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Abstract

Multiple-indicator multiple cause (MIMIC) models have become a popular latent vari-

able method to detect di�erential item functioning (DIF) by practitioners. The ease of

including groups for DIF testing and the implementation of MIMIC models in struc-

tural equation modeling software have helped drive the use of MIMIC models by

applied researchers. However, there are several shortcomings within the method-

ological literature that are important questions yet to be addressed. First, only the

case of two groups have been studied in simulations studies, yet practitioners are in-

creasingly utilizing MIMIC models on more than two groups (e.g. Fleishman, Spector,

& Altman, 2002; Sacco, Casado, & Unick, 2011; Sacco, Torres, Cunningham-Williams,

Woods, & Unick, 2011; Woods, Oltmanns, & Turkheimer, 2009; Yang, Tommet, &

Jones, 2009). Second, MIMIC models can be parameterized to test for non-uniform

DIF (e.g. Woods & Grimm, 2011), but in current implementations Type I error rates

were too high possibly due to assumption violations in the estimation of the latent

interaction. Third, almost all previous simulations for MIMIC models have not con-

sidered the MIMIC model’s robustness to violations of the homogeneity of variance

assumption (see Carroll, 2014 for an exception). A Monte Carlo simulation study was

conducted to address these three shortcomings utilizing a 2 (number of groups) x 3

(latent variance di�erences) x 3 (sample size imbalance) factorial design and compar-

ing the proposed Bayesian MIMIC model with an improved version of Lord’s (1980)

χ 2. Results of the simulation study indicated that when the assumption of homogene-

ity of latent variances held the Bayesian MIMIC model was a competitive method

for assessing DIF. However, when the assumption was not met the Bayesian MIMIC
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model would not be recommended due to poor parameter recovery. Overall, this re-

search provides evidence that practitioners should not use MIMIC models for testing

DIF.

iv



Acknowledgements

I would �rst like to thank God for giving me the abilities and strengths to complete my dis-

sertation. Second, I would like to thank my beautiful wife Rebecca for all her support and love

over the last 6 years in deciding to go back to school and completing my PhD. I would also like to

thank my son Isaiah who came on the scene at the latter part of my studies and helped me keep a

positive outlook and be balanced in completing this dissertation. I also want to extend thanks to

my parents Ken and Carolyn Harpole who raised me and provided support for me to be able to do

what I do today. I also want to thank my Grandparents Ruth and Murray Harpole who provided

me with a wonderful example of how to live life.

I would like to thank my Ph.D. advisor, Dr. Carol Woods, who provided unwavering support

throughout my studies and was always willing to meet with me to discuss various questions or

concerns that came up. I would also like to thank other members of my dissertation committee,

Drs. Wei Wu, Pascal DeBoeck, Billy Skorupski, Jonathan Templin, and David Johnson. I wish

to thank Dr. Skorupski in particular for introducing me to Bayesian statistics and for helpful

discussions throughout my years in the psychometric work group. I would also like to thank Dr.

Jonathan Templin for his help in showing me how to use the ACF cluster to run my Bayesian

MIMIC simulation. Lastly, I want to thank Drs. Wei Wu and Pascal DeBoeck in particular for all

their support and instruction throughout my graduate studies.

Finally, I want to acknowledge the contribution of the Quantitative Psychology program and

the Center for Research Methods and Data Analysis. I am especially grateful to Dr. Paul Johnson

at the CRMDA for teaching me how to use R and cluster computing. I want to further thank

Mauricio Garnier-Villareal for helping me with the Stan code used in this dissertation. Lastly, I

want to o�er further thanks to Terry Jorgenson, Kyle Lang, and Ian Carroll for the many stimu-

lating discussions and helpful suggestions toward this project.

v



Contents

1 Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Background on DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Background on IRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Background on Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . 8

2 Review of the Literature 10

2.1 Review of Unidimensional IRT-Based DIF Methods . . . . . . . . . . . . . . . . . 10

2.1.1 Likelihood Ratio (LR) DIF Testing . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Lagrange Multipliers for DIF Testing . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Wald Chi-Square Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Lord’s (1980) Wald Chi-Square in More than Two Groups . . . . 17

2.1.3.2 Improved Wald Chi-square DIF Test . . . . . . . . . . . . . . . . 19

2.1.4 Latent Class DIF Models Over Persons . . . . . . . . . . . . . . . . . . . . 22

2.1.5 Latent Class DIF Models over Item Parameters . . . . . . . . . . . . . . . 25

2.1.5.1 Soares, Goncalves, and Gamerman (2009) Model . . . . . . . . . 26

2.1.6 Logistic Mixed Model Methods . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.6.1 IRT Model as a LMM . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.6.2 Fixed Items Fixed Groups DIF Models . . . . . . . . . . . . . . . 30

vi



2.1.6.3 Random Items and Fixed Groups DIF Models . . . . . . . . . . . 31

2.1.6.4 Fixed Item Random Group DIF Models . . . . . . . . . . . . . . 32

2.1.6.5 Random Item Random Group DIF Models . . . . . . . . . . . . . 33

2.1.7 DIF Methods from Machine Learning . . . . . . . . . . . . . . . . . . . . . 34

2.1.7.1 Rasch Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.8 DIF LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 MIMIC Models for DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 MIMIC Uniform DIF Models . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 MIMIC Non-uniform DIF Models . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2.1 Overview of Latent Interactions and MIMIC DIF Models . . . . 46

2.2.2.2 Illustration of How to Test for Non-uniform DIF with MIMIC

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Current Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Methods for the Simulation Study 52

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Fixed Factors in the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Varying Factors in the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.0.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Burn-in and Convergence Diagnostics . . . . . . . . . . . . . . . . . . . . 60

3.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Issues with Multiple Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2 Power and Type I Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.3 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



4 Results of the Simulation Study 70

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.2 Issues with Multiple Testing and Parameter Recovery . . . . . . . . . . . . 72

4.2 Results of 2 Group Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Overall Type I Error and Power . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2.1 Improved Wald Confusion Matrices . . . . . . . . . . . . . . . . 76

4.2.2.2 Bayesian MIMIC Model Confusion Matrices . . . . . . . . . . . 77

4.2.3 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.3.1 Discrimination Parameters . . . . . . . . . . . . . . . . . . . . . 77

4.2.3.2 Di�culty Parameters . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3.3 Latent Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Results of 3 Group Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Overall Type I Error: Reference vs. Focal Groups 1 and 2 . . . . . . . . . . 85

4.3.2 Overall Power: Reference vs. Focal Groups 1 and 2 . . . . . . . . . . . . . 85

4.3.3 Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3.1 Improved Wald Confusion Matrices: Reference vs. Focal Group 1 90

4.3.3.2 Bayesian MIMIC Model Confusion Matrices: Reference vs. Fo-

cal Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4.1 Discrimination Parameters: Reference vs. Focal Groups 1 and 2 92

4.3.4.2 Di�culty Parameters: Reference vs. Focal Groups 1 and 2 . . . 94

4.3.4.3 Latent Means: Focal Groups 1 and 2 . . . . . . . . . . . . . . . . 97

5 Applied Example of the Bayesian MIMIC Model 101

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



5.2.1 Empirical Selection of Anchor Items . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Testing for DIF and Fitting the Final Model . . . . . . . . . . . . . . . . . 104

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Anchor Selection and Convergence Criteria . . . . . . . . . . . . . . . . . 104

5.3.2 DIF Tests and Final Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Discussion 110

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 2 Group Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Overall Power and Overall Type I Error . . . . . . . . . . . . . . . . . . . 111

6.2.1.1 Conclusion of Bayesian MIMIC vs. Improved Wald Confusion

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.2 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3 General Conclusions 2 Group Simulation . . . . . . . . . . . . . . . . . . . 115

6.3 3 Group Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 General Conclusions from the Simulation Study . . . . . . . . . . . . . . . . . . . 116

6.5 Applied Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Limitations and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A Confusion Matrices: Reference vs. Focal Group 2 137

Appendix B R Code for Applied Example 140

ix



Figures

2.1 MIMIC Uniform DIF Path Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 MIMC Non-uniform DIF Path Diagram. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Illustrations of DIF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Overall Type I Error for 2 Group Conditions . . . . . . . . . . . . . . . . . . . . . 74

4.2 Overall Power for 2 Group Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Discrimination Parameter Bias for 2 Group Conditions . . . . . . . . . . . . . . . 81

4.4 Di�culty Parameter Bias for 2 Group Conditions . . . . . . . . . . . . . . . . . . 83

4.5 Latent Mean Parameter Bias for 2 Group Conditions . . . . . . . . . . . . . . . . . 84

4.6 Overall Type I Error for 3 Group Conditions: Reference vs. Focal Group 1 . . . . . 86

4.7 Overall Type I Error for 3 Group Conditions: Reference vs. Focal Group 2 . . . . . 87

4.8 Overall Power for 3 Group Conditions: Reference vs. Focal Group 1 . . . . . . . . 88

4.9 Overall Power for 3 Group Conditions: Reference vs. Focal Group 2 . . . . . . . . 89

4.10 Discrimination Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 1 95

4.11 Discrimination Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 2 96

4.12 Di�culty Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 1 . . 98

4.13 Di�culty Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 2 . . 99

4.14 Latent Mean Parameter Bias for 3 Group Conditions . . . . . . . . . . . . . . . . . 100

x



Tables

3.1 True Item Parameter Estimates Used for Data Generation . . . . . . . . . . . . . . 54

4.1 Confusion Matrices for 2 Group Conditions: Improved Wald for Reference vs Fo-

cal Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Confusion Matrices for 2 Group Conditions: Bayesian MIMIC Model for Refer-

ence vs Focal Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Confusion Matrices for 3 Group Conditions: Improved Wald for Reference vs Fo-

cal Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Confusion Matrices for 3 Group Conditions: Bayesian MIMIC Model for Refer-

ence vs Focal Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Bayesian MIMIC Model DIF Caucasian versus African American . . . . . . . . . . 107

5.2 Bayesian MIMIC Model DIF Caucasian versus Other . . . . . . . . . . . . . . . . . 108

5.3 Bayesian MIMIC Model Final Model . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Confusion Matrices for 3 Group Conditions: Improved Wald for Reference vs Fo-

cal Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Confusion Matrices for 3 Group Conditions: Bayesian MIMIC Model for Refer-

ence vs Focal Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xi



Chapter 1

Background

1.1 Introduction

Item fairness has been an important consideration in educational and psychological testing for

the past 40 years. This issue continues to be an active area of research today. Items on educational

and psychological tests should function the same way across participants to ensure the validity of

an assessment. Measurement invariance of items refers to assessment questions functioning the

same way for all participants across a variety of conditions assuming the conditions are irrelevant

to the items being measured (Millsap, 2011). If a psychological instrument measures depression

and males and females have been matched on their level of depression then the assessment should

function the same way for both males and females. When this condition fails depression is related

to some other nuisance dimension for a given item. When items do not function the same way for

all participants these items are said to be exhibiting di�erential item functioning (DIF) (Holland

& Wainer, 1993; Mellenbergh, 1989; Thissen, Steinberg, & Wainer, 1993).

Item response theory (IRT) provides a framework for testing DIF that has been utilized in

practice. One of the downsides of DIF testing in an IRT framework are that larger sample sizes

are often required than may be feasible in some educational and psychological contexts. However,

Woods (2009b) found that testing for uniform DIF using an IRT based multiple-indicator multiple
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cause (MIMIC; Jöreskog & Goldberger, 1975; B. O. Muthén, 1985) model provided adequate power,

Type I error control, and parameter recovery compared with a multiple group IRT DIF testing

procedure at smaller sample sizes (i.e. 25, 50, 100, and 200) for the focal group. Further, MIMIC

models seamlessly allow for the inclusion of multiple grouping variables for DIF testing and are

able to be �t in popular structural equation modeling software. For these reasons MIMIC models

have been widely implemented by practitioners (e.g. Fleishman et al., 2002; Sacco, Casado, &

Unick, 2011; Sacco, Torres, et al., 2011; Woods et al., 2009; Yang et al., 2009; Yu, Yu, & Ahn, 2007)

and studied by methodologists (Carroll, 2014; Finch, 2005; E. S. Kim, Yoon, & Lee, 2012; MacIntosh

& Hashim, 2003; Shih & Wang, 2009; W. C. Wang & Shih, 2010; Woods, 2009b; Woods & Grimm,

2011).

Currently, all of the applied research involving MIMIC models with categorical data are lim-

ited to the case of testing only uniform DIF. However, there has been some movement within the

methodological community to test for non-uniform DIF on categorical data with MIMIC mod-

els (e.g. Woods & Grimm, 2011) and continuous data with MIMIC models (e.g. Barendse, Oort,

& Garst, 2010; Barendse, Oort, Werner, Ligtvoet, & Schermelleh-Engel, 2012) by adding a latent

interaction into the model. Yet, the studies by Barendse et al. (2010), Barendse et al. (2012), and

Woods and Grimm (2011) all noted in�ated Type I error rates for non-uniform MIMIC DIF models

possibly due to the assumption violation inherent in the estimation of the latent interaction term.

The current body of MIMIC DIF testing research has three limitations. First, for the case of

uniform DIF methodological research has only considered the cased of two groups in simulation

studies (e.g. Finch, 2005; Woods, 2009b). However, the methodological research on two groups is

lagging behind applications of MIMIC DIF models in more than two groups (e.g. Fleishman et al.,

2002; Sacco, Casado, & Unick, 2011; Sacco, Torres, et al., 2011; Woods et al., 2009; Yang et al., 2009).

Within the two group case for uniform DIF testing MIMIC models have shown better performance

than multiple group IRT with small focal group sample sizes (Woods, 2009b). Methodological

work with respect to testing non-uniform DIF has only considered the two group case and it is

unknown how this method will perform with more than two groups. Further, whether the small
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focal group bene�ts found by Woods (2009b) of the uniform DIF MIMIC model will carry over to

the non-uniform DIF MIMIC model is an open question.

A second limitation of previous studies on MIMIC DIF testing involve the estimation of the

latent interaction term. The assumption for estimating a latent interaction as implemented in

testing for non-uniform DIF with MIMIC models by Barendse et al. (2010), Barendse et al. (2012),

and Woods and Grimm (2011) is that both variables in the interaction are normally distributed.

Clearly, this is not true as binary variables are not normally distributed. All previous studies using

a latent interaction term to test for non-uniform DIF noted in�ated Type I error rates (Barendse

et al., 2010; Barendse et al., 2012; Woods & Grimm, 2011). Woods and Grimm (2011) noted that

the IRT based MIMIC model could be reparameterized as a non-linear logistic mixed model to

more appropriately estimate the latent interaction. Thus, there is a need to utilize an estimation

method of the latent interaction that is more theoretically justi�ed in order to determine the

utility of testing non-uniform DIF in MIMIC models.

A third limitation of previous studies is a failure to assess the MIMIC models robustness to a

critical assumption: Equal latent variances across the groups. Some studies of IRT based DIF test-

ing with real data in more than two groups show that this assumption may not hold (e.g. Harpole

et al., 2014; Langer, 2008). At the time of this writing only Carroll (2014) has manipulated this

assumption in MIMIC DIF testing for uniform DIF and this assumption has not been manipulated

for the case of testing non-uniform DIF with MIMIC models. Carroll (2014) found that violat-

ing this assumption resulted in in�ated Type I errors and parameter bias for the case of testing

uniform DIF. However, Carroll (2014) only considered the two-group case and only uniform DIF.

The purpose of the present research was to conduct a Monte Carlo simulation and applied

example to address these three limitations of the present body of MIMIC DIF research and provide

an illustration of how one might implement this model in practice. This dissertation consists of

several sections: Theoretical background, a review of unidimensional IRT based DIF methods,

method section for the simulation, results of the simulation, an applied example, and discussion.

First, a brief overview of DIF, IRT, and Bayesian estimation will be given. Next, a review of several

3



types of unidimensional IRT based DIF methods will be given followed by the methods and results

of the simulation study. Lastly, an applied example and overall discussion will be given.

1.2 Theoretical Background

1.2.1 Background on DIF

DIF can be de�ned as the di�erence in the probability of endorsing a given response to an item

di�ers for one manifest group compared to another after controlling for true mean di�erences on

the target trait. In DIF testing the reference group is the group to which other groups denoted

focal groups are compared. Typically, the reference group consists of a larger representative

group which a given psychological or educational test is posited to favor or may have been the

norming group. A more precise de�nition of DIF can be given within a mathematical framework.

Let the response to a particular item on a test be denoted by Y and the response to that item is

determined solely by the latent variable θ . The conditional probability of an item response given

the latent trait is denoted as f (Y |θ ). If we are interested in comparing the conditional probability

of Y for h = 1, . . . ,H focal groups to a reference group then an item is said to be unbiased if the

following expression holds

f (Y |θ ,G = R) = f (Y |θ ,G = F1), . . . , f (Y |θ ,G = R) = f (Y |θ ,G = FH ), (1.1)

where,G denotes the group membership (R = reference group and Fh = focal group h), f (Y |θ ,G =

R) represents the conditional probability of item response given the latent trait and being in the

reference group and f (Y |θ ,G = Fh ) represents the conditional probability of item response given

the latent trait and being a member of focal group h (h = 1 . . . ,H ). If Equation 1.1 does not hold

then the item is said to show DIF for focal group h relative to the reference group. Equation 1.1

gives a formal de�nition to pairwise measurement invariance where the conditional probability

of an item response given group membership for a reference group is compared with each focal
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group. A more general de�nition which includes Equation 1.1 as a special case would be

f (Y |θ ,G = R) = f (Y |θ ,G = F1) = · · · f (Y |θ ,G = FH ), (1.2)

suggesting that the equality of all conditional response probabilities must hold regardless of group

for measurement invariance to hold, otherwise an item would show DIF. This expression eval-

uates if the item parameters are invariant across all groups and does not contrast the groups

with a speci�ed reference group. For the current study only the de�nition in Equation 1.1 will be

considered.

According to Holland and Wainer (1993), Mellenbergh (1989), Thissen, Steinberg, and Wainer

(1988), and Thissen et al. (1993) there are two main types of DIF: uniform and non-uniform.

Uniform DIF occurs when the di�erence in the probability of the reference group responding in

a given category compared with the probability of a focal group(s) response in that category is

constant over the range of the latent construct. Non-uniform DIF can be thought in terms of an

interaction e�ect where the probability of the reference group responding in a given category

compared with the probability of the focal group responding in that category depends on the

level of the latent construct. In other words at some levels of the latent variable the reference

group may be favored and at other levels the focal group may be favored.

A plethora of methods have been proposed to test for DIF (see Holland & Wainer, 1993; Mill-

sap, 2011; R. D. Pen�eld & Camilli, 2007; R. D. Pen�eld & Lam, 2000 for a review of popular

methods). Theses methods can be divided into two main classes: Latent variable methods and

observed variable methods (Millsap, 2011; R. D. Pen�eld & Camilli, 2007). The notion of latent and

observed methods stems from the matching criteria that is used to align persons at di�erent abil-

ity levels for the purpose of DIF testing. Observed variable methods use the examinees summed

score as a proxy for their level of the latent trait being assessed. Latent variable methods typically

postulate a continuous normally distributed latent variable that gives rise to the manifest item

responses of participants.
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The advantages of observed variable methods are that they typically do not require special-

ized software, can perform well in small samples, and sometimes make fewer assumptions than

latent variable methods (R. D. Pen�eld & Camilli, 2007). The disadvantages of observed variables

methods are that measurement error is not modeled and that the summed score may be an inap-

propriate proxy for the latent variable (Holland & Wainer, 1993; Millsap, 2011; R. D. Pen�eld &

Camilli, 2007). The advantages of latent variable methods are that measurement error is modeled

and more realistic assumptions about the latent variable distribution can be made. The disadvan-

tages of latent variable methods are that they often require larger sample sizes and may require

more specialized software (Millsap, 2011).

In both observed variable methods and latent variable methods the scales of the two groups

must be aligned in order to test the items for DIF. There are many di�erent ways to do this (see

W. C. Wang, 2004 for an overview). The two main approaches discussed here are using all-other

items as anchor (AOAA) items or designating a set of anchor items. Anchor items refer to those

items which are known or presumed to be DIF free either by subject matter experts or more

commonly by empirical analysis. Anchor items function to align the scales between the groups

so that item parameters can meaningfully be compared for DIF testing.

The AOAA method involves assuming that all items other than the tested item are invariant

and the tested item is evaluated for DIF. This process is repeated for each item on the test. The

AOAA method has shown in�ated Type I error rates when the anchor set is contaminated with

DIF items and is not a recommended method (e.g. Finch, 2005; W. C. Wang, 2004; Woods, 2009a).

The more accepted method for using anchor items is to empirically select the items using a rank

based procedure (e.g. Woods, 2009a), puri�cation procedure (e.g. W. C. Wang & Shih, 2010), or

combination of both (e.g. W. C. Wang, Shih, & Sun, 2012). Once the anchor items are empirically

selected then these items are used to link the scale across the groups.
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1.2.2 Background on IRT

IRT consists of a set of latent variable models that de�ne one way of establishing the correspon-

dence between a latent variable and a categorical item response (e.g. De Ayala, 2009). Unidi-

mensional IRT typically makes three assumptions: (1) responses to the manifest variables are

accounted for by a single latent trait, (2) the data exhibit a pattern consistent with the model’s

speci�ed form, and (3) conditional independence of item responses (D. Kim, De Ayala, Ferdous, &

Nering, 2011). Assumption one is self-explanatory. The second assumption, the functional form

assumption, states that the data should follow the form of the unidimensional IRT model (e.g.

a logistic or normal ogive function). The third assumption states that once we condition on a

single latent trait, the item responses are statistically independent. Another assumption made in

the current study was that the latent trait is normally distributed, however, this assumption can

be relaxed (e.g. Woods & Thissen, 2006).

There are many di�erent types of IRT models for binary, ordinal, and nominal response data.

In the present study only binary IRT models were considered. The most general binary IRT model

is the three parameter logistic (3PL; Birnbaum, 1968)

P (Yij = 1|θj ) = ci +
(1 − ci )

1 + exp[−αi (θj − βi )]
, (1.3)

where Yij is the binary response of person j (j = 1, . . . , J ) to item i (i = 1, . . . , I ), θj is the latent

trait of person j, ci is the pseudo-guessing parameter of item i , αi is the discrimination parameter

of item i and βi is the di�culty parameter of the ith item. The two-parameter logistic (2PL) and

one-parameter logistic (1PL) models are special cases of Equation 1.3. The 2PL model can be

obtained by �xing ci to zero for all items, the 1PL can be obtained from the 2PL by adding the

constraint that αi be the same for all items.

According to R. D. Pen�eld and Camilli (2007) there are two related interpretations of DIF

within the IRT framework: (1) Between group di�erences in item characteristic curves (ICCs)

and (2) between group di�erences in item parameters. The �rst interpretation of DIF is related
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to the second, because if the item parameters di�er across groups then the ICCs will also di�er.

In reviewing the existing unidimensional IRT DIF methods literature the �rst interpretation in

relation to area measures of DIF will not be addressed in this dissertation. Area measures evaluate

the amount of DIF based on calculating the area between the ICCs among various groups (Raju,

1989; 1990; Raju, Van der Linden, & Fleer, 1995; Rudner, Getson, & Knight, 1980) and while sig-

ni�cance tests are available, they are more commonly used to evaluate e�ect sizes (e.g. Millsap,

2011).

1.2.3 Background on Bayesian Estimation

The treatment of Bayesian statistics within psychometrics is becoming more popular (e.g. Levy,

2009) but many applied researchers are still less familiar with this framework. A brief introduction

to Bayesian estimation will be given here and further details may be found in Patz and Junker

(1999a) and Patz and Junker (1999b) for IRT speci�cally or Gelman et al. (2013) for a general

overview of Bayesian statistics. To estimate IRT models within a Bayesian framework, Baye’s

Theorem is applied as follows

p (ζ |Y ) =
p (Y |ζ )p (ζ )

p (Y )
, (1.4)

where ζ is a vector containing the parameters of interest andY is the data that has been observed.

The posterior distribution is given as p (ζ |Y ) and represents the probability of the parameters

given the observed data. The likelihood is given by p (Y |ζ ) and is identical to the likelihood used

in maximum likelihood estimation, p (ζ ) is the prior distribution of the parameters, andp (Y ) is the

marginal likelihood. In practice p (Y ) can be ignored when computing the posterior and Equation

1.4 is written as

p (ζ |Y ) ∝ p (Y |ζ )p (ζ ), (1.5)

indicating the posterior is proportional to the likelihood times the prior (see Gelman et al., 2013

for details). The two main di�erences between Equation 1.5 and maximum likelihood estimation

are the speci�cation of the prior distribution and maximum likelihood attempts to �nd a point
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estimate while Bayesian estimates a posterior distribution.

Computation of Equation 1.5 for various IRT models can be accomplished by means of Markov

Chain Monte Carlo (MCMC) methods (see Gelman et al., 2013; Jackman, 2009 for an overview).

The bene�ts of the Bayesian framework are the extreme �exibility in estimating models that may

not be practically viable in maximum likelihood or have not yet been implemented in available

software. If researchers can specify the full probability model as in Equation 1.5 of the likelihood

and prior(s) for their question of interest then it is possible to estimate their model in a Bayesian

framework. Some of the existing methods in the literature have only been or may currently only

be implemented in a Bayesian framework due to the lack of available software for maximum like-

lihood estimation. The disadvantages of the Bayesian framework using MCMC are the diligence

and mathematical understanding of the researcher to monitor convergence and various model

diagnostics, use of specialized software to �t complex models, and the slow computation time

required (Gelman et al., 2013).

In what follows a review of unidimensional IRT-based DIF methods is given. Special emphasis

will be placed on how these procedures may generalize beyond the two group case. The methods

are likelihood ratio tests, Lagrange multiplier tests, Wald χ 2, latent classes over persons, latent

classes over items, logistic mixed models, machine learning methods, and MIMIC models. This

review will cover MIMIC models and the Wald χ 2 in somewhat more detail than other methods

as these two methods were used in the current study.
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Chapter 2

Review of the Literature

2.1 Review of Unidimensional IRT-Based DIF Methods

2.1.1 Likelihood Ratio (LR) DIF Testing

The LR DIF test was originally conceived by Thissen, Steinberg, and Gerrard (1986) and was

further described in Thissen et al. (1988; 1993). Within the IRT literature the LR test for DIF is

associated with IRTLRDIF but LR tests for DIF are more general than IRTLRDIF. IRTLRDIF is a

software package implemented by David Thissen in 2001 that automates the process of many

model �ttings required to run the LR DIF tests in two groups (Thissen, 2001). The idea of LR tests

for DIF is not speci�c for use in multiple group IRT models and can be used with a variety of

procedures such as MIMIC models and logistic mixed models. Here LR tests for DIF are described

in the context of multiple group IRT as implemented by Thissen (2001) but generalized to N

groups. To illustrate the method the multiple group 2PL IRT Model is used

P (yij = 1|θj ) =
1

1 + exp[−αiд (θj − βiд)]
, (2.1)

whereд = 1 . . . ,G refers to the group, θj refers to the latent trait of person j = 1, . . . , J and αiд and

βiд are the discrimination and threshold parameters for item i = 1, . . . , I in group д, respectively.
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It is assumed that the reference group will be denoted as д = 1. Further θj |λд(j ) ∼ N (µд(j ),σ
2
д(j )

),

where λд = (µд(j ),σ
2
д(j )

)T with λ1 = (µ1 = 0,σ 2
1 = 1)T for the reference group to identify the scale.

Note the notaion д(j ) refers to person j in group д.

Let two multiple group 2PL IRT models be denoted asM0 andM1. M1 has necessary con-

straints on item parameters across groups only to identify the model with all other item param-

eters being freely estimated.M0 adds certain constraints toM1 to achieve invariance across the

groups for a given item or set of items. Note that M0 is nested within M1. Then the LR DIF

statistic can be de�ned as

χ 2
LR = −2 ∗ ln

(
L0
L1

)
, (2.2)

where L0 is the likelihood of model M0 and L1 is the likelihood of model M1. Equation 2.2 is

very general and can be applied to binary, ordinal, and nominal IRT models. The test statistic

is asymptotically distributed as chi-square with the degrees of freedom equal to the number of

constraints onM1 to obtainM0. The LR DIF test allows for both an omnibus test of the αiд and

βiд parameters and individual tests for each parameter. To conduct these tests a series of nested

models (i.e. M0 and M1) are conducted for each item and in the case of individual tests; each

parameter as illustrated in Equation 2.2.

The procedure requires many model �ttings and becomes cumbersome for a large number

of groups. For example, assuming the 2PL model with three groups and 20 items tested for DIF

this requires 20 + 1 = 21 model �ttings for the omnibus test. More generally, it requires |ID | + 1

model �ttings where |ID | denotes the number of DIF items (i.e. non-anchor items). Assuming that

omnibus DIF has already been tested the number of model �ttings required to test for pairwise

DIF in the 2PL model is [2 ∗ (G − 1) ∗ |ID |] (where G is the number of groups). For example if we

have a 20 items tested for DIF (|ID | = 20) and three groups, then this would involve 2∗ (2)∗20 = 80

model �ttings to test for individual parameter DIF. Hence, this is probably the reason that the LR

DIF test has not been well studied beyond two groups (see Woods, Cai, & Wang, 2013 for three

groups). For cases involving two groups the LR DIF test has been shown to have high power

and well controlled Type-I errors when the model and anchor sets are well speci�ed (Finch, 2005;
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Woods, 2009b; Woods et al., 2013). However, when moving beyond two groups the LR DIF testing

procedure becomes cumbersome and does not scale well computationally when compared to

other procedures such as the improved Wald χ 2 (Cai, 2015; Cai, Thissen, & du Toit, 2013; Langer,

2008) or the LM tests described below.

2.1.2 Lagrange Multipliers for DIF Testing

Lagrange Multiplier (LM) tests were �rst introduced by Silvey (1959) and are general to any

maximum-likelihood based estimation model. Glas (1998; 1999) �rst introduced the notion of

using LM tests for testing DIF. The idea of the LM test is to compare the �t of a general unre-

strictive model to a restricted model that is a special case of the unrestrictive model. The LM test

is based on computing the �rst-order partial derivatives with respect the the log likelihood of

the general model evaluated at the maximum likelihood estimates obtained from the restricted

model (Glas & Falcón, 2003). A special feature of the LM test is that only the restricted model

is estimated to compute the statistic making the LM much more e�cient than the LR test. The

reason for this is that the �rst-order partial derivatives that are not restricted will be zero be-

cause they were solved using maximum likelihood estimation. However, the magnitudes of the

�rst-order partial derivatives of the restrictions on the general model are only zero when the con-

straints hold exactly (Bollen, 1989; Glas & Falcón, 2003). Thus, the size of the �rst-order partial

derivatives dictate the magnitude of the LM statistic with higher values indicating worse model

�t.

To better illustrate the ideas assume i = (1, . . . , I ) items, j = (1, . . . , J ) persons, and д =

(1, . . . ,G ) groups with the 2PL model be represented as

P (yij = 1|θj ) =
1

1 + exp{−(αi + δiд(j ) )[θj − (βi + ωiд(j ) )]}
, (2.3)

where δiд(j ) and ωiд(j ) represent non-uniform and uniform DIF for item i with respect to person

j in group д, respectively. Note that δi1 = 0 and ωi1 = 0 indicating the reference group and
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д = (2, . . . ,G ) the (G−1) focal groups. Further, it is assumed that θj |λд(j ) ∼ N (µд(j ),σ
2
д(j )

) withд(j )

indicating that participant j is in group д and λд = (µд,σ
2
д ) ∀д = (1, . . . ,2). To identify the scale

λ1 = (µ1 = 0,σ 2
1 = 1). Using notation from Glas and Falcón (2003) let the parameters of a general

multiple group 2PL IRT be denoted by η. The parameters of the restricted model are a subset of η

by adding in the appropriate constraints. From this η can be partitioned into η = (η1,η2)
T , where

η1 is a vector of unrestricted parameters and η2 is a vector of restricted parameters placed on the

general model. Here η1 = (αT ,βT ,λ2, . . . ,λG )
T where α = (α1, . . . ,αI )

T and β = (β1, . . . ,βI )
T

and η2 = (δ1, . . . ,δI ,ω1, . . . ,ωI )
T where δi = (δi2, . . . ,δiд)

T and ωi = (ωi2, . . . ,ωiG ). Under the

null hypothesis that the restricted model holds then η2 = 0. Lettingh(η) be the �rst-order partial

derivatives of the unrestricted such that

h(η) =
∂LoдL(η)

∂η
, (2.4)

where LoдL(η) is the log likelihood of the unrestricted or general model. h(η) is also known as

the score function (Rao, 1948) which gives the change in the log-likelihood for local changes in

η (Glas & Falcón, 2003).

Letting the vector of partial derivatives h(η) be partitioned as [h(η1) = 0,h(η2)]T then the

LM statistic is given as

LM = h(η2)
TΣ−1h(η2). (2.5)

In Equation 2.5 Σ is given as

Σ = Σ22 − Σ21Σ
−1
11 Σ12, (2.6)

where

Σpq =
∂2LoдL(η)

∂ηp∂ηTq
, (2.7)

with p = 1,2 and q = 1,2. The speci�c details of computing these derivatives is beyond the scope

of this paper and the interested reader is directed to Glas (1998; 1999) for details. The LM statistic

in Equation 2.5 has an asymptotic χ 2 distribution with degrees of freedom equal to the number of

13



parameters in η2 (Silvey, 1959). In practice the LM statistic in Equation 2.5 is not typically used,

instead the individual tests for each parameter are used. For the discrimination parameters the

individual tests are given as

LMαiд = h(ηαiд )
TΣ−1

αiдh(ηαiд ) (2.8)

and for the threshold parameters the individual tests are given by

LMβiд = h(ηβiд )
TΣ−1

βiд
h(ηβiд ), (2.9)

where the subscriptsαiд and βiд refer to the discrimination and threshold parameters, respectively

of item i of group д. The LM statistics in Equations 2.8 and 2.9 are asymptotically χ 2 distributed

with one degree of freedom.

The advantages of using LM tests for DIF detection in two or more groups are that LM proce-

dures only require �tting the restricted model to obtain estimates as compared to the LR or Wald

χ 2 tests. Further, multiple aspects of model �t and assumptions in addition to DIF testing may

also be speci�ed Glas (1998; 1999). Several simulation studies have found the LM tests to perform

well for the two group case when the proportion of DIF items was not too large (Glas, 1998; Glas,

1999; Khalid & Glas, 2014). However, the LM statistics have been shown to perform inadequately

when the proportion of DIF items is large and/or the model being tested is grossly violated by

the imposed constraints (Glas, 1999; Khalid & Glas, 2014). Another disadvantage of the LM tests

are their lack of availability in current IRT software.

2.1.3 Wald Chi-Square Tests

The original idea of testing for DIF using Wald (Wald, 1943) χ 2 tests was from Lord (1980, pp. 212-

224). Lord believed the way to detect DIF was to compare the ICCs or item response functions

(IRFs) between the groups. He noted that it is di�cult or impossible to determine whether a

meaningful di�erence between IRFs of various groups exist just by looking at pictures. To better

address this issue he proposed the Wald χ 2 for DIF testing. In Lord’s 1980 original implementation
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he noted three estimation steps to test for DIF in the 3PL model (see Equation 1.3):

1. Estimate the item parameters for all groups combined, standardizing on the di�culty pa-

rameters (βi ).

2. Fix the pseudo-guessing parameters (ci ) equal to the values obtained in step one for all

groups, reestimate the αi and βi parameters separately in each group, and standardize on

the βi estimates.

3. For each item compare the item parameters (αi and βi ) for di�erences across the groups

using the χ 2 statistic given by Lord (1980) (see below).

Lord noted that the ci parameters should be constrained equal between the groups and not

tested given the known problems with estimation of the pseudo-guessing parameters. The im-

plementation of Lord’s 1980 Wald χ 2 statistic for comparing two groups is given by

χ 2
i = v

T
i Σ
−1
i vi , (2.10)

where vT
i = [α̂iR − α̂iF , β̂iR − β̂iF ] is the vector of the di�erence between the reference (R) and

focal (F ) group di�culty and discrimination parameters for item i and Σ−1
i is the inverse of the

asymptotic covariance matrix for α̂iR − α̂iF and β̂iR − β̂iF . Note that theˆover the item parameters

refers to the fact that these are maximum likelihood estimates. The contents of Σi for two groups

are given as

Σi =
*..
,

var (α̂iR ) +var (α̂iF ) cov (α̂iR, β̂iR ) + cov (α̂iF , β̂iF )

cov (α̂iR, β̂iR ) + cov (α̂iF , β̂iF ) var (β̂iR ) +var (β̂iF ).

+//
-

(2.11)

Asymptotically χ 2
i follows a chi-square distribution with two degrees of freedom. Lord’s (1980)

Wald Chi-square requires less model �ttings than IRTLR-DIF making it a much more computa-

tionally e�cient procedure (Langer, 2008; Millsap, 2011).

As originally implemented Lord’s 1980 Wald χ 2 has four main criticisms: (1) Use of joint

maximum-likelihood (JML) estimation of person and item parameters versus a more modern
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estimation such as marginal maximum likelihood (MML; Bock & Aitkin, 1981), (2) linking the

groups based on standardizing the βs, (3) failure to test the pseudo-guessing parameter for DIF,

and (4) the estimation of the asymptotic covariance matrix. The �rst criticism (use of JML) appears

to have been resolved in the early to mid 1990s. When using JML to estimate person and item

parameters the item parameter estimates may not be consistent and the item parameter estimates

may not be asymptotically e�cient (e.g. De Ayala, 2009). These two consequences undermine

the asymptotic χ 2 distribution that Lord’s 1980 Wald χ 2 test rests on for statistical inference in

DIF analyses. McLaughlin and Drasgow (1987) conducted a simulation study using Lord’s Wald

χ 2 with JML estimation to compare the power and Type I error rates and found that Type I error

in�ation was up to 11 times above the nominal level. Both S. H. Kim and Cohen (1995) and Lim

and Drasgow (1990) used MML for Lord’s Wald χ 2 and found that Type I error rates were much

improved over using JML.

The last three criticisms have been addressed more recently albeit the linking criticism (2)

was partially addressed in the mid 1990s. S. H. Kim, Cohen, and Kim (1994) addressed criticism

(2) by utilizing the Stocking and Lord (1983) method of equating to link the item parameters

between groups. S. H. Kim et al. (1994) notes that this method has been shown to perform well

and is recommended over standardizing on the β coe�cients. More recently, Langer (2008) and

Woods et al. (2013) recommended using designated anchor items to link the scales between the

groups which tends to perform better on average than the Stocking and Lord (1983) method. The

third and fourth criticisms (testing pseudo-guessing parameters and estimation of the asymptotic

covariance matrix, respectively) were addressed by an improved version of the Wald-χ 2 test (Cai,

2015; Cai et al., 2013; Langer, 2008). The remainder of this section explains how Equation 2.10 can

be generalized to more than two groups. Then a description of the improved version of Lord’s

Wald χ 2 test is given.
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2.1.3.1 Lord’s (1980) Wald Chi-Square in More than Two Groups

S. H. Kim, Cohen, and Park (1995) were the �rst to use Lord’s (1980) Wald χ 2 test in more than

two groups. They presented an illustrative example using real data. A generalization of Equation

2.10 is presented to more than two groups following the notation provided in S. H. Kim et al.

(1995). The illustration presented by S. H. Kim et al. (1995) is extended by illustrating the 3PL

model1 (see Equation 1.3). First let vi = (α̂i1 β̂i1 ĉi1 · · · α̂ik β̂ik ĉik )
T is a 3 ∗ K by 1 dimensional

vector where K is the number of groups (k = 1, . . . ,K ). Let Σi by a 3 ∗ K by 3 ∗ K block diagonal

matrix given by

Σi =

*..............
,

Φi1 0 0 · · · 0

0 Φi2 0 · · · 0

0 0 . . . · · · 0
...

...
...
. . .

...

0 0 0 0 Φik ,

+//////////////
-

(2.12)

where Φik is given as

Φik =

*......
,

var (α̂ik ) cov (α̂ik , β̂ik ) cov (α̂ik , ĉik )

cov (α̂ik , β̂ik ) var (β̂ik ) cov (β̂ik , ĉik )

cov (α̂ik , ĉik ) cov (β̂ik , ĉik ) var (ĉik ),

+//////
-

(2.13)

for item i and group k . Note each 0 in Σi is a 3 x 3 null matrix.

In order to make comparisons across multiple groups a contrast matrix C is introduced such

that C has p rows which contain contrast vectors and 3 ∗ K columns (three refers to the number

of parameters tested). Here p is the rank of C and in the present example for the 3PL model

p = (3 ∗ K − 3). Thus, C is a (3 ∗ K − 3) by 3 ∗ K contrast matrix. For the case of K groups the
1Testing for DIF in the pseudo-guessing parameter (ci ) should be done with great care. Typically a very large

sample size is needed or the use of prior distributions is recommended (see Langer, 2008 for details)
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contrast matrix is given by

C =



1 0 0 −1 0 0 0 · · · · · · · · · 0

0 1 0 0 −1 0 0 · · · · · · · · · 0

0 0 1 0 0 −1 0 · · · · · · · · · 0
...
...
...
...
... 0 . . . · · · · · · · · · 0

...
...
...
...
...
... 0 . . . · · · · · · 0

1 0 0 · · · · · · · · · · · · · · · −1 0 0

0 1 0 · · · · · · · · · · · · · · · 0 −1 0

0 0 1 · · · · · · · · · · · · · · · 0 0 −1



. (2.14)

The �rst three columns of the contrast matrix refer to α̂i1, β̂i1, and ĉi1, respectively. In the �rst

row of the matrix the fourth column refers to α̂i2, in the second row the �fth column refers to β̂i2,

and in the third row the sixth column refers to ĉi2. In the third to last row of the contrast matrix

the −1 refers to α̂iK parameter, in the second to last row the −1 refers to β̂iK , and in the last row

the −1 refers to the ĉiK parameter.

S. H. Kim et al. (1995) de�ne a test statistic they call Qi that is used to test for multiple group

DIF. Keeping with S. H. Kim et al. (1995) testing for DIF in K groups for the 3PL model using

vi and elements from Equations 2.12, 2.13, and 2.14 the multiple group DIF statistic for item i is

given by

Qi = (Cvi )
T (CΣiC

T )−1(Cvi ). (2.15)

Equation 2.15 is asymptotically chi-square distributed with (3 ∗K − 3) degrees of freedom under

the null hypothesis that there is no DIF for any of the item parameters across the K groups for

item i . One thing to note is that in Equation 2.15 Cvi = (α̂i1 − α̂i2 β̂i1 − β̂i2 ĉi1 − ĉi2 · · · α̂i1 −

α̂iK β̂i1 − β̂iK ĉi1 − ĉiK )
T , which is an omnibus test of DIF for all parameters of the 3PL model with

respect to groups. The omnibus test refers to a di�erence among the parameters of the 3PL model

for a reference group (k = 1) against each of the focal groups (k = 2, . . . ,K ). Practitioners may
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also be interested in speci�c pairwise or other types of complex contrasts between the groups.

These types of contrasts can be accommodated by specifying a di�erent contrast matrixC for the

problem of interest (see Cai, 2015; S. H. Kim et al., 1995; Langer, 2008 for details).

Equation 2.15 shows the �exibility of testing for DIF in more than two groups is straightfor-

ward. This method requires less model �ttings than a likelihood ratio based DIF testing approach

(Langer, 2008; Woods et al., 2013). The method also can be adapted to conduct pairwise and com-

plex contrasts such as an interaction between two groups (S. H. Kim et al., 1995; Langer, 2008).

However, Equation 2.15 as described in S. H. Kim et al. (1995) still su�ers from issues related to

estimation of Σ and use of an ad-hoc linking method of Stocking and Lord (1983). In the next

section improvements to Lord’s (1980) Wald χ 2 are described that address these issues.

2.1.3.2 Improved Wald Chi-square DIF Test

Langer (2008) describes three shortcomings of Lord’s (1980) Wald χ 2 test: (1) estimation of the

asymptotic covariance matrix, (2) ad-hoc linking procedure, and (3) allowing for tests of the

pseudo-guessing parameter (ci ). Langer (2008) notes that the major pitfall with Lord’s (1980) Wald

χ 2 test is estimation of the asymptotic variance covariance matrix. This issue was also raised by

Millsap (2011), and Thissen and Wainer (1982). To circumvent this problem Lord’s (1980) Wald

χ 2 was improved by use the supplemental expectation-maximization ( Cai, 2008; Meng & Ru-

bin, 1991) algorithm to obtain the asymptotic variance covariance matrix of the item parameter

estimates (Σi from Equation 2.15) (Cai, 2015; Cai et al., 2013; Langer, 2008). The supplemen-

tal expectation-maximization algorithm has been shown to provide a convenient computational

procedure for latent variable models such as IRT and categorical con�rmatory factor analysis for

estimating the information matrix of item parameters (Cai, 2008). This allows for more accu-

rate standard error estimates of the item parameters than has been previously used with various

implementations of Lord’s (1980) Wald χ 2 (S. H. Kim et al., 1994; S. H. Kim et al., 1995; Lim &

Drasgow, 1990).

The linking procedure as originally implemented by Lord (1980) standardized on the location
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parameters (βs). S. H. Kim et al. (1994) and S. H. Kim et al. (1995) noted the use of Stocking and

Lord (1983) to link had been shown to perform better than the standardizing of the location pa-

rameters as proposed by Lord (1980). However, although an improvement over standardizing on

the βs, the Stocking and Lord (1983) method is an ad-hoc linking method that placed participants

estimates on the same scale for comparison. As an improvement to the method of Stocking and

Lord (1983), Langer (2008) suggested the use of concurrent calibration, an IRT-based linking pro-

cedure to anchor groups to a common metric for DIF testing. The main bene�t of concurrent

calibration is that a participants ability estimate is independent of the set of items that the par-

ticipant answers. In addition, concurrent calibration provides conversions of parameters that are

independent of the group or groups to obtain them and allows for greater accuracy of linking

along the entire score scale (Langer, 2008).

Langer (2008) mentioned two means of linking groups for testing DIF with the Wald χ 2. The

�rst was to designate anchor items known a priori or by empirical selection using a method

such as W. C. Wang and Shih (2010), W. C. Wang et al. (2012), or Woods (2009a). The second

method involves a two-stage method. The �rst stage constrains the item parameters equal in all

groups and estimates the population means and standard deviations of the focal groups relative

to the reference group. In the second stage the estimates of the population means and standard

deviations of the focal groups are �xed to those obtained in stage one and the item parameters

are allowed to di�er for DIF detection. These estimates are then tested for statistical signi�cance

using the same framework as in Equation 2.15.

Lord (1980) mentioned that the pseudo-guessing parameter (ci ) should be constrained equal

between the groups and was not directly tested in his original implementation. Previous re-

searchers have also not extended the Wald χ 2 DIF test to accommodate the pseudo-guessing

parameter (S. H. Kim et al., 1994; S. H. Kim et al., 1995; Lim & Drasgow, 1990). Langer (2008) pro-

posed the use of conditional tests of DIF to deal with the case of testing for all item parameters

in the 3PL model. These two group tests can be easily generalized to pairwise tests in more than

two groups. Here group k = 1 is the reference group and group k = 2 is the focal group The
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unconditional DIF test of the ci parameter for the 3PL model is given by

χ 2
ci =

(ĉi1 − ĉi2)
2

(σ̂ 2
ci1
+ σ̂ 2

ci2 )
, (2.16)

where σ̂ 2
cik

is the variance for the c parameter for item i in group k . χ 2
ci is asymptotically chi-

square distributed with 1 degree of freedom. The conditional test of the αi parameter given an

equal ci parameter is given by

χ 2
αi |ci
=

y2
i

σ̂ 2
αi |ci

, (2.17)

where

yi = (α̂i1 − α̂i2) −
(ρ̂αi1ci1σ̂α̂i1σ̂ci1 + ρ̂αi2ci2σ̂αi2σ̂ci2 )

(σ̂ 2
ci1 + σ̂

2
ci2 )

(ĉi1 − ĉi2) (2.18)

and

σ̂ 2
αi |ci
= (σ̂ 2

αi1 + σ̂
2
αi2 ) −

(ρ̂2
αi1ci1σ̂

2
αi1σ̂

2
ci1 + ρ̂

2
αi2ci2σ̂

2
αi2σ̂

2
ci2 )

(σ̂ 2
ci1 + σ̂

2
ci2 )

, (2.19)

where ρ·· refers to the correlation between the respective item parameters for a given group. χ 2
αi |ci

is asymptotically distributed as chi-square with 1 degree of freedom. Lastly, the conditional test

of DIF for the βi parameters given equal αi and ci parameters is simply the di�erence between

the overall χ 2
i test for two groups and the sum of the unconditional test of ci and the conditional

test of αi |ci given as

χ 2
βi |αi ,ci

= χ 2
i − [χ 2

ci + χ
2
αi |ci

]. (2.20)

Note χ 2
i = v

T
i Σ
−1
i vi , wherevi = (α̂i1 − α̂i2 β̂i1 − β̂i2 ĉi1 − ĉi2)

T and Σi is the asymptotic covariance

matrix between the parameters of the two groups.

Langer’s (2008) improved Wald χ 2 test was shown to perform well in simulation studies

against IRTLR-DIF (Langer, 2008; Woods et al., 2013). Both Langer (2008) and Woods et al. (2013)

found that the improved Wald χ 2 had adequate power and well-controlled Type I error rates. Fur-

ther, the improved Wald χ 2 test was almost as powerful as IRTLR-DIF in simulations by Langer

(2008) and Woods et al. (2013) found in certain situations the improved Wald χ 2 was as powerful as

IRTLR-DIF. Both studies mention that the improved Wald χ 2 test is much more computationally
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e�cient especially when testing for more than two groups. Further, the improved Wald χ 2 allows

for more complex contrasts that are not currently feasible with implementations of IRTLR-DIF.

2.1.4 Latent Class DIF Models Over Persons

DIF testing can be divided into two types: manifest groups and latent groups. Examples of mani-

fest group DIF testing are DIF with respect to gender and/or ethnicity. The implicit assumption of

using manifest groups for DIF testing is that participants in a given manifest group are assumed

to behave or respond in a similar manner compared to participants in another manifest group.

For example, when testing for DIF related to gender it is assumed that all males share the same

IRT model and in turn all females share the same IRT model. If for example we have two manifest

groups and there are two latent classes then if the latent classes and manifest groups perfectly

overlap this assumption makes sense. Perfect overlap means all members of manifest group one

belong to one latent class and all members of manifest group two belong to the other latent class.

However, if this is not true then bias can occur (e.g. De Ayala, Kim, Stapleton, & Dayton, 2003).

The assumption of perfect overlap is probably suspect, because it asserts that all members of

a given manifest group are more similar than members of another manifest group. De Ayala et

al. (2003) give an example citing that some African Americans may come from families that have

lived in the United States for 100 or more years and other African Americans may come from

families that could have just moved from Africa. In this case it is clear that these two subgroups

may not share the same IRT model. Further, De Ayala et al. (2003) and Cohen and Bolt (2005)

argue that the manifest approach does not provide information about underlying causes for DIF.

For example when testing for DIF using latent class analysis and manifest methods with respect

to gender Cohen and Bolt (2005) found that some members of each gender group responded

di�erently than other members even though gender DIF (manifest DIF) was identi�ed on some

items. In addition, De Ayala et al. (2003) found in a Monte Carlo study with two manifest groups

and two latent classes that when 50% of manifest group one were in latent class one and 50% of

manifest group two were in latent class two the power to detect DIF decreased. To address these
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concerns the use of latent class models for DIF can be used.

To illustrate the ideas of a latent class over person DIF model the Bayesian approach was

chosen for this illustration given the straight-foward testing of DIF across multiple latent classes

and the ability to easily generalize the model to more complicated IRT models. This paradigm

is an extension of Samuelsen (2005) for the 2PL model. Let i = (1, . . . , I ) indicate the number of

items, j = (1, . . . , J ) indicate persons, and д = (1, . . . ,G ) indicate latent classes. The latent class

2PL DIF model is given as

P (yij = 1|д,θjд) =
1

1 + exp[−αiд (θjд − βiд)]
, (2.21)

where αiд is the ith item’s discrimination parameter in latent classд, βiд is the ith item’s threshold

parameter in latent class д, and θjд is the latent trait for person j in latent class д. The marginal

probability of a correct response for person j and item i is given by

P (yij ) =
G∑
д=1

πдP (yij |д,θjд), (2.22)

where πд is the mixture probability for latent class д and ∑G
д=1 πд = 1.

Prior distributions for the parameters in Equations 2.21 and 2.22 must be speci�ed as part of

the Bayesian analysis. An overview of some priors that could be used is given in Cho and Cohen

(2010). Note that πд can be given a prior or can be predicted using a multinomial logistic regres-

sion (Bilir, 2009; Cho & Cohen, 2010). When a multinomial logistic regression is used to predict

πд then manifest covariates can be included that help explain why individuals are classi�ed into a

given latent class. The addition of manifest covariates can assist with explanation of DIF. Assum-

ing the scale has been anchored via anchor items or with appropriate constraints testing for DIF

involves de�ning a new parameter that is the di�erence between the item parameters. For exam-

ple in the case of thresholds βi1 − βi2,βi1 − βi2, . . . ,βi1 − βiG . This same process can be repeated

for the discrimination parameters to obtain the DIF statistics. DIF can be assessed using the 95 %

credible intervals and/or highest posterior density intervals by assessing whether the di�erence
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between the parameters for the reference and focal groups contain zero (Cho & Cohen, 2010).

While latent class DIF models provide new and exciting insights into DIF testing there are

several issues that must be addressed when using them in practice. First, it is necessary to se-

lect the number of latent classes as it is unlikely to be known a priori. This is typically accom-

plished using the information criteria: Akaike information criterion (AIC; Akaike, 1974) and/or

the Bayesian information criterion (BIC; Schwarz, 1978) (Bilir, 2009; Cho & Cohen, 2010; Cohen

& Bolt, 2005; Samuelsen, 2005). The second issue with using latent class models for DIF detection

involves dealing with the issue of label switching. According to Cho (2007) there are two types of

label switching researchers should be aware of: (1) The latent class labels or membership switch

based on di�erent initial values and (2) only relevant to Bayesian estimation, the labels of latent

classes switching across iterations within a speci�c Markov chain. It is important that practition-

ers check for these issues when running latent class DIF models (recommendations can be found

in Cho, 2007; Cho & Cohen, 2010).

A �nal issue practitioners should be aware of involves anchoring the scale for DIF testing. Ac-

cording to Cho (2007) �nding anchor items in latent class DIF models is a di�cult problem that

needs additional research. In typical applications the following constraint is used for anchoring

the thresholds: ∑I
i=1 βiд = 0. This indicates that the threshold parameters in a given latent class

must sum to 0 (Bilir, 2009; Cho & Cohen, 2010; Samuelsen, 2005). In order to link the discrim-

ination parameters it is possible to use the following constraint: ∏I
i=1 αiд = 1. This constraint

has been used in other types of DIF testing across multiple groups as a way to identify the αiд

parameters (e.g. De Jong & Steenkamp, 2010; Verhagen & Fox, 2013). The implications of these

anchor methods to cases of asymmetric and symmetric DIF have not been fully tested in latent

class DIF models. However, borrowing from simulation research in the manifest DIF testing lit-

erature W. C. Wang (2004) found that when using the ∑I
i=1 βiд = 0 constraint in the presence of

asymmetric DIF Type I error rates were in�ated. It is likely this would occur in the latent class

DIF case but this is an open question for future research.
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2.1.5 Latent Class DIF Models over Item Parameters

Most latent class DIF analyses focus on the latent class being de�ned on persons, however, re-

cently several researchers have looked at DIF detection by de�ning the latent classes over items

(e.g. De Boeck, 2008; De Jong & Steenkamp, 2010; Frederickx, Tuerlinckx, De Boeck, & Magis,

2010; Goncalves, Gamerman, & Soares, 2013; Soares et al., 2009). The ideas of DIF latent class

models over persons described above apply to latent classes over items. The di�erence is that

with DIF latent class models over items the persons are manifest but the item classes are latent.

In the simplest case items would be classi�ed into either a DIF class or non-DIF class. More com-

plex cases can be constructed by having multiple latent classes to compare each group with a

reference group.

At the present there are three main variations that have been proposed and studied for DIF

latent class models on item parameters. DIF latent class model detection methods proposed by

Frederickx et al. (2010) and Soares et al. (2009) address the idea of testing for DIF amongst multiple

groups directly, while De Jong and Steenkamp (2010) proposed a model that models the pertinent

non-invariance that may be present across a large number of groups. The method by De Jong

and Steenkamp (2010) is designed to permit non-invariant items to be modeled so that latent

constructs and their parameters (e.g. latent means) can be compared across multiple groups as in

cross-cultural research.

At the present time the method of De Jong and Steenkamp (2010) is not designed to test for

DIF amongst multiple groups, however, adopting a procedure such as that described in Verhagen

and Fox (2013) could allow this to be done. For these reasons, the present section only covers the

ideas by Frederickx et al. (2010) and Soares et al. (2009) in detail and directs interested readers

to De Jong and Steenkamp (2010) for a more detailed account of this method. Further, only the

Soares et al. (2009) method is described in detail here for the following reasons. First, Goncalves

et al. (2013) compared a model based on Soares et al. (2009) and found that the Soares et al. (2009)

performed better than Frederickx et al. (2010). Second, the basic idea of item mixtures is similar

in the two cases. Third, the implementation by Soares et al. (2009) is more general than the

25



Frederickx et al. (2010) model.

2.1.5.1 Soares et al. (2009) Model

The model proposed by Soares et al. (2009) and further improved by Goncalves et al. (2013) gives

a DIF representation of the 3PL IRT model in a Bayesian framework in contrast to Frederickx et

al. (2010) who only demonstrate their model in the case of the Rasch model. The notation from

Soares et al. (2009) is used to illustrate the model. Letting yij be the binary response to item i by

person j, then letting P (yij = 1) = pij and ∆ij = loдit (pij ). Thenpij = loдit−1(∆ij ) = ln(
1

1+exp[−∆i j ] ).

From the previous notation the P (yij = 1|θj ,αiд,βiд,ciд) is given as

P (yij = 1|θj ,αiд,βiд,ciд) = ciд + (1 − ciд) ∗ loдit−1(∆ij ), (2.23)

where ∆ij = Dαiд (θj − βiд) for i = 1, . . . , I , j = 1, . . . , J , and д = 1, . . . ,G where д denotes the

manifest group of a participant. To separate the DIF items from the non-DIF items the threshold

parameters are represented as βiд = βi −dβiд, the discrimination parameter as αiд = αi ∗exp (−dαiд),

and pseudo-guessing parameters (ciд) as ciд = ci (∈ [0,1]),∀д. Although theoretically possible that

DIF can be tested in the ciд parameters this was not done in Soares et al. (2009) and Goncalves et

al. (2013) based on the known estimation di�culties of the pseudo-guessing parameters.

From the above notation dhiд is the DIF parameter for the threshold and discrimination param-

eters for h = β ,α , respectively. For identi�cation dhi1 = 0 for α and β with д = 1 to denote the

reference group. When dhiд , 0 for д = 2, . . . ,G and h = β ,α then this is indicative of DIF in the

item parameters for the thresholds and/or discrimination parameters. It is also assumed a priori

that θj |λд(j ) ∼ N (µд(j ),σ
2
д(j )

), where д(j ) is the group participant j belongs to and λд = (µд(j ),σ
2
д(j )

).

To identify the model for the reference group (д = 1) λд = (µ1,σ
2
1 ) = (0,1). The means and vari-

ances of the focal group(s) are unknown (λд for д = 2, . . . ,G) and must be estimated. Letting N be

a normal distribution, LN be a log-normal distribution, and IG be the inverse gamma distribution
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then the priors of the structural parameters given by Soares et al. (2009) are

αi ∼ LN (µαi ,σ
2
αi ), βi ∼ N (µβi ,σ

2
βi
), andci ∼ Beta(aci ,bci ), for i = 1, . . . , I . (2.24)

The latent trait distribution priors given in Soares et al. (2009) are

µд ∼ N (µ0д,σ
2
0д) and σд ∼ IG (aд,bд) ∀д = 1, . . . ,G . (2.25)

In order to perform DIF analyses the reference and focal group(s) must be linked. Soares et al.

(2009) suggest that if a set of items can be determined a priori then the dhiдs can be set to zero for

those items. It is also possible to have the model select a set of anchor items in the estimation (see

Goncalves et al. (2013); Soares et al. (2009) for details). The mixture model is formed by having

a latent indicator variable Zh
iд for h = α ,β , item i , and group д. If Zh

iд = 1 then item i shows DIF

in group д for parameter h and Zh
iд = 0 otherwise. If Zh

iд is �xed a priori then this involves �xing

a set of anchor items otherwise Zh
iд is given a prior distribution in order to select a set of anchor

items during model estimation. In either case when Zh
iд = 1 a regression structure is applied to

allow explanation of the potential sources of DIF. The regression structure is given as

dhiд = γ
h
0д +

Kh∑
k=1

γhkдW
h
ik + η

h
iд, if Zh

iд = 1, (2.26)

where γhiд refer to the regression coe�cients for item i in group д for parameter h, k = 1, . . . ,Kh

refers to the index of the kth covariate of item parameter h (α ,β ),W h
ik

refers the kth covariate for

item i and parameter h, and ηhiд is the item speci�c random factor for group д and parameter h.

If dhiд = 0 then Zh
iд = 0. The prior for ηhд ∼ N (0,Tд), where Tд = (τhд )

2 ∗ I for all д = 1, . . . ,G. The

regression structure of Equation 2.26 pertains to all items deemed to show DIF.

Letting γhд = (γh0д, . . . ,γ
h
Khд

)T and W h
i = (1,W h

i1, . . . ,WiKh )T when Zh
iд = 1 the conditional

distribution of dhiд is given as dhiд |γhд ,W h
i , (τ

h
д )

2 ∼ N (W h
i γ

h
д , (τ

h
д )

2). In the case when Zh
iд = 0 Soares

et al. (2009) use the idea of stochastic search and variable selection (SSVS) proposed by George
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and McCulloch (1993). The idea of SSVS is to concentrate the coe�cient around zero by reducing

the variance of a prior on dhiд |Ziд = 0, (τhд )2 ∼ N (0,s2
i (τ

h
д )

2), where s2
i is chosen to be small enough

to ensure that dhiд is concentrated around zero. The conditional distribution of dhiд |γhд ,W h
i ,Z

h
iд, (τ

h
д )

is given as follows

dhiд |γ
h
д ,W

h
i ,Z

h
iд, (τ

h
д ) ∼ N {(W h

i γ
h
д )Z

h
iд,[s2

i ]1−Zh
iд (τhд )

2}. (2.27)

Soares et al. (2009) recommend the following priors for the parameters in Equation 2.27: γhд ∼

N (γh0 ,S
h
0 ), (τ

h
д )

2 ∼ IG (ahд ,b
h
д ), and Zh

iд ∼ Ber (πh
iд), where Ber is the Bernoulli distribution.

The item mixture model of Soares et al. (2009) is quite complex and very general. This model

allows for the simultaneous detection and explanation of DIF in a single model as opposed to a

two step process. An anchor set does not have to be speci�ed a priori and anchors can be selected

within the estimation of the model. Soares et al. (2009) noted that the simulation study showed

how the model had good parameter recovery and that the empirical example showed the viability

of the model in practical situations. Goncalves et al. (2013) compared a variation of the Soares

et al. (2009) against the model proposed by Frederickx et al. (2010) and noted that the Soares

et al. (2009) performed better than the Frederickx et al. (2010) model. At the present time this

model is not available in mainstream software such as Mplus, Stata, or R and can be �t by careful

programming in JAGS, WinBUGS, OpenBUGS, or Stan.

2.1.6 Logistic Mixed Model Methods

It has been shown that IRT models can be parameterized as logistic mixed models (LMM) (Adams,

Wilson, & Wu, 1997; Kamata, 2001; Mellenbergh, 1994). The connection of IRT with LMM allows

for a number of ways to test for di�erential item functioning (DIF) in two or more groups and in

some models to help explain the source of DIF. LMM have many uses and their utility extends

beyond DIF testing (see De Boeck & Wilson, 2004; Rijmen, Tuerlinckx, De Boeck, & Kuppens,

2003 for details). Only the case of categorical predictor variables for DIF testing is considered
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here, but the LMM can easily incorporate continuous predictors as well. Noortgate and De Boeck

(2005) outline a taxonomy of four types of DIF models that can easily accomodate more than two

groups: (1) Fixed items and �xed groups; (2) Random items and �xed groups; (3) Fixed items and

random groups; (4) Random items and random groups. First, a brief discussion of parameterizing

an IRT model as an LMM is given, followed by an explanation of the taxonomy of DIF models

mentioned above, and last a brief overview of estimation methods. In all cases the binary Rasch

model was used for illustrative purposes in this section. The models can be extended to the 2PL

and GRM and the interested reader is directed to De Boeck and Wilson (2004) for details.

2.1.6.1 IRT Model as a LMM

This section illustrates the parameterization of a Rasch IRT model as a LMM. Let the responses

to items be independent and identically distributed (iid) Bernoulli trials and assume persons are

independent. The Rasch IRT model is given as

P (yij = 1|θ ) = 1
1 + exp[−(θj − βi )]

, (2.28)

where yij is the response of item i by person j, θj is the ability of person j, and βi is the di�culty

of item i . The nesting structure of a LMM is responses nested in persons unless otherwise noted.

Assuming j = 1, . . . ,n for the jth person and i = 1, . . . , I for the ith item, then the probability πij

for item i and person j can be modeled as

loд

(
πij

1 − πij

)
=ηij

πij =loдit
−1(ηij ),

where

ηij = uj +
I∑

k=1
βkXki . (2.29)
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X is an (I ∗n) by I design matrix such thatXki = 1 whenk = i and 0 otherwise and βk equals minus

the di�culty of the kth item. Further, uj is equivalent to θj or the ability estimate of person j as

de�ned in Equation 2.28. Equation 2.29 represents level one of the hierarchy which are responses.

Level two is represented as uj ∼ N (0,σ 2
θ
) with the reduced form equation given as

ηkj = uj + βk0 ∀k ∈ {1, . . . , I }. (2.30)

Equation 2.30 gives the logit of the probability of a 1 response for the kth item with βk being

minus the di�culty of item k and uj the ability of person j.

2.1.6.2 Fixed Items Fixed Groups DIF Models

In the �xed items and �xed groups (FIFG) framework both the item parameters and grouping

covariates are assumed �xed across persons as is traditionally done in DIF testing with Wald

Chi-square (Langer, 2008; Lord, 1980), IRTLRDIF (Thissen et al., 1993), and most MIMIC models

(B. O. Muthén, 1985; Woods, 2009b). The FIFG DIF model adds an item by group interaction term

for each item being tested for DIF to the model in Equation 2.29. The model is de�ned as

ηij = uj +
I∑

k=1
βkXki +

H∑
h=2

αhGhj +

H∑
h=2

γkhGhjXki , (2.31)

where Ghj = 1 if person j belongs to group h and 0 otherwise; αh is the di�erence between focal

group h and the reference group; and γkh is the kth speci�c item e�ect of belonging to focal

group h compared with the reference group. Note that h = 1, . . . ,H , where H is the total number

of groups and h = 1 corresponds to the reference group. The γkh coe�cients in Equation 2.31

indicate the DIF between focal group h and the reference group on item k . These coe�cients can

be tested for statistical signi�cance to determine if item k exhibits DIF for focal group h using

a t-test or likelihood ratio (LR) test (Noortgate & De Boeck, 2005). Further, exponentiating the

γkh coe�cients provides an e�ect size measure based on odds ratios and can be interpreted in

a similar way as the Mantel-Haenszel (MH; Holland & Thayer, 1988; Mantel & Haenszel, 1959)
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statistic.

According to Noortgate and De Boeck (2005) there are two main criticisms of the model:

Capitalization on chance and estimation of a large number of parameters. Given that each item

suspected of DIF in Equation 2.31 includes a person by item interaction term there are a large

number of statistical tests which can in�ate Type I error rates. This phenomenon is consistent

with previous methods and is inherent in the nature of DIF testing which is predominately an

exploratory procedure. To address this criticism a p-value correction such as the Bonferroni or

Benjamini-Hochberg (BH; Benjamini & Hochberg, 1995) could be used (see Thissen, Steinberg, &

Kuang, 2002 for applications to DIF testing). The second problem of estimating a large number of

parameters is a tougher problem. Although it is straightforward to extend the model in Equation

2.31 to a large number of groups each additional group beyond two adds I + 1 parameters to the

model. Thus, a large sample size is needed to obtain precise estimates of the parameters when

there are a myriad of parameters. Given the highly parameterized nature of Equation 2.31 when

adding many groups, it is not possible to explain the sources of DIF in a single model. However,

it is possible to conduct a second analysis and add in covariates to explain the potential sources

of DIF.

2.1.6.3 Random Items and Fixed Groups DIF Models

To address the criticisms of the FIFG DIF model from the previous section Noortgate and De

Boeck (2005) introduce random item e�ects to assess DIF. The random item �xed group (RIFG)

DIF model is a cross-classi�ed random e�ect model (Noortgate, De Boeck, & Meulders, 2003).

Unlike the FIFG DIF model the RIFG DIF model has responses nested within persons and items.

Because responses are nested within both persons and items the person and item random e�ects

are crossed at level two. It is important to note that the RIFG DIF model is appropriate when items

on the instrument can be considered a random sample from a population of items and primary

interest is not in the speci�c items but in the category/population they represent (Noortgate &

De Boeck, 2005).
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The RIFG model is more parsimonious than Equation 2.31, because only the parameters of

the random e�ects are estimated instead of the individual main e�ects and person by item in-

teractions of each item. This allows for inclusion of item property covariates to help explain

the potential sources of DIF (Noortgate et al., 2003; Noortgate & De Boeck, 2005). The RIFG DIF

model is given as

ηij = uj + β0 + r0i +
H∑
h=2

αhGhj +

H∑
h=2

rhiGhj , (2.32)

where β0 is the expected negative di�culty of an average item in the reference group, r0i is the

random main e�ect of item i , rhi is the random ith speci�c e�ect of belonging to group h (this

is the DIF e�ect), r0i and rhi follow a multivariate normal distribution with mean vector 0 and a

covariance matrix, and αh , Gjh , and uj are the same as described in Equation 2.31.

The rhiGhj term in Equation 2.32 represents the DIF e�ect for item i in group h. If the variance

of rhi is di�erent from zero then this indicates that there is DIF present on the set of items in

group h. Testing this parameter for statistical signi�cance can be done using a LR test2. If r0i and

rhi are allowed to correlate, a positive association between these terms indicates that controlling

for overall ability the most di�cult items are especially di�cult for group h.

2.1.6.4 Fixed Item Random Group DIF Models

The models in this section are classi�ed as multilevel IRT (MLIRT) models as they denote a three

or more level hierarchy (reponses nested within persons and persons nested in level three units)

(J.-P. Fox & Glas, 2001; J. P. Fox, 2005; Kamata, 2001). Typically in educational or psychological

settings students or participants may be nested in classrooms and/or schools. If the researcher is

interested in inference about the speci�c items on the measure and wants to regard the groups

as a sample from a population of groups from which to make inferences about then �xed item

random group (FIRG) DIF models are an option. If the number of groups (level three units) is
2When testing a single variance of a random e�ect for statistical signi�cance using a LR test there is a zero

boundary condition (e.g. variances are non-negative). Thus, it is recommended that the p-value of the random
e�ects be tested against a mixture of Chi-squares with d f1 = p + 1, d f2 = p, and mixture proportion 1/2 (see Snijders
& Bosker, 2012, pp. 98-99 for details)
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large and the researcher is interested in the population these groups represent then these models

are a more parsimonious alternative to dummy coding the grouping variables. This is because

only the variance of the random e�ects are estimated instead of the group main e�ects and group

by item interactions as in the FIFG DIF model.

FIRG DIF models are used when researchers want to assess the impact of whether items func-

tion di�erently across schools or level three units. The question could be posed just as easily

by allowing classrooms to be level three units and items nested within persons nested within

classrooms (Noortgate & De Boeck, 2005). Further, a fourth level could be added with classrooms

nested within schools. Here only the three level case for the Rasch model is described but this

can be generalized to an arbitrary number of levels and other IRT models (see Noortgate & De

Boeck, 2005; De Boeck & Wilson, 2004 for details).

The FIRG DIF model is given by

ηij = uj +
I∑

k=1
βkXki +v0h +vkhXki , (2.33)

wherev0h is the random e�ect of grouph on overall performance,vkh is the random e�ect of group

h on the di�culty of item k , and βk and uj are as described previously. If the variance of vkh is

di�erent from zero then itemk is exhibiting DIF for grouph. Bothv0h andvkh follow a multivariate

normal distribution with mean vector 0 and a covariance matrix. A positive association between

v0h and vkh indicates that the estimated di�culty of item k is greater for the less able group

versus the more able group after controlling for overall group ability. E�ect sizes and statistical

signi�cance for the variances of the random e�ects can be calculated as mentioned for the RIFG

model.

2.1.6.5 Random Item Random Group DIF Models

Lastly, it is possible to have random e�ects over items and groups. In this situation items and

group random e�ects are crossed at level three which implies the random e�ects are also crossed
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at level two (person level) (Noortgate et al., 2003). In the random item random group (RIRG) DIF

model both item and person covariates can be introduced to explain the source of the DIF. For

cases when DIF could be a function of both item properties and groups the RIRG model provides

a framework to decompose these DIF e�ects. The RIRG DIF model without covariates is given by

ηij = β0 + r0i +v0h + tih + uj , (2.34)

where β0 is the mean negative di�culty in the reference group for an average item, r0i is the

random main e�ect of item i , v0h is the random e�ect of group h (level three ability for someone

in grouph), and tih is the random interaction e�ect of the ith item and grouph. The tih parameter is

the DIF estimand which is normally distributed with mean zero and variance σ 2
t . If tih is di�erent

from zero then there is su�cient evidence that there is uniform DIF present. E�ect sizes and

statistical signi�cance of the random e�ects can be calculated as mentioned in the RIFG section.

2.1.7 DIF Methods from Machine Learning

The term "big data" is a widely known term synonymous with the massive amounts of data that

are common in today’s world of technology. According to Murphy (2012, p. 1) there are more than

one trillion web pages, approximately one hour of video is uploaded to YouTube every second, and

some corporations have databases with petabytes (1 petabyte = 1x1015 bytes) of information. In

order to deal with this huge amount of information the �eld of machine learning has developed a

plethora of sophisticated algorithms to automate data analysis. Much of the research on machine

learning stems from computer science, yet the methods can provide opportunities for interesting

research in psychometric applications when applied appropriately. Recently, in the context of

DIF testing two ideas have been proposed that were inspired by methods and problems faced

in machine learning applications: Rasch trees (Strobl, Kopf, & Zeileis, 2013) and the DIF least

absolute shrinkage and selection operator (LASSO; Tibshirani, 1996; Tutz & Schauberger, 2013).

Each of these methods is described brie�y in the following sections.
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2.1.7.1 Rasch Trees

Rasch trees were proposed by Strobl et al. (2013) for binary items and El-Komboz, Zeileis, and

Strobl (2014) for polytomous items. They introduced Rasch trees as a compromise between man-

ifest DIF methods and latent class (over persons) DIF methods. According to Strobl et al. (2013)

the manifest DIF approaches such as IRTLRDIF, Wald χ 2 test, LM tests, and MIMIC models re-

quire researchers to explicitly de�ne the manifest groups to be tested. The advantages of these

approaches are that they give very speci�c and interpretable results with respect to the items that

have DIF. The downside of these approaches are that if certain groups are not included in the DIF

analyses then this may cause ambiguity later. The advantage of the latent class (over persons)

approach is that the model for DIF is tested over all possible combinations of groups of subjects

regardless of covariates included in the model. However, the disadvantages of this approach are

that the number of classes must be selected as it is unknown apriori and often another analysis

must be conducted to compare the manifest groups to the LCs (see Cohen & Bolt, 2005 for an

example).

To overcome the limitations by manifest DIF methods and LC methods mentioned above

Strobl et al. (2013) proposed Rasch trees which allow researchers to test pre-de�ned easily in-

terpretable manifest groups versus dealing with the limitations of solely using LC or manifest

DIF approaches. Rasch trees are based on model-based recursive partitioning (MBRP), which is a

technique inspired from the machine learning and data mining literature. MBRP is closely related

to classi�cation and regression trees (Breiman, Friedman, Olshen, & Stone, 1984) but overcomes

the limitations of selecting splitting variables in classi�cation and regression trees (see Hothorn,

Hornik, & Zeileis, 2006 for details). MBRP is a semi-parameteric approach that employs structural

change tests to detect di�erences in parameters of a statistical model across groups of subjects

de�ned over combinations of manifest covariates (Hothorn et al., 2006; Kopf, Augustin, & Strobl,

2014; Strobl et al., 2013). The main di�erence between MBRP and classi�cation and regression

trees is that in MBRP the parameters of a parametric model rather than values of an outcome

variable are allowed to vary over groups (Kopf et al., 2014; Strobl et al., 2013).
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Structural change tests are applied in econometrics for detecting parameter instabilities in

time series models along a time dimension (Merkle & Zeileis, 2013). This same methodology can

be used for detecting parameter instabilities or changes over person covariates for use in DIF

testing. According to Strobl et al. (2013) there are four steps to test for DIF using Rasch trees:

1. Estimate the item parameters for a joint Rasch model in the sample of interest.

2. Assess the parameter instability of the joint Rasch model in the full sample with respect to

each covariate of interest.

3. If signi�cant parameter instability is found split the sample along the covariate with the

highest instability and at the cutpoint leading to the greatest improvement in model �t.

4. Repeat steps 1-3 until convergence (i.e. no more signi�cant parameter instabilities or the

sub-samples become too small).

The structural change tests used to test for signi�cant parameter instability are generalized

M-�uctuation tests (Zeileis & Hornik, 2007). The Rasch tree procedure can involve multiple statis-

tical tests when a large number of covariates are needed for splitting and also when selecting the

optimal cutpoint. To control for Type I errors the procedure uses a Bonferroni adjustment when

assessing these criteria for statistical signi�cance. Identifying the optimal cutpoint is straight-

forward with a binary covariate. If the covariate is ordinal or continuous the method assess the

parameter instability across all possible cutpoints for the given covariate by maximizing a parti-

tioned log-likelihood (see Strobl et al., 2013 for details). The cutpoint with the strongest parameter

instability is selected as the optimal cutpoint.

The performance of the Rasch tree was tested in simulation by Strobl et al. (2013) and found to

perform well in detecting relevant covariates and complex interactions that may occur in practice.

Further, the method allows for a data-based way to �nd the optimal cutpoint on a continuous

covariate without resorting to median splits. When using Rasch trees the number of groups that

are assessed for DIF can grow quickly. For example, if the algorithm is passed covariates age and

gender, it is quite possible that the algorithm could �nd four groups if the tree split on gender

and then split on age in both men and women sub-samples. If more covariates were available
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and the sample size was su�ciently large it is possible to have an even larger number of groups.

One issue with the method is that it is unclear how to test the speci�c items for DIF in the splits

of the tree. This concern was also raised by Tutz and Schauberger (2013) in their comparison

with Rasch trees and the DIF LASSO (discussed below). Another limitation of Rasch trees are

that they are only implemented for the Rasch family of models. Strobl et al. (2013) note that it is

possible to extend this framework to other IRT models, however doing so may be computationally

prohibitive due to the many model �ttings required when dealing with selecting the optimal cut

point for ordinal and continuous covariates.

2.1.8 DIF LASSO

Tibshirani (1996) �rst introduced the LASSO in the context of linear regression and noted that

this method performs regularization, variable selection, and can be applied to many other models

such as generalized linear models and trees. The idea of the LASSO is to maximize a cost function

subject to an L1 penalty term. In the case of linear regression this can be expressed as

β̂LASSO = arg min
β

N∑
i=1

(yi − x
T
i β )

2 + λ

p∑
j=1
|βj |, (2.35)

where λ is a penalty parameter and |βj | is the L1 norm of the jth coe�cient. The �rst term in

Equation 2.35 refers to the normal least squares term common in linear regression optimization

problems and the second term corresponds to a penalty. Thus, the optimization is to minimize the

sum of squared residuals subject to the constraint of the L1 norm. The L1 penalty term encourages

sparsity in the solution by performing regularization and variable selection (Tibshirani, 1996).

The LASSO was implemented in the context of DIF testing using the binary Rasch model

with unconditional or joint maximum likelihood estimation by Tutz and Schauberger (2013). Let

p = 1 . . . ,P denotes persons and i = 1 . . . , I denotes items. The Rasch model is given as

loд

[
P (Ypi = 1|θp )

1 − P (Ypi = 1|θp )

]
= θp − βi = 1TP(p )θ − 1

T
I (i )
β , (2.36)
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where 1TP(p ) = (0, . . . ,0,1,0, . . . ,0) of length P − 1 with 1 at position p, 1TI (i ) = (0, . . . ,0,1,0, . . . ,0)

has length I with 1 at position i , θT =
(
θ1, . . . ,θ (P−1)

)
, and βT = (β1, . . . ,βI ) giving a total

parameter vector αT =
(
θT ,βT

)
. Note to identify the model θP = 0. A general DIF model

that allows for estimation of an arbitrary number of groups and also allows for the inclusion of

continuous covariates can be estimated by replacing βi by βi +xTpγi . Note xTp is them by 1 person

speci�c covariate vector containing the covariates of interest for personp andγi is am by 1 vector

of item speci�c parameters corresponding to the covariates in xTp .

By making this substitution all person speci�c factors that may induce DIF for a given item i

are included. The form of the model for estimation is

loд

[
P (Ypi = 1|θp )

1 − P (Ypi = 1|θp )

]
= 1TP(p )θ − 1

T
I (i )
β − xTpγi , (2.37)

with the parameter vector of Equation 2.37 is given by αT =
(
θT ,βT ,γT1 , . . . ,γ

T
I

)
. Tutz and

Schauberger (2013) noted that the model in Equation 2.37 is not identi�ed and recommended

two conditions for model identi�cation. First, set βi = 0 and γTi = 0 for any i ∈ {1, . . . , I }.

Second, ensure that the matrix X with rows (1,xT1 ), · · · , (1,xTP ) has full rank. A proof of these

identi�cation conditions is given in Tutz and Schauberger (2013). The model in Equation 2.37 can

become problematic to estimate when a large number of covariates are present in xTp for each

item i . To overcome these problems regularization or penalized maximum likelihood estimation

can be used. The penalized log-likelihood is given by

L (α )Penalized = L (α ) − λJ (α ), (2.38)

where L (·) is the log-likelihood of the Equation 2.37, λ is the penalty parameter designated by

the user, and J (α ) is the penalty term. Note that J (α ) = ∑I
i=1 | |γi | |, which indicates that only the

person speci�c covariate terms that may induce DIF are penalized. The | |γi | | penalty term was

recommend by Tutz and Schauberger (2013) and is a modi�cation of the group LASSO (Yuan &

Lin, 2006).

38



A critical component of penalized maximum likelihood estimation is selection of λ the penalty

parameter. Tutz and Schauberger (2013) recommend using the BIC by calculating the degrees of

freedom as proposed by Yuan and Lin (2006) (see Tutz & Schauberger, 2013; Yuan & Lin, 2006 for

details). The procedure works as follows:

1. Specify a grid of values for λ such as a grid of 20 equally spaced values from 0.5 to 20 for

example (this does not have to be 20 values between 20 and 0.5 it can be other values as

speci�ed by the user).

2. Fit the model by optimizing Equation 2.38 for the �rst λ value in the grid from step 1.

3. Calculate the BIC using the degrees of freedom as speci�ed by Tutz and Schauberger (2013)

for the �rst λ value from steps 1 and 2.

4. Repeat steps 2 - 3 for all remaining λ values in the grid and select the λ value with the

lowest BIC as the model to test for DIF.

According to Tutz and Schauberger (2013) DIF is indicated by the number of non-zero γ̂ coe�-

cients using the optimal λ value from the procedure above.

Tutz and Schauberger (2013) found in simulations that the DIF LASSO method had adequate

parameter recovery of both person and item parameters. Further, they compared the DIF LASSO

method to three other methods: Lord’s (1980) Wald χ 2, logistic regression, and the Mantel-

Haenszel. They found that for a large number of groups with medium to large DIF the DIF LASSO

approach performed well and was competitive with the other methods as far as power and was

superior to the other methods in controlling Type I errors. However, for few groups and weak

DIF the DIF LASSO should probably not be preferred to the other approaches.

2.2 MIMIC Models for DIF

MIMIC models are a type of structural equation model (SEM) where a latent variable is regressed

on a set of covariates/exogenous variables. Jöreskog and Goldberger (1975) �rst introduced the

MIMIC model for the case of continuous manifest variables. The application of MIMIC models in
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the IRT framework for DIF testing was introduced later by Múthen (1985; 1988; 1989) and Múthen,

Kao, and Burstein (1991). MIMIC models easily allow for the inclusion of multiple covariates for

testing DIF across many groups and at the same time allow for controlling the in�uence of other

groups and/or additional continuous covariates (e.g. age).

MIMIC models for DIF testing in an IRT framework make all the traditional assumptions IRT

methods make, but they also assume that the variance of the latent variable is the same across the

groups being compared (typically the latent variance is �xed at one). Further, when testing for

uniform DIF, invariance of the discrimination parameters across groups is also assumed; however,

this assumption can be relaxed making testing of non-uniform DIF possible (Woods & Grimm,

2011). In order to test for DIF a common scale for the item parameters between the groups must

be established. Typically, this is accomplished by empirically selecting anchor items using a rank

based technique as in Woods (2009a), a puri�cation based approach like W. C. Wang and Shih

(2010), or a combination of a rank and puri�cation based approach as in W. C. Wang et al. (2012).

As mentioned previously, MIMIC DIF models can be parameterized as a logistic IRT model

and estimated using available software for structural equation modeling such as Mplus (Muthén

& Muthén, 1998–2012) or GLLAMM (Rabe-Hesketh, Skrondal, & Pickles, 2004) by using a full-

information maximum likelihood estimator. The 3PL model cannot be estimated in a MIMIC

model framework but it is possible to estimate the 1PL, 2PL, GRM, GPCM, and Rasch variants

of the aforementioned models. It is also possible to estimate MIMIC DIF models in a Bayesian

framework although research and applications in this framework are scarce (see Samuelsen, 2005;

Bilir, 2009 for applications to latent class DIF testing). In the sections that follow two types of

MIMIC DIF models will be discussed. First, MIMIC models that test for uniform DIF as Múthen

(1985; 1988; 1989) originally proposed are presented, an overview of latent interactions necessary

for non-uniform MIMIC DIF testing are reviewed, and an explanation of testing non-uniform DIF

using an IRT based MIMIC model will be given as illustrated by Woods and Grimm (2011).
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2.2.1 MIMIC Uniform DIF Models

MIMIC models can be parameterized as IRT models and estimated with Bock and Aitkin (1981)’s

expectation-maximization marginal maximum likelihood (EM-MML) algorithm. Here the 2PL

model within the Mplus framework is used to illustrate the ideas of EM-MML. Mplus was chosen

because it is a widely used software package within the social and behavioral sciences and is

probably very familiar to many researchers. When specifying a MIMIC model in Mplus if the

estimator is set to robust maximum likelihood (MLR) then Mplus estimates an IRT model using

EM-MML. The equation of the 2PL model in Mplus is given as

P (yij = 1|θ ) = 1
1 + exp[τi − αiθj]

, (2.39)

where τi = αibi .3 Note that in Mplus τi is parameterized slightly di�erent than is presented in an

IRT framework but the parameterizations are equivalent with a change of sign (see L. K. Muthén

& Muthén, 1998–2012 for details). To test for uniform DIF using a MIMIC model item i is regressed

on a latent variable (θ ) and binary grouping covariate Gh where h denotes the focal groups and

h = 0 denotes the reference group. For item i the underlying continuous response process y∗i
underlying a binary response yi equals 1 if y∗i > τi and 0 otherwise. For a MIMIC DIF model on a

given item i

y∗i = αiθ + βi1G1 + βi2G2

and

θ = γ1G1 + γ2G2 + ζ , (2.40)

where αi is the discrimination parameter for item i , βih is the regression coe�cient showing the

DIF e�ect between the reference and focal group h, γh represents the mean di�erence between

the reference and focal group h on θ (note that G0 represents the reference group), and ζ is the

residual variance of the latent variable. Equation 2.40 is illustrated in Figure 2.1 for testing DIF in
3Note that bi is used in place of βi for the location parameter to be consistent with previous literature on DIF

testing with MIMC models. β is reserved for the regression coe�cient of group on item response or uniform DIF
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item I with three groups [G0 (reference group), G1 (focal group one), and G2 (focal group two)].

In Figure 2.1 items 1, . . . , (I − 1) can be thought of as anchor items when testing for DIF for item

I .

Figure 2.1: MIMIC Uniform DIF Path Diagram.

Note. G1 and G2 correspond to the grouping covariate for group 1 and group 2 with group 0 (G0)
being the reference group. θ represents the latent variable, ζ represents the residual variance of
the latent variable, γ represents the mean di�erence on θ between the given group and
reference group, β represents the uniform DIF, α represents the discrimination parameter for
the given item, and ϵ represents the residual for the given item.

Woods et al. (2009) notes four steps researchers should take when conducting DIF testing

using MIMIC models. First, anchor items must be selected either empirically using a rank-based,

iterative, or other puri�cation method or using a known DIF free anchor set. Woods (2009a)

recommends approximately 10 to 20 percent of the items be used as anchor items. Second, using

the anchor items selected from the �rst step, conduct DIF testing for each item. This second phase

can be done two ways: (1) using likelihood ratio tests or (2) using Wald z-tests. The results of

these tests are asymptotically equivalent in large samples. However, using a Wald z-test requires
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less model �ttings than the likelihood ratio test and would probably be preferred.

Testing for uniform DIF with Wald z-tests is straightforward. Fit a model with all βih paths

freely estimated for all items except the anchor items. If any of the βih paths are statistically

signi�cant then these items are �agged as showing uniform DIF. The use of likelihood ratio tests

requires more tests and was described in Woods (2009b). According to Woods (2009b) the anchor

items won’t have any βih paths estimated as with items 1 to (I − 1) in Figure 2.1. The βih paths of

all non-anchor items are freely estimated as with item I in Figure 2.1 and the −2 ∗ Loд Likelihood

value is computed (this serves as the baseline model). Then for the ith studied item �t a model

with the βih path constrained to zero and obtain the −2 ∗Loд Likelihood and conduct a likelihood

ratio test with the degrees of freedom equal to the di�erence between the constrained and less

constrained model.4 Repeat this for all studied items. If the LR test is statistically signi�cant then

there is evidence of uniform DIF in item i .

Step three involves �tting a �nal model with all the βih paths estimated for items that showed

signi�cant uniform DIF. The fourth step is to report the αis, τis, group mean di�erence on θ , and

a measure of DIF e�ect size. The group mean di�erence on θ are given by the γh coe�cients. A

measure of e�ect size can be obtained by exponentiating the βih coe�cients for the DIF items

giving an odds ratio. These measures of e�ect can be used to demonstrate if the DIF e�ect is

practically signi�cant. It should be noted that not all previous researchers’ have �t a �nal model

when conducting DIF testing (e.g. Barendse et al., 2010; Barendse et al., 2012; Carroll, 2014; Finch,

2005). However, �tting of a �nal model allows for researchers to observe the scale after setting all

non-signi�cant paths to zero and provides a better representation of the scale after DIF testing.

MIMIC models are a popular tool for testing for uniform DIF given their relative simplicity

and ability to be illustrated clearly with a path diagram as in Figure 2.1. Applied researchers

have utilized MIMIC models for uniform DIF testing in the case of more than two groups (e.g.

Fleishman et al., 2002; Sacco, Casado, & Unick, 2011; Sacco, Torres, et al., 2011; Woods et al., 2009).
4According to Woods et al. (2009) computation of the LR statistic in Mplus must be divided by a term that is a

function of the number of estimated parameters in each model and scaling correction factors given in the Mplus
output. See the example on the Mplus website (http://www.statmodel.com/chidi�.shtml) for details.
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Yet, methodological research for MIMC DIF models has lagged behind applied researchers and

has been limited to the two-group case, which is brie�y reviewed here.

Finch (2005) compared MIMIC models with several other DIF methods for binary responses

(i.e. IRTLR DIF, SIBTEST, and Mantel-Haenszel) and found that in certain conditions the MIMIC

model for uniform DIF performed favorably compared to the other methods. Speci�cally, Finch

(2005) notes that when the data generating model was not the 3PL and/or the test length was

50 items Type I error rates were consistent with the other DIF methods. Finch also noted that

with respect to power the MIMIC model was as powerful at detecting DIF as the other three

approaches when the test was long and/or the data did not have pseudo-guessing present (i.e.

2PL model). Lastly, Finch noted that under certain simulation conditions (e.g. longer tests or

no pseudo-guessing) the MIMIC model was more robust to anchor item contamination than the

other three methods.

According to Woods (2009b) MIMIC models exhibited good power to detect uniform DIF for

lower focal group sample sizes (50, 100, 200, 400) and also had reasonable parameter recovery for

these sample sizes in both the 2PL and GRM models. Further, Woods noted that at all values of the

focal group sample sizes (i.e. 25, 50, 100, 200, 400) Type I errors were well controlled and power

was greater for the MIMIC model compared to IRTLRDIF. Another advantage of MIMIC models

is the ease of adding additional groups to test for DIF. Two disadvantages of MIMIC models for

uniform DIF are there inability to account for di�erences in the variance of θ between the groups

and the inability to test for non-uniform DIF.

Recently, Carroll (2014) assessed the MIMIC DIF model in a categorical factor analytic frame-

work to look at the impact of violating the assumption of homogeneity of latent variances on the

power, Type I error rate, and parameter recovery. He found that in terms of Type I error rate the

violation of this assumption tended to cause in�ated Type I error rates and impacted power to

detect uniform DIF. Further, Carroll (2014) noted that the factor loadings, thresholds, latent group

mean di�erence estimates, and DIF e�ects were all adversely impacted to varying degrees when

this assumption was violated.
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2.2.2 MIMIC Non-uniform DIF Models

Up until fairly recently researchers did not associate MIMIC models with the ability to to test for

non-uniform DIF. The �rst mention of this idea was from Barendse et al. (2010) in the context of

using continuous indicators (non-IRT) in a restricted factor analysis (RFA) and adding an inter-

action term between a grouping variable and the latent variable by adding a latent interaction

predicting item response. Barendse et al. (2012) extended the simulation conditions of Barendse

et al. (2010) for the continuous indicator case of MIMIC DIF models and Woods and Grimm (2011)

provided an application of IRT MIMIC DIF models.

According to Marsh, Wen, Nagengast, and Hau (2012) typically the interaction of a latent

variable on group(s) would be accomplished in SEM by �tting a multiple group model (note that

Marsh et al., 2012 talk about this in the context of SEM but the logic applies to IRT as well). Given

that the traditional recommendation of an interaction between an observed categorical and con-

tinuous latent variable can be handled by multiple group analysis (e.g. Marsh et al., 2012; Rigdon,

Schumacker, & Wothke, 1998) most of the work on latent interactions within SEM has focused

on interactions between two continuous latent variables5 (e.g. Marsh et al., 2012; Klein & Moos-

brugger, 2000; Klein & Muthén, 2007). Several researchers have noted that �tting a multiple group

model when wanting to test a categorical observed by continuous latent variable interaction typ-

ically requires a larger sample size to obtain good parameter estimates and power in DIF settings

compared with using a MIMIC model for uniform DIF (e.g. Barendse et al., 2010; Barendse et

al., 2012; B. O. Muthén, 1989; Woods, 2009b; Woods & Grimm, 2011). If the assumptions of the

MIMIC model hold the ability to provide good parameter recovery and power compared with

multiple group approaches has been one reason for the popularity of MIMIC models for uniform

DIF testing within the social and behavioral sciences. It is an open question whether the bene�ts

of using MIMIC models for uniform DIF when assumptions hold carry over to the non-uniform

DIF case. Thus, it makes sense to review some of the ways that latent variable interactions are
5Some work has discussed the case of an observed continuous variable by latent variable interaction (see Rigdon

et al., 1998 for details)
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constructed in order to assess the viability of using these methods for non-uniform DIF testing

with MIMIC models.

2.2.2.1 Overview of Latent Interactions and MIMIC DIF Models

Marsh et al. (2012) note three main ways of dealing with latent interactions within an SEM frame-

work: (1) Product indicator approaches, (2) distribution-analytic approaches, and (3) Bayesian

approaches. In what follows each of these three approaches will be reviewed and relevant re-

search or lack thereof describing implementations of these approaches will be discussed. These

approaches are presented in the continuous by continuous latent variable interaction context as

per Marsh et al. (2012).

Product indicator approaches form a latent interaction by creating product terms of the man-

ifest variables or indicators. These methods were �rst introduced by Kenny and Judd (1984), but

were later re�ned by Marsh, Wen, and Hau (2004) and Wall and Amemiya (2001) to address the

cumbersome implementation and non-robustness to violations of normality of the latent vari-

able product terms. Woods and Grimm (2011) point out two issues with using product indicator

approaches to DIF testing in IRT MIMIC models that need to be addressed. First, most of the

research on product indicator variables involves continuous indicators (e.g. Marsh et al., 2004;

Wall & Amemiya, 2001) and the performance of the method for categorical indicators has not

been well-established and more research is needed. Second, it is unclear which items should be

included in the interaction: only anchor items, anchors and the studied items, all items, and so

on. For these reasons and others this is probably why at the time of this writing product indicator

approaches have not been used in IRT MIMIC models to test for non-uniform DIF.

The second method mentioned by Marsh et al. (2012) were the distribution analytic approaches.

Distribution analytic approaches explicitly model the non-normality implied by the indicator

variable distributions that occur within the latent interactions. Currently there are two main

methods: Latent moderated structural equations (LMS; Klein & Moosbrugger, 2000) and quasi-

maximum likelihood (QML; Klein & Muthén, 2007). LMS models the non-normal distribution
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caused by the latent variable product terms by approximating it using a �nite mixture of Gaus-

sian distributions (Klein & Moosbrugger, 2000). LMS assumes that both variables in the latent

interaction are normally distributed. QML also models the non-normality caused by the latent

product terms but has less stringent distributional assumptions than LMS. QML reduces the num-

ber of components used to approximate the non-normality caused by the latent product terms

to a normal and conditionally normal distribution versus a potentially large number of normal

mixture components used by LMS (Klein & Muthén, 2007; Marsh et al., 2012).

Several studies have looked at non-uniform DIF testing with MIMIC or related RFA models

using the LMS approach (Barendse et al., 2010; Barendse et al., 2012; Woods & Grimm, 2011).

These studies can be classi�ed into those treating indicators as continuous (Barendse et al., 2010;

Barendse et al., 2012) versus using an IRT parameterization (Woods & Grimm, 2011). Both Barendse

et al. (2010) and Barendse et al. (2012) used RFA (equivalent to MIMIC in the two group case) to

test for non-uniform DIF with continuous indicators. In both studies they considered only two

groups, made the assumption that the grouping variable was latent for LMS, and used all-other

items as anchors for DIF testing. In both studies Type I error rates were in�ated possibly due

to the use of all-other items as anchors (Stark, Chernyshenko, & Drasgow, 2006; W. C. Wang,

2004) and that the group variable was not normally distributed as assumed by LMS (Klein &

Moosbrugger, 2000).

Woods and Grimm (2011) tested non-uniform DIF with a MIMIC model as parameterized in

an IRT framework within Mplus. Although LMS assumes that the latent variables involved in the

interaction are normally distributed, at the time of publication of Woods and Grimm (2011), the

Mplus user’s guide recommended using the variation of the LMS method with an observed cate-

gorical and continuous latent variable. Thus, Woods and Grimm (2011) wanted to test the utility

of LMS as recommended by the Mplus user’s guide despite the assumption violation. The results

from Woods and Grimm (2011) showed greater power for detecting non-uniform DIF when using

Equation 2.41 compared with Equation 2.40. However, use of Equation 2.41 showed in�ated Type

I error rates. At the present time estimating MIMIC interaction models with Mplus is not recom-
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mended. Woods and Grimm (2011) note that the MIMIC interaction model could be parameterized

as a nonlinear mixed model and estimated in a program such as SAS PROC NLMIXED.

The third and �nal approach to estimating latent interactions mentioned by Marsh et al. (2012)

is a Bayesian approach. In the Bayesian approach the creation of product indicators apriori were

not needed. Instead, similar to the distribution-analytic approaches the Bayesian approach sam-

ples the cross-product terms within the MCMC estimation, properly modeling the latent inter-

action. Simulation studies using continuous indicators and binary categorical indicators (non-

MIMIC DIF models) indicated that Bayesian methods perfomed well especially in small sample

sizes (Lee, Song, & Cai, 2010; Lee, Song, & Tang, 2007). At the time of this writing I could �nd

no publications or presentations involving research on latent interactions with IRT MIMIC mod-

els for DIF testing. As noted by Marsh et al. (2012) the Bayesian approach is extremely �exible

and allows for easy extensions of multiple interaction e�ects, higher order interaction e�ects,

and other polynomial e�ects of the latent variables. One downside of this great �exibility is the

sound statistical knowledge and thought required to specify the distributions and priors for the

parameters. However, software programs such as Mplus, WinBUGS, OpenBUGS, JAGS, and Stan

are gaining popularity which may ease the di�culty for applied researchers.

2.2.2.2 Illustration of How to Test for Non-uniform DIF with MIMIC Models

In this section an overview of how to test for non-uniform DIF with IRT based MIMIC models is

given as described in Woods and Grimm (2011). Woods and Grimm (2011) were the �rst to use

MIMIC models for testing non-uniform DIF in an IRT MIMIC model. Woods and Grimm (2011)

noted that if an interaction between a grouping variableG and the latent variable θ was added in

Equation 2.40 then non-uniform DIF could be tested. The equation for testing non-uniform DIF

in a MIMIC model for item i is given by

y∗i = αiθ + βi1G1 + βi2G2 + ωi1G1θ + ωi2G2θ , (2.41)
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where ωih represents the interaction between group Gh and the latent variable θ and all other

terms are as previously de�ned in Equation 2.40. Figure 2.2 gives the path diagram corresponding

to Equation 2.41 for testing uniform and non-uniform DIF in item I . Ifωih is signi�cantly di�erent

than zero this indicates that the relationship between item response i and focal group h depends

on θ , which is the de�nition of non-uniform DIF.

Figure 2.2: MIMC Non-uniform DIF Path Diagram.

Note. G1 and G2 correspond to the grouping covariate for group 1 and group 2 with group 0 (G0)
being the reference group. The θ ∗G circles represent the latent interaction between group and
the latent variable. θ represents the latent variable, ζ represents the residual variance of the
latent variable, γ represents the mean di�erence on θ between the given group and reference
group, β represents the uniform DIF, ω represents non-uniform DIF, α represents the
discrimination parameter for the given item, and ϵ represents the residual for the given item.

To conduct DIF testing a similar set of four steps as described for uniform DIF testing are

carried out for the LR tests. Steps one and two di�er slightly with the addition of an omnibus

DIF test and individual tests of non-uniform and uniform DIF. To perform an omnibus test of DIF
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using LR tests (uniform, non-uniform, or both) an augmented model is �tted where all studied

items are regressed on Gh and the interaction Ghθ . Then for each item a constrained model is

�tted where the studied item is neither regressed on the grouping variables or the interactions

(i.e. all βih and ωih are zero) and a LR test is conducted. If the LR test is statistically signi�cant then

this indicates that item i shows signi�cant uniform, non-uniform, or both types of DIF. Follow-up

tests for non-uniform and uniform DIF can be conducted using the same logic as the omnibus test

with LR tests.

Note that use of Wald tests for an omnibus test of overall DIF could be slightly more com-

plicated in the case of non-uniform DIF with a MIMIC model. The reason is that most software

programs don’t allow you to specify a contrast matrix out of the box to perform multivariate tests

as was described in the Wald χ 2 DIF test section of this paper. It may still be possible but the user

may have to specify these contrasts separately as model constraints and obtain good estimates of

the asymptotic covariance matrix as described in the section Wald χ 2 test.

2.3 Current Study

The purpose of this research was to propose a new implementation of the MIMIC model for

testing uniform and non-uniform DIF, conduct a Monte Carlo simulation to address the three

limitations of the present body of MIMIC DIF research mentioned previously, and provide an

empirical example for applied researchers. Speci�cally, these three limitations were only con-

sidering two groups in simulation studies, a lack of assessing the MIMIC models robustness to

violations of the homogeneity of latent variance assumption, and not properly modeling the la-

tent interactions needed to estimate non-uniform DIF with MIMIC models. In all conditions the

proposed method will be compared to the improved Wald χ 2 approach discussed previously (see

Equations 2.10 and 2.15).

First, to address the issue of only considering two groups the present study for apparently the

�rst time considers the case of three groups in a methodological study with MIMIC DIF models
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for non-uniform DIF. Second, the issue of estimating the latent interaction will be handled by

utilizing Bayesian estimation to more appropriately model the latent interaction necessary for

non-uniform DIF. Use of Bayesian estimation for estimating this model is a new implementation

that has not currently been done. Third, the latent variances of the groups will be allowed to

di�er from the reference group and be manipulated in certain conditions and held to equality in

other conditions as a comparison. Lastly, this new approach will be applied to a real data set to

demonstrate the utility of the method to applied researchers.
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Chapter 3

Methods for the Simulation Study

3.1 Overview

A simulation study was carried out to address the aforementioned shortcomings within the IRT-

based MIMIC non-uniform DIF literature. The simulation study consisted of 18 crossed factors

(described below) with 100 replications in each condition. Pilot tests indicated each replication

will take approximately 1 to 5 hours to run. This number of replications was chosen based on com-

putational feasibility and to improve upon the modest number of replications typically seen with

computationally intensive MCMC simulations (e.g. Jiao, Kamata, Wang, & Jin, 2012; W. C. Wang,

Liu, & Wu, 2013). An R program was used to generate, analyze, and process the data (R Core

Team, 2014). The Bayesian MIMIC model was run on the advanced computing facility (ACF) clus-

ter at the University of Kansas to expedite computation time. On the ACF cluster the Bayesian

MIMIC model was run with R (v. 3.1.0). All improved Wald runs were run on a single PC using

�exMIRT™(v. 3.0.3) using R (v. 3.1.1) and results were summarized using R (v. 3.2.2). R code for

simulating the Bayesian MIMIC model is available by request from the author.

This section is organized into �ve subsections. First, a discussion of the �xed factors in the

simulation will be given. Second, a discussion of the varying factors will be described. Third,

a description of Bayesian estimation, prior selection, and software will be provided. Lastly, a
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description of the procedure and the outcomes will be provided.

3.2 Fixed Factors in the Simulation

There were six factors that remained �xed throughout the simulation study (scale length and

item parameters, magnitude of DIF, type of DIF, proportion of DIF items, proportion of anchor

items, and latent means) each of these is described below. First, the scale length was �xed at 20

binary items to represent an appropriate scale length that may be commonly used in educational

and psychological settings and has also been used in previous DIF simulation studies (e.g. Finch,

2011; French & Finch, 2010; W. C. Wang & Shih, 2010). Further, French and Finch (2010) note

that it is not uncommon to �x the test length in DIF studies (e.g. Finch & French, 2007; French

& Maller, 2007; Hidalgo-Montesinos & Gómez-Benito, 2003; R. Pen�eld, 2007 ), especially when

there are other factors that may have a greater in�uence on DIF (e.g. latent variances, sample size

imbalance, number of groups) and to keep the simulation study size manageable.

The true values of the generating item parameters were based on item parameters found

in Woods et al. (2009) on the negative temperament scale of the Schedule of Nonadaptive and

Adaptive Personality (SNAP; Clark, 1996). This allowed for a more realistic depiction of the item

parameters seen in practical psychological assessments being used within the simulation. The

negative temperament scale consists of 28 items so, a random sample of 20 items was chosen.

The true values of the 20 randomly drawn item parameters from the 28 items on the negative

temperament scale are presented in Table 3.1. Item parameters for the focal group(s) that are not

DIF items (i.e. items seven through 20) will be the same as those in the reference group and item

parameters that are DIF items (i.e. items one through six) are described in the next section.

The second �xed factor, the type of DIF consists of three types: Uniform DIF (only), non-

uniform DIF (only), and mixed DIF (both uniform and non-uniform). These three types are illus-

trated in Figure 3.1. The three types of DIF were chosen to assess the DIF detection methods (i.e.

Wald χ 2 and proposed MIMIC model) ability to identify not only whether a given item shows
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Table 3.1: True Item Parameter Estimates Used for Data Generation

Item Number α parameter b parameter
1(311)DIFb 1.41 1.18
2(269)DIFα 2.42 1.30
3(250)DIFα ,b 1.96 -0.09
4(281)DIFb 1.50 -0.60
5(273)DIFα 1.75 1.04
6(301)DIFα ,b 1.92 0.33
7(290) 1.68 0.15
8(277) 1.64 1.13
9(294) 1.86 1.14
10(274) 1.32 1.83
11(259) 2.03 0.72
12(244) 1.55 0.18
13(245) 1.66 0.88
14(323) 1.15 -1.00
15(316) 1.55 0.43
16(333) 2.10 1.14
17(260)Anchor 1.98 1.74
18(325)Anchor 1.60 0.07
19(312)Anchor 0.95 2.02
20(331)Anchor 0.56 1.21

Note. DIF = di�erential item functioning. Numbers in parentheses refer to the item number on
the negative temperament scale in Table 4 of Woods et al. (2009). b = τ/α in Table 4 of Woods
et al. (2009). DIFα = non-uniform DIF only, DIFb = uniform DIF only, DIFα ,b = mixed DIF, and
Anchor denotes an anchor item.

DIF but also to assess the correct classi�cation as to the type of DIF. These procedures are similar

to those conducted in Lopez (2012). Each of the types of DIF will constitute two items out of the

total number of six DIF items. For example, two items will be uniform DIF (i.e. items 1 and 4 in

Table 3.1), two will be non-uniform DIF (i.e. items 2 and 5 in Table 3.1), and two will be mixed

DIF (i.e. items 3 and 6 in Table 3.1). This framework allows for a deeper understanding as to

the classi�cation accuracy of the two DIF detection methods by examining whether a given DIF

method is able to detect the correct type of DIF.

The third �xed factor, the magnitude of DIF, was constant throughout the simulation but
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allowed to vary randomly among the DIF items (i.e. items one through six) on the assessment

among three values that are considered small, medium, and large amounts of DIF: δ = .3, .5, .7

(Woods et al., 2013). These values re�ect those commonly seen in practice and those that have

been used in previous simulation studies (e.g. Woods, 2009b; Woods et al., 2013). Items with

uniform DIF only (items 1 and 4) had biR < biFh , items with non-uniform DIF only (items 2 and

5) had αiR > αiFh and, items with mixed DIF (items 3 and 6) had both αiR > αiFh and biR < biFh .

Note R denotes the reference group and Fh focal group h (i.e. h = {1,2}). The focal group(s)

discrimination parameter was calculated as αiFh = αiR − δαih and threshold parameter as biFh =

biR + δbih . Values of δ will be determined separately for each αi and bi (and also separately for

each focal group). To determine the speci�c δ a random draw from a U (0,1) distribution was

taken and the δ determined such that:

if(x ≤ .33) then δ = .3

else if((x > .33) & (x ≤ .66)) then δ = .5

else if((x > .66) & (x ≤ 1)) then δ = .7.

The fourth �xed factor, the proportion of DIF items, was constant at 30 percent (i.e. six items)

which is consistent with previous simulation studies (e.g. W. C. Wang & Shih, 2010) and a reason-

able amount of DIF items that may be seen in practice on a scale. Further, this allows for two items

from each of the three DIF types to be considered. The �fth �xed factor, the proportion of anchor

items, was 20 percent (i.e. four items). The proportion of anchor items was selected based on

recommendations from previous methodological research (e.g. W. C. Wang, 2004; Woods, 2009a)

and at the same time balancing the di�culty of anchor selection that may occur in practice as the

number of groups increases beyond two.

The �nal �xed factor, the latent impact or true mean di�erence on the latent trait, was µθF1
=

−0.20 for focal group one (two group and three group conditions) and µθF2
= −0.40 for focal

group two (three group conditions only). These values re�ect reasonable values that may be seen
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in DIF applications (e.g. Harpole et al., 2014; Langer, 2008). The latent mean of the reference

group was �xed at zero (i.e. µθR = 0) for model identi�cation purposes. Thus, for the reference

group θR ∼ N (0,1) and for the focal group(s) θF1 ∼ N (−0.20,σF1 ) and θF2 ∼ N (−0.40,σF2 ).

3.3 Varying Factors in the Simulation

Three factors within this simulation study were chosen to vary; combined these constitute 18

crossed conditions [2 (number of groups) x 3 (latent standard deviation di�erences) x 3 (refer-

ence/focal group sample sizes)]. The number of groups will consist of two (reference and one

focal group) or three (reference and two focal groups). This was be done to compare the �ndings

from the present simulation study to other studies testing non-uniform DIF with MIMIC models

(e.g. Woods & Grimm, 2011) as well as generalize the results to the case of three groups.

The second varying factor was the latent standard deviation (SD) di�erences across the groups.

There are three levels of this factor: (1) smaller focal group(s) latent SDs compared with the ref-

erence group (LSDS), (2) equal latent SDs among the reference and focal group(s) (LSDE), and (3)

higher focal group(s) latent SDs compared with the reference group (LSDH). Within the LSDE

condition all the latent SDs will be �xed at one to have a condition where the MIMIC model as-

sumption of homogeneity of latent SDs across groups holds. In these conditions (i.e. LSDE) the

latent traits were simulated as follows: θR ∼ N (0,1) and θF1 ∼ N (−0.20,1) for the two-group con-

ditions and θR ∼ N (0,1), θF1 ∼ N (−0.20,1), and θF2 ∼ N (−0.40,1) for the three-group conditions.

For the LSDS conditions the latent SDs were �xed at 0.50 and for the LSDH conditions the latent

SDs were �xed at 1.5. These values were chosen based on reasonable values that may be seen in

practical applications of DIF studies (e.g. Harpole et al., 2014; Langer, 2008).

The third varying factor was the reference group to focal group sample sizes ratio. For the

two group condition the total sample size was 1000. The three ratios were 500:500 (equal), 750:250

(moderately unequal), and 900:100 (highly unequal). For the three group condition the total

sample size was 1500 with ratios 500:500:500 (equal), 1000:250:250 (moderately unequal), and
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1300:100:100 (highly unequal). These sample sizes and ratios were selected to show what may

be seen in practice with both balanced and unbalanced group sizes. The lower bound of 100

for the small sample sizes in both two group and three group conditions (i.e. 100) was chosen

based on results from Woods (2009b) where sample sizes lower than 100 were more likely to have

convergence problems and had higher parameter bias. The proposed Bayesian MIMIC model is

more complicated than that in Woods (2009b) and going lower than 100 would likely cause poor

convergence and parameter recovery.

A within condition factor in this study was DIF detection method. The two methods were the

non-uniform DIF MIMIC model and the improved Wald χ 2 (see Equation 2.15). The Improved

Wald χ 2 was chosen due to its asymptotic equivalence to the likelihood ratio test, better per-

formance than the likelihood ratio test in a recent simulation study in the case of three groups

(Woods et al., 2013), and much smoother implementation computationally than the likelihood ra-

tio test as discussed previously. In all simulation conditions unless noted otherwise the improved

Wald was used with the supplemental EM algorithm setting the maximum number of E-steps to

4000 and the maximum number of M-steps to 1000 (the defaults were 500 and 100, respectively).

Further, the SmartSEM option was set to No in order to utilize the full EM history when assessing

convergence which may lead to better convergence results (Houts & Cai, 2013).

3.4 Bayesian Estimation

In order to extend �ndings from previous research with respect to estimating the latent interac-

tion term a Bayesian MIMIC model was used. From here out the Bayesian MIMIC model will be

used to denote the non-uniform DIF Bayesian MIMIC model in the present study. As noted in

Woods and Grimm (2011) the MIMIC model can be reparameterized as an equivalent non-linear

mixed model to test for non-uniform DIF. All Bayesian analyses were run using Stan (v. 2.6.0)

(Stan Development Team, 2014b), with the RStan interface (Stan Development Team, 2014a) for

the R platform (R Core Team, 2014) with two Markov chains and random starting values.
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Stan uses Hamiltonian Monte Carlo (HMC) sampling with the No-U-Turn (NUTS; Ho�man

& Gelman, 2011; Ho�man & Gelman, 2013) sampler. HMC using NUTS borrows ideas from

physics and Hamiltonian dynamics to explore the parameter space of the joint posterior dis-

tribution (Ho�man & Gelman, 2011; Ho�man & Gelman, 2013). The idea is to suppress the local

random walk behavior in the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller,

& Teller, 1953) allowing for much more rapid movement through the parameter space. This is

accomplished by utilizing a momentum variable along with the parameter vector that are jointly

updated together although inferences are taken only from the parameter vector. The momentum

variable acts as an auxiliary variable to allow the algorithm to move faster through the parameter

space (see Gelman et al., 2013, pp. 300-302 for further discussion). Stan was chosen because in

pilot studies Stan performed superior to JAGS which uses a variation of Metropolis within Gibbs

sampling and slice sampling depending on the model.

As with Gibbs sampling (Geman & Geman, 1984), and Metropolis-Hastings (Hastings, 1970)

HMC using NUTS requires a full probability model as per Baye’s rule (see Equation 1.4 and 1.5)

to be speci�ed. Letting S = {θ ,µ,α ,b,ω,β } the joint distribution of the parameters given the

data for the Bayesian MIMIC model will be speci�ed as follows:

P (S |y) ∝ P (y |θ ,µ,α ,b,ω,β )P (θ |µ)P (µ)P (α )P (b)P (ω)P (β ). (3.1)

Note in Equation 3.1 θ is a vector of latent traits for persons, µ is a vector of latent means for the

latent trait, α is a vector of discrimination parameters, b is a vector of location parameters1,ω is

a vector of non-uniform DIF parameters (coe�cient for interaction between group and the latent

trait), and β is a vector of uniform DIF parameters.

3.4.0.3 Priors

To estimate the Bayesian MIMIC model, prior distributions must be speci�ed for S = {θ ,µ,α ,b,ω,β }.

Note all priors are presented with SDs below and not precisions. In the present study the follow-
1Note that b is used instead of τ to better align with the MIMIC IRT parameterization as τ = −α ∗ b
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ing prior distributions were used:

θjh ∼ N (µh,1) j = 1, . . . , J & h = 1, . . . ,G (3.2)

µh ∼ N (0,2) Note µ1 = 0 & h = 1, . . . ,G (3.3)

αi ∼ LN (0,1) i = 1, . . . ,20 (3.4)

bi ∼ N (0,2) i = 1, . . . ,20 (3.5)

ωih ∼ N (0,0.15) i = 1, . . . , (20 −A) & h = 1, . . . ,G (3.6)

βih ∼ N (0,1) i = 1, . . . , (20 −A) & h = 1, . . . ,G . (3.7)

G denotes the number of groups (either two or three), J the number of persons, LN denotes a log-

normal distribution, A denotes the number of anchor items (i.e. four items in the present study).

Thus, the �rst 16 items were tested for DIF and the last four are anchor items. Note that µ1 = 0

and σ 2
θ jд
= 1 in order to identify the model. These prior distributions have been used previously

in other research and practical applications (e.g. Curtis, 2010; J. Fox, 2010; Patz & Junker, 1999a;

Patz & Junker, 1999b).

All prior distributions were chosen to ensure that the Bayesian MIMIC model had reasonable

convergence across all conditions. More di�use priors were originally used but they resulted in 50

to 70 percent convergence rates. The priors forωih were the most informative due to problematic

convergence issues related to label switching caused by the discrimination parameters. The priors

for βih were chosen to have a mean of 0 and SD of 1 in order to balance non-informativeness and

convergence issues with more di�use priors.

3.4.1 Burn-in and Convergence Diagnostics

As mentioned above the model was �t using two Markov chains. Three important consider-

ations when conducing Bayesian estimation using MCMC are selecting the burn-in, assessing

approximate convergence of the Markov chains, and the amount of thinning. To determine the

appropriate burn-in for the Markov chains several pilot runs were conducted. In all cases the
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pilot runs indicated that the Markov chains reached stationarity around 100 to 300 draws. For

the simulation a conservative burn-in of 1000 draws was used.

The convergence check was determined using the potential scale reduction factor (PSRF) also

know as univariate r-hat (see Gelman & Rubin, 1992). As mentioned by Gelman and Rubin (1992)

when all parameters have an r-hat less than 1.10 this indicates approximate convergence has

been reached and was the cuto� used in the present study. Several pilot runs were conducted to

provide insight into how many post-burn-in runs were needed. The pilot runs indicated that 1000

post burn-in draws per Markov chain were su�cient. A conservative 2000 post-burn-in draws

per chain were used in the simulation study.

3.5 Procedure

The procedure of the simulation study was as follows for each replication within a given condi-

tion. First, a single data set was generated in R from the multiple group 2PL model (i.e. Equation

2.1) with the appropriate varying and �xed factors discussed above. Next, the rstan package was

used to call Stan and analyze the data with the Bayesian MIMIC model. Note this series of steps

was calculated on the ACF cluster. On a single PC the R program called �exMIRT™to analyze the

same data set and conducted the DIF testing using the improved Wald χ 2 test. Upon completion

of the DIF testing and parameter estimation, several R functions processed, organized, and saved

relevant output for later analysis. Additionally, the r-hat values (PSRF; Gelman & Rubin, 1992)

were monitored to assess the approximate convergence to the posterior for the Bayesian MIMIC

model. Convergence was also monitored for the improved Wald method as well.

3.6 Outcomes

The outcomes in this simulation study were power, Type I error rate, and parameter recovery.

In order to provide more insight and clarify how to measure power and Type I error for the

Bayesian MIMIC model the methods used for evaluating power and Type I error for the improved
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Wald χ 2 (non-Bayesian) tests will be described �rst. Understanding choices in this context (i.e.

Frequentist) is probably more familiar to most researchers and will help in understanding how

the choices for evaluating power and Type I error were made for the Bayesian MIMIC model.

To conduct the DIF tests using the improved Wald χ 2 contrasts were carried out for all items

except the anchor items (i.e. items 17-20). The same contrasts used in Woods et al. (2013) for

testing two group and three group DIF were considered here. That is for the two group case the

contrast matrix for a given item was
[
1 −1

]
(3.8)

and for the three group case


1 −1 0

1 0 −1


. (3.9)

The improved Wald χ 2 test is a Frequentist method and uses an asymptotic statistical test to assess

the classi�cation of DIF in a given item. In the present study in contrast to previous research (e.g.

S. H. Kim et al., 1994; Woods et al., 2013; Woods & Grimm, 2011) only the pairwise DIF tests

for each group were analyzed and the omnibus test of DIF was not considered. The reasons for

doing this are two-fold. First, in the Bayesian framework a multivariate omnibus test for DIF in

the discrimination and threshold parameters with similar properties to the Frequentist omnibus

test is not straightforward to compute. One possible avenue for a multivariate test would be to

use a Bayes factor (see Verhagen, 2012 for univariate application). However, a multivariate Bayes

factor although theoretically possible would be quite complicated and computationally expensive

to compute (Morey, Rouder, Pratte, & Speckman, 2011, p. 371). One goal of the present study is to

provide a framework for DIF testing in Bayesian models that is straightforward to implement by

practitioners and other researchers. The second reason for considering only the pairwise tests is

that to the best of my knowledge this is the �rst time the properties of the pairwise tests have been

considered for the Bayesian MIMIC model and the improved Wald χ 2. Thus, only the pairwise

tests are considered in the proposed study for both the improved Wald χ 2 and Bayesian MIMIC

model.
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For the improved Wald χ 2 the unconditional test of the α parameters is

χ 2
αih
=

(α̂Fih − α̂Ri )

σ 2
α̂ih

, (3.10)

where α̂Fih and α̂Ri are the maximum likelihood estimates of the ith item discrimination param-

eter for focal group h and reference groups, respectively. σ 2
α̂ih

is the asymptotic variance of the

di�erence between focal group h and reference group discrimination parameters. Equation 3.10

is asymptotically distributed as χ 2 with one degree of freedom. In the case of two groups with 16

DIF candidate items in the present study there were 16 tests for non-uniform DIF and in the three

group case 32 tests. The improved Wald χ 2 also conducts a conditional test of the b parameters2.

The conditional test conditions on equal α parameters and is given as

χ 2
bih |αi

= χ 2
i − χ

2
αih
, (3.11)

where χ 2
i is given by Equation 2.10. Equation 3.11 is also asymptotically distributed as χ 2 with

one degree of freedom. For the case of two groups in the present study there were 16 tests and

in the case of three groups 32 tests for uniform DIF. Thus, the total number of tests (i.e. both

uniform and non-uniform DIF tests) in the two group case was 32 and 64 for the three group

case.

In the case of a Bayesian MIMIC model an asymptotic statistical test is not needed since the

appropriate values from the posterior distribution can be calculated by integration (in practice

summation). For the Bayesian MIMIC model a contrast matrix will not be used and instead the

analogous dummy codes for Equations 3.8 and 3.9 were used to test for DIF (see Equation 2.41 and

Figure 2.2 for details). As with the improved Wald χ 2 pairwise DIF tests were used to examine

the power and Type I error rates.

To determine whether an item had DIF or not a Bayesian estimation method needs to be

used to detect DIF as well. In this regard the β and ω parameters in Equation 2.41 can be tested
2In Langer (2008) b = -c/α where c is the intercept parameter.

63



with Bayesian credible intervals. In the context of Bayesian hypothesis testing Box and Tiao

(1973) describe this as the highest posterior density (HPD) interval. The HPD credible interval

containing 1−α percent of the probability under the posterior distribution is referred to the 1−α

percent HPD interval.3 Assuming a speci�ed α level for rejection of the null hypothesis that a

parameter value is zero, the HPD interval can be used to test for both uniform and non-uniform

DIF.

In the present study if an HPD interval for β and/or ω (see Equation 2.41) does not contain 0

then this item would be �agged as either having uniform (β), non-uniform (ω), or mixed DIF (both

β andω). For two groups there will be 32 total HPD tests (i.e. 16 for β and 16 forω) and in the three

group case 64 total HPD tests (i.e. 32 for β and 32 for ω). Also, to better align with the improved

Wald χ 2 test for both two and three groups a conditional test of equal α parameters will be used

for the Bayesian MIMIC model. This involves �tting the model with all DIF candidate items (i.e.

items 1 to 16) having β and ω freely estimated (unconditional DIF test of αs). Then non-uniform

DIF will be assessed by examining the 1 − α percent HPD intervals for only the discrimination

parameters. A second model will then be �t where all the discrimination parameters for a given

item are set equal across the groups and the test for uniform DIF will be evaluated on this model

using the HPDs for the threshold parameters (conditional DIF test of the bs).

3.6.1 Issues with Multiple Testing

The proposed study unlike past DIF research (e.g. S. H. Kim et al., 1994; Woods et al., 2013; Woods

& Grimm, 2011) does not use an omnibus test for DIF and instead utilizes the individual item

parameter tests. This introduces a concern of in�ated Type I errors. This issue is complicated

by the fact that a Bayesian estimation method (the Bayesian MIMIC model) and a Frequentist

method (improved Wald χ 2) are being compared. In Bayesian estimation many authors note that

one should not worry too much about Type I error rates (e.g. Gelman et al., 2013; Gelman &

Hill, 2006; Gelman, Hill, & Yajima, 2012; Kruschke, 2010). However, other people within the DIF
3Note that α here is referring to the Type I error rate used in notation for hypothesis testing and not the the IRT

discrimination parameter
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literature have noted that even in a Bayesian paradigm multiple testing can become problematic

(e.g. Cho, 2007). Thus, this issue is somewhat complex to navigate. To address this issue I turn to

the simulation research on DIF testing.

Within the MIMIC DIF simulation literature Woods (2009b) used a BH p-value correction as

recommended by Thissen et al. (2002). Type I error results from Woods (2009b) indicated that

the BH p-value correction seemed to be an overcorrection and may not be necessary. Woods

and Grimm (2011) also noted that the BH p-value correction used in Woods (2009b) seemed to

be an over correction and did not use the BH p-value correction for evaluating non-uniform DIF

in MIMIC models. Although Woods and Grimm (2011) used the omnibus test to detect DIF they

still conducted 16 tests without a p-value correction and noted no issue of Type I error in�ation

under ideal conditions.4

More recently, Woods et al. (2013) tested the improved Wald χ 2 with designated anchors

(denoted as Wald-I) and the LR DIF test in both two and three groups. In this study there were

also 16 omnibus DIF tests per group (i.e. 16 in two groups and 32 in three groups) for both

methods. Woods et al. (2013) did not use a p-value correction and for both Wald-I and LR DIF

methods there was no in�ation of Type I error rates even in the case of 32 tests (i.e. three groups).

Further, J. Kim and Oshima (2012) conducted a simulation study to directly address the multiple

comparisons issue in uniform DIF testing. Within this study they found that Lord’s (1980) χ 2

(not the improved Wald χ 2) did not require p-value adjustments to control Type I errors using

Bonferroni, Holm’s or the BH correction for the conditions in their study. J. Kim and Oshima

(2012) noted that p-value adjustments may not be necessary for some IRT based DIF methods.

Given the above �ndings from simulation research it is possible that a p-value adjustment

may not be necessary for either the Bayesian MIMIC model and/or the improved Wald χ 2. Nev-

ertheless, to be on the safe side given that the present study will conduct 32 and 64 comparisons

and that the previous evidence was on the omnibus tests or tests of uniform DIF I propose the

following strategy. The strategy involves adjusting the p-values (in the Frequentist case) and ad-
4Woods and Grimm (2011) did �nd in�ated Type I errors for the non-uniform DIF MIMIC model but this was

likely due to the latent interaction as the uniform DIF MIMIC model did not experience these issues.
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justing the α level in the HPD case. Given that the optimal correction value is unknown (since

a correction may or may not be needed) a priori I am opting to use several levels of correction

for both the Frequentist case and the Bayesian case in order to guard against the possibility that

Type I errors become a problem. Further, using this strategy will also provide some additional

evidence to the insights that p-value adjustments may not be necessary for some IRT based DIF

methods (e.g. J. Kim & Oshima, 2012; Woods & Grimm, 2011).

The following α levels used were as follows: (1) 0.05, (2) 0.01, (3) 0.005 (3) 0.0030/0.0015 (4)

.0015/.0008. The �rst level corresponds to no correction. The second and third level corresponds

to adjustments that may be used in practice when practitioners want to be slightly more conser-

vative in multiple testing scenarios and have also been used in DIF simulations (e.g. S. H. Kim et

al., 1994). The fourth level corresponds to a Bonferroni type correction. This correction is based

on adjusting for the 16 tests (two group case) or 32 tests (three group case) for each parameter

(i.e. 16 tests for ω and 16 tests for β). The �fth level corresponds to a full Bonferroni correction

among all the tests for a given group condition (i.e. 32 in two groups and 64 in three groups). Each

of these corrections would be computed for each replication within a condition. Taken together

this strategy allows for the possibility that no or a slight correction may be necessary, but also

will guard against problematic Type I error rates should they become a problem.

3.6.2 Power and Type I Error

Power for the improved Wald χ 2 was calculated for items known to show DIF (i.e. items one

through six). For both the uniform and non-uniform tests of DIF the �ag values of the χ 2 statistic

for considering if an item has DIF or not will be based on the �ve p-value rules from the previous

section. In the case of two groups if α = 0.05 then the �ag value was 3.85, if α = 0.01 the value

was 6.63, if α = 0.005 then the �ag value was 7.88, if α = 0.003 the �ag value was 8.75, and if

α = 0.0015 the �ag value was 10.08. In the case of three groups the α = 0.05, 0.01 and 0.005 are

the same values as the two group case, if α = 0.0015 then the �ag value was 10.08, if α = 0.0008

then the �ag value was 11.24. If the χ 2 statistic from the Wald test is greater than or equal to the
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appropriate �ag value from above then this is considered a hit (correctly identi�ed DIF item). If an

item known to show DIF is correctly identi�ed then this was given a one and zero otherwise. This

coding creates a Bernoulli random variable from which the average of the six items for a given

replication was the overall power for that replication. The overall power for a given condition

was the average of all mean power computations over replications to obtain the average power

for that condition.

In the case of the Bayesian MIMIC model the appropriate HPDs for either β and/orω will have

α adjusted based on the �ve values from above to re�ect whether the appropriate HPD interval

includes zero. In the case of α = 0.05 if the 95 percent HPD interval does not include zero this

would be a hit. Likewise if α = 0.0015 then if the 99.85 percent HPD interval does not include

zero then this would also be considered a hit. This same logic applies to the other α levels. The

coding of a correctly identi�ed DIF item was the same as that for the Wald χ 2 test. Given that DIF

items are either categorized as uniform DIF only, non-uniform DIF only, and mixed DIF several

additional pieces of information were evaluated for both the improved Wald χ 2 and the Bayesian

MIMIC model.

In order to evaluate the concordance of the DIF type predicted by a given method and the

type of DIF simulated a confusion matrix was constructed for the power outcomes. A confusion

matrix allows for more granular information on classi�cation error than typically reported in DIF

studies. For example, the overall classi�cation hit rate for items 1 through 6 regardless of DIF type

were reported. Additionally, the classi�cation hit rate for uniform only, non-uniform only, and

mixed DIF were also reported to provide a more rich understanding of the classi�cation accuracy

of each DIF method.

For the improved Wald χ 2 overall Type I error rates were computed for items known to be

DIF free (i.e. items 7-16). If an item known to not show DIF (i.e. items 7-16 as anchors are not

tested) was incorrectly identi�ed as showing DIF this was scored as one and if the DIF-free item

was correctly identi�ed as not showing DIF scored as zero. Similar to the power the average of

all known DIF free items in a given replication was computed. Then the average of averages over
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the replications will be the overall Type I error rate for each condition. For the Bayesian MIMIC

model if the appropriate HPD for a given item known to not show DIF is correctly identi�ed then

this will be coded as zero and if the item is incorrectly identi�ed as having DIF this will be coded

as a one.

3.6.3 Parameter Recovery

The parameter outcomes of interest were the latent means, item parameters for the reference

group, and item parameters for the focal group(s). To evaluate parameter recovery from these

three outcomes bias will be used as computed by estimate minus true. As described previously,

Woods (2009b), Woods et al. (2009), and Woods and Grimm (2011) note that when computing

parameter recovery for some parameter estimates (i.e. items with DIF) a �nal model was used.

Other researchers computing parameter recovery did not �t a �nal DIF model when computing

parameter recovery (e.g. Barendse et al., 2010; Barendse et al., 2012; Carroll, 2014). In the present

study a �nal model will not be �t and parameter recovery will be determined by the unconditional

Bayesian MIMIC model used to test non-uniform DIF and the IRT model in �exMIRT™. The

reason for this is that the main interest of the present study is in DIF classi�cation and not in

�tting a �nal model to determine what the parameters of the overall scale would be.

The item parameter recovery for the reference group was computed as the respective esti-

mate from the Bayesian MIMIC or improved Wald method in �exMirt™minus the true value in

the given replication. For the Bayesian MIMIC model the focal group location parameters were

computed by subtracting the δ value of the posterior mean of the βih from the posterior mean

value of bi for the reference group for a given item and focal group h. Additionally, the bi value of

the reference group was multiplied by -1 to put the parameters on the IRT metric from which they

were simulated. For the discrimination parameters the posterior mean value of ωih was added to

the posterior mean value of the reference group αi for a given item i and focal group h. Then

these focal group values (i.e. the posterior mean values of the focal group) were subtracted from

the true values to obtain bias. For each method (i.e. improved Wald and the Bayesian MIMIC
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model) the average bias in a replication was calculated and then the mean of the average bias

was taken over the replications to obtain the overall estimate of bias.

The latent means for each focal group in the improved Wald were calculated as the estimate

minus true to obtain an estimate of bias. For the Bayesian MIMIC model the posterior mean value

of the latent means for each focal group were used as the estimate to calculate bias. In the same

way as with the improved Wald the latent mean minus the true value will be the bias. For each

method (i.e. improved Wald and the Bayesian MIMIC model) the average bias in a replication

was calculated and then the mean of the average bias was taken over the replications to obtain

the overall estimate of bias.
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Chapter 4

Results of the Simulation Study

4.1 Overview

The results of the simulation study are presented below. The outcomes are organized into two

main sections: 2 group and 3 group results. Note that the 3 group results include the results for

the reference group, focal group 1, and focal group 2. For both the 2 group and 3 group results

there are four main subsections: Overall Type I error rate, overall power, confusion matrices for

classi�cation accuracy, and parameter recovery. Note that when interpreting Type I error Wil-

son’s score interval (Wilson, 1927) was used to compute a con�dence interval for the proportion

p to aid interpretation. Wilson’s interval was chosen because of its good performance compared

with other methods (see Brown, Cai, & DasGupta, 2001). The formula for Wilson’s score interval

is
1

1 + 1/n ∗ z2 ∗

[
p̂ + 1/(2 ∗ n) ∗ z2 ± z ∗

√
1/n ∗ p̂ ∗ (1 − p̂) + 1/(4 ∗ n2) ∗ z2

]
. (4.1)

where z = 1.96 here, p̂ = 0.05 for nominal Type I error rate, and n denotes the number of

converging replications.

If the number of converging replications was 100 then the 95% CI bounds would be [0.022,0.112].

So if a method had a Type I error rate above 0.112 then this was �agged as in�ated Type I error

and if the Type I error was below 0.022 too low of Type I error. When contrasting power among
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the two methods within a given condition a paired t-test was used with a Bonferroni correction

for nine planned comparisons to control the family wise error rate. If a given test was signi�cant

at the 0.005/9 = 0.0056 α level the methods were deemed to have signi�cantly di�erent power.

The following subsections discuss the results of the convergence criteria, Type I error controls,

and parameter recovery that informed the analyses that follow.

4.1.1 Convergence

Convergence diagnostics were assessed for both the Bayesian MIMIC model and the improved

Wald as described in the method section. For the Bayesian MIMIC model convergence was quite

good overall with only 2 replications out of the 1800 condition reps (0.111%) not converging.

These replications were both from the 2 group, latent SD of focal groups (LSD) of 1, and equal

(500:500) sample size condition. All other conditions for the Bayesian MIMIC model had 100%

convergence. The improved Wald had a total of 7 out of the 1800 condition reps (0.389%) not

converge. All of the non-converging replications occurred in the condition corresponding to an

LSD of 0.50, and sample size of 1300:100:100 for the 3 group condition.

For the convergence issues of the improved Wald I explored the category frequencies of the

non-converging data sets. In almost all cases there were situations were there may have only

been 2 successes or 3 successes on certain items out of 100. Moreover, I hypothesize that the root

cause of this problem was the fact that a maximum likelihood routine with a highly parameterized

model was �t under less than ideal conditions which was why there were convergence problems

in this condition. In essence this illustrates the breaking point of using the 2PL model with highly

unbalanced data under less than ideal circumstances. For the purposes of analyzing the results,

only those conditions for which 100% convergence was obtained for both methods were used in

the analyses of the outcomes. For example in the LSD of 0.50, sample size of 1300:100:100, and 3

group condition only the 93 converged reps in both methods were used in the analyses.
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4.1.2 Issues with Multiple Testing and Parameter Recovery

Upon reviewing the results for the various Type I error guards described in the method section

only results of the critical value of p = 0.05 are presented across all conditions. In conditions

where the Bayesian MIMIC model should not see excessive Type I error rates (i.e. with the LSDs

�xed at 1) there were no inherent problems. In looking at the other values for the 2 and 3 group

cases lowering the p-value below 0.05 provided more Type I error control but at a loss in power

and too low of Type I error rates. Thus, only results with α = 0.05 were reported.

When calculating bias some values were extreme and these outliers for both discrimination

and di�culty parameters were recoded. This practice of recoding is similar to that used by Woods

(2009b). Item discrimination parameters that were greater than 4 were recoded to 4 and also

item di�culty parameters that were less than -4 and/or greater than 4 were recoded to -4 and

4 respectively. When the results were analyzed without these controls the results of parameter

recovery had more bias than what was reported. All item parameter recovery results in this study

are presented with the aforementioned recoding of the discrimination and di�culty parameters

that were �agged as outliers.

4.2 Results of 2 Group Conditions

4.2.1 Overall Type I Error and Power

Figure 4.1 shows the Type I error rates for the nine 2 group conditions using an α = 0.05 threshold

and the improved Wald with SEM SEs. The three labels on the left side of the �gure represent the

sample sizes (i.e. equal [500:500], moderately unequal [750:250], and highly unequal [900:100])

and the columns on the x-axis represent the three LSD conditions (i.e. lower = 0.5, equal = 1,

and higher = 1.5). Note that in the top middle of Figure 4.1 (i.e. LSD of 1 and equal sample

size condition) there were only 98 converging reps and the 95% CI was [0.021, 0.113], whereas

all other conditions had 100 converging replications with a 95% CI of [.022, 0.112]. In general

for both methods as the sample size imbalance increased the Type I error decreased. Looking at
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Figure 4.1 both the Bayesian MIMIC model and improved Wald had well controlled Type I errors

across all conditions.

Power for the improved Wald with supplemental EM SEs and Bayesian MIMIC model using an

α = 0.05 are presented in Figure 4.2. In general as the sample size imbalance increased the power

tended to decrease for both methods. Given the results from Figure 4.1 power can be interpreted

unambiguously across all conditions for both methods. Looking at Figure 4.2 the power for the

Bayesian MIMIC model was lower than the improved Wald in the equal sample size (500:500) and

LSD of 0.5 and 1 conditions. In all other conditions the power results were not di�erent between

the two methods.

4.2.2 Confusion Matrices

The confusion matrices for the improved Wald using SEM SEs and the Bayesian MIMIC model

are presented in Tables 4.1 and 4.2 respectively. Confusion matrices provide a way to see how

well each DIF classi�er performs in terms of accuracy and mis-classi�cations. For the purposes

of this dissertation these confusion matrices will be used in a descriptive nature based on the

converging replications within this simulation study to gain insight into the mis-classi�cation of

DIF. For both methods the confusion matrices are set up in a grid pattern that maps directly onto

the Type I error (Figure 4.1) and power (Figure 4.2) plots. For each individual subtable the left

hand �ap gives the condition information, (True) refers to the true type of DIF (i.e. U = uniform

DIF, NU = non-uniform DIF, M = mixed DIF, and N = no DIF) and (Predicted) refers to the DIF

that was predicted by the respective method (i.e. improved Wald or Bayesian MIMIC model). The

diagonal elements are highlighted in bold as these represent the accuracy for a given DIF type.

The sum of the diagonal elements give the method’s overall classi�cation accuracy. Note that all

elements in each confusion matrix sum to 1.

For the (U,U), (NU,NU), and (M,M) diagonal elements a perfect accuracy would be re�ected

by each diagonal cell being 0.125. For (N,N) perfect accuracy would be re�ected as the diagonal

element being 0.625. Any discrepancy between these values indicates that the method did not
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Figure 4.1: Overall Type I Error for 2 Group Conditions
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example, 500:500 corresponds to a reference group sample size of 500 and a focal group 1
sample size of 500. The horizontal black dashed line represents p = 0.05. The shading of the bars
is for Wald = improved Wald and MIMIC = Bayesian MIMIC model. The numbers on each bar
give the speci�c Type I error rate for that condition and method.
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Figure 4.2: Overall Power for 2 Group Conditions
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give the speci�c power rate for that condition and method.
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correctly predict the true DIF classi�cation in some or all instances. When interpreting the results

of the confusion matrices I will refer to a given element in the grid by it’s row and column position.

For example, confusion matrix (1,1) will be denoted as element (1,1) and corresponds to the upper

left cell with sample size (SS) of 500:500 and LSD of 0.5. Element (3, 2) would be the third row

and second column corresponding to SS of 900:100 and LSD of 1.

In what follows the confusion matrices for the reference group versus focal group 1 are pre-

sented for the improved Wald and Bayesian MIMIC model. For each table the minimum and

maximum accuracy are reported, the table with the maximum accuracy is interpreted, and the

overall trends in the table are summarized. Note that the term DIF misclassi�cation refers to

items that are DIF items (i.e. U, NU, or M) and looks at the highest classi�cation rate that was not

N (i.e. no DIF).

4.2.2.1 Improved Wald Confusion Matrices

For the improved Wald in Table 4.1, the highest accuracy was 0.750 corresponding to element (1,

3) [SS: 500:500 and LSD: 1.5] and the lowest accuracy was 0.617 corresponding to element (3, 1)

[SS: 900:100 and LSD: 0.5]. For element (1, 3) (i.e. matrix with maximum accuracy) the accuracy

for uniform DIF (U,U) was 0.092 and when U was misclassi�ed the most common misclassi�cation

was N (i.e. no DIF). For element (1, 3) the accuracy for non-uniform DIF (NU,NU) was 0.036 and

the most common misclassi�cation was N. For element (1, 3) the accuracy for mixed DIF (M,M)

was 0.042 with the most common misclassi�cation being U (i.e. uniform DIF). Lastly, for no DIF

(N,N) the accuracy was 0.579 with the most common misclassi�cation being NU (i.e. non-uniform

DIF).

For all confusion matrices in Table 4.1 the most common misclassi�cation for U and NU was

N (i.e. no DIF). For M (i.e. mixed DIF) the most common misclassi�cation was U in the equal

(500:500) and moderately unequal (750:250) sample sizes [i.e elements (1,1)-(1,3) and (2,1)-(2,3)].

However, the most common misclassi�cation for M when the sample sizes were highly unequal

(900:100) [i.e. elements (3,1)-(3,3)] was N. For N the most common misclassi�cation rate was NU.
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In the moderately unequal (750:250) with LSD of 1.5 condition [i.e. element (2, 3)] the highest

misclassi�cation rate for N was U. When an item was a DIF item (i.e. U, NU, or M) the most com-

mon DIF misclassi�cation for U was M. However, in elements (2, 3) and (3, 1) the most common

DIF misclassi�cation for U was NU. The most common DIF misclassi�cation for both NU and M

was U.

4.2.2.2 Bayesian MIMIC Model Confusion Matrices

For the Bayesian MIMIC model in Table 4.2, the highest accuracy was 0.708 corresponding to

element (2, 2) [SS: 750:250 and LSD: 1] and the lowest accuracy was 0.668 corresponding to ele-

ment (3, 2) [SS: 900:100 and LSD: 1]. For element (2, 2) (i.e. matrix with maximum accuracy) the

accuracy for uniform DIF (U,U) was 0.100 and when U was misclassi�ed the most common mis-

classi�cation was N. For element (2, 2) the accuracy for non-uniform DIF (NU,NU) was 0.000 and

the most common misclassi�cation was N. For element (1, 2) the accuracy for mixed DIF (M,M)

was 0.000 with the most common misclassi�cation being U. Lastly, for no DIF (N,N) the accuracy

was 0.608 with the most common misclassi�cation being U.

For all confusion matrices in Table 4.2 the most common misclassi�cation for both U and NU

was N. For M the most common misclassi�cation was U except in element (3, 1) where it was N.

For N the most common misclassi�cation was U in all conditions. When an item was a DIF item

(i.e. U, NU, or M) for U the most common DIF misclassi�cation was M. However, in �ve of the

nine conditions neither NU or M were picked [i.e. elements (1, 2), (2, 2), (2, 3), (3,1), (3, 2), (3, 3)].

For both NU and M the most common DIF misclassi�cation was U.

4.2.3 Parameter Recovery

4.2.3.1 Discrimination Parameters

Figure 4.3 shows the bias in the discrimination parameter estimates by condition. Looking down

the middle column corresponding to a LSD of 1 we see that the Bayesian MIMIC model had

good parameter recovery for both the reference and focal groups across all sample size condi-
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tions. This was to be expected as the assumption of homogeneity of latent SDs was met for the

Bayesian MIMIC model. Additionally, the improved Wald also had good parameter recovery of

the discrimination parameters across the LSD of 1 conditions.

Looking at the far right column corresponding to a LSD of 1.5 the Bayesian MIMIC model pa-

rameters were consistently overestimating the discrimination parameters and the improved Wald

discrimination parameters were generally well recovered. The Bayesian MIMIC model discrimi-

nation parameters were more biased than the improved Wald parameters in the equal (500:500)

and moderately unequal (750:250) sample size conditions. In the highly unequal sample size

condition (900:100) the two methods were about equally biased, however, the Bayesian MIMIC

model overestimated the discrimination parameters and the improved Wald underestimated the

true parameters.

For the LSD of 0.5 conditions the improved Wald had good parameter recovery in the equal

(500:500) and moderately unequal (750:250) sample size conditions. In the highly unequal (900:100)

sample size condition the reference group parameters were well recovered and the focal group pa-

rameters were slightly underestimated. When the sample sizes were equal (500:500) the Bayesian

MIMIC model underestimated the discrimination parameters. In the moderately unequal (750:250)

sample size condition this underestimation gap lessened in comparison to the equal sample size

condition. When the sample sizes were highly unequal (900:100) the Bayesian MIMIC model

had reasonable parameter recovery of the discrimination parameters for both reference and focal

group 1.

4.2.3.2 Di�culty Parameters

Figure 4.4 shows the bias in the di�culty parameter estimates by condition. Looking down the

middle column corresponding to a LSD of 1 we see that the Bayesian MIMIC model had good

parameter recovery in all three sample sizes. The improved Wald also had adequate parameter

recovery across all three sample size conditions. In the LSD of 0.5 conditions the Bayesian MIMC

model overestimated the reference and focal group parameters. This e�ect was most severe in the
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Figure 4.3: Discrimination Parameter Bias for 2 Group Conditions
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equal sample size (500:500) condition with the overestimation becoming less severe as the sample

sizes became more unbalanced. For the improved Wald method parameter recovery was adequate

in all sample size conditions. For the LSD of 1.5 conditions the improved Wald method had

good parameter recovery of the di�culty parameters in all three sample size conditions. For the

Bayesian MIMIC model the di�culty parameters were underestimated in the equal sample size

condition and this overestimation e�ect essentially disappeared in the moderately unbalanced

(750:250) and highly unbalanced (900:100) sample size conditions. Note that the degree of bias

for the di�culty parameters was less striking than those of the discrimination parameters in

Figure 4.3.

4.2.3.3 Latent Means

Figure 4.5 illustrates the bias in the latent means for focal group 1 by method. The plot shows

that overall the improved Wald test does a good job of recovering the true mean di�erence on

the latent variable in all conditions. The Bayesian MIMIC model underestimated the latent mean

of focal group 1 when the LSD was 0.5. This underestimation e�ect slightly lessened as the sam-

ple size imbalance increased. When the assumption of homogeneity of LSDs held the Bayesian

MIMIC model had good parameter recovery of the latent mean of focal group 1 across all sample

size conditions. When the LSD was 1.5 the Bayesian MIMIC model slightly overestimated the dif-

�culty parameters. This overestimation slightly lessened as the sample size imbalance increased.

4.3 Results of 3 Group Conditions

In general the pattern of results from the 2 group case and 3 group case were similar. As in the

two group case a 95% CI was used to �ag items for excessive Type I error rates. For conditions

having 100 converging reps the 95% CI was [0.022,0.112]. Note that in the LSD of 0.5 and highly

unequal sample size condition the improved Wald with SEM SEs had 93 converging replications,

thus the 95% CI for this condition was [0.021, 0.115].
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Figure 4.4: Di�culty Parameter Bias for 2 Group Conditions
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Figure 4.5: Latent Mean Parameter Bias for 2 Group Conditions
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4.3.1 Overall Type I Error: Reference vs. Focal Groups 1 and 2

Figure 4.6 shows the Type I error rates for the nine 3 group conditions for reference group versus

focal group 1 with the supplemental EM SEs. The three labels on the left represent the sample sizes

(i.e. equal [500:500:500], moderately unequal [1000:250:250], and highly unequal [1300:100:100])

and the columns on the x-axis represent the three focal group latent SD conditions (i.e. lower =

0.5, equal = 1, and higher = 1.5). From Figure 4.6 both methods had well controlled Type I errors

across all conditions for reference versus focal group 1. Additionally, these same conclusions can

be seen for reference versus focal group 2 in Figure 4.7.

4.3.2 Overall Power: Reference vs. Focal Groups 1 and 2

Figures 4.8 and 4.9 illustrate the power for the 3 group conditions of reference versus focal group

1 and reference versus focal group 2 with SEM SEs and an α = 0.05, respectively. As with the two

group case power was lower as the sample size imbalance increased. Power can be interpreted

in all conditions for both methods. Looking at Figure 4.8 (i.e. reference vs. focal group 1) the

Bayesian MIMIC model and the improved Wald did not show any di�erences in power across all

conditions. Further, Figure 4.9 (i.e. reference versus focal group 2) also showed that power was

not di�erent for both methods.

4.3.3 Confusion Matrices

The confusion matrices for the improved Wald and the Bayesian MIMIC model are presented in

Tables 4.3, A.1, 4.4, and A.2. The layout and interpretation of the confusion matrices is the same

as described previously for the 2 group case. For the purposes of this dissertation these confusion

matrices will be used in a descriptive nature based on the converging replications within this

simulation study to gain insight into the mis-classi�cation of DIF.

In what follows the confusion matrices for the reference group versus focal group 1 are pre-

sented. The results for reference and focal group 2 generally yielded the same general pattern as
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Figure 4.6: Overall Type I Error for 3 Group Conditions: Reference vs. Focal Group 1
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Figure 4.7: Overall Type I Error for 3 Group Conditions: Reference vs. Focal Group 2
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Figure 4.8: Overall Power for 3 Group Conditions: Reference vs. Focal Group 1
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Figure 4.9: Overall Power for 3 Group Conditions: Reference vs. Focal Group 2
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reference versus focal group 1 and are not presented here. The confusion matrices for reference

versus focal group 2 are available in the appendix. For each table the minimum and maximum

accuracy are reported, the table with the maximum accuracy is interpreted, and the overall trends

in the table are summarized. Note that the term DIF misclassi�cation refers to items that are DIF

items (i.e. U, NU, or M) and looks at the highest misclassi�cation rate that was not N (i.e. no DIF).

Note that the results of using α = 0.01 for both methods and using the cross-product SEs for the

Wald method yielded the same di�erences as described in the section for confusion matrices in

the 2 group case.

4.3.3.1 Improved Wald Confusion Matrices: Reference vs. Focal Group 1

The confusion matrices for the reference group versus focal group 1 are presented in Table 4.3.

The maximum accuracy in Table 4.3 was 0.756 occuring in element (1, 3) [SS: 500:500:500 and LV:

1.5] and the minimum accuracy was 0.621 occurring in element (3, 1) [SS: 1300:100:100 and LV:

0.5]. Looking at element (1, 3) [SS: 500:500:500 and LV: 1.5] the accuracy of predicting uniform

DIF (U,U) was 0.094 with the majority of mis-classi�cations being N (i.e. no DIF). For non-uniform

DIF (NU, NU) the accuracy was 0.029 with the majority of mis-classi�cations being N. For mixed

DIF (M, M) the accuracy was 0.034 with the majority of mis-classi�cations being U (i.e. uniform

DIF). Lastly, the accuracy of no DIF (N, N) was 0.599 with the majority of mis-classi�cations being

NU (i.e. non-uniform DIF).

For all confusion matrices in Table 4.3 the majority of mis-classi�cations for both U and NU

were N. For M (i.e. mixed DIF) the majority of mis-classi�cations were U for all conditions except

elements (3, 1) [SS: 1300:100:100 and LV: 1.5] and (3, 2) [SS: 1300:100:100 and LV: 1] where the

majority was N. The majority of mis-classi�cations for N was NU except in element (2, 3) [SS:

1000:250:250] where it was U. When an item was a DIF item the most common DIF misclassi�-

cation for uniform DIF (U) was mixed DIF (M) except in elements (3, 1) and (3, 2) where it was

non-uniform DIF (NU). For non-uniform DIF (NU) and mixed DIF (M) the most common DIF

misclassi�cation was as uniform DIF (U).
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4.3.3.2 Bayesian MIMIC Model Confusion Matrices: Reference vs. Focal Group 1

The confusion matrices for the reference group versus focal group 1 are presented in Table 4.4.

The maximum accuracy in Table 4.4 was 0.709 occuring in element (1, 2) [SS: 500:500:500 and LV:

1] and the minimum accuracy was 0.665 occurring in element (3, 2) [SS: 1300:100:100 and LSD:

1]. Looking at element (1, 2) [SS: 500:500:500 and LSD: 1] the accuracy of predicting uniform DIF

(U,U) was 0.106 with the majority of mis-classi�cations being N. For non-uniform DIF (NU, NU)

the accuracy was 0.001 with the majority of mis-classi�cations being N. For mixed DIF (M, M)

the accuracy was 0.006 with the majority of mis-classi�cations being U. Lastly, the accuracy of

no DIF (N, N) was 0.596 with the majority of mis-classi�cations being U.

For all confusion matrices in Table 4.4 the majority of mis-classi�cations for both U and NU

were N. For M and N the majority of mis-classi�cations were U for all conditions. When an item

was a DIF item the most common misclassi�cation for uniform DIF (U) was as mixed DIF (M)

although this only occured in element (1,1) and in all other elements neither M or NU were a

majority. For non-uniform DIF (NU) and mixed DIF (M) the most common misclassi�cation was

uniform DIF (U).

4.3.4 Parameter Recovery

4.3.4.1 Discrimination Parameters: Reference vs. Focal Groups 1 and 2

Figures 4.10 (i.e. reference versus focal group 1) and 4.11 (i.e. reference versus focal group 2) show

the bias in the discrimination parameter estimates by condition for reference versus focal group 1

and reference versus focal group 2 respectively. The pattern of results in Figure 4.10 (i.e. reference

versus focal group 1) was nearly identical to Figure 4.11 (i.e. reference versus focal group 2) and

only Figure 4.10 will be interpreted. Looking down the middle column corresponding to a LV of

1 we see that the Bayesian MIMIC model had good parameter recovery for both the reference

and focal group 1. This was to be expected as the assumption of homogeneity of latent SDs was

met for the Bayesian MIMIC model. Additionally, the improved Wald also had good parameter
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recovery in the equal and moderately unequal sample sizes. In the highly unequal sample sizes the

improved Wald reference group parameters were well recovered and the focal group 1 parameters

were slightly underestimated.

Looking at the far right column corresponding to a LV of 1.5 the Bayesian MIMIC model pa-

rameters were consistently overestimating the discrimination parameters. The Bayesian MIMIC

model discrimination parameters were more biased than the improved Wald parameters in the

equal (500:500:500) and moderately unequal (100:250:250) sample size conditions. In the highly

unequal sample size condition (1300:100:100) the two methods were about equally biased, how-

ever, the Bayesian MIMIC model overestimated the discrimination parameters and the improved

Wald underestimated the true parameters. The improved Wald had good parameter recovery

in the equal and moderately unequal sample size conditions. In the highly unequal sample size

condition the improved Wald had good parameter recovery of the reference group and slightly

underestimated the focal group discrimination parameters.

For the LV of 0.5 conditions the improved Wald had good parameter recovery for the refer-

ence group across all sample size conditions. The improved Wald had good parameter recovery

for the focal group in the equal sample size condition and slightly underestimated the discrimi-

nation parameters in the moderately unequal and highly unequal sample size conditions. For the

Bayesian MIMIC model the discrimination parameters were severely underestimated in the equal

sample size condition. The underestimation of the discrimination parameters attenuated as the

sample size imbalance increased.

4.3.4.2 Di�culty Parameters: Reference vs. Focal Groups 1 and 2

Figures 4.12 (i.e. reference versus focal group 1) and 4.13 (i.e. reference versus focal group 2)

show the bias in the di�culty parameter estimates by condition. The pattern of results in Figure

4.12 (i.e. reference versus focal group 1) was nearly identical to Figure 4.13 and only Figure 4.12

will be interpreted. Looking down the middle column corresponding to a LV of 1 we see that the

Bayesian MIMIC model had good parameter recovery for the reference group in all three sample
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Figure 4.10: Discrimination Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 1
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group. Wald = improved Wald and MIMIC = Bayesian MIMIC model.
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Figure 4.11: Discrimination Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 2
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group. Wald = improved Wald and MIMIC = Bayesian MIMIC model.
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size conditions. The improved Wald also had good parameter recovery across all three sample

size conditions when the LSD was 1.

In the focal group latent variance of 0.5 conditions the Bayesian MIMC model overestimated

the reference and focal group parameters. This e�ect was most severe in the equal sample size

(500:500:500) condition with the underestimation becoming less severe as the sample sizes become

more unbalanced. For the improved Wald method the reference and focal group parameters were

well recovered across all sample size conditions.

For the LV of 1.5 conditions the improved Wald method had good parameter recovery across

all sample size conditions. The Bayesian MIMIC model slightly underestimated the di�culty

parameters in the equal sample size condition and this underestimation decreased as the sample

size imbalance increased. When the sample size was highly unequal the Bayesian MIMIC model

di�culty parameters were well estimated.

4.3.4.3 Latent Means: Focal Groups 1 and 2

Figure 4.14 presents the results of the latent mean bias for focal group 1 and 2 by method. The

Bayesian MIMIC model focal group 1 is represented by a dark circle and focal group 2 by a dark

triangle. For the improved Wald focal group 1 is represented by an open circle and focal group

2 by an open triangle. The improved Wald had good parameter recovery of the latent means for

both focal groups in all conditions.

Within the LSD of 1 condition the Bayesian MIMIC model had good parameter recovery of

the latent means for both focal groups. When the LSD was 0.5 the Bayesian MIMIC model under-

estimated the latent means when the sample sizes were equal and this e�ect slightly lessened as

the sample size imbalanced increased. When the LSD was 1.5 the Bayesian MIMIC model tended

to overestimate the latent means although this overestimation was not as strong as the underes-

timation when the LSD was 0.5. The overestimation e�ect also slightly decreased as the sample

size imbalance increased.
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Figure 4.12: Di�culty Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 1
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sample size of 500, and a focal group 2 sample size of 500. Foc1 = focal group 1, Ref = reference
group. Wald = improved Wald and MIMIC = Bayesian MIMIC model.
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Figure 4.13: Di�culty Parameter Bias for 3 Group Conditions: Reference vs. Focal Group 2
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Figure 4.14: Latent Mean Parameter Bias for 3 Group Conditions
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Chapter 5

Applied Example of the Bayesian MIMIC

Model

5.1 Overview

An illustration of using the Bayesian MIMIC model to test for both uniform and/or non-uniform

DIF is presented on a real data set. The data were collected on the Schedule for Nonadaptive and

Adaptive Personality (SNAP; Clark, 1996). These data have been analyzed with a uniform MIMIC

DIF model by Woods et al. (2009). All Stan and R code for these analyses are presented in the

appendix.

The sample in the entire data set consisted of 2026 Air Force personnel (1265 men, 761 women)

completing basic training at Lackland Air Force Base in San Antonio, Texas. The racial compo-

sition was Caucasian (1305), African-American (348), Hispanic (75), Asian (68), Native American

(17), and 213 classi�ed as "other". More speci�c details about the sample can be obtained from Olt-

manns and Turkheimer (2006). For the purposes of this applied example only three of the seven

groups presented by Woods et al. (2009) were used. The groups were Caucasian (1305), African

American (348), and other (213) for a total of 1866 participants (1165 mean and 701 women).

The SNAP is a self-report questionnaire that was originally developed to assess personal-
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ity disorders in terms of trait dimensions (Clark, 1996). The SNAP consists of 375 True/False

questions on three temperament scales (i.e. Negative, Positive, and Disinhibition) and 12 trait

scales (i.e. Aggression, Exhibitionism, Manipulativeness, Mistrust, Self-harm, Eccentric Percep-

tions, Entitlement, Dependency, Impulsivity, Detachment, Workaholism, and Propriety). In the

present application only the Negative temperament scale was used. The negative temperament

scale consists of 28 binary items. The negative temperament scale was chosen because it was the

scale from which the generating parameters of the simulation were taken.

5.2 Data Analysis

The following procedures were used in the assessment of DIF using the Bayesian MIMIC model.

First, referent items (i.e. anchor items) were empirically selected in order to determine items to

link the scales across the groups. All remaining items not selected as anchor items were tested

for DIF. Second, each item tested for DIF was evaluated for both uniform and/or non-uniform

DIF using the same methodology described in the simulation study but using an α level for the

HPD intervals of 0.05. Third, a �nal model was �t which allowed group di�erences in all items

showing DIF for both the African-American and other groups. All parameter estimates from the

�nal model and latent mean di�erences were reported. A conservative burn-in of 1000 iterations

per chain was used with 2000 post burn-in draws used to sample from the posterior. The 1000

burn-in number was selected to be consistent with the simulation study as pilot runs indicated a

burn-in of 100-200 draws would su�ce. All convergence and thinning criteria were the same as

those described in the simulation study.
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In the present applied example the following prior distributions were proposed to be used:

θjh ∼ N (µh,1) j = 1, . . . , J & h = 1, . . . ,G

µh ∼ N (0,10) Note µ1 = 0 & h = 1, . . . ,G

αi ∼ LN (0,1) i = 1, . . . ,20

bi ∼ N (0,10) i = 1, . . . ,20

ωih ∼ N (0,4) i = 1, . . . ,22 & h = 1, . . . ,G

βih ∼ N (0,4) i = 1, . . . ,22 & h = 1, . . . ,G . (5.1)

G denotes the number of groups (three here), J the number of persons, LN denotes a log-normal

distribution, and h indexes the group number. Note that both ωih and βih are only for 22 items

as the six anchor items are held equal for identi�cation purposes. Additionally, µ1 = 0 and

σ 2
θ jh
= 1 in order to identify the model. These prior distributions have been used previously in

other research and practical applications (e.g. Curtis, 2010; J. Fox, 2010; Patz & Junker, 1999a;

Patz & Junker, 1999b) and were selected to be mildly non-informative. If the use of these prior

distributions failed to get approximate convergence according to the r-hat criteria then the priors

would be adjusted as necessary.

5.2.1 Empirical Selection of Anchor Items

To empirically select anchor items the procedure described in Woods (2009a) was used. The

procedure was conducted using �exMIRT™ to expedite the computations and use an established

anchor selection technique that has been used in practical applications (e.g. Harpole et al., 2014).

This anchor selection strategy consists of four steps. First, test an item for DIF using a likelihood-

ratio test with all-others as anchors. Second, compute the likelihood-ratio statistics for the given

item. Repeat steps one and two for all items. Third, rank the items based on the likelihood-ratio

magnitudes in ascending order. Fourth, designate n (i.e. the number of items) items with the n

smallest likelihood-ratios.
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5.2.2 Testing for DIF and Fitting the Final Model

The �nal model was �t using the results from the uniform and non-uniform DIF tests of the

Bayesian MIMIC models. If an item had uniform and/or non-uniform DIF for a given group then

either the di�culty and/or discrimination parameter(s) were allowed to be freely estimated for

that group. If there was no evidence of uniform and/or non-uniform DIF then the parameters for

that item were set equal across the three groups. Details of the implementation in R and Stan can

be seen in the appendix. For both the non-uniform and uniform DIF e�ect the posterior mean

and SE of the posterior mean of each e�ect was reported. Additionally, the 95% HPD intervals

were also reported for the DIF e�ects. The posterior mean of the di�culty, discrimination, and

latent mean parameters of the �nal model and there standard errors were also reported.

5.3 Results

5.3.1 Anchor Selection and Convergence Criteria

For all models the r-hat values were less than 1.02 indicating approximate convergence to the

posterior distribution. Thus, the prior distributions in Equation 5.1 were used in all analyses.

Items 3, 9, 10, 13, 21, and 22 were selected as anchor items. Six items were chosen based on the

recommendation of Woods (2009a) that approximately 10-20% of the test items be used as anchor

items. These items corresponded to SNAP items 245, 264, 269, 277, 311, and 312. Results of the

DIF tests for Caucasian versus African-American and Caucasian versus other are presented in

Tables 5.1 and 5.2, respectively. In each table any item that was �agged as having either uniform

and/or non-uniform DIF is in bold text. Further, the speci�c posterior mean DIF e�ect, the SE of

the posterior mean DIF e�ect, and the 95% HPD intervals are in bold for each type of DIF. The

posterior mean uniform DIF e�ect is denoted as β̄ and the posterior mean non-uniform DIF e�ect

as ω̄. Results of the �nal model are presented in Table 5.3.
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5.3.2 DIF Tests and Final Model

Table 5.1 shows the results of DIF tests for Caucasian versus African-American. There were eight

items �agged for DIF (items 1, 2, 5, 6, 11, 19, 23, and 26). Item 5 was �agged for both uniform and

non-uniform DIF (i.e. mixed DIF) and items 1, 2, 6, 11, 19, 23, and 26 were �agged for uniform

DIF only. Item 5 was less discriminating for African-Americans as compared to Caucasians (ω̄ =

−0.528, SE = 0.006) and item 5 required a higher amount of negative temperament for African

Americans to select true compared with Caucasians (β̄ = 0.348, SE = 0.004). Uniform DIF was

present in items 1 (β̄ = −0.391, SE = 0.003), 6 (β̄ = −1.074, SE = 0.003), 11 (β̄ = −0.546, SE =

0.003), 23 (β̄ = −0.534, SE = 0.002), and 26 (β̄ = −0.623, SE = 0.003) indicating that a lower

amount of negative temperament for African Americans was needed to select true compared

with Caucasians. Uniform DIF was also present in items 2 (β̄ = 0.325, SE = 0.002) and 19

(β̄ = 0.936, SE = 0.004) showing that a higher amount of negative temperament was required

for African Americans to select true compared with Caucasians.

Table 5.2 shows the results of DIF tests for Caucasian versus other. There were seven items

�agged for DIF (items 7, 16, 19, 20, 23, 26, and 28). Items 7, 16, and 26 were �agged as mixed

DIF items (i.e. both uniform and non-uniform DIF). Item 7 was less discriminating for others

(δ̄α = −0.753, SE = 0.006) than for Caucasians and also required more negative temperament for

others (β̄ = 0.483, SE = 0.006) to respond true compared with Caucasians. Item 16 was more

discriminating for others (ω̄ = 0.802, SE = 0.009) compared with Caucasians and also required

less negative temperament (β̄ = −0.435, SE = 0.005) for others to respond true compared with

Caucasians. Item 26 was also more discriminating for others (ω̄ = 0.770, SE = 0.009) than for

Caucasians and also required less negative temperament for others (β̄ = −0.451, SE = 0.003) to

respond true compared with Caucasians. Items 20 and 28 both showed only non-uniform DIF.

Both items 20 (ω̄ = −0.564, SE = 0.003) and 28 (ω̄ = −0.734, SE = 0.009) were less discriminating

for others compared with Caucasians. Items 19 and 23 both only showed uniform DIF. Item 19

required more negative temperament for others (β̄ = 0.552, SE = 0.006) to respond true compared

with Caucasians. Item 23 required less negative temperament for others (β̄ = −0.690, SE = 0.003)
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to respond true compared with Caucasians.

Results of the �nal model are presented in Table 5.3. Items that are in bold are those that were

deemed non-invariant for either the discrimination, di�culty, or both for a given group. If an

item parameter is not bold then this indicates the item parameter was invariant. For example,

in Table 5.3 item 26 is bold for both the discrimination and di�culty parameter of Caucasians.

This indicates that either African Americans, other, or both have non-invariant parameters. For

item 26 the di�culty parameters for both African American and other participants were non-

invariant. Further, the discrimination parameter for other was also non-invariant, whereas the

discrimination parameter for African Americans was invariant. The true mean di�erence on

negative temperament for African Americans was −0.09 (SE = 0.01) and for other was −0.03

(SE = 0.01). This indicates that both African American and other participants have slightly less

negative temperament than Caucasian participants albeit not by much.
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Table 5.1: Bayesian MIMIC Model DIF Caucasian versus African American

Non-Uniform DIF Uniform DIF
item ω̄ SEω̄ 95% LL 95% UL β̄ SEβ̄ 95% LL 95% UL

1 (SNAP 241) 0.180 0.007 -0.486 0.795 -0.391 0.003 -0.741 -0.002
2 (SNAP 244) 0.388 0.006 -0.115 0.945 0.325 0.002 0.028 0.633
4 (SNAP 248) 0.055 0.007 -0.574 0.725 0.301 0.004 -0.062 0.643
5 (SNAP 250) -0.528 0.006 -1.016 -0.028 0.348 0.004 0.028 0.720
6 (SNAP 252) -0.167 0.007 -0.796 0.447 -1.074 0.003 -1.481 -0.655
7 (SNAP 259) 0.084 0.008 -0.658 0.738 0.096 0.004 -0.254 0.449
8 (SNAP 260) 0.289 0.010 -0.556 1.081 -0.412 0.004 -0.840 0.035
11 (SNAP 273) -0.098 0.006 -0.668 0.477 -0.546 0.003 -0.925 -0.211
12 (SNAP 274) 0.052 0.007 -0.485 0.656 -0.112 0.003 -0.517 0.253
14 (SNAP 281) -0.116 0.005 -0.529 0.337 0.185 0.003 -0.146 0.497
15 (SNAP 288) 0.091 0.004 -0.312 0.549 0.214 0.002 -0.093 0.510
16 (SNAP 290) -0.055 0.004 -0.487 0.394 -0.193 0.003 -0.504 0.116
17 (SNAP 294) -0.247 0.006 -0.768 0.345 -0.222 0.003 -0.600 0.154
18 (SNAP 298) -0.147 0.003 -0.503 0.205 0.065 0.002 -0.213 0.347
19 (SNAP 301) -0.175 0.007 -0.778 0.373 0.936 0.004 0.576 1.304
20 (SNAP 309) 0.139 0.004 -0.248 0.572 -0.055 0.003 -0.337 0.236
23 (SNAP 316) 0.088 0.005 -0.370 0.530 -0.534 0.002 -0.825 -0.217
24 (SNAP 320) 0.329 0.008 -0.341 0.984 0.247 0.004 -0.112 0.585
25 (SNAP 323) -0.195 0.004 -0.583 0.172 -0.033 0.003 -0.348 0.304
26 (SNAP 325) -0.301 0.003 -0.739 0.093 -0.623 0.003 -0.945 -0.302
27 (SNAP 331) -0.216 0.002 -0.490 0.084 0.002 0.002 -0.259 0.249
28 (SNAP 333) -0.415 0.008 -1.052 0.308 -0.294 0.003 -0.686 0.106

Note. SNAP = Schedule of Nonadaptive and Adaptive Personality, ω̄ = posterior mean DIF param-
eter for α , β̄ = posterior mean DIF parameter for b, 95% LL is the lower limit of the 95% highest
posterior density interval, 95% UL is the upper limit of the 95% highest posterior density interval.
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Table 5.2: Bayesian MIMIC Model DIF Caucasian versus Other

Non-Uniform DIF Uniform DIF
item ω̄ SEω̄ 95% LL 95% UL β̄ SEβ̄ 95% LL 95% UL

1 (SNAP 241) 0.062 0.007 -0.727 0.748 -0.298 0.006 -0.711 0.148
2 (SNAP 244) -0.220 0.004 -0.699 0.324 0.131 0.005 -0.229 0.497
4 (SNAP 248) 0.402 0.011 -0.459 1.270 0.043 0.006 -0.381 0.478
5 (SNAP 250) -0.323 0.007 -0.937 0.376 0.237 0.005 -0.188 0.638
6 (SNAP 252) -0.443 0.008 -1.146 0.336 -0.398 0.005 -0.951 -0.166
7 (SNAP 259) -0.753 0.006 -1.349 -0.196 0.483 0.006 0.028 0.915
8 (SNAP 260) -0.306 0.009 -1.093 0.436 -0.457 0.004 -0.961 0.057
11 (SNAP 273) -0.410 0.007 -1.014 0.204 -0.086 0.004 -0.535 0.367
12 (SNAP 274) 0.401 0.010 -0.435 1.273 0.439 0.004 -0.107 0.961
14 (SNAP 281) 0.226 0.007 -0.386 0.874 0.036 0.003 -0.330 0.450
15 (SNAP 288) 0.461 0.007 -0.143 1.091 -0.144 0.003 -0.528 0.227
16 (SNAP 290) 0.802 0.009 0.002 1.640 -0.435 0.005 -0.823 -0.030
17 (SNAP 294) 0.628 0.010 -0.272 1.548 -0.186 0.004 -0.647 0.273
18 (SNAP 298) 0.347 0.004 -0.147 0.866 0.131 0.003 -0.202 0.478
19 (SNAP 301) -0.176 0.006 -0.826 0.523 0.552 0.006 0.128 0.980
20 (SNAP 309) -0.564 0.003 -0.984 -0.153 0.005 0.003 -0.346 0.360
23 (SNAP 316) 0.327 0.007 -0.288 0.976 -0.690 0.003 -1.045 -0.298
24 (SNAP 320) -0.323 0.006 -0.952 0.279 0.085 0.006 -0.366 0.492
25 (SNAP 323) 0.095 0.005 -0.419 0.619 0.252 0.003 -0.101 0.635
26 (SNAP 325) 0.770 0.009 0.031 1.615 -0.451 0.003 -0.821 -0.073
27 (SNAP 331) -0.133 0.003 -0.527 0.268 0.258 0.003 -0.065 0.578
28 (SNAP 333) -0.734 0.009 -1.529 -0.006 0.443 0.006 -0.102 0.992

Note. SNAP = Schedule of Nonadaptive and Adaptive Personality, ω̄ = posterior mean DIF param-
eter for α , β̄ = posterior mean DIF parameter for b, 95% LL is the lower limit of the 95% highest
posterior density interval, 95% UL is the upper limit of the 95% highest posterior density interval.

108



Table 5.3: Bayesian MIMIC Model Final Model

Caucasians African Americans Other
ᾱ SEᾱ b̄ SEb̄ ᾱ SEᾱ b̄ SEb̄ ᾱ SEᾱ b̄ SEb̄

1 1.87 0.03 0.95 0.02 1.87 0.03 0.61 0.02 1.87 0.03 0.95 0.02
2 1.49 0.01 0.10 0.00 1.49 0.01 0.38 0.01 1.49 0.01 0.10 0.00
3 1.62 0.02 0.71 0.01 1.62 0.02 0.71 0.01 1.62 0.02 0.71 0.01
4 2.08 0.02 0.47 0.00 2.08 0.02 0.47 0.00 2.08 0.02 0.47 0.00
5 2.01 0.01 -0.18 0.00 1.55 0.02 0.13 0.01 2.01 0.01 -0.18 0.00
6 1.51 0.07 2.43 0.41 1.51 0.07 1.45 0.43 1.51 0.07 2.43 0.41
7 2.10 0.02 0.64 0.01 2.10 0.02 0.64 0.01 1.34 0.02 0.77 0.02
8 1.88 0.07 1.74 0.25 1.88 0.07 1.74 0.25 1.88 0.07 1.74 0.25
9 1.52 0.01 0.04 0.00 1.52 0.01 0.04 0.00 1.52 0.01 0.04 0.00
10 2.34 0.03 1.33 0.04 2.34 0.03 1.33 0.04 2.34 0.03 1.33 0.04
11 1.73 0.02 1.09 0.02 1.73 0.02 0.55 0.01 1.73 0.02 1.09 0.02
12 1.29 0.07 2.20 0.51 1.29 0.07 2.20 0.51 1.29 0.07 2.20 0.51
13 1.57 0.02 1.12 0.02 1.57 0.02 1.12 0.02 1.57 0.02 1.12 0.02
14 1.45 0.01 -0.65 0.01 1.45 0.01 -0.65 0.01 1.45 0.01 -0.65 0.01
15 1.30 0.01 -0.55 0.01 1.30 0.01 -0.55 0.01 1.30 0.01 -0.55 0.01
16 1.54 0.01 0.13 0.01 1.54 0.01 0.13 0.01 2.23 0.03 -0.31 0.02
17 1.80 0.02 1.14 0.01 1.80 0.02 1.14 0.01 1.80 0.02 1.14 0.01
18 0.98 0.01 0.47 0.01 0.98 0.01 0.47 0.01 0.98 0.01 0.47 0.01
19 1.92 0.03 0.35 0.01 1.92 0.03 1.28 0.01 1.92 0.03 0.90 0.01
20 1.26 0.01 -0.17 0.01 1.26 0.01 -0.17 0.01 0.69 0.02 -0.17 0.01
21 1.35 0.02 1.20 0.03 1.35 0.02 1.20 0.03 1.35 0.02 1.20 0.03
22 0.93 0.01 2.04 0.03 0.93 0.01 2.04 0.03 0.93 0.01 2.04 0.03
23 1.47 0.01 0.45 0.01 1.47 0.01 -0.10 0.01 1.47 0.01 -0.27 0.02
24 1.88 0.02 0.57 0.01 1.88 0.02 0.57 0.01 1.88 0.02 0.57 0.01
25 1.11 0.03 -1.35 0.19 1.11 0.03 -1.35 0.19 1.11 0.03 -1.35 0.19
26 1.50 0.02 0.07 0.01 1.50 0.02 -0.58 0.01 2.21 0.04 -0.48 0.02
27 0.55 0.02 1.31 0.14 0.55 0.02 1.31 0.14 0.55 0.02 1.31 0.14
28 2.17 0.04 1.08 0.04 2.17 0.04 1.08 0.04 1.48 0.03 1.08 0.04

Note. ᾱ = posterior mean discrimination parameter for α , b̄ = posterior mean di�culty parameter
for b. Items in bold are those that had non-invariant discrimination, di�culty, or both parameters
from the reference group. If an item is not bold this indicates the item was invariant across the
respective groups.
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Chapter 6

Discussion

6.1 Overview

The purpose of this research was to propose a new implementation of the MIMIC model for

testing uniform and non-uniform DIF, conduct a Monte Carlo simulation to address the three

limitations within the present body of MIMIC DIF research, and provide an applied example on

a real data set. With regards to the Monte Carlo study the present research sought to extend the

�ndings of non-uniform MIMIC DIF research from the 2 group case to the 3 group case, assessing

the robustness of the non-uniform MIMIC DIF model to violations of homogeneity of latent SDs,

and properly estimating the latent interaction term by utilizing Bayesian estimation. Additionally,

the proposed Bayesian MIMIC model was compared to the improved Wald χ 2 throughout all

conditions within the Monte Carlo simulation. In what follows I will summarize the main �ndings

from the 2 group simulations, 3 group simulations, applied example, and discuss limitations and

directions for future research.
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6.2 2 Group Simulation

6.2.1 Overall Power and Overall Type I Error

Within the two group conditions the Bayesian MIMIC model did not experience problematic Type

I error rates using an α = 0.05 criterion. Overall the Bayesian MIMIC model had less problematic

Type I error rates in comparison to those found in Carroll (2014) within similar conditions. There

are a couple of explanations for this. First, the Bayesian MIMIC model estimates uniform and

non-uniform DIF whereas the model from Carroll (2014) only estimated uniform DIF. Second,

the use of Bayesian estimation and mildly informative priors on the di�culty and informative

priors on the discrimination DIF parameters may have attenuated the DIF e�ects. Given that the

priors were more informative than typically used in DIF studies the DIF e�ect from the likelihood

would need to be more pronounced to be �agged as DIF than if the priors were less informative.

The present �ndings were a vast improvement over using LMS in Woods and Grimm (2011) and

shows that when more appropriately estimating the latent interaction Type I error problems

vanished.1

Power for both the Bayesian MIMIC model and the improved Wald with SEM SEs can be inter-

preted unambiguously across all conditions. Overall the improved Wald edged out the Bayesian

MIMIC model in terms of power given the higher power in two of the nine conditions and equiv-

alent power in the remaining seven conditions. These �ndings were somewhat di�erent than

those in Woods and Grimm (2011) within similar conditions. The likely reason for this phe-

nomenon was probably that in Woods and Grimm (2011) the non-uniform DIF MIMIC model had

severely in�ated Type I error rates and interpretation of power would be misleading, whereas in

the present study power was interpretable in all conditions.
1Note that Woods and Grimm (2011) did not blithely �t LMS for testing non-uniform DIF in the MIMIC model.

They did so because that is what the Mplus manual recommended at the time of their publication and they posited
that this would result in Type I error in�ation as is what occurred.
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6.2.1.1 Conclusion of Bayesian MIMIC vs. Improved Wald Confusion Matrices

The general conclusions of the confusion matrices for the improved Wald with SEM SEs and the

Bayesian MIMIC model are presented below. As mentioned in the results section the confusion

matrices are presented to provide a more granular description of the overall power and Type I

error results. In this light the interpretations that follow are based on the current simulation

study and are descriptive and not meant to be generalized beyond this study. In what follows

the summary for the confusion matrices using α = 0.05 with the Bayesian MIMIC model and the

SEM SE estimation for the improved Wald are discussed.

Overall there were both similarities and di�erences between the improved Wald and Bayesian

MIMIC model confusion matrices for the 2 group conditions. Both the improved Wald and the

Bayesian MIMIC model misclassi�ed uniform DIF (U) and non-uniform DIF (NU) as N (no DIF) in

the majority of cases and mixed DIF (M) as uniform DIF (U) in the majority of cases. For no DIF (N)

the Bayesian MIMIC model misclassi�ed the majority of cases as uniform DIF (U), whereas, the

improved Wald misclassi�ed the majority of cases as non-uniform DIF (NU). Thus, the majority

misclassi�cation rates were almost the same. Additionally, the majority DIF misclassi�cation

rates were also similar in that when an item was a uniform DIF item (U) the majority of DIF

mis-classi�cations were as mixed DIF (M) and when an item was either a non-uniform DIF item

(NU) or a mixed DIF item (M) the majority of DIF mis-classi�cations were uniform DIF (U).

Both methods struggled to correctly classify mixed DIF (M), with the improved Wald having

a higher accuracy than the Bayesian MIMIC model. However, in most conditions these misclas-

si�ed items were misclassi�ed as either uniform (U) or non-uniform (NU) DIF. Thus, while the

correct type of DIF was not identi�ed the items were still �agged as being DIF items. Further,

both methods also struggled to identify non-uniform (NU) DIF as well. The Bayesian MIMIC

model had more trouble with non-uniform (NU) DIF compared with the improved Wald. When

misclassifying non-uniform DIF the majority of mis-classi�cations for both methods were no DIF

(N), which partially explains why overall power was low in Figure 4.2.

In all conditions the improved Wald always had higher accuracy for mixed (M) and non-
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uniform (NU) DIF compared to the Bayesian MIMIC model. This �nding was probably due to

the informative priors that were placed on the ω parameters for non-uniform DIF. In a majority

of cases the Bayesian MIMIC model had higher accuracy for N compared with the improved

Wald. The discrepancy here was an artifact of the larger Type I errors for the improved Wald in a

majority of conditions (see Figure 4.1). The Bayesian MIMIC model always had higher accuracy

to detect uniform DIF compared with the improved Wald method. This can be partially explained

by the slightly less information priors placed on the β parameters compared with the informative

priors placed on the ω.

6.2.2 Parameter Recovery

In general the improved Wald method had good parameter recovery for the discrimination, dif-

�culty, and latent mean parameters across all conditions. When the assumption of homogeneity

of latent SDs held (LSD = 1) the Bayesian MIMIC model also had good parameter recovery for the

discrimination, di�culty, and latent mean parameters across all sample size conditions. When

the assumption of homogeneity of latent SDs was violated things were not always as favorable

for the Bayesian MIMIC model.

When the latent SD was lower than predicted by the model (LSD = 0.5) the discrimination

parameters were underestimated. The most severe underestimation occurred in the equal sample

size condition and the underestimation attenuated as the sample size imbalance increased. The

reason for the underestimation is probably due to less variance in the latent variable than being

predicted by the model. Having less variance would directly impact the discrimination parame-

ters as they are also known as scale parameters. Given less variance than predicted this would

cause an underestimation of the discrimination parameters. For the LSD of 1.5 conditions the dis-

crimination parameters were overestimated compared with the true values. This overestimation

e�ect attenuated as the sample size imbalance increased. This overestimation e�ect was likely

due to the fact that there was more latent variance than predicted by the model and this excess

variance drove the values of the discrimination parameters higher than they should have been.
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When the LSD was 0.5 the latent mean parameters were also underestimated. This underesti-

mation was most severe when the sample sizes were equal and the e�ect attenuated as the sample

size imbalance increased. As with the discrimination parameters when there was less variability

than predicted by the MIMIC model this tended to cause an underestimation of the latent mean

parameters of the MIMIC model. For the LSD of 1.5 conditions the latent means were overesti-

mated compared with the true values. This overestimation e�ect slightly lessened as the sample

size imbalance increased. This was likely caused by more variance than predicted by the model

driving up the latent mean parameters.

When the LSD was 0.5 the di�culty parameters were overestimated. The overestimation

lessened as the sample size imbalance increased. This overestimation was probably caused by

the fact that the latent variance was less than predicted by the model the latent means were

underestimated (see above) causing the di�culty parameters to be overestimated. This e�ect

�ipped for the LSD of 1.5 conditions. Here the latent means were overestimated which caused

the di�culty parameters to be underestimated. This underestimation lessened as the sample size

imbalance increased.

One key observation across all conditions when the assumption of homogeneity of LSDs did

not hold for the Bayesian MIMIC model was that the bias attenuated as the sample size imbalance

increased. This result seems counterintuitive at �rst glance but makes perfect sense upon looking

at the mildly informative and informative priors in Equation 3.7. The reason for the attenuation

with the discrimination and di�culty parameters has to do with more reliance on the priors when

there is not much information from the likelihood for focal group 1. In a Bayesian analysis when

there is a lack of information present in the likelihood and the priors are mildly informative or

informative this will cause the parameters to borrow more information from the priors to estimate

the parameters. Likewise as the imbalance increased this caused more people to be present in the

reference group which would provide more information in the likelihood and less reliance on the

prior distributions. Further, given that the reference group was used to scale the analysis and

latent variables were always simulated from a N (0,1), there was little bias in the reference group
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parameters across all conditions.

6.2.3 General Conclusions 2 Group Simulation

Overall when the assumption of homogeneity of latent SD held (LSD = 1) the Bayesian MIMIC

model had competitive Type I error control, power, and parameter recovery compared with the

improved Wald with SEM SEs. However, the improved Wald would be slightly favored in these

conditions given the excellent parameter recovery, Type I error control, and higher power of the

improved Wald in the LSD of 1 and equal sample size condition and equal power in all other

conditions. When the assumption of latent homogeneity of variance did not hold the Bayesian

MIMIC model was competitive with the improved Wald in terms of Type I error control and

power, albeit the improved Wald had a slight edge with higher power in the LSD of 1.5 and

equal sample size condition. However, the Bayesian MIMIC model performed rather poorly in

many conditions involving parameter recovery. Thus, the Bayesian MIMIC model would not be

a recommended method to use in terms of DIF testing.

6.3 3 Group Simulation

The results of the 3 group simulation conditions were consistent with the 2 group conditions in

terms of parameter recovery and Type I error control. In essence as with the 2 group conditions

the Bayesian MIMIC model would not be recommended for general DIF testing given the poor

performance in terms of parameter recovery compared with a method such as the improved Wald.

The one di�erence between the 2 group and 3 group conditions was in terms of power. In the

3 group conditions power was equivalent for both methods in both the reference versus focal

group 1 and reference versus focal group 2 conditions. Whereas in the 2 group conditions the

improved Wald had higher power than the Bayesian MIMIC model in two of the nine conditions.
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6.4 General Conclusions from the Simulation Study

Overall, several conclusions can be reached regarding the Bayesian MIMIC model and improved

Wald method. First, when the assumption of homogeneity of LSD was met (i.e. LSD = 1) the

Bayesian MIMIC model performed competitively with the improved Wald in the 3 group con-

ditions and slightly below the improved Wald the 2 group conditions. Additionally, when the

assumption of LSDs did not hold in terms of DIF classi�cation (i.e. Type I error and power) the

Bayesian MIMIC model performed on par with the improved Wald in the 3 group conditions and

slightly below the improved Wald in the 2 group conditions. However, when the assumption did

not hold parameter recovery was poor in many conditions for the Bayesian MIMIC model. Thus,

overall the Bayesian MIMIC model would not be recommended for use in general DIF testing.

Further, given the �ndings in the present study along with those from Carroll (2014), I would not

recommend practitioners use Bayesian MIMIC models or MIMIC models for DIF testing. My rea-

sons are that if the assumption holds then things go well. However, it is not possible to test this

assumption with a MIMIC model and some practical applications of DIF testing show that these

assumptions may not hold (e.g. Harpole et al., 2014; Langer, 2008). In order to test the assumption

a multiple group model would need to be �t at which point why not just use the multiple group

model and reap the bene�ts of excellent DIF classi�cation and parameter recovery?

6.5 Applied Example

The illustration of the applied example showed how practitioners might implement the Bayesian

MIMIC model on their own data sets. There are a couple of important points to note about the

practical implementation and the simulation study. First, in the simulation study mildly informa-

tive and informative priors were placed on the DIF e�ects in order to improve the convergence

across the 1800 condition reps. Initially, more di�use priors were used in the simulation study

but convergence was unacceptable and the source of the issue was sign switching due to more

di�use priors. In the applied example more di�use priors were used in comparison to the sim-
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ulation study because convergence was not an issue. That is one luxury that an application has

over a simulation study because a single data set may not have convergence issues and if it does

you only need to tweak the model to �t this single data set and not 1799 more.

Another thing to note was anchor selection. In the applied example I empirically selected

anchors using the method proposed by Woods (2009a) in order to expedite the anchor selection

procedure. It is entirely possible to do anchor selection in a fully Bayesian way however, that is

beyond the scope of the present study and would add additional unnecessary complexity to the

Bayesian MIMIC model. That being said one could implement a procedure of posterior anchoring

for the Bayesian MIMIC model as discussed in Frederickx et al. (2010), Soares et al. (2009), and

Goncalves et al. (2013). More research is needed for anchor selection using the Bayesian MIMIC

model.

A �nal note on a practical application of this method is computational speed. In the applied

example I used similar burn-in, thinning, and post-burn-in draws to summarize the posterior

of each parameter. I probably could have used less draws than I did but doing more will never

hurt you and can only help. The speed for the applied example took approximately 5.5 hours to

run the unconditional test of the discrimination parameters and conditional test of the di�culty

parameters on a single processor using the ACF cluster at the University of Kansas. Then the �nal

model took a little over two hours running a single processor on the ACF cluster at the University

of Kansas. Clearly, the computational time is high for these models and future research could look

at shoring up this gap.

6.6 Limitations and Future Directions

6.6.1 Limitations

The �ndings of the present study should be viewed in light of several limitations. First, and most

important is that generalization of the �ndings to conditions outside of the scope of the simulated

conditions should be done with caution. Care was taken to provide as much practical application
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when choosing conditions, however, it is impossible to take into account every possible combi-

nation that could occur.

Second, the results of the Bayesian MIMIC model should be viewed in light of having mildly

informative and informative prior distributions on the DIF e�ects. This was a bi-product of

sign switching problems and other convergence related issues when more di�use priors were

used. Ideally it would be better to use more di�use priors in certain circumstances. However,

this was not possible due to some replications within conditions experiencing problematic non-

convergence rates. Speci�cally, when conducting pilot studies to assess convergence, in general

the most problematic conditions were with priors similar to those in the applied example and

with equal sample sizes amongst the groups. This was likely due to more information from the

focal group being available that would challenge the violation of assumption from the model.

As the sample size imbalance increased there was less information in the likelihood and more

information was borrowed from the priors. In these conditions convergence issues were much

less of a problem.

A third limitation was the computational requirements and level of sophistication required to

�t this type of model. Currently, the models take almost 6 to 8 hours to run a full analysis for DIF

and a �nal model as discussed in the applied example section, this is probably too long for most

practitioners to want to reasonably wait. However, one purpose of this study was to assess how

well the MIMIC model would perform under adverse conditions to determine if implementing

a faster method would be a fruitful future direction. Another computational concern was the

amount of programming required to �t these models is quite high for many practitioners as can

be seen by the code in the appendix for the applied example. Shoring up these two issues would

be necessary in order to see more wide spread use of the Bayesian MIMIC model under conditions

were it would be appropriate to use.

A fourth limitation was the number of replications used in the simulation. 100 replications

were chosen given the hypothesis that this number would be adequate to detect Type I error

problems that might arise with the Bayesian MIMIC model. However, the Bayesian MIMIC model
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did not experience in�ated Type I errors according to the criteria that was used to �ag in�ation.

Yet, in the LSD of 0.5 and equal sample size condition for reference versus focal group 1 in the 3

group condition there was a pattern that suggested Type I error in�ation might be present albeit

there was not su�cient statistical evidence in the present study to make this claim. Further, a

more striking unanticipated pattern was the Type I error rates that the improved Wald with SEM

SEs showed. Although it was not possible to conclude that there was Type I error in�ation in

the present study it appears that there may be something going on with this method. In order to

fully explore these pattens for both methods a larger number of replications would be needed.

6.6.2 Future Directions

Given the peculiar patterns of Type I errors mentioned in the limitation section involving the

improved Wald it would be interesting to run a simulation with di�erent SE estimators for the

pairwise tests. Currently, in �exMIRT™ there are several options for SE estimation: the cross-

product approximation, the supplemental EM algorithm, the expected Fisher information matrix,

the sandwich covariance matrix, the forward di�erence method, and the Richardson extrapola-

tion method (Houts & Cai, 2013). In a follow-up study it would be interesting to compare the

performance of these di�erent SE estimators on the pairwise DIF tests under a range of circum-

stances to determine the optimal method.

Another avenue for future research would be continuously varying the variances of the latent

variables in order to get a more realistic sense of when things start to break down. This was not

currently implemented in the present study because it would be prudent to have 1000 replications

per condition to get adequate estimates of the variances, but attempting something like this in

the future would be useful. Another area for further development for the Bayesian MIMIC model

but also other Bayesian IRT models for DIF testing would be to develop fully Bayesian anchor

techniques. One possible idea would be to implement a fully Bayesian version of the two-stage

Wald anchor strategy proposed by Langer (2008) combined with the ranked based strategy in

Woods (2009a) similar to what M. Wang and Woods (2015) proposed.
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A �nal recommendation for future research would be to explore the possibility of implement-

ing a variational Bayesian implementation for MIMIC models in order to expedite computation.

Recently, Rijmen and Jeon (2013) implemented a variational Bayesian type method to test for

measurement invariance of item parameters across countries. They concluded that in their cir-

cumstance the variational method o�ered a computationally tractable alternative to maximum

likelihood or MCMC methods.
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Appendix B

R Code for Applied Example

Code Listing B.1: Stan Syntax to Fit Non-uniform DIF

stan3GrpFit1 <- "
data{
int<lower=0>NumGrp;
int<lower=1>N;
int<lower=1>nItems;
int<lower=1>nAnchors;
int<lower=0>Grp[N];
int<lower=0, upper=1>G1[N];
int<lower=0, upper=1>G2[N];
int<lower=0, upper=1>y[N,nItems];
}
parameters{
real theta[N];
real<lower=0>alpha[nItems];
real b[nItems];
real mu_theta[(NumGrp - 1)]; //Means for focal groups
//Items tested for DIF
real beta1[(nItems - nAnchors)];
real beta2[(nItems - nAnchors)];
real omega1[(nItems - nAnchors)];
real omega2[(nItems - nAnchors)];
}
transformed parameters{
//Creates latent means
vector[NumGrp] mu_main;
//Creates the DIF parameters and anchor items;
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vector[nItems] beta1_main;
vector[nItems] beta2_main;
vector[nItems] omega1_main;
vector[nItems] omega2_main;
for(i in 1:NumGrp){
if(i == 1){
//Set latent mean to zero for reference group
mu_main[i] <- 0;
} else {
//Estimate latent means for focal groups
mu_main[i] <- mu_theta[(i-1)];
}
}

for(i in 1:nItems){
if(nItems - i >= nAnchors){
//Uniform DIF
beta1_main[i] <- beta1[i];
beta2_main[i] <- beta2[i];
//Non-uniform DIF
omega1_main[i] <- omega1[i];
omega2_main[i] <- omega2[i];
//Else deals with anchor items
} else {
beta1_main[i] <- 0;
beta2_main[i] <- 0;
omega1_main[i] <- 0;
omega2_main[i] <- 0;

}
}
}
model{
//Sample item parameters
b ~ normal(0, 10); //2
alpha ~ lognormal(0, 1);
//Sample DIF parameters
beta1 ~ normal(0, 4); //2.25
beta2 ~ normal(0, 4); //2.25
omega1 ~ normal(0, 4); //.2
omega2 ~ normal(0, 4); //.2
mu_theta ~ normal(0, 10); //2
//Sample latent traits
for(i in 1:N){
theta[i] ~ normal(mu_main[Grp[i] + 1], 1);
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}
//Model
for(i in 1:N){
for(j in 1:nItems){
y[i, j] ~ bernoulli_logit(alpha[j]*theta[i] + omega1_main[j]*theta[i]*G1[i]

+
omega2_main[j]*theta[i]*G2[i] + alpha[j]*b[j] + beta1_main[j]*G1[i]
+ beta2_main[j]*G2[i]);
}
}
}
"

Code Listing B.2: Stan Syntax to Fit Uniform DIF

stan3GrpFit2 <- "
data{
int<lower=0>NumGrp;
int<lower=1>N;
int<lower=1>nItems;
int<lower=1>nAnchors;
int<lower=0>Grp[N];
int<lower=0, upper=1>G1[N];
int<lower=0, upper=1>G2[N];
int<lower=0, upper=1>y[N,nItems];
}
parameters{
real theta[N];
real<lower=0>alpha[nItems];
real b[nItems];
real mu_theta[(NumGrp - 1)]; //Means for focal groups
//Items tested for DIF
real beta1[(nItems - nAnchors)];
real beta2[(nItems - nAnchors)];
}
transformed parameters{
//Creates latent means
vector[NumGrp] mu_main;
//Creates the DIF parameters and anchor items;
vector[nItems] beta1_main;
vector[nItems] beta2_main;
for(i in 1:NumGrp){
if(i == 1){
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//Set latent mean to zero for reference group
mu_main[i] <- 0;
} else {
//Estimate latent means for focal groups
mu_main[i] <- mu_theta[(i-1)];
}
}

for(i in 1:nItems){
if(nItems - i >= nAnchors){
//Uniform DIF
beta1_main[i] <- beta1[i];
beta2_main[i] <- beta2[i];
//Else deals with anchor items
} else {
beta1_main[i] <- 0;
beta2_main[i] <- 0;

}
}
}
model{
//Sample item parameters
b ~ normal(0, 10); // 10
alpha ~ lognormal(0, 1);
//Sample DIF parameters
beta1 ~ normal(0, 4); // 2.25
beta2 ~ normal(0, 4); //2.25
mu_theta ~ normal(0, 10); // 10
//Sample latent traits
for(i in 1:N){
theta[i] ~ normal(mu_main[Grp[i] + 1], 1);
}
//Model
for(i in 1:N){
for(j in 1:nItems){
y[i, j] ~ bernoulli_logit(alpha[j]*theta[i] + alpha[j]*b[j] +
beta1_main[j]*G1[i] + beta2_main[j]*G2[i]);
}
}
}
"
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Code Listing B.3: Code to Prepare the Data Set for Analyses

## This stuff creates the stan data set necessary to run analyses.
stan_data <- subset(data1, RACE == 1 | RACE == 2 | RACE == 6)

stan_data$G1 <- ifelse(stan_data$RACE == 2, 1, 0)
stan_data$G2 <- ifelse(stan_data$RACE == 6, 1, 0)
stan_data$Grp <- ifelse(stan_data$RACE == 1, 0, ifelse(stan_data$RACE == 2,

1, 2))

stan_data <- stan_data[, -grep("^GENDER$|^RACE$", colnames(stan_data))]

# stan_data <- select(stan_data, starts_with(’it’), G1, G2, Grp)

itemI <- grep("^it\\d{1,}$", colnames(stan_data))

## Order anchor items at the end
anchors <- c(’it3’, ’it9’, ’it10’, ’it13’, ’it21’, ’it22’)

not_anchors <- setdiff(paste0(’it’, 1:length(itemI)), anchors)

## Now order anchor items at the end
stan_data <- stan_data[, c(not_anchors, anchors, ’G1’, ’G2’, ’Grp’)]

## Create stan input
stanInput <- list(y = stan_data[, itemI],

NumGrp = 3, G1 = stan_data$G1, G2 = stan_data$G2, N = nrow(
stan_data),

Grp = stan_data$Grp, nItems = length(itemI),
nAnchors = 6)

Code Listing B.4: Code to Run Stan for DIF Tests

library(rstan)
## Fit models and save the fitted object as RDS
## fit 1 is unconditional test of discriminations
fit1 <- stan(model_code = stan3GrpFit1, model_name = paste0("fit", 1, ’_3

grp’),
data = stanInput, iter = 3000, chains = 2, warmup = 1000,
verbose = FALSE, seed = 123456L)

saveRDS(fit1, file = ’3grp_fit1.rds’)
rm(fit1)
## fit 2 is conditional test of difficulties
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fit2 <- stan(model_code = stan3GrpFit2, model_name = paste0(’fit’, 2, ’_3
grp’),

data = stanInput, iter = 3000, chains = 2, warmup = 1000,
verbose = FALSE, seed = 123456L)

saveRDS(fit2, file = ’3grp_fit2.rds’)
rm(fit2)

Code Listing B.5: Fitting the Final Model

stan3GrpFinalModel <- "
data{

int<lower=0>NumGrp;
int<lower=1>N;
int<lower=1>nItems;
int<lower=0>Grp[N];
int<lower=0, upper=1>G1[N];
int<lower=0, upper=1>G2[N];
int<lower=0, upper=1>y[N,nItems];

}

parameters{
real theta[N];
real<lower=0>alpha[nItems];
real b[nItems];
real mu_theta[(NumGrp - 1)]; //Means for focal groups
//Items tested for DIF
real beta1[(nItems)];
real beta2[(nItems)];
real omega1[(nItems)];
real omega2[(nItems)];

}

transformed parameters{
//Creates latent means
vector[NumGrp] mu_main;
//Creates the DIF parameters and anchor items;
vector[nItems] beta1_main;
vector[nItems] beta2_main;
vector[nItems] omega1_main;
vector[nItems] omega2_main;
for(i in 1:NumGrp){

if(i == 1){
//Set latent mean to zero for reference group
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mu_main[i] <- 0;
} else {
//Estimate latent means for focal groups
mu_main[i] <- mu_theta[(i-1)];
}

} // End of loop over NumGrp

// This code puts the necessary constraints
// on the appropriate parameters for the final
// model.
for(i in 1:nItems){

if(i == 1|| i == 2){
// G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
// G2
beta2_main[i] <- 0;
omega2_main[i] <- 0;

} else if(i == 5){
// G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- omega1[i];
//G2
beta2_main[i] <- 0;
omega2_main[i] <- 0;

} else if(i == 6){
//G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
// G2
beta2_main[i] <- 0;
omega2_main[i] <- 0;

} else if(i == 7){
// G1
beta1_main[i] <- 0;
omega1_main[i] <- 0;
// G2
beta2_main[i] <- beta2[i];
omega2_main[i] <- omega2[i];

} else if(i == 11){
//G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
//G2
beta2_main[i] <- 0;
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omega2_main[i] <- 0;
} else if(i == 16){

//G1
beta1_main[i] <- 0;
omega1_main[i] <- 0;
//G2
beta2_main[i] <- beta2[i];
omega2_main[i] <- omega2[i];

} else if(i == 19){
// G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
// G2
beta2_main[i] <- beta2[i];
omega2_main[i] <- 0;

} else if(i == 20){
// G1
beta1_main[i] <- 0;
omega1_main[i] <- 0;
// G2
beta2_main[i] <- 0;
omega2_main[i] <- omega2[i];

} else if(i == 23){
// G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
// G2
beta2_main[i] <- beta2[i];
omega2_main[i] <- 0;

} else if(i == 26){
// G1
beta1_main[i] <- beta1[i];
omega1_main[i] <- 0;
// G2
beta2_main[i] <- beta2[i];
omega2_main[i] <- omega2[i];

} else if(i == 28){
// G1
beta1_main[i] <- 0;
omega1_main[i] <- 0;
// G2
beta2_main[i] <- 0;
omega2_main[i] <- omega2[i];

} else {
// G1
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beta1_main[i] <- 0;
omega1_main[i] <- 0;
// G2
beta2_main[i] <- 0;
omega2_main[i] <- 0;

}
}// End of loop for final model constraints

}// End of transfomed parameters

model{
//Sample item parameters
b ~ normal(0, 10); //10
alpha ~ lognormal(0, 1);
//Sample DIF parameters
beta1 ~ normal(0, 4); //4
beta2 ~ normal(0, 4); //4
omega1 ~ normal(0, 4); //4
omega2 ~ normal(0, 4); //4
mu_theta ~ normal(0, 10); //10
//Sample latent traits
for(i in 1:N){

theta[i] ~ normal(mu_main[Grp[i] + 1], 1);
} // End of loop over N

//Model
for(i in 1:N){

for(j in 1:nItems){
y[i, j] ~ bernoulli_logit(alpha[j]*theta[i] + omega1_main[j]*theta[

i]*G1[i] +
omega2_main[j]*theta[i]*G2[i] + alpha[j]*b[

j] +
beta1_main[j]*G1[i] + beta2_main[j]*G2[i]);

} // End of loop over nItems
} // End of loop over N

} // End of model block

generated quantities{
// Focal group items
vector[nItems] b_f1;
vector[nItems] alpha_f1;
vector[nItems] b_f2;
vector[nItems] alpha_f2;

// Reference Group items
vector[nItems] b_ref;

148



vector[nItems] alpha_ref;

//Loop to create the item parameters for focal grps
for(i in 1:nItems){

// Focal Group 1
b_f1[i] <- -1*b[i] - beta1_main[i];
alpha_f1[i] <- alpha[i] + omega1_main[i];
// Focal Group 2
b_f2[i] <- -1*b[i] - beta2_main[i];
alpha_f2[i] <- alpha[i] + omega2_main[i];
// Reference Group
b_ref[i] <- -1*b[i];
alpha_ref <- alpha[i];

} // End of loop over nItems
} // End of generated quantities
"

## Read in the data set and save the key
data1 <- read.csv(’appliedEx.csv’, stringsAsFactors = FALSE)

## Create key for later
item_ind <- grep(’^SNAP’, colnames(data1))

datakey <- names(data1)[item_ind]
## Define key for flexMIRT for anchor selection
flexkey <- paste0(’it’, 1:length(datakey))
## Write out masterkey to file for reference later
masterkey <- cbind(datakey, flexkey)
colnames(masterkey) <- c(’datakey’, ’flexkey’)
write.table(masterkey, file = ’masterkey.txt’, row.names = FALSE)
## Set data1 item_index as flexkey
colnames(data1)[item_ind] <- flexkey
library(rstan)

## This stuff creates the stan data set necessary to run analyses.
## Get the necessary groups from data1
stan_data <- subset(data1, RACE == 1 | RACE == 2 | RACE == 6)
## Do the recoding
stan_data$G1 <- ifelse(stan_data$RACE == 2, 1, 0)
stan_data$G2 <- ifelse(stan_data$RACE == 6, 1, 0)
stan_data$Grp <- ifelse(stan_data$RACE == 1, 0, ifelse(stan_data$RACE == 2,

1, 2))
## Remove Gender and race columns from stan_data
stan_data <- stan_data[, -grep("^GENDER$|^RACE$", colnames(stan_data))]
## Get the item index for stan_data for use in stanInput
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itemI <- grep("^it\\d{1,}$", colnames(stan_data))
## Create stanInput object
stanInput <- list(y = stan_data[, itemI],

NumGrp = 3, G1 = stan_data$G1, G2 = stan_data$G2, N = nrow(
stan_data),

Grp = stan_data$Grp, nItems = length(itemI))
## Select parameters to track
params <- c(’alpha’, ’b’, ’b_f1’, ’b_f2’, ’alpha_f1’, ’alpha_f2’,

’beta1_main’, ’beta2_main’, ’omega1_main’, ’b_ref’, ’alpha_ref’,
’omega2_main’, ’mu_theta’, ’theta’)

## Run stan
final_model <- stan(model_code = stan3GrpFinalModel, model_name = paste0("

fit", 1, ’_3grp’),
data = stanInput, iter = 100, chains = 2, warmup = 10,
verbose = FALSE, seed = 123456L, pars = params, include = TRUE)

saveRDS(final_model, file = ’3grp_finalmodel.rds’)
rm(fit1)
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