
REGULATION OF DENDRITIC SPINES BY 5-HT2A RECEPTOR SIGNALING 

PATHWAYS 

By 

Zhen Mi 

 

Submitted to the graduate degree program in Pharmacology and Toxicology and the 

Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy. 

 

 

 

________________________________        

     Nancy A. Muma, Ph.D., Chairperson       

 

________________________________        

Marco Bortolato, M.D., Ph.D. 

 

________________________________        

Xinkun Wang, Ph.D. 

 

________________________________        

Erik A. Lundquist, Ph.D. 

 

________________________________  

Qian Li, Ph.D. 

  

 

Date Defended: September 4th 2015 

  



ii 
 

 

 

 

The Dissertation Committee for Zhen Mi 

certifies that this is the approved version of the following dissertation: 

 

 

 

REGULATION OF DENDRITIC SPINES BY 5-HT2A RECEPTOR SIGNALING 

PATHWAYS 

 

 

 

 

 

 

 

 

 

 

 

 

 

      ________________________________ 

Nancy A. Muma, Ph.D., Chairperson 

 

       

Date approved: 09-04-2015 



iii 
 

ABSTRACT 

Dendritic spines are small membranous protrusions from the dendrites of neuron, 

which are thought to serve as basic units of synaptic transmission, learning and memory. 

Disruptions in dendritic spine shape, size or number are associated with many brain 

diseases. Mounting evidence suggests that serotonin 2A (5-HT2A) receptors, the most 

abundant serotonin receptors in the prefrontal cortex, are involved in the regulation of 

dendritic spines. It has been suggested that both agonists (such as DOI) and antagonists 

(such as atypical antipsychotics) of 5-HT2A receptors can modulate different aspects of 

dendritic spines, however, the underlying mechanisms still remains unknown. In this 

dissertation, mechanisms underlying regulation of dendritic spines by both agonists and 

antagonists of 5-HT2A receptors are extensively studied and presented. I hypothesize that 

5-HT2A receptor agonist regulate dendritic spines via transglutaminase- (TGase) 

catalyzed serotonylation of small G protein of the Rho family, whereas atypical 

antipsychotics change dendritic spines via activation of the Janus Kinase 2 (JAK2) 

signaling pathway. 

In the first study, the mechanisms and the functional consequences of 5-HT2A 

receptor-induced serotonylation of small G proteins of the Rho family were investigated 

in primary rat cortical neurons. Stimulation of 5-HT2A/2C receptors caused TGase-

mediated transamidation and activation of Rac1 and Cdc42, but not RhoA, in both 

A1A1v cells and rat primary cortical culture. DOI-induced Rac1 transamidation occurs at 

Q61 in A1A1v cells, as demonstrated by site-directed mutagenesis at Q61 of Rac1. 

Furthermore, our findings were extended from 5-HT2A/2C receptors to another Gαq/11-

coupled receptor, muscarinic acetylcholine receptors. In addition, stimulation of 5-
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HT2A/2C receptors by DOI leads to a transient dendritic spine enlargement, which was 

blocked by TGase inhibitor cystamine, suggesting 5-HT2A/2C receptors-induced 

transamidation of Rac1 and Cdc42 is involved in the regulation of dendritic spines by 5-

HT2A/2C receptors. 

In the second study, to study the role of JAK2/ STAT pathway in the regulation of 

dendritic spines, Sprague-Dawley rats were pretreated with the JAK2 inhibitor AG490 or 

vehicle, followed by administration with olanzapine or vehicle daily for seven days. 

Microarray analysis of prefrontal cortices showed that 205 genes were significantly 

changed by AG490, olanzapine or the combination of both drugs compared to the 

controls. 92 of the 205 genes are changed by olanzapine via JAK2 signaling pathway. 

These genes are involved in the etiology of schizophrenia, neuronal signal transduction, 

neuronal growth factor, metabolism and energy, and synaptic plasticity. mRNA and 

protein levels of these genes were verified using real-time qPCR, western blot and the 

enzyme-linked immunosorbent assay (ELISA). Investigation on dendritic morphology 

shows that treatment with olanzapine induced a maturation in dendritic spines via both 

JAK2 dependent and independent pathways.  

 

 

 

 

  



v 
 

ACKNOWLEDGEMENTS 

First, I would like to express my deepest appreciation to my mentor, Dr. Nancy 

Muma, for her guidance and persistent help throughout my graduate career. Her scientific 

talent, enduring encouragement, and practical advice have always been an invaluable 

source of support for me during this process. I would also like to thank my unofficial 

advisor, Dr. Qian Li, who trained me on laboratory skills, taught me the importance of 

precision, and fed me with delicious Chinese food. I would like to extend my thanks to 

my committee members for their time and support, especially Dr. Xinkun Wang for his 

contribution to the microarray studies. 

I would like to thank the help of many faculties who have passed on their 

knowledge to me and supported me during the graduate studies. I appreciated the 

tremendous support from my former and current colleagues during my graduate studies. I 

would like to thank Dr. Carrie McAllister for her technical support and companionship. 

And my friendship with Dr. Mengxi Sun and Dr. Jiacheng Ma have sustained me 

throughout my graduate career.  

Lastly, I would to thank my parents, who always support me and believe in me. 

Studying abroad is a challenging journey not only for me, but also for my parents who 

are thousands of miles away. I am grateful to their constant love and inspiration.  

This work was supported by funding from the National Institute of Mental Health 

(R01 MH06812 to NAM). 

 

 



vi 
 

TABLE OF CONTENTS 

ABSTRACT III 

ACKNOWLEDGEMENTS V 

TABLE OF CONTENTS VI 

LIST OF FIGURES AND TABLES VIII 

LIST OF ABBREVIATIONS IX 

CHAPTER ONE: INTRODUCTION 1 

DENDRITIC SPINES 1 

STRUCTURE 1 

SIGNALING 4 

PATHOLOGY 6 

SEROTONIN 7 

SEROTONIN RECEPTORS 8 

5-HT2A RECEPTOR 10 

SEROTONYLATION AND MONOAMINYLATION 13 

TRANSGLUTAMINASE, ENZYMES CATALYZING SEROTONYLATION AND MONOAMINYLATION

 13 

REGULATORY MECHANISMS OF TGASES 15 

TGASE-CATALYZED SEROTONYLATION AND MONOAMINYLATION 16 

SMALL G PROTEINS OF THE RHO FAMILY 17 

BIOLOGICAL FUNCTIONS OF SMALL G PROTEINS OF RHO FAMILY 18 

STRUCTURE OF RAC1 19 

JAK/STAT SIGNALING PATHWAY AND 5-HT2A RECEPTORS 20 

ATYPICAL ANTIPSYCHOTICS 22 

MEDICAL USES AND ADVERSE EFFECTS 22 

RECEPTOR BINDING PROFILE 23 

STATEMENT OF PURPOSE 24 

CHAPTER TWO 28 

5-HT2A/2C RECEPTOR-MEDIATED TRANSAMIDATION OF RAC1 AND 

CDC42 IS INVOLVED IN THE REGULATION OF DENDRITIC SPINES 28 



vii 
 

ABSTRACT 28 

INTRODUCTION 29 

METHODS 32 

RESULTS 38 

DISCUSSION 46 

FIGURES AND FIGURE LEGENDS 51 

CHAPTER THREE 65 

OLANZAPINE TREATMENT ALTERS EXPRESSION OF GENES AND 

DENDRITIC SPINE MATURATION IN BOTH A JAK2-DEPENDENT AND 

INDEPENDENT PATHWAY 65 

ABSTRACT 65 

INTRODUCTION 66 

METHODS 69 

RESULTS 76 

DISCUSSION 81 

FIGURES AND FIGURE LEGENDS 89 

CHAPTER FOUR: GENERAL CONCLUSION 102 

SUMMARY OF RESULTS AND SIGNIFICANCE 102 

LIMITATIONS OF THE PRESENT STUDIES 105 

FUTURE STUDIES 107 

CONCLUSIONS 111 

LITERATURE CITED 115 

 

  



viii 
 

LIST OF FIGURES AND TABLES 

 

Figure 2. 1 52 

Figure 2. 2 55 

Figure 2. 3 56 

Figure 2. 4 58 

Figure 2. 5 59 

Figure 2. 6 61 

Figure 2. 7 63 

 

Figure 3. 1 91 

Figure 3. 2 93 

Figure 3. 3 96 

Figure 3. 4 97 

Figure 3. 5 99 

 

Figure 4. 1 113 

 

Table 3. 1 73 

Table 3. 2 90 

 

Table 4. 1 112 

file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149515
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149516
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149517
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149519
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149520
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149543
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149546
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149547
file:///C:/Users/Zhen/Desktop/manuscript/Zhen%20Mi%20Dissertation.docx%23_Toc428149636


ix 
 

LIST OF ABBREVIATIONS 

 

5-HT serotonin 

AD Alzheimer’s disease  

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

ANOVA analysis of variance 

Arc  activity-regulated cytoskeleton-associated protein 

ARF1 ADP-ribosylation 1  

ASD autism spectrum disorder  

CaMK Ca2+/calmodulin-dependent protein kinase 

Cartpt CART prepropeptide 

Cbln1 cerebellin 1 precursor 

Cbp  CREB binding protein 

Cdc42 cell division cycle 42  

Cdc42se2 CDC42 small effector 2 

CDD conserved domain database  

CNS central nervous system  

Crh  corticotropin releasing hormone 

DA dopamine 

DAG 1,2-diacylglycerol  

Dcx doublecortin 

DIV day in vitro 



x 
 

DOI 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl 

Drd1a dopamine receptor D1A 

ELISA enzyme-linked immunosorbent assay  

EPS extrapyramidal symptoms  

ER endoplasmic reticulum  

Fabp7  fatty acid binding protein 7, brain 

Filip1 filamin A interacting protein 1 

G protein guanine nucleotide-binding protein 

Gabrg1  GABA-A receptor, gamma 1 

GAP GTPase activating proteins 

GDI GDP dissociation inhibitors  

GEF guanine nucleotide exchange factor 

GO gene ontology  

GPCR G protein-coupled receptor 

Grik4 glutamate receptor, ionotropic, kainate 4 

Grp gastrin releasing peptide 

GST glutathione transferase  

HA histamine 

Homer1 homer homolog 1 

Hspa1a/1b heat shock 70kD protein 1A/1B 

Htr2c serotonin receptor 2C 

IOD integrated optical density 

IP3 inositol-1, 4, 5-triphosphate  



xi 
 

JAK2 Janus kinase 2 

LTD long-term depression  

LTP long-term potentiation  

mDia mammalian Diaphanous formin  

NA noradrenaline 

Nav2  neuron navigator 2 

Nfasc neurofascin 

NMDA N-methyl-D-aspartic acid  

Nr4a1  nuclear receptor subfamily 4, group A, member 1 

Nrg1 neuregulin 1 

Ntrk2 neurotrophic tyrosine kinase  receptor type 2 

Nts neurotensin 

PAK p21-activated kinase  

Pak1ip1 PAK1 interacting protein 1 

Pde10a  phosphodiesterase 10A 

PIP2 phosphatidylinositol 4,5-bisphosphate 

PKC protein kinase C 

PLA2 phospholipase A2  

PLC phospholipase C 

PLD phospholipase D 

PNS the peripheral nervous system  

PSD postsynaptic density  

PVN hypothalamic paraventricular nucleus 



xii 
 

Rac1 Ras-related C3 botulinum toxin substrate 1  

Rasal1  RAS protein activator like 1 (GAP1 like) 

Rasgef1c RasGEF domain family, member 1C 

Reln reelin 

RGS regulator of G protein signaling 

RhoA Ras homolog A 

Rich2 Cdc-42-interacting protein 4 homolog 2 

ROCK Rho-associated coiled-coil kinase1/2  

SA spine apparatus  

SEM standard error of the mean  

SERCA sarco/endoplasmic reticulum Ca2+ ATPase  

SERT serotonin transporter  

siRNA small interfering RNA 

SSRI selective serotonin reuptake inhibitor 

STAT signal transducer and activator of transcription  

TGase transglutaminase 

WT wild type 

 

 

 

 



1 
 

CHAPTER ONE: INTRODUCTION 

DENDRITIC SPINES 

Structure 

Dendritic spines are small membranous protrusions from dendrites that receive 

input from presynaptic axons. Human brain contains more than 1013 dendritic spines 

(Nimchinsky et al, 2002). More than 90% of excitatory synapses are located on spines, 

which contain neurotransmitter receptors, organelles, scaffolding proteins and other 

signaling systems mediating synaptic morphology and functional plasticity, and 

ultimately learning and memory. Spines are thought to serve as basic units of learning 

and memory, disruption of which is associated with many brain diseases. It has been a 

century since dendritic spines were described for the first time on Purkinje cell dendrites, 

however, we have just started to appreciate their complexity and functions.  

As a structure specialized for synaptic transmission, dendritic spines typically 

consist of a head (volume from 0.001–1µm3) connected to dendritic shaft by a thin neck 

(length from 0.5-2µm), which restrains the diffusion of cytoplasmic and membrane 

molecules in and out of the spine head. Dendritic spines are rich in actin but not 

microtubules or intermediate filaments. The change in spine morphology is driven by the 

remodeling of β- and γ- actin, the main isoforms of actin present in neurons (Matus et al, 

1982).  

Spine organelles  

A subpopulation of spines (half of spines on hippocampal CA1 cells and almost 

all spines on Purkinje cells) contains a specialized form of smooth endoplasmic reticulum 
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(SER), referred as the spine apparatus (SA) (Gray and Guillery, 1963; Spacek and Harris, 

1997). Large spines with a perforated synapse are more likely to contain SA than small 

spines. Classical SA consists of two or more stacked flat saccules derived from the SER 

in the dendritic shaft. The larger the synapse, the more saccules present. SA contains a 

variety of substances that are essential for synaptic functions, including Ca2+, actin, 

MAP2 kinase, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA pumps) and inositol 

1,4,5-triphospate 3 (IP3) kinase (Sabatini et al, 2002). Even though the function of the 

SA is not understood completely, several lines of evidence suggest that the SA has 

distinct functions. Notably, SA plays a role in Ca2+ buffering (sequestering and 

releasing) within the spine compartment (Sabatini et al, 2002). SA contains IP3 receptors 

and ryanodine receptors. Neurotransmitters causing increased IP3 levels inside the spines 

therefore can trigger Ca2+ release from the SER of SA (Andrews et al, 1988). Rapid 

large-amplitude of Ca2+ signals have been reported to underlie the dendritic spine 

plasticity (Nimchinsky et al, 2002). Consequently, the ability of SA to release Ca2+ into 

the cytosol is thought to be involved in the development of spine plasticity. In addition, 

SA is also involved in spine protein synthesis and post-translational protein processing. 

Another very important organelle in spines is the postsynaptic density (PSD), 

which is a collection of membrane-attached signal processing molecules including 

receptors, cytoskeletal proteins and associated signaling molecules (Peters and Palay, 

1991). The PSD was originally identified by electron microscopy as an electron-dense 

region in close apposition to the active zone of the synapse. The sizes of PSDs vary from 

250nm to 500nm in diameter and from 25nm to 50nm in thickness(Meyer et al, 2014). 

Recent studies suggest that area of PSDs is proportional to the volume of spines and may 
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change with alterations of synaptic activity during long term potentiation. Hundreds of 

proteins have been identified in PSDs, including postsynaptic density-95 (PSD95), 

cellular adhesion proteins (Hirao et al, 1998), glutamine receptors (N-methyl-D-aspartic 

acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors) (Kornau et al, 1995; Xia et al, 2003), 5-HT2A receptors and Ca2+/calmodulin-

dependent protein kinase (CaMK) II (Peters and Palay, 1991). Number of AMPA and 

NMDA receptors per synapse is also proportional to the area of PSDs and size of spines. 

Those proteins play essential roles in the regulation synaptic signaling and development 

of plasticity. 

Spine morphology 

Dendritic spines are highly heterogeneous in shape and size, which is one of the 

most remarkable characteristics of dendritic spines, especially on pyramidal neurons. The 

most classical nomenclature segregates dendritic spines into three categories, thin spines, 

which have a small head and a narrow neck; stubby spines, which have no obvious neck 

between the head and dendritic shaft; and mushroom spines, which have a large head and 

a narrow neck. Other authors also add another category, thin and hairlike dendritic 

filopodia, which having a length that is at least twice the diameter. Besides those four 

most common spines, there are some irregular shaped spines, such as branched spines 

that may contain more than one PSD. In adult cortex and hippocampus, >65% of spines 

are thin spines and around 25% of spines are mushroom spines (Bourne and Harris, 

2007). The remaining 10% of spines are immature spines, including filopodia, stubby and 

branched spines (Bourne and Harris, 2007). Criteria for categorizing spine morphology 
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are mostly qualitative, therefore, making it difficult to compare data from different 

laboratories.  

Dendritic spines stabilize with maturation. During the first postnatal week in rats, 

nascent synapses form resulting from the interaction between filopodia and presynaptic 

axon. Then filopodia may contract and form stubby spines. During the following 

postnatal week, thin and mushroom spines emerge. Thins spines are transient and emerge 

and eliminate over days, whereas mushroom spines that can last for months (Chen et al, 

2014). Mushroom spines have larger PSDs, therefore they are more likely than thin 

spines to contain SA and thereby regulate Ca2+ handling and local protein synthesis 

(Bourne and Harris, 2007). Mushroom spines contain more AMPA receptors, which are a 

major indicator of synaptic efficacy and strength (Nimchinsky et al, 2004). On the 

contrary, thin spines have more NMDA receptors but few AMPA receptor, allowing for 

strengthening by insertion of AMPA receptors (Ganeshina et al, 2004; Matsuzaki et al, 

2001). Long-term potentiation (LTP) tends to converts thin spines into mushroom spines 

by increasing spine head size and accumulating AMPA receptors.  Long-term depression 

(LTD), on the other hand, results in depolymerization of actin and is accompanied by 

shrinkage and retraction of dendritic spines (Bourne and Harris, 2007).  These facts 

suggest that mushroom spines are more stable “memory spines”, while thin spines are 

more flexible candidate “learning spines” (Holtmaat et al, 2005). 

Signaling 

Modulation of spine morphology is dependent on actin cytoskeleton dynamics, 

which requires rapid treadmilling of actin filaments by adding monomers at one end and 

depolymerization of actin at the other end. Actin polymerization may produce the 
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mechanical force to push out the spine membrane, resulting in spine enlargement. The 

reorganization of actin also leads to morphological changes of PSD. These processes are 

regulated by a large number of signaling effectors. 

Ca2+ and CaMKII 

During LTP, stimulation of glutamate receptors results in a Ca2+ elevation in 

stimulated dendritic spines but not in adjacent spines, and this elevation lasts for only 0.1 

s (Murakoshi and Yasuda, 2012). Following the Ca2+ elevation, Ca2+ binds to 

calmodulin, and Ca2+-bound calmodulin binds and phosphorylates CaMKII, thereby 

activating CaMKII. This process occurs within 10s in the stimulated spines.  

The activity of CaMKII could persist for more than one hour (Fukunaga et al, 

1993), and has been thought to act as a mechanism to maintain LTP (Lee et al, 2009; 

Malinow et al, 1989; Mayford et al, 1995). CaMKII may in turn activate PSD95 and 

stargazin by phosphorylation, resulting in PSD disassembly and AMPA receptor 

anchoring within the PSD (Steiner et al, 2008). In addition, CaMKII can directly regulate 

actin organization based on its ability to bind to actin filaments and stabilize spine 

structure. When activated, CaMKII dissociates from actin, thereby rendering actin 

filaments destabilized (Okamoto et al, 2009).  

Small G proteins of Rho family 

In neurons, small G proteins of the Rho family are well-known regulators of 

dendritic spine morphology. Specifically, activation of RhoA causes spine loss and 

shrinkage by preventing actin polymerization, whereas Rac1 and Ccd42 activation 

increases spine density and size by promoting actin polymerization (Martino et al, 2013). 

Glutamate uncaging can transiently activate RhoA and Cdc42 rapidly within 1 min and 
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decay over 3-5 min in the simulated spines, followed by a prolonged activation lasting 

more than 30 min (Murakoshi et al, 2011). Even though the motility of RhoA and Cdc42 

are similar, they have different spatial patterns (Murakoshi and Yasuda, 2012). Active 

RhoA is able to diffuse out of spine and spread to its dendritic shafts, while activity of 

Cdc42 is restrained to the spines (Murakoshi and Yasuda, 2012). Inhibiting CaMKII 

activity leads to partial inhibition of activity of GTPases, suggesting Rho family are 

downstream of CaMKII (Lee et al, 2009). Taken together, we can now integrate 

numerous signals on multiple time scales. The initial Ca2+ signal, which last for 0.1s, is 

followed by CaMKII activation lasting for 1min. Subsequently, activation of small 

GTPase by CaMKII expands the signal to 30min, similar to the time scale of spine 

enlargement (Nimchinsky et al, 2002). 

Pathology 

Given the essential roles of dendritic spines in synaptic transmission, learning and 

memory, it is not surprising that disruptions in spine shape, size or number are associated 

with brain disorders, especially those are characterized by dysfunction in information 

processing and cognition, including Autism spectrum disorder (ASD), schizophrenia and 

Alzheimer’s disease (AD) (Penzes et al, 2013; Penzes et al, 2011). ASD is characterized 

by persistent deficits in social communication and interaction, and repetitive behavior 

patterns. One of the emerging hypotheses for ASD is hyperconnectivity in local circuits 

and hypoconnectivity between brain regions, which may be caused by spine 

dysmorphology (Geschwind and Levitt, 2007). Recent post-mortem studies showed an 

increase in spine density in cortical pyramidal neurons, and spine density was negatively 

correlated with cognitive function(Hutsler and Zhang, 2010).  Fragile X syndrome, which 
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is comorbid with ASD, also exhibits elevated spine density (Irwin et al, 2001). 

Schizophrenia is a heterogeneous disorder characterized by abnormal social behavior, 

failure to interpret reality, disrupted affect and cognition, with a typical age of onset in 

early adulthood.  Studies have shown reductions in spine density in forebrain regions in 

schizophrenic patients (Glantz and Lewis, 2000; Silva-Gomez et al, 2003). AD, the most 

common type of dementia, is an age-related disorder. One of the most consistent findings 

in AD patients is dendritic spine loss in the hippocampus and cortex, the principal areas 

affected by AD (Selkoe, 2002). Together, these findings describe the remarkable spine 

pathology associated with ASD, schizophrenia and AD. Notably, symptoms of each of 

these disorders coincide with malfunction of dendritic spines at distinct stages of life 

(Penzes et al, 2011), suggesting spine pathology may contribute to the development of 

these disorders across the lifespan. 

SEROTONIN 

Serotonin (5-HT) signaling system has been shown to regulate dendritic spines 

(Feria-Velasco et al, 2002; Hajszan et al, 2005). The 5-HT2A receptor is one of the 5-HT 

receptor subtypes that mediate the effects of 5-HT on dendritic spines (Cornea-Hebert et 

al, 2002; Peddie et al, 2008). Both agonists (such as DOI) and antagonists (such as 

atypical antipsychotics) of 5-HT2A receptors can modulate different aspects of dendritic 

spines (Critchlow et al, 2006; Jones et al, 2009; Roppongi et al, 2013; Wang and Deutch, 

2008; Yoshida et al, 2011). In this dissertation, mechanisms underlying regulation of 

dendritic spines by both agonists and antagonists of 5-HT2A receptors are extensively 

studied and presented.  
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Serotonin receptors 

As one of the most complex families of monoamine neurotransmitter receptors, 

serotonin acts on the central nervous system (CNS), the peripheral nervous system (PNS), 

and non-neuronal tissues such as platelets, gastrointestinal tract and the cardiovascular 

system (Hannon and Hoyer, 2008; Pytliak et al, 2011). In the brain, serotonin is 

synthesized in serotonergic neurons concentrated in the rostral and caudal raphe nuclei of 

the midbrain (Hornung, 2003). Projections from serotonergic neurons link the raphe 

nuclei to hypothalamus, hippocampus, amygdala, basal ganglia and cortex (Hoyer et al, 

2002; Nolte and Sundsten, 2002). These brain regions play major roles in numerous 

physiological functions, including mood, sleep, feeding, thermoregulation and sexual 

behavior (Hoyer et al, 2002; Nolte and Sundsten, 2002). Disruptions of these brain 

regions are also involved in pathological states, such as depression, anxiety and psychosis 

(Andreasen, 1997). The effects of 5-HT are mediated through 7 subfamilies (5-HT1 

receptor - 5-HT7 receptor) and at least 14 subtypes of 5-HT receptors, according to their 

ligand recognition profiles, molecular structures, and intracellular transduction 

mechanisms (Hoyer et al, 1994). Except for the 5-HT3 receptors, which are ion channel 

receptors, 5-HT receptors are G protein-coupled receptors (GPCRs) (Niesler et al, 2007).  

5-HT1 receptors are expressed on both pre-synaptic and post-synaptic terminals. 

This subfamily contains 5 members: 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E and 5-ht1F 

(Hoyer et al, 1994; Polter and Li, 2010). This subfamily preferentially couples to the 

Gαi/o family of Gα proteins, which negatively regulate adenylyl cyclase and thereby 

inhibit cAMP production (Polter and Li, 2010). Gαi/o proteins also stimulate protein 

kinase A activity, as well as induce opening of K+ channels (Raymond et al, 1999). 5-
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HT2 receptor subfamily includes 3 members: 5-HT2A, 5-HT2B, and 5-HT2C, which 

activate phospholipase C (PLC) via coupling to Gαq/11 proteins (Hoyer et al, 1994). 

5-HT3 receptor is unique among all the 5-HT receptor subtypes since it’s the only 

ionotropic receptor subtype while the rest subfamilies belong to metabotropic GPCRs 

(Kilpatrick et al, 1990). 5-HT3 receptor is permeable to Na+, K+ and Ca2+ (Costall and 

Naylor, 2004; Niesler et al, 2007). Binding of 5-HT to the 5-HT3 receptor triggers a rapid 

depolarization because of a transient inward current subsequent to the opening of 

nonselective cation channels (Costall and Naylor, 2004; Niesler et al, 2007). 

5-HT4, 5-HT6, and 5-HT7 receptors couple to Gαs proteins that stimulate 

adenylyl cyclase to increase cAMP, and activate protein kinase A. 5-HT4 receptors have 

a wide distribution including alimentary tract, urinary bladder, heart and adrenal gland as 

well as the CNS (Berger et al, 2009; Ford and Clarke, 1993). Emerging evidence 

indicates that 5-HT6 receptors are implicated in neuronal circuit formation, neuronal 

connectivity, and psychiatric relevant behaviors (Dayer et al, 2015; Woolley et al, 2004). 

5-HT7 receptors are expressed in the hippocampus, amygdala, hypothalamus and cerebral 

cortex, as well as in the gastrointestinal tract (Hoyer et al, 1994; Ruat et al, 1993). 5-HT7 

receptors play important roles in thermoregulation, circadian rhythm, learning and 

memory, mood regulation, and smooth muscle relaxation in the gastrointestinal tract 

(Lovenberg et al, 1993; Mnie-Filali et al, 2009). 

The function and signal transduction of 5-HT5 receptors (5-HT5A and 5-HT5B) 

have not been fully characterized. However, current evidence indicates that this 

subfamily displays a pharmacological profile similar to 5-HT1 receptors. 5-HT5 

receptors have been found in locus coeruleus, nucleus of the solitary tract, arcuate and 
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suprachiasmatic nuclei of the hypothalamus, regions with a wide range of physiological 

effects (Hoyer et al, 1994; Matthes et al, 1993). Therefore, ligands of 5-HT5 receptors 

can serve as potential drug candidates for various disorders such as anxiety, sleep 

disorder and pain (Roth, 1994; Volk et al, 2010). 

5-HT2A receptor 

Distribution and physiology roles 

5-HT2A receptors are widely distributed throughout CNS and peripheral tissues. 

In brain, 5-HT2A receptors have been found mainly in the cortex, claustrum, limbic 

system, olfactory nuclei and basal ganglia (Hannon and Hoyer, 2008).  In the cortex, high 

concentrations of 5-HT2A receptors have been found on GABAergic interneurons, as 

well as on apical dendrites of pyramidal cells, which are known to be glutamatergic and 

implicated in cognitive function, working memory and attention (Aghajanian and Marek, 

1997; Brady et al, 2005). In the periphery, 5-HT2A receptors are highly expressed in 

platelets, vascular smooth muscle, uterine smooth muscle, and in neurons of the 

peripheral nervous system (PNS) (Brady et al, 2005; Nagatomo et al, 2004). 

The 5-HT2A receptor is implicated in a wide variety of physiological processes. 

5-HT2A receptor mediates the effects of 5-HT on peripheral sensitization and 

hyperalgesia in inflammation and nerve injury (Sommer, 2004). 5-HT potentiates 

adenosine diphosphate or thrombin-induced platelet aggregation, which is mediated by 5-

HT2A receptors (Li et al, 1997). Direct activation of 5-HT2A receptor in hypothalamic 

paraventricular nucleus (PVN) increases the release of oxytocin, prolactin, ACTH, 

corticosterone and renin (Van de Kar et al, 2001; Zhang et al, 2002). In addition, 5-

HT2A receptor signal transduction is also involved in many pathological states including 



11 
 

stress, anxiety, depression, psychotic disorder (Graeff et al, 1996), hypertension, and 

atherosclerosis.  

Given the distribution pattern and physiological functions of 5-HT2A receptors in 

the CNS, it’s not surprising that 5-HT2A receptors are implicated in pathophysiology of a 

variety of psychiatric disorders. Postmortem studies have shown that 5-HT2A receptor 

binding sites are increased in the brain of depressed patients and suicide victims 

(Dwivedi et al, 2005; Pandey et al, 2003), while 5-HT2A receptors are decreased in the 

cortex and the superior temporal gyrus of schizophrenia subjects (Arora and Meltzer, 

1991, Dean and Hayes, 1996) (Hernandez and Sokolov, 2000).  Chronic treatment of 

rodents with different types of antidepressants reduces the density of 5-HT2A receptors 

in the frontal cortex. Global CNS genetic inactivation of 5-HT2A receptors produces an 

anxiolytic phenotype that is reversed by expression of cortical 5-HT2A receptors, which 

illustrates the necessity of cortical 5-HT2A receptor in the serotonergic regulation of 

anxiety (Weisstaub et al, 2006). Furthermore, polymorphism of 5-HT2A receptor gene is 

involved in schizophrenia and various affective disorders such as bipolar disorder, major 

depressive disorder and obsessive-compulsive disorder (Ghadirivasfi et al, 2011; 

Noskova et al, 2009). 

5-HT2A receptors also serve as targets of therapeutic agents for a number of 

psychiatric disorders. The 5-HT2A receptor agonists are involved in the behavioral 

effects of many hallucinogens. 5-HT2A/C receptor agonist DOI also exerts anxiolytic-

like effects, which were only blocked by a 5-HT2A antagonist but not by a 5-HT2B/C 

antagonist, thereby indicating that these anxiolytic-like responses are mediated by 5-

HT2A receptors (Nic Dhonnchadha et al, 2003). Selective 5-HT2A receptor antagonists 
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have been reported to have antidepressant-like effects in different rodent models. They 

are also used together with SSRIs to augment the clinical efficacy of SSRIs (Nic 

Dhonnchadha et al, 2003; Werneck et al, 2009). Atypical antipsychotic drugs used 

clinically for treating schizophrenia and major depressive disorder have actions at 

multiple receptors including antagonism at 5-HT2A receptors. In conclusion, 5-HT2A 

receptors are a major target for treatment of anxiety, depression and psychiatric disorders.  

Receptor structure and signal transduction 

The human 5-HT2A receptor gene HTR2A is located on chromosome 13q14-q21 

and codes for a protein composed of 471 amino acids (Hoyer et al, 2002). This gene 

consists of three exons and two introns and the coding region is 1.4kb (Sanders-Bush et 

al, 2003). As a pleiotropic GPCR, 5-HT2A receptor protein has a seven trans-membrane 

structure and couples to different G proteins, resulting in broad range of responses.  

Canonical 5-HT2A receptor signaling is mediated via Gαq/11 which couples to the 

phospholipase C (PLC) signaling cascade. Activation of PLC results in release of 

inositol-1, 4, 5-triphosphate (IP3) and 1,2-diacylglycerol (DAG) through 

phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. IP3 binds to its receptors on 

endoplasmic reticulum (ER) and mobilizes Ca2+ into cytosol, whereas DAG activates 

protein kinase C (PKC) (Roth et al, 1991).  

5-HT2A receptor signaling can activate a variety of signal transduction cascades 

beyond the canonical pathways. 5-HT2A receptor has been shown to activate 

phospholipase A2 (PLA2) and subsequent release of the second messenger arachidonic 

acid through two signaling cascades. One is Ras-Raf-MEK-ERK pathway, mediated via 

coupling to Gαi/o; the other is Gα12/13-coupled RhoA-p38-MAPK pathway. 5-HT2A 
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receptor is also able to activate phospholipase D (PLD) through interaction with ADP-

ribosylation 1 (ARF1) (Blaazer et al, 2008).  

5-HT2A receptor has also been shown to mediate transamidation reaction of small 

G proteins RhoA and Rab4 in platelet cells (Walther et al, 2003), as well as 

transamidation of serotonin to Rac1 in A1A1v cells (Dai et al, 2011; Dai et al, 2008). In 

addition, Janus Kinase 2 / Signal Transducer and Activator of Transcription (JAK/STAT) 

pathways can also be activated by 5-HT2A receptors (Guillet-Deniau et al, 1997; Singh 

et al, 2009b). These two pathways are presented in detail in the following sections. 

SEROTONYLATION AND MONOAMINYLATION 

Besides via its canonical receptor-mediated signaling cascades introduced above, 

serotonin has appreciable effects through the covalent modification of protein substrates, 

a reaction termed serotonylation. Protein serotonylation and monoaminylation (such as 

histaminylation, dopaminylation and norepinephrinylation) are newly emerging post-

translational modifications described during the last decade. The reactions are catalyzed 

by transglutaminases (TGases), and alter structures and functions of proteins, for 

example, activation of small G proteins. Serotonylation and monoaminylation are 

implicated in multiple physiological functions. In this section, the functions and 

regulatory system of serotonylation and monoaminylation are presented. 

 Transglutaminase, enzymes catalyzing serotonylation and monoaminylation 

TGase (classified as EC 2.3.2.13) are a family of Ca2+-dependent enzymes that 

catalyze the formation of an isopeptide bond between the γ-carboxamide group of a 

peptide- or protein-bound glutamine residue and a free amine (such as 5-HT) or protein- 
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or peptide-bound lysine (Esposito and Caputo, 2005). Such covalent bonds formed by 

this reaction are highly resistant to proteolytic degradation.  

Human TGases comprise nine isoforms, including TGase1 (keratinocyte TGase), 

TGase2 (tissue TGase), TGase3 (epidermal TGase), TGase 4 (prostate TGase), TGase5 

(TGaseX), TGase6 (TGaseY), TGase7 (TGaseZ), FXIIIA (plasma TGase), and Band 4.2 

(erythrocyte membrane protein 4.2) (Lorand and Graham, 2003; Ricotta et al, 2010). 

Among the nine isoforms, TGase2 is the most abundant and ubiquitously distributed 

member (Lorand and Graham, 2003). TGase1, 2, 3 and 7 have been shown to be 

expressed in human brain (Eckert et al, 2014; Zainelli et al, 2005). 

TGases alter the function of protein substrates by adding new properties to the 

substrates. Given the wide distribution of TGases, TGases are involved in a variety of 

physiological functions. 

For example, TGase1, 2, 3 and 5 have been found in mammalian epidermis and 

cross-link proteins of keratinocytes during terminal differentiation, thereby playing roles 

in the formation of cornified cell envelope (Esposito and Caputo, 2005; Hitomi, 2005; 

Kim et al, 1995; Lee et al, 1996). Dysfunction of these TGases is implicated in lamellar 

ichthyosis, psoriasis and dermatitis (Hitomi, 2005).  

TGases2 has been found to catalyze the transamidation of both intracellular and 

extracellular proteins. Cell surface TGase2 has been involved in the stabilization of the 

extracellular matrix by crosslinking matrix proteins, such as fibronection, von Willebrand 

factor, vitronection, laminin and nidogen, thereby forming large polymeric structures that 

are resistant to proteolytic degradation (Esposito and Caputo, 2005; Fesus and Piacentini, 
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2002). Perturbation of extracellular matrix regulated by TGases2 can lead to liver 

diseases, renal diseases, pulmonary fibrosis, and atherosclerosis (Collighan and Griffin, 

2009; Esposito and Caputo, 2005). 

FXIIIA is a plasma TGase that consists of two subunits, catalytic subunit FXIIIA 

and carrier subunit FXIIIB (Suzuki et al, 1988). In the presence of Ca2+, FXIIIB 

dissociates from FXIIIA and FXIIIA in turn catalyzes the cross links between the side-

chains of fibrin molecules, thus stabilizing blood clots (Lorand, 2001). FXIII is well 

known regulators of hemostasis, wound healing and the maintenance of pregnancy 

(Esposito and Caputo, 2005). 

Evidence indicates that TGase2 and possibly TGase1 and TGase4 are implicated 

in monoaminylation (Dai et al, 2008; Hummerich et al, 2012; Johnson et al, 2012; 

Vowinckel et al, 2012).  

Regulatory mechanisms of TGases 

 

Enzymatic activities of TGases are tightly regulated by multiple physiological 

regulators. TGase activation is dependent on the presence of Ca2+ ion (Hand et al, 1985). 

Binding of Ca2+ unmasks the cysteine in the active site of TGases (Hand et al, 1985), 

and is further regulated by GTP (Monsonego et al, 1998), phospholipids (Ando et al, 

1991), tumor necrosis factor alpha (Chen et al, 2000), nitric oxide (Jandu et al, 2013) and 

CaM (Dai et al, 2011; Zainelli et al, 2004). Increase in intracellular Ca2+ concentration 

may result from release of intracellular Ca2+ storage, extracellular influx, or release from 

Ca2+ binding proteins. GTP binding to TGase stabilizes its conformation in an inactive 

state thereby inhibiting the transamidation catalytic activity of the enzyme (Monsonego et 
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al, 1998). Phospholipids can interact with TGase and inhibit its activity by providing a 

hydrophobic environment (Ando et al, 1991). Nitric oxide also has an inhibitory effect on 

TGase activity through phospholipid S-nitrosylation of thiol groups (Bernassola et al, 

1999). On the other hand, both tumor necrosis factor alpha and CaM have been show to 

increase TGase activity (Chen et al, 2000; Zainelli et al, 2004). 

TGase-catalyzed serotonylation and monoaminylation  

The transamidation of a monoamine, such as 5-HT, histamine (HA), dopamine 

(DA), and noradrenaline (NA), to a protein-bound glutamine residue catalyzed by TGases 

is termed as monoaminylation, or serotonylation when the particular monoamine is 5-HT 

(Muma and Mi, 2015; Walther et al, 2011). A wide range of proteins serve as targets for 

monoaminylation, including small G proteins such as Rac1, Rab3a, Rab4, Rab27a and 

RhoA, heterotrimeric Gα proteins, fibronectin, and cytoskeleton proteins such as actin, 

myosin heavy chain and filamin A (Muma and Mi, 2015). The serotonylation and 

monoaminylation of those proteins are implicated in a variety of physiological processes 

and pathological conditions, including platelet activation, serotonin transporter (SERT) 

regulation, insulin release, smooth muscle contraction, pulmonary hypertension, and bone 

extracellular matrix stabilization (Muma and Mi, 2015; Walther et al, 2011).  

Serotonylation of RhoA and Rab3 in platelet cells activate RhoA and Rab3, in 

turn increasing α-granule exocytosis (Walther et al, 2003). High plasma 5-HT levels lead 

to activation of Rab4, rendering Rab4 active and causing the sequestration of SERT from 

membrane into the cytoplasm (Mercado and Kilic, 2010). Serotonylation of small G 

proteins Rab3a and Rab27a has been also involved in the regulation of insulin secretion 

(Paulmann et al, 2009). Monoaminylation of cytoskeleton proteins in smooth muscle 
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cells is involved in the enhancement of muscle contraction (Johnson et al, 2010; Watts et 

al, 2009). Extracellular matrix proteins such as fibronectin are transamidated by 5-HT, 

DA and NA, however, the functions of these reactions are not well understood 

(Hummerich and Schloss, 2010). Serotonylation of intracellular fibronectin, on the other 

hand, has been reported to be involved in the development of primary pulmonary 

hypertension (Penumatsa et al, 2014). Stimulation of 5-HT2A receptors causes 

serotonylation and activation of small G protein Rac1 in neuronal cells (Dai et al, 2011; 

Dai et al, 2008). The function and regulation of serotonylation of small G protein of Rho 

family in neuronal cells are extensively studied and presented in this dissertation. 

SMALL G PROTEINS OF THE RHO FAMILY 

As the one of the major substrates of serotonylation and monoaminylation, small 

guanine nucleotide-binding proteins (known as small G-proteins or small GTPases) are 

small monomeric G proteins, which are homologous to the alpha subunit of 

heterotrimeric G-proteins. The small G proteins of the Rho family, including Ras-related 

C3 botulinum toxin substrate 1 (Rac1), cell division cycle 42 (Cdc42), and Ras homolog 

A (RhoA), belong to the Ras superfamily, and are molecular switches that cycle between 

a GDP-bound inactive form and GTP-bound active form. The GTP-GDP cycle is 

regulated by three groups of proteins: guanine nucleotide exchange factors (GEFs), which 

activate small G proteins by stimulating dissociation of the GDP from GTPases; GTPase 

activating proteins (GAPs), which inactivate small G proteins by accelerating the 

intrinsically low GTP hydrolysis rate; and GDP dissociation inhibitors (GDIs), which 

maintain GTPases in their inactive form by preventing the dissociation of GDP and 

interaction with GEFs and GAPs (Bustelo et al, 2007). 
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Biological functions of small G proteins of Rho family 

Once small G proteins of the Rho family are activated, they can interact with 

more than 70 downstream effectors to participate in a wide array of signaling cascades, 

thus regulating a variety of crucial cellular activities, such as cytoskeletal reorganization, 

activation of protein kinases, vesicular trafficking, cell growth, cell-cell adhesion, cell 

motility, neuronal and epithelial differentiation, cell death and enzymatic activities 

(Bustelo et al, 2007; Ridley, 2006). 

Small G proteins of Rho family are important regulators of actin cytoskeleton, 

neurite outgrowth and neuronal differentiation, processes mediated by Rho family’s 

interaction with downstream effectors such as Rho-associated coiled-coil kinase1/2 

(ROCK), the p21-activated kinase (PAK), the mammalian Diaphanous formin (mDia) 

and proteins of the WASp family including WASp, N-WASp and WAVE (Spiering and 

Hodgson, 2011). Rac1, Cdc42 and RhoA play different roles in regulating actin 

cytoskeleton and neurite formation. Over expression of constitutively active Rac1 or 

Cdc42 results in neurite growth and filopodia production (Kozma et al, 1997; Van 

Leeuwen et al, 1997), whereas expression of dominant negative Rac1 or Ccd42 inhibits 

neurite formation (Kozma et al, 1997; Pan et al, 2005). Neurite formation induced by 

Rac1 or Cdc42 can be blocked by RhoA expression and be promoted by inactivating 

RhoA (Pan et al, 2005; Van Leeuwen et al, 1997). Rho GEFs and GAPs are also 

involved in the regulation of dendritic spines. Lfc, a Rho GEF, interacts with spinophilin 

selectively to regulate Rho-dependent organization of F-actin in dendritic spines (Ryan et 

al, 2005). Stimulation of 5-HT2A receptors induces a transient spine enlargement 

through a Rac1 GEF kalirin-7/ PAK1 dependent pathway (Jones et al, 2009). Another 
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Rac GEF Asef2 promotes dendritic spine formation via spinophilin-dependent targeting 

(Evans et al, 2015).  Rho-GTPase-activating protein interacting with Cdc-42-interacting 

protein 4 homolog 2 (Rich2), is a Rac1 specific GAP protein. Overexpression of Rich2 

increases size and reduces the density of dendritic spines, while knock-down of Rich2 

induces a reduction in both dendritic size and density (Raynaud et al, 2014). Rho 

GTPases are involved in the pathological condition-induced dendritic spine alterations. 

For example, chronic social defeat stress decreases Rac1 expression in mouse nucleus 

accumbens and increases the density of stubby excitatory spines in a Rac1-dependent 

manner, while overexpression of constitutively active Rac1 reverses the social defeat-

induced depression-related behaviors and increase in stubby spines (Golden et al, 2013). 

Structure of Rac1 

Like other members of the Rho family, Rac1 is molecular switch cycling between 

the active form and inactive form, processes tightly regulated by GEF, GAP and GDI. 

Most Rho proteins consist of short N- and C-terminals, and a GTPase domain, which is 

composed of a six-stranded β-sheet surrounded by α-helices (Vetter and Wittinghofer, 

2001). The formation of the GTP-bound structural form is confined to a conformational 

change in two regions, referred to as switch I and II, which provide interacting platforms 

for GEF/GAP regulators and downstream effectors, thus initiating a network of signaling 

cascades (Dvorsky and Ahmadian, 2004). Binding of GEF to switch I/II displaces Mg2+ 

and releases GDP in exchange for GTP, while binding of GAP to switch I/II inserts a 

H2O molecule into the catalytic pocket of the GTPases of the Rho family, thereby 

facilitating the hydrolysis of GTP into GDP(Spiering and Hodgson, 2011). In order to 

study small GTPases of  the Rho family, multiple molecular tools have been created by 
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mutating some crucial amino acids among switch I/II region, including constrictively 

active mutants Q61L or G12V Rac1 and Cdc42 or Q63L or G14V RhoA, and dominant 

negative mutants T17N Rac1 or Cdc42 or T19N RhoA (Spiering and Hodgson, 2011). 

Likewise, post-translational modification, such as transamidation and phosphorylation of 

Rho family at those sites may also affect their ability to interact with regulating or 

downstream proteins, thereby altering the activity of GTPases. 

Rac1 bears five glutamine residues (Q2, Q61, Q74, Q141, and Q162) that could 

sever as substrates for TGase-catalyzed transamidation (Dai et al, 2008).  Using the 

NCBI Conserved Domain Database (CDD) 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? db=cdd), we searched for GTP/Mg2, 

GAP, GEF, and GDI binding sites in the Rac1 sequence, and identified two glutamine 

residues, Q61 and Q74, and three lysine residues (K5, K16, and K116), within these 

functional domains (Dai et al, 2008). Previous studies found that transamidation or 

deamidation of Rac1 and Cdc42 at Q61 and RhoA at Q63 could inhibit both intrinsic and 

GAP-catalyzed hydrolysis of those GTPases, thereby rendering them constitutively active 

(Flatau et al, 2000; Lerm et al, 1999; Schmidt et al, 1999).  Therefore, those residues 

may be potential targets of TGase-catalyzed modification, to inhibit GTP hydrolysis of 

Rho GTPases, thus prolonging their activity. 

JAK/STAT SIGNALING PATHWAY AND 5-HT2A RECEPTORS 

The JAK/STAT signaling system is composed of three main components, a 

receptor, Janus Kinase (JAK) which is a small family of cytoplasmic tyrosine kinase, and 

Signal Transducer and Activator of Transcription (STAT). The JAK family consists of 
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four members, JAK1, JAK2, JAK3 and ubiquitously expressed TYK2 (Aaronson and 

Horvath, 2002). Mammalian STATs contain seven members, including STAT1, STAT2, 

STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6 (Aaronson and Horvath, 

2002). JAK-STAT signaling pathway is activated by receptors that respond to numerous 

signals including interferon, interleukin, growth factors and other chemical messengers 

(Aaronson and Horvath, 2002). On the other hand, a number of G protein coupled 

receptors such as 5-HT2A receptors (Guillet-Deniau et al, 1997), 2-adenoreceptors and 

angiotensin II receptors (Pan et al, 1997) also activate the JAK/STAT pathway. 

Activation of these receptors is followed by recruitment of JAKs and results in their 

autophosphorylation, which in turn phosphorylate receptor cytoplasmic tails and create 

docking sites for STAT. STATs are recruited to the receptors via their SH2 domain and 

get phosphorylated. Phosphorylated STAT dimerizes and translocates into the nucleus, 

where the dimer binds to DNA promoters and promote gene transcription, thereby 

altering cells function. Knockout studies have shown that the JAK-STAT pathways play 

important roles in regulation of the immune system. While knockout of JAK1 and JAK2 

is lethal, JAK3 knockout animals show murine severe combined immune deficiency, 

which is associated with dysregulation of both B- and T-cells (Igaz et al, 2001). TYK2 

knockout animals suffer from hypersensitivity to pathogens resulting from defects in 

interferon and IL-12 signaling (Shuai and Liu, 2003). Knockout of STAT1 and STAT2 

leads to impairment in interferon signaling and susceptibility to viral infections, whereas 

knockout of STAT3 is embryonically lethal (O'Shea, 1997).  STAT4, STAT5 and STAT6 

knockouts also show various defects in the immune system.  
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Activation of 5-HT2A receptors in rat skeletal muscle myoblasts has been 

reported to cause a rapid and transient activation of JAK2-STAT3 (Guillet-Deniau et al, 

1997). Acute treatment with 5-HT also activates JAK1, JAK2, and STAT1 via activation 

of 5-HT2A receptors but not 5-HT2C or 5-HT2B receptors in vascular smooth muscle 

(Banes et al, 2005). Chronic treatment with atypical antipsychotics olanzapine and 

clozapine, and MDL100907 [(R)-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-

fluorophenyl)ethyl]-4-piperinemethanol], which are well known antagonists/ inverse 

agonists of 5-HT2A receptors, activate the JAK2-STAT3 pathway in both A1A1v cells 

and in rat frontal cortex and hypothalamus (Muma et al, 2007b; Singh et al, 2009b; Singh 

et al, 2007a). And the activation of JAK2/STAT3 has been show to mediate 

desensitization of 5-HT2A receptors (Singh et al, 2009b). A recent study demonstrates 

that interleukin-6 receptor stimulation attenuates 5-HT2A receptor agonist-induced IP 

production by activating the JAK-STAT pathway (Donegan et al, 2015).  

ATYPICAL ANTIPSYCHOTICS  

Medical uses and adverse effects 

The current first-line drug treatment for schizophrenia are antipsychotics, which 

fall into two major categories, first generation antipsychotics, known as typical 

antipsychotics,  and second generation antipsychotics, known as atypical antipsychotics. 

Atypical antipsychotics are the most frequently prescribed medications for schizophrenia, 

and can ameliorate positive symptoms within 8-15 days (Benjamin, 2012). Compared to 

typical antipsychotics, atypical antipsychotics exhibit greater efficacy in treating 

psychotic conditions and have a lower risk of extrapyramidal symptoms (EPS) (Leucht et 

al, 1999). However, both typical and atypical antipsychotics fail to improve negative and 
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cognitive symptoms of schizophrenia. Although atypical antipsychotics have shown 

many benefits, they cause numerous metabolic adverse effects, such as weight gain, 

dyslipidemia, diabetes, and cardiovascular disease (Nasrallah, 2008). The atypical 

antipsychotic clozapine can also lead to a serious side effect called agranulocytosis, 

which is an acute blood disorder characterized by a severe reduction in granulocytes 

(Nasrallah, 2008). Atypical antipsychotics are also used to treat bipolar disorder, agitation 

associated with dementia, anxiety disorder, and autism spectrum disorder (Nasrallah, 

2008).  

Receptor binding profile 

Different members of atypical antipsychotics exhibit unique receptor binding 

profiles by interacting with serotonergic, dopaminergic, histaminergic, adrenergic and 

muscarinic acetylcholine receptors with various affinity (Nasrallah, 2008).  The unique 

receptor binding profile of atypical antipsychotics may underlie the particular adverse 

effects associated with each drug. For instance, binding to histamine H1 receptor is 

associated with weight gain (Nasrallah, 2008).  

The common feature shared by typical and atypical antipsychotic agents is 

affinity for dopamine receptors, especially D2 receptors, antagonism of which is thought 

to mediate the effects of these drugs on positive symptoms as well as the induction of 

EPS. In contrast to typical antipsychotics, atypical antipsychotics are characterized with 

enhanced 5-HT2A/D2 affinity ratio, which may underlie the improved pharmacologic 

features of atypical antipsychotic drugs (Nasrallah, 2008). For example, treatment with 

the atypical antipsychotics risperidone and olanzapine, which have a relatively high 5-
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HT2A/D2 affinity ratio, causes less severe EPS compare with haloperidol, which has 

high D2 affinity. 

Atypical antipsychotics are potent 5-HT2A receptor antagonists, suggesting that 

5-HT2A receptors play a role in the action of atypical antipsychotics (Marek et al, 2003). 

Chronic treatment with atypical antipsychotic drugs has been shown to desensitize the 5-

HT2A receptor signaling transduction. For example, rats treated with clozapine for 1 year 

exhibit a 63% reduction in 5-HT2A binding sites in the frontal cortex. Burnet et al found 

a reduction in [3H] ketanserin binding sites and 5-HT2A receptor mRNA levels in the 

cingulate and frontal cortex following chronic clozapine treatment (Burnet et al, 1996). 

The ability of antipsychotic drugs to down regulate 5-HT2A receptors is correlated with 

their affinities for the 5-HT2A receptor (Gray and Roth, 2001). The role of transcriptional 

regulation has been studied for antipsychotic-induced 5-HT2A receptor downregulation. 

It is likely that atypical antipsychotics-induced 5-HT2A receptor down-regulation is 

primarily mediated by posttranslational mechanisms (e.g., endocytosis, proteolysis) 

instead of transcriptional regulation (Gray and Roth, 2001). In addition, our laboratory 

has previously reported that chronic treatment with olanzapine and clozapine-induced 

desensitization of 5-HT2A receptor associated with increases in regulator of G protein 

signaling (RGS) 7 protein levels in vitro and in vivo. The activation of the JAK-STAT 

pathway by olanzapine and clozapine is responsible for the increases in RGS7 protein 

level (Muma et al, 2007b; Singh et al, 2009b; Singh et al, 2007a).  

STATEMENT OF PURPOSE 
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 A growing body of evidence implicates dendritic spines as important targets of 

pathogenesis in many neurodevelopmental and neurodegenerative diseases, such as ASD, 

schizophrenia and AD, which are characterized by impairment in cognitive functions 

(Penzes et al, 2013; Penzes et al, 2011). Serotonergic transmission, particularly 5-HT2A 

receptor signaling, plays an important role in cognitive processing by regulating 

prefrontal cortical circuitries (Leiser et al, 2015). The 5-HT2A receptor is implicated in 

the action of several hallucinogens and serve as a target for several therapeutic 

interventions, including antipsychotics, anxiolytics and antidepressants (Amodeo et al, 

2014; González-Maeso et al, 2007; Mestre et al, 2013. Dysfunctions of 5-HT2A 

receptors are associated with many psychiatric disorders, such as depression, anxiety and 

schizophrenia (Berg et al, 2008; Gray and Roth, 2007; Hervás et al, 2014). Emerging 

evidence indicates that 5-HT2A receptors play roles in regulating dendritic spine 

morphogenesis in prefrontal cortex, and may link synaptic pathologies with etiologies of 

psychiatric disorders. It has been reported that both agonists and antagonists of 5-HT2A 

receptors regulate different aspects of dendritic spines, however, the underlying 

mechanisms still remain unclear. Discovering the molecular mechanisms underlying the 

regulation of dendritic spine morphology by 5-HT2A receptors may provide us insight 

into the etiologies of these disorders and shed light on the development of new 

therapeutic molecules. Therefore, the purpose of this study is to identify the mechanisms 

underlying the regulation of dendritic spines by 5-HT2A receptor agonists and 

antagonists. 

The previous studies in our laboratory showed that stimulation of 5-HT2A 

receptors induces TGase-catalyzed serotonylation of a small G protein of the Rho family 
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Rac1, resulting in Rac1 activation in A1A1v cells, a rat cortical cell line (Dai et al, 2011; 

Dai et al, 2008). However, the functional consequences of this Rac1 serotonylation in 

neuronal cells was still unknown. It has been reported that acute stimulation of 5-HT2A 

receptors alters dendritic spine area transiently via a kalirin-7/ PAK1 dependent pathway 

(Jones et al, 2009). Activation of 5-HT2A receptors also affects the actin cytoskeleton by 

decreasing drebrin clusters at dendritic spines (Roppongi et al, 2013). Small G proteins of 

the Rho family are important regulators of actin cytoskeleton dynamics and dendritic 

spine morphogenesis. Together, these findings lead us to hypothesize that 5-HT2A 

receptor-induced Rac1 transamidation and activation leads to changes in spine 

morphology. 

To test this hypothesis, I first verified whether Rho family members, Rac1, Cdc42 

and RhoA are modified by DOI-activated TGases in rat primary cortical neurons, which 

enable us to examine the morphology of dendritic spines. 5-HT2A receptor-coupled PLC 

activation and subsequent Ca2+ signaling are necessary for TGase-catalyzed Rac1 

transamidation and the increase in intracellular Ca2+ is sufficient to cause Rac1 

transamidation (Dai et al, 2011). Therefore I also further explored whether other Gαq/11-

coupled receptors, including 5-HT2C receptors and muscarinic receptors, could induce 

Rac1 transamidation. Lastly, the effects of 5-HT2A/2C receptor-mediated TGase activity 

on dendritic spines in rat primary cortical cultures were studied. 

On the other hand, treatment with atypical antipsychotics has been shown to 

induce changes in dendritic spines in multiple studies (Critchlow et al, 2006; Elsworth et 

al, 2011; Vincent et al, 1991; Wang and Deutch, 2008). Although inconsistency exists 

among these studies, these changes in dendritic spines were induced by chronic but not 
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acute treatment of atypical antipsychotics. We previously reported that a sub-chronic 

treatment with atypical antipsychotics olanzapine and clozapine activate the 

JAK2/STAT3 pathway in both A1A1v cells and in rat frontal cortex (Muma et al, 2007a; 

Singh et al, 2009a; Singh et al, 2007b). STAT3 is a transcription factor for RGS7 in 

A1A1v cells and increases expression of RGS7 mRNA and protein (Singh et al, 2009a). 

JAK2/STAT3 pathway has been shown to mediate desensitization of 5-HT2A receptors, 

probably via increasing RGS7 expression (Singh et al, 2009a). Therefore, I asked the 

question, what other genes are regulated by olanzapine via JAK2/STAT3 pathways, and 

whether these genes are involved in the regulation of dendritic spines. 

To address these two questions, we pretreated Sprague-Dawley rats with the 

JAK2 inhibitor AG490 or vehicle, followed by administration with olanzapine or vehicle 

daily for seven days. A microarray study was then performed using mRNA extracted 

from these rat frontal cortices. Real-time qPCR, western blot and ELISA assay were used 

to verify the changes in genes. Then I examined the effects of olanzapine and AG490 on 

the dendritic spines in rat primary cortical cultures. Finally, we proposed a mechanism by 

which olanzapine treatment induces maturation of dendritic spines in both JAK2 

dependent and independent pathways. 
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CHAPTER TWO 

5-HT2A/2C RECEPTOR-MEDIATED TRANSAMIDATION OF RAC1 AND CDC42 

IS INVOLVED IN THE REGULATION OF DENDRITIC SPINES 

ABSTRACT 

We previously reported a novel 5-HT2A receptor downstream effector, 

transglutaminase (TGase) -catalyzed serotonylation of the small G protein Rac1 in 

A1A1v cells, a rat embryonic cortical cell line.  Here we further explore the mechanisms 

involved and demonstrate the functional consequences of 5-HT2A receptor-induced 

serotonylation of small G proteins of the Rho family in primary neuronal cells. We found 

that stimulation of 5-HT2A/2C receptors caused transamidation of Rac1 and Cdc42, but 

not RhoA, in both A1A1v cells and rat primary cortical culture. The transamidation is 

mediated by TGases, possibly TGase2 and TGase1. Transamidation of Rac1 and Cdc42 

lead to their activation, since inhibition of TGases significantly decreased transamidation 

and activation. Stimulation of both 5-HT2A and 5-HT2C receptors contributed to DOI-

induced Rac1 transamidation, since inhibition of 5-HT2A receptors by MDL100907 and 

5-HT2C receptors by SB242084 blocked the DOI-stimulated Rac1 transamidation. DOI-

induced TGase-catalyzed transamidation of Rac1 occurs at Q61 in A1A1v cells, as 

demonstrated by site-directed mutagenesis at Q61 of Rac1. Furthermore, we extended our 

findings from 5-HT2A/2C receptors to another Gαq/11-coupled receptor, muscarinic 

acetylcholine receptors.  In SH-SY5Y cells, stimulation of muscarinic receptors by 

carbachol increased TGase-catalyzed Rac1 transamidation, thus resulting in activation of 

Rac1. In addition, stimulation of 5-HT2A/2C receptors by DOI leads to a transient 

dendritic spine enlargement, which was blocked by TGase inhibitor cystamine, 
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suggesting 5-HT2A/2C receptors-mediated transamidation of Rac1 and Cdc42 is 

involved in the regulation of dendritic spines by 5-HT2A/2C receptors. These studies 

suggest a novel serotonin signaling pathway in the regulation of dendritic spine in 

cortical neurons. 

INTRODUCTION 

In the central nervous system, the majority of the excitatory postsynaptic 

terminals are located on dendritic spines, which are small membranous protrusions from 

dendrites (Phillips and Pozzo-Miller, 2015). Changes in size, number and morphology of 

dendritic spines are tightly coordinated with synaptic function and plasticity, underlying 

the establishment and remodeling of neuronal circuits, learning and memory, and 

behavior (Penzes et al, 2011). Notably, malfunction of dendritic spines accompanies a 

large number of brain disorders, including bipolar disorder, autism spectrum disorder, 

schizophrenia and Alzheimer’s disease, suggesting that dendritic spine can serve as a 

common target for those complex brain diseases (Konopaske et al, 2014; Penzes et al, 

2013; Penzes et al, 2011). Understanding the molecular underpinnings of dendritic spine 

dynamics may provide us essential insight into the etiologies of those disorders and may 

reveal new drug targets. 

Morphological changes of spines are driven by actin dynamics, which are 

regulated by small G proteins of the Rho-family. Small G proteins of the Rho-family, 

including Rac1, Cdc42 and RhoA, belong to the Ras superfamily of small (±21 kDa) 

GTPases, which are guanine nucleotide-binding proteins cycling between an inactive 

GDP-bound form and an active GTP-bound form(Tolias et al, 2011). The GDP/GTP 
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cycling is under the tight regulation of many molecular regulators including GTPase 

activating proteins (GAPs), guanine nucleotide exchange factors (GEFs), and GDP 

dissociation inhibitors (GDIs) (Tolias et al, 2011). At the synapse, Rac1, Cdc42 and 

RhoA play a pivotal role in spine formation and morphogenesis, and synaptic plasticity 

(Martino et al, 2013). Activation of Rac1 and Cdc42 has been shown to promote spine 

formation, growth and stabilization; conversely, RhoA activation leads to spine pruning. 

Perturbations in Rho family signaling are implicated in various brain disorders, 

particularly those associated with cognitive deficits, such as mental retardation, 

schizophrenia and Alzheimer’s diseases (Ba et al, 2013; Bolognin et al, 2014; Datta et al, 

2015). Given the significance of the Rho family in multiple pathophysiological processes, 

it is important to understand all of the mechanisms regulating activity of Rho family 

proteins in neuronal cells.  

Numerous studies have demonstrated that the activity of small G proteins 

including those of the Rho family is regulated by monoaminylation (Muma and Mi, 

2015). Monoaminylation is a post-translational modification of proteins in which 

transglutaminases (TGases) catalyze the transamidation of a primary amine molecule 

such as serotonin (5-HT) or dopamine to a protein-bound glutamine residue (Muma and 

Mi, 2015). Serotonylation is a term coined to describe the specific transamidation of 5-

HT to a protein (Walther et al, 2003). We previously demonstrated that stimulation of 

serotonin 2A (5-HT2A) receptors induces serotonylation of Rac1, resulting in Rac1 

activation (Dai et al, 2008). Together, these findings lead us to hypothesize that 5-HT2A 

receptor-induced Rac1 transamidation and activation leads to changes in spine 

morphology. 
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5-HT2A receptors are widely distributed in most forebrain regions. Disrupted 

function of 5-HT2A receptors has been identified in various neurological and psychiatric 

disorders such as schizophrenia, Alzheimer's disease (Fehér et al, 2013), autism, 

depression and anxiety (Berg et al, 2008; Gray and Roth, 2007; Hervás et al, 2014). 5-

HT2A receptors are also the target for several antidepressants, anxiolytics, atypical 

antipsychotics and hallucinogens (Amodeo et al, 2014; González-Maeso et al, 2007; 

Mestre et al, 2013).  5-HT2A receptors localize to dendrites, dendritic shafts, and 

dendritic spines (Cornea-Hebert et al, 2002; Peddie et al, 2008). Initiation of 5-HT2A 

receptor expression coincides with the period of synaptogenesis (Roth et al, 1991). Jones 

and the colleagues reported that 5-HT2A receptor activation alters dendritic spine area 

via a kalirin-7 dependent pathway (Jones et al, 2009). Yoshida and colleagues have found 

that stimulation of 5-HT2A receptors also changes the density of specific subtypes of 

dendritic spines (Yoshida et al, 2011). And recently, Roppongi et al demonstrated that 

activation of 5-HT2A receptors affects the actin cytoskeleton by decreasing drebrin 

clusters at dendritic spines (Roppongi et al, 2013). Those studies suggest that 5-HT2A 

receptors play a role in the regulation of dendritic spine architecture and actin 

cytoskeleton. However, the underlying molecular mechanisms by which the 5-

HT2A receptor signaling regulates dendritic spines and the role of serotonylation of Rac1 

and possibly other members of the Rho family in the process are not clear.  

In the present study, we use A1A1v cells, a rat cortical cell line, and rat primary 

cortical culture to test whether activation of TGase via stimulation of 5-HT2A receptors 

induces transamidation and activation of Rac1, Cdc42 and RhoA, and whether the 

transamidation results in changes of dendritic spine architecture. Overall, our results 
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indicate that 5-HT2A/2C receptor-induced transamidation and activation of Rac1 and 

Cdc42 are involved in the regulation of dendritic spine architecture. 

METHODS 

Reagents 

The following drugs were used in this study: 1-(2,5-dimethoxy-4-iodophenyl)-2-

aminopropane HCl (DOI) (Sigma-Aldrich, St. Louis, MO),  (2-

hydroxyethyl)trimethylammonium chloride carbamate (carbachol) (Sigma-Aldrich, St. 

Louis, MO) and 2-aminoethyl disulfide dihydrochloride (cystamine) (MP Biomedicals, 

Solon, OH) were dissolved in saline and further diluted before applied to cell cultures. SB 

242084 (Sigma-Aldrich, St. Louis, MO) was dissolved in Ethanol. MDL100907 was 

kindly provided by Sanofi Aventis (Bridgewater, NJ) and dissolved in DMSO. 

Cell culture and transfection 

A1A1v cells are a rat cortical cell line, which endogenously express the 5-HT2A 

receptor signaling system but not the 5-HT2C receptor system (Dai et al, 2008). A1A1v 

cells were grown in Dulbecco’s modified Eagle medium (Fisher Scientific, Pittsburgh, 

PA) containing 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA) at 

33°C in 5% CO2.  Before each experiment, A1A1v cells were maintained for 24h in 

Dulbecco’s modified Eagle medium containing 10% fetal bovine serum treated with 

charcoal to remove > 99% of endogenous 5-HT (Unsworth and Molinoff, 1992). SH-

SY5Y cells, a human neuroblastoma cell line, were cultured in 50% Dulbecco’s modified 

Eagle medium (Fisher Scientific, Pittsburgh, PA) and 50% Opti-MEM medium (Life 

Technologies, Grand Island, NY) containing 10% fetal bovine serum at 37°C in 5% CO2. 

Cells were transiently transfected for 5h with 8-12ug plasmid using Lipofectamine 2000 
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(Life Technologies, Grand Island, NY) 12-16h after plating on 100-mm2 plates. Cells 

were harvested using lysis buffer (25 mM Tris, pH 7.5, 250 mM NaCl, 5 mM EDTA and 

1% Triton X-100, protease inhibitor cocktail 1:1000) 48h after transfection.  

Primary cortical culture 

Animal use was performed in accordance with the National Institute for Health 

Guide for the Care and Use of Laboratory Animals as approved by the University of 

Kansas Institutional Animal Care and Use Committee. Primary cortical neurons were 

isolated from E18 Sprague-Dawley rat embryos as described previously with minor 

modifications (Beaudoin III et al, 2012; Srivastava et al, 2011). Pups were decapitated 

and cortical tissues were dissected out, followed by 0.01% trypsin (Sigma-Aldrich, St. 

Louis, MO) digestion for 20min and gentle pipetting. Neurons were plated at a density of 

5 x 105 cells/ml on 22mm diameter round cover glass (Neuvitro Corporation, Vancouver, 

WA) or at a density of 2.7 x 106 cells/ml on T25 cell culture flasks (Fisher Scientific, 

Lenexa, KS) coated with Poly-L-lysine (Sigma-Aldrich, St. Louis, MO). Cells were 

maintained in Neurobasal media (Life Technologies, Grand Island, NY) supplemented 

with 2% B27 (Life Technologies, Grand Island, NY), 0.5 nM glutamine (Sigma-Aldrich, 

St. Louis, MO) and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) at 37°C 

in 5% CO2, half of the medium was changed twice a week. Neurons were used for 

experiments at 21 days in vitro (DIV), when the dendritic spines display a relatively 

mature morphology. 

Immunocytochemistry 

Primary neurons were double-labeled with Alexa Fluor® 568 Phalloidin (Life 

Technologies, Grand Island, NY) for labeling actin, antibodies against microtubule-

http://www.google.com.hk/url?sa=t&rct=j&q=phalloidin&source=web&cd=2&ved=0CDgQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6c%69%66%65%74%65%63%68%6e%6f%6c%6f%67%69%65%73%2e%63%6f%6d%2f%6f%72%64%65%72%2f%63%61%74%61%6c%6f%67%2f%70%72%6f%64%75%63%74%2f%41%31%32%33%37%39&ei=VG2_UreCLa-iiAezroHQDA&usg=AFQjCNEBN14DNFGv2gHyjch_Y3Nq1XuRJA&bvm=bv.58187178,d.aGc
http://www.google.com.hk/url?sa=t&rct=j&q=phalloidin&source=web&cd=2&ved=0CDgQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6c%69%66%65%74%65%63%68%6e%6f%6c%6f%67%69%65%73%2e%63%6f%6d%2f%6f%72%64%65%72%2f%63%61%74%61%6c%6f%67%2f%70%72%6f%64%75%63%74%2f%41%31%32%33%37%39&ei=VG2_UreCLa-iiAezroHQDA&usg=AFQjCNEBN14DNFGv2gHyjch_Y3Nq1XuRJA&bvm=bv.58187178,d.aGc
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associated protein 2 (Map2) clone HM-2 (Sigma-Aldrich, St. Louis, MO) for labeling 

dendrites, antibodies against 5-HT2A receptors (Singh et al, 2007b), and antibodies 

against PSD95 (6G6-1C9) (Life Technologies, Grand Island, NY). Neurons were fixed in 

4% paraformaldehyde for 20min followed by three washes. Fixed neurons then were 

permeabilized for 15min in phosphate buffered saline (PBS) buffer containing 0.1% 

Triton X-100, following by incubation with PBS containing 1% bovine serum albumin 

for 30 minutes, to reduce the non-specific binding of phalloidin. 10μL methanol stock 

solution of Alexa Fluor® 568 Phalloidin in 200μL PBS was added to each coverslip, 

incubated for 20min, followed by three washes with PBS. Then phalloidin-labeled 

neurons were incubated in 1.5 ml 10%  normal donkey serum (NDS) (Jackson 

Immunoresearch Labs Inc, West Grove, PA) containing 0.3% Triton X-100 at room 

temperature for 15min, to block the nonspecific binding of antibodies. After three washes 

with PBS, primary antibodies were added in PBS with 10% NDS overnight at 4 °C. After 

three washes with PBS the next day, Alexa Fluor® 488 donkey anti-rabbit IgG (H+L) 

antibody and Alexa Fluor® 647 conjugated goat anti-mouse IgG (H+L) secondary 

antibody (Life Technologies, Grand Island, NY) in 10% NDS in PBS were added to 

coverslips and incubated for 2 hours at room temperature. Three more washes were 

performed before coverslips were mounted onto slides using ProLong anti-fade reagent 

(Invitrogen, Grand Island, NY). 

Quantitative Analysis of Spine Morphology 

Neurons were visualized with an Olympus/3I Spinning Disk Confocal 

Microscopy using a 100X TIRF oil immersion objective. Z-series of twenty to thirty 

images were taken at 0.2µm intervals, with 1024 x 1024 or 500 x 500 pixel resolution. 

http://en.wikipedia.org/wiki/Bovine_serum_albumin
http://en.wikipedia.org/wiki/Bovine_serum_albumin
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Three-dimensional maximum projection reconstructions and deconvolution were 

performed using Slidebook 5.5 or 6 (Intelligent Imaging Innovations, Inc). To examine 

the morphology of dendritic spines, dendrites and individual spines on dendrites were 

traced, and dendritic area was measured using CellProfiler (Broad Institute, Cambridge, 

MA). Length of dendrites was measuring using Image J (National Institutes of Health, 

Bethesda, Maryland). Spine density were measured by using Neuron Studio (Icahn 

School of Medicine at Mount Sinai, New York, NY). Spines on one or two primary 

dendrites of each neuron, and 5-10 neurons for each condition were analyzed from three 

separate experiments. 

Site-directed Mutagenesis 

Using the an interactive tool to identify conserved domains present in protein 

sequences in the Conserved Domain Database (available on 

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), we searched for GTP/Mg2+ 

binding sites, and GAP, GEF, and GDI interaction sites in the Rac1 sequence (accession 

number: NP_008839) since TGase-catalyzed modifications at these sites would more 

likely lead to functional changes that would impact Rac1 activity. Four glutamine 

residues (Q61, Q74, Q161, and Q174) were located in the activity-related domains and 

were targeted for site-directed mutagenesis. Site-directed mutagenesis was performed 

with Rac1 DNA in TOPO® PCR Cloning vector using the Quikchange Lightning Multi 

Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA). 

Oligonucleotides containing amino acid substitutions for glutamine 61, 74,161 and 174 of 

Rac1 were designed using QuikChange® Primer Design Program (Agilent Technologies, 

Santa Clara, CA) and synthesized by Life Technologies. Briefly, oligonucleotides 

http://en.wikipedia.org/wiki/Icahn_School_of_Medicine_at_Mount_Sinai
http://en.wikipedia.org/wiki/Icahn_School_of_Medicine_at_Mount_Sinai
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containing desired mutations were annealed to denatured DNA templates and extended 

with Pfu-based DNA Polymerase Blend. Then the parental methylated and 

hemimethylated DNA templates were digested with Dpn I enzyme. Mutated molecules 

were transformed into competent cells to replicate. Plasmids with desired mutations were 

purified from bacterial culture and confirmed by sequencing. Then wild type and Rac1 

mutants were cloned into pcDNA™4/HisMax C Mammalian Expression Vectors (Life 

Technologies, Grand Island, NY) and transfected into A1A1v cells as described above. 

Small Interfering RNA (siRNA) 

To reduce TGase2 protein expression, siRNA duplex targeting the coding 

sequence of rat TGase2 mRNA was used as previously reported with minor 

modification(Dai et al, 2008). The target sequence is 5-

AAGAGCGAGATGATCTGGAAT-3 and synthesized by QIAGEN (Germantown, MD). 

At DIV19, primary neurons were transfected with siRNA at a final concentration of 90 

nM using Lipofectamine 3000 without P3000 reagent according to the manufacture’s 

instruction. 72 hours after transfection, cells were treated with DOI or saline as a control. 

Cells incubated with Lipofectamine 3000 alone were used as a non-transfected control. 

Immunoblot 

Protein samples were separated on 12% or 14% SDS-polyacrylamide gels as 

previously described (Dai et al, 2008). Proteins were transferred into PDVF membranes 

followed by incubation for 1h in buffer (5% nonfat dry milk, 0.1% Tween20, 1X TBS 

buffer) to block non-specific binding. Primary antibodies were diluted in antibody buffer 

(2% nonfat dry milk, 0.1% Tween20, 1X TBS buffer) and incubated with membranes 

overnight at 4°C on a shaker. The primary antibodies used are as follows: anti-Rac1 



37 
 

antibody, clone 23A8, mouse IgG, 1:700 (Millipore Corporation, Billerica, MA); anti-

Cdc42 antibody, clone 44, mouse IgG, 1:500 (BD Biosciences, BD Biosciences); anti-

actin, mouse IgG, 1:50,000 (MP Biomedicals, Solon, OH). The membranes were washed 

three times with TBS/Tween 20 buffer the next day, followed by incubation for 1h at 

room temperature in goat anti-rabbit IgG or donkey anti-mouse IgG diluted in antibody 

buffer. After the membranes were washed, the Amersham ECL Western Blotting 

Detection Reagents (GE Healthcare) were applied to the membranes, and the signals 

were detected using ChemiDoc™ XRS+ System (Bio-Rad, Hercules, CA) and quantified 

by calculating the integrated optical density (IOD) of each protein band using Image 

Lab™ Software (Bio-Rad, Hercules, CA). 

Immunoprecipitation of TGase-Modified Protein 

Immunoprecipitation of TGase-modified protein was performed as described 

previously with minor modifications (Dai et al, 2008). A1A1v cells, SH-SY5Y cells or 

rat primary cortical neurons were lysed using lysis buffer A (25 mM Tris-HCl, pH 7.5, 

250 mM NaCl, 5 mM EDTA, 1% Triton X-100, and 1:1000, protease inhibitor cocktail) 

and protein concentration was determined. 200µg and 600µg protein were used for 

detecting Rac1 and Cdc42 transamidation respectively. Cell protein was added to 20µl of 

washed Sepharose-81D4 antibody beads directed against the TGase-modified proteins 

and buffer B (10mM Tris-HCI pH 7.5, 0.14M NaCl, 0.1% Tween 20) was added to 

achieve a 1µg/µl final protein concentration. After 2h incubation at 37 °C, the beads were 

spun down at 10,000xg and washed 4 times with buffer B. 25µl of loading buffer (50mM 

Tris-HCI, pH6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol) was added to the final 

pellet and incubated at 95°C for 5min to elute the TGase-modified protein. 
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Activity Assay for Small G Proteins 

The activity of Rac1 and Cdc42 was measured using Glutathione Transferase 

(GST) -PAK1 bound Sepharose 4B beads as described previously (Dai et al, 2008). 

A1A1v cells, SH-SY5Y cells or primary cortical neurons were lysed using lysis buffer C 

(50mM Hepes, pH7.6, 100mM NaCl, 5mM MgCl2, 10% glycerol and 1:1000 protease 

inhibitor cocktail). 200µl lysed cells was added to 40µl of beads and incubate for 40min 

at 4 °C followed by three washes. 20µl 2 X PAGE sample buffer (0.187M Tris pH 6.8, 

4.5% SDS, 22.3% glycerol, with 1:1000 protease inhibitor cocktail) was added to pellets 

and incubated at 90°C for 5min followed by centrifuging at 9,000xg for 2min. Equivalent 

amounts of protein were loaded on 14% SDS PAGE and detected on immunoblots as 

described above. 

Statistical analysis 

Data are presented as mean ± standard error of the mean (SEM). All data are 

analyzed by Student’s t-test, one, or two-way ANOVA, or Kruskal-Wallis one-way 

ANOVA on Ranks. Post hoc tests were conducted using Newman-Keuls multiple 

comparison test or Dunn’s method. Sigmaplot 12 (Systat Software, Inc., San Jose, CA) 

and Origin 8.0 (OriginLab Corporation, Northampton, MA) were used for statistical 

analysis. Significant differences are defined as those with a p-value< 0.05. 

RESULTS 

5-HT2A/2C receptor-stimulated Rac1 activation is dependent on TGase-catalyzed 

transamidation in rat primary cortical neurons in culture 
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To determine whether Rac1 activation by 5-HT2A/2C receptors stimulation alters 

dendritic spine morphology, we used primary cortical neurons from E18 rat pups cultured 

for DIV21. At this stage, dendritic spines display a relatively mature morphology and 

form connections with presynaptic partners.  

The first step was to determine whether Rac1 transamidation is increased in rat 

primary culture, we treated the neurons at DIV21 with 3 µM DOI for 15min, the time 

point at which we observed the most abundant Rac1 transamidation in A1A1v cells (Dai 

et al, 2008). TGase-modified proteins were immunoprecipitated using the 81D4 antibody 

and examined on immunoblots using a Rac1 antibody. The ratio of TGase-modified Rac1 

to total Rac1 is significantly increased following 15min of DOI treatment (Figure 2.1A), 

suggesting Rac1 is transamidated after stimulation of 5-HT2A/2C receptors in rat 

primary cortical cultures. 

Next, to determine whether Rac1 activity is increased following 5-HT2A receptor 

stimulation in this primary culture model as previously demonstrated in A1A1v cells, we 

used a PAK1 pull down assay, since only activated GTP-bound Rac1 can bind to PAK1 

(Parrini et al, 2002). We treated the primary neurons with 3 µM DOI, a 5-HT2A/2C 

receptor-selective agonist, for 5min, the period previously used to detect Rac1 activation 

in A1A1v cells (Dai et al, 2008). As shown in Figure 2.1B, the ratio of GTP-bound Rac1 

to the total Rac1 is significantly increased by 100% after 5 min of DOI treatment, 

indicating that Rac1 becomes activated following DOI treatment in rat primary cortical 

cultures as in A1A1v cells.  

To exam whether the DOI-stimulated increase of active Rac1 is due to TGase-

catalyzed transamidation, we inhibited the activity or expression of TGase by treating the 
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primary neurons with 1mM cystamine, a TGase inhibitor, for 1 hour, or transfecting a 

siRNA targeting TGase2 into the primary neurons for 72 hours, followed by DOI 

treatment for 5min or 15min. As shown in Figure 2.1C, siRNA transfection successfully 

resulted in 45% decrease in TGase2 protein levels accompanied by an 85% increase in 

TGase1 protein levels. TGase3 was not detected on Western blot using a TGase3 specific 

antibody. DOI-induced Rac1 transamidation is significantly reduced by cystamine 

treatment and knock down of TGase2 expression with siRNA, suggesting 5-HT2A 

receptor-mediated Rac1 transamidation is dependent on the activity of TGases in primary 

culture. Compared with DOI-stimulated mock-transfected cells, cystamine treatment 

caused a 70% decrease and siRNA transfection caused 40% decrease in TGase-modified 

Rac1 following DOI treatment (Figure 2.1D). The reduction in DOI-induced Rac1 

transamidation caused by cystamine is significantly higher than TGase2 siRNA, 

suggesting not only TGase2, but perhaps also TGase1, mediates DOI-induced Rac1 

transamidation in rat primary cortical neurons. We also found that treatment with 

cystamine and siRNA transfection decreases the amount of DOI-induced Rac1 activation 

by 56% and 38%, respectively, compared with mock-transfected cells. These results 

indicate that TGase-catalyzed transamidation is necessary for the increase in Rac1 

activity upon 5-HT2A/2C receptor stimulation in rat primary cortical neurons (Figure 

2.1E). 

DOI-induced Rac1 transamidation is mediated by both 5-HT2A and 5-HT2C 

receptors in rat primary cortical neurons  

DOI is a selective 5-HT2A/2C receptor agonist. In order to test whether 5-HT2A 

or 5-HT2C, or both receptors mediate the DOI-stimulated Rac1 transamidation in rat 
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primary cortical cells, we pretreated the rat primary neurons at DIV21 with 3.6 nM 

MDL100907, a selective 5-HT2A receptor antagonist, 10 nM SB242084, a selective 

antagonist for the 5-HT2C receptors, or DMSO, for one hour. We then stimulated cells 

with DOI or saline for 15min and examined Rac1 transamidation as described above. As 

shown in Figure 2.2, the ratio of TGase-modified Rac1 to total Rac1 is significantly 

increased following 15min of DOI treatment, and both MDL100907 and SB24084 

suppressed DOI-induced Rac1 transamidation. The mean of Rac1 transamidation levels 

in MDL100907 treated samples is lower than the one in SB24084 treated samples, 

however, the difference is not statistically significant. These results suggest that both 5-

HT2A and 5-HT2C receptors contribute to DOI-stimulated Rac1 transamidation 

mediated by TGases. 

Stimulation of 5-HT2A/2C receptors increase activation of Cdc42 in a TGase-

dependent manner in A1A1v cells and rat primary cortical neurons 

To explore whether another member of the Rho family, Cdc42, also becomes 

activated following stimulation of 5-HT2A receptors, we treated A1A1v cells with 3 µM 

DOI for 5 min, 15 min or 30min, and separated active Cdc42 using GST-PAK1 bound 

glutathione-sepharose beads. Since A1A1v cells do not express 5-HT2C receptors, the 

DOI-induced effects are mediated by 5-HT2A receptors (Dai et al, 2008). We observed 

an increase in active Cdc42 at these three time points. To further determine the duration 

of DOI-induced Cdc42 activation, we treated A1A1v cells with DOI again for longer 

time periods, including 30 min, 1 hour, 2 hours or 3 hours. As shown in Figure 2.3A, the 

activity of Cdc42 is significantly increased following 30 min, 1 hour and 2 hour DOI 

treatment, respectively. However, there is no significant change in the amount of GTP-
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bound Cdc42 in cells treated with DOI for 3 hours compared with vehicle-treated cells, 

suggesting that DOI-induced Cdc42 activation lasts up to 2 hour in A1A1v cells.  

We also examined TGase-modified Cdc42 after treatment with 3 µM DOI for 30 

min, 1 hour, 2 hours or 3 hours. The Cdc42 transamidation is significantly elevated after 

2 hour and 3 hour DOI treatment (Figure 2.3B). To examine whether the DOI-stimulated 

increase in Cdc42 activity is dependent on Cdc42 transamidation, A1A1v cells were 

treated with 1mM cystamine for 1 h, followed by treatment with 3µM DOI for 30min, 1 

hour or 3 hours. We found that the pretreatment with cystamine decreases the amount of 

activated Cdc42 at all three time points, suggesting the DOI-induced Cdc42 activation is 

due to the TGase-catalyzed transamidation of Cdc42 in A1A1v cells (Figure 2.3C).  

Next, we determined whether Cdc42 is activated and transamidated after DOI 

treatment in primary cortical neurons. A significant reduction in TGase-modified Cdc42 

by cystamine pre-treatment and TG2 siRNA transfection is shown in Figure 2.3D 

suggesting 5-HT2A receptor-mediated Cdc42 transamidation is also dependent on the 

activity of TGases in primary culture. Compared with DOI-stimulated mock-transfected 

cells, cystamine treatment caused an 84% decrease and siRNA transfection caused a 34% 

decrease in TGase-modified Cdc42 following DOI. As shown in Figure 2.3E, DOI 

treatment increases the ratio of GTP-bound Cdc42 to the total Cdc42. Pretreatment with 

1mM cystamine decreased active Cdc42 by 75% and TGase2 siRNA transfection 

decreased active Cdc42 by 54% compared with DOI-stimulated mock-transfected cells. 

These results suggest that DOI-stimulated, TGase-catalyzed Cdc42 transamidation leads 

to Cdc42 activation in rat primary cortical neurons. 

RhoA is not transamidated following DOI treatment in primary cortical neurons  
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We also tested whether RhoA is modified by TGases following DOI treatment. 

We were not able to detect TGase-catalyzed modification of RhoA in rat primary cortical 

cells (Figure 2.4). These results suggest that stimulation of 5HT2A/2C receptors does not 

induce significant levels of TGase-catalyzed RhoA transamidation in rat primary cortical 

cells. 

TGase-catalyzed transamidation of Rac1 occurs at Q61 in neuronal cells 

Rac1 bears five glutamine residues (Q2, Q61, Q74, Q141, and Q162) that could 

serve as substrates for TGase-catalyzed transamidation (Dai et al, 2008). Using the NCBI 

Conserved Domain Database, we searched for GTP/Mg2, GAP, GEF, and GDI binding 

sites in the Rac1 sequence, and identified two glutamine residues, Q61 and Q74 within 

these functional domains. To test which glutamine residue or residues are modified by 

TGases, we generated two plasmid constructs containing double mutations, one with a 

Q61/74N and the other with Q141/162N. We transfected wild type (WT) Rac1 and Rac1 

mutants into A1A1v cells, and 48 hours later stimulated 5-HT2A receptors with DOI 

treatment. As shown in Figure 2.5A, DOI significantly increases TGase-modified WT 

Rac1. Transamidation of Q61/74N Rac1 was not increased following DOI treatment 

compared with vehicle-treated control. DOI-induced transamidation of Q61/74N Rac1 is 

significantly lower than DOI-induced Rac1 transamidation in both WT Rac1 and 

Q141/161N Rac1 transfected cells. This result suggests that 5-HT2A-induced TGase-

catalyzed modification occurs at Q61 or/and Q74 of Rac1. To determine whether Q61 or 

Q74 or both are modified by TGase, we generated another two Rac1 mutants bearing a 

single mutation at Q61 or Q74, and transfected them into A1A1v cells. Forty eight hours 

after transfection, cells were treated with DOI for 15min. As shown in Figure 2.5B, DOI 
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stimulation significantly increased TGase-modified Q74N Rac1 and WT Rac1, but not 

Q61N Rac1, suggesting that Q61 is the site that is transamidated following stimulation of 

5-HT2A receptors. 

Muscarinic receptor stimulation in SH-SY5Y cells causes TGase-dependent Rac1 

transamidation and activation  

As previously reported, 5-HT2A receptor-induced PLC activation is necessary for 

TGase-catalyzed Rac1 transamidation, and an increase in intracellular Ca2+ is sufficient 

to cause Rac1 transamidation in A1A1 cells (Dai et al, 2011). Therefore, we 

hypothesized that other Gαq/11 linked-receptors that activate PLC and increase in 

intracellular Ca2+ also result in Rac1 transamidation. To test this hypothesis, we used a 

human neuroblastoma cell line SH-SY5Y cells, which express M1, M2 and M3 receptors 

(Kukkonen et al, 1992). In this cell line, 2-[(Aminocarbonyl) oxy]-N, N, N-

trimethylethanaminium chloride (carbachol) treatment can activate muscarinic receptors 

and induce PLC activation and subsequently an increase in cytosolic Ca2+ (Wojcikiewicz 

et al, 1994). We first treated SH-SY5Y cells with vehicle or 1mM carbachol for 5min and 

10min, and examined Rac1 activation as described above. As shown in Figure 2.6A, 

carbachol increases Rac1 activity significantly at 10min but not at 5min. To further test 

whether carbachol-increased Rac1 activity is due to transamidation, we pretreated SH-

SY5Y cells with 1mM cystamine for 1 hour to inhibit TGase and then stimulated 

muscarinic receptors with carbachol for 10min. As shown in Figure 2.6B, carbachol 

increased Rac1 transamidation by 150% in vehicle-pretreated cells. Cystamine reduced 

the carbachol-stimulated Rac1 transamidation by 78% compared to vehicle-pretreated 

cells. As shown in Figure 2.6C, cystamine also decreased carbachol-induced Rac1 
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activity by 78% compared to vehicle-pretreated controls. These results suggest that other 

GPCRs that couple to Gαq/11 are able to increase TGase-catalyzed Rac1 transamidation 

and activation. 

DOI-induced dendritic spine enlargement is dependent on TGase activity 

Previous ultrastructural studies have shown that 5-HT2A receptors localize to 

dendrites, dendritic shafts, and dendritic spines of cortical and hippocampal neurons and 

co-localize with synaptic proteins in rat and in primate brains (Cornea-Hebert et al, 2002; 

Jones et al, 2009). Small G proteins of the Rho family are major regulators of actin 

cytoskeleton and dendritic spine morphology. In our cultured rat primary neurons, 

endogenous 5-HT2A receptors localize to the soma, dendritic shafts and dendritic spines, 

and co-localized with postsynaptic marker PSD95 (Figure 2.7A-C). To test whether 

stimulation of 5-HT2A receptors influences dendritic morphology, we performed a time 

course study in which DIV21 primary neurons were treated with 3 µM DOI for a 

maximum of 60 min. The actin cytoskeleton was labeled by Alexa Fluor® 

568 Phalloidin (Life technologies) to visualize dendritic spines and immunofluorescent 

labeling was used to select spines that contain 5-HT2A receptors. The area of dendritic 

spine increased by DOI treatment at 30 min, and recovered to vehicle-treated control 

levels at 60min (Figure 2.7D). We hypothesized that TGase-catalyzed transamidation of 

small G proteins including Rac1 and Cdc42 may mediate the effect of DOI on dendritic 

spine morphology. To test this hypothesis, we inhibited transglutaminase by pretreatment 

of primary cortical neurons with 1mM cystamine for 1 hour, prior to DOI treatment for 

30min. DOI-induced spine enlargement is prevented by cystamine pretreatment (Figure 

2.7E), suggesting the 5-HT2A and/or 5-HT2C receptor stimulation induced increases in 
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spine area is dependent on TGase activity, likely transamidation of small G proteins Rac1 

and Cdc42. Neither DOI nor cystamine had effects on dendritic spine density (Figure 

2.7F). 

DISCUSSION 

We previously reported that the stimulation of 5-HT2A receptors induced a 

TGase-catalyzed Rac1 transamidation and activation, both of which can be blocked by 

inhibiting TGase (Dai et al, 2008). However, as a novel effector and second messenger of 

5-HT2A receptor signaling pathway, the functional impact of Rac1 transamidation in 

neuronal cells was unknown. Small G proteins of Rho family are well known regulators 

of the actin cytoskeleton, neurite outgrowth and dendritic spine formation, 

morphogenesis and plasticity (Ba et al, 2013; Martino et al, 2013). Specifically, 

activation of Rac1 and Cdc42 leads to spine formation and enlargement. Stimulation of 5-

HT2A receptors produces a transient increase in dendritic spine size that is dependent on 

Pak1 activation, a downstream effect of Rac1 and Cdc42 activation(Jones et al, 2009). 

Therefore, we hypothesized that the transient spine enlargement caused by stimulation of 

5-HT2A receptors is dependent on TGase-catalyzed transamidation of Rac1 and Cdc42. 

The lack of dendritic spines in A1A1v cells limits their use for further study on the roles 

of small G proteins in the regulation of spines. Therefore, a rat primary cortical culture 

was used to allow for the visualizing the effects of 5-HT2A receptor stimulated 

transamidation on dendritic spines. Rat primary cortical neurons were obtained from E18 

rat pups and cultured to DIV21. At this time, neurons express 5-HT2A receptors, 5-HT2C 

receptors, TGase1, TGase2 and small G proteins Rac1, Cdc42 and RhoA. Moreover, at 
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DIV21, dendritic spines of the primary neurons display a relatively mature morphology 

and form connections with presynaptic partners.  

In present study, we first discovered that stimulation of 5-HT2A receptors causes 

TGase-mediated transamidation and activation of small G proteins Rac1 and Cdc42 in 

primary culture as well as A1A1v cells. We used two approaches to suppress TGase 

activity in primary culture, the competitive TGase inhibitor cystamine and TGase2 

siRNA. Compared to cystamine, TGase2 siRNA produced less reduction in DOI-induced 

Rac1 and Cdc42 transamidation and activity. As a potential substrate for TGase, 

cystamine acts as a competitive inhibitor for all TGase subtypes, while the siRNA only 

targets TGase2. Forty-eight hours post-transfection with siRNA resulted in a 95% 

reduction of TGases2 protein level in A1A1v cells (Dai et al, 2008), however, only 

achieved a 45% reduction of TGase2 in rat primary cortical culture. We found that the 

TGase2 siRNA also increased TGase1 protein expression, which may be a compensatory 

effect of TGase2 reduction. TGase 2 is ubiquitously expressed in neuronal tissues, in 

contrast to TGase1 and 3 which are differentially expressed in various brain regions (Kim 

et al, 1999; Wilhelmus et al, 2009; Zainelli et al, 2005). TGase3 was not detectable in the 

primary neuronal cultures by Western blots. Both the limited reduction in TGase2 protein 

and increase in TGase1 protein may have contributed to the lower decrease in DOI-

induced Rac1 and Cdc42 transamidation and activity with the TGases siRNA approach 

compared to the treatment with the pan-transglutaminase inhibitor cystamine. 

Small G proteins of the Rho family are monomeric globular proteins functioning 

as molecular switches by cycling between GDP-bound inactive forms and GTP-bound 

active forms (Wennerberg and Der, 2004). Their activity is controlled by three groups of 
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regulatory proteins: GEFs, which stimulate dissociation of the GDP from Rho GTPase; 

GAPs, which accelerate the intrinsically low GTP hydrolysis rate; and GDIs, which 

prevent the dissociation of GDP and interaction with GEFs and GAPs (Tolias et al, 

2011). The formation of the GTP-bound structural form is confined to a conformational 

change in two regions, referred to as switch I and II, which provide interacting platforms 

for regulators and downstream effectors, thus initiating a network of signaling cascades 

(Dvorsky and Ahmadian, 2004). Post-translational modifications of Rho GTPases at 

those regions are most likely to affect the activity of small G proteins. Among five 

glutamine residues in the Rac1 amino acid sequence, two of them (Q61, Q74) are located 

within activity-related domains and can serve as potential targets of TGase-catalyzed 

modification (Dai et al, 2008). In present study, we found that the Rac1 Q61N mutant 

cannot be transamidated following 5-HT2A/2C receptor stimulation and is constitutively 

active. Previous studies found that transamidation or deamidation of Rac1 and Cdc42 at 

Q61 and RhoA at Q63 could inhibit both intrinsic and GAP-catalyzed hydrolysis of those 

GTPases, thereby rendering them constitutively active (Flatau et al, 2000; Lerm et al, 

1999; Schmidt et al, 1999). Together, these results suggest that transamidation of Rac1 at 

Q61 inhibits GTP hydrolysis of Rac1, thereby inhibiting inactivation of Rac1.  

In this study, we found differences in the time course for Rac1 and Cdc42 

transamidation compared to the increase in activity. As shown in Figure 1 and 3, 

transamidation of Cdc42 and Rac1 last longer than their activation. This discordant time 

course for transamidation and activation may result from that transamidation of 

glutamine residues other than Q61 which are not involved in the regulation of Rac1 and 

Cdc42 activity. Moreover, we hypothesize that transamidation of Rac1 and Cdc42 
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increases their activity by inhibiting inactivation via GAP-catalyzed hydrolysis. The 

inhibitory effects of transamidation may be overcome by increases in GAPs. Prolonged 

transamidation may also affect the function of GEFs, thereby counteracting the inhibition 

of GAPs. 

Several studies indicate that stimulation of Gαq/11-protein-coupled receptors, 

such as bradykinin or endothelin-1 receptor, can cause small G protein activation (Clerk 

et al, 2001; van Leeuwen et al, 1999). However, the underlying mechanisms still remain 

unclear.  Our previous study indicated that 5-HT2A receptor-coupled PLC activation and 

the subsequent increase in intracellular Ca2+ are necessary for TGase-catalyzed Rac1 

transamidation and activation. Furthermore, an increase in intracellular Ca2+ is sufficient 

to cause Rac1 transamidation and activation in A1A1 cells, suggesting that receptor 

systems that increase in intracellular calcium may activate TGs to induce 

monoaminylation (Dai et al, 2011).  In present study, we extended these findings to 5-

HT2C receptors and another family of Gαq/11-protein-coupled receptors, muscarinic 

acetylcholine receptors. We found that stimulation of muscarinic receptors with 

carbachol increased the transamidation and activity of Rac1, both of which were 

suppressed by the TGase inhibitor cystamine. The muscarinic receptor family contains 

five subtypes, M1-M5. M1, M3 and M5 receptors are coupled to Gαq proteins, while M2 

and M4 receptors are coupled to Gi/o proteins. SH-SY5Y cells predominantly express 

M3 muscarinic receptor subtype (74% of total), however, they also express significant 

amounts of M1 and M2 receptors (Kukkonen et al, 1992). In smooth muscle, M2 

receptors are coupled via Gβγ3 to PLCβ3, activation of which leads to an increase in 

Cdc42 and Rac1 activity (Murthy et al, 2003). Therefore, the carbachol-induced Rac1 
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activation could be mediated by M1 and M3 receptor-induced TGase-mediated 

transamidation of Rac1 and Cdc42 and M2 activation of Rac1 and Cdc42 via 

Gβγ3/PLCβ3. However, the transglutaminase inhibitor completely blocked carbachol-

stimulated Rac1 activation suggesting the role of M2 receptors in Rac1 activation is 

minimal in our primary neuronal cell culture model. Cholinergic neurons in the central 

nervous system are implicated in synaptic plasticity and cognition. Knockout of 

muscarinic receptors leads to disruption of cognition, learning, and memory (Wess, 

2004). Muscarinic M1 receptors are located on dendritic shaft and dendritic spines of 

cortical pyramidal cells (Yamasaki et al, 2010). Brief activation of muscarinic receptors 

induces a rapid formation of fine filopodia from spine heads in hippocampal pyramidal 

neurons (Schätzle et al, 2011). Our results suggest that monoaminylation of Rac1 and 

Cdc42 may provide a novel mechanism underlying the regulation of dendritic spines by 

muscarinic receptors. 

We found that cystamine is able to inhibit the DOI-induced transient spine 

enlargement, suggesting that TGase-catalyzed Rac1 and/or Cdc42 transamidation plays a 

vital role in mediating the regulation of dendritic spines via 5-HT2A/2C receptor 

signaling pathway. However, whether the transamidation of Rac1 and Cdc42 both play a 

role still need to be studied in the future. Mutation at the transamidation site of Rac1 

leads to its constitutive activation, consequently, simply transfecting the mutant into 

primary neurons would not provide an answer to the question. In addition, even though 5-

HT2A receptors are the most abundantly expressed subtype of serotonin receptors in 

neocortical neurons, DOI is also able to activate 5-HT2C receptors. 5-HT2C receptors are 

expressed in rat cortical primary cultures (Tohda, 2014; Tohda et al, 2009).  We found 
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that DOI-induced Rac1 transamidation could be partially reduced by inhibition of 5-

HT2A receptor signaling by MDL100907 or by blocking 5-HT2C receptor signaling 

cascade by SB242084, suggesting both 5-HT2A and 5-HT2C play roles in the TGase-

catalyzed Rac1 transamidation. Therefore, 5-HT2C receptors may also contribute to the 

DOI-induced spine enlargement. 

Numerous studies have shown that Gαq/11 coupled receptors, such as the 5-

HT2A receptor, metabotropic glutamate receptor 5 and muscarinic receptors, as well as 

PLC, Ca2+ and calmodulin are upstream regulators of synaptogenesis and dendritic 

spines (Horne and Dell'Acqua, 2007; Spires et al, 2005; Wijetunge et al, 2008). 

However, little was known about the signaling molecules coordinating these mechanisms.  

Here we report that 5-HT2A/2C receptor signaling pathway regulates dendritic spine 

morphology in rat cortical neurons via TGase-mediated mechanism, likely 

monoaminylation of small G proteins. This study provides a link between Gαq/11 

coupled receptors and the regulation of dendritic spines, thus providing further insight 

into neuropsychiatric disorders in which those receptors and dendritic spines are 

involved. 

FIGURES AND FIGURE LEGENDS 
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Figure 2. 1 
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Figure 2.1 5-HT2 receptor-stimulated Rac1 activation is dependent on TGase-

catalyzed transamidation in rat primary cortical neurons in culture. 

 A: DOI increased Rac1 transamidation in primary cortical neurons. Primary cortical 

neurons were treated with 3μM DOI treatment for 15 min, the TGase-modified proteins 

were immunoprecipitated with 81D4 antibody bound Sepharose beads and detected on 

immunoblots. Total amount of Rac1 in cell lysates was also detected on western blots 

using an anti-Rac1 antibody. Data are quantified by calculating the IOD of each protein 

band and the IOD ratio between TGase-modified Rac1 and total Rac1 was normalized to 

vehicle-treated control levels. Rac1 transamidation was significantly increased in DOI 

treated neurons. Student’s t-test indicates * p<0.001, n=3.  

B: DOI increased of the activity of Rac1 in primary cortical neurons. After 5 min of 3μM 

DOI treatment, active Rac1 was pulled down using GST-PAK1 coupled to glutathione-

Sepharose beads and measured on western blots. IOD ratio between active Rac1 and total 

Rac1 was normalized to vehicle-treated control levels. DOI significantly increased 

activated Rac1 in DOI treated neurons. Student’s t-test indicates * p≤0.001, n=3.  

C. TGase2 protein levels were significantly reduced 72 hours after transfection of 

primary neurons with 90 nM TGase2-specific siRNA (Student’s t-test indicates * 

p=0.001, n=3). The reduction in TGase2 is accompanied by an increase in TGase1 

protein levels. Student’s t-test indicates * p<0.05, n=3.  

D. Transamidation of Rac1 is reduced by inhibition of TGase activity by cystamine or 

knockdown of TGase2 by siRNA. Cells were incubated with TGase2-specific siRNA for 

72 h or with 1mM cystamine for 1 h, and then they were treated with 3µM DOI or 

vehicle for 15 min, and TGase-modified Rac1 was detected on immunoblots. Two-way 
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ANOVA analysis of three separate experiments shows significant effects of transfection 

or pretreatment [F(2,12)=13.011, p<0.001], significant effect of DOI stimulation 

[F(1,12)=18.343, p=0.001], and a significant interaction between transfection or 

cystamine with DOI treatment on TGase-modified Rac1 [F(2,12)=7.198, p<0.01]., 

Newman-Keuls multiple comparison test indicates ** p<0.001, n=3 compared with 

vehicle treatment in mock-transfected cells; * p< 0.05, n=3 compared with vehicle 

treatment in TGase2 siRNA transfected cells; # p< 0.01, ## p<0.001, n=3 compared with 

DOI treatment in mock-transfected cells; & p<0.05, n=3 compared with DOI treatment in 

cystamine-pretreated cells.  

E. Rac1 activation is abolished by inhibition of TGase activity by cystamine or 

knockdown of TGase2 by siRNA. Two-way ANOVA analysis of three separate 

experiments shows significant effects of transfection or cystamine pretreatment on Rac1 

activation [F(2,12)=5.223, p<0.05]. Newman-Keuls multiple comparison test indicates * 

p<0.05, n=3 compared with vehicle treatment in mock-transfected cells; # p< 0.05, ## 

p<0.01, n=3 compared with DOI treatment in mock-transfected cells. 
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Figure 2.2 DOI-induced Rac1 transamidation is mediated by both 5-HT2A and 5-

HT2C receptors in rat primary cortical neurons. Cells were treated with MDL 

100907, SB24084 or vehicle followed by DOI stimulation. TGase-modified Rac1 was 

detected on immunoblots. Two-way ANOVA analysis of three separate experiments 

shows significant effects of pretreatment [F(2,12)=7.827, p<0.01], significant effect of 

DOI stimulation [F(1,12)=9.051, p<0.05], Newman-Keuls multiple comparison test 

indicates * p<0.01, n=3 compared with vehicle treatment in vehicle-pretreated cells; # p< 

0.01, n=3 compared with DOI treatment in vehicle-pretreated cells.  

Figure 2. 2 
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Figure 2.3 Stimulation of 5-HT2 receptors increases activation of Cdc42 in a TGase-

dependent manner in A1A1v cells and rat primary cortical neurons. 

Figure 2. 3 
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A. DOI increased the activity of Cdc42 in A1A1v cells. Cdc42 activity was transiently 

increased at 30min, 1hr and 2hr after DOI treatment and was reduced back to control 

levels at 3hr after DOI treatment. One-way ANOVA indicates a significant difference 

among groups [F(4,10)=11.631, p<0.001]. Newman-Keuls multiple comparison test 

indicates * p< 0.05, ** p< 0.01, *** p< 0.001, n=3.  

B. DOI increased transamidation of Cdc42 in A1A1v cells. One-way ANOVA indicates a 

significant difference among groups [F(4,10)=11.828, p<0.001]. Newman-Keuls multiple 

comparison test indicates * p<0.01, n=3.  

C. Inhibition of TGase activity by cystamine prevents Cdc42 activation in A1A1v cells. 

Two-way ANOVA analysis of three separate experiments shows a significant effect of 

cystamine pretreatment [F(1,16)=37.072, p<0.001], a significant effect of DOI 

stimulation [F(3,16)=4.595, p<0.05], and a significant interaction between cystamine 

pretreatment with DOI treatment on Cdc42 activity [F(3,16)=3.924, p<0.05]. Newman-

Keuls multiple comparison test indicates *, p< 0.05, **, p<0.01, n=3 compared with non-

stimulated in vehicle pretreated cells; #, p≤0.01, ##, p<0.001, n=3 compared with 

vehicle-pretreated control cells stimulated with DOI for the same length of time. 

D. Inhibition of TGase activity by cystamine or knockdown of TGase2 by siRNA 

prevents Cdc42 transamidation in rat primary cells. Two-way ANOVA analysis of three 

separate experiments shows significant effects of transfection or cystamine pretreatment 

[F(2,12)=12.374, p<0.001]. Newman-Keuls multiple comparison test indicates * p<0.05, 

n=3 compared with vehicle treatment in mock-transfected cells; # p< 0.01, n=3 compared 

with DOI treatment in mock-transfected cells; & p<0.05, n=3 compared with DOI 

treatment in cystamine-pretreated cells.  
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E. Inhibition of TGase activity by cystamine or knockdown of TGase2 by siRNA 

prevents Cdc42 activation. Two-way ANOVA analysis shows significant effects of 

transfection or cystamine pretreatment [F(2,12)=17.503, p<0.001], significant effect of 

DOI stimulation [F(1,12)=16.065, p=0.002], and a significant interaction between 

transfection or cystamine with DOI treatment on Cdc42 activation [F(2,12)=10.895, 

p=0.002]. Newman-Keuls multiple comparison test indicates * p<0.001, n=3 compared 

with vehicle treatment in mock-transfected cells; # p<0.01, n=3 compared with DOI 

treatment in mock-transfected cells. 

 

Figure 2. 4 

Figure 2.4 RhoA is not transamidated following DOI treatment in primary cortical 

neurons. Primary cortical neurons were treated with 3μM DOI treatment for 15 min, 30 

min, 1 hour, 3 hour and 24 hour. Then the TGase-modified proteins were 

immunoprecipitated with 81D4 antibody bound Sepharose beads and detected on 

immunoblots using anti-RhoA antibody. Total amount of RhoA in cell lysates was also 

detected on western blots using an anti-RhoA antibody. “Neg” indicates indicates 81D4 

beads were only incubated with IP buffer but not protein lysate. 
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Figure 2. 5 
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Figure 2.5 TGase-catalyzed transamidation of Rac1 occurs at Q61 in neuronal cells.  

A. DOI-stimulated transamidation was prevented in Q61/74N Rac1 mutants. A1A1v cells 

were transfected with Rac1 constructs containing amino acid substitutions for glutamine 

61& 74, 141&162 and wild type (WT) Rac1 and 48 hours later, stimulated with DOI for 

15min. Two-way ANOVA analysis shows a significant effects of transfection [F(2, 12)= 

5.442, p<0.05] on Rac1 transamidation. Newman-Keuls multiple comparison test 

indicates * p<0.05 compared with vehicle treatment in WT Rac1-transfected cells; # 

p<0.05 compared with DOI treatment in WT Rac1-transfected cells, n=3; & p<0.05 

compared with DOI treatment in Q61/74N Rac1-transfected cells.   

B. DOI-stimulated transamidation was prevented in Q61N Rac1 mutants. Two-way 

ANOVA analysis of three separate experiments shows significant effects of transfection 

[F(2,12)=26.132, p<0.001], significant effects of DOI stimulation [F(1,12)=33.442, 

p<0.001], and a significant interaction between transfection with DOI treatment on 

TGase-modified Rac1 [F(2,12)=7.107, p<0.01]. Newman-Keuls post-hoc test indicates * 

p<0.001 compared with vehicle treatment in the same transfection groups; # p< 0.001 

compared with DOI treatment in WT Rac1-transfected cells, n=3. 
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Figure 2. 7 Figure 2. 6 
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Figure 2.6 Muscarinic receptor stimulation in SH-SY5Y cells causes TGase-

dependent Rac1 transamidation and activation.  

A. Carbachol treatment increased Rac1 activity in SH-SY5Y cells. SH-SY5Y cells were 

treated with vehicle or 1mM carbachol, a muscarinic receptor agonist, for 5min and 

10min, and Rac1 activity was detected. One-way ANOVA shows a significant difference 

among groups [F(2,6)=13.85, p<0.01]. Newman-Keuls multiple comparison test indicates 

* p<0.01, n=3.  

B. Carbachol-stimulated Rac1 transamidation is TGase dependent. Pretreatment with 

cystamine prevents carbachol-stimulated Rac1 transamidation. Two-way ANOVA 

analysis shows a significant effect of cystamine pretreatment, F(1,8)=90.978, p<0.001], 

significant effect of carbachol stimulation [F(1,8)=31.28, p<0.001], and a significant 

interaction between transfection or cystamine with carbachol treatment on Rac1 

transamidation [F(1,8)=59.003, p<0.001]. Newman-Keuls multiple comparison test 

indicates * p< 0.001, n=3 compared with non-stimulated in vehicle pretreated cells; # 

p<0.001, n=3 compared with carbachol-stimulated controls in vehicle-pretreated cells.  

C. Carbachol-stimulated Rac1 activation is TGase dependent. Cystamine pretreatment 

inhibited carbachol-stimulated activity of Rac1. Two-way ANOVA analysis shows a 

significant effect of cystamine pretreatment, [F(1,8)=90.978, p<0.05] on Rac1 activation.  

Newman-Keuls multiple comparison test indicates * p< 0.05, n=3 compared with non-

stimulated in vehicle pretreated cells; # p<0.01, n=3 compared with carbachol-stimulated 

controls in vehicle-pretreated cells.  
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Figure 2. 7 

Figure 2.7 DOI-induced dendritic spine enlargement is dependent on TGase activity. 

A. 5-HT2A receptors (green) co-localize with actin (red) predominantly in the soma, 
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dendritic shafts and dendritic spines. Scale bar represents 10µm. 

B. Higher magnification of dendrites and dendritic spines. Scale bar represents 10µm. 

C. PSD-95 (magenta) colocalizes with 5-HT2A receptors (green) in the dendrites of 

cultured rat primary cortical neurons at DIV21 (arrowheads). Scale bar represents 10µm. 

D. DOI causes an increase in dendritic spine area after 30min treatment. Bars represent 

absolute value of dendritic spine area. Log transformation was performed on original data 

to achieved normality. One-way repeated measures ANOVA suggests a significant 

difference between five treatment groups [F(4,34)= 9.342, p<0.001]. Newman-Keuls 

multiple comparison test indicates * p≤ 0.001 compared with vehicle treatment group, 

and groups treated with DOI for 5min, 15min and 60min. 

E. Cystamine inhibits the DOI-induced dendritic spine enlargement. Bars represent 

absolute value of dendritic spine area. Since log transformation does not enable the data 

to distribute normally, analysis was still performed on the original data using a non-

parametric test. Kruskal-Wallis one-way ANOVA on Ranks indicates a significant 

difference between four treatment groups (p<0.001). Post hoc Dunn’s test suggests * 

p<0.05 compared with vehicle-vehicle treatment; # p<0.05 compared with vehicle-DOI 

treatment.  

F. DOI and cystamine have no significant effects on dendritic spine density. Bars 

represent absolute value of dendritic spine density. Log transformation was performed on 

original data to achieved normality. Two-way ANOVA test indicates that neither 

cystamine nor DOI has a significant effect on dendritic spine density. 
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CHAPTER THREE 

OLANZAPINE TREATMENT ALTERS EXPRESSION OF GENES AND 

DENDRITIC SPINE MATURATION IN BOTH A JAK2-DEPENDENT AND 

INDEPENDENT PATHWAY 

ABSTRACT  

Recent studies show that atypical antipsychotics change the levels of genes that 

may play a role in the etiology and treatment of schizophrenia and mood disorders. We 

hypothesized that sub-chronic administration of olanzapine to rats would alter expression 

of various genes via Janus Kinase 2 (JAK2)/ signal transducer and activator of 

transcription 3 (STAT3) signaling pathway, thus exerting therapeutic or adverse effects. 

Sprague-Dawley rats were pretreated with the JAK2 inhibitor AG490 or vehicle, 

followed by administration with olanzapine or vehicle daily for seven days. Microarray 

analysis of prefrontal cortices showed that 205 genes were significantly changed by 

AG490, olanzapine or the combination of both drugs compared to the controls. These 

genes are involved in the etiology of schizophrenia, neuronal signal transduction, 

neuronal growth factor, metabolism and energy, and synaptic plasticity. 92 of the 205 

genes are changed by olanzapine via JAK2 signaling pathway. Real-time qPCR verified 

that Crf, Cbln1, Nrg1, Hsp70, and Fabp7 were upregulated by olanzapine in a JAK2 

dependent manner. Filip1, Homer1, Pak1ip1 and Arc were significantly changed by 

olanzapine, but not via the JAK2 pathway. Protein levels of neuregulin-1 (Nrg1) and heat 

shock protein 70 (Hsp70) were significantly increased by olanzapine via JAK2 pathway, 

while kalirin7 and spinophilin protein levels were changed by olanzapine independently 

of JAK2 signaling. Given the changes in numerous gene related to the cytoskeleton, post-
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synaptic density and synaptic plasticity, dendritic spines in rat cortical primary culture 

were also examined. We found that treatment with olanzapine induced a maturation in 

dendritic spines. AG490 blocks olanzapine-induced changes in stubby spines and thin 

spines, but not the changes in dendritic filopodia and mushroom spines, suggesting the 

olanzapine-induced maturation of dendritic spines is only partially dependent on JAK2 

pathway. Our results show for the first time that olanzapine causes changes in various 

important genes that may be involved in the etiology of schizophrenia and therapeutic 

effects of atypical antipsychotics in a JAK2 dependent manner. 

INTRODUCTION 

In the United States in 2014, drugs for the treatment of mental health rank second 

only to antihypertensives in the number of prescriptions dispensed and the atypical 

antipsychotic aripiprazole is ranked second drug in sales (Lindsley, 2012). Aripiprazole 

and other atypical antipsychotics are approved for the treatment of schizophrenia as well 

as for adjunctive therapy for bipolar disorder, major depressive disorder and autism 

disorders. Despite the extensive use of atypical antipsychotic drug therapy, new 

approaches for the treatment of schizophrenia are needed to combat the full range of 

disabling symptoms. The symptoms of schizophrenia cluster into positive symptoms 

(hallucinations and delusions), negative symptoms (social withdrawal and apathy), and 

cognitive deficits (impairments in attention, learning and memory, reasoning, and 

processing speed) (Andreasen, 1995). While positive symptoms can be ameliorated by 

atypical antipsychotics to various degrees, negative symptoms and cognitive deficits do 

not respond sufficiently to atypical antipsychotics and side effects, including metabolic 
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syndrome and weight gain, can limit the usefulness of atypical antipsychotics and patient 

compliance (Jones et al, 2011).  

Atypical antipsychotic drugs have a broad binding profile with high affinity for 

both dopamine 2 receptors and serotonin 2A receptors thought to be important in 

therapeutic effects (Nasrallah, 2008). 5-HT2A receptor antagonism is the best known 

mechanism for the effects of atypical antipsychotics on the negative and cognitive 

symptoms (Marek et al, 2003). We previously reported that treatment with atypical 

antipsychotics olanzapine and clozapine activate the JAK2/STAT3 pathway in both 

A1A1v cells and in rat frontal cortex (Muma et al, 2007a; Singh et al, 2009a; Singh et al, 

2007b). This effect is likely mediated by 5-HT2A receptors, because MDL-100,907 [(R)-

(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperinemethanol], a 

selective 5-HT2A receptor antagonist, also activated the JAK2/STAT3 pathway (Singh et 

al, 2009a). Upon activation of the JAK2/STAT3 pathway, JAK2 becomes 

phosphorylated and dimerizes, then activates STAT3 via phosphorylation. STAT3 

dimerizes and translocates to the nucleus, where it acts as a transcription factor. STAT3 is 

a transcription factor for RGS7 in A1A1v cells and increases expression of RGS7 mRNA 

and protein (Singh et al, 2009a). JAK2/STAT3 pathway has been shown to mediate 

desensitization of 5-HT2A receptors, probably via increasing RGS7 expression (Singh et 

al, 2009a). Interleukin-6 receptor stimulation also attenuates 5-HT2A receptor agonist- 

induced IP production by activating the JAK-STAT pathway (Donegan et al, 2015). 

Moreover, there is accumulating evidence that JAK-STAT pathway plays an important 

role in the regulation of neuronal functions in the central nervous system (CNS). For 

example, JAK/STAT regulates expression of a number of neurotransmitters, such as γ-
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amino-butyric acid (GABA) (Lund et al, 2008), N-methyl-D-aspartate (NMDA) 

(Mahmoud and Grover, 2006), and muscarinic acetylcholine (Chiba et al, 2009). 

Inhibition of JAK/STAT pathway with JAK2 inhibitor AG490 in mice leads to 

impairment of spatial working memory (Chiba et al, 2009). JAK/STAT pathway also 

plays a key role in the synaptic plasticity. A recent study demonstrated that induction of 

NMDA-receptor dependent long-term depression (LTD) is dependent on the JAK/STAT 

pathway in the hippocampus (Nicolas et al, 2012).  

Given the links of JAK/STAT pathway to atypical antipsychotics and neuronal 

functions, a better understanding of the 5-HT2A receptor/JAK2/STAT3 pathway could 

provide insight into the mechanisms of actin of atypical antipsychotics and shed light on 

novel medical interventions for schizophrenia. In the present study, we use microarray 

technology to screen for the expression of genes that are changed by chronic olanzapine 

treatment via the JAK/STAT pathway in the rat frontal cortex, and verified the mRNA 

and protein levels of select genes. We identified a number of schizophrenia susceptibility 

genes, as well as gene associated with regulation of cytoskeleton and synaptic function, 

which are changed by olanzapine or AG490 treatment. Changes in those genes may 

mediate the therapeutic effects of atypical antipsychotics. It is also worth noting that 

treatment with olanzapine induced the dendritic spine maturation in rat cortical primary 

culture via JAK/STAT pathway. Dendritic spine loss in forebrain regions is a consistent 

feature of schizophrenia (Glantz and Lewis, 2000; Konopaske et al, 2014; Penzes et al, 

2011). Atypical antipsychotics may exert therapeutic effects on schizophrenia by 

reversing the dendritic spine pathologies in a JAK/STAT dependent manner. 

 



69 
 

METHODS 

Reagents 

The following drugs were used in this study: AG490 (Toronto Research 

Chemicals Inc., ON, Canada), olanzapine (Sandoz, Holzkirchen, Germany), 1-(2, 5-

dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI) (Sigma-Aldrich, St. Louis, MO).  

MDL100907 was kindly provided by Sanofi Aventis (Bridgewater, NJ) and dissolved in 

DMSO. AG490 was reconstituted in 50% DMSO. DOI was dissolved in saline and 

further diluted before applied to cell cultures. 

Animal 

Twenty four male Sprague-Dawley rats (225-250 g) were obtained from Harlan 

Laboratories (Indianapolis, IN) and housed 2 per cage on a 12 h light/dark cycle (lights 

on 7:00 AM- 7:00 PM) in an environment controlled for temperature and humidity. All 

rats were provided with food and water ad libitum. Rats were randomly assigned to four 

experimental groups and given daily injections of vehicle (50% DMSO s.c.) or 10 mg/kg 

AG490 first (s.c.) for seven consecutive days. One hour later, these rats were injected 

with saline (s.c.) or 10mg/kg olanzapine. The AG490 and olanzapine doses were chosen 

based on previous results (Singh et al, 2009a). Rats were handled for several days before 

treatment to minimize stress and weighed every alternate day during the treatment period. 

24 hours after the last injection, the rats were euthanized and whole brains were removed, 

frozen and stored at -80°C for the following experiments. All procedures were performed 

in accordance with the National Institute for Health Guide for the Care and Use of 
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Laboratory Animals as approved by the University of Kansas Institutional Animal Care 

and Use Committee. 

RNA Isolation 

Total RNA was isolated from half of each frontal cortex preserved in RNAlater® 

solution (Life Technologies, Carlsbad, CA), using the RNeasy Mini Kit (Qiagen 

Sciences, Valencia, CA) according to the manufacture’s protocol. Total RNA was 

quantitated using a spectrophotometer and optical density ratios at 260/280 nm were 

determined. 

Microarray Analysis 

The Rat Genome GeneChip 230 2.0 Arrays were employed for the microarray 

study, which allowed us to probe the expression of over 30,000 transcripts and variants 

from the rat genome. To carry out the GeneChip analysis, the GeneChip 3’ IVT Express 

Kit Labeling Assay was conducted at the University of Kansas Genomics Facility. In 

order to minimize experimental variability, standardized GeneChip operation was 

performed by an experienced investigator throughout the study. For each sample, 100 ng 

total RNA was used for cRNA target preparation, array hybridization, washing, staining 

and image scanning. The washing and staining steps were performed on a GeneChip 

Fluidics Station 450 and the scanning of hybridized arrays was conducted on a GeneChip 

Scanner 3000. After being generated from the Affymetrix GeneChip Operating Software 

(GCOS), the microarray data was first examined for quality, and the microarray data 

generated from all chips met quality control criteria set by Affymetrix.  
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Data Analysis. To facilitate direct comparison of gene expression data between 

different samples, the GeneChip data were first subjected to preprocessing. This step 

involved scaling (in GCOS) data from all chips to a target intensity value of 500, and 

further normalizations steps in GeneSpring GX11 (Agilent Technologies, Santa Clara, 

CA). Prior to identifying differentially expressed genes, genes that were detected as non-

expressed in all samples, i.e., those with absence calls, were filtered out. To identify 

genes whose expression was changed by our compounds, a volcano-plot based approach 

was used. Based on this approach, in order to be called significantly altered, the 

expression value of a gene must pass two criteria, i.e. fold change ≥ 1.3 and P ≤ 0.05. 

Multi-test correction was conducted using the Benjamini-Hochberg method. After the 

identification of differentially expressed genes, further bioinformatic data analyses were 

carried out at the levels of Gene Ontology (GO) and biological pathway using DAVID 

(http://david.abcc.ncifcrf.gov/).  

Reverse transcription and quantitative real-time PCR (qPCR) 

First strand cDNA was synthesized using Superscript III Reverse Transcriptase 

(Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol. Real-time 

PCR amplification was performed using 7500 Real-Time PCR System using SYBR green 

PCR master mix (Life Technologies, Carlsbad, CA). Comparative Ct (ΔΔ Ct) was and 

used for analysis of real-time PCR data. Results were expressed as fold change in target 

mRNA levels for AG490-vehicle, vehicle-olanzapine, and AG490-olanzapine treated 

animals compared to vehicle-vehicle treated animals. The primers were synthesized by 

Life Technologies (Carlsbad, CA) as listed in Table 3.1.  

 

http://david.abcc.ncifcrf.gov/


72 
 

Table 3.1 List of primers 

Gene 

Name 

Primer Sequence Product 

Length  

NCBI Reference 

Sequence 

Arc 

 

F:CCGTCCCCTCCTCTCTTGA 

R: AAGGCACCTCCTCTTTGTAATCCTAT 

89 NM_019361.1 

Reelin F:GTACTCCCTGAACAACGGCA 

R:TCTGGAACCTTTCCGACGTG 

116 NM_080394.2 

Kalirin F:TGGTATCTTTGGTATCTCCGCT 

R:ACGAGTTTCCGTAGGTCTTCCT 

209 NM_032062.2 

Hsp70 

 

F:AACACGCTGGCTGAGAAAGAG 

R:TGATACAGCCCGCTGATGATC 

86 NM_031971.2 

 

Nr4a1 

 

F:TGTCTGCTCTGGTCCTCATCAC 

R:CCACGGCGGCCATGT 

111 NM_024388.2 

Fabp7 

 

F:GGACACAATGCACATTCAAGAAC 

R:CCGAATCACAGACTTACAGTTC 

101 NM_030832.2 

Pde10a 

 

F:TGACCTGGACCACAGGGGC 

R:TGATGGCTTTGCGGATGATC 

203 NM_022236.1 

Nrg1 

 

F:GGCAGTCAGCCCCTTTGTG 

R:TGCAGGGTTGTGATGAAAGGA 

121 NM_001271130.1 

Homer1 

 

F:ACACTGTTTATGGACTGGGATTCTC 

R:TCCTGCGACTTCTCCTTTGC 

109 NM_031707.1 

Filip1 

 

F:AACGGCTTACAGCTCAACTCG 

R:ACGGCTAGTTTACCCTGTGTTT 

88 XM_008768653.1 

Dcx 

 

F:CTCCTATCTCTACACCCACAAGCC 

R:GAATCGCCAAGTGAATCAGAGTC 

97 NM_053379.3 

Cbln1 

 

F:CACCGCGCCAGTTAAGCT 

R:GGTGAGTCTTTCGTCCGCTAA 

62 NM_001109127.1 
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Pak1ip1 

 

F:CGGCACCCTCACAAATGG 

R:TGCAAGGACAGAGTCTGAGAGAAA 

64 NM_001037356.1 

Nfasc 

 

F:TGACCCAACCCCCAACGATCA 

R:CACTGCGGAAGTCGATCACC 

207 NM_001160314.1 

Spn 

 

F:AAGGCCAAGCGTCTCATCAA 

R:TGGGCGGTCTCTTTTTTCAG 

68 NM_053474.1 

Cartpt 

 

F:CTCAAGAGTAAACGCATTCC 

R:ACAAGCACTTCAAGAGGAAA 

160 NM_017110.1 

Nts 

 

F:GTGATGACGACCTTGTTGCG 

R:AGCAGCGCTTCCAAGCTAAA 

70 NM_001102381.1 

Cdhr1 

 

F:ATTCTCAGCCACCACGACTG 

R:GACGGAGATGGCTCCAGATG 

238 NM_053572.1 

Ntrk2 

 

F:ACCAAACCAATCGGGAGCAT 

R:CCCCAGCCTTGTCTTTCCTT 

192 NM_001163168.2 

Crh 

 

F:CTGATCCGCATGGGTGAAGA 

R:CAGCAACACGCGGAAAAAGT 

156 NM_031019.1 

Cbp 

 

F:CGAGAACTTGCTGGACGGAC 

R:ATCTGTGCTGTCATTCGCGG 

82 NM_133381.3 

Table 3. 1 

Tissue Preparation and Western Blot 

Frontal cortex tissue was homogenized in ice-cold homogenization buffer, which 

contains 25 mM HEPES-Tris, pH 7.4, 1 mM EGTA, 1:1000 protease inhibitor cocktail 

(Sigma-Aldrich, St. Louis, MO), by using a BulletBlender (Next Advance, Averill Park, 

NY). The homogenate was centrifuged at 14,000 rpm for 15 sec at 4°C. After 

centrifugation, the supernatant was collected as whole tissue homogenate. Protein 

concentration was determined using Pierce™ BCA Protein Assay Kit (Life Technologies, 
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Carlsbad, CA). Equal amounts of protein from different groups were separated on 12% 

SDS-polyacrylamide gels as described before (Dai et al, 2008). Non-specific binding was 

blocked in blotto (5% nonfat dry milk, 0.1% Tween20, 1X TBS buffer) for 1 hour. 

Primary and secondary antibodies were diluted in antibody buffer (2% nonfat dry milk, 

0.1% Tween20, 1X TBS buffer). The following primary antibodies were used: anti-

kalirin antibody, anti-JAK2 antibody, anti-phospho-Y1007-JAK2 antibody (Millipore 

Corporation, Billerica, MA), anti-spinophilin/neurabin 2 antibody, anti-neuregulin1 Type 

I antibody (Abcam, Cambridge, MA). Protein bands were detected using ChemiDoc™ 

XRS+ System (Bio-rad, Hercules, CA). The integrated optical density (IOD) of each 

protein band was quantified using Image Lab™ Software (Bio-rad, Hercules, CA). 

Hsp70 ELISA Assay 

Hsp70 protein levels were measured using rat Hsp70 ELISA Development Kit 

(R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions. Briefly, 

samples and standards were added to 96 well plates coated with capture antibody and 

incubated for 2 hours at room temperature. After 3 washes, detection antibody was added 

to each well followed by a 2 hour incubation. Wells were washed again and diluted 

Streptavidin-HRP was added to each well and incubated for 20 min at room temperature. 

Substrate solution was added followed by 20 min incubation, and then stop solution was 

added to each well. Optical density of each well was determined immediately, using a 

microplate reader (Bio-Tek, Winooski, VT) set to 450 nm. 

Isolation of Rat Primary Cortical Neurons 
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Primary cortical neurons were isolated from Sprague-Dawley rat embryos at E18 

as described previously with minor modifications (Beaudoin III et al, 2012; Srivastava et 

al, 2011). Pups were decapitated and cortical tissue was removed, followed by 0.01% 

trypsin (Sigma-Aldrich, St. Louis, MO) digestion for 20min. After gentle trituration, 

neurons were passed through a 40 µm cell strainer. Yield of viable cells were counted 

using a hemocytometer. Cells were plated at a density of 5 x 105 cells/ml on 22mm 

diameter round cover glass (Neuvitro Corporation, Vancouver, WA) or at a density of 2.7 

x 106 cells/ml on T25 cell culture flasks (Fisher Scientific, Lenexa, KS) coated with Poly-

L-lysine (Sigma-Aldrich, St. Louis, MO). Primary neurons were maintained in 

Neurobasal media (Life Technologies, Grand Island, NY) supplemented with 2% B27 

(Life Technologies, Grand Island, NY), 0.5 nM glutamine (Sigma-Aldrich, St. Louis, 

MO) and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) at 37°C in 5% CO2. 

Half of the medium was changed twice a week until 21 days in vitro.  

Immunocytochemistry 

Primary neurons were labeled with Alexa Fluor® 568 Phalloidin (Life 

Technologies, Grand Island, NY), antibodies against 5-HT2A receptors (Singh et al, 

2007b), and anti-MAP2 antibody (HM-2) (Abcam, Cambridge, MA). Neurons were fixed 

in 4% paraformaldehyde (pre-warmed, 37°C) for 20min followed by three washes. Fixed 

neurons then were permeabilized in phosphate buffered saline (PBS) buffer containing 

0.1% Triton X-100 for 10 min, followed by incubation with PBS containing 10% serum 

for one hour. Then neurons were incubated with primary antibodies in 10% serum 

overnight in a humid chamber at 4 °C. After three washes with PBS the next day, Alexa 

Fluor® 488 donkey anti-rabbit IgG (H+L) antibody, or Alexa Fluor® 647 goat anti-

http://www.google.com.hk/url?sa=t&rct=j&q=phalloidin&source=web&cd=2&ved=0CDgQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6c%69%66%65%74%65%63%68%6e%6f%6c%6f%67%69%65%73%2e%63%6f%6d%2f%6f%72%64%65%72%2f%63%61%74%61%6c%6f%67%2f%70%72%6f%64%75%63%74%2f%41%31%32%33%37%39&ei=VG2_UreCLa-iiAezroHQDA&usg=AFQjCNEBN14DNFGv2gHyjch_Y3Nq1XuRJA&bvm=bv.58187178,d.aGc
http://www.google.com.hk/url?sa=t&rct=j&q=phalloidin&source=web&cd=2&ved=0CDgQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6c%69%66%65%74%65%63%68%6e%6f%6c%6f%67%69%65%73%2e%63%6f%6d%2f%6f%72%64%65%72%2f%63%61%74%61%6c%6f%67%2f%70%72%6f%64%75%63%74%2f%41%31%32%33%37%39&ei=VG2_UreCLa-iiAezroHQDA&usg=AFQjCNEBN14DNFGv2gHyjch_Y3Nq1XuRJA&bvm=bv.58187178,d.aGc
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mouse IgG (H+L) antibody (Life Technologies, Grand Island, NY) in 10% serum were 

added to coverslips and incubated for 1 hours at room temperature. 10μL methanol stock 

solution of Alexa Fluor® 568 Phalloidin in 200μL PBS was added to each coverslip. 

After a 20 min incubation, three more washes were performed before coverslips were 

mounted onto slides using ProLong anti-fade reagent (Invitrogen, Grand Island, NY). 

Quantitative Analysis of Spine Morphology 

Labeled neurons were visualized with an Olympus/3I Spinning Disk Confocal 

Microscopy using a 100X or 150X TIRF oil immersion objective. Z-series of twenty to 

thirty images were taken at 0.1µm intervals, with 1024 x 1024 and 1000 x 1000 pixel 

resolution. Three-dimensional maximum projection reconstructions and deconvolution 

were performed using Slidebook 5.5 or 6 (Intelligent Imaging Innovations, Inc). Length 

of dendrites was measuring using Image J (National Institutes of Health, Bethesda, 

Maryland). Density of different types of dendritic spines were measured by using Neuron 

Studio (Icahn School of Medicine at Mount Sinai, New York, NY). Spines on one or two 

primary dendrites of each neuron, and 5-10 neurons for each condition were analyzed 

from three separate experiments. 

RESULTS 

Identification of differential gene expression in the frontal cortex of rats treated 

with AG490 and olanzapine.  

To identify the changes in gene expression induced by olanzapine via 

JAK2/STAT3 signaling pathway, we performed a microarray assay to compare gene 

expression in the frontal cortex from rats pretreated with vehicle or AG490 followed by 
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treatment with vehicle or olanzapine daily for seven days.  We used multiple types of 

statistically analytical approaches (gene expression levels of 1.3-fold or more versus 

control rat, volcano-plot analysis, and two-way ANOVA) to analyze microarray data, 

which allows optimal gene mining. As indicated in the heat map of the cluster analysis 

(Figure 3.1A), 205 genes are significantly changed by the treatment with AG490, 

olanzapine or the combination of both drugs compared to the vehicle-treated controls. 

Among these genes, we noted that 92 genes were altered by vehicle/olanzapine but not by 

the combined treatment of AG490 and olanzapine, indicating that these 92 genes are 

regulated by olanzapine via JAK2 signaling pathway (Figure 3.1B). Of the 12 genes, 

which showed changes in gene expression in both the vehicle/olanzapine and 

AG490/olanzapine groups, the expression of several of these gene may not be regulated 

independently of JAK2/STAT signaling. A couple of genes in this group were changed 

less by AG490/olanzapine compared with vehicle/olanzapine, suggesting that 

JAK2/STAT pathway may be also involved in the olanzapine-induced changes of these 

genes. The Gene Ontology (GO) enrichment analysis revealed the functions which are 

significantly changed by AG490, olanzapine and the combined treatment in the identified 

genes collectively. As shown in Table 3.2, functions related to schizophrenia, adverse 

effects of atypical antipsychotics, as well as postsynaptic functions, cytoskeleton, and 

dendritic spine plasticity, are highly enriched in these genes.  

 Validation of the microarray results using qPCR 

To validate the differential gene expression results obtained from microarray, we 

performed qPCR to verify the changes of a number of genes. In Figure 3.2A, post hoc 

Newman–Keuls method suggests that Crh, Cbln1, Nrg1, Hsp70 and Fabp7 are 
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significantly increased by vehicle-olanzapine when compared to vehicle-vehicle. The 

olanzapine-induced changes are significantly reduced by AG490, suggesting that 

olanzapine-induced increases in Crh, Cbln1, Nrg1, Hsp70 and Fabp7 are mediated by the 

JAK2 signaling pathway. In Figure 3.2B, two-way ANOVA tests indicate that olanzapine 

has a significant effect on Filip1, Homer1, Pak1ip1 and Arc, however, the impact of 

AG490 is not significant. Therefore, olanzapine-induced changes in expression of these 

genes may be not dependent on JAK2/STAT pathway. Two-way ANOVA analysis also 

shows that AG490 has a significant influence on Pde10, Ntrk2 and Cdrh1 (Figure 3.2C). 

Even though the microarray results suggest that Carpt, Nts, Nr4a1, Cbp and Reelin are 

significantly regulated by olanzapine in a JAK/STAT signaling pathway dependent 

manner, none of these genes is significantly affected by either AG490 or olanzapine 

based on the qPCR assay (Figure 3.2D). Given that GO biology processes related to 

cytoskeleton, and dendritic spine plasticity are enriched, we also measured the gene 

expression of kalirin7 and spinophilin (Spn), which are dendritic spine-enriched proteins 

and play important roles in the regulation of postsynaptic plasticity. Although we noted a 

tendency of increase in kalirin and Spn by olanzapine treatment, neither of these two 

genes are altered significantly by AG490 or olanzapine. 

Validation of the qPCR results by measuring the protein levels  

To follow up on the changes observed in qPCR assays, we also examined the 

protein levels of some genes of interest. We first measured the protein level of regulator 

of G-protein signaling 7 (RGS7). Treatment with olanzapine for 7 days significantly 

increased RGS7 in the whole tissue homogenate as shown in Figure 3.3A. The 

olanzapine-induced upregulation of RGS7 was reduced back to control level by 
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pretreatment with AG490. This result indicates that olanzapine increases RGS7 via 

JAK2/STAT3 signaling pathway in rat frontal cortex as previously demonstrate (Muma 

et al, 2007a). Next, we examined the protein level of Hsp70 and Nrg1 using ELISA 

Assay and Western blot respectively. We found that treatment with olanzapine 

significantly increased the protein level of Hsp70 by 30%, and AG490 pretreatment 

decreased it to control level (Figure 3.3B). Similarly, protein level of Nrg1 was 

significantly enhanced by olanzapine by 35%, and reduced to control level by AG490 

(Figure 3.3C). These results suggest that olanzapine regulates both Hsp70 and Nrg1 in a 

JAK2/STAT dependent manner, consistent with the microarray and qPCR results. The 

protein levels of kalirin7 and spinophilin were also measured using SDS-PAGE. The 

protein levels of kalirin7 and spinophilin were significantly increased by olanzapine by 

26% (Figure 3.3D). As shown in Figure 3E, the anti-spinophilin antibody recognizes the 

rat spinophilin at 120kD, and a band at ~95kDa which is suspected to be a cleavage 

product of spinophilin. Olanzapine significantly increases the protein levels of both 

bands.  However, pretreatment with AG490 did not block the olanzapine-induced 

changes in kalirin7 and spinophilin, suggesting chronic treatment with olanzapine is able 

to increase protein levels of kalirin7 and spinophilin, but not via JAK2/STAT pathway.  

JAK2/STAT pathway is activated by olanzapine in rat cortical primary culture 

To determine whether olanzapine also activated JAK2/STAT3 signaling pathway 

in rat primary cortical culture, we pretreated the primary neurons at DIV14 with 15µM 

AG490 or 50% DMSO as vehicle. One hour later, the neurons were treated with 300nM 

olanzapine, or 1µM MDL100907, a selective 5-HT2A receptor antagonist, or drug 

vehicle. The doses of drugs were selected according to the previous studies (Singh et al, 
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2009a). We treated the neurons daily for seven days and harvested the whole cell lysate at 

DIV21. The protein level of phosphor-JAK2 (pJAK2) and total JAK2 were analyzed by 

western blot. Tyrosine phosphorylation of JAK2 was significantly increased by both 

olanzapine and MDL100907 treatment. As shown in Figure 3.4A, pretreatment with 

AG490 significantly decreased olanzapine- and MDL100907-induced increases in 

phosphorylation of JAK2. This result indicates that both olanzapine and MDL100907 

treatment activate JAK2 in rat cortical neurons. Since MDL100907 is a selective 5-HT2A 

receptor antagonist, the activation of JAK2 by olanzapine is likely mediated by 5-HT2A 

receptors. 

Moreover, to verify whether olanzapine causes same changes in protein 

expression in rat primary cortical neurons as in rat frontal cortex, we also examine the 

protein level of Nrg1. As shown in Figure 3.4B, both olanzapine and MDL100907 

increased Nrg1 protein levels, and AG490 pretreatment reduced the protein back to 

control levels. This result suggests that, olanzapine upregulates Nrg1 via JAK2/STAT 

pathway in rat primary culture as well as in rat frontal cortex.  

Olanzapine-induced dendritic spine maturation is partially dependent on 

JAK2/STAT pathway 

To examine the influence of olanzapine on the morphology and function of 

dendritic spines, we treated the primary cortical neurons with 300nM olanzapine or 

vehicle for seven days, and fixed and stained the neurons at DIV21. As shown in Figure 

3.5A, endogenous 5-HT2A receptors localize to the soma, dendritic shafts and dendritic 

spines in our cultured rat primary neurons. Treatment with olanzapine for seven days 

significantly decreased the density of immature dendritic filopodia while increasing the 
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mature mushroom spines, suggesting a maturation of dendritic spines by olanzapine 

treatment (Figure 3.5B left panel). There is a tendency for the density of total dendritic 

spines to increase, but it is not significant (Figure 3.5B right panel). To study the role of 

the JAK2 signaling pathway in the olanzapine-induced dendritic spine maturation, we 

treated the primary cortical culture with AG490 and olanzapine as described above, and 

examine the morphology of dendritic spines.  

We found that olanzapine showed a tendency to decrease immature dendritic 

filopodia (Figure 3.5C), however it is not significant. AG490 treatment alone also 

significantly decreased the dendritic filopodia density. However, when combined with 

olanzapine, the effects of AG490 of olanzapine were inhibited. As shown in Figure 5D, 

olanzapine significantly reduced the density of stubby spines, another type of immature 

dendritic spines. AG490 pretreatment blocked the olanzapine-induced changes stubby 

spines (Figure 3.5D). We also found that olanzapine increased the density of thin spine, a 

relatively mature dendritic spine type, via JAK2 pathway (Figure 3.5E). The variability in 

the number of mushrooms spines was large resulting in not significant differences in 

either the AG490 or olanzapine effects (Figure 3.5F). As shown in Figure 3.5G, both 

olanzapine and AG490 treatment alone resulted in a small but significant increase in the 

total dendritic spine density. The olanzapine-induced increased was not blocked by 

AG490 pretreatment. These results suggest that the olanzapine-induced dendritic spine 

maturation is, at least, partially dependent on the JAK2 pathway.  

DISCUSSION 
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Atypical antipsychotics are inverse agonists of 5-HT2A receptors/Gαq/11 protein 

signaling but are agonists when considering the 5-HT2A/JAK2/STAT3 pathway. We 

previously reported that the atypical antipsychotics olanzapine and clozapine induce 

desensitization of 5-HT2A receptor signaling at least partially via the JAK2/STAT3 

signaling pathway, which is likely to contribute to therapeutic effects of atypical 

antipsychotics. Although we found that activation of JAK2/STAT3 pathways is necessary 

for full desensitization of 5-HT2A receptors by atypical antipsychotics, it is unclear 

whether activation of the JAK2/STAT3 pathway contributes to the beneficial effects of 

these antipsychotic drugs. The JAK2/STAT3 pathway regulates the expression of a 

number of transcription factors such as c-Fos, c-Jun and c-Myc, which can stimulate 

expression of select genes. To explore the genes regulated by atypical antipsychotics via 

JAK2/STAT3 pathway, we performed a microarray study and found a large number of 

genes are changed by olanzapine treatment and do so via the JAK2/STAT pathway. The 

expression of multiple genes was altered that are involved in the etiology of 

schizophrenia, the side effects of atypical antipsychotics, as well as cytoskeletal, post-

synaptic density and synaptic functions, suggesting that the effects of olanzapine on 

dendritic spines may be mediated by synergistic functions of multiple genes via 

JAK2/STAT3 pathways. 

We found that olanzapine increased both mRNA and protein levels of Nrg1 via 

JAK2/STAT3 pathway. Nrg1 is a widely accepted candidate susceptibility gene for 

schizophrenia (Bennett, 2011), but the question arises as to how Nrg1 contributes to the 

pathologies of schizophrenia. Nrg1 is an important regulator of GABAergic, 

dopaminergic and glutamatergic neurotransmission, and plays critical roles in neuronal 
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migration, myelination and synaptic plasticity (Agarwal et al, 2014; Chohan et al, 2014). 

It is suggested that acute and chronic Nrg1/ErbB4 activity exerts discriminative 

influences on dendritic spine plasticity. Acute Nrg1/ErbB4 activity inhibits synaptic 

plasticity in pyramidal neurons. Nrg1 suppresses long-term potentiation (LTP) by 

reducing AMPA receptor EPSCs in CA1 hippocampal neurons (Chen et al, 2010; Huang 

et al, 2000; Kwon et al, 2005). On the other hand, prolonged treatment with Nrg1 

potentiates synaptic plasticity. Nrg1 restored amyloid β-induced impairment of LTP in 

mouse hippocampal slices in an ErbB4 dependent manner (Min et al, 2011). Knocking 

down ErbB2/B4 inhibited dendritic spine maturation while treatment with clozapine 

reversed the behavioral and spine abnormalities in this mice model (Barros et al, 2009). 

Treatment with Nrg1 for 21 days also significantly promoted spine maturation in the 

cultured neurons (Barros et al, 2009). Cahill and colleagues found that long-term 

incubation with Nrg1 increased both size and density of dendritic spines, which kalirin7-

dependent manner. Kalirin7 is a Rac1 guanine nucleotide exchange factor (GEF) and a 

well-known regulator of dendritic spines (Cahill et al, 2013). Interestingly, we found 

kalirin7 protein levels were also increased by olanzapine. Total kalirin mRNA levels 

were not significantly changed by olanzapine, however, we did not measure kalirin7 

mRNA, an isoform produced through alternative splicing.  

We also found that olanzapine significantly increased the protein levels of 

spinophilin, a dendritic spine-enriched protein. The mRNA levels of spinophilin are also 

increased by olanzapine treatment, but not at a statistically significant level. Enhanced 

spinophilin expression may be a sign of increased dendritic activity or plasticity by 

olanzapine treatment. AG490 failed to block the enhanced spinophilin expression 
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induced by olanzapine, suggesting that the effects of olanzapine on dendritic spines may 

mediated by both JAK2/STAT3 and other pathways. A previous study found that 

fourteen-day treatment with olanzapine caused no changes in the mRNA level of 

spinophilin in rat hippocampus and cortex. (Law et al, 2004). Critchlow et al reported 

that clozapine increased spinophilin protein level by 70% (Critchlow et al, 2006). The 

inconsistent results on spinophilin among these studies may reflect species difference, 

brain region difference, different doses or differing durations of treatment. 

Although the etiology of schizophrenia is not fully understood, mounting 

evidence suggests that schizophrenia is associated with malfunctions of brain circuitry, in 

particular, dendritic spines, in multiple brain regions. It has been reported that subjects 

with schizophrenia show a decrease in dendritic spine density on dorsolateral prefrontal 

cortex (DLPFC) layer III pyramidal neurons (Glantz and Lewis, 2000), auditory cortex 

on the superior temporal gyrus (Sweet et al, 2009), and subicular and CA3 region in 

schizophrenia brain (Kolomeets et al, 2005), brain regions exhibiting severe malfunction 

in schizophrenia. These studies demonstrate a strong association between brain region-

specific loss of dendritic spines and brain dysfunction in schizophrenia. We examined the 

impact of olanzapine and the JAK2/STAT3 pathway on dendritic spines based on the 

importance of dendritic spines to functions that are abnormal in schizophrenia, the 

documented differences in dendritic spines in schizophrenia and our data demonstrating 

changes in the expression of genes involved in the regulation of dendritic spines.   

Effects of antipsychotics on dendritic spines have been studied by various groups 

but the results are complex. One-year administration of typical antipsychotic haloperidol 

or atypical antipsychotic clozapine induced changes in axodendritic synapses of rat 
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medial prefrontal cortex layer VI (Vincent et al, 1991). Clozapine increased dendritic 

spine density, in particular, filopodia and mushroom spines in rat hippocampal neurons, 

while haloperidol reduced the number of filopodia (Critchlow et al, 2006). Olanzapine 

but not haloperidol reversed the dopamine depletion-induced loss of spine in layer V 

pyramidal cells in the prelimbic cortex (Wang and Deutch, 2008). In animal 

phencyclidine (PCP) models of schizophrenia, acute and chronic treatment with 

olanzapine also reversed the dendritic spine loss (Elsworth et al, 2011). However, in 

another recent study, early exposure of both haloperidol and olanzapine induced an 

reduction in spine density in layer III mouse pyramidal cells (Frost et al, 2010). The 

inconsistency of results between the studies may be due to various models, drugs and 

doses used. Moreover, criteria of spine morphology are mostly qualitative, therefore, it is 

difficult to compare data from different laboratories. Adult cortex and hippocampus 

contains >65% thin spines and around 25% mushroom spines (Bourne and Harris, 2007). 

The remaining 10% of spines are immature spines, including filopodia, stubby and 

branched spines (Bourne and Harris, 2007). Dendritic spines stabilize with maturation. 

Mushroom spines are stable memory spines containing more AMPA receptors, which are 

a major indicator of synaptic efficacy and strength (Nimchinsky et al, 2004). In contrast, 

thin spines contain more NMDA receptors but few AMPA receptor, making them ready 

to be strengthened by insertion of AMPA receptors (Ganeshina et al, 2004; Matsuzaki et 

al, 2001). Therefore they are learning spines. In the present study, we found that 

treatment with olanzapine for a week decreased immature dendritic filopodia and stubby 

spines, while increasing mature thin and mushroom spines. Olanzapine also caused a 

small increase in total dendritic spine density. These results suggest that olanzapine 
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induced an improvement of dendritic spine function in rat primary cortical culture. Only 

the changes in stubby spines and thin spines induced by olanzapine were inhibited by 

pretreatment of AG490, indicating that the olanzapine-induced maturation of dendritic 

spines is partially dependent on JAK2 signaling pathway. This result is consistent with 

our microarray and qPCR data. JAK2-dependent changes in genes such as Nrg1 may 

contribute to the JAK2-dependent changes in dendritic spines induced by olanzapine. 

Changes in the expression of other genes including Homer1, Arc, kalirin7 and 

spinophilin, which are not dependent on JAK2 pathways, may be responsible for the 

JAK2-independent portion of dendritic spine maturation and increase in total dendritic 

spine density. We also found AG490 alone has an effect on the total spine density, which 

may be due to the AG490-induced changes in gene expression. 

In addition, we also measured the protein level of RGS7 and found a 30% 

increase in RGS7 by olanzapine, which is significantly attenuated to basal levels by 

AG490. We previously reported that olanzapine induced a 100% increase in RGS7 in rat 

frontal cortex (Singh et al, 2009a). The lower increase in RGS7 in the current study may 

be because we measured the protein level of RGS7 in the whole tissue homogenate in the 

current study instead of in the membrane fraction as reported by Singh et al.  

Despite the beneficial neuropsychiatric effects, treatment with atypical 

antipsychotics is also accompanied by some adverse effects such as serious weight gain 

and other metabolic syndromes including dyslipidemia and glucose intolerance (Gareri et 

al, 2006). The molecular mechanisms leading to these side effects are not fully 

understood. One hypothesis is that atypical antipsychotics-induced weight gain is 

attributed to the changes of balance between neuropeptides and hormones that controls 
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food intake and energy homeostasis,  thus resulting in an imbalance between energy 

intake and energy expenditure (de Kloet and Woods, 2010; Gonçalves et al, 2015). In 

current study, we identified several genes that may be involved in the adverse metabolic 

effects induced by olanzapine. For example, our microarray data shows that olanzapine 

treatment increases Cartpt, a prepropeptide for cocaine- and amphetamine-regulated 

transcript (CART), which is a hypothalamic neuropeptide that regulates food intake and 

energy expenditure(Lau and Herzog, 2014). Overexpression of CART in the CNS could 

lead to an anorexigenic effect (Kristensen et al, 1998; Larsen et al, 2000; Nakhate et al, 

2013; Thim et al, 1998), while administration of CART into several specific brain 

regions results in appetite-promoting effects (Abbott et al, 2001; Hou et al, 2010; Kong et 

al, 2003; Smith et al, 2008). Effects of atypical antipsychotics on CART are also 

puzzling. Kursungoz et al reported that a four week treatment with risperidone elevated 

appetite and body weight gain, and the mRNA level of CART was significantly increased 

(Kursungoz et al, 2015). However, in another study, risperidone increased food intake 

and body weight in female juvenile rats, but failed to change CART mRNA levels (Lian 

et al, 2015). It is also reported that a four week risperidone treatment didn’t change 

plasma CART levels in first-attack psychotic patients (Yanik et al, 2013). Consistent with 

our microarray data, the real-time PCR result showed a tendency for increased Cartpt 

mRNA level by olanzapine treatment, however, the change is not significant due to the 

large variation between animals. Larger sample size or longer treatment may be required 

to verify whether olanzapine increases Cartpt in a JAK2/STAT3 dependent manner. On 

the other hand, an increase in Cartpt does not indicate an increase in CART. CART is 
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produced by processing Cartpt by prohormone/ proprotein convertase, dysregulation of 

which may also result in accumulation of Cartpt.  

In current microarray study, we observed that olanzapine significantly decreased 

Grp mRNA levels via JAK2/STAT3 pathway, which may play a role in the olanzapine-

induced weight gain and metabolic side effects. As a mammalian counterpart of 

amphibian peptide bombesin, Grp in the CNS plays an important role in regulating 

synaptic plasticity, memory, emotions, social interaction and feeding behavior (Moody 

and Merali, 2004; Roesler and Schwartsmann, 2012). Both peripheral and central 

administration of Grp or bombesin have negative effects on the intake of food in 

numerous animal models and humans (Fekete et al, 2002; Gibbs, 1985; Gibbs et al, 1981; 

Himick and Peter, 1994; Rushing et al, 1996; Thaw et al, 1998). Knockout or blockade of 

Grp receptors in the brain increases food consumption significantly (Ladenheim et al, 

2002; Ladenheim et al, 1996).  Further verification of mRNA and protein levels of Grp in 

AG490 and olanzapine treated animals is needed to confirm the role of Grp in the 

atypical antipsychotics-induced weight gain. 

A previous microarray study has also investigated the effects of chronic 

administration of olanzapine (2mg/kg per day for 21days) on differential expression of 

genes in the prefrontal cortex of rats (Fatemi et al, 2006). In this study, 38 genes were 

upregulated and 31 genes were down-regulated by olanzapine based on student t-test. 

Similar to our results, these differentially expressed genes are also involved in signal 

transduction, metabolism pathways, and synaptic plasticity. Their microarray results 

showed that olanzapine increased Homer1, Reelin and Cart, instead of Cartpt. They 

observed a reduction in ionotropic glutamate receptor NMDA3B, while we found a 
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reduction in another ionotropic glutamate receptor Grik4. They found a significant 

decrease in gene expression of insulin-like growth factor binding protein 2 (Igfbp2). We 

observed a 30% reduction in Igfbp6 but a 76% increase in Igfbp1 and 33% increase in 

Igfbp5. Compared to this previous microarray study, we tested a higher dose of 

olanzapine but a shorter treatment interval based on our previous results (Muma et al, 

2007a). Moreover, we examined the contribution of the JAK2/STAT3 signaling pathway 

to the changes in gene expression using AG490. 

Overall, our study suggests that chronic olanzapine treatment result in changes of 

a large number of genes in a JAK2/STAT3 signaling pathway dependent manner. Those 

genes may play important roles in mediating the therapeutic or side effects of olanzapine, 

such as improvement of synaptic functions. Our findings provide an insight into the 

molecular mechanisms underlying antipsychotic drug actions and adverse effects.  

FIGURES AND FIGURE LEGENDS 

Table 3.2 Genes listed in this table are selected based on (1), fold change ≥ 1.3 after log 

transformation and normalization; (2) volcano-plot analysis, p values are used to compare 

vehicle-olanzapine with vehicle-vehicle treatment; (3), two-way ANOVA analysis, p 

values are corrected using Benjamini-Hochberg method, and used to compare olanzapine 

treatment with vehicle treatment. *, genes also changed by AG490-olanzapine to a lesser 

extent. The fold change for Ntrk2 by AG490-olanzapine is +1.54, for Cartpt is +1.74, for 

Nts is +1.67, for Arc is +1.54.  
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Table 3. 2 
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Figure 3. 1 
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Figure 3.1. A, hierarchical clustering of 205 genes identified to be significantly affected 

by AG490, olanzapine, or the combination of both. The four columns represent 

treatments by these agents and the vehicle as marked at the bottom, respectively. The 

gene represented by each row is labeled on the right. The color bar at the bottom shows 

color representation of normalized gene expression values. Upregulated genes are shown 

in red and downregulated genes are in blue. The criteria for selection of genes in the 

differentially expressed gene set were fold change ≥ 1.3 and P ≤ 0.05. B, Venn diagram 

shows the overlap of genes that are significantly altered by the treatments with AG490, 

olanzapine, or the combination of both. 
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Figure 3. 2 

Figure 3.2. Genes of interests were validated by qPCR. A, Two-way ANOVA analysis 

shows significant effects of AG490 pretreatment [F(1,18)= 7.677, p<0.05], and 

significant effect of olanzapine treatment [F(1,18)= 7.089, p<0.05] on Crh expression; 

significant effects of pretreatment [F(1,15)= 4.659, p<0.05] on Cbln1 expression; 

significant effects of olanzapine treatment [F(1,17)= 5.924, p<0.05] on Nrg1 expression; 

significant effects of pretreatment [F(1,15)= 11.277, p<0.01], significant effect of 

treatment [F(1,15)= 8.099, p<0.05], and a significant interaction between AG490 

pretreatment and olanzapine treatment on Hsp70 expression [F(1,15)= 8.938, p<0.01]; a 

significant interaction between AG490 pretreatment and olanzapine treatment on Fabp7 
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expression [F(1,16)= 7.058, p<0.05]. B, Two-way ANOVA analysis shows significant 

effects of olanzapine treatment on the expression of Filip1 [F(1,18)= 6.436, p<0.05], 

Homer1 [F(1,17)= 5.917, p<0.05], Pak1ip1 [F(1,19)= 10.418, p<0.01] and Arc [F(1,18)= 

5.65, p<0.05]. C, Two-way ANOVA analysis shows significant effects of AG490 

pretreatment on the expression of Pde10 [F(1,15)= 4.587, p<0.05], Ntrk2 [F(1,18)= 

5.764, p<0.05], and Cdrh1 [F(1,16)= 23.576, p<0.001]. There is also a significant effect 

of olanzapine treatment [F(1,16)= 6.045, p<0.05], and a significant interaction between 

AG490 pretreatment and olanzapine treatment on Cdrh1 expression [F(1,16)=38.012, 

p<0.001]. D, Two-way ANOVA analysis shows no significant effects of either AG490 

pretreatment or olanzapine treatment on the gene expression of Cartpt, Nts, Nr4a, Kalirin, 

Cbp, Reelin, and Spn., Newman-Keuls multiple comparison test indicates *** p<0.001, 

** p<0.01, * p<0.05, compared with vehicle-vehicle treatment; ### p<0.001, ## p<0.01, 

# p<0.05, compared with vehicle-olanzapine treatment; &, p<0.05, compared with 

AG490-vehicle treatment; %%, 

 p<0.001, % p<0.05, compared with vehicle-vehicle treatment. 
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Figure 3. 3 

Figure 3.3. Protein levels of genes were verified by Western blot and ELISA assay. A, 

two-way ANOVA indicates a significant effect of olanzapine treatment [F(1,16)= 9.652, 

p<0.01], and a significant interaction between AG490 pretreatment and olanzapine 

treatment [F(1,16)= 6.808, p<0.05] on RGS7 protein levels. B, two-way ANOVA 

analysis of the ELISA assay shows a significant impact of AG490 treatment [F(1,16)= 

6.533, p<0.05]. C, two-way ANOVA analysis shows a significant impact of AG490 

treatment [F(1,16)= 9.013, p<0.01], a significant effect of olanzapine treatment [F(1,16)= 

9.59, p<0.01], and a significant interaction between AG490 pretreatment and olanzapine 

treatment [F(1,16)= 4.723, p<0.05] on Nrg1 protein level. D, two-way ANOVA indicates 

a significant effect of olanzapine treatment [F(1,17)= 18.009, p<0.001] on kalirin7 

protein level. E, two-way ANOVA indicates a significant effect of olanzapine treatment 

on the protein level of spinophilin at 120kDa [F(1,10)= 27.906, p<0.001], and on the 

band at 95kDa [F(1,10)= 15.62, p<0.01].  Newman-Keuls multiple comparison test 

indicates ** p<0.01, * p<0.05, compared with vehicle-vehicle treatment; ## p<0.01, # 

p<0.05, compared with vehicle-olanzapine treatment; && p<0.01, & p<0.05, compared 

with AG490-vehicle treatment. 
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Figure 3. 4 
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Figure 3.4. Olanzapine and MDL100907 activate JAK2/STAT pathway in rat cortical 

primary culture. Primary cells at DIV14 were pretreated with AG490 (15μM) for 1 h 

before treatment with either olanzapine or MDL100907 daily for 7 days. Whole cell 

lysates were analyzed by western blot. A, The bar graph represents quantification of 

phosphor-JAK2 protein levels divided by JAK2 protein levels from three independent 

experiments. Two-way ANOVA analysis shows a significant impact of AG490 

pretreatment [F(1,12)= 22.301, p<0.001], and a significant effect of olanzapine or 

MDL100907 treatment [F(2,12)= 5.185, p<0.05] on phosphorylation of JAK2. B, The bar 

graph represents quantification of Nrg1 protein levels normalized by β-actin protein 

levels. Two-way ANOVA analysis shows a significant impact of AG490 pretreatment 

[F(1,12)= 34.699, p<0.001], and a significant interaction between AG490 pretreatment 

and olanzapine or MDL100907 treatment [F(2,12)= 6.729, p<0.05] on Nrg1 protein level. 

Newman-Keuls multiple comparison test indicates ** p<0.01, * p<0.05, compared with 

vehicle-vehicle treatment; ## p<0.001, # p<0.05, compared with vehicle-olanzapine or 

vehicle-MDL100907 treatment. 
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Figure 3. 5 
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Figure 3.5. Olanzapine-induced dendritic spine maturation is partially dependent on 

JAK2/STAT pathways. A, 5-HT2A receptors (green) co-localize with actin (red) 

predominantly in the soma, dendritic shafts and dendritic spines. Scale bar represents 

20µm. B-G. Log transformation was performed on original data to achieve normality. B, 

left panel, olanzapine treatment for seven days induced dendritic spine maturation. Bars 

represent absolute value of dendritic spine numbers. Log transformation was performed 

on the original data of dendritic filopodia, stubby spines and thin spines to achieve 

normality. Student’s t-test indicates * p<0.05 compared with vehicle treatment. Right 

panel, student’s t-test suggests that olanzapine has no significant effect on the total 

dendritic spine density. C. Effects of olanzapine and AG490 on dendritic filopodia 

density. Log transformation does not enable the data to distribute normally, therefore 

analysis was performed on the original data using a non-parametric test. Kruskal-Wallis 

one-way ANOVA on Ranks indicates a significant difference between four treatment 

groups (p<0.01). Post hoc Dunn’s test suggests * p<0.05 compared with vehicle-vehicle 

treatment; # p<0.05 compared with AG490-vehicle treatment. D. Olanzapine reduced the 

density of stubby spines via JAK2 pathway. Two-way ANOVA analysis shows a 

significant impact of AG490 pretreatment [F(1,61)= 4.294, p<0.05], and a significant 

interaction between AG490 pretreatment and olanzapine treatment [F(1,61)=14.086, 

p<0.001] on the density of stubby spines. Newman-Keuls multiple comparison test 

indicates * p<0.05 compared with vehicle-vehicle treatment; # p<0.01 compared with 

vehicle-olanzapine treatment and AG490-vehicle treatment. E. Olanzapine increased 

density of thin spines via JAK2 pathway. Two-way ANOVA analysis shows a significant 

impact of olanzapine treatment [F(1,61)= 27.554, p<0.001], and a significant interaction 
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between AG490 pretreatment and olanzapine treatment [F(1,61)=16.867, p<0.001] on the 

density of stubby spines. Newman-Keuls multiple comparison test indicates * p<0.001 

compared with vehicle-vehicle treatment; # p<0.01 compared with vehicle-olanzapine 

treatment. F. Two-way ANOVA analysis suggests that olanzapine did not significantly 

increase mushroom spine density. G. Olanzapine increased the density of dendritic 

spines. Two-way ANOVA analysis shows a significant impact of olanzapine [F(1,61)= 

9.789, p<0.01] on the density of stubby spines. Newman-Keuls multiple comparison test 

indicates * p<0.05 compared with vehicle-vehicle treatment; # p<0.01 compared with 

vehicle-olanzapine treatment. 
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CHAPTER FOUR: GENERAL CONCLUSION 

SUMMARY OF RESULTS AND SIGNIFICANCE 

As one of the most abundant serotonin receptors in the prefrontal cortex, 5-HT2A 

receptors are a major regulator of higher-order executive tasks such as learning, working 

memory, and behavioral flexibility, dysregulation of which is involved in many 

psychiatric disorders (Leiser et al, 2015; Williams et al, 2002). Mounting evidence 

suggests that 5-HT2A receptors regulate prefrontal cortical circuitries by controlling 

dendritic spines (Jones et al, 2009; Xia et al, 2003; Yoshida et al, 2011). However, the 

mechanisms underlying the regulation of dendritic spines by 5-HT2A receptors were 

unknown. The results presented here suggest two ways in which 5-HT2A receptor 

signaling pathways are involved in the regulation of dendritic spines: 1) serotonylation of 

small G protein of the Rho family, and 2) gene regulation via activation of the 

JAK2/STAT3 signaling pathway. 

In chapter two, we demonstrated the functional consequences of 5-HT2A 

receptor-induced serotonylation of small G proteins of the Rho family in primary 

neuronal cells. We found that stimulation of 5-HT2A/2C receptors caused transamidation 

of Rac1 and Cdc42, but not RhoA, in both A1A1v cells and rat primary cortical culture. 

The transamidation is mediated by TGases, possibly TGase2 and TGase1, as suggested 

by TGase inhibitor cystamine or knock down of TGase2 with siRNA in rat primary 

cortical neurons. Transamidation of Rac1 and Cdc42 led to their activation, since 

inhibition of TGases significantly decreased their transamidation and activation. 

Moreover, we demonstrated that stimulation of both 5-HT2A and 5-HT2C receptors 

contributed to DOI-induced Rac1 transamidation, since inhibition of 5-HT2A receptors 
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by MDL100907 and 5-HT2C receptors by SB242084 blocked the DOI-stimulated Rac1 

transamidation. We also found that DOI-induced TGase-catalyzed transamidation of 

Rac1 occurs at Q61 in A1A1v cells, as demonstrated by site-directed mutagenesis at Q61 

of Rac1. Furthermore, we extended our findings from 5-HT2A/2C receptors to another 

Gαq/11-coupled receptor, muscarinic acetylcholine receptors.  In SH-SY5Y cells, 

stimulation of muscarinic receptors by carbachol increased TGase-catalyzed Rac1 

transamidation, thus resulting in activation of Rac1. In addition, stimulation of 5-

HT2A/2C receptors by DOI leads to a transient dendritic spine enlargement, which was 

blocked by TGase inhibitor cystamine, suggesting 5-HT2A/2C receptors-induced 

transamidation of Rac1 and Cdc42 is involved in the regulation of dendritic spines by 5-

HT2A/2C receptors. 

Small G proteins are emerging as major targets for serotonylation and other 

monoaminylation, which are involved in a wide range of physiological functions, 

including platelet activation, SERT translocation and insulin secretion(Muma and Mi, 

2015; Paulmann et al, 2009; Walther et al, 2003). We previously reported Rac1 

serotonylation in A1A1v cells, derived from rat embryonic cortex (Dai et al, 2008). 

However, the function of Rac1 serotonylation in neuronal cells remained poorly 

understood. The Rho family, including Rac1, Cdc42 and RhoA, are associated with 

various cellular functions, particularly regulation of actin cytoskeleton, neurite outgrowth 

and neuronal differentiation(Tolias et al, 2011). Our study suggests that TGase activity 

plays a role in the 5-HT2A/2C receptor-stimulated dendritic spine enlargement. However, 

whether serotonylation of Rac1 and Cdc42 has a direct impact on dendritic spines needs 

to be further explored. Moreover, it has been suggested that Gαq/11 coupled receptors 
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and downstream PLC and Ca2+ signaling are involved with regulation of dendritic spines 

(Horne and Dell'Acqua, 2007; Spires et al, 2005; Wijetunge et al, 2008). However, little 

is known about the signaling molecules coordinating the mechanisms. Stimulation of 

Gαq/11-coupled receptors, such as bradykinin or endothelin-1 receptor, activates small G 

proteins (Clerk et al, 2001; van Leeuwen et al, 1999).  The present study demonstrated 

that stimulation of muscarinic receptors activate Rac1 via TGase-modified Rac1 

transamidation. The results indicate that besides 5-HT2A/2C receptors, other Gαq/11-

coupled receptors may also regulate dendritic spines through the TGase-catalyzed 

monoaminylation of small G proteins of the Rho family.  

In the studies presented in chapter three, we shifted our focus from acute 

stimulation of 5-HT2A receptors to chronic treatment with inverse agonists of 5-HT2A 

receptor. Our previous studies found that chronic treatment with atypical antipsychotics 

olanzapine and clozapine, and the selective 5-HT2A receptor antagonist MDL100907 

activated JAK2/STAT3 pathway in both A1A1v cells and in rat frontal cortex. Activation 

of JAK2/STAT3 increased expression of RGS7 mRNA and protein levels, which may 

contribute to the olanzapine-induced desensitization of 5-HT2A receptors. In present 

study, a microarray assay was performed to explore other possible changes in gene 

expression caused by 5-HT2A receptor antagonist-induced JAK2/STAT signaling.  The 

results showed that 205 genes were significantly changed by the JAK2 inhibitor AG490, 

olanzapine or the combination of both drugs compared to the vehicle treated controls. At 

least 92 of the 205 genes are changed by olanzapine via JAK/STAT signaling pathway. 

These genes are involved in the etiology of schizophrenia, neuronal signal transduction, 

neuronal growth factor, metabolism and energy, and synaptic plasticity. Real-time qPCR 
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validated that Crf, Cbln1, Nrg1, Hsp70, and Fabp7 were upregulated by olanzapine in a 

JAK2/STAT3 dependent manner. Filip1, Homer1, Pak1ip1 and Arc were significantly 

changed by olanzapine, but the effects of AG490 were not statistically significant. 

Western blotting and ELISA verified that the protein levels of Nrg1 and Hsp70 were 

significantly increased by olanzapine via JAK2/STAT3, while kalirin7 and spinophilin 

protein levels were changed by olanzapine independently of JAK2/STAT3. Given the 

changes in numerous genes related to cytoskeletal, post-synaptic density and synaptic 

plasticity, the impact of olanzapine administration on dendritic spines in rat cortical 

primary culture was also examined. Our results show for the first time that olanzapine 

causes changes in the expression of various important genes that may be involved in the 

etiology of schizophrenia and therapeutic effects of atypical antipsychotics, via 

JAK2/STAT3 signaling pathway. 

LIMITATIONS OF THE PRESENT STUDIES 

There are certain limitations that should be noted when interpreting the data of the 

present studies. One major limitation of present studies is that we did not directly 

establish a causal relationship between Rac1 transamidation and activation. Based on the 

effect of cystamine on Rac1 transamidation and activity, we only could conclude that 5-

HT2A/2C receptor stimulation increased TGase-catalyzed transamidation of Rac1, which 

may contribute to the activation of Rac1. To solve this problem, we prepared Rac1 

mutants and hypothesized that the mutation at the transamidation site of Rac1 would lead 

to deactivation of Rac1. However, we found that although the Rac1 Q61N mutant cannot 

be transamidated following 5-HT2A/2C receptor stimulation, but the mutant is 

constitutively active. It is possible that both transamidation and mutation at Q61 inhibit 
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GTP hydrolysis of Rac1, thereby inhibiting inactivation of Rac1. Due to this limitation, 

we were unable to prove that transamidation of Rac1 directly results in activation of 

Rac1. This difficulty also compromised our ability to build a causal relationship between 

serotonylation of Rho family members and changes in dendritic spines. Previous studies 

have demonstrated that overexpressing constitutively active Rac1 in hippocampal 

cultured neurons disrupted dendritic spine morphology (Nakayama et al, 2000). 

Transgenic mice expressing constitutively active Rac1 showed increased spine density in 

cerebellar Purkinje cells (Luo et al, 1996). Therefore, transfection Rac1 Q61N mutant in 

the rat primary cortical neurons will not enable us to elucidate this problem. Further 

experiments could be carried out to explore the role of Rac1 and Cdc42 transamidation in 

the 5-HT2A/2C receptor-induced dendritic spine enlargement. 

Another limitation of present studies is that we did not confirm whether serotonin 

is associated with Rac1 and Cdc42 via a TGase-catalyzed covalent bond in rat primary 

cortical culture. A previous study showed that cystamine reduced the serotonin-

associated Rac1 in A1A1v cells in immunoprecipitation experiments (Dai et al, 2008), 

suggesting that serotonin is the binding partner of Rac1. In the present study, the TGase-

modified Rac1 did not show a significant upward shift on immunoblots compared with 

native Rac1 in cell lysates, suggesting that the binding partner of Rac1, is a small 

molecule likely an amine, such as serotonin. SHSY-5Y human neuroblastoma cell line 

has many features of dopaminergic neurons, such as expressing tyrosine hydroxylase and 

dopamine-beta-hydroxylase and dopamine transporter (Xie et al, 2010). Therefore, 

dopamine is likely to serve as the binding partner of Rac1 in SH-SY5Y cells.  
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There is a gap between the in vivo rat microarray studies and primary cortical 

culture studies in chapter three. The in vivo rat studies suggest that chronic treatment 

with olanzapine altered the expression of a number of genes at the mRNA and protein 

level, which are associated the regulation of the actin cytoskeleton, postsynaptic density, 

dendritic spine morphogenesis and synaptic plasticity. Therefore, we hypothesized that 

the olanzapine-induced changes in the expression of these genes, possibly via 

JAK2/STAT3 pathway, contributes to alterations in dendritic spines. However, we did 

not test this hypothesis in the rat frontal cortex in vivo, but examined the influences of 

olanzapine on dendritic spines in rat primary culture instead. Although a maturation of 

dendritic spines by olanzapine treatment was observed in primary culture, whether this 

effect could be replicated in rat frontal cortex remains unclear. Moreover, we verified that 

JAK2 was activated by chronic olanzapine and MDL100907 treatment, and observed an 

increase in Nrg1 protein level in rat primary cortical culture, but it is not known whether 

the expression pattern of other genes which were differentially altered by olanzapine in 

the rat frontal cortex is also affected in primary cortical neurons. 

FUTURE STUDIES 

First, the effects of selective serotonin reuptake inhibitors (SSRIs) and other 

monoamine reuptake inhibitors (MRIs) on serotonylation and other monoaminylation of 

small G proteins and DOI-induced changes in dendritic spines could be studied in the 

future. Reduction in hippocampal dendritic spine density in an olfactory bulbectomy 

model of depression was observed (Norrholm and Ouimet, 2001). Long-term depression 

is associated with dendritic spine shrinkage in neonatal rat hippocampus (Zhou et al, 

2004). Zheng and colleagues showed that eighteen-day administration of fluoxetine and 
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fluvoxamine caused a reduction in dendritic spine density in neonatal mice, while 

increases dendritic spine density in adult mice (Zheng et al, 2011). Acute but not chronic 

SSRI treatment increased total dendritic length and dendritic spine density in CA1 region 

of juvenile rat brains (Norrholm and Ouimet, 2000). However, the mechanisms 

underlying the effects of SSRIs and other MRIs on dendritic spines still remain unknown. 

As a novel potential mechanism contributing to morphological regulation of dendritic 

spines by serotonin signaling, serotonylation and monoaminylation of small G protein 

could serve as a drug target for treating depression and other psychiatric disorders. 

A primary amine, such as 5-HT, is required to be present in the cells as a substrate 

for serotonylation and other monoaminylation. Therefore, transporters for these 

monoamines, such as SERT, could contribute to the availability of the monoamines. In 

adult brains, SERT is expressed in serotonergic neurons and the distribution is limited to 

presynaptic axons in the cortex (Tao-Cheng and Zhou, 1999). In contrast, during 

development, SERT is broadly expressed in nonserotonergic neurons throughout the 

brain and distributed throughout the entire plasma membrane, including the postsynaptic 

dendritic spines (Zhou et al, 2000). Therefore, SERT is more likely to be involved in the 

serotonylation during the development, but not the adulthood. This may also explain why 

SSRIs exert differential effects on dendritic spines between neonatal and adult animals as 

introduced above. On the other hand, other monoamine transporters, such as 

norepinephrine transporter (NET), and dopamine transporter (DAT), which share a high 

level of structural and sequence homology and functional overlap with SERT, can 

transport 5-HT as well (Carboni et al, 1990; Larsen et al, 2011; Morón et al, 2002). 

Therefore, NET and DAT could also contribute to serotonylation and serotonylation-
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regulated dendritic spines (Miner et al, 2003). Moreover, DA could be a substrate for 

Rac1 monoaminylation mediated Gαq/11-coupled receptor (Muma and Mi, 2015). 

Therefore, NET and DAT could also be involved in other monoaminylation, such as 

dopaminylation. 

To study the role of serotonylation of small G proteins of the Rho family in the 

regulation of dendritic spines, further work should be done to test whether serotonin is 

the direct binding partner of Rac1 and Cdc42 in rat primary culture. Once serotonylation 

of small G proteins is validated in rat primary culture, studies could be performed to 

investigate whether treatment with SSRIs is able to block the DOI-induced serotonylation 

of Rac1 and Cdc42. Our preliminary immunoblot result showed that SERT is expressed 

in A1A1v cells and rat primary cortical culture at DIV21, therefore they could serve as 

cell models to study the effects of SSRIs. If serotonin is required for Rac1 

transamidation, blocking the reuptake of serotonin into the cell could inhibit the DOI-

stimulated Rac1 transamidation and activation. On the other hand, the extracellular 

accumulation of serotonin following acute SSRI treatment may enhance the stimulation 

of 5-HT2A/2C receptors, thus increasing Rac1 serotonylation and activation. The 

consequences of SSRI treatment on the DOI-induced dendritic spine enlargement need to 

be studied as well.  

Disrupted-in-Schizophrenia-1 (DISC1) has been known to be involved in the 

etiology of schizophrenia, depression and other psychiatric diseases. Prolonged 

knockdown of DISC1 causes schizophrenia-like behaviors in animals. A recent study 

demonstrated that novel inhibitors to PAKs, downstream effectors of Rac1 and Cdc42, 

significantly ameliorated synaptic deterioration caused by DISC1 knockdown in vitro and 
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mitigated synaptic deterioration and ameliorated schizophrenia-like behavior in a DISC1 

knockdown mouse model (Hayashi-Takagi et al, 2014). Inhibition of Rac1 and Cdc42 

transamidation by TGase inhibitor cystamine or siRNA targeting TGase2 leads to 

decrease in Rac1 and Cdc42 activity and downstream PAK1 phosphorylation. Therefore, 

I hypothesize that inhibition of Rac1 and Cdc42 transamidation by cystamine or siRNA 

could also ameliorate dendritic spine deterioration and schizophrenia-like behavior 

induced by DISC1 knockdown. To test this hypothesis, we need to replicate 5-HT2A/2C 

receptor-mediated Rac1 and Cdc42 transamidation in vivo. The previous attempts to 

replicate DOI-induced Rac1 transamidation in rat frontal cortex failed. This could be 

attributed to the dosage, route, and time course used in our preliminary experiment did 

not mimic the conditions in our in vitro study.  

 We found that olanzapine induced the changes in the expression of a number of 

genes via the JAK2/STAT3 pathways. Whether these genes play roles in the regulation of 

dendritic spines, therapeutic and adverse effects of atypical antipsychotics, needs to be 

investigated.  For instance, our results showed that Nrg1 was increased by olanzapine 

treatment via JAK2/STAT3 pathway. Prolonged treatment with Nrg1 promotes spine 

maturation and potentiates synaptic plasticity (Barros et al, 2009). I hypothesize that 

knockdown of Nrg1 would block the chronic olanzapine treatment-induced dendritic 

spine maturation. Furthermore, the microarray assay indicated a number of genes related 

to adverse metabolic effects of olanzapine, such as Cartpt, Grp, Nts and Nr4a1. All these 

genes exhibit a tendency to be regulated by olanzapine via JAK2/STAT3 signaling 

pathway. However, real-time qPCR indicated that the changes in these genes showed a 

relatively large variance between animals. Therefore, a larger sample size may be 
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required to further study these genes associated to olanzapine-caused adverse effects. 

Once the role of JAK2/STAT3 pathway in the regulation of these genes is validated, 

further studies could be performed to test whether inhibition of JAK2/STAT3 signaling 

by AG490 ameliorates olanzapine-caused metabolic side effects in animals.  The results 

of these studies will improve our understanding of adverse effects of atypical 

antipsychotics, and shed light on the development of adjunctive therapy with atypical 

antipsychotics to reduce the side effects. 

CONCLUSIONS 

The data presented here indicates that both agonists and antagonists of 5-HT2A 

receptors are able to alter dendritic spines, however, in different aspects and via distinct 

mechanisms. The differences of these two aspects of the studies are compared in Table 

4.1 and Figure 4.1. Our results suggest that acute stimulation of 5-HT2A/2C receptors 

and other Gαq/11-coupled receptors, which activates PLC and induces downstream Ca2+ 

release, increase TGase-catalyzed monoaminylation of small G proteins of Rho family, 

including Cdc42 and Rac1. Transamidation of Rac1 and Cdc42 leads to their activation, 

which in turn plays a role in the short-term regulation of actin cytoskeleton dynamic. 

Chronic treatment with 5-HT2A receptor antagonist olanzapine activates the 

JAK2/STAT3 pathway, which in turn regulate transcription of a number of genes, which 

play essential roles in the long-term regulation of dendritic spines.  
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Table 4.1 Comparison of studies on effects of 5-HT2A receptor agonist and antagonist on 

dendritic spines 

Treatment Agonist: DOI Antagonist: olanzapine 

Effect of drug Increase in dendritic spine 

area 

Type-specific change of 

dendritic spine number 

Change of spine 

feature 

Dendritic spine plasticity Dendritic spine maturation 

Time course Acute Chronic 

Hypothetical 

mechanism 

5-HT2A/2C receptor-induced 

serotonylation of Rho family 

Transcriptional changes via 

JAK2/STAT3 pathway 

Table 4. 1 
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Figure 4. 1 

Figure 4.1. Molecular mechanisms for 5-HT2A receptor-mediated regulation of dendritic 

spines. Short-term regulation of dendritic spines is produced by acute stimulation of 5-

HT2A/2C receptors and other Gαq/11-coupled receptors, which activates PLC and 

induces downstream Ca2+-dependent TGase activation. TGases catalyze 

monoaminylation of small G proteins of Rho family, including Cdc42 and Rac1, thus 

causing Rac1 and Cdc42 activation, which in turn regulates actin cytoskeleton dynamics 

and causes a transient dendritic spine enlargement. Long-term regulation of dendritic 

spines is mediated via JAK2/STAT3 pathway activated by chronic treatment with 5-

HT2A receptor agonists or inverse agonists including atypical antipsychotics. 
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JAK2/STAT3 pathway in turn controls transcription of a number of genes, which play 

essential roles in the regulation of dendritic spines. 
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