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Anyons are exotic quasiparticles obeying fractional statistics, whose behavior can be emulated in
artificially designed spin systems. Here we present an experimental emulation of creating anyonic
excitations in a superconducting circuit that consists of four qubits, achieved by dynamically generating
the ground and excited states of the toric code model, i.e., four-qubit Greenberger-Horne-Zeilinger states.
The anyonic braiding is implemented via single-qubit rotations: a phase shift of π related to braiding, the
hallmark of Abelian 1=2 anyons, has been observed through a Ramsey-type interference measurement.
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In three dimensions, elementary particles are classified
as either fermions or bosons according to their statistical
behavior. In two dimensions, the laws of physics permit the
existence of anyons, which are exotic quasiparticles obey-
ing fractional statistics ranging continuously between the
Fermi-Dirac and Bose-Einstein statistics [1]. Although
direct observation of anyonic excitations and the associated
fractional statistical behavior in fractional quantum Hall
systems remains experimentally challenging, artificially
designed spin model systems may promise an alternative
and likely easier route in light of certain theoretical treat-
ments such as the toric code model [2,3].
The toric code is designed on a two-dimensional square

lattice, with qubits located on the edges [Fig. 1(a)]. The
model Hamiltonian is given by

H ¼ −
X

v

Av −
X

f

Bf; ð1Þ

where Av ¼ Πj∈starðvÞXj for each vertex v, Bf ¼
Πj∈boundaryðfÞZj for each face f, and X (Z) denotes the
standard Pauli matrix σx (σz). Av and Bf are called
the stabilizer operators. The ground state jψgi of the
Hamiltonian H yields an eigenvalue þ1 for both Av and
Bf of all vertices and faces. A quasiparticle called e (m)
particle is generated on vertex v (face f) if Av (Bf) acting
on the resulting state jψei (jψmi) yields an eigenvalue −1.
A pair of e (m) particles are generated on the neighboring
two vertices (faces) by applying a Z (X) rotation to qubit j.
This can be understood according to the anticommutation
relation of Z and X; i.e., AvðZjjψgiÞ ¼ −ZjAvjψgi ¼
−Zjjψgi for the two vertices vs that connect to qubit j
and BfðXjjψgiÞ ¼ −XjBfjψgi ¼ −Xjjψgi for the two
faces fs that border qubit j. Two particles of the same

type on the same site annihilate each other; i.e., the
resulting state yields the eigenvalue þ1 for Av or Bf.
The e and m particles are anyonic excitations since their
mutual statistics can be fractional.
It was observed in Ref. [4] that the statistical properties

of anyons are associated with the underlying ground and
excited states; it thus proposed that the anyonic fractional
statistical behavior can be studied by dynamically creating
the ground and excited states of the toric code Hamiltonian.
This theory was previously only demonstrated with single
photons and nuclear magnetic resonance (NMR) [5–7].
However, the liquid NMR system cannot prepare pure
quantum states and multipartite entanglement [8–10]. The
photonic experiments also suffered from an important
drawback that the underlying ground states of the
Hamiltonians, which were four-photon Greenberger-
Horne-Zeilinger (GHZ) states [6] and six-photon graph
states [5], were generated probabilistically with a low
efficiency, and verified using post-selection; i.e., the
photons had to be destroyed [11].
To remedy these problems, we turn to a solid-state

physical system with the ability of deterministic prepara-
tion of the underlying entangled states and single-shot
measurement of genuine multipartite entanglement. Here,
utilizing a superconducting quantum circuit consisting of
four phase qubits coupled to a common resonator bus, we
demonstrate anyonic fractional statistics by deterministi-
cally creating four-qubit GHZ state and subsequently apply
single-qubit rotations to realize braiding operations of the
anyons. Our experiment directly observes a nontrivial
phase shift of ð0.983� 0.007Þπ associated with anyonic
braiding, unambiguously confirming the fractional statis-
tics of Abelian anyons.
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Because anyonic excitations are perfectly localized
quasiparticles in the toric code model, a small-scale system
is considered to be sufficient for proof-of-principle dem-
onstration of anyonic braiding statistics [4]: four qubits
connected to a single vertex realize the minimum cell [12].
The Hamiltonian thus involves a vertex and four incom-
plete neighboring faces, the latter of which are identified by
the bordering links between qubits [Fig. 1(b)],

H ¼ −A − B1 − B2 − B3 − B4; ð2Þ

where A ¼ X1X2X3X4, B1 ¼ Z1Z2, B2 ¼ Z2Z3,
B3 ¼ Z3Z4, and B4 ¼ Z4Z1 (the subscripts label the
qubits). It can be shown that four-qubit GHZ state jψgi ¼
ðj0000i þ j1111iÞ= ffiffiffi

2
p

is the eigenstate of both A and Bj

with the same eigenvalue þ1, and, therefore, jψgi is the
ground state ofH in Eq. (2). Starting from jψgi, an e anyon
can be created at the vertex by applying a Z rotation to one
of the four qubits (the paired anyon at the vertex outside of
the four-qubit cell is ignored), and the resulting excited state
is jψei ¼ ðj0000i − j1111iÞ= ffiffiffi

2
p

. Similarly, by applying an
X rotation to one qubit, a pair ofm anyons can be created on
the neighboring two incomplete faces in Fig. 1(b).
To realize the four-qubit minimum cell described by

Eq. (2), we use a circuit-quantum electrodynamics system
with four qubits and a resonator [see schematic in Fig. 1(c)],
similar to that used in Refs. [13,14]. The Hamiltonian is

Hexp=ℏ ¼ ωra†aþ
X4

j¼1

ωjσ
†
jσj þ g

X4

j¼1

ðσ†jaþ σja†Þ; ð3Þ

where a (a†) is the lowering (raising) operator of a single
mode of the resonator, ωr=2π ¼ 6.2 GHz is its resonant
frequency,σj (σ

†
j ) is the lowering (raising) operator of qubit j,

ωj=2π is the corresponding resonant frequency (which is
tunable from5 to 7GHz), andg=2π ≈ 15.5 MHz is the qubit-
resonator coupling strength. For each qubit, at its individual
idle frequency where rotation pulses are applied (Fig. 2),
the energy relaxation time T1 ≈ 600 ns and the dephasing
time T�

2 ≈ 180 ns. Here T�
2 is obtained by fitting to

ln½P1ðτÞ� ∝ −τ=2T1 − ðτ=T�
2Þ2, where P1 is the j1i-state

probability of the Ramsey fringe envelope [18]. However, in
our numerical simulationwe find that the effective dephasing
time Teff

2 in the Markovian master equation has to be
increased in order to explain our experimental results, likely
due to the following reasons: T�

2 slightly increases as the
qubit frequency increases, the low-frequency part of the
noise spectrumhas less impact ondephasing [18,19] for short
pulse sequences, and at the interaction frequency where
excitations were effectively shared among all four qubits, the
impact by dephasing can be reduced due to cancellations of
the uncorrelated fluctuating noise environments for individ-
uals, which was investigated elsewhere [19].

The four-qubit GHZ state is generated using the one-step
protocol as proposed in Ref. [20] (Fig. 2). We first apply an
X=2 rotation (the π=2 rotation around the x axis) to each
qubit at its idle frequency, following which we apply a
square pulse to bring the qubit to the interaction frequency,
where Δ=2π ≡ ωj=2π − ωr=2π ≈ −57 MHz. The phase of
each qubit’s microwave is calibrated according to the
rotating frame at the interaction frequency [21], where
the conventional x-y-z coordinates associated with each
qubit are defined. Via the virtual photon exchange mediated
by the resonator, the qubits pick up dynamical phases that
nonlinearly depend upon the collective qubit excitation
numbers [20] and become maximally entangled after a
duration of τ ≈ πjΔj=2g2, resulting in a GHZ state that is
polarized along the x axis with jψ0i ¼ ð⊗4

j¼1 j−ij−
i ⊗4

j¼1 jþijÞ=
ffiffiffi
2

p
, where j−ij¼ðj0ij−j1ijÞ=

ffiffiffi
2

p
and

jþij¼ðj0ijþj1ijÞ=
ffiffiffi
2

p
. At the end of the square pulse,

each qubit returns to its idle frequency for further oper-
ations and, thus, acquires a dynamical phase ϕj, for qubit j,
that is proportional to the product of the frequency change
and the sequence time. However, jψ0i can be formulated
similarly to before if we define a new polarization axis for
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FIG. 1. (a) Illustration of the toric code model. Qubits,
symbolized by balls with arrows, are located on the edges of a
two-dimensional square lattice. The lattice is divided into two
types of regions, the vertices (light blue) and the faces (light red),
where e and m particles reside, respectively. A pair of e (m)
particles can be created on neighboring vertices (faces) by
applying a Z (X) rotation on a qubit. (b) Four qubits, labeled
from Q1 to Q4, of a vertex represent the minimal unit of the toric
code. The panel illustrates the braiding action by moving an m
particle around an e particle. (c) Schematic of the superconduct-
ing circuit featuring four qubits coupled to a central resonator.
Arrangement of the four qubits correspond to those in (b). Also
shown with each qubit are the control coil, which tunes the qubit
frequency, and the integrated superconducting quantum interfer-
ence device, which probes the qubit state.
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qubit j that rotates from the x axis by an angle ϕj in the
x-y plane; i.e., we redefine j−ij ¼ ðj0ij − eiϕj j1ijÞ=

ffiffiffi
2

p

and jþij ¼ ðj0ij þ eiϕj j1ijÞ=
ffiffiffi
2

p
.

For convenience in analysis, here we change the
reference frame as illustrated in Fig. 2(d): For each
qubit, we use the new x0-y0-z0 Cartesian coordinates defined
by the polarization axis (renamed as the z0 axis), its
perpendicular axis in the x-y plane (renamed as the x0
axis), and the z axis (renamed as the y0 axis). With j00i and
j10i corresponding to the positive and negative directions
of the z0 axis, respectively, jψ0i can be simply rewritten
as jψ0i ¼ ðj00000000i þ ij10101010iÞ= ffiffiffi

2
p

.

In order to control the relative phase between j00000000i
and j10101010i in jψ0i, we need to know the dynamical
phase ϕj, or, equivalently, the orientation of the polariza-
tion z0 axis with respect to the x axis for each qubit. Aiming
at maximizing the fidelity of the experimentally generated
jψ0i, we perform the numerical optimization to locate the
value of ϕj, based on which small phase-adjustment
rotations (θz0 ) around the z0 axis are applied experimentally
to accumulate a combined phase of −π=2, yielding the
desired ground state of the toric code model jψgi ¼
ðj00000000i þ j10101010iÞ= ffiffiffi

2
p

.
To characterize jψgi we perform QST [22]. The density

matrix ρg (≡jψgihψgj) of the experimentally generated
state jψgi is shown in Fig. 2(c), with a state fidelity of
Trðρg · ρidealg Þ ¼ 0.574� 0.019. This fidelity value con-
firms, with 3.9 standard deviations (σ), the genuine four-
partite entanglement [16,17].
Once the ground state jψgi is prepared, the excited

state with an e anyon at the vertex [Fig. 1(b)], jψei ¼
ðj00000000i − j10101010iÞ= ffiffiffi

2
p

, can be created by applying a
Z0 rotation (a π rotation around the z0 axis) to one of the four
qubits. For example, applying a Z0 on Q1 [Fig. 3(a)], we
obtain, by QST, the density matrix ρe (≡jψeihψej) with a

FIG. 2. (a) Illustration of the pulse sequence in three dimen-
sions for the one-step generation of the four-qubit GHZ state
jψgi, where the three axes (frequency, time, and qubit index) are
as labeled. For each color-coded qubit sequence line, the first 5-ns
full width at half maximum (FWHM) Gaussian-shaped sinusoi-
dal pulse realizes the X=2 gate [15] (i.e., the π=2 rotation around
the x axis in the x-y-z reference frame defined at the interaction
frequency as labeled by the dashed line), the square pulse tunes
the qubit to the interaction frequency, and the second 4-ns
FWHM sinusoidal pulse completes the phase-adjustment rotation
θz0 around the z0 axis in each qubit’s own reference frame as
defined in (d). (b) The same pulse sequence projected onto the 2D
plane as defined by the frequency and time axes [see the shadow
in (a)]. Quantum state tomography (QST) is performed at the end
to map out jψgi. (c) Real components of the density matrix
jψgihψgj, where the prime sign on each 00 or 10 in the labels
referring to the new frame is omitted for the clarity of the display.
All imaginary components (data not shown) are measured to be
no higher than 0.043. The polarization axis defining j00i and j10i
is the z0 axis as illustrated in (d). The state fidelity 0.574� 0.019
exceeds the threshold of 0.5, confirming its genuine four-partite
entanglement [16,17]. (d) Illustration of converting the reference
frame x-y-z defined at the interaction frequency to the new
x0-y0-z0 frame for qubit j that picks up a dynamical phase ϕj in the
pulse sequence.

FIG. 3. (a) Illustration of the pulse sequence in 2D for
generation of the four-qubit GHZ state with the e-anyonic
excitation jψei. The sequence is similar to that shown in
Fig. 2(b), except that an extra 10-ns FWHM sinusoidal pulse
is appended, completing the Z0 rotation on Q1, to excite jψei out
of jψgi. The QST pulses are not drawn. (b) The real components
of jψeihψej generated by the pulse sequence in (a), where the
prime sign on each 00 or 10 in the labels referring to the new frame
is omitted for the clarity of the display. All imaginary components
(data not shown) are measured to be no higher than 0.044. The
state fidelity of jψei is 0.516� 0.010, indicating a genuine four-
partite entanglement.

PRL 117, 110501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

110501-3



state fidelity of 0.516� 0.010 [Fig. 3(b)], which again
confirms the genuine four-partite entanglement with 1.6σ.
In addition to QST, we also use the correlation measure-

ment to distinguish jψgi and jψei, intended for a clear
demonstration of anyonic braiding statistics later. The dis-
tinction between the ground state jψgi and the e anyonic
excited state jψei is at the phase φ between j00000000i and
j10101010i. The correlation measurement allows for a direct
probe of this phase by simultaneously measuring four qubits
along the same direction in the x0-y0 plane [23]. Defining the
correlation operator PðγÞ ¼⊗4

j¼1 ðcos γY 0
j þ sin γX0

jÞ, the

expectation value of PðγÞ for GHZ state ðj00000000i þ
eiφj10101010iÞ= ffiffiffi

2
p

is hPðγÞi ¼ cosð4γ þ φÞ, with a period
of π=2 in γ that is unique for four-qubit entanglement.
For phase qubits the polarization along the y0 axis (z axis)
can be measured directly. Polarization along the axis of
cos γy0 þ sin γx0 can, therefore, be measured after applying
to each qubit a rotation by an angle γ around the z0 axis. The
measured PðγÞ versus γ curves for jψgi and jψei, both
showing the Ramsey-type inference, reveal opposite phases
as clearly visible in Fig. 4(b).
Here we demonstrate the fractional statistics for Abelian

1=2 anyons, by braiding an m particle around an e particle
and detecting the additional phase φ due to braiding. As
shown in Fig. 1(b), a pair of m particles can be created on
the neighboring two incomplete faces by applying an X0
rotation to Q1. Then, one of them can be moved around the
vertex by successive application of X0 rotations to the
remaining qubits counterclockwise. The two m particles
annihilate with each other at last, completing the loop
around the vertex. This procedure can be described by the
loop operator Cloop ¼ X0

4X
0
3X

0
2X

0
1. Because the four Pauli

operators in Cloop commute with each other, their exact
ordering is not critical and we simultaneously apply the
four rotations in order to minimize the impact of
decoherence. Looping an m particle around an empty
vertex gives no additional phase, i.e., Cloopjψgi ¼ jψgi.
However, looping an m particle around an e particle yields
a nontrivial statistical phase. We first apply a Z0 rotation to
generate an e particle on the vertex, followed by simulta-
neous X0 rotations to four qubits, fulfilling the loop
operation to circle an m particle around the e particle.
Finally, we apply a Z0 rotation again to annihilate the e
particle. A nontrivial π phase can be acquired, i.e.,
Z0CloopZ0jψgi ¼ −jψgi.
Although this additional phase π does not change the

expectation values of any Hermitian operator, it can be
precisely retrieved by the correlation measurement.
To proceed, we generate the superposition of the ground
state and the e-anyonic excited state by applying a
Z0=2 operation to jψgi, yielding ðjψgi − ijψeiÞ=

ffiffiffi
2

p
. The

loop operation Cloop is applied subsequently, yielding

ðjψgi þ ijψeiÞ=
ffiffiffi
2

p
. The additional π phase before jψei

gained during the loop operation is crucial, and a

subsequent −Z0=2 rotation brings the final state to jψei
instead of jψgi, which yields the opposite π phase for the
interference curve in the correlation measurement. As
shown in Fig. 4(c), by looping an m particle either around
an empty vertex (blue dots and line) or an e particle (red
dots and line), the correlation measurement yields φ ≈ 0. In
contrast, the interference curve for looping an m particle
around a half-filled vertex in the superposition of jψgi and
jψei yields φ ¼ ð0.983� 0.007Þπ (black dots and line),
which clearly demonstrates the nontrivial phase shift of π
related to the braiding statistical of Abelian 1=2 anyons.

FIG. 4. Correlation measurement demonstrating the anyonic
braiding statistics. (a) The pulse sequence for measuring, for
example, PðγÞ of braiding an m particle around a half-filled
vertex in the superposition state of ðjψgi þ jψeiÞ=

ffiffiffi
2

p
: The first

Z0=2 rotation following θz0 creates the superposition, four
simultaneous X0 rotations finish the braiding operation Cloop,
the second −Z0=2 rotation returns the state to either jψgi or jψei
for the correlation measurement, and the final 10-ns FWHM
sinusoidal pulse with varying amplitudes, γz0 , rotates the state by
an angle γ (0 ∼ π) around the z0 axis, following which the four-
qubit joint readout is performed, yielding the 16 occupation
probabilities, fP0000; P0001;…; P1111g. hPðγÞi is calculated asP

i1;i2;i3;i4
ð−1Þi1þi2þi3þi4Pi1;i2;i3;i4 , where ij ¼ 0 or 1 refers to the

state of qubit j. (b) Data of PðγÞ for the ground state jψgi (blue
dots) and the e-anyonic excited state jψei (red dots). The solid
lines are fits according to the equation PðγÞ ∝ cosð4γ þ φÞ,
yielding φs of ð0.033� 0.008Þπ for jψgi and ð1.049�
0.008Þπ for jψei. (c) Data of PðγÞ for looping an m particle
around an empty vertex described by jψgi (blue dots), an e-
anyonic vertex described by jψei (the red dots), and a half-filled
vertex in the state of ðjψgi þ jψeiÞ=

ffiffiffi
2

p
(black dots), with fits

(the solid lines with corresponding colors) yielding φ s of
ð0.135� 0.007Þπ, ð0.106� 0.008Þπ, and ð0.983� 0.007Þπ,
respectively.
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In conclusion, we have simulated the toric code model
for the first time in a solid-state quantum system. A
statistical π phase related to the anyonic braiding has been
observed. With recent progress in superconducting quan-
tum circuit technology [24], our experimental methods
could be further used to construct larger cluster states to
demonstrate the robustness of topological braiding
operations [4] and to explore topological quantum
computation [25].
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Note added.—A parallel experiment with ultracold atoms
reported the realization of the toric code Hamiltonian and
revealed anyonic statistics with interacting qubits [26].
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