider fields transverse to the direction

of motion. In contrast, electric fields will have a “longitudinal” and “transverse” correlation

length. The former is important for energy diffusion – whereas, the latter governs pitch-angle

diffusion, since transverse deflections do no work.

Since only the component of the magnetic field perpendicular to the particle trajectory

alters the motion, we may choose an integration path along v⊥ and only consider a transverse

magnetic field component. In accord with standard practice (Batchelor, 1982), we choose
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r = zẑ and i = j = x. Thus, we define the magnetic field correlation length as:

λB ≡ λxxB (ẑ, t) =

ˆ ∞
0

Rxx(zẑ, t)

Rxx(0, 0)
dz. (3.55)

The correlation length has a convenient representation in Fourier “k-space” and “Ω-space".

Let Bk,Ω be the spatial and temporal Fourier transform of the magnetic field, i.e.

Bk,Ω =

ˆ
B(x, t)e−i(k·x−Ωt) dxdt, (3.56)

where k and Ω are the corresponding wave vector and frequency, respectively. We may define

a complementary spectral correlation tensor Φij(k,Ω), such that:

Rij(r, t) = (2π)−4

ˆ
Φij(k,Ω)eik·r−iΩt dk dΩ, (3.57)

We will assume isotropy, homogeneity, and time-independence. In this case, the spectral

correlation tensor may only be constructed from the isotropic tensor, δij, and the components

of the wave-vector, k (rotational invariance). Thus, the only tensor structure that meets these

requirements is:

Φij ∝
[(
δij − k̂ik̂j

) ∣∣Bt
k

∣∣2 + k̂ik̂j
∣∣Bl

k

∣∣2] , (3.58)

where |Bt
k|

2 and
∣∣Bl

k

∣∣2 are the transverse and longitudinal components of the magnetic

spectrum, respectively. Since the magnetic field is divergenceless,
∣∣Bl

k

∣∣2 = 0; thus, |Bk|2 =

|Bt
k|

2. The spectral correlation tensor must then be of the form (Tsytovich, 1977):

Φij(k,Ω) =
1

2V
|Bk|2

(
δij − k̂ik̂j

)
2πδ(Ω), (3.59)

where V is the volume of the space considered and k̂ is the unit vector in the direction of the

wave vector. The normalization has been chosen such that
∑
Rii(0, 0) = 〈B2〉x,τ = 〈B2〉.
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Given Eq. (3.57) and Eq. (3.59), the correlation length may be reformulated as:

λB =

ˆ ∞
0

´
|Bk|2k−2(k2 − k2

x)e
ikzz dk´

|Bk|2k−2(k2 − k2
x) dk

dz. (3.60)

By assuming isotropic turbulence, the magnetic field has azimuthal and polar symmetry

in k-space, hence Bk is only a function of |k| ≡ k. After the integration over z and all

solid-angles in Fourier space, Eq. (3.60) becomes:

λB =
3π

8

´∞
0
k|Bk|2 dk´∞

0
k2|Bk|2 dk

. (3.61)

It may be noted that λB ≈ k−1
B , where kB is the characteristic (dominant) wave number of

turbulence.

For much of this work, we will assume isotropic three-dimensional magnetic turbulence

that is a static, i.e. time-independent, power-law turbulent spectrum of the form:

 |δBk|2 = Ck−µ, kmin ≤ k ≤ kmax

|δBk|2 = 0. otherwise
(3.62)

Here the magnetic spectral index, µ is a real number, and

C ≡ 2π2V 〈δB2〉´ kmax

kmin
k−µ+2 dk

, (3.63)

is a normalization, such that:

V −1

ˆ
δB2(x)dx = (2π)−3

ˆ
|δBk|2 dk. (3.64)

In physically realistic settings, anisotropy will likely be present. Thus, the applicability of

an isotropic power-law may, rightfully, be questioned. Nevertheless, we assume isotropy

for simplicity. The comparison between our theoretical and numerical results is aided by
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this choice, since the analytical expressions for anisotropic distributions are generally very

complicated.

In the next Chapter, we will discuss the simulation of electron “test” particles moving

through magnetic turbulence – specified by the spectral distribution, Eq. (3.62).
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Chapter 4

The Simulation of Test Particle

Dynamics in Small-Scale

Electromagnetic Turbulence

4.1 Overview

Our goal was to explore, via simulations of particle dynamics in electromagnetic turbulence,

the diffusive and radiative properties of plasmas with small-scale electromagnetic fluctua-

tions, and how these phenomena are connected. Our approach was from first-principles.

Electrons were test particles moving in preset electromagnetic fields, and they did not inter-

act with each other, nor did they induce any fields. Radiative energy losses were considered

negligible compared to the energies of individual particles. Motion of each electron was,

thus, solely determined by the Lorentz force equation, which we express here as:

dβ

dt
= − 1

γe
[ΩE + β ×ΩB − β (β ·ΩE)] . (4.1)

where γe ≡ (1− β2)
−1/2 is the electron’s Lorentz factor, and β ≡ v/c is the dimensionless

particle velocity. The quantities ΩB ≡ eB/mec and ΩE ≡ eE/mec are the “normalized”
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magnetic and electric fields, respectively. For simplicity, we defined our simulation fields as

B ≡ ΩB and E ≡ ΩE. In this manner, our arbitrary simulation units were always related

to physical fields via these definitions.

4.2 The Numerical Generation of the Electromagnetic

Field

Our principal assumption, in generating electromagnetic turbulence, was that these stochas-

tic electromagnetic fields are the linear superposition of a large number of wave-modes with

randomized propagation direction and relative phase. Given this assumption, we can con-

struct the turbulent fields directly from the plasma waves characteristic of the underlying

instability. In general, the properties of these electromagnetic wave-modes, and their dis-

persion relation, are derived from the plasma dielectric tensor – the determinant, of which,

provides a system of characteristic equations.

4.2.1 Generating the Fields: Lattice Approach

The first approach starts with the spectral distribution in Fourier space. We first considered

purely magnetic fields. We began with a 3-dimensional lattice of points over a box of finite

length (these will then form the identical “cubes" that fill the “infinitely" sized box used in

the simulation). Given this constraint, the representable wave numbers of the magnetic field

range anywhere from 2π/Lbox to the Nyquist frequency. Furthermore, to ensure that the

magnetic field obeys Gauss’s Law, we applied the Gram-Schmidt process to each k, Bk pair.

Next, each Bk was oriented in a random direction, and then multiplied by a random phase

factor. The inverse Fourier transform of Bk ought to yield a purely real B-field; for this

reason, we imposed field “hermiticity”. Finally, the field was normalized to fit a predefined

spectral distribution, and we performed the inverse Fast Fourier Transform (FFT) on the

lattice of points.
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The field lattice was interpolated, as needed, so that a “continuous" field may be repre-

sented. The interpolation was implemented by way of divergenceless matrix-valued radial

basis functions (McNally, 2011). This method begins with a radial function – in our case, one

of the simplest, φ(r) = e−εr
2 (where ε is a scaling factor, and r2 = x2 + y2 + z2). Then, a set

of divergence-free matrix-valued radial basis functions was obtained from the transformation

(McNally, 2011):

Φ(r) = (∇∇T − I3×3∇2)φ(r), (4.2)

where ∇∇T is the second-order, 3 × 3-matrix differential operator and I3×3 is the 3 × 3

identity matrix. These interpolants were applied to the interior of each lattice “cube" (i.e.

the space between a single lattice point and the five immediately adjacent points). The end

results was a numerical representation of the magnetic field for each point in space.

4.2.2 Generating the Fields: Continuous Wave Approach

The lattice approach is not feasible for the general case of electromagnetic turbulence, since

the fields may vary in time. An alternative generation of the electromagnetic field – which is

grid-less and, therefore, not requiring interpolation – employs a large sum of sinusoidal wave

modes which are evaluated at each time step (as needed). Thus, the electromagnetic field is

effectively “continuous” in this representation. Each wave mode is constructed with a random

phase and an appropriate polarization vector (e.g. one that occupies the plane transverse to

k, for magnetic fields). Concerning purely isotropic magnetic turbulence, the polarization

vector may be generated by a variety of methods, but we chose the implementation described

by Tautz (Tautz & Dosch, 2013). This representation of the polarization vectors is designed

specifically to simultaneously satisfy the required properties of isotropic, homogeneous, and

divergence-free magnetic turbulence. Lastly, the wave-numbers, ranging from kmin to kmax,

were logarithmically spaced.

In Appendix B, we compare the lattice and continuous methods for the case of the pure
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magnetic turbulence. We find that the continuous approach is superior; we suspect that this

is likely due to computational limitations.

Nevertheless, there is a computational price to pay for the use of this approach. Whereas

the lattice field may be generated only once, this “sum” approach must be applied for every

time-step. Hence, the computational complexity – for solving the equation of motion for

each particle – is ∼ O(NmNsteps), where Nsteps is the number of time-steps and Nm is the

number of wave-modes applied. Fortunately, the summation is trivially parallelizable; hence,

our parallelized code ran fairly quickly on a multi-core machine.

4.3 Calculating the Radiation Spectrum

The next stage in the simulation was the numerical solution of the equation of motion,

Eq. (4.1). This was done via a fixed step 4th-order Runge-Kutta-Nyström method, or a

(symplectic) 2nd-order Boris method. In our test runs, we found little variation between

these two methods – barring numerical instability due to using an insufficiently small step-

size in time. This is likely because our simulation time was limited by actual computational

time, and thus, we were unable to realize the slow accumulation of errors in the total energy

characteristic of non-symplectic numerical integrators.

With all the particle positions, velocities, and accelerations calculated, the radiation

spectrum (which is the radiative spectral energy, dW per unit frequency, dω, and per unit

solid-angle, dη) seen by a distant observer is obtained from the equation (Landau & Lifshitz,

1975; Jackson, 1998):
d2W

dω dη
=

e2

4π2c

∣∣∣∣ˆ ∞
−∞

Aκ(t)eiωt dt

∣∣∣∣2 , (4.3)

where

Aκ(t) ≡ n̂× [(n̂− β)× β̇]

(1− n̂ · β)2
e−iκ·r(t). (4.4)

In this equation, r(t) is the particle’s position at the retarded time t, κ ≡ n̂ω/c is the wave
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vector which points along n̂ from r(t) to the observer and β̇ ≡ dβ/dt. Since the observer

is assumed to be distant, n̂ is approximated as fixed in time to the origin of the coordinate

system.

Next, the total radiation spectrum is obtained by “summing” over the spectra of the

individual particles. For the moment, we will only consider mean-free, small-scale magnetic

turbulence in the following discussion.

Given an isotropically distributed (in velocity-space) ensemble of electrons, the “summed”

spectrum will be equivalent to the angle-averaged, i.e. dW/dω, spectrum for a single electron.

There are two, usually equivalent, methods for doing this “summation”. First, one may add

the spectra coherently by summing over each particle’s Aκ, and then performing a single

integration via Eq. (4.3). This method is more physical. Alternatively, we may add the

spectra incoherently (i.e., by integrating each particle’s Aκ separately, and then summing

the results of each integration). As discussed in (Hededal, 2005), both methods will result

in the same spectra, since the wave phases are uncorrelated. However, an incoherent sum

will produce a spectrum that is less noisy (for a given number of simulation particles) than

the coherently summed spectrum. For this reason, we employed the incoherent approach.

Lastly, the simulation run time was largely dominated by this integration, since it was

performed directly (i.e. via a Riemann sum) over many time-steps. This means that the

runtime scales roughly as ∼ O(N2
step). Since the particle runs are decoupled from each other,

the total runtime also scaled as ∼ O(Np), where Np is the number of particles.

4.4 Initial Tests

Our initial (lattice) code for pure magnetic turbulence was tested in various set-ups. In one,

we considered motion of a single relativistic particle in a uniform magnetic field. Figure

4.1 shows the obtained radiation spectrum and the corresponding theoretical synchrotron

spectrum. Here, the blue curve represents the numerically resolved synchrotron harmonics

54



0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 100.0000
Normalized frequency t/tc

1

10

100
Sp

ec
tra

l e
ne

rg
y 

d2 W
/d
t

d1
 (a

rb
. u

ni
ts

) analytical: dashed
numerical: solid

tB = 0.094, a = 5

Figure 4.1: Radiation spectrum (i.e., the total radiated energy, dW per unit solid angle,
dΩ per unit frequency, dω vs. frequency, ω) of a single relativistic charge moving through
a uniform magnetic field. The total simulation time was 10Tg, where Tg = 2π/ωB is the
gyroperiod. The numerical solution is indicated in blue, the red line is the analytical solution,
and they agree very well. The spectrum is peaked at the synchrotron frequency ωc =
(3/2)γ2

eωB, where ωB = eB⊥/γemec is the electron gyrofrequency. In this and other spectral
plots, the radiation power is arbitrarily normalized.

(which are integer multiples of the gyrofrequency, ωB = eB⊥/γemec). We see excellent

agreement with the analytical result, indicated in red.

Finally, we also verified that motion of a particle in small-scale random magnetic fields is

chaotic. This is illustrated in Figure 4.2. Here, 50 monoenergetic (γe = 3) particles are sent

out from an origin in random directions. The variability in the particle motion is seen after

shortly leaving the origin. The diffusive nature of the particle motion is evident from Figure

4.3. In Figure 4.3, the velocity space of a single relativistic particle (γe = 5) is plotted over

a very large simulation time. Notice that the particle velocity is confined to a sphere (i.e.,
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Figure 4.2: The trajectories of 50 monoenergetic (γe = 3) particles through a turbulent
magnetic field projected on to the x-y plane. Each particle (denoted by 50 shades of gray)
starts from an origin with a random initial velocity. The axes are x and y positions in
arbitrary simulation units.
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Figure 4.3: Velocity space of a single particle (γe = 5) moving through isotropic magnetic
turbulence. The axes are the components of the velocity, which are in units of c. Notice
that, although the velocity vector of the particle varies randomly (and, over enough time,
visits all possible directions), its magnitude is constant.
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γe is constant), and that the velocity vector diffusively visits various directions in the course

of the particle’s motion.
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Chapter 5

Transport Properties of Small-Scale

Electromagnetic Turbulence

5.1 Introduction

In this Chapter, we develop the first-principle transport theory for charge particles moving

through small-scale magnetic and electric turbulence. Specifically, we derive the (small-scale)

pitch-angle and energy diffusion coefficients, and test them against our simulation results.

5.2 Analytic Theory

Consider a test particle (electron) moving through a non-uniform, random magnetic field

with velocity, v. Assume that the magnetic field has the mean value, 〈B〉, where 〈·〉 is an

appropriately chosen average over space and, possibly, time. Consequently, we write the

total random magnetic field as:

B(x, t) = B0 + δB(x, t), (5.1)

59



where B0 ≡ 〈B〉 is the mean field and δB(x, t) is the mean-free “fluctuation” field, that is

〈δB〉 = 0 but δB ≡ 〈δB2〉1/2 6= 0.

Next, the motion of an electron in a random magnetic field is, in general, very com-

plicated. It is the spatial scale of inhomogeneity, i.e., the correlation length of the field

fluctuation, that fundamentally determines the dynamics. These magnetic fluctuations are

deemed sub-Larmor-scale (or “small-scale”) when the electron’s fluctuation Larmor radius,

rL ≡ γβmec
2/eδB (where β = v/c is the dimensionless particle velocity, me is the electron

mass, c is the speed of light, e is the electric charge, and γ is the electron’s Lorentz factor)

is greater than, or comparable to, the correlation length of the field, λB, i.e., rL & λB. We

introduce the “gyro-number”, which fully characterizes the small-scale regime, follows as:

ρ ≡ rLλ
−1
B . (5.2)

Notice that we are considering only the fluctuation component of the magnetic field, δB.

This is because the motion can be separated into two components: the regular gyro-motion

about the mean magnetic field, and the random deflections due to the small-scale random

component. In the discussion to follow, we will presuppose that ρ� 1.

Next, because the fluctuation Lorentz force on the electron is random, the electron veloc-

ity and acceleration vectors vary stochastically, leading to a random (diffusive) trajectory.

Additionally, the magnetic Lorentz force acts only upon the component of velocity trans-

verse to the local magnetic field, leading only to energy-conserving (i.e., β = constant)

deflections. Only an electric field can change the particle energy. When this electric field is

random, transport via energy diffusion may occur – we will explore this later.

This picture is, of course, only correct if any present electric fields are ignored. Electric

turbulence, likewise, can induce transport via pitch-angle diffusion – as we will show later.

However, the contribution to the total transport due to electric fields in small-scale Whistler

turbulence, specifically, is negligible.
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Ignoring, for the moment, the presence of any electric fields: the electron motion has

two limiting regimes – depending upon the relative strength of the magnetic fluctuations

with respect to the mean field. These are a “straight line” trajectory with random (trans-

verse) deflections (i.e., δB� B0), and a slightly “perturbed” helical motion about the mean

magnetic field (i.e., δB � B0). In the latter case, we will ignore the regular component

of the motion. Doing so allows us to consider only the transport in mean-free, small-scale,

magnetic turbulence.

5.2.1 Pitch-Angle Diffusion in Small-Scale Magnetic Turbulence

For small deflections, the deflection angle of the velocity (with respect to the particle’s initial

direction of motion) is approximately the ratio of the change in the electron’s transverse mo-

mentum to its initial transverse momentum. The former is ∼ FLτλ, where FL = (e/c) v × δB

is the transverse Lorentz force, and τλ is the transit time, which is the time required to tra-

verse the scale of the field’s inhomogeneity, i.e., the field correlation length, λB. This is,

τλ ∼ λB/v⊥ – where v⊥ is the the component of the velocity perpendicular to the magnetic

field. The change in the transverse momentum is thus, ∆p⊥ ∼ FLτλ ∼ e(δB/c)λB. Given

that the particle’s total transverse momentum is p⊥ ∼ γemev⊥, the deflection angle over

the field correlation length will be αλ ≈ ∆p⊥/p⊥ ∼ e(δB/c)λB/γemev⊥. The subsequent

deflection will be in a random direction, because the field is uncorrelated over scales greater

than λB, hence the particle motion is diffusive. As for any diffusive process, the ensemble-

averaged squared deviation grows linearly with time. Hence, for the pitch-angle deviation,

we have:

〈α2〉 = Dααt. (5.3)
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The pitch-angle diffusion coefficient is, by definition, the ratio of the square of the deflection

angle in a coherent patch to the transit time over this patch, that is:

Dαα ∼
α2
λ

τλ
∼
(

e2

m2
ec

3

)
1

〈β2
⊥〉1/2

λB
γ2
e

〈δB2〉, (5.4)

〈δB2〉 and the perpendicular rms velocity, 〈β2
⊥〉1/2, have been substituted for δB2 and β⊥ ≡

v⊥/c, respectively. Note that the diffusion coefficient depends on both statistical properties

of the magnetic field, namely its strength and the typical correlation scale.

Although the assumption that αλ � 1 is certainly valid in the ultra-relativistic limit,

it is not evident that it holds for trans-relativistic and non-relativistic velocities. As we

demonstrated via numerical simulation, pitch-angle diffusion does occur in accordance with

Eq. (5.4), so long as the magnetic turbulence is sub-Larmor-scale, i.e. rL & λB.

The average square fluctuation magnetic field, 〈δB2〉 is related to 〈δB2
⊥〉 by a mul-

tiplicative factor. For isotropic magnetic turbulence, 〈δB2
x〉 = 〈δB2

y〉 = 〈δB2
z 〉. Thus,

1
3
〈δB2〉 = 〈δB2

x〉. Alternatively, δB may be expressed as a linear combination of parallel

and perpendicular components. Given isotropy, 〈δB2
⊥〉 = 〈δB2

x〉+ 〈δB2
y〉, so

〈δB2
⊥〉 =

2

3
〈δB2〉. (5.5)

Recognizing that v⊥δB = vδB⊥ allows the expression of the rms perpendicular velocity as

〈β2
⊥〉1/2 =

√
2

3
β, (5.6)

Next, the correlation length, λB is obtained from Eq. (3.61) – which follows from the two-

point auto-correlation tensor. Thus, with Eqs. (5.4), (5.6), and (3.61), the pitch-angle diffu-

sion coefficient is

Dαα ≡
3π

8

√
3

2

(
e2

m2
ec

3

) ´∞
0
k|δBk|2 dk´∞

0
k2|δBk|2 dk

〈δB2〉
γ2
eβ

. (5.7)

To continue, we must specify a magnetic spectral distribution. To this end, we will choose
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the simple isotropic power-law given by Eq. (3.62).

It is worth mentioning that statistically isotropic magnetic turbulence has a single corre-

lation length, for all directions. Anisotropy in the fluctuation field, on the other hand, would

induce a path-dependent correlation length. Thus, the diffusion coefficient along an axis of

anisotropy (which is usually demarcated by the direction of the mean magnetic field, B0)

may differ from that across the transverse plane.

However, since our magnetic turbulence is assumed to be statistically homogeneous and

isotropic, the pitch-angle diffusion coefficient will be the same along all directions; thus, we

may arbitrary define the axis of the deflection angle, α. Without loss of generality, therefore,

we may define α in conventional terms as the angle of the velocity vector with respect to the

mean (ambient) magnetic field, B0.

Lastly, we have assumed that all relevant time-scales (e.g., the time to transit λB) are

much smaller than the magnetic field variability time-scale — thus, the magnetic turbulence

may be considered in the static approximation. For this reason, we may safely ignore any

time-dependence in the correlation length, and therefore in Dαα.

5.2.2 Pitch-Angle Diffusion in Small-Scale Electric Turbulence

The derivation for pitch-angle diffusion in general small-scale electric turbulence follows in a

similar fashion. Suppose an electron test particle is moving, with speed v, through an external

random electric field. This may be an electrostatic field (i.e., Langmuir-like turbulence), or –

as in the more general case – it may be the electric component of electromagnetic turbulence

(e.g. Whistler-mode turbulence). We will assume that the electric field fluctuates very slowly

– such that the particle dynamics, on relevant time-scales, are largely unaffected by the field’s

time-variability. Furthermore, we will ignore any present magnetic fields – for the moment.

For “small-scale” turbulence, the principal time-scale which governs particle transport is

the time to transit a single electric field correlation length, λtE – where the “t” superscript

indicates that the correlation length is specified along the path with a “transverse” component
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of the electric field (which we did with the magnetic field). If the (pitch-angle) transit time,

τ tE ∼ λtE/v, is much less than the field-variability time-scale, Ω−1, then we may treat the

electric field as approximately time-independent.

To proceed, it will be instructive to first discuss the radiation produced by an electron

moving through an external random field. First, regardless of the acceleration mechanism,

the radiation of an ultrarelativistic electron will be beamed along a narrow cone with opening

angle, ∆θ ∼ 1/γ. In a random electromagnetic field, the acceleration occurs principally along

the extent of a correlation length. Since the electron is moving ultrarelativistically, it will

undergo a slight deflection, δαE, as it traverses a correlation length. If δαE � ∆θ, then the

electron will move approximately rectilinearly, undergoing only slight random deflections

along its path; the radiation will then be beamed along the extent of the electron’s relatively

fixed direction of motion. Consequently, an observer on axis would see a signal for the entire

trajectory of the electron. Furthermore, the radiation spectrum will be wholly determined

by the statistical properties of the underlying acceleration mechanism (Landau & Lifshitz,

1975). When the acceleration mechanism is a random (static) magnetic field, the electron

emits radiation in the small-angle jitter regime (Medvedev, 2000, 2006; Medvedev et al.,

2011; Reville & Kirk, 2010; Teraki & Takahara, 2011; Keenan & Medvedev, 2013). The

radiation produced by ultrarelativistic electrons moving through electrostatic turbulence, in

this small deflection angle regime, is nearly identical – which has lead to its designation as

a subclass of small-angle jitter radiation (Teraki & Takahara, 2014).

We have previously shown that these random deflections initiate pitch-angle diffusion in

sub-Larmor-scale magnetic turbulence, and that this diffusion coefficient is intimately related

to the radiation spectrum. We expect that an electric field analog of this diffusion exists

for the (small-angle) jitter regime in small-scale electric turbulence. Here, we consider an
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electric field as “small-scale”, with respect to the test electrons, if:

Ω−1 � τ tE, (5.8a)

∆θ � δαE. (5.8b)

Since the electron is moving ultrarelativistically, the component of its acceleration transverse

to its direction of motion will be far larger than the longitudinal component. Thus, its motion

occupies the small deflection angle regime – which is the reason its radiation spectrum

resembles the jitter spectrum. Additionally, transverse accelerations leave the particle’s

kinetic energy fixed. For this reason, we will assume a constant v.

Next, since the deflections are small, δαE ∼ ∆pt/p – as previously noted for magnetic

deflections. Since ∆pt/τ
t
E ∼ eEt, where Et is the component of the electric field perpendicular

(transverse) to the electron’s direction of motion, ∆pt/p ∼ eEt/γmev; thus:

δαE ∼
eEt
γmev

τ tE. (5.9)

Consequently, the electric diffusion coefficient must be:

Delec.
αα ∼ δα2

E/τ
t
E ∼

e2E2
t

γ2m2
ev

2

(
λtE
v

)
. (5.10)

Finally, the exact numerical coefficients depend upon the statistical properties of the turbu-

lent fluctuations. Given statistically isotropic and homogeneous turbulence, 〈E2
t 〉 = 2

3
〈E2〉.

Thus, the diffusion coefficient follows as:

Delec.
αα =

2

3

λtE
γ2cβ3

〈Ω2
E〉, (5.11)

where:

ΩE ≡ eE/mec. (5.12)
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When a magnetic field is introduced, the (small-scale) pitch-angle diffusion coefficient will

be the sum of the magnetic and electric components – i.e. Eq. (5.11) and Eq. (5.7).

As we mentioned previously, and will demonstrate later, the electric pitch-angle diffu-

sion is negligibly small compared to the magnetic equivalent in small-scale Whistler-mode

turbulence. For this reason, the electric contribution to the radiation production is, also,

insignificant. Nonetheless, the electric field will still uniquely affect the particle motion via

energy diffusion.

5.2.3 Energy Diffusion in Small-Scale Electric Turbulence

All electromagnetic turbulence results from instabilities, dynamo-action, etc. with some finite

growth rate. So long as the growth (or dissipation) time-scale is much greater than the

correlation length transit time, we can ignore the time-dependence of the magnetic field in

our model.

In contrast to Weibel magnetic fields in (initially) unmagnetized plasmas, however,

MHD/kinetic instabilities – which require an ambient magnetic field – may grow random

fields with non-negligible real frequency, Ωr. That is to say, these magnetic fields will pos-

sess oscillating wave-modes, whose time-dependence may not be completely ignored. The

Faraday-induced electric fields, E, may influence the particle motion on relevant time-scales,

e.g., the gyro-period time-scale in the regular (ambient) magnetic field.

These random electric fields may induce transport via energy diffusion. Although diffusive

energy transport in electromagnetic turbulence has long been a topic of investigation (Stix,

1992), energy diffusion in strictly sub-Larmor-scale electromagnetic fields has yet to be – to

the best of our knowledge – explored. This topic has proved to be richly complicated, so we

have limited ourselves to a particularly simple regime.

Furthermore, we emphasis that the “energy” diffusion coefficient – rather than the “velocity-

space” analog – is a more useful quantity for our purposes. Although it possesses a number

of favorable properties, its prominent feature is that it is directly proportional to the elec-
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tric field’s correlation length. This feature is not present in the “velocity-space” coefficient,

however.

Next, we must consider the time-scales involved. There are two such characteristic time-

scales: the “acceleration” time, τ lE and the electric field “auto-correlation” time, τac. The

latter time-scale characterizes the temporal inhomogeneity of the electric field. Diffusive

(energy) transport may arise not only from spatial stochasticity in the electric field but

temporal randomness as well.

The former quantity, τ lE, characterizes the spatial stochasticity. This is the time required

to transit an electric field correlation length, λlE – with the “l” superscript indicating the

“longitudinal” transit time; i.e. the time required to transverse a “longitudinal” electric corre-

lation length, λlE, which is along the direction of motion. Assuming that aλτ lE � vE, where

aλ is the acceleration over λlE, and vE is the component of the electron velocity parallel to

the electric field, the transit time is:

τ lE ∼
λlE
vE
. (5.13)

While transiting a single correlation length, the electron is subject to a nearly uniform electric

field. These “accelerations” are uncorrelated on a spatial-scale dictated by the electric field

correlation length.

The diffusion regime we will explore will consider the “spatial” diffusion to be the domi-

nant process, i.e.,

τ lE � τac. (5.14)

Furthermore, to ensure that the energy change is random on the time-scale of consideration,

we require that:

τ lE � t. (5.15)

Next, an equation for the electron energy, We, may be obtained directly from the Lorentz

Force Equation of Motion. It is:
dWe

dt
= e (v · E) . (5.16)
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Since the electron energy changes over the characteristic time-scale, τ lE, we may write:

∆Wλ

τ lE
∼ evEE. (5.17)

If the random process is, indeed, diffusive:

DWW ≡
〈W 2

e 〉
t

. (5.18)

Thus:

DWW ∼
(∆Wλ)

2

τ lE
∼ e2vEE

2λlE, (5.19)

where we have used Eq. (5.13). With the usual assumptions of statistical homogene-

ity/isotropy and an initially mono-energetic distribution of electrons, we may write the energy

diffusion coefficient, thusly:

DWW =

√
1

3
e2〈E2〉vλlE. (5.20)

This result may be contrasted with the “temporal”, i.e. resonant, energy diffusion coeffi-

cient. The physics of this type of diffusion may be understood by considering the, so called,

“Quasilinear” energy diffusion coefficient. As before, we will consider only small corrections

to the electron’s initial velocity – hence, we will assume the zero-order trajectory:

r(t) = vt+ r0, (5.21)

where r0 is the electron’s initial position. Let us suppose that the electric field assumes a

simple sinusoidal profile, i.e.

E(x, t) = E0cos(k · x− Ωt). (5.22)
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Thus, using Eqs. (5.16) and (5.22), we have:

dWe

dt
= e (v · E0) cos(k · vt+ k · r0 − Ωt). (5.23)

Integrating Eq. (5.23), averaging over all possible initial positions, and squaring the result,

gives the energy variance:

〈∆We
2〉 =

[
e (v · E0)

(Ω− k · v)

]2

sin2

[
(Ω− k · v) t

2

]
. (5.24)

Finally, with Ωt� 1, we may employ the relation (Stix, 1992):

sin2

[
(Ω− k · v) t

2

]
∼ πδ (Ω− k · v) , (5.25)

Thus the (Quasilinear) diffusion coefficient is:

Dres.
WW ≡

〈∆We
2〉

t
∼ π

[
e (v · E0)

(Ω− k · v)

]2

δ (Ω− k · v) . (5.26)

In general, turbulence will contain a spectrum of waves; hence, an integration of Eq. (5.26)

over |Ek,Ω|2 is required to produce the complete diffusion equation.

Nevertheless, much can be gathered by examining the functional form of this simpli-

fied expression. For example, owing to the dependence on the quantity, δ (Ω− k · v), only

particles that are in resonance with the wave participate in the diffusive process.

Moreover, since Ωt� 1, this “temporal” diffusion process occurs on a much greater time-

scale than τ lE (when the electric field is small-scale). For this reason, the non-resonant energy

diffusion coefficient – Eq. (5.19) – is much greater than the resonant equivalent – at least,

for the “small-scale” population of electrons.

As an important side note, the “Quasilinear” diffusion equation derived here applies for

non-magnetized plasmas. When an ambient magnetic field, B0, is present, the “resonance”
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condition generalizes to (Stix, 1992):

Ω− k‖v‖ = nΩce/γ, (5.27)

where Ωce ≡ eB0/mec is the non-relativistic gyro-frequency, the “parallel” direction is along

the ambient (mean) magnetic field, and n is an integer. This result, we may expect, follows

from the relativistic generalization of the denominator term in Eq. (3.28) – which establishes

the resonance condition for the “hot” dielectric tensor in a magnetized plasma.

As we mentioned previously, electrons moving through electromagnetic turbulence are

not “magnetized” – in the formal sense – with respect to the “small-scale” fluctuation fields.

Hence, the small-scale fields do not contribute to the higher-order (magnetic) resonances

– such as the Cherenkov resonance at n = 1. Thus, with regard to the “small-scale” sub-

population of electrons, we may disregard resonant diffusion in general.

Finally, to evaluate the (non-resonant) energy diffusion coefficient – Eq. (5.20) – we need

an expression for the electric field, 〈E2〉, and its “longitudinal” correlation length, λlE. To this

end, we must relate the electric field to the underlying magnetic turbulence that produces

it, i.e., we need to specify the wave turbulence dispersion relation, Ωr(k).

In general, this may be done via the dielectric tensor,
↔
ε k,Ω. Using Ampère’s law, and the

definition of the dielectric tensor, we write (Brambilla, 1998):

k× δBk,Ω = −Ω

c

↔
ε k,Ω · Ek,Ω. (5.28)

Suppressing the time-dependence in the field amplitudes, i.e. ignoring wave growth/damping,

the electric spectral distribution may be expressed as:

|Ek|2 =
∣∣∣↔ε−1

k,Ω · b̂tk
∣∣∣2 n2 |δBk|2 , (5.29)

where b̂tk is the unit vector in the direction of k × δBk,Ω, and n ≡ kc/Ω is the index of
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refraction.

Next, using Eq. (5.29) and Parseval’s theorem, 〈E2〉 becomes:

〈E2〉 =

´ ∣∣∣↔ε−1

k,Ω · b̂tk
∣∣∣2 n2|δBk|2 dk´

|δBk|2 dk
〈δB2〉. (5.30)

Finally, the general expression which relates the (electric) energy diffusion and (magnetic)

pitch-angle diffusion coefficients follows from Eqs. (5.30), (5.20), and (5.7). It is:

DWW =

√
2

3
W 2
e β

2

´ ∣∣∣↔ε−1

k,Ω · b̂tk
∣∣∣2 n2|δBk|2 dk´

|δBk|2 dk

(
λlE
λB

)
Dαα, (5.31)

where We ≡ γmec
2 is the electron’s total energy, and we have assumed statistical isotropy

and homogeneity to produce the numerical prefactor.

Eq. (5.31), despite its apparent complication, offers a fairly simple interpretation when

the dielectric tensor assumes a scalar value, ε. Recalling that
√
ε = n, so that ε−1 = 1/n2,

Eq. (5.31) simplifies to:

DWW =

√
2

3
W 2
e β

2〈β2
ph〉dist.

(
λlE
λB

)
Dαα, (5.32)

where 〈β2
ph〉dist. is the distributional average, over the magnetic spectrum, of the normalized

wave phase velocity, βph ≡ Ω/kc. Thus,

DWW ∝
(
m2
ev

2〈v2
ph〉dist.

)
Dαα, (5.33)

which is what we would expect, given the general relation between the “velocity space” dif-

fusion coefficient, Dvv, and the pitch-angle diffusion coefficient; i.e. Dvv ∼ v2
phDαα (Cravens,

1997).
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5.2.4 Particle Transport in Magnetized Plasmas with Electric Fluc-

tuations

As mentioned previously, the combined effect of electric and magnetic fields can lead to

fairly complicated particle dynamics. Particle drifts, for example, involving both the electric

and magnetic fields, should be considered. Here, we present two realizations of the drift

phenomenon. We will, subsequently, argue that these effects are of negligible importance for

diffusion in small-scale fields.

We argued that sub-Larmor-scale magnetic fluctuations result in trajectories that occupy

the small deflection angle regime. For this reason, the “guiding center approximation”, that

underlies the drift theory, breaks down. Consequently, the notions of curvature drift and

Grad-B drift lose all meaning in this regime.

Nonetheless, a magnetized plasma contains a large-scale magnetic field – which is, by con-

struction, “super-Larmor-scale”. Hence, drifts that involve the electric field and the ambient

(mean) field are, in principle, important to consider.

The first of these that we will explore is the, so called, E cross B drift. We will, once

more, assume a sinusoidal electric field. In this case, however, we assume that an ambient

magnetic field, B0, is present. Furthermore, we suppress the time-dependence; hence:

E(x) = E0cos(kx)x̂, (5.34)

where the x-direction is along k. Assuming non-relativistic velocities, the y-component of

the electron, in the ambient magnetic field, will have the solution (Chen, 1984):

d2vy
dt2

= −Ω2
cevy − Ω2

ce
cE0

B0

cos [kx0 + krL0sin(Ωcet)] (5.35)

where x0 is the initial position, and rL0 = meβc
2/eB0 is the (ambient) Larmor radius. This

solution presupposes that the electric field will only perturb the electron orbit about the
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ambient field. Hence, our substitution of the zeroth-order solution.

Next, we average Eq. (5.35) over a gyro-period. Thus,

〈vy〉+
cE0

B0

〈cos [kx0 + krL0sin(Ωcet)]〉 = 0, (5.36)

since 〈dvy/dt〉 = 0 – i.e. the drift velocity is constant.

Next, assuming that krL0 � 1, we may write the solution for 〈vy〉 as (Chen, 1984):

〈vy〉/c = −E(x)

B0

(
1− 1

4
k2r2

L0

)
. (5.37)

Finally, recognizing that, in the general case, ik→ ∇, we write the solution for an arbitrary

electric field as (Chen, 1984):

vE×B = c

(
1 +

1

4
r2
L0∇2

)
E×B0

B2
0

, (5.38)

where vE×B is the drift velocity. The second term, i.e. that which involves the Laplacian

operator, is a correction known as a finite-Larmor-radius effect. When krL0 � 1, the Larmor

radius is much larger than the field wavelength. In this case, the particle is acted upon, by

the electric field, on a time-scale much shorter than the gyroperiod. Consequently, the drift

approximation is not appropriate for “small-scale” fields, since the perturbation is implicitly

assumed to act on a time-scale of many gyroperiods.

A similar drift phenomenon occurs when we consider the time-dependence of the electric

field. Assuming that Ω2 � Ω2
ce, the particle will drift with velocity (Chen, 1984):

vp = ± c

ΩceB0

dE

dt
, (5.39)

The quantity, vp, is known as the polarization drift velocity. Similarly, the small-scale pro-

cesses – by construction – occur on time-scales much shorter than Ω−1. Hence, the polar-
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ization drift time-scale will be far greater than either τ lE or τ tE. For this reason, polarization

drift is not significant on the time-scales of immediate interest.

In the next subsection, we will consider the case of small-scale energy diffusion in isotropic,

small-scale Whistler turbulence.

5.2.5 Energy Diffusion in Small-Scale Whistler Turbulence

Next, to evaluate Eq. (5.20), we consider a concrete example of electromagnetic turbulence

in a magnetized plasma. Whistler-mode turbulence in a “cold” plasma admits the simple

dispersion relation given by Eq. (3.35) – i.e. Ωr(k) = Ωce cos(θk) [k2d2
e/(1 + k2d2

e)].

We will assume a (nearly) steady-state, so that the instability is non-linearly saturated,

that is the instability growth rate, Ωi, is much less than all relevant frequency-scales, and

thus is negligible. This treatment assumes that the turbulence is “linear”, i.e. δB � B0. We

will further assume that:
γv

Ωce
> λB, (5.40)

where Ωce/γ is the relativistic gyro-frequency.

Eq. (5.40) implies that ρ� 1, since δB � B0 – thus, the test electrons are sub-Larmor-

scale with respect to the fluctuation magnetic field, δB.

It is worth mentioning that, formally, the cold plasma approximation requires that

kv/Ωce � 1 (Verkhoglyadova et al., 2010). This condition would imply that the electron

population is “super-Larmor-scale” with respect to the magnetic field, since λB ∼ k−1
B , where

kB is the wave-number of the dominant wave-mode. For this reason, our model implicitly

presupposes the existence of a cold population of super-Larmor-scale electrons which sup-

port the Whistler-modes. Consequently, our test particles will be comprised of a “hot”, albeit

smaller, population of sub-Larmor-scale electrons.

An examination of Eq. (3.35) reveals that Ωr(k) � Ωce in the regime where kc � ωpe.

Restricting ourselves to this regime motivates the introduction of a new parameter, which
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we call the “skin-number”. It is:

χ ≡ deλ
−1
B . (5.41)

Thus, the regime of interest is characterized by χ� 1.

It is noteworthy that, in principle, the test electron velocities may be large enough so

that Ωce/γ ∼ Ωr. By restricting the electron velocities to the mildly relativistic regime, we

may safely presuppose that the field-variability time, Ω−1
r , is sufficiently greater than the

time to transit a magnetic correlation length, thus permitting the static field treatment for

the magnetic field and avoiding the wave-particle resonance treatment.

Next, in the χ � 1 regime, the electric field perpendicular to B0 is much greater than

the component parallel to the ambient magnetic field; i.e. E⊥ � E‖ (Sazhin, 1993). Further-

more, it can be shown that in the frame moving along the direction of B0 with velocity equal

to the parallel phase velocity, v‖ph ≡ Ωr/k‖, the perpendicular electric field is approximately

zero (Sazhin, 1993). Consequently, this allows us, via Lorentz transformation of the electro-

magnetic fields, to relate the magnetic spectral distribution to the electric distribution. It

is, thusly:

|Ek|2 ≈ |E⊥k |2 ≈ β2
ph|δB⊥k |2, (5.42)

where ⊥ refers to the spectrum perpendicular to the mean magnetic field, and

βph ≡
v
‖
ph

c
=

Ωr(k)

k‖c
. (5.43)

Given isotropic/homogeneous magnetic turbulence:

|δB⊥k |2 = |δBk|2 cos2(θk). (5.44)

This relation then allows us to express 〈E2〉 in terms of the magnetic field as:

〈E2〉 =
2

3

´
β2
ph|δBk|2 dk´
|δBk|2 dk

〈δB2〉. (5.45)
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Next, the electric field correlation length may be obtained from the electric field correlation

tensor. For isotropic turbulence, one may write the general expression for the Fourier image

of the electric field two-point auto-correlation tensor as:

Φij(k) = |Et
k|2(δij −

kikj
k2

) + |El
k|2
kikj
k2

. (5.46)

Isotropy is an approximation here, given the polar asymmetry indicated by Eq. (5.44).

Using Maxwell’s Equations, we may relate the longitudinal, |El
k|2 and transverse, |Et

k|2

distributions to |δBk|2 (where “longitudinal” and “transverse” are with respect to the wave-

vector, not the electron velocity). To wit:

 |E
t
k|2 = Ω2

r

k2c2
|δBk|2

|El
k|2 = |Ek|2 − |Et

k|2
(5.47)

In the χ� 1 regime, we may substitute Eq. (5.42) to express the tensor completely in terms

of the magnetic spectrum. The trace of the correlation tensor is then given by:

Tr
[↔
Φ (k)

]
= 2β2

ph|δBk|2 cos2(θk). (5.48)

While integrating Eq. (5.48) along a selected path, we only consider the component of the

electric field parallel to the trajectory, owing to the dot product with velocity in Eq. (5.16).

This allows us to draw an analogy to the “monopolar” (magnetic) correlation length that we

will explore in the next Chapter – permitting us to write the expression immediately as:

λlE ≡ λTrE (xx̂) =
3π

4

´
(v
‖
ph)

2k|δBk|2 dk´
(v
‖
ph)

2k2|δBk|2 dk
, (5.49)

where the integration path was chosen to be along the x-axis. By comparing Eq. (3.61) to

Eq. (5.49), we see that the electric correlation length differs from the magnetic correlation

length only by a factor of a few. For this reason, we may conclude that τ lE is less than
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τac ∼ Ω−1
r . Consequently, the energy diffusion will be dominated by the electric field’s

“spatial” stochasticity, as per Eq. (5.14).

Additionally, χ � 1 and Ωce � ωpe demand that v‖ph � c. This implies that 〈δB2〉 �

〈E2〉. Consequently, the pitch-angle diffusion will be dominated by the magnetic deflections,

and thus we may neglect the contribution due to the electric field.

Finally, given Eq. (5.45), the energy diffusion coefficient may be related directly to the

(magnetic) pitch-angle diffusion coefficient via the relation:

DWW =
2
√

2

9
W 2
e β

2

´
(β
‖
ph)

2|δBk|2 dk´
|δBk|2 dk

λlE
λB

Dαα. (5.50)

Eq. (5.50) will be confirmed, given isotropic small-scale Whistler turbulence, via first-principle

numerical simulation in Section 5.3.2.

5.3 Simulation Results

In the previous sections, we made a number of theoretical predictions concerning the trans-

port properties of plasmas with small-scale turbulent magnetic and electric fields. Here we

check our predictions: first, for pitch-angle diffusion in purely small-scale magnetic fields

with B0 = 0.

5.3.1 Magnetic Pitch-Angle Diffusion

First of all, we explored how the pitch-angle diffusion coefficient depends on various param-

eters, cf. Eq. (5.7), namely the particle’s velocity, β, the magnetic field strength, 〈δB2〉, the

field correlation scale, λB, and the “gyro-number”, ρ.

To start, we tested our fundamental assumption that the particle velocity vector only

varies slightly over a correlation length, λB. This is the key assumption that underlies our

theoretical predictions for pitch-angle diffusion. If this assumption were to not hold (i.e. if
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αλ � 1) then pitch-angle diffusion would break down, and the plot of 〈α2〉 vs time would

deviate from linear behavior. In Figure 5.1, 〈α2〉 is plotted as a function of time for seven

different cases. In each run, 〈δB2〉, kmin, and Np (number of simulation particles) are fixed

to the values of 0.01, 4π/5 (both in arbitrary simulation units), and 2000, respectively.

The particles are monoenergetic, and are isotropically distributed in their initial velocities.

Each case differs in particle velocities; which range from 1
512
c to 1

8
c. As can be seen, the

curves begin as straight lines that increase with slope as β decreases. Eventually, the linear

behavior breaks down as β decreases. A decrease in ρ occurs concurrently, in accordance

with Eq. (5.2). As expected, the breakdown in linear behavior, and hence diffusion, occurs

when ρ ∼ 1. Later, we did the same experiment, only this time we varied 〈δB2〉 in such a

way as to keep ρ constant (ρ = 24.5). In this way, each case is securely in the small-scale

regime. In Figure 5.2, we see that the linear behavior of 〈α2〉 vs time is preserved for all

velocities, as anticipated. Consequently, our assumption of a small αλ is valid, as long as

ρ > 1. With the existence of pitch-angle diffusion established, we then proceeded to compare

the slope of 〈α2〉 vs time (the numerical pitch-angle diffusion coefficient) to Eq. (5.7). In

Figure 5.3, the numerically obtained diffusion coefficients from Figure 5.2 are compared to

the analytical result of Eq. (5.7). In each, the theoretical and numerical results differ only

by a small factor of O(1). Next, we tested the correlation length dependence, i.e. whether

or not the numerical simulations agree with Eq. (3.60). With kmin = π and kmax = 8π,

we varied the magnetic spectral index, µ from 2 to 5. This is plotted in Figure 5.4, where

the numerical diffusion coefficient closely matches the analytical result. In Figure 5.5, the

numerical (magnetic) diffusion coefficient is plotted against the analytical coefficient for the

same range of µ values, but now the kmin, kmax, and β values differ among the three (with

ρ fixed to 24.5). Included are the results of Figure 5.4. All three cases give a nearly linear

relationship between the numerical and analytical coefficients, with slopes approximately

equal to unity. Another concern worth addressing is the dependence of the numerical

diffusion coefficient on the total number of simulation particles. In Figure 5.6, a test case
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Figure 5.1: Average square pitch-angle vs. time (in simulation units). Relevant parameters
are Np = 2000, kmin = 4π/5, kmax = 8π, 〈δB2〉1/2 = 0.01, and µ = 3. The particle velocities
in each case range from 1

8
c to 1

512
c (by multiples of two). The curves appear with increasing

average slope as β decreases. As β decreases, eventually ρ ∼ 1 (at β = c
128

, i.e. the fifth
most sloped, “green” line ), after which the deflection angle becomes large, and pitch-angle
diffusion breaks down.
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Figure 5.2: Average square pitch-angle vs. time (in simulation units). Relevant parameters
are Np = 2000, kmin = π, kmax = 8π, and µ = 3. 〈δB2〉1/2 ranges from 5× 10−4 to 0.032, by
multiples of two. The particle velocities range (in the opposite order) from 1

256
c to 1

4
c. These

two parameters, 〈δB2〉 and β, vary in such a way as to keep ρ = 24.5. The curves appear
with increasing slope as β decreases. Clearly, the linear form of the curves is retained in all
seven cases.
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Figure 5.3: Magnetic pitch-angle diffusion coefficient, Dαα vs the logarithm (base 2) of the
inverse normalized particle velocity, log2(β−1). The (blue) empty “squares” indicate the
Dαα obtained directly from simulation (as the slope of 〈α2〉 vs. time), while the (red) filled
“triangles" are the analytical, given by Eq. (5.7), pitch-angle diffusion coefficients. Simulation
parameters are identical to those used in Figure 5.2.
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Figure 5.4: Magnetic pitch-angle diffusion coefficient, Dαα vs the magnetic spectral index,
µ. The (blue) empty “squares” indicate the Dαα obtained directly from simulation, while the
(red) filled “triangles" are the analytical, given by Eq. (5.7), pitch-angle diffusion coefficients.
Relevant parameters are Np = 2000, kmin = π, kmax = 8π, 〈δB2〉1/2 = 0.064 , β = 0.5, and
ρ = 24.5. The magnetic spectral indexes are 2, 3, 4, and 5. Notice that the numerical results
have nearly the same functional dependence on µ as the analytical triangles, as given by Eq.
(5.7).
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Figure 5.5: Numerical [magnetic] pitch-angle diffusion coefficient vs the analytical [magnetic]
pitch-angle diffusion coefficient, for three different cases. In each case, the magnetic spectral
index has been varied from 2 to 5, by intervals of unity. Relevant parameters are kmin = π/2
(red) “circles” and (blue) “triangles”, π (green) “diamonds”, kmax = 5.12π (red) “circles”;
kmax = 8π (green) “diamonds” and (blue) “triangles”; 〈δB2〉1/2 = 0.016 (red) “circles”, 0.032
(blue) “triangles”; 0.064 (green) “diamonds”; β = 0.25 (red) “circles”, 0.5 (blue) “triangles”
and (green) “diamonds”. In each case, a line of best fit is applied. The slopes are 0.979
(circles), 0.972 (diamonds), and 1.06 (triangles)
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Figure 5.6: Magnetic pitch-angle diffusion coefficient, Dαα vs the total number of simulation
particles, Np. The “blue squares” indicate the Dαα obtained directly from simulation, while
the red dotted line is the analytical result, given by Eq. (5.7). Relevant parameters are
kmin = π/2, kmax = 8π, 〈δB2〉1/2 = 0.032 , β = 0.5, and ρ = 24.5. There appears to be no
strong dependence of the numerical pitch-angle diffusion coefficient upon the total number
of simulation particles; nevertheless, there appears to be some convergence to the analytical
result.
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was repeated with an increasing number of simulation particles. The number of particles

was increased from 500 to 64000, by factors of 2. There is little variation to be seen in the

numerical result, as the number of particles is increased.

5.3.2 Transport in Magnetized Plasmas

We made the claim in Section 5.2.1 that the presence of a mean magnetic field will not affect

the pitch-angle diffusion (in isotropic turbulence), as long as we choose a reference direction

along the axis of B0. We confirm this assumption here.

First, however, we consider energy diffusion. As stated previously, a diffusive process

requires that both 〈∆W 2
e 〉 and 〈α2〉 increase linearly in time – at least, on some characteristic

time-scale of the system. With δB/B0 � 1, the “gyro-period”

Tg ≡
2π

ΩB0

= 2π
γemec

eB0

, (5.51)

is such a characteristic, “macro” time-scale. On a multiple gyro-period time-scale, the elec-

tron velocities will change very slightly. Consequently, we may treat the magnitude of the

electron velocity as approximately constant.

To establish diffusion, 5000 mono-energetic electrons (β = 0.25) were injected into

Whistler turbulence with kmin = 32π (arbitrary simulation units), kmax = 10kmin, 〈δB2〉1/2/B0 =

0.1, Ωce = 1, ρ ≈ 400, χ ≈ 0.04, and µ = 4. The simulation time included several gyrope-

riods; T = 10Tg. Additional simulation parameters include: the time-step ∆t = 0.00125

(arbitrary units), and the number of Whistler wave-modes Nm = 10000. In Figure 5.7, we

see that the average square pitch-angle (as measured with respect to the z-axis, i.e. the mean

field direction) does, indeed, grow linearly with time. Figure 5.8 confirms that the electron

energy undergoes a classical diffusive process as well.

With the existence of pitch-angle and energy diffusion established, we then proceeded
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Figure 5.7: Average square pitch-angle vs. normalized time for electrons moving through
small-scale Whistler-mode turbulence. Relevant parameters are β = 0.25, (number of sim-
ulation particles) Np = 5000, kmin = 32π, kmax = 10kkmin, 〈δB2〉1/2/B0 = 0.1, Ωce = 1,
ρ ≈ 400, χ ≈ 0.04, and µ = 4. The linear nature of the curve (solid, “red”) confirms the
diffusive nature of the pitch-angle transport. Here, the dashed (“blue”) line indicates a line
of best fit (simple linear regression) with Pearson correlation coefficient: 0.9998.
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Figure 5.8: Average square change in electron energy (in simulation units) vs. normalized
time for electrons moving through small-scale Whistler-mode turbulence. Relevant parame-
ters are β = 0.25, (number of simulation particles) Np = 5000, kmin = 64π, kmax = 10kkmin,
〈δB2〉1/2/B0 = 0.1, Ωce = 1, ρ ≈ 400, χ ≈ 0.04, and µ = 4. The linear nature of the curve
(solid, “red”) confirms the diffusive nature of the energy transport. Here, the dashed (“blue”)
line indicates a line of best fit (simple linear regression) with Pearson correlation coefficient:
0.9999.
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Figure 5.9: Magnetic pitch-angle diffusion coefficient, Dαα vs the normalized electron veloc-
ity, β. Relevant simulation parameters include: Np = 5000, kmin = 32π, kmax = 10kkmin,
〈δB2〉1/2/B0 = 0.1, Ωce = 1, χ ≈ 0.02, and µ = 4. The (purple) empty “squares” indicate
the Dαα’s obtained directly from simulation data (as the slope of 〈α2〉 vs. time), while the
(green) filled “circles" are the analytical pitch-angle diffusion coefficients, given by Eq. (5.7).

to compare the slope of 〈α2〉 and 〈∆W 2
e 〉 vs time (the numerical [magnetic] pitch-angle and

energy diffusion coefficients) to Eqs. (5.7) and (5.50). In Figure 5.9, the numerically obtained

pitch-angle diffusion coefficients are compared to Eq. (5.7) for a range of possible electron

velocities. In each, the theoretical and numerical results differ only by a small factor of

O(1). Next, in Figure 5.10, we see decent agreement with Eq. (5.50) and the numerical

energy diffusion coefficients. Figures 5.9 and 5.10, furthermore, confirm that our theoretical

diffusion coefficients are valid for all electron velocities – including relativistic speeds.

Another important parameter which strongly influences the diffusive transport is the
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Figure 5.10: Energy diffusion coefficient, DWW vs the normalized electron velocity, β.
Relevant simulation parameters include: Np = 5000, kmin = 32π, kmax = 10kkmin,
〈δB2〉1/2/B0 = 0.1, Ωce = 1, χ ≈ 0.02, and µ = 4. The (blue) empty “squares” indicate
the DWW ’s obtained directly from simulation (as the slope of 〈 ∆W 2

e 〉 vs. time), while the
(red) filled “circles" are the analytical energy diffusion coefficients, given by Eq. (5.50).
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Figure 5.11: Magnetic pitch-angle diffusion coefficient, Dαα vs the inverse of magnetic field
correlation scale, λ−1

B . Relevant simulation parameters include: γe = 3, Np = 1000, kmin =
8π, 16π, 32π, 64π, and 128π, kmax = 10kkmin (for each kkmin), 〈δB2〉1/2/B0 = 0.1, Ωce = 1,
χ ≈ 0.02, and µ = 4. For each data point, the theoretical and numerical results differ only
by a small factor of O(1).

magnetic field correlation length. In Figure 5.11, the correlation length was varied by chang-

ing kmin, while keeping all other parameters fixed. Once more, we see close agreement with

Eq. (5.7). Similarly, the numerical and theoretical energy diffusion coefficients continue to

show decent agreement – see Figure 5.12.

Lastly, we consider the magnetic spectral index, µ – i.e. the power-law exponent in Eq.

(3.62). With kmin = 32π and kmax = 10kmin, we varied the magnetic spectral index, µ from

−3 to 9. In Figure 5.13, we see that the numerical pitch-angle diffusion coefficient closely
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Figure 5.12: Energy diffusion coefficient, DWW vs the inverse of magnetic field correlation
scale, λ−1

B . Relevant simulation parameters include: γe = 3, Np = 1000, kmin = 8π, 16π, 32π,
64π, and 128π, kmax = 10kkmin (for each kkmin), 〈δB2〉1/2/B0 = 0.1, Ωce = 1, χ ≈ 0.02, and
µ = 4. The theoretical and numerical results differ only by a small factor of O(1).
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Figure 5.13: Magnetic pitch-angle diffusion coefficient, Dαα vs the magnetic spectral index,
µ. Relevant parameters are Np = 2000, kmin = 32π, kmax = 10kmax, 〈δB2〉1/2/B0 = 0.1,
Ωce = 1, and χ ≈ 0.05. Notice that the numerical results have nearly the same functional
dependence on µ as the analytical squares, as given by Eq. 5.7.

matches the analytical result. Similarly close agreement was, once again, realized between

the energy diffusion coefficients; as may be seen in Figure 5.14.
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Figure 5.14: Energy diffusion coefficient, DWW vs the magnetic spectral index, µ. Relevant
parameters are Np = 2000, kmin = 32π, kmax = 10kmax, 〈δB2〉1/2/B0 = 0.1, Ωce = 1, and
χ ≈ 0.05.
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5.3.3 Langmuir Turbulence

In Section 5.2.2, we predicted the pitch-angle diffusion coefficient for ultrarelativistic elec-

trons moving in small-scale electric turbulence. Here, we will numerically confirm Eq. (5.11)

– via our first-principle simulations. We will treat the electric field as quasi-static, i.e.

k×Ek ≈ 0. To this end, we employ a model identical to that used by (Teraki & Takahara,

2014) for the numerical generation of the electrostatic (Langmuir) turbulence. Essentially, a

background of “cold” langmuir wave-modes are assumed to be present, with Ωr ∼ ωpe.

It was assumed that the Langmuir oscillations are “cold”, i.e. possessing real frequency,

Ωr(k) ≈ ωpe (where ωpe is the electron plasma frequency). In this case, the parameters which

characterize the radiation/transport regime are the jitter parameter (Teraki & Takahara,

2014):

δj ≡
δαE
∆θ
∼ eE⊥λE

mec2
(5.52)

and the “skin-number”:

χ ≡ de
λtE

=
c

ωpeλtE
. (5.53)

Additionally, we considered an electric field with a spectral distribution identical to Eq.

(3.62) – with δBk → Ek. Furthermore, the simulation procedure was identical – with the

exception that E ‖ k, rather than peripendicular to the wave-vector.

This form of turbulence may be realized in a number of ways. “Cold” Whistler turbulence

with χ� 1 – i.e. the opposite regime to that considered in the previous sections – has an the

electric field which is approximately electrostatic; i.e. resembling an anisotropic realization

of Langmuir turbulence (ignoring the magnetic field), with Ωr(k) ≈ Ωcecos(θk). For strictly

sub-Larmor-scale magnetic fields, the correlation length transit time is much shorter than

the average gyro-period – hence the electric field is effectively time-independent. Conceptu-

ally, the electric field may be comparable in strength to the magnetic field in this regime.

Consequently, it may be necessary to include its contribution. Figure 5.15 shows the electric

pitch-angle diffusion coefficient as a function of particle velocity. In each scenario, 10000
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Figure 5.15: Electric pitch-angle diffusion coefficient, Delec.
αα vs the normalized electron ve-

locity, β for small-scale Langmuir turbulence. Relevant simulation parameters include:
kmin = 8π, kmax = 10kkmin, 〈Ω2

E〉 = 4.0, χ ≈ 666.67, δj ≈ 0.08, and µ = 5. The (pur-
ple) empty “squares” indicate the Delec.

αα ’s obtained directly from simulation data, while the
(green) filled “circles" are the analytical pitch-angle diffusion coefficients, given by Eq. (5.11).
Notice that the small deflection approximation, which is the foundational assumption behind
Eq. (5.11), holds well for velocities that are mildly relativistic (γ ∼ 2).
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monoenergetic electrons were injected into Langmuir turbulence with δj ≈ 0.08, χ ≈ 666.67,

kmin = 8π, kmax = 10kmin, and 〈Ω2
E〉 = 4.0 (all simulation units are arbitrary). The elec-

tron velocities vary for each run. We see that the numerical pitch-angle diffusion coefficient

approaches the ultrarelativistic result as v → c. Furthermore, we see fairly close agree-

ment, even in the mildly relativistic (γ ∼ 2) regime. The large discrepancy seen from the

most leftward data points may be attributed to the breakdown of the small deflection angle

approximation, which accompanies the existence of a comparable longitudinal acceleration.

5.4 Discussion of Results

In this Chapter, we explored test particle transport (diffusion) in magnetized plasmas with

small-scale electromagnetic turbulence. Principally, in the case of pure (mean-free) magnetic

turbulence, we demonstrated that in the regime of small deflections, i.e. when the particle’s

deflection angle over a correlation length is small αλ � 1, the pitch-angle diffusion coefficient

is wholly determined by the particle velocity and the statistical/spectral properties of the

magnetic turbulence; which is a result most transparently offered by Eqs. (3.61). Addition-

ally, we showed that the condition of a small deflection angle is satisfied if ρ > 1, i.e. if the

magnetic turbulence is small-scale. These results generalize the ultra-relativistic regime first

discussed by Keenan and Medvedev (Keenan & Medvedev, 2013).

In fact, the pitch-angle diffusion coefficient, Eq. (5.7), remains unchanged by the addition

of a mean field – so long as the pitch-angle, α assumes its conventional meaning, i.e. as the

angle between the electron velocity vector and the ambient (mean) magnetic field. Since

magnetized plasmas characterized by instability often include random electric fields, as is

the case for the Whistler turbulence considered here, we additionally considered test particle

energy diffusion. We showed that the energy diffusion coefficient in small-scale Whistler

turbulence is directly proportional to the (magnetic) pitch-angle diffusion coefficient – see Eq.

(5.50). Thus, it is also intimately related to the field’s statistical properties. Consequently,
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transport via energy diffusion may provide, yet another, powerful diagnostic tool for the

investigation of small-scale electromagnetic fluctuations in magnetized plasmas.

Whistler turbulence, as conceived here, is dominated by the magnetic field. In contrast,

the purely electrostatic Langmuir turbulence is characterized by random electric fields. We

showed that a generalization of the magnetic pitch-angle diffusion coefficient exists for the

case of relativistic electrons moving through small-scale electric turbulence. We, further,

confirmed our analytic result via first-principle numerical simulations of Langmuir turbu-

lence.
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Chapter 6

Radiation From Charged Particles

Moving Through Small-Scale

Electromagnetic Turbulence

6.1 Introduction

In this Chapter, we develop the general theory of radiation production in small-scale elec-

tromagnetic turbulence. This is an extension to the “jitter” radiation theory originated by

(Medvedev, 2000). The jitter theory, strictly, applies to the ultrarelativistic regime. Here,

we generalize the jitter regime to all velocities. Additionally, we present results for the

case of small-scale magnetic fields with a mean value. Finally, we confirm these theoretical

derivations with our first-principle numerical simulations.

6.2 The Classic Jitter Theory

The ultra-relativistic radiation regime in sub-Larmor-scale magnetic turbulence is well un-

derstood. As mentioned in the previous Chapter, this regime is characterized by a single

parameter, the ratio of the deflection angle, αλ, to the relativistic beaming angle, ∆θ ∼ 1/γe.
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The ratio (Medvedev, 2000; Medvedev et al., 2011; Keenan & Medvedev, 2013):

αλ
∆θ
∼ eB⊥λB

mec2
∼ 2π

e〈B2〉1/2

mec2kmag
≡ δj (6.1)

is known as the jitter parameter. From this, we recover four distinct radiation regimes.

Firstly, if δj →∞, the regime is the classical synchrotron radiation regime; the particle orbits

are circular in the plane orthogonal to a perfectly homogeneous magnetic field. Secondly,

with δj > γe, the regime is very similar to synchrotron, but the particle’s guiding center is

slowly drifting, due to slight inhomogeneity in the magnetic field. The produced spectrum

is well represented by the synchrotron spectrum, and it evolves slowly in time due to the

particle diffusion through regions of differing field strength. This regime may be referred to

as the diffusive synchrotron regime.

Thirdly, when 1 < δj < γe, the particle does not complete its Larmor orbit because

the B-field varies on a shorter scale. In this case, which is depicted in Figure 6.1, an

onlooking observer would see radiation from only short intervals of the particle’s trajectory

(i.e., whenever the trajectory is near the line-of-sight), as in synchrotron, but these intervals

are randomly distributed. This is the case of the large-angle jitter regime. The radiation is

similar to synchrotron radiation near the spectral peak and above, but differs significantly

from it at lower frequencies (Medvedev et al., 2011). Finally, If δj � 1, which is also depicted

in Figure 6.1, a distant observer on the line-of-sight will see the radiation along, virtually, the

entire trajectory of the particle (which will be approximately straight with small, random,

transverse deviations. This is known as small-angle jitter radiation (Medvedev, 2000, 2006;

Medvedev et al., 2011). The resulting radiation markedly differs from synchrotron radiation,

although the total radiated power of radiation, Ptot ≡ dW/dt, produced by a particle in all

these regimes, e.g., jitter and synchrotron, is identical:

Ptot =
2

3
r2
ecγ

2
e 〈δB2

⊥〉. (6.2)
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Figure 6.1: Radiation regimes. (a) Large-angle jitter regime, 1 < δ < γe; radiation is only
seen along certain segments of the particle path, thus resulting in the spectrum that is
synchrotron-like at and above the peak but differing from synchrotron at low frequencies.
(b) Small-angle jitter regime, δ < 1; radiation is seen from the entire trajectory, thus the
spectrum depends on the underlying spectrum of electromagnetic turbulence.

For ultra-relativistic electrons, the radiation spectra are wholly determined by δj and the

magnetic spectral distribution. It has been shown (Medvedev, 2006; Medvedev et al., 2011;

Reville & Kirk, 2010; Teraki & Takahara, 2011) that monoenergetic relativistic electrons in

the sub-Larmor-scale magnetic turbulence given by Eq. (3.62) produce a flat angle-averaged

spectrum below the spectral break and a power-law spectrum above the break, that is:

P (ω) ∝


ω0, if ω < ωj,

ω−µ+2, if ωj < ω < ωb,

0, if ωb < ω,

(6.3)

where the spectral break is:

ωj = γ2
ekminc, (6.4)

which is called the jitter frequency. Similarly, the high-frequency break is:

ωb = γ2
ekmaxc. (6.5)
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6.3 Generalizations of Jitter Radiation

6.3.1 Pseudo-Cyclotron Radiation

In contrast, radiation from non-relativistic particles is not beamed along a narrow cone of

opening angle, ∆θ. The jitter parameter is, consequently, without meaning in the non-

relativistic radiation regime. Instead, the “dimensionless scale” (or “gyro-number”), i.e. ρ, is

the only meaningful parameter. Given the magnetic spectral distribution exhibited by Eq.

(3.62), kmag ∼ kmin, so:

ρ = kminrL. (6.6)

As we shall see below, the radiation spectrum in this regime markedly differs from the

single-harmonic cyclotron spectrum. We call this radiation, when it is produced by parti-

cles moving through mean-free magnetic turbulence, “pseudo-cyclotron” radiation or “non-

relativistic jitter” radiation.

Regardless of the regime, the radiation spectrum seen by a distant observer is obtained

from Eq. (4.3); which, If v � c, simplifies to:

d2W

dω dη
=

e2

4π2c

∣∣∣∣ˆ ∞
−∞

n̂× (n̂× β̇)eiωt dt

∣∣∣∣2 , (6.7)

Next, integrating Eq. (6.7) over all solid-angles gives the radiated energy per frequency,

i.e.
dW

dω
=

2e2

3πc3
|wω|2 , (6.8)

where wω is the Fourier component of the electron’s acceleration with frequency, ω. Eq.

(6.8), valid for v � c, is known as the dipole approximation (Landau & Lifshitz, 1975). This

expression may also be obtained from the Larmor formula, i.e.

Ptot =
2

3

e2

c3
|w|2, (6.9)
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using the identity (Landau & Lifshitz, 1975):

1

2

ˆ ∞
−∞
|w(t)|2 dt = (2π)−1

ˆ ∞
0

|wω|2 dω. (6.10)

To proceed further, we use our previous assumption that the particle deflection angle

over a field correlation length is small (i.e. αλ � 1). This condition implies the validity of

the “perturbative” approach, whereby the particle trajectory is approximated as a straight

line. For a particle moving in a magnetic field, |wω|2 is given by the Lorentz force. In this

limiting case of small deflections, we may write:

|wω|2 =

(
eβ

me

)2

(δij − v̂iv̂j) δBi∗
ω δB

j
ω, (6.11)

where δBω is the temporal variation of the magnetic field along the trajectory of the electron,

i.e.

δBω = (2π)−4

ˆ
eiωt dt

ˆ
δBk,Ωe

ik·r(t)−iΩt dkdΩ. (6.12)

Since the trajectory is approximately straight, r(t) ≈ r0 + vt, consequently:

δBω = (2π)−4

ˆ
eik·r0δBk,Ω dk dΩ

ˆ
ei(ω+k·v−Ω)t dt, (6.13)

After the time integration, this becomes:

δBω = (2π)−3

ˆ
δ(ω + k · v − Ω)eik·r0δBk,Ω dk dΩ. (6.14)

Now, since the magnetic turbulence is assumed to be homogeneous (at least over a time scale

greater than the particle transit time) the product of δBi∗
ω δB

j
ω along a particular trajectory

starting at r0 is representative of the magnetic field as a whole (Medvedev et al., 2011).

Thus, we may consider only the volume-average of δBi∗
ω δB

j
ω. Performing the integration
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leads to: 〈
δBi∗

ω δB
j
ω

〉
r0

= (2π)−3V −1

ˆ
δ(ω + k · v − Ω)δBi

k,ΩδB
j∗
k,Ω dk dΩ. (6.15)

The quantity, δBi∗
k,ΩδB

j
k,Ω, is proportional to the Fourier image of the two-point auto-

correlation tensor – i.e. Eq. (3.59). Thus, with Eqs. (6.8), (6.11), (6.15), and (3.59), the

angle-averaged radiation spectrum of a non-relativistic electron moving in static, statisti-

cally homogeneous and isotropic sub-Larmor-scale magnetic turbulence is:

dW

dω
=

(
Tr2

eβ
2c

12π3V

)ˆ
δ(ω + k · v)

[
1 +

(
k̂ · v̂

)2
]
|δBk|2 dk, (6.16)

where T is the duration of the observation, and where we have used:

δ(ω + k · v) =

ˆ
δ(ω + k · v − Ω)δ(Ω) dΩ. (6.17)

We see that the radiation spectrum is fully determined by the magnetic spectral distribution,

|δBk|2. It is instructive to consider one of the simplest such distributions – the isotropic

spectrum of a magnetic field at a single scale, kmag, i.e.

|δBk|2 = (2π)3V 〈δB2〉δ(k − kmag)

4πk2
mag

. (6.18)

Substitution of Eq. (6.18) into Eq. (6.16) produces the radiation spectrum:

dW

dω
=


T

3kmag
r2
eβ〈δB2〉

(
1 + ω2

ω2
jn

)
, if ω ≤ ωjn

0, if ω > ωjn,
(6.19)

where ωjn = kBv. Given the magnetic spectral distribution of Eq. (3.62), the corresponding
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non-relativistic jitter spectrum, is:

dW

dω
∝


A+Dω2, if ω ≤ ωjn

Fω−µ+2 +Gω2 +K, if ≤ ωbn

0, if ω > ωbn,

(6.20)

where µ 6= 2 and

A ≡ v

2− µ
(
k−µ+2
max − k

−µ+2
min

)
, (6.21)

D ≡ − 1

vµ

(
k−µmax − k

−µ
min

)
, (6.22)

F ≡ vµ

v

(
1

µ− 2
+

1

µ

)
, (6.23)

G ≡ − 1

vµ
k−µmax, (6.24)

K ≡ v

2− µ
k−µ+2
max , (6.25)

with the jitter frequency given by the characteristic, and largest, spatial scale:

ωjn = kminv. (6.26)

Finally, the break frequency is indicated by the smallest spatial scale, i.e. the maximum wave

number:

ωbn = kmaxv. (6.27)

Notice the structural similarity between the spectrum at frequencies less than ωjn and the

delta function spectrum in Eq. (6.19).

Next, the total radiated power may be obtained by integrating Eq. (6.16) over all fre-

quencies and dividing by the total observation time, yielding:

Ptot =
2

3
r2
eβ

2c〈δB2
⊥〉, (6.28)
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where we have used Eq. (5.5). Compare this to the total power radiated by a non-relativistic

electron moving through a uniform magnetic field,

Ptot =
2

3
r2
eβ

2cδB2
⊥, (6.29)

which follows directly from Eq. (6.9). Evidently, the total power of non-relativistic jitter

radiation is identical to the total power of cyclotron radiation – with B2
0 → 〈δB2〉; this is

exactly analogous to the relation between synchrotron and relativistic jitter radiation.

6.3.2 Jitter Radiation From Mildly Relativistic Particles

The radiation spectrum, generalized to any velocity, may be obtained by a formal Lorentz

transformation to the electron rest frame. Consider a relativistic electron moving with

velocity β in the (unprimed) laboratory frame. By employing the Lorentz invariant phase

space volume, d3k/ω(k) – the radiation spectra between the two frames can readily be related

by the equality (Jackson, 1998):

1

ω2

d2W

dωdη
=

1

ω′2
d2W ′

dω′dη′
. (6.30)

Thus, the angle-averaged laboratory radiation spectrum is obtained by integration over all

solid-angles (in the lab frame) of the electron rest frame spectrum, i.e.

dW

dω
=

ˆ
ω2

ω′2
d2W ′

dω′dη′
dη. (6.31)

We consider, once more, that the electron moves along a straight path, experiencing only

small deviations in its trajectory. Consequently, we consider a Lorentz boost of the laboratory

coordinates along the trajectory (z-axis). In the electron’s rest frame, the field turbulence has

both a time-dependent magnetic and electric component. However, since the electron is at

rest in this frame, only the electric field contributes to the instantaneous particle acceleration.
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Via Lorentz transformation of the laboratory magnetic field, the co-moving electric field is

simply:

E′(x′, t′) = γeβ × δB(r), (6.32)

where r(t) = r0 + vt. Since the electron is instantaneously at rest in this frame, we may

choose x′ = 0; thus, t = γet
′. The corresponding equation of motion, for the electron, is

then:

mew
′(t′) = eE′(0, t′) = eγeβ × δB(r). (6.33)

As before, the radiation spectrum in the rest frame is given by the Dipole approximation,

Eq. (6.7). Substitution of these results into Eq. (6.31) leads to:

dW

dω
=

e2

4π2γ2
ec

3

ˆ
|w′ω′ |2 sin2Θ′

(1− βcosθ)2
d(cosθ) dφ, (6.34)

where Θ′ is the angle between the wave and acceleration vectors in the electron rest frame,

and we have used the relativistic Doppler formula ω′ = γeω(1 − n̂ · β). Next, given the

equivalent form of Eq. (6.33) to the lab frame equation of motion, Eq. (6.11), the acceleration

term is given by the non-relativistic jitter spectrum with the substitution, ω′ → ω′/γe =

ω(1− βcosθ).

The final task is to perform the integration. However, the angle Θ′ must first be related

to the laboratory θ and φ coordinates – which are derived from the angle between the wave

vector and the velocity, and the azimuthal angle with respect to the boost axis, respectively.

With a transverse acceleration, these angles are related by (Rybicki & Lightman, 1986):

sin2Θ′ = 1− sin2θcos2φ

γ2
e (1− βcosθ)2

, (6.35)

with φ′ = φ. Thus, the angle-averaged (velocity-independent) jitter spectrum is given by the
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following integration of the non-relativistic jitter spectrum:

dW

dω
=

3

8γ2
e

ˆ 1

−1

dx

[
1

(1− βx)2
+

(x− β)2

(1− βx)4

]
I(ω0), (6.36)

where I(ω0) is the non-relativistic jitter spectrum, e.g. Eq. (6.16), evaluated at ω0 ≡ ω(1−

βx). This result leads to the traditional, ultra-relativistic, jitter spectrum in the limit of β →

1 (or, equivalently, γe →∞). In the trans-relativistic regime, the characteristic frequencies,

Eqs. (6.4) and (6.5), generalize to:

ωjn ≡ γ2
ekminv, (6.37)

and

ωbn ≡ γ2
ekmaxv, (6.38)

which are the (trans-relativistic) jitter and break frequencies, respectively. It is noteworthy

that ωbn is not a proper break frequency in the mildly relativistic regime. The spectrum

quickly falls to zero following ωbn; however, the drop is not instantaneous (as it is in the

ultra-relativistic limit). In the trans-relativistic regime, γe ' 1, of course. With this in mind,

and for the sake of convenience, we retain the n subscript for both the trans-relativistic and

non-relativistic expressions.

6.3.3 The Jitter Parameter and the Gyro-number

What is the relationship between the jitter parameter, δj, and the gyro-number, ρ, at rela-

tivistic velocities? While the condition that δj < 1 implies that ρ > 1, the converse is not

necessarily true. Consider, for example, the following:

rL < λB < γerL, (6.39)
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where rL is the non-relativistic Larmor radius. This is a situation in which the correlation

length is less than the relativistic Larmor radius, γerL, but greater than the non-relativistic

Larmor analog. Thus, since δj = 1/ρ (with γe = 1), this describes the situation in which

ρ > 1, but the jitter parameter is greater than unity. Equivalently:

1 < δj < γe, (6.40)

which implies that we are in the large-angle jitter regime.

6.3.4 Jitter Radiation From Magnetized Plasmas

The introduction of a mean magnetic field will complicate this picture. The topic of radiation

production by ultrarelativistic electrons in magnetized plasmas with small-scale magnetic

fluctuations has previously been considered (Toptygin & Fleishman, 1987; Reville & Kirk,

2010). In the case of strictly sub-Larmor-scale magnetic turbulence, with a mean field, the

spectrum will simply be the sum of a synchrotron/cyclotron component (corresponding to

the mean magnetic field) and the jitter contribution from the small-scale fluctuations, i.e.

P (ω) = Pjitter(ω) + Psynch(ω). (6.41)

When the electric field is stronger, or comparable, to the magnetic field, its contribution

must be included. As discussed in the previous Chapter, the radiation from ultrarelativistic

particles in the “small-scale” regime resembles jitter radiation. At non-relativistic velocities,

however, the deflection angle may be fairly large – since the parallel acceleration on the

electron cannot be neglected in this regime. Consequently, the radiation – in the non-

relativistic case – may fall outside the small-angle jitter prescription.

Fortunately, since 〈E2〉 � 〈δB2〉 for small-scale Whistler turbulence, we can completely

ignore this electric contribution.
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6.4 Simulation Results

In the previous sections, we made a number of theoretical predictions concerning the radia-

tion properties of plasmas with small-scale turbulent electromagnetic fields. Here we check

our predictions.

6.4.1 Trans-Relativistic Jitter Radiation

We first explored the (mean-free) trans-relativistic jitter radiation regime by calculating the

radiation spectra, using Eq. (4.3), with variable simulation parameters. We aimed to test the

radiation spectra’s dependence upon the key turbulent parameters: kmin, kmax, 〈δB2〉, and µ,

as well as the particle velocity, v. To start, we considered the kmin dependence. In Figure 6.2,

we have plotted spectra for an initially isotropically distributed, monoenergetic, ensemble of

trans-relativistic electrons (v = 0.5c) moving through sub-Larmor-scale magnetic turbulence

with three different values of kmin. The key parameters are: ρ = 18.1, 36.3, and 72.6, with

kmin = π/5, 2π/5, and 4π/5, respectively (see Table 6.1 for a complete listing of simulation

parameters used in every figure). The spectra of Figure 6.2, at least superficially, resemble

our theoretical prediction; cf. Eq. (6.20). We have normalized the dW/dω and ω axes by

λB and kmin, respectively. As expected, the frequency of the spectral peak scales by kmin.

The precise scaling of the peak frequency is revealed in Figure 6.3. In this figure, we have

varied the particle velocities, keeping all other parameters fixed. Three velocities appear:

v = 0.125c, 0.25c, and 0.5c. Clearly, the overall shape of the spectra is not strongly dependent

upon the particle velocities. We have identified the proper scaling on the horizontal axis.

With this result, and Figure 6.2, we may conclude that the frequency of the peak of the

radiation spectrum is ω ∼ γ2
ekminv = ωjn. This is jitter frequency given in Eq. (6.20).

Next, we tested the µ dependence. In Figure 6.4, µ = 4, 5. For each spectrum, v = 0.125c,

and the total simulation time was Tg, where Tg = e〈δB2〉1/2/γemec is the gyroperiod. The

numerical and analytical spectra show close agreement for frequencies less than the break
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Figure 6.2: Radiation spectra given variable kmin, with all other parameters fixed. The
number of simulation particles, Np, is 2000, and v = 0.5c in each case. In each trial, the
particles moved for a total simulation time of T = Tg, where Tg ≡ 2πγemec/e〈δB2〉1/2 is the
“gyroperiod”. Here, the axes are in arbitrary, simulation units. We see that the frequency
scales as kmin and dW/dω scales as λB.
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# ρ ∆t β µ kmin kmax
√
〈δB2〉 Np Tg

6.2 18.1 0.005 0.5 3 π/5 10.24π 0.02 2000 1
6.2 36.3 0.005 0.5 3 2π/5 10.24π 0.02 2000 1
6.2 72.6 0.005 0.5 3 4π/5 10.24π 0.02 2000 1
6.3 15.8 0.050 0.125 3 4π/5 10.24π 0.02 1000 10
6.3 32.4 0.050 0.25 3 4π/5 10.24π 0.02 1000 10
6.3 72.6 0.050 0.5 3 4π/5 10.24π 0.02 1000 10
6.4 6.18 0.005 0.125 4 π 8π 0.064 8000 1
6.4 6.18 0.005 0.125 5 π 8π 0.064 8000 1
6.5 6.34 0.005 0.25 5 π/2 4π 0.064 2000 1
6.5 6.34 0.005 0.25 5 π/2 8π 0.064 2000 1
6.6 12.4 0.05 0.125 100 π 8π 0.032 8000 10
6.7 7.9 0.05 0.125 4 2π/5 8π 0.02 4000 10
B.1 6.2 0.005 0.125 5 π 8π 0.064 5000 1
C.1 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10
C.2 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10

Table 6.1: Table of parameters used for the radiation spectra figures. Here, and elsewhere,
∆t is the simulation time step, the simulation time is denoted in multiples of the “gyroperiod”
(i.e. Tg = 2πγemec/e〈δB2〉1/2), and Np is the total number of simulation particles.
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Figure 6.3: Radiation spectra given variable v. In each trial, 1000 particles move for a total
simulation time of T = 10Tg, where Tg ≡ 2πγemec/e〈δB2〉1/2 is the “gyroperiod”. We see that
the overall shape of the spectra is not appreciably altered with decreasing v. The spectra are
normalized by Tγ2

ev, vertically. Given Figure 6.2, we may conclude that the peak frequency
of these spectra is ω ∼ γ2

ekminv – cf. Eq. (6.37).
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Figure 6.4: Radiation spectra given two different values of the magnetic spectral index: µ = 5
(red) “thick” line and µ = 4 (blue) “thin” line. Included are the analytical solutions given by
Eq. (6.20). Note that the µ = 5 solution has been multiplied by an overall factor of two for
easier visualization. For frequencies near ω ∼ γ2

ekminv, the numerical spectra agree decently
with the analytical results. However, for frequencies near the break, ω ∼ γ2

ekmaxv, there is
considerable deviation between the predicted and numerical spectra – for both values of the
magnetic spectral index. The origin of this discrepancy is explored in Appendix B.

frequency, ω ∼ γ2
ekmaxv. In Figure 6.5, we have plotted two spectra that differ in their kmax

values (all other parameters kept fixed). The kmax values employed differ by a factor of 2.

We see that, roughly, the spectra approach zero near ω ∼ γ2
ekmaxv. The proceeding power

law “tail” feature is a numerical artifact that arises from a steep drop to zero power (this fact

is more readily apparent in a linear plot – see Appendix A). Next, we examined the apparent

structure in the radiation spectra for ω < ωjn. This is most clearly seen in Figure 6.3, where

it appears as a distinctive “bump”. According to Eq. (6.20), this bump-like feature has a

functional form of A + Dω2. To assure that this form is correctly identified, we considered
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Figure 6.5: Radiation spectra with differing kmax. Some other relevant parameters are v =
0.25c, ρ = 6.34, Np = 2000, and µ = 5 (for a complete listing, see Table 6.1). The two
spectra differ by a factor of 2 in kmax, with kmin the same between them. Roughly, the
spectra transition to the “tail” feature near ω ∼ γ2

ekmaxv = ωbn.
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Figure 6.6: Radiation spectrum with µ = 100 (β = 0.125c). Evidently, the spectral feature
presented directly prior to ωjn has a functional form given by A + Dω2 (dashed line). This
is consistent with Eq. (6.20).

a large magnetic spectral index of µ = 100 with β = 0.125c. Such a large µ makes the

feature more prominent, helping to magnify it. As can be seen, the curve that best fits the

bump-like feature at ω < ωjn is given by a function of the form A+Dω2.

6.4.2 Jitter Radiation From Monopoles

One may consider the magnetic correlation tensor and its relation to the shape of the ra-

diation spectra. Anisotropic turbulence will alter the shape, but so will a change to the

topology of the magnetic field. Motivated by pure curiosity, we consider turbulence that

is generated by a distribution of magnetic monopoles. This will result in a magnetic field

that is curl-free, but has a divergence given by Gauss’s Law for monopoles. This topological

115



0.1 1.0 10.0
Normalized frequency ω/ωjn

0.0001

0.0010

0.0100
S

p
ec

tr
al

 e
n

er
g

y
 d

W
/d

ω
 (

ar
b

. 
u

n
it

s)

divergenceless field, thin
monopolar field, thick

Figure 6.7: Radiation spectrum of non-relativistic electrons moving through small-scale mag-
netic turbulence generated by a distribution of magnetic monopoles (“thick”, blue), super-
imposed with the radiation spectrum given a magnetic spectrum (“thin”, red) produced by
standard means (i.e. Ampere’s Law). For each run, µ = 4 and β = 0.125c. Each curve is
accompanied by its corresponding analytical solutions (“dashed”, black). The spectral shape
for frequencies less than ωjn is A + Dω2 and A − Dω2 for the “divergenceless” field and
“monopolar” field, respectively.

change will alter the correlation tensor for isotropic and homogeneous turbulence to:

δBi∗
k δB

j
k = |δBk|2 k̂ik̂j, (6.42)

which is the form required for an irrotational vector field. Substitution of this correlation

tensor into Eq. (6.8) will give a slightly different radiation spectrum for the magnetic spec-

trum in Eq. (3.62). The principal change will be to the quadratic prefactor A + Dω2. The

“monopolar” field will result in a sign change to D. In Figure 6.7, this difference is clearly

indicated. Notice the apparent lack of the quadratic peak feature at ωjn.
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Figure 6.8: Average square pitch-angle growth as a function of time for non-relativistic elec-
trons moving through small-scale magnetic turbulence generated by a distribution of mag-
netic monopoles “dashed” (blue), superimposed with the otherwise equivalent curve “solid”
(red) produced by standard means (i.e. Ampere’s Law). For each run, µ = 6, Np = 15420,
〈δB2〉1/2 = 0.032, kmin = π, kmax = 8π, and β = 0.125c. Note that the slope of the “monopo-
lar” curve is very nearly twice the slope of the standard curve – in accordance with Eq.
(6.43).

The altered correlation tensor will affect the particle diffusion coefficient as well. In fact,

as can be seen in Figure (6.8), the pitch-angle diffusion coefficient of particles moving in the

monopolar field is twice as large as the divergenceless field equivalent. This follows from the

fact that:

λmonopole
B = 2λdiv. freeB , (6.43)

which results from substitution of Eq. (6.42) into Eq. (3.55). It is a noteworthy observation

that the preceding results are identical, up to overall multiplicative factors, to the radiation

spectra and pitch-angle diffusion coefficient for the more physically plausible situation of
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a trans-relativistic monopole moving through “small-scale” electrostatic turbulence, such as

Langmuir turbulence.

6.4.3 Jitter Radiation From Magnetized Plasmas

Finally, we consider the radiation spectra when a mean magnetic field is present. As dis-

cussed previously, the radiation spectra are expected to be the summation of synchrotron

(cyclotron) and jitter (psuedo-cyclotron) components. When calculating the radiation spec-

trum, however, the presence of the mean magnetic field complicates the process, since a

previously non-existent anisotropy now appears. The “summed” spectrum will, as a result,

depend upon the location of the observer. However, if the magnetic turbulence is statistically

homogeneous/isotropic, then the synchrotron/cyclotron (mean field) component of the spec-

trum will, alone, possess this dependence. Since the angle-averaged synchrotron spectrum is

a known function, we may simply add it to the jitter spectrum, obtained via the “summation”

method above. For an ultrarelativistic electron, the angle-averaged synchrotron radiation

spectrum is (Landau & Lifshitz, 1975; Jackson, 1998):

dW

dω
=
√

3
e2

c
γe
ω

ωc

ˆ ∞
ω/ωc

K5/3(x) dx, (6.44)

where Kj(x) is a modified Bessel function of the second-kind, and ωc = 3/2γ2
eΩce is the

critical synchrotron frequency. Strictly, this result applies for an electron moving in the

plane transverse to the ambient magnetic field, i.e. when α = 0. Nonetheless, we find the

expression fits the synchrotron components fairly well; especially when γe is decently large.

Strictly, this result applies for an electron moving in the plane transverse to the ambient

magnetic field, i.e. when α = 0. Nonetheless, we find the expression fits the synchrotron

components fairly well; especially when γe is decently large.

We showcase two numerical spectra here for the case of small-scale Whistler turbulence,

along with their corresponding analytical estimates. For cold Whistler waves, the contribu-

118



0.001 0.010 0.100 1.000 10.000
Normalized frequency ω/ωjn

10-5

10-4

10-3

10-2

10-1

100
N

o
rm

al
iz

ed
 S

p
ec

tr
al

 e
n
er

g
y
 d

W
/d

ω

Figure 6.9: Radiation spectrum for a monoenergetic, isotropic distribution of γe = 5 (χ ∼ 1;
ρ ≈ 928; 〈δB2〉1/2/B0 = 0.1) electrons moving through small-scale Whistler turbulence.
The frequency is normalized by ωjn = γ2

ekminβc – the relativistic jitter frequency. The
solid (“red”) curve is from simulation data, whereas the dashed (“blue”) curve is the analytic
estimate. Clearly, the spectrum is well represented by a superposition of synchrotron+jitter
components.

tion due to the electric field may be neglected, since 〈E2〉 � 〈δB2〉 – hence, the spectrum is

wholly determined by the magnetic field.

We considered a γe = 5 electron population for Figure 6.9. In this plot, the relevant

parameters are: Np = 1000, ∆t = 0.00125, kmin = 2π, kmax = 20π, 〈δB2〉1/2/B0 = 0.1,

Ωce = 0.512, µ = 4, ρ ≈ 928, χ ∼ 1, and the total simulation time was T = 5Tg. We see that

the synchrotron+jitter fit closely resembles the numerical spectrum.

Next, we explored the non-relativistic regime. In Figure 6.10, we assumed a population

of sub-Larmor-scale β = 0.125 electrons. As expected, a peak in the spectrum may be
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Figure 6.10: Radiation spectrum for a monoenergetic, isotropic distribution of β = 0.125
electrons (χ ∼ 0.04; ρ ≈ 160; 〈δB2〉1/2/B0 = 0.2; Ωce = 2; kmin = 64π; kmax = 10kmin;
µ = 5; T = 50Tg); superimposed with a spectrum given a population of γe = 4 electrons
(χ ∼ 1; ρ ≈ 367; 〈δB2〉1/2/B0 = 0.1; Ωce = 0.512; kmin = π; kmax = 10π; µ = 4; T = 5Tg).
The normalization on the y-axis is arbitrary, whereas the x-axis is normalized to the β =
0.125 population’s cyclotron frequency, i.e. Ωce = 2. The “thick” solid (“red”) curve is from
simulation data for the β = 0.125 population, the dashed (“blue”) curve is the corresponding
analytic estimate for “pure” psuedo-cyclotron radiation, the “thin” solid line is the simulation
data for the γe = 4 population, and the “dot-dashed” ( “black”) line is the γe = 4 analytic
estimate. Notice, for the β = 0.125 spectrum, that the spectrum peaks near the cyclotron
frequency, Ωce – hence we see the signature of cyclotron radiation. The additional harmonics,
which are purely a relativistic effect, are the signature of emerging synchrotron radiation.
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observed near the cyclotron frequency Ωce – confirming that the total spectrum is the hybrid

of psuedo-cyclotron+cyclotron radiation. Additionally, to provide a point of comparison, we

have superimposed a simulation result for γe = 4 electrons.

6.4.4 Jitter Radiation and Small-Scale Langmuir Turbulence

In Figure 6.11, we have plotted the numerical radiation spectrum for electrons with v =

0.125c and γe = 2 – this corresponds to the scenario explored in Section 5.3.3. The resulting

radiation spectrum is analogous to the (mildly) relativistic small-angle jitter spectrum of an

electron moving through sub-Larmor-scale magnetic turbulence, but it is morphologically

distinct. This is because the electrostatic field, owing to its curl-free presentation, has a

different correlation tensor, Φij(k), than the (divergenceless) magnetic equivalent. Thus, we

require the substitution:

Φij(k) ∝
(
δij − k̂ik̂j

)
→ k̂ik̂j. (6.45)

The analytical solution, strictly, holds for the ultrarelativistic limit. Nonetheless, as can

be seen in Figure 6.11, the numerical solution closely matches the analytic result for mildly

relativistic electrons with γe = 2. This is consistent with the result seen in Figure 5.15,

which suggests the presence of the small deflection angle regime.

In contrast, the third spectrum in Figure 6.11 differs markedly from the analytic (jitter)

prediction. This is the spectrum resolved for a v = 0.125c, i.e. γe ≈ 1, electron. In accord

with Figure 5.15, the deflection angle is large, thus the spectrum is outside the small-angle

jitter regime.

It is noteworthy that the χ � 1 condition in Langmuir-like turbulence may not be

physically realizable, since Landau damping would likely eliminate wave-modes at sub-skin-

depth spatial scales too quickly (Teraki & Takahara, 2014). With the field variability time-

scales of comparable order to the electric correlation length transit time, it may be necessary

to consider the rms electric field as a function of time. Thus, a more realistic model may
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Figure 6.11: Langmuir Radiation spectra for the γe = 2 and v = 0.125c electrons (see Figure
5.15 for details on the simulation parameters). The frequency is normalized by the charac-
teristic jitter frequency, i.e. ωjn ≡ γ2

ekminβc. The lower (“red”) curve is from simulation data,
and it corresponds to the v = 0.125c electron. The upper (“blue”) curve is the simulation
result for the γe = 2 electron, and the dashed curve is the analytic estimate. Clearly, the
mildly relativistic spectrum is well represented by the (Langmuir) jitter result.
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require a time-dependent pitch-angle diffusion coefficient.

6.5 The Jitter/Synchrotron Spectrum of a Thermal Dis-

tribution of Particles

In most cases, our sub-Larmor-scale electron distribution will not be composed of mono-

energetic electrons. Here, we consider the radiation spectrum one might expect from a

Maxwell-Boltzmann (thermal) distribution of electrons in sub-Larmor-scale magnetic fields.

To obtain the jitter component of the spectrum, we must average the single electron

spectrum over an appropriate relativistic Maxwell-Boltzmann distribution. We define the

jitter emission coefficient, which is the total radiated power per frequency per volume, as

thusly: (
dP

dνdV

)jitt.

= ne

´
Pj(ν, p)e

γe/Θ d3p´
eγe/Θ d3p

, (6.46)

where Θ ≡ kBTe/mec
2, ν = ω/2π, and

Pj(ν, p) ≡
2π

T

dW

dω
(p), (6.47)

is the single electron (power) spectrum with kinetic momentum, p = γemev, and at the

observation time, T .

Next, we require an expression for the angle-averaged thermal synchrotron emission co-

efficient. To that end, we employ:

(
dP

dωdV

)syn.

=
21/6π3/2e2neν

35/6cK2(1/Θ)ξ1/6
exp

[
−
(

9ξ

2

)1/3
]
, (6.48)

where ξ ≡ ω/ΩceΘ
2. This expression produces the correct total power, up to a factor of 1.05,

when Θ = 0.6 (Wardziński & Zdziarski, 2000). With Θ = 0.6, the thermal Lorentz factor,

γTe = Θ + 1 = 1.6. Thus, this corresponds to the trans-relativistic regime.
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Figure 6.12: Emission coefficient vs. frequency for a thermal distribution of electrons moving
through “magnetized”, sub-Larmor-scale magnetic turbulence. Relevant parameters: ne =
1 cm−3, δB = B0 = 1 G, γTe = 12, kmax = 50kmin, and k−1

min = drel.e – where drel.e ≡ c
√
γTe/ωpe

is the relativistic skin-depth. The jitter component – dashed (“blue”) line – overpowers the
synchrotron portion – three-dot-dashed (“red”) line – at frequencies below ωbn ∼ γ2

Te
kmaxvTe .

This produces a distinctly non-synchrotron feature, at low frequencies, in the total (summed)
spectrum, solid (“purple”) line.

When the temperature approaches the ultrarelativistic limit, i.e., Θ� 1, Eq. (6.48) gives

a fairly accurate result, with a correction factor of order unity.

In figure 6.12, we have plotted the combined emission coefficient for a scenario in which

sub-Larmor-scale magnetic turbulence, with a spectrum identical to Eq. (3.62), is embedded

in an ambient magnetic field, B0. We suppose the following parameters: ne = 1 cm−3,

δB = B0 = 1 G, γTe = 12, kmax = 50kmin, and k−1
min = drel.e – where drel.e ≡ c

√
γTe/ωpe is the

relativistic skin-depth. These parameters, other than Θ, are not important for determining

the overall shape of the spectra; thus, our selection is made only for instructional purposes.
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Figure 6.13: Emission coefficient vs. frequency for a thermal distribution of electrons moving
through “magnetized”, sub-Larmor-scale magnetic turbulence. Relevant parameters: ne =
1 cm−3, δB = B0 = 1 G, γTe = 1.6, kmax = 50kmin, and k−1

min = drel.e . Despite the presence of
noticable thermal spread, the jitter component – dashed (“blue”) line – still overpowers the
synchrotron portion – three-dot-dashed (“red”) line – at frequencies below ωbn ∼ γ2

Te
kmaxvTe .

The summed spectrum, solid (“purple”) line, remains distinctly non-synchrotron-like at low
frequencies.
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As may be readily seen in Figure 6.12, the jitter emission spectrum – dashed (“blue”)

line – dominates over the synchrotron component – three-dot-dashed (“red”) line – at low

frequencies. This contrasts with the scenario depicted in Figure 6.9, where the jitter portion

dominates at high frequencies. Essentially, the ratio: ωjn/ωc, determines where the jitter

component makes an appearance.

Furthermore, the depicted jitter and synchrotron spectra are nearly identical to the mono-

energetic equivalents. This is because with γTe = 12 – or, equivalently, Θ = 11 – the vast

majority of particles are moving ultrarelativistically. Hence, the thermal spread is very small.

In contrast, with γTe = 1.6, a considerable degree of thermal spread will be noticable on

inspection. However, as we see in Figure 6.13 – where we consider an identical scenario, with

Θ = 0.6 – this spread does not obscure the trans-relativistic jitter (pseudo-cyclotron) feature;

the jitter portion is still very clearly distinct from the thermal synchrotron component.

To summarize, the signature of jitter radiation — both in the relativistic and trans-

relativistic regimes – remains clearly evident, even given a thermal distribution of electrons.

6.5.1 Plasma Dispersion

Our results do not consider the dispersive effect of the surrounding plasma. An account of

dispersion will modify the radiation spectrum by a multiplication of Eq. (6.8) by the square

root of the frequency-dependent scalar permittivity, ε(ω). The scalar dielectric permittivity

at high frequencies is (Jackson, 1998; Rybicki & Lightman, 1986):

ε(ω) = 1−
ω2
pe

ω2
, (6.49)

where ωpe is the plasma frequency. Eq. (6.49) holds formally for ω2 � ω2
pe in any dielectric

medium; although it holds for cold, non-magnetized, isotropic plasmas for a wide domain

of frequencies – including ω < ωpe (Rybicki & Lightman, 1986). In a magnetized plasma,

additional terms including the ambient “mean” magnetic field appear in the permittivity
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tensor. As previously mentioned, the Weibel-like magnetic turbulence can occur in a non-

magnetized environment, thus we ignore any “mean” field here. Hence, we will consider an

extension of Eq. (6.49) to low frequencies (ω ∼ ωpe).

For simplicity and convenience, we have ignored the plasma dispersion in our numerical

simulations. However, we consider a few cases with plasma dispersion intact, both numeri-

cally and theoretically, in Appendix C.

6.6 Discussion of Results

In this Chapter, we explored non-relativistic and trans-relativistic particle radiation pro-

duction in small-scale electromagnetic turbulence. Principally, we demonstrated that in the

regime of small deflections, i.e. when the particle’s deflection angle over a correlation length

is small αλ � 1, the produced radiation spectrum is wholly determined by the particle ve-

locity and the statistical/spectral properties of the magnetic turbulence; which is a result

most transparently offered by Eq. (6.16).

Just as small-angle jitter radiation strongly differs from synchrotron radiation, so too

does the analogous non-relativistic jitter radiation distinguish itself from cyclotron radiation.

Given the isotropic 3D power law magnetic spectral distribution from Eq. (3.62), the resulting

trans-and non-relativistic radiation spectrum is a piece-wise function of a quadratic equation

in frequency, ω up to the characteristic (jitter) frequency, ωjn = γ2
ekminv, after which it is

the sum of a power law and a quadratic term up to the break frequency, ωbn = γ2
ekmaxv,

where it then quickly approaches zero – see Eq. (6.20). We have, furthermore, confirmed our

theoretical results via first-principle numerical simulations.

Additionally, we showed that the test particle radiation spectrum in small-scale Whistler

turbulence is simply the summation of a small-scale, jitter/pseudo-cyclotron component and

a regular, synchrotron/cyclotron component – see Eq. (6.41). We confirmed this via first-

principle numerical simulations.
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Next, we considered the change in the radiative and transport properties of trans-

relativistic particles moving through magnetic turbulence due to a topological change in

the field. Namely, we supposed the generation of sub-Larmor-scale magnetic turbulence

from a distribution of magnetic monopoles. We showed that the radiation spectra and pitch-

angle diffusion coefficient are modified; i.e. the pitch-angle diffusion coefficient doubles in

magnitude, à la Eq. (6.43), and the shape of the radiation spectrum is dramatically altered

for frequencies less than the jitter frequency, ωjn. These results, furthermore, generalize to

the case of a magnetic monopole moving through “small-scale" electrostatic turbulence.

Furthermore, we confirmed the result first shown by (Teraki & Takahara, 2014) that

the spectrum of relativistic electrons in small-scale Langmuir turbulence is a form of jitter

radiation. We, further, expanded upon this result by resolving the spectrum for trans-

relativistic velocities – showing that the jitter prescription holds well even down to γe ∼ 2.

Finally, we considered the radiation produced by a Maxwell-Boltzmann (thermal) distri-

bution of electrons in a magnetized plasma with sub-Larmor-scale magnetic fluctuations. We

demonstrated that the signature of the jitter component clearly remains when the fluctua-

tion field is comparable to the ambient magnetic field – just as it did for the mono-energetic

case considered previously.

128



Chapter 7

Small-Scale Magnetic Turbulence And

(Quasi-)Collisionality

7.1 Introduction

Sub-Larmor-scale magnetic turbulence induces particle dynamics reminiscent of binary Coulomb

interactions. In this Chapter, we show that this behavior, under certain conditions, is ac-

tually equivalent to Coulomb collisions in collisional plasmas. The magnetic pitch-angle

diffusion coefficient, which acts as an effective “collision” frequency, may be substantial in

these, otherwise, collisionless environments. We show that this “quasi-collisionality” may

radically alter the expected radiative transport properties of candidate plasmas.

7.2 General Discussion

As we defined it in 3.5.1, there is a single correlation length for all spatial scales of the

magnetic field. Nonetheless, any realization of electromagnetic turbulence may be envisioned

as the superposition of “small-scale” and “large-scale” (i.e., the “sub-” and “super-Larmor-

scale”) components. Thus, we may roughly define two characteristic spatial scales for the

general case, where λsscB and λlscB are the sub-Larmor-scale and super-Larmor-scale correlation
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lengths, respectively.

Ignoring the mean magnetic field, there are a number of different regimes that may be

enumerated, depending upon the relative significance of the magnetic field at each scale.

Firstly, if the correlation length is infinite, then the electrons will follow helical orbits about

the axis of a perfectly homogeneous magnetic field. Next, if the magnetic field is “large-scale”

— i.e., possessing fluctuations on a finite, though super-Larmor, spatial scale — then the

electron’s guiding center will drift, due to slight inhomogeneity in the magnetic field.

Thirdly, an electron moving through purely sub-Larmor-scale magnetic turbulence will

not complete a Larmor orbit, because the magnetic field varies on a scale shorter than the

Larmor curvature radius. With ρ � 1, this trajectory is a nearly straight line, with small,

random (diffusive) deflections perpendicular to the direction of motion (i.e. the small-angle

jitter regime).

Finally, when a range of spatial scales exists, the chaotic trajectory will be a combination

of large-scale gyro-motions (though not necessarily complete gyro-orbits) with small-scale

diffusive deflections (i.e. the large-angle jitter regime, for ultrarelativistic particles).

We will show that it is these small-scale deflections that induce a quasi-collisionality with

the pitch-angle diffusion coefficient acting as an effective collision frequency. To this end,

we will next turn our attention to the conventional treatment of (Coulomb) collisions in

plasmas.

7.3 The Lorentz Collision Model of Electron-Ion Colli-

sions

As the lowest order approximation, Coulomb collisions are considered in a small deflection

angle regime. In this approximation, a “test” electron will undergo a slight (transverse)

deflection as it passes by an ion. For simplicity, we will neglect electron-electron collisions.

As the binary collisions continue with other ions, several scatterings will occur. These
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scatterings are effectively stochastic, if the background of (stationary) ions is randomly

distributed. Since the collisions with the fixed ion background are elastic, the total electron

energy is conserved.

Nevertheless, the small deflections accumulate, leading to a gradual change in the elec-

tron’s transverse momentum, ∆p⊥. An electron is deflected by one radian, i.e. ∆p⊥/p ∼ 1,

in a single collision time, τc. The inverse of the collision time, νei ≡ τ−1
c , is defined as the

electron-ion collision frequency.

Given a Maxwellian distribution of electrons, the electron-ion collision frequency assumes

the simple form (Kruer, 1988):

νei ' 3× 10−6 ln(Λ)
neZi

θ
3/2
eV

[s−1], (7.1)

where ne is the electron number density in cm−3, θeV is the electron temperature in units of

electron-volts, Zi is the atomic ionization number, and ln(Λ) is the Coulomb logarithm.

Here, we employ the Spitzer result for the Coulomb logarithm (Spitzer, 1956):

ln(Λ) ≈ 25.28 + ln

[
θeV√
ne

]
, (7.2)

which is valid for temperatures above 4× 105 K ≈ 34 eV .

Next, we will argue that the [small-scale] pitch-angle diffusion coefficient acts as an

effective collision frequency in plasmas with sub-Larmor-scale magnetic fluctuations.

7.4 Pitch-angle Diffusion as Effective Collisionality

The small-angle magnetic deflections are analogous to electron-ion collisional deflections

in a number of ways, namely they both (i) conserve the particle’s energy and (ii) induce

deflections transverse to the electron’s initial velocity.

Where the two effects differ, however, is in the nature of the stochasticity. In an idealized
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scenario, an electron in a collisional plasma is continuously deflected by ions along its trajec-

tory. In contrast, an electron moving through small-scale electric turbulence is deflected on

a characteristic spatial scale of finite length: the correlation length. Thus, the two descrip-

tions are only equivalent on a coarse-graining. Indeed, the electron motion in small-scale

turbulence resembles electron-ion collisions only on spatial scales greater than – or similar

to – the electric correlation length.

Thus, we must require that:

L & λssc.B , (7.3)

where L is the characteristic length scale of the system. With regard to the propagation

properties of plasmas, this dimension is on the order of the wave packet size. For pure plane

waves, however, L is unlimited.

Next, we may infer this effective collision frequency directly from Eq. (5.4). The pitch-

angle deflections are assumed to be small, hence α ∼ ∆p⊥/p. Thus, at τc, the following

condition must hold:

Dssc
αατc ∼ 1, (7.4)

where Dssc
αα is the (small-scale) pitch-angle diffusion coefficient. Therefore, Dssc

αα must be the

effective “collision” frequency. Generalizing Eq. (5.4), we write:

Dssc
αα ∼

(
e2

m2
ec

3

)
λsscB (x, t)

γ2
e 〈β2〉1/2

〈δB2
⊥〉, (7.5)

where δB⊥ is the component of the (small-scale) fluctuation field perpendicular to the elec-

tron’s velocity, x is in the vicinity of the electrons of interest, and 〈β2〉1/2 is an appropriate

ensemble-average over the electron velocities.

Electron-ion collisions in plasmas are often important too, hence we include them in our

study. Consequently, we define the total (effective) collision frequency as:

νeff ≡ νei +Dssc
αα . (7.6)
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7.5 A Phenomenological Interpretation

Estimating Dαα, in real plasmas, may be difficult since it depends upon the small-scale cor-

relation length – a quantity which requires knowledge of the magnetic spectral distribution

to obtain. In principle, if the nature of the instability which produces the electromagnetic

fluctuations is known, then we may produce a rough estimate of the characteristic spatial

scales which ultimately set the correlation length. However, in many cases, the type of tur-

bulent fluctuations may not be known; hence, an a priori estimate of the magnetic spectrum

may not be available.

Fortunately, charged particles undergoing quasi-collisions in small-scale magnetic fields

emit small-angle jitter radiation. This radiation, which is distinct from both cyclotron and

synchrotron radiation, has spectral properties which are fully determined by the statistical

characteristics of the magnetic turbulence. Furthermore, the pitch-angle diffusion coefficient

and the jitter radiation spectrum are intimately related. Thus, the jitter spectrum offers an

immediate estimate for the pitch-angle diffusion coefficient, as we will show.

Similarly, electrons undergoing collisions with an ion background will emit Bremsstrahlung

radiation. The emission coefficient, jω, is directly proportional to the collision frequency. For

a Maxwellian (thermal) distribution of electrons in a weakly ionized plasma, the emission

coefficient is (Bekefi, 1966):

jBrems
ω = <[n]

(
ω2
pekBTe

8π3c3

)
νei, (7.7)

where <[n] is the real part of the plasma’s index of refraction. Now, taking into account

quasi-collisions, as in Eq. (7.6), by substituting νei → νeff in Eq. (7.7), the latter introduces

a phenomenological definition for the effective collision frequency.

As we have shown in 6.3.1, the total (dispersion free) jitter power emitted by a single

electron is given by:

P jitter
tot =

2

3
cβ2r2

eγ
2
e 〈δB2

⊥〉. (7.8)
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The small-angle jitter radiation spectrum has the jitter frequency,

ωjn = γ2
ekmagβc, (7.9)

where kmag is the dominant wave number of the (small-scale) turbulent fluctuations. Next,

we may write the spectral power for a single electron as:

Pjitter(ω) ≡ dP

dω
∼ P jitter

tot

ωjn
. (7.10)

Substitution of Eq. (9.2) into Eq. (9.9), results in the expression:

Pjitter(ω) ∼ 2

3
λsscB β

(
e4

m2
ec

4

)
〈δB2

⊥〉, (7.11)

where the relation, k−1
mag ∼ λsscB . Comparing this result to Eq. (5.4), we find that the power

spectrum is directly proportional to the pitch-angle diffusion coefficient:

Pjitter(ω) ∼ 2

3

e2

c
γ2
eβ

2Dαα. (7.12)

Next, if we assume isotropic emission by all plasma electrons, then the jitter emission

coefficient may be obtained from Eq. (7.12) with the multiplication of ne/4π. Thus:

jjitterω ∼ nee
2

6πc
γ2
eβ

2Dαα =

(
meω

2
pe

24π2c

)
γ2
eβ

2Dαα. (7.13)

Finally, the emission coefficient for non-relativistic jitter (pseudo-cyclotron) radiation,

given a Maxwellian distribution of electrons, will be:

jjitterω ∼ Re[n]

(
ω2
pekBTe

3π3c3

)
Dαα, (7.14)
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where we have reintroduced the index of refraction, and substituted:

βc = 〈|v|〉 =

(
8kBTe
πme

)1/2

. (7.15)

Comparing Eqs. (7.14) and (7.7), we see that they only differ by a numerical factor. Thus,

Eqs. (7.13) and (7.14) provide an attractive phenomenological definition for the “jitter” colli-

sion frequency, which may be obtained directly from the small-angle jitter radiation emission

coefficient.

7.6 Magneto-optic Effects with Small-Scale Magnetic Fields

To explore the properties of electromagnetic (EM) wave propagation in quasi-collisional,

“cold” magnetized plasmas, we examine the elements of the dielectric tensor, i.e. Eq. (3.31).

As a low-order approximation, collisions may be treated as drag terms, of the form −νeffv,

in the Lorentz equation of motion for the charged plasma particles. This introduces the

substitution rule: ω → ω + iνeff. Notice that this is equivalent to setting (∂f/∂t)coll. = νδf

in the collisional Boltzmann transport equation, Eq. (2.12). Thus, the elements of the

“collisionless” dielectric tensor generalize to (Brambilla, 1998):

L = 1−
∑
s

ω2
ps

ω(ω + iνs − Ωcs)
(7.16a)

R = 1−
∑
s

ω2
ps

ω(ω + iνs + Ωcs)
(7.16b)

P = 1−
∑
s

ω2
ps

ω(ω + iνs)
, (7.16c)

In our study, we will assume that only the electron dynamical time-scales are of interest;

thus, s = e.

The properties of EM wave propagation through a magnetized plasma depends heavily

upon the orientation of the wave-vector with respect to the ambient magnetic field, B0 –
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hence, magnetized plasmas are gyrotropic media. We will consider two limiting cases for

wave-vector orientation. First, we will treat the propagation along the direction of B0.

The difference in the indices of refraction of left- and right-circularly polarized light, as

it propagate along this direction, results in the well-known Faraday Effect. As we will

demonstrate, strong collisions significantly alter the conventional Faraday expressions.

7.7 “Quasi-collisional” Faraday Effect

If the wave-vector is aligned with B0, the solution to Eq. (7.16) assumes the form:

c2k2

ω2
= 1−

ω2
pe

ωσ
(
1± Ωce

σ

) , (7.17)

where σ ≡ ω + iνeff, and we have assumed the total collision frequency given by Eq. (7.6).

The “±” signs refer to the right-circular and left-circular polarizations, respectively.

Next, we make the standard assumptions that ω � Ωce and ω3 � ω3
pe. The high-order of

the latter assumption is needed to keep terms (linearly) proportional to the electron number

density, ne ∝ ω2
pe. Next, we expand Eq. (7.17) in the small parameter, Ωce/σ:

c2k2

ω2
≈ 1−

ω2
pe

ωσ

[
1∓ Ωce

σ

]
. (7.18)

Expanding the square root results in the index of refraction:

n ≈ 1−
ω2
pe

2ωσ

[
1∓ Ωce

σ

]
. (7.19)

Faraday rotation is the result of the discrepancy between the wave-vectors of the two polar-

izations, ∆k±. From the real part of Eq. (7.19), we get:

∆k± ≈
ω2
peΩce

2c (ω2 + νeff2)2

[
ω2 − νeff2

]
. (7.20)
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The existence of an imaginary part in Eq. (7.19) indicates the presence of absorption. The

absorption coefficient is given by the general relation:

αabsp ≡ −2
ω

c
=[n] (7.21)

Thus, the Faraday (quasi-)collisional absorption coefficient is:

αFarad
absp ≡ −

ω2
peνeff

c (ω2 + νeff2)

[
1∓ 2Ωceω

(ω2 + νeff2)

]
. (7.22)

Finally, the total change in the polarization phase angle, ∆Ψ is obtained by the integration of

∆k± along the path of the EM wave. Operationally, Ωce and ωpe are functions of position, z.

The latter depending, straightforwardly, upon the electron density, ne(z). There is subtlety

in the interpretation of the gyro-frequency, however. Traditionally, it is defined here as:

Ωce ≡
eB‖(z)

mec
, (7.23)

where B‖(z) is the component of the magnetic field, at z, parallel to k. It is implicitly

assumed that B0 is super-Larmor-scale, which is an underlying assumption of the (linear)

cold plasma approximation.

Thus, the proper physical interpretation of our result is that B‖(z) refers only to the

large-scale component of the magnetic field, whereas νeff is the result of small-scale magnetic

fluctuations. Hence, using Eq. (7.20), we may write the collision-corrected expression for

the Faraday rotation angle as:

∆Ψ =
2πe3

m2
ec

2

ˆ
[ω2 − νeff(z)2]

[ω2 + νeff(z)2]2
ne(z)B‖(z)dz. (7.24)

Formally, the collision frequency may be a function of z; which is why we have included it in

the integrand. To simplify the treatment even further, we assume a constant (or averaged)
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collisional frequency ν?eff throughout the entire plasma. Then, Eq. (7.24) can be written as:

∆Ψ ' (1− Z2)

(1 + Z2)2λ
2RM, (7.25)

where λ = 2πc/ω is the radiation wavelength, Z ≡ ν?eff/ω is an normalized collision frequency,

and

RM ≡ e3

2πm2
ec

2

ˆ
ne(z)B‖(z)dz, (7.26)

is the standard collisionless rotation measure.

In the absence of (quasi-)collisions, when Z = 0, Eq. (7.25) gives the conventional result.

Thus, the ratio:
∆Ψ

λ2RM
=

(1− Z2)

(1 + Z2)2 =
∆Ψcollisional

∆Ψcollisionless
, (7.27)

illuminates a possible, (quasi-)collisionality-induced, discrepancy.

In Figure 7.1, we have plotted Eq. (7.27) as a function Z. The curve has a number of

interesting properties. Firstly, when Z = 1 (i.e., ω = ν?eff), zero rotation occurs. Evidently,

in this case, (quasi-)collisions have effectively nullified Faraday Rotation.

Secondly, the rotation angle remains negative for Z > 1; obtaining a minimum value of

−1/8 at Z =
√

3. Finally, as Z →∞, the rotation angle approaches zero.

How much do standard Coulomb collisions affect Faraday rotation observations/measure-

ments? For example, in the interstellar medium with density ne ∼ 1 cm−3, the electron-ion

collisional frequency is about νei ' 7 × 10−5 s−1. The strongest effect is expected at the

observation frequency ω ∼ νei, which is well below any viable frequency range for Faraday

polarimetry. Thus, for this reason, Coulomb collisions are generally neglected in astrophysi-

cal environments. Nevertheless, quasi-collisionality may be significant where high-amplitude

electromagnetic turbulence is suspect. Thus, the observation of a Faraday rotation discrep-

ancy (as described above) may indicate the presence of small-scale magnetic fields.
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Figure 7.1: Normalized Faraday rotation angle vs. the normalized collision frequency. Notice
that at Z ≡ ν?eff/ω = 1 zero Faraday rotation occurs. Collisions have effectively nullified
Faraday Rotation.
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7.8 Ordinary and Extraordinary Mode Propagation in

“Quasi-collisional” Solid-density Laser Plasmas

In the plane perpendicular to B0, two distinct wave modes may propagate. The first of

these is the Ordinary mode (or O-mode), which is equivalent to the electromagnetic wave

solution for a non-magnetized plasma. The index of refraction for the O-mode, accounting

for collisions, is:

n2
O = 1− X

1 + Z2
+ iZ

X

1 + Z2
, (7.28)

where X ≡ ωpe/ω. Since we cannot safely assume that Z � 1, Eq. (7.28) must be solved

exactly. This results in a real part (Ma, 2005):

<[nO] =
1

4

(
εr +

√
ε2r + ε2i

)2

, (7.29)

and an imaginary part:

=[nO] =
1

2<[nO]
εi, (7.30)

where
√
εr ≡ <[nO] and

√
εi ≡ =[nO]. As before, the presence of an imaginary index of

refraction implies absorption. Consequently, the O-mode absorption coefficient is given by

the substitution of Eq. (7.30) into Eq. (7.21).

Notice that <[nO] > 0, for all ω. This means, physically, that the mode has no true cutoff

frequency. For Z � 1, the approximate cutoff will be at the plasma frequency, ωpe, that is

where <[nO] quickly approaches zero. In the general case, however, an effective cutoff may

not be present.

The Extraordinary mode (or, X-mode) has a considerably more complicated dispersion
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relation. The exact solution of which is (Yesil et al., 2008):

n2
X = 1− X [(1−X) (1−X − Y 2) + Z2]

[1−X − Z2 − Y 2]2 + Z2 [2−X]2

+ iZ
X
[
(1−X)2 + Z2 + Y 2

]
[1−X − Z2 − Y 2]2 + Z2 [2−X]2

,

(7.31)

where Y ≡ Ωce/ω and X ≡ ωpe/ω. Due to complexity, we will not present an analytical

analysis of this case.

Now, we will explore the implications of strong quasi-collisions for O-mode and X-mode

propagation in laser-generated solid-density plasmas. We consider a metal target irradiated

by a laser at normal incidence, with an intensity of 1018 W cm−2 (the threshold of relativistic

intensity). Next, we estimate the relevant plasma parameters, assuming a fully ionized

aluminium target (Zi = 13) and a laser wavelength of λl = 800 nm. A decent estimate for

the electron temperature is suggested by (Hatchett et al., 2000):

kBTe ∼ Upond ∼ 1 MeV ×

√
Iλ2

l

1019 [W cm−2 µm2]
, (7.32)

where Upond is the ponderomotive potential of the incident laser beam. Substitution of our

laser parameters gives an electron temperature of 253 keV .

Assuming that the small-scale magnetic turbulence is the result of a Weibel-like instabil-

ity, the magnetic field will roughly have the maximum value (Belyaev et al., 2008):

BWeibel
max ∼ meωpec

e
, (7.33)

which is consistent with the theoretical saturation condition Ωce ∼ ωpe.

Next, we must select a model for the plasma frequency profile. We suppose an exponential

profile for the electron density in the direction of the laser beam, i.e.,

ne(z) = nce
(z/λl−1), (7.34)
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where nc ≡ meω
2/4πe2 is the collisionless critical electron density, and z is along k. We

furthermore assume that the density is uniform in the transverse plane. From this pro-

file, we choose ωpe(z = 0) for substitution into Eq. (7.33). The result is a magnetic field,

BWeibel
max ≈ 81.2 MG. We will suppose the existence of a large-scale magnetic field in the

metal target. For simplicity, we assume that this field is approximately uniform, and that

it is situated perpendicular to the angle of normal incidence, which is typical of the laser-

induced (ordered) Biermann battery fields seen in ICF experiments, although these fields

assume a more complex azimuthal profile (Huntington et al., 2015).

Additionally, we suppose that B0 = BWeibel
max , and treat δB (the small-scale component)

as a free parameter.

Furthermore, the electron-ion collisions are computed using Eq. (7.1), that is we ignore

any non-uniformity in the electron temperature.

Lastly, we consider an effective pitch-angle diffusion coefficient for the entirety of the

target. We assume that λB ∼ λl, since for Weibel magnetic fields: λB ∼ de, where de = c/ω

is electron skin-depth at the critical surface. In practice, the correlation length should be

significantly shorter than the laser wave packet size, so that Eq. (7.3) will hold.

In Figure 7.2, five solutions for the O-mode index of refraction are plotted as a function

of the depth into the target (represented by the electron density). These solutions differ by

the assumed δB. The effective quasi-collision frequency is significantly large for δB ∼ B0:

νeff ≈ 3.3× 1015 s−1, which is comparable to the laser frequency. This is in stark contrast to

the much weaker electron-ion contribution: νei ≈ 7.1× 109 s−1, at the critical surface, nc.

For δB/B0 = 0.001, νei � Dssc
αα , and the expected weakly-collisional dependence is real-

ized. Here, there is a steep drop in the index of refraction towards zero near nc. Physically,

this indicates that most of the O-mode wave is reflected back from the critical surface – as,

otherwise, anticipated. As the effective collision frequency increases, the reflectivity at the

critical surface quickly drops. In fact, when δB/B0 = 1, the entirety of the metal target is

virtually transparent.
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Figure 7.2: Index of refraction for the O-mode as a function of depth (in terms of the electron
density). Displayed here are five solutions, all differing by the ratio, δB/B0. Notice that for
δB/B0 = 0.001, νei � Dssc

αα , and the expected weakly-collisional dependence is realized; i.e.,
a steep approach of the index of refraction towards zero at nc. In contrast, δB = B0 leads
to a virtually transparent target. Included in this plot is the solution for νeff = νei — the
dashed black line.
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The steep increase in the index of refraction, for all the curves, at high-density is a result

of the density dependence in Eq. (7.1). Since the metal target is of limited extent, this

asymptote of the solution may not be experimentally viable.

Next, the X-mode has a considerably more complicated index of refraction. The colli-

sionless dispersion relation includes two cutoff frequencies and a resonance. The first cutoff,

ωR =
1

2

(
Ωce +

√
Ω2
ce + 4ω2

pe

)
, (7.35)

is slightly less than ω. Its presence, as the first steep drop in the index of refraction, can be

seen Figure 7.3. Next, a resonance occurs at the upper-hybrid frequency, i.e.

ωUH =
√
ω2
pe + Ω2

ce. (7.36)

The upper-hybrid resonance, similarly, occurs slightly prior to nc (see Figure 7.3). Lastly, a

second cutoff frequency occurs at:

ωL =
1

2

(
−Ωce +

√
Ω2
ce + 4ω2

pe

)
, (7.37)

which is slightly beyond the critical surface, nc.

The behavior similar to the O-mode profile may be observed in Figure 7.3. What is

noteworthy here is that collisions essentially connect the cutoff frequencies to the resonance,

allowing access by ωUH and ωL. Nonetheless, when quasi-collisions dominate the dispersion,

as they do for δB ∼ B0, the cutoffs and resonance disappear completely.

Next, the X-mode index of refraction depends upon the ambient magnetic field via Ωce.

In Figure 7.4, we have plotted three solutions for which δB/B0 = 0.1, but B0 differs by

orders of magnitude. As expected, the solution approaches the O-mode profile for B0 → 0.

Finally, the quasi-collisional absorption is a very important consideration as well. Ignor-

ing reflection and refraction, the intensity, I, falls off exponentially while traversing a lossy
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Figure 7.3: Index of refraction for the X-mode as a function of depth (in terms of the
electron density). Displayed here are five solutions, all differing by the ratio, δB/B0. Notice
that for δB/B0 = 0.001, νei � Dssc

αα , and the expected weakly-collisional dependence is
realized; i.e., a steep approach of the index of refraction towards zero at ωR, a resonance
at ωUH, and another cutoff at ωL. Collisions effectively connect the cutoff frequencies to
the resonance, allowing access to ωUH and ωL. Nonetheless, for δB ∼ B0, the cutoffs and
resonance disappear completely. Included in this plot is the solution for νeff = νei — the
dashed black line.
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Figure 7.4: Index of refraction for theX-mode as a function of depth (in terms of the electron
density). Here, three solutions for which δB/B0 = 0.1 are plotted with a variable B0. As
expected, the solution approaches the O-mode profile for B0 → 0.
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Figure 7.5: X-mode laser intensity as a function of the target depth (in terms of the electron
density). Despite the relative transparency for δB ∼ B0, the laser intensity quickly decays
beyond the critical surface. Interestingly, the laser intensity is relatively fixed from ωUH to
ωL, for low-Z. Additionally, there is initial drop near ωUH that is not present in the high-Z
case. Included in this plot is the solution for νeff = νei — the dashed black line.

medium, i.e.,

I(z) = I0e
−
´
|αabsp(z)|dz, (7.38)

where I0 is the vacuum intensity. In Figure 7.5, we have used Eqs. (7.21) and (7.38) to

plot the X-mode intensity as a function of depth for the same conditions as in Figure 7.3

(excluding δB/B0 = 0.001).

Despite the relative transparency of the plasma for δB ∼ B0, Figure 7.5 shows that the

laser intensity quickly decays beyond the critical surface. Interestingly, the laser intensity is

relatively fixed from ωUH to ωL, for low quasi-collisionality, i.e., low-Z. Figure 7.6 displays

the same scenario for the O-mode case. Once more, we see a relatively fixed laser intensity up
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Figure 7.6: O-mode laser intensity as a function of the target depth (in terms of the electron
density). Once more, we see a relatively fixed laser intensity up to the critical surface, for
low-Z. The high-Z curve is identical to the X-mode equivalent. Included in this plot is the
solution for νeff = νei — the dashed black line.
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to the critical surface, for low-Z. The high-Z (i.e., δB ∼ B0) curve is identical to theX-mode

equivalent, thus demonstrating the dominance of quasi-collisions over the “magnetization”

effect from B0 at large δB.

From Figures 7.2-7.6, it is clear that effective quasi-collisionality in solid-density laser

plasmas may be significant. Although the high-Z scenario of δB ∼ B0 is unlikely, the pres-

ence of small-scale magnetic fields (especially near the critical surface) may, unanticipatedly,

impact the reflectivity and absorption. The effect may be critically important to certain se-

tups, such as the inertial confinement fusion (ICF) experiments or experiments that exploit

the Cotton-Mouton effect for magnetic field diagnostics.1

7.9 Discussion of Results

In this Chapter, we investigated the implications the quasi-collisionality induced by small-

scale magnetic turbulence in, otherwise, collisionless plasma environments. Our results

demonstrate that radiative transport is dramatically affected by the presence of strong ef-

fective collisions.

Particularly, our analysis shows that sub-Larmor-scale magnetic fluctuations in magne-

tized plasmas may sharply attenuate Faraday rotation measures (RM). In fact, with the

effective quasi-collision frequency on the same order as the wave frequency, the Faraday

rotation effect may be completely canceled, hence RM = 0. In an unexpected turn, with

νeff > ω, we predict negative RM values in these environments. These results are crucial

for Faraday rotation-based laboratory plasma diagnostics and interpretation of the results

of astronomical observations of Faraday rotation measures of magnetized astrophysical and

space plasmas, e.g., of the interstellar and intracluster media.

In the laboratory setting, we find that small-scale turbulence may complicate the prop-
1The Cotton–Mouton effect refers to the change in the ellipticity of a light wave, which is a combination

of X/O-modes, as it propagates transverse to a magnetic field in a plasma medium. The ellipticity change
results from the difference in the phase velocities of the two modes – i.e. it is the “transverse” analog of the
Faraday effect.
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agation of EM waves through high-intensity laser-plasmas; specifically, solid-density laser-

plasmas. Namely, the reflectivity and absorption of X- and O-modes is largely affected

when the plasma is highly “collisional”. In fact, for sufficiently high (quasi-)collisionality, the

plasma cutoff frequencies cease to exist.

These effects can have crucial implications for the ICF performance. Indeed, the high

quasi-collisionality regime occurs when the Weibel instability or other kinetic filamentation

instabilities are excited to produce strong sub-Larmor magnetic (or possibly fully electro-

magnetic) fields. In this regime, the plasma may happen to be transparent so that the

critical surface ceases to exist. The impulse delivered to the imploding plasma by radiation

pressure halves in the case (cf. reflection vs. absorption), which greatly affects ICF per-

formance. For the same reason, the absorption coefficient reduces too, so that the depth

through which radiation can penetrate into the target increases, which changes the energy

deposition profile in the target. How theis affect the ICF performance remains to be seen

from dedicated theoretical analyses and numerical simulations. On the other hand, we stress

that the performance, being affected by quasi-collision-induced transparency which depends

on δB/B0, can be controlled by the ambient magnetic field, B0, both via the Weibel insta-

bility suppression (by lowering δB) and the reduction of the effective quasi-collisionality of

the plasma (by increasing B0 for a fixed δB).

We propose that quasi-collisional magneto-optic effects may be exploited for diagnostic

purposes. Since the effective quasi-collision frequency — the pitch-angle diffusion coeffi-

cient, Eq. (5.4) — is proportional to the magnetic field correlation length and the square

of the small-scale magnetic fluctuations, it provides a novel means by which the statistical

properties of the small-scale magnetic turbulence may be identified. Additionally, the jitter

radiation spectrum readily provides a phenomenological definition for the effective collision

frequency, à la Eq. (7.13). Jitter radiation may be directly observable in several of these

plasma environments.
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Chapter 8

(Quasi-)collisionality and Small-scale

Electric Fields

8.1 Introduction

In this Chapter, we investigate the realization of quasi-collisionality in small-scale electric

fields. In particular, we will explore Faraday rotation in magnetized plasmas with small-scale

electric fluctuations.

8.2 Pitch-Angle Diffusion in Small-Scale Langmuir-like

Turbulence

The small-angle electric deflections are analogous to electron-ion collisional deflections in a

number of ways; they both approximately conserve particle energy, and they both induce

deflections that are approximately transverse to the electron’s initial velocity.

Thus, in accord with our previous work, we propose that the pitch-angle diffusion coeffi-

cient, given by Eq. (5.11), is the electric quasi-collision frequency, νE.
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8.3 A Phenomenological Definition of the [Electric] Quasi-

Collision Frequency

Since relativistic electrons in small-scale electric turbulence, also, emit jitter radiation, we

may offer a phenomenological definition for the electric quasi-collision frequency – as we did

previously. First, we must consider the total radiated power of the electron. To this end, we

use the general Larmor formula, which is given by (Jackson, 1998):

Ptot. =
2e2γ6

e

3c

[
β̇

2 − (β × β̇)2
]
. (8.1)

For purely electric fields, we have the acceleration:

β̇ = − 1

γe
[ΩE − β (β ·ΩE)] . (8.2)

However, we are assuming that the transverse acceleration dominates, hence:

β̇ ≈ − 1

γe
Ω⊥E, (8.3)

and, therefore:

P jitter
tot ≈ 2

3
cr2
eγ

2
eE

2
t , (8.4)

Next, we may write the spectral power for a single electron as:

Pjitter(ω) ≡ dP

dω
∼ P jitter

tot

ωjn
. (8.5)

Thus:

Pjitter(ω) ∼ 2

3
λtEβ

−1

(
e4

m2
ec

4

)
E2
t . (8.6)
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Comparing this result to Eq. (5.11), we find that the power spectrum is directly proportional

to the pitch-angle diffusion coefficient:

Pjitter(ω) ∼ 2

3

e2

c
γ2
eβ

2Delec.
αα , (8.7)

which is equivalent to the magnetic expression, Eq. (7.12).

Finally, if we assume isotropic emission by all plasma electrons, then the jitter emission

coefficient may be obtained from Eq. (7.12) with the multiplication of ne/4π. Thus:

jjitter; elec.ω =

(
meω

2
pe

24π2c

)
γ2
ee

2β2Delec.
αα . (8.8)

Thus, Eq. (8.8) – once again – provides an attractive phenomenological definition for the “jit-

ter” collision frequency, which may be obtained directly from the small-angle jitter radiation

emission coefficient.

8.4 “Quasi-collisional” Faraday Effect in Electric Turbu-

lence

In the previous Chapter, we showed that magnetically-induced quasi-collisionality alters

the expected form of this Faraday rotation, ∆Ψ, for magnetized plasmas. The obtained

results, formally, hold for a non-relativistic, “cold” plasma with ω � Ωce and ω3 � ω3
pe.

Consequently, it fails for the scenario considered here, since Eq. (5.8) implies that the electron

population is relativistic.

Fortunately, the Faraday expression for relativistic velocities is a straightforward gener-

alization of Eq. (7.24) (Shcherbakov, 2008):

∆Ψcollisionless ≈
K0(σ)

K2(σ)
λ2RM , (8.9)
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where σ ≡ mec
2/kBTe. Thus, under the first-order substitution rule for including the effects

of collisions, i.e. ω → ω+iνeff, Eq. (7.27) will hold for the relativistic regime as well. Likewise,

αFarad
absp →

K0(σ)

K2(σ)
αFarad
absp . (8.10)

Finally, we will assume that the small-scale electric fluctuations are predominantly along the

direction of the ambient magnetic field, B. This assumption allows us to disregard additional

complications, such as diffusion induced by “E cross B” drifts.

In Figure 8.1, we have plotted Eq. (7.27) as a function of the electric fluctuation strength

(the “rms” value of the electric field) for mildly relativistic electrons (γe ∼ 2). As we have

shown in Section 5.3.3, the small deflection angle regime holds well even at these mildly

relativistic speeds. Five curves appear in Figure 8.1, each differing by the electric correlation

length, which is chosen to be equal to the relativistic electron skin-depth, de = c
√
γe/ωpe

(the reasons for this choice will become more apparent in the following section). The elec-

tron number densities are: ne = 1, 102, 104, 106, and 108 cm−3; the electromagnetic wave

frequency, ω/2π, is 10 GHz.

The curves in Figure 8.1 exhibit a universal feature: the rotation angle reverses sign

when the electric fluctuation field is sufficiently strong. As 〈E2〉1/2 → ∞, the rotation is

completely nullified. Notice that, for typical interstellar densities (ne ∼ 1 cm−3), a noticeable

effect can be seen for electric field strengths > 1.0 G.

Next, since strong quasi-collisions imply strong “collisional” absorption, we must consider

the result of Eq. (8.10) – which will, in turn, constrain the strength of the ambient magnetic

field. In Figure 8.2, the e-folding distance (i.e. 1/αFarad
absp ) is plotted as function of B0 for

the ne = 108 cm−3 case from Figure 8.1. We see that the “collisional” absorption occurs

on a many kilometer length scale. With B0 = 10 G, the signal would be reduced to a

factor of 0.01 around 44 km. Thus, the limiting factor in the possible observation of the

quasi-collisional Faraday effect is this absorption; which is, necessarily, strong when the
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Figure 8.1: Normalized Faraday rotation angle – i.e. Eq. (7.27) – vs. the electric fluctuation
strength for various electron densities. The electron number densities are (from right to left):
ne = 1, 102, 104, 106, and 108 cm−3; the electron temperature is 0.511 MeV (or γe ∼ 2), and
ω/2π = 10 GHz. These curves exhibit a universal feature; namely, the rotation angle will
reverse sign when the electric fluctuation field is sufficiently strong. As 〈E2〉1/2 → ∞, the
rotation is completely nullified.

quasi-collision frequency is large. In the next section, we will argue that small-scale ion

acoustic turbulence may present the ideal realization of electric quasi-collisionality in actual

space, astrophysical, and laboratory plasmas.
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Figure 8.2: Quasi-collisional absorption e-folding distance vs. the ambient magnetic field.
The instance depicted here is the ne = 108 cm−3 case from Figure 8.1. We see that the
“collisional” absorption occurs on a many kilometer length scale. With B0 = 10 G, the signal
would be reduced to a factor of 0.01 around 44 km.
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8.5 Small-Scale Electric Turbulence in Real Plasmas

For the realization of small-scale electric turbulence, the second condition from Eq. (5.8) is

most difficult to satisfy. Using τE ∼ c/λtE and λtE ∼ k−1
E , this condition is equivalent to:

k2
Ec

2

Ω2
r

� 1. (8.11)

In accord with (Teraki & Takahara, 2014), we may be inclined to choose “cold” electron

langmuir waves to mediate the turbulence. The dispersion relation, in this case, would be

Ωr = ωrel.
pe – where ωrel.

pe ≡ ωpe/
√
γe, is the relativistic plasma frequency. Thus, Eq. (8.11)

would require that:

kEc� ωrel.
pe , (8.12)

or, equivalently, that the correlation length is smaller than the electron skin-depth. How-

ever, this is problematic. The thermally corrected, ultra-relativistic, dispersion relation for

electron langmuir waves is(Bergman & Eliasson, 2001):

Ω2
r =

σ

3
ω2
pe +

9

5
k2c2. (8.13)

Thus, the condition that Ωr ' ωrel.
pe contradicts Eq. (8.12), since these “cold” plasma waves

require that (27/5)k2c2 � σω2
pe ∼ ω2

pe/γe. Therefore, electron Langmuir turbulence may not

self-consistently satisfy all the conditions that we require.

Alternatively, we may consider turbulence mediated by the ion population. In this case,

we must be careful to specify electric fluctuations that exist on spatial scales comparable to

the Debye length, λD, since the ion time-scales will be sufficiently long enough that electrons

will effectively screen out these fields on electron scales; i.e. these “large-scale” electric fields

have very little effect on the electron population.

When electric fluctuations exist on scales smaller than the Debye shielding length, then

“quasi-neutrality” can be broken. Thus, with mi � γeme (where mi is the ion mass), we
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require that:

kEλD & 1, (8.14)

where λD = vthe/ωpe, and vthe ∼ c is the electron thermal velocity.

One possible realization of this condition is provided by the very short wavelength branch

of the ion acoustic mode. These modes can exist in magnetized plasmas, and we assume

for our purposes that the wave-vector is nearly aligned with the direction of the ambient

magnetic field. For a non-relativistic, “cold” plasma, If kEλD & 1, the ion acoustic mode has

the frequency (Luo & Chian, 1997):

Ωr =
ωpi

1 + (kλD)−2
, (8.15)

where ωpi is the ion plasma frequency. From this, we see that Ωr ≈ ωpi when kλD � 1. Ion

acoustic turbulence may be strongly excited when the electron temperature far exceeds the

ion temperature (Luo & Chian, 1997) – a scenario which is required here, since the ions are

being treated as non-relativistic, while the electrons are – at least – mildly relativistic (i.e.

mi � γeme).

8.6 Discussion of Results

we explored the consequences of high electrically-induced quasi-collisionality for Faraday

rotation in magnetized plasmas. We found – as we did, previously, for magnetically-induced

quasi-collisionality – that the Faraday rotation measure, RM , may obtain negative values, in

this case. In fact, as the quasi-collision frequency becomes sufficiently large, RM → 0.

We, furthermore, speculated upon the most likely set of plasma parameters that would

allow for direct observation of this, modified, Faraday effect. We found that quasi-collisional

absorption may severely limit possible space and astrophysical applications of our model –

since strong quasi-collisionality, also, implies strong “collisional” absorption.
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Chapter 9

Jitter Radiation and Solid-Density

Laser-Plasma Experiments

9.1 Introduction

The direct observation of mildly relativistic jitter radiation may be feasible in the laboratory

setting. We will focus our attention upon the Mondal experiment (Mondal et al., 2012).

This experiment provides a concrete example of an applicable laser plasma. Additionally, the

Mondal experiment constructed, directly from data, the magnetic (spatial) power spectrum.

A considerable amount of what is explored here is applicable to (short duration) relativistic

laser-plasma experiments, in general.

9.2 The Weibel Instability in Laser-Plasma Experiments

In the Mondal experiment, conducted at the Tata Institute of Fundamental Research (TIFR),

an aluminum coated, BK-7 glass target was irradiated by a 1018 W/cm2 (800 nm, 30 fs du-

ration) laser pump beam – thereby creating a plasma in the aluminum layer (with thickness

several times larger than the electron skin-depth) of the target. A low-intensity probe beam

(400 nm, 80 fs) was then introduced at a delay to the initial pumb beam. This probe beam

159



was then reflected by the corresponding critical plasma surface. By exploiting the Cot-

ton–Mouton effect, the strength, spatial, and temporal evolution of the generated magnetic

fields were inferred by measuring the ellipicity induced in the probe beam’s polarization.

The observed magnetic fields were very intense, with a maximum value ∼ 63 MG. Ad-

ditionally, the fields were relatively long-lived – existing on a several picosecond time-scale

– which is about a hundred times longer than the laser duration time-scale. These fields

initially grow on a femtosecond time-scale and on spatial scales comparable to the electron

skin-depth, de ≡ c/ωpe ∼ 0.1 µm – which is smaller than the probe spatial resolution of a

few microns; consequently, their initial development was not directly observable. Nonethe-

less, the Weibel fields further evolved via mechanisms such as Kelvin-Helmholtz (KH) like

instabilities (driven by fluid-like velocity shears). Finally, the random magnetic filamentary

structures eventually exist on a picosecond time-scale and on a many micron spatial-scale –

allowing their detection.

In the Mondal experiment, it was reported that the spatial spectrum of the magnetic

field (in the target’s transverse plane) is well approximated by an inverse power-law which

extends to spatial scales below the electron skin-depth. Furthermore, the spectral shape

remains largely unchanged over a ∼ 10 ps time-scale. This result was additionally confirmed

by 2D Particle-in-Cell (PIC) simulations. The PIC simulations further indicated that the

magnetic field development is largely insensitive to the initial electron (10 eV ) and ion (1 eV )

temperatures. The final PIC ion temperatures were in the range 4−8 keV . The final electron

temperature (300− 600 keV ; t ∼ 10 ps) implies that the electrons are mildly relativistic; i.e.

γe ∼ 2, where β ≡ v/c is the normalized electron velocity, and c is the speed of light.

9.3 Jitter Radiation

The question we address here is whether or not the plasma electrons emit jitter radiation

in setups similar to the Mondal plasma experiment. Furthermore, is this radiation directly
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observable in the framed experiment? Firstly, we must determine if the jitter prescription is

appropriate, given the experimental parameters. We know that three principal parameters

determine the jitter regime: the magnetic field strength, the electron velocities, and the

magnetic field correlation length. The first two parameters are known scaling functions of

the laser intensity, I and wavelength, λ. For a given intensity and wavelength, the (final)

“forward” electron temperatures are given by Eq. (7.32). Substitution of the Mondal param-

eters gives the electron temperature of 253 keV . This is comparable to the PIC simulation

(final) electron temperature 300− 600 keV .

Likewise, the order of the laser generated Weibel magnetic field is indicated by Eq.

(7.33), which suggests Bmax
Weibel ≈ 171 MG (for de ∼ 0.1 µm); this is similar to the maximum

experimental value of ∼ 100 MG.

Next, the correlation length of the magnetic field is indicated by the characteristic wave

number of the turbulent spectrum, kmag. Given an inverse power-law spectrum for the

magnetic fluctuations, kmag is the minimum wave number, kmin. This corresponds to a

spatial-scale ∼ de, thus we take kmin ∼ d−1
e .

Now, electrons moving in a random, static, magnetic field B will produce radiation in

the small-deflection jitter regime if:

ρ ∼ kmag
γemeβc

2

eB
, (9.1)

is greater than unity. Where B is an appropriate statistical average of the magnetic fluc-

tuations. In the Mondal experiment, the spatially/temporally averaged magnetic field (≈

100 MG) was slightly larger than the maximum value of 63 MG. We have elected to take

B ∼ Bmax ≈ 63 MG.

Lastly, ρ will necessarily be small in the initial stages of the electron acceleration. So,

we consider only the final time velocities (obtained from the PIC simulations) which are

v/c ≡ β ≈ 0.78 − 0.89. Then, finally, considering βmin ≡ 0.78, the gyro-number, ρ ≈ 4.
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Thus, since ρ is slightly greater than unity, the radiation regime will be predominantly

characteristic of the, mildly relativistic, jitter regime.

Nonetheless, the observability of the radiation is subject to a number of conditions. In the

following subsections, we will outline and roughly estimate these limiting factors. Obviously,

this list may not be exhaustive, but we will address the most apparent concerns.

9.3.1 The Jitter Frequency

Is the jitter radiation production time-scale small enough to temporally resolve the spectrum?

This question may be answered by considering the jitter frequency:

ωjn ≡ γ2
ekminβc. (9.2)

Considering only the final electron temperatures (i.e. the velocities β = 0.78, 0.89), the jitter

frequency is

ωjn ∼ 6× 1015 − 1× 1016 rad/s, (9.3)

indicating that the radiation is in the Extreme Ultraviolet (EUV) part of the EM spectrum.

To avoid shielding by the plasma, ωjn must be greater than the electron plasma frequency,

ωpe. The electron plasma density, at the critical surface, is indicated by the skin-depth,

de ∼ 0.1 µm. The corresponding plasma frequency is

ωpe ∼ 3× 1015 rad/s. (9.4)

Thus, the jitter frequency is slightly larger than the plasma frequency. This indicates that

plasma dispersion will play an important role in determining the spectral shape of the radi-

ation, but the signal will nonetheless propagate throughout the entirety of the plasma. In

contrast, non-relativistic electrons would emit cyclotron radiation in large-scale (i.e., weakly

inhomogeneous or uniform) magnetic fields. In this case, the mean magnetic field (acting in

162



place as an ambient, uniform field) will admit a slightly broadened cyclotron component due

to mild relativistic effects. With 〈B〉 ∼ 100 MG, the cyclotron frequency is roughly:

Ωce ∼ 2× 1015 rad/s, (9.5)

This is slightly below the plasma cutoff, ωpe. Thus, this cyclotron feature may not be readily

observable – while, in contrast, the jitter frequency will be larger by a factor of a few.

Furthermore, The isotropic jitter spectrum has a high-frequency break at

ωbn = γ2
ekmaxβc, (9.6)

where kmax is the maximum turbulent wave number; i.e., the inverse of the turbulent wave-

length at the shortest spatial-scale. The jitter and the break frequencies determine the

window where most of the radiation is emitted.

Next, in order to well-resolve the radiation spectrum, one must observe the signal over

several characteristic time-scales. Given a mildly relativistic electron, this time-scale must

be several ω−1
jn . In this case, ω−1

jn ∼ 0.1 fs. The magnetic field lifetime (∼ 10 picoseconds)

is many orders of magnitude larger than a femtosecond, thus the magnetic field will exist

sufficiently long enough so that the jitter spectrum may be resolved. Furthermore, since the

field-variability time-scale is ∼ picoseconds, which is much longer, the magnetic field may

be treated as static.

9.3.2 The Jitter Power

Now, we will estimate the volumetric power of jitter radiation to ascertain its observability

using current instrumentation. We will ignore any magnetic anisotropy, statistical inhomo-

geneity, and plasma dispersion effects. We will consider a distribution of mono-energetic

electrons that radiate isotropically. Since the characteristic wavelength of the emitted radi-

ation by a single electron is smaller than the volume dimensions considered, we will assume

163



that the radiation of the individual electrons add incoherently. Thus, with these assumptions,

and the experimental values used previously, the volumetric radiated power is:

dP

dV
∼ 2

3
nec(reγminβminBmax)

2. (9.7)

where ne is the number density of electrons in volume dV , and re = e2/mec
2 is the classical

electron radius. We expect the Weibel fields to predominantly reside at scales comparable to

the electron skin-depth. Since the fields will, likely, be strongest at the site of laser absorption,

i.e. the critical surface, we may very roughly estimate the jitter power by substituting ne ∼ nc

– where the nc is the critical density, i.e.

nc =
meω

2

4πe2
, (9.8)

where ω is the laser frequency. Thus, we estimate the volumetric jitter power as:

dP jitter

dV
∼ 1022 erg cm−3 s−1. (9.9)

Finally, we should compare this result to estimates for any competing radiation mechanisms.

We believe that thermal Bremssrahlung (Bremss.) due to electron-ion collisions is the only

likely complication. In the next subsection, we will make an attempt to roughly estimate

the Bremss. contribution.

9.4 Thermal Bremssrahlung

To estimate the electron-ion Bremss. component, we will assume a thermal distribution of

electrons. We will assume, as before, the estimate for the “effective” electron temperature,

i.e. Te = 300 − 600 keV , obtained from the Mondal PIC simulations (Mondal et al., 2012).

At these temperatures, the aluminum coating layer will be fully ionized, meaning Z = 13.
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Ignoring the particle escape from the aluminum layer (either into the vacuum or the BK-7

glass), the number density of ions ni = ne/Z. Thus, neglecting self-absorption (which only

occurs at small frequencies), the electron Bremss. power per unit volume (in cgs units) will

be (Rybicki & Lightman, 1986):

dP

dV
∼ 1.4× 10−27Te

1/2neniZ
2. (9.10)

Now, we suspect that Bremss. radiation will be emitted throughout the entirety of the

plasma. Nonetheless, owing to the square dependence on the plasma density, the regions of

high-density will dominate the total emission power.

Thus, we need an estimate of the density profile. To that end, we adopt the electron

density supposed by the Mondal PIC simulations. This was an exponential profile, in the

longitudinal direction, of the form:

ne(z) = exp(z/L− 1), (9.11)

where L = 2λ is the scale length, and z is the longitudinal coordinate. The profile was

uniform in the transverse plane. This longitudinal trend continued up to a plateau at ne =

140nc. Then, the simulation box ended at z = 16λ. We adopt this profile here.

Finally, for our estimate of the Bremss. component, we will suppose that ne = 140nc.

With this substitution, we have:

dPBremss.

dV
∼ 1026 erg cm−3 s−1. (9.12)

This value is four orders of magnitude larger than the jitter radiation power. However, this

estimate does not account for the variation in the power across the frequency domain. For

this, we will need to estimate the radiation spectrum. As we will show, the jitter spectrum

dominates at low frequencies.
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As a final consideration, we must ensure that these radiative processes are not obscured

by the inevitable loss of particle energy via radiative cooling. This requires that we estimate

the cooling time-scales.

9.5 Radiative Cooling

First, we consider the Bremss. cooling time. Considering the electrons as a classical mono-

atomic gas, the Bremss. cooling time, with ne = 140nc, is

tBremss.cool ∼ 3nekBTe(
dPBremss.

dV

) ∼ 100 µs, (9.13)

which is a few orders of magnitude larger than all other time-scales in this experiment. Thus,

Bremss. cooling is negligible.

The jitter cooling time-scale may be estimated by considering the time at which the

radiated power, for a given electron, is comparable to that electron’s initial kinetic energy,

i.e.

P jitter
single t

jitter
cool ∼ (γe − 1)mec

2, (9.14)

where P jitter
single is the power emitted by a single particle – i.e. Eq. (9.7) divided by ne. Using

γe ≈ 1.59, the jitter cooling time is

tjittercool ∼ 0.1 µs, (9.15)

which is, also, sufficiently long enough to be ignored. We may conclude that, neither Bremss.

nor jitter cooling, is significant.
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9.6 The Radiation Power Spectrum

Finally, we make predictions for the spectral profile of the emitted radiation. We retain our

initial assumptions that the magnetic turbulence is statistically isotropic, that the electron

density has the exponential (longitudinal) profile – Eq. (9.11) – that plateaus at ne = 140nc,

and that the electron velocities are thermally distributed.

Next, the thermal Bremss. power spectral density (i.e., radiated power per frequency per

unit volume) is a well known function:

dP

dωdV
=

8
√

2

3
√
π

√
ε(ω)

[
Z2niner

3
e

] (mec
2)3/2

(kBTe)1/2
Ḡ(ω, Te), (9.16)

where
√
ε(ω) is the scalar dielectric permittivity, and Ḡ(ω, Te) is the velocity-averaged Gaunt

factor. For high-temperature, though non-relativistic, electrons (Bekefi, 1966):

Ḡ(ω, Te) = ln

(
4

γ

kBTe
~ω

)
, (9.17)

where γ ≈ 0.5772 is the Euler–Mascheroni constant. Since the electron velocities are only

mildly relativistic, the relativistic correction to Eq. (9.17) will be relatively small – a factor

of a few.

We may obtain the total Bremss. spectral flux by integrating Eq. (9.16) over the length

of z, i.e.
dP

dωdA
=

8
√

2

3
√
π

(mec
2)3/2

(kBTe)1/2
Ḡ(ω, Te)Z

2r3
e

ˆ √
ε(ω(z))ni(z)ne(z) dz, (9.18)

where dA is the differential cross-section, and dP is the differential radiant power.

Next, to obtain the total jitter spectrum from a thermal distribution of electrons, we must

average the single electron spectrum over the appropriate Maxwell-Boltzmann distribution,

à la Eq. (6.46). Thus, assuming the jitter prescription for the entirety of the plasma length,
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the spectral flux of jitter radiation will be:

dP

dωdA
=

ˆ
ne(z)

´
Pj(ω, ωpe(z), p)eσ(1−γe) d3p´

eσ(1−γe) d3p
dz, (9.19)

Due to non-perturbative effects, the low-frequency end of the jitter radiation spectrum will

differ slightly from the jitter prescription by the addition of an ω1/2 power-law asymptote

(Teraki & Takahara, 2014). Given ρ ∼ 4 and ωpe ∼ ωjn, this deviation will be present near

ωpe; it has no effect, however, on the high-frequency end of the spectrum. Consequently, we

have elected to ignore this feature.

As stated previously, a cyclotron/synchrotron component, corresponding to the mean

magnetic field, will be present. However, since this component is largely screened out by

plasma dispersion, and its effect is already well known, we omit it here.

Additionally, we safely ignore the damping effect of Coulomb collisions, since the exper-

imental Reynold’s number is Reexp ∼ ωpe/νei ∼ 106 – where νei is the electron-ion collision

frequency (Mondal et al., 2012). From this, we may infer that ωjn � νei.

Finally, we neglect the plasma gyrotropy. Since ωce < ωpe, the gyrotropy will not be

critically important to the plasma dispersion at high frequencies, i.e. near ωbn.

Thus, we consider an isotropic, collisionless plasma. The scalar dielectric permittivity is,

consequently

ε(ω) = 1− ω2
pe/ω

2. (9.20)

Finally, we may construct the radiation power spectrum. In each plot, the relevant parame-

ters are: µ = 4, ωpe = 3× 1015 rad/s, kmin = 0.5ωpe/c, kmax = 10kmin, ne = 3× 1021 cm−3,

ni = ne/Z, kBTe = 300 keV , and 〈B2〉1/2 = 63 MG. The jitter spectrum was constructed

using a logarithmically spaced, discretized range of electron velocities from βmin = 0.1 to

βmax = 0.99.

In Figure 9.1, the total spectral flux is plotted (“purple”, solid line) alongside the indi-

vidual thermal Bremssrahlung (“red”, lower-left dashed line) and jitter (“blue”, upper-left
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Figure 9.1: Spectral flux (differential flux per differential frequency) of the total emitted
radiation vs normalized frequency. The frequency is normalized to the jitter frequency,
i.e. Eq. (9.2). The total power (“purple”, solid line) is the sum of the individual jitter
(“blue”, upper-left dashed line) and Bremssrahlung (“red”, lower-left dashed line) components.
Clearly, the jitter component dominants near the jitter frequency (here defined as f = ω/2π).

dashed line) components. Notice that the jitter component dominants at frequencies near

the jitter frequency, ωjn ∼ γ2
ekminβc – where 1/

√
1− β2 = γe and (γe − 1)mec

2 ∼ kBTe.

Next, Figure 9.2 displays the photon flux at each frequency; i.e., Figure 9.1 divided by

the the photon energy, ~ω. By integrating these curves over the complete frequency range, we

may estimate the total photon flux for each component. These are 2×1029 (photons) cm−2 s−1

and 1030 (photons) cm−2 s−1 for jitter and Bremss., respectively. Thus, it would appear that

the Bremss. flux is only an order of magnitude larger than the jitter flux. Since Bremss. emis-

sion is easily and routinely detectable in plasma experiments, it should be easy to observe

jitter radiation too. It is the very distinct spectral shapes of the two, along with the high
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Figure 9.2: The photon flux at each frequency; i.e. Figure 9.1 divided by the the photon
energy, ~ω. We see that the majority of the jitter flux is at frequencies slightly below the
jitter frequency, ωjn.
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fluxes, that make Bremss. and jitter radiation easily distinguishable form one another and

allows one to resolve their spectral features well – the key factor of a good plasma diagnostic

tool.

9.7 Discussion of Results

In this Chapter, we have investigated the prospects for the direct radiative diagnostics of

a mildly relativistic, solid-density laser plasmas produced in current lab experiments. Our

results demonstrate the feasibility of such an approach. Particularly, our analysis shows

that a sub-relativistic laser-plasma setup, such as the experiment described in Mondal, et al.

(Mondal et al., 2012), is a promising candidate for the direct observation of mildly relativistic

jitter radiation.

A very important feature of our model, as an advanced radiative diagnostic tool, is the

ability to probe plasmas at different locations (depths). Indeed, Bremss. is a quadratic

function of the density, so this radiation probes the plasma conditions in the densest parts

of the plasma, i.e., deep into the “core”. In contrast, jitter radiation probes the region with

the strongest small-scale fields, which occur where the laser energy/momentum deposition

is most efficient, i.e., near the critical surface. The location of this region depends on both

plasma density and the laser frequency, which opens up a possibility to do some sort of

“plasma tomography” by using different laser frequencies. We believe these provide sufficient

impetus for experimental exploration.
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Chapter 10

General Conclusions

In this Chapter, we present our general conclusions. We discuss the limitations inherent

in our model, and speculate upon how we may address these weaknesses in the future.

We, furthermore, speculate upon the possible applications of our model to real plasmas.

We, finally, consider the physical questions still remaining – concluding, ultimately, that a

considerable amount of work is still needed to answer these questions definitively.

10.1 Assumptions Concerning Turbulence

The theoretical and numerical models applied throughout this work have a proper domain

of application. The assumptions we have made about the electromagnetic turbulence, in

particular, presents a strict constraint.

For example, in real plasmas, the turbulence dissipation time-scale, growth rate, time-

evolution, and spatial-scale are important considerations. Throughout much of this work, we

have particularly highlighted the Weibel-like turbulence because of its favorable properties.

As stated previously, the Weibel instability is aperiodic (i.e. real frequency Ωr ∼ 0), and

thus allows for the static field treatment – a fact that we have exploited many times. More

precisely, the growth rate Ωi � Ωr.

Additionally, the Weibel-filamentation fluctuations are long-lived, dying out only when
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the driving free energy (provided by the kinetic energy of streaming particle filaments) of

the system is converted by particle isotropization (i.e. the depletion of the anisotropy in the

streaming particle distribution function). In short, the generated fields are approximately

stationary on a time-scale which exceeds the growth/stabilization rate times (Treumann &

Baumjohann, 2012).

All of these properties suggest that there will be adequate time for radiation production in

the jitter regime, given by our prescription, in these “quasi-static” Weibel magnetic fields. A

conclusion that is well supported by the time-scale arguments made in Chapter 9, concerning

solid-density laser-plasmas.

Nonetheless, Whistler-like instabilities, for example, may be more likely to take hold

in “pre-magnetized” media. Their complete description, furthermore, may extend beyond

the “cold plasma” approximation – requiring “thermal” corrections to the dielectric tensor,

and therefore, the dispersion relation. Nonetheless, we suspect, in the static limit, that our

results will deviate only quantitatively in these cases.

10.2 The Applicability of the Radiation Perturbation The-

ory

We may reiterate that our treatment of pseudo-cyclotron radiation assumes small deflections;

an assumption that allowed the use of the, so called, perturbation theory. Recent work

(Kelner et al., 2013) has considered a formal treatment of the perturbation theory that

exclusively requires that the deflection angle over a correlation length is small, i.e. αλ � 1.

Due to continued diffusive scatterings of the electron, its path will eventually deviate strongly

from its initial trajectory. The traditional perturbative approach, regardless, remains valid so

long as the trajectory remains approximately straight over the radiation formation length, at

least for the considered domain of frequencies (i.e. lower frequencies will, inevitably, require

a non-perturbative treatment). In the non-relativistic limit, the formation length is ∼ k−1.
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This must be less than, or comparable to, the magnetic correlation length, λB. With the

characteristic frequency, ωjn, this length is ∼ λB/β. Consequently, as long as the particle

velocity is not arbitrary small, the perturbative approach will be valid; if αλ is, indeed, small.

By way of numerical simulation, we demonstrated that this condition holds as long as ρ > 1

(i.e. the turbulence is sub-Larmor in scale).

Concerning our realization of Langmuir turbulence, it is noteworthy that the χ � 1

condition may not be physically realizable, since Landau damping would likely eliminate

wave-modes at sub-skin-depth spatial scales too quickly (Teraki & Takahara, 2014). With

the field variability time-scales of comparable order to the electric correlation length transit

time, it may be necessary to consider the rms electric field as a function of time. Thus, a

more realistic model may require a time-dependent pitch-angle diffusion coefficient.

10.3 Plasma Dispersion and Pseudo-Cyclotron Radiation

The fact that plasma dispersion may play a significant role in the non-relativistic limit should

be thoroughly considered. The plasma dispersion effect is only important for frequencies

ω � γeωpe – below which, suppression of relativistic beaming (due to the Razin effect)

occurs (Jackson, 1998; Rybicki & Lightman, 1986). Electron driven Weibel-like turbulence

occurs on a very small-scale, with λB ∼ de. Consequently, in the ultra-relativistic regime,

the jitter frequency is many orders of magnitude larger than the plasma frequency – by a

factor ∼ γ2
e .

However, in the non-relativistic and trans-relativistic regimes, dispersion can play a con-

siderable role. This will especially be so for β � 1. In this case, a considerable portion of

the radiation spectrum may fall below ωpe, and thus be unobservable.

Furthermore, via subsequent non-linear evolution, the electron-generated Weibel mag-

netic fields may grow to larger spatial-scales – including the ion skin-depth. Additionally,

the Weibel fields may “seed” the growth of further MHD turbulence via a process of inverse-
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cascade – once more, residing at larger spatial-scales. Thus, in the non-relativistic regime,

the jitter radiation spectrum may be effectively screened out when the turbulent magnetic

fields predominantly exist at scales much larger than the electron skin-depth. Consequently,

non-relativistic jitter radiation, as a diagnostic of Weibel turbulence, may have a limited

applicability.

Nonetheless, kinetic instabilities in magnetized plasma can produce turbulent magnetic

spectra at the appropriate length scales as well. Anisotropic whistler turbulence may provide

a promising candidate – which is why we have selected it for a detailed study. In fact, the cold

collisionless Whistler spectrum (perpendicular to the mean magnetic field) may be rather

broadband – a (stationary) piece-wise set of power-laws extending to scales much smaller

than the electron skin-depth (Saito et al., 2010).

Lastly, the effect of quasi-collisions, in principle, should be included in the plasma disper-

sion relation for jitter radiation as well. However, this would amount to be a second-order cor-

rection to the jitter perturbation theory, since the jitter radiation-producing electrons would,

themselves, be the particles that attenuate the “jitter radiation fields”. Self-consistency with

the perturbation theory requires that only first-order corrections to the electron trajectories

must suffice to account for their accelerations. Hence, any “second-order” corrections by the

introduction of radiation fields of other particles would be negligibly small.

Furthermore, if these radiation fields were strong enough to significantly affect the tra-

jectories of the electrons, then the assumption that radiative cooling may be ignored would

also fail – since the energy contained in the “jitter fields” would necessarily be comparable

to each electron’s kinetic energy.
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10.4 Small-Scale Whistler/Langmuir Turbulence and “Cold”

Plasmas

Our model implicitly considered a scenario whereby a turbulent magnetic field was generated

in a cold, magnetized, background plasma. We then imagined the existence of a “hot”

population of sub-Larmor-scale electrons that served as our test particles. We suggested that

the motion of high-energy, supra-thermal, “super-Halo” electrons through the magnetized

solar wind is a promising candidate for the physical realization of our model. Indeed, despite

the fact that this population only accounts for a small fraction of a percent of the solar wind,

its high energy (2− 20 keV ) makes it very significant (Wang et al., 2015; Yoon, 2015).

Additionally, the super-Halo population is largely insenstive to solar activity, and it is

likely constantly present in the interplanetary plasma (Wang et al., 2015) – thus, it is a

relatively fixed source of high-energy particles. In fact, recent work has suggested that the

super-Halo electrons may mediate Weibel-like instabilities in the solar wind plasma – facili-

tating the development of Kinetic-Alfvén wave (KAW) and/or Whistler-mode turbulence at

sub-electron spatial scales (Che et al., 2014).

The nature of this wave turbulence, in the solar wind plasma, is a matter of contention.

Conflicting accounts implicate either KAW or Whistler-modes (or both) (Mithaiwala et al.,

2012; Salem et al., 2012). A number of reasons for this ambiguity have been given. For

example, in situ measurements of these waves must be done in the spacecraft frame – which

is usually moving at super-Alfvènic speeds with respect to the plasma (Salem et al., 2012).

Furthermore, the solar wind hosts a permanent source of turbulence; hence, many results

implicating Whistler waves – via, for example, the observed power spectrum – may be the

erroneous signature of the, ever present, background turbulence (Lacombe et al., 2014).

However, a more detailed analysis of the turbulent spectrum may provide a means by

which Whistlers and KAW may be distinguished. In fact, the degree of anisotropy has been

found to significantly differ between the two types of wave turbulence (Salem et al., 2012).
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With regard to our model, the presence of anisotropy will result in diffusion coefficients that

differ perpendicular and parallel to the anisotropy axis (which is typically the direction of

the ambient magnetic field), since the correlation lengths will depend upon the structure of

the correlation tensor.

Hence, we may imagine that the transport properties of “hot” electrons (e.g. sub-

Larmor-scale, super-Halo electrons) may be different for Whistler-mode and KAW turbu-

lence. The radiation spectrum would, additionally, distinguish these forms of turbulence –

as the anisotropy, which features into the field correlation tensor, would alter the shape of

the radiation spectrum in a characteristic way.

Other cases where this work is of great interest include the upstream of collisionless shocks

in astrophysical and interplanetary systems. The “hot” population, in this case, would be

Cosmic Rays (CRs) – which are both non-relativistic and relativistic in astrophysical systems.

Relativistic CRs are radiatively efficient and radiation from them is observed in supernova

remnant shocks (Tycho, Chandra, 1003, etc) pulsar wind nebulae, termination shocks, GRBs

(internal and reverse shocks, if the ejecta is magnetized) and GRB remnants. In the latter

case, the external shock may become weak and non-relativistic. Consequently, the ambient

interstellar field may become significant, and Whistler-like instabilities may develop from an

initial Weibel “seed”.

Concerning Whistler turbulence and our energy diffusion coefficient, our model’s princi-

pal limitation is the essential assumption of the “cold” plasma approximation. In many cases,

thermal effects must be accounted for; i.e. the plasma “beta” is non-negligible. Nonetheless,

under certain conditions, the underlying plasma may be considered “cold”. As an example,

the plasma outflow in ultrarelativistic “collisionless” shocks is beam-like, with very little dis-

persion; this permits a cold plasma treatment (Lemoine & Pelletier, 2010). Therefore, since

these shocks may be mediated in part by small-scale Whistler-modes, our rough estimates

concerning the diffusive transport of electrons may provide some insight into the process of

shock acceleration.
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10.5 Quasi-collisions in Real Plasmas

In Chapter 7, we once more consideredWeibel-like turbulence as the ideal candidate for quasi-

collisionality. Nonetheless, strong Weibel-like magnetic fluctuations are not likely present in

all collisionless or weakly collisional plasmas. Of course, the leading candidates for the

existence of strong fluctuations include: collisionless shocks in gamma-ray bursts and early

moments of supernova explosions, high-intensity laser plasmas, and turbulent solar wind and

magnetosphere/magnetotail plasmas.

Our principal assumption that the wave packet spatial scale is much greater than the

small-scale magnetic correlation length, however, seems to rule out most interstellar and

intergalactic plasmas, where the magnetic correlation lengths are believed to be ∼ 100 pc

and ∼ kpc − Mpc, respectively (Beck & Grave, 1987; Neronov et al., 2013). Allowing

for hidden small-scale components (with smaller correlation lengths) in these environments

requires unrealistically large magnetic fields to keep the absorption e-folding distance at

parsec to kiloparsec scales; this is required so that a signal may not be completely absorbed

in transit.

Finally, we argued in Chapter 8 that plasmas with high-frequency, small-scale, ion-

acoustic turbulence – where Te � Ti – offer the most likely environment in which electrically-

induced quasi-collisional effects may be physically realized. Supernova remant (SNR) shocks,

for example, may host ion-acoustic instabilities that may drive the required strong, turbulent

fluctuations (Dieckmann et al., 2000). Acoustic modes have, additionally, been implicated in

the phenomenon of pulsar eclipsing, and astrophysical accretion flows where Ti 6= Te (Luo &

Chian, 1997). Thus, a number of astrophysical environments may be favorable candidates.

However, owing to the high “collisional” absorption that accompanies high quasi-collisionality,

the Faraday signature of these plasmas may be completely obscured. For this reason, space

and laboratory plasmas may be better suited for the direct observation of this unique sig-

nature. Laser-plasmas, specifically, are an attractive candidate – since sufficiently intense

laser pulses can quickly heat an electron population and separate it from an ion background.
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Such a plasma configuration is especially susceptible to ion-acoustic instabilities.

10.6 Jitter Radiation and Laser-Plasmas

In Chapter 9, in order to produce results, we had to make a number of assumptions. The

most important of these concerns isotropy – both in the magnetic turbulence and the emis-

sion of radiation. The turbulent magnetic fields produced by Weibel-like instabilities are

typically characterized by anisotropy. This is because the distribution function of particles

that produce Weibel fields is, itself, anisotropic. Thus, our assumption that an isotropic

Maxwell-Boltzmann distribution, with a given “effective” temperature for the entire plasma,

is not likely to hold on initial time-scales.

Similarly, our assumption that the magnetic turbulence is statistically homogeneous –

i.e. characterized by a single spectral distribution throughout the plasma – is suspect. The

correlation length throughout the plasma is likely, itself, a function of the electron density.

For this reason, there may be regions within the solid target where the magnetic field is not

sub-Larmor-scale; hence, the small-angle jitter prescription fails there.

Nevertheless, we believe our model is reasonable. Our model illustrates two key features

that we expect will be present in real lab experiments. First, the Weibler spectrum peaks

near the frequency, ωjn = γ2
ekminβc, where kmin is the characteristic wave-number of the

magnetic turbulence. Thus, we may directly extract the correlation length, λB ∼ k−1
min, from

the radiation spectrum. Lastly, the jitter spectrum takes a sharp drop near the second break,

ωbn = γ2
ekmaxβc. Similarly, kmax denotes the minimum spatial scale. Although this feature

may be concealed by the Bremss. component, we may extract it by subtracting the predicted

Bremss. spectrum.

It is worthwhile to note that the scale of the magnetic field is dictated by the electrons

in these solid-density plasma experiments. In contrast, the Weibel instability in (laser ab-

lated) plasma flows is mediated by the ions. Consequently, the spatial scale of these Weibel
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magnetic fields will be on the order of the ion skin-depth. For this reason, these magnetic

fields will not be sub-Larmor-scale with respect to the electrons; thus, the electrons will not

emit radiation in the small-deflection jitter regime. Therefore, the magnetic fields are not

so easily identifiable by the internal radiation production of the plasma electrons. Rather,

proton-radiography or Thomson scattering, via the injection of external particles, is the

prescribed diagnostic tool (Huntington et al., 2015; Sakawa et al., 2013).

In principle, the sub-Larmor-scale ions should emit jitter radiation, but this will be

orders of magnitude less intense (because of their higher mass) than the radiation produced

by electrons via alternative radiation mechanisms. In addition, plasma dispersion would

certainly screen out any ion jitter radiation, since the characteristic emission frequencies

will be well below the electron plasma cutoff frequency. Thus, we do not anticipate that our

results will be immediately applicable to the laser setups, such as NIF and OMEGA/OMEGA

EP, as they stand currently. These experiments would, rather, likely require a modification

of the setup to realize the creation of a solid-density plasma.

10.7 Future Studies

Small-scale electromagnetic turbulence is a rich phenomenon that plays an important role

in many plasma environments. Second, there is still much to learn about plasma physics at

these smallest scales. In this work, we have shed considerable light upon the matter of sub-

Larmor-scale magnetic fields. Nonetheless, a more general treatment may prove necessary

to answer some of physical questions that spurred interest in small-scale turbulence.

Astrophysical plasmas, for example, contain a number of spatial/temporal scales. In-

cluded in these settings are “cold”, “thermal”, and relativistic plasmas. Thus, their complete

kinetic treatment must appeal to this larger picture. Only then will be able to definitively

answer questions, such as, “how do small-scale fields precisely affect the Fermi accelera-

tion prescription for collisionless shocks?”. Or, “can we observe the signature of small-scale
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turbulence in the Faraday rotation measures of interplanetary, interstellar, and/or cosmic

magnetic fields?”.

Similarly, as the existence of “Superhalo” electrons demonstrates, the mixing of scales is

very important to some solar system plasmas, as well. It is possible that small-scale effects

may be important for solar plasma turbulence. It is likely, however, that these effects reside

on ion, rather than electron, scales.

Some important questions concerning, specifically, laboratory plasma experiments re-

main. Perhaps the most significant one is this: “do small-scale field effects impact ICF

experiments?”. “Do they potentially inhibit, or promote, ignition?” Only a detailed study

may provide any conclusive resolution.

10.8 Final Remarks

In short, despite a number of physical limitations, the results obtained here reveal strong

inter-relation of transport and radiative properties of plasmas turbulent at small spatial

scales – which may be readily exploited for plasma diagnostics. Furthermore, concealed in

this turbulence is a “collisional” signature, which may provide a useful radiative diagnostic of

magnetic micro-turbulence in laboratory, astrophysical, space and solar plasmas, as well as

significantly affect performance of inertial confinement fusion and laser plasma experiments.
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Appendix A

The Spectral Tail

As can be seen in Figure 6.2 and Figure 6.5, there is additional structure to the radiation

spectra beyond the break frequency, ∼ γ2kmaxv. This feature is, in fact, a numerical artifact

that is magnified by the use of a log-log plot. Here we have plotted Figure 6.2 on a linear

scale, and have normalized the frequency axis by the spectral break frequency ωbn = γ2kmaxv.
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Figure A.1: Radiation spectra of Figure 6.2, with linear abscissa. We see that the power
spectrum quickly approaches zero around the “break” frequency, γ2kmaxv – in accord with
Eq. (6.20). This numerical approach to zero, since it is not instantaneous, appears readily
in a log-log plot which magnifies features on an orders of magnitude scale.
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Appendix B

Interpolation of the Magnetic Field

One might consider the importance of using a divergenceless set of interpolants for the

magnetic field. In Figure B.1, we show a spectrum obtained via the divergenceless radial-

basis interpolants of Eq. (4.2) with a spectrum obtained using a simple, non-divergenceless,

trilinear interpolation of the magnetic field. For small frequencies, there is little disagreement

between the two spectra. However, as the curves approach the break frequency ωbn =

γ2kmaxv, considerable deviation between the trilinear and radial basis interpolants occurs.

In our previous work on the relativistic small-angle jitter regime (Keenan & Medvedev, 2013),

little deviation in these spectra was observed in our test runs. One possible explanation is

that, since the particle velocities were ∼ c, the total distance traveled by a particle in one

time step was ∆x ∼ c∆t. The spacing between lattice points is, typically, within an order

of c∆t. In this case, the interpolant should not play an important role in determining the

particle trajectories. If, however, v is much less than c, then the difference may be significant.

In Figure B.1, v = 0.125c, thus ∆x ∼ 0.125c∆t (an order of magnitude smaller). In this

case, frequencies in the radiation spectrum at scales comparable to the grid resolution (i.e.

large k’s) will suffer the most from this deviation.
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Figure B.1: Radiation spectra given two different interpolations of the magnetic field and a
“continuous” field. Relevant parameters are v = 0.125c, ρ = 24.7, Np = 2000 (for a complete
listing, see Table 6.1). The number of wave modes employed to produce the “continuous”
magnetic field was Nm = 10000. For small frequencies, there is little deviation between
the spectra. It is only near the “break” frequency (i.e. ωbn = γ2kmaxv) that the three differ
considerably. Both of the interpolation derived spectra largely deviate from the analytical
solution at the high frequency end; however, the “continuous” field derived spectrum differs
noticeably only at the outermost frequencies. Whether or not this deviation is solely to
blame on the quality of the interpolant or the discrete nature of lattice derived field, has let
to be determined. At any rate, both interpolants fail to preserve the slope of the spectra up
to ωbn, and there is considerable difference between the divergence-free and trilinear cases.

Another question worth addressing is the influence of the discrete implementation of

the magnetic field on the spectral shape. Recall that the random magnetic field is initially

generated on a lattice in k-space, after which it is subsequently transformed by FFT to real

space. The interpolation is then applied on the lattice of points. Due to memory limitations,

the lattice dimensions are limited to ∼ 5003; this can be a very severe limitation on the
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spatial resolution of the magnetic field.

In Figure B.1, we also included a radiation spectrum obtained by electrons moving in the

“continuous” magnetic field (with, otherwise, identical properties). Evidently, the “continu-

ous” field derived spectrum closely matches the analytical solution, Eq. (6.20) – preserving

the high-frequency end better than the interpolation derived spectra.
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Appendix C

The Effect of Plasma Dispersion on the

Radiation Spectra

As mentioned previously, inclusion of plasma dispersion changes the non-relativistic radiation

spectrum to
d2W

dω dη
=

e2

4π2c3

√
ε(ω) |wω|2 sin2Θ, (C.1)

where ε(ω) = 1 − ω2
pe/ω

2, is the plasma scalar permittivity. Since this amounts to a multi-

plicative factor, the jitter spectrum Eq. (6.20) will be modified simply by an extra frequency-

dependent coefficient. The effect will, however, further complicate the relativistic regime.

Fortunately, a Lorentz transformation can be applied, once more, to obtain the relativistic

spectrum.

Consider a relativistic electron moving with velocity β in the (unprimed) plasma rest

frame. In this frame, the plasma frequency is ωpe; additionally, the index of refraction is

n ≡
√
ε. Conversely, the electron rest frame will be the site of a plasma in motion, with

velocity −β. In this frame, ω′pe = ωpe/
√
γ. In a plasma medium, the radiation spectra are

connected by the generalized relation

1

nω2

d2W

dωdη
=

1

n′ω′2
d2W ′

dω′dη′
, (C.2)
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where n′ is the index of refraction in the electron rest frame. Via Lorentz transformation, n′

is (?)

n′
2 − 1 = (ω/ω′)2(n2 − 1), (C.3)

from which one may obtain the generalization of the relativistic Doppler effect

ω′ = γω(1−N · β), (C.4)

where N ≡ nn̂. Using the reverse transformation, i.e. prime↔ unprimed and β → −β, the

angle cosines are related by

cosθ′ =
ncosθ − β

n′(1− nβcosθ)
. (C.5)

Using these results, along with Eqs. (6.35) and (6.36), the dispersion corrected relativistic

jitter spectrum becomes

dW

dω
=

3n

8γ2

ˆ 1

−1

dx

[
1

(1− nβx)2
+

(nx− β)2

n′2(1− nβx)4

]
I(ω0), (C.6)

with ω0 ≡ ω(1− nβx) and

n′ =

√
n2 − 1 + γ2(1− nβx)2

γ(1− nβx)
. (C.7)

Next, the numerical spectrum is obtained from the generalizations of Eqs. (4.3) and (4.4)

d2W

dω dη
=
√
ε(ω)

e2

4π2c

∣∣∣∣ˆ ∞
−∞

Ak(t)eiωt dt

∣∣∣∣2 , (C.8)

where

Ak(t) ≡ n̂× [(n̂− β)× β̇]

(1−
√
ε(ω)n̂ · β)2

e−i
√
ε(ω)k·r(t). (C.9)

In Figure C.1, we consider a β = 0.5 electron moving through a plasma medium with

a plasma frequency ωpe = kminc/10. The plot includes the equivalent dispersion-free jitter
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spectrum, along with the analytical spectrum, from Eq. (C.6), and a spectrum obtained

numerically. The numerical spectrum was produced given magnetic turbulence prescribed

by the model described in Appendix B. Since the wave number becomes imaginary when

ω < ωpe, we have set a cut-off for frequencies below the plasma frequency. From the plot,

we see that the spectrum differs largely from the dispersion-free equivalent for frequencies

near ωpe. However, as anticipated, the high-frequency end is largely unaffected.
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Figure C.1: Numerical radiation spectrum given a β = 0.5 electron moving through sub-
Larmor-scale magnetic turbulence in a dispersive plasma (“thick”, blue), superimposed with
the analytical spectrum from Eq. (C.6) (“dashed”, red) and the “dispersion-free” spectrum
(“long-short dash”, black). For these runs, µ = 4, ρ = 14.2, and ωpe = kminc/10 (see Table
6.1 for a complete listing of simulation parameters). All spectra are normalized to their
respective maximum values. As can be readily seen, the high-frequency end remains largely
unchanged by the inclusion of plasma dispersion.
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Figure C.2: Radiation spectra, identical to Figure C.1, with the exception that ωpe = kminc.
With ωpe ∼ ωjn, the dispersion plays a more prominent role. Nonetheless, the overall shape
of the spectrum is unaffected.

However, as can be seen in Figure C.2, the spectrum is altered in a more dramatic

way when ωpe = kminc. The low-frequency end remains distinctly concave, but now the

high-frequency end is shifted to the right. The overall shape of the spectrum, nevertheless,

remains the same.
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Figure C.3: Dispersion adjusted analytical radiation spectrum for a γ = 50 electron. Rele-
vant parameters are ρ = 153.4 and µ = 5. Two power laws appear. The ω2 (“long-three-dash”,
red) power law, which extends up to ω ∼ γωpe, is a consequence of the Razin effect. Addi-
tionally, we have included ω−µ+2 (“long-two-dash” blue) on the right. As expected from Eq.
(6.3), the high-frequency end is a power law, with a very steep drop beyond ωbn ≈ ωb.

As a final test of Eq. (C.6), we consider an extreme relativistic case, γ = 50. The

ultra-relativistic jitter spectrum, with plasma dispersion included, contains an additional ω2

asymptote at low-frequencies (a hint of this was seen in the previous, trans-relativistic, plots).

In Figure C.3, we see the emergence of this low-frequency asymptote. Additionally, we see

that the jitter spectrum falls off dramatically for frequencies beyond ωjn = γ2kmaxv ≈ γ2kmaxc

– hence, the correspondence to the ultra-relativistic hard cut-off at ωb, from Eq. (6.3), is

made apparent.
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