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Abstract 

The current literature on propensity score matching is missing imperative information for 

educational researchers regarding the practical implications of utilizing this method with limited 

sample sizes. The purpose of this study was to evaluate the effectiveness of propensity score 

matching when limited by sample sizes of 500,400, 300, and 200 as determined by a reduction in 

bias using both real and simulated data. Further effort was made to determine the optimal 

selection of covariates and caliper width with these limited sample sizes. Participants were 

selected without replacement and matched one-to-one using the nearest neighbor technique in the 

MatchIt package in the R software program. Contrary to the hypothesis that with reduction in 

sample size the balance improvement would drop below what is considered effective bias 

reduction, the reduction in bias was greater than 96.77% for all conditions of sample size and 

caliper width. A Monte Carlo simulation was created based on the real dataset to assess covariate 

selection with the same limitations in sample size and a set caliper width of 0.6. For all 

replications, the mean balance improvement was best for the covariate relationship magnitude 

strong_none (strong relationship to DV_no relationship to treatment) and worst for the 

relationship mod_strong (moderate relationship to DV_strong relationship to treatment). Only 

the covariate relationship strong_none was able to be deemed effective matching for all sample 

sizes. Findings suggest that propensity score matching can be effective at reducing bias with 

sample sizes as small as 200 and caliper widths as wide as 0.6. Ideal covariates are those that are 

strongly related to the outcome variable and only weakly or moderately related to treatment 

when sample sizes are limited. 

Keywords: Propensity Score Matching, Sample Size, MatchIt 
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Chapter One - Introduction 

Research in education has long been stigmatized as a pseudoscience due to the lack of 

random assignment and a true control group. A pseudoscience is defined as “a belief system, 

practice, or research that is presented as a science; however, it is not based on the scientific 

method and/or lacks scientific rigor, plausibility, or supporting evidence (Schutt, 2011).” In a 

true experiment, the random assignment of subjects to different groups guarantees that on 

average there should be no systematic differences in observed or unobserved covariates between 

those assigned to the treatment or to the control group. As a result, the treatment effect can be 

estimated by directly comparing outcomes between the treatment and the control group. Non-

randomized, observational studies occur frequently in educational research in which there is no 

control over the treatment assignment; therefore, direct comparisons of outcomes from the 

treatment groups may be misleading. More specifically, evaluation research in education is 

typically limited to non-randomized, observational design yet has the additional task of 

quantifying the impact of an intervention.  

Evaluation research started in the mid-1960s to evaluate large-scale government-issued 

programs with the purpose of improving the well-being of a specific sample of society (Barnow, 

Cain, & Goldberger, 1980). A journal named Evaluation was established in 1973 by a grant from 

the National Institute of Mental Health and the Evaluation Research Society was initiated in 

1976 (Barnow et al., 1980). Evaluations were more of a cost-benefit analysis at this time, but 

quickly they have become a political focus to quantify the successes or failures of funded 

programs. Due to this, there has been a push in education for evidence-based practice 

accompanied by an increasing demand for evidence of efficacy of educational programs and 

interventions.  
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The What Works Clearinghouse (WWC) was developed in 2002 from a Department of 

Education initiative to inform educational research decision making in order to improve practice 

and the ability to demonstrate causal evidence. The What Works Clearinghouse reviews research 

studies and disseminates summary information and reports on over 6,000 publications on the 

WWC website. The WWC reviews each study and screens them to determine whether they 

provides strong evidence (Meets Evidence Standards), weaker evidence (Meets Evidence 

Standards with Reservations), or insufficient evidence (Does Not Meet Evidence Standards). The 

evidence rating relates to the amount of confidence one should place on the ability of the study to 

demonstrate causal evidence of the effectiveness of an intervention. These evidence standards 

provide researchers, educators, and policymakers a framework for how to create effective, 

inferential research designs. Figure 1 depicts the screening process for evidence standards and is 

provided in the WWC Procedures and Standards Handbook version 2.1. 

 

Figure 1. Evidence Standards Decision Tree provided by the What Works Clearinghouse 
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The evidence standards created by the What Works Clearinghouse require the 

randomization of subjects, equivalence of comparison groups, and accounting for attrition. 

Currently, only well-designed and well-implemented randomized controlled trials (RCTs) are 

considered strong evidence (Meets Evidence Standards), while quasi-experimental designs 

(QEDs) may only be identified as Meets Standards with Reservations. In quasi-experimental 

designs, large differences on observed covariates in the two groups may exist, and those 

differences could lead to biased estimates of treatment effects. Because the groups may differ, a 

quasi-experimental design must be able to demonstrate that the intervention and comparison 

groups are equivalent on observable characteristics in order to meet evidence standards for the 

What Works Clearinghouse.   

Recently, researchers have increasingly used methods based on propensity scores in order 

to account for the differences in baseline characteristics between the treated and control subjects 

in studies with quasi-experimental design. More specifically, researchers are using propensity 

score matching which involves selecting subsets of the treatment and control groups with similar 

covariate distributions (propensity scores) in order to control the confounding effects of these 

covariates that can create bias in the estimated treatment effects. The U.S. Department of 

Education supports propensity score matching as a method of evidence-based research when 

group equivalence can be established in the analysis (Lane, To, Shelley, & Henson, 2012). 

Therefore, the use of propensity score matching in educational research has steadily increased 

over the years. Recently, however, the utility of this method with small sample size has been 

argued. The purpose of this study is to analyze the efficacy of propensity score matching with the 

typical constraint of limited sample size in educational research. 
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Chapter Two - Review of Literature 

The foundational purpose of most research is the study of cause and effect in order to 

duplicate or to prevent an event. Underwood defined the Principle of Causality in 1957 which 

states that “every natural phenomenon is assumed to have a cause, and if that causal situation 

could be exactly reinstituted, the event would be duplicated (Maxwell & Delaney, 2004, p. 7).” 

Lazarsfeld described three criteria for causality in 1959 as 1) The causal relationship must have 

temporal order, in which the cause must precede the effect, 2) The two variables should be 

empirically correlated with one another, and 3) This observed correlation cannot be explained by 

a third variable (Guo & Fraser, 2014). However, there are many different variables that can 

generate a result, and it is impossible to determine all of those variables and the relationships 

among them. The acronym INUS, created by Mackie in 1974, most accurately describes the term 

‘cause’ as an “insufficient but nonredundant part of an unnecessary but sufficient condition 

(Shadish, Cook, & Campbell, 2002, p. 4).” Thus, true effects are difficult to determine due to 

potential confounds.  

The basis for statistical exploration of causal research is called the Neyman-Rubin 

Counterfactual Framework for causality (Neyman & Iwaszkiewicz, 1935; Rubin, 1974). This 

framework has also been called Rubin’s causal model and the potential outcomes model. It states 

that an inference about the impact of a treatment on an individual also involves a speculation of 

how the individual would have performed in the absence of the treatment.  A counterfactual is 

defined as contrary to fact; it is the potential outcome that would have happened in the absence 

of the treatment or cause (Rubin, 1974; Shadish et al., 2002). Thus, a counterfactual is a missing 

value and is not observed. This framework emphasizes that there are potential outcomes for both 
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the treatment and control groups. In order to analyze these unobserved counterfactuals, research 

can be conducted by averaging the outcomes in other nontreated groups.  

Experimental research is conducted in order to most accurately predict cause and effect. 

Experimental research studies are those that “deliberately vary something so as to discover what 

happens to something else later – to discover the effects of presumed causes (Shadish et al., 

2002, p. 3).” A randomized control trial, or true experiment, has been deemed the gold standard 

in experimental research. In a true experiment, the random assignment of subjects to different 

groups guarantees that on average there should be no systematic differences in observed or 

unobserved covariates between those assigned to the treatment or the control group. Thus, the 

treatment effect can be estimated by directly comparing outcomes between the treatment and the 

control group due to random assignment. However, random assignment is not always possible, 

practical, or even ethical in the medical, behavioral, and social sciences. Non-randomized, 

observational studies occur frequently in educational research in which there is no control over 

the treatment assignment; therefore, direct comparisons of outcomes from the treatment and 

control groups may be misleading. These observational studies without random assignment are 

called quasi-experimental designs.  

Since the 1940s, many fields, such as medicine and epidemiology, sociology, economics, 

education, and political science, have developed methods of estimating causal effects from 

observational data in order to overcome the stigma of quasi-experimental design, including 

matching.  Matching has been defined broadly as “any method that aims to equate or balance the 

distribution of covariates in the treated and control groups (Stuart, 2010, p. 2).” Treated subjects 

are matched to similar nontreated subjects’ covariates with the intent of reducing the bias in 



6 
 

estimating the effect of the treatment. Covariates are defined as “a variable that is measured prior 

to the start of the treatment, such as age or gender, and hence is unaffected by the treatment 

(Joffe & Rosenbaum, 1999, p. 327).” Random assignment of subjects in experimental studies 

balances or controls for the unobserved covariate differences in groups. When random 

assignment is not possible, matching can balance the observed covariates.  

Propensity Score Analysis 

The use of propensity score analysis (PSA) was introduced by Heckman (1979) and 

Rosenbaum and Rubin (1983). Although both Heckman and Rosenbaum and Rubin discussed 

estimating treatment effects when the assignment of treatment was nonrandom, Heckman’s work 

used different terminology and focused mostly on the issue of sample selection. Therefore, 

Rosenbaum and Rubin are deemed the ones that first published this statistical technique. 

Propensity score analysis is a family of statistical techniques that utilizes propensity scores for 

causal inference when randomization is not feasible and includes matching, stratification, and 

weighting. Rosenbaum and Rubin define the propensity score as “the conditional probability of 

assignment to a particular treatment given a vector of observed covariates (Rosenbaum & Rubin, 

1984, p. 516).” 

The formula for calculating propensity scores is given below, where e(x) is the 

abbreviation for propensity score, P a probability, Z=1 a treatment indicator with values 0 for 

control and 1 for treatment, the "|" symbol stands for conditional on, and X is a set of observed 

covariates.  

                                          e(x) = P(Z=1 | X) 
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In other words, the propensity score is the likelihood that a person would have been 

treated using only their covariate scores. Therefore, those subjects that have the same propensity 

score will have a similar distribution of covariates. Like all probabilities, a propensity score 

ranges from zero to one. The propensity score (also called the coarsest score) is a balancing 

measure because the treatment will be conditionally independent of the covariates for those 

subjects that have the same propensity score. Further, propensity score matching collapses and 

summarizes all observed covariates (also called the finest scores) into one scalar, the probability 

of being treated; more simply Rubin states, “the collection of predictors is collapsed into a single 

predictor (1997, p. 759).” The basis for using propensity scores relies on three theories 

developed by Rosenbaum and Rubin (1983, 1984). These theories are 1) Propensity scores 

balance observed covariates; 2) If it suffices to adjust for covariates, then it suffices to adjust for 

their propensity score; and 3) Estimated propensity scores are better at removing biases than true 

propensity scores because estimated propensity scores also remove chance imbalances on the 

covariates.  

Assumptions 

The Ignorable Treatment Assignment Assumption 

 Many sources of error can contribute to the interpretation of the outcome in observational 

research. Rosenbaum and Rubin (1983) named the fundamental assumption of propensity score 

analysis the ignorable treatment assumption. This assumption states that “conditional on the 

covariates X, the assignment of study subjects to binary treatment conditions (i.e., treatment or 

control) is independent of the outcome of nontreatment and the outcome of treatment (Guo & 

Fraser, 2014, p. 29).” Strong ignorability implies “that no systematic, unobserved, pretreatment 
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differences exist between treated and control subjects that are related to the response under study 

(Joffe & Rosenbaum, 1999, p. 329).” The ignorability assumption has been called many different 

things in the literature, such as unconfoundedness (Rosenbaum & Rubin, 1983), selection on 

observables (Barnow et al., 1980), conditional independence (Lechner, 1999), exogeneity 

(Imbens & Wooldridge, 2008), and common support. From this limited literature review, these 

terms are used interchangeably to denote the assumption that the outcome of either treatment or 

control is not conditional on placement in either group, as long as the covariates remain constant. 

The ignorability assumption is also the same as the assumption of ordinary least squares (OLS) 

regression, also called contemporaneous independence of the error term.  

In quasi-experimental designs, this assumption is often violated due to group assignment 

being tied to outcome. To assess whether this assumption has been violated in observational 

studies, a chi-square test can be conducted when X is categorical and a t-test when X is a 

continuous variable. When the null hypothesis is rejected, stating that there are significant 

differences between the treated and non-treated groups, it may be concluded that this assumption 

has been violated and the treatment outcome is conditional on one of the covariates. Violating 

the ignorability assumption leads to biased and inefficient analyses of the treatment effect. 

Although these methods of testing the ignorability assumption are popular, Rosenbaum (2002) 

stated that this assumption is untestable due to the fact that no statistical evidence exists that 

supports the validity of these methods. Researchers can only build a convincing case that all 

important covariates have been included in the design. The most common approach then, is to 

make a diligent attempt to research likely covariates and then to include as many as possible.     
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The Stable Unit Treatment Value Assumption   

Another assumption of propensity score analysis presented by Rubin (1980) is the stable 

unit treatment value assumption (SUTVA). This assumption implies that the outcome of the 

treated will be the same regardless of what mechanism was used to assign treatment. Further, 

SUTVA assumes that the value of the outcome for the treated individual will remain stable, 

regardless of other individuals receiving different treatments (Guo & Fraser, 2014). This 

assumption imposes what Heckman (2005) calls the following “exclusive restrictions”:              

1) SUTVA rules out social interactions or general equilibrium effects, and 2) SUTVA rules out 

any effect of the assignment mechanism on potential outcomes (Guo & Fraser, 2014, p. 33). 

According to Rubin, violations of SUTVA occur when the treated outcome is dependent upon 

which version of the treatment is received or when carryover effects occur in the treated and 

control groups that will impact the outcome.  

Researchers can utilize propensity scores to balance non-equivalent groups using 

matching (Rosenbaum & Rubin, 1983), stratification (also called subclassification) (Rosenbaum 

& Rubin, 1984),  or weighting (Hirano & Imbens, 2001) on the propensity score. Each of these 

techniques is an attempt to balance covariates prior to (matching and stratification) or while 

(stratification and adjustment) estimating the treatment effect. Research has demonstrated that 

propensity score matching can result in a greater reduction in bias than stratification on the 

propensity score (Austin, Grootendorst, & Anderson, 2007; Austin & Mamdani, 2006). 

Propensity score matching is the more efficient technique and is most relevant to the field of 

education; therefore, it will be the focus of this study.  Propensity score matching involves 

selecting subsets of the treatment and control groups with similar covariate distributions 
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(propensity scores) and matching them to estimate the causal effects of the treatment. Once 

matched on propensity scores, any differences between groups are thought to be estimates of the 

treatment effect.  

Propensity score matching has been utilized more frequently in other fields, such as 

medicine, since its creation, but it has only recently gained popularity in the field of educational 

research. A search of the Web of Science was conducted to assess the frequency of published 

articles and citations from 1983 to 2014 using the words “propensity score” as the topic and 

found the total number of publications to date across all varying fields was 21,076. Of those 

publications, 5,868 were in the social sciences and were cited 84,487 times (Web of Science, 

2105). The topic “propensity score matching” found 10,499 publications across all fields, with 

2,907 from the social sciences with 40,009 citations. The figures 2 through 5 below provide a 

visual of the increasing trend in both publications and citations of propensity score analysis and 

matching in the social sciences after the initial publication by Rosenbaum and Rubin in 1980.  

 

Figure 2. Published Items Containing “Propensity Score” as the Topic by Year for Social Sciences 
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Figure 3. Citations containing “Propensity Score” by Year for Social Sciences 

 

Figure 4. Published Items Containing “Propensity Score Matching” as the Topic by Year for Social 

Sciences 
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Figure 5. Citations Containing “Propensity Score Matching” as the Topic by Year for Social Sciences 

These figures display the steady increase in publications and citations for propensity score 

analysis over time in the social sciences.  

Steps for Propensity Score Matching  

The figure provided below displays the steps specific to propensity score matching in 

propensity score analysis and will be discussed further. 

 

Figure 6. General Procedure for Propensity Score Analysis 
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Covariate Selection 

The first step, and initial challenge, when conducting propensity score matching is 

identifying and selecting the potentially-relevant covariates. In a true experiment with random 

assignment, the definition of what constitutes a covariate is clear-cut; a covariate is any variable 

that can be measured before the assignment of treatment. Determination of what variables to 

include as a covariate becomes more challenging after treatment has been assigned. Some 

examples of possible covariates are age, ethnicity, years of education, years of experience, years 

of dosage, or marital status. Many studies have shown that the covariates selected can have a 

substantial impact on the performance of the propensity score (Heckman, Ichimura, Smith, & 

Todd, 1998; Lechner, 1999; Smith & Todd, 2005).  

Several statistical techniques have been developed to decide which covariates to include 

in a propensity score analysis (Black & Smith, 2004; Heckman et al., 1998; Smith & Todd, 

2005). These techniques, the hit or miss method, statistical significance, and leave-one-out cross-

validation, are discussed briefly here. In the hit or miss method (also called trimming), only those 

variables that maximize the within-sample correct prediction rates are chosen. A covariate is 

classified as a “1” if the estimated propensity score is greater than the treated sample. If the 

covariate has an estimated propensity score that is less than the treated sample, it is a “0”. A 

similar method called minima and maxima comparison excludes all covariates whose propensity 

score is smaller than the minimum or larger than the maximum in the opposite group from the 

analysis. The statistical significance method is very common and relies on the statistical 

significance of a covariate. This method chooses a covariate that is a constant for the model (e.g. 

age) and then iteratively adds covariates assessing statistical significance. A covariate is kept if it 
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is statistically significant at the conventional or chosen level of significance. Heckman and his 

colleagues (1998) found that the prediction rates increase by a substantial amount when the hit or 

miss and statistical significance techniques are combined. The leave-one-out cross-validation 

procedure developed by Black and Smith (2004) is implemented by starting with a minimal 

model with only two covariates. Covariates are then added to the model while comparing the 

resulting mean squared errors. This method of covariate determination uses goodness-of-fit 

considerations instead of theory or evidence of the relationship of the covariate to the 

participation and/or outcome.  

Often researchers assess the potential relevance of a covariate based on the statistical 

significant difference between the treatment and control groups. However, Rubin and Thomas 

(1996) suggest including all variables thought to be related to the outcome, regardless of whether 

they are related to the treatment. Specifically, they recommend that “unless a variable can be 

excluded because there is a consensus that it is unrelated to outcome or is not a proper covariate, 

it is advisable to include it in the propensity score model even if it is not statistically significant 

(1996, p. 253).” Including these seemingly unrelated covariates removes the nonsystematic bias 

due to the chance association between the covariate and exposure (Brookhart et al., 2006). 

Rosenbaum cautions against excluding covariates due to a lack of statistical significant 

difference in the treatment and control groups for the following reasons: 1) This analysis does 

not account for the relationship between the covariate and the outcome, 2) Statistical significance 

relies heavily on sample size and is not a prerequisite for practical relevance, and 3) This 

analysis would look at covariates individually, whereas the overall analysis will consider them 

collectively. Including all possible covariates known to be related to both the treatment and the 

outcome satisfies the ignorability assumption, which assumes that the assignment of subjects to 
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either treatment or control is independent of the outcome of treatment and control or that there 

are no systematic, unobserved, pretreatment differences between the treated and the control 

groups that are conditional on the unobserved covariates (Glazerman, Levy, & Myers, 2003; Guo 

& Fraser, 2014; Joffe & Rosenbaum, 1999; Rubin & Thomas, 1996). A complete and rich set of 

covariates is needed to satisfy the ignorability assumption; however, variables that may have 

been affected by the treatment should not be included in the matching process (Frangakis & 

Rubin, 2002; Greenland, 2003; Rosenbaum & Rubin, 1984). 

Currently, there is no agreed-upon procedure or test available to provide guidance for 

researchers to know which covariates to include or exclude in a propensity score analysis. 

Ideally, knowledge of the subject matter and treatment would provide information regarding 

which covariates to select. Consulting with subject matter experts and conducting a literature 

review and pilot study to identify the relevant covariates is recommended (Luellen, Shadish, & 

Clark, 2005).  

Calculate the Propensity Score  

In observational studies the propensity score is unknown and can be estimated using any 

model that produces estimates of probability of group membership, such as logistic regression, 

the probit model, or discriminant function analysis. More recently, McCaffrey and colleagues 

employed methods based on boosted regression trees; however, this technique has not been 

widely used (McCaffrey, Ridgeway, & Morral, 2004). Logistic regression is more flexible than 

the other techniques and, unlike discriminant analysis, the predictors do not have to be normally 

distributed, linearly related to the dependent variable, or have equal variance within each group. 

Therefore, logistic regression is the prevailing approach. 
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Logistic regression allows one to predict a discrete outcome (e.g. group membership to 

the treatment condition in this case) from a set of variables that may be continuous, discrete, 

dichotomous, or a mix (Tabachnick & Fidell, 2013). The formula for using logistic regression is 

below where treatment status is regressed on covariates (Ti=0/1). In other words, the treatment 

assignment is the outcome variable predicted by the covariates. As a result, the collection of 

covariates is collapsed into a probability (propensity score) to having received the treatment.  

ln (
𝑃𝑖(𝑇𝑖 = 1)

1 − 𝑃𝑖(𝑇𝑖 = 1)
) = 𝛽̂0 + 𝛽̂1𝑋1𝑖 + … + 𝛽̂𝑛𝑋𝑛𝑖 + 𝑒𝑖 

 

𝑇𝑖 = group (0 = control, 1 = treatment) 

𝑋1𝑖, … ,  𝑋𝑛𝑖 = scores on covariates 

𝑒𝑖 = random error 

This equation creates the log of the odds, the probability of being in one group divided by the 

probability of being in the other group. Rosenbaum and Rubin (1985a) suggest using the logit of 

the predicted probability of the propensity score because the distribution approximates to normal.  

The procedure for estimating coefficients for covariates in logistic regression involves 

maximum likelihood estimation. Maximum likelihood estimation is an iterative procedure that 

tries on arbitrary values of coefficients for the set of covariates and determines the direction and 

size of the coefficient necessary to maximize the likelihood of obtaining the observed frequency 

(Tabachnick & Fidell, 2013). The coefficients for the covariates, B, are the natural logs of the 

odds ratios. The odds ratio is the change in odds of being in one of the categories of outcome 

when the value of a covariate increases by one unit. Similar to linear regression, the coefficients 

are interpreted in relation to other covariates.  
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Goodness of fit statistic, chi-square x2, is used to evaluate the covariates included in the 

model. In logistic regression, all covariates enter the equation simultaneously; thus, no 

hypothesis is made regarding order or weight of the covariates. An evaluation of the contribution 

of each covariate to the outcome should be assessed. A limitation of logistic regression is the 

interpretation of the results when covariates are correlated, as they often are. A covariate that is 

highly correlated with the outcome may show little predictive power in the presence of the other 

covariates. The chi-square statistic allows an analysis to be conducted to evaluate the impact of a 

covariate by comparing how the log-likelihood decreases or increases as covariates are added or 

deleted.  

Tests of multicollinearity, tests of influential observations, and sensitivity analyses should 

be used to assess the fit of the model to the data. A number of statistics have been created to 

assess the goodness of fit of the model (e.g. Pearson chi-square, Hosmer-Lemeshow test, and 

pseudo R2). The best logistic regression model is one that most closely estimates the propensity 

score to the participant’s true propensity score. However, a participant’s true propensity score is 

unknown; goodness of fit indices are the best indicators of successful prediction of propensity 

scores.   

Matching Analysis 

Although the matching process is conceptually straightforward, the method can be 

implemented using several different, complex procedures. Selecting which matching method to 

utilize depends on the ratio of treated to control subjects in the sample. For example, when the 

pool of control units is smaller than the treated units, several treated units might have to be 

matched with control subjects that are very different. Three issues arise when matching subjects 
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with controls: 1) Determining the distance for matched pairs, 2) Choosing an algorithm for 

matching, and 3) The structure of the matched sets. Each matching technique is a tradeoff 

between bias and variance. Which technique to choose is somewhat subjective, but is imperative 

to the results of any study using propensity score analysis.  

Determining the distance for matched pairs 

The simplest matching distance is called exact matching, which requires that the two 

groups be identical on the propensity score in order to match. However, exact one-to-one 

matching is difficult in practice; therefore, matching subjects with comparison units whose 

propensity scores are sufficiently close typically becomes the objective. This alternative to exact 

matching is called approximate matching. In approximate matching two units’ propensity score 

can be matched if their propensity scores are approximately the same based on the Mahalanobis 

Distance Measure (MDM) or caliper. 

Mahalanobis Distance Measure 

Propensity score matching has been combined with various other matching techniques to 

increase robustness and decrease bias. The most common combination is propensity score 

matching with the Mahalanobis distance measure technique (Rosenbaum & Rubin, 1985b; 

Rubin, 1980). The Mahalanobis distance measure (MDM) was created by P.C. Mahalanobis in 

1936 Mahalanobis (1936). This technique randomly orders subjects based on several background 

variables and then calculates the distance between the first treated subject and all control 

subjects. The formula for calculating the Mahalanobis distance measure is provided below where 

u and v are values of the covariates for the treated subject i and control subject j and C is the 
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sample covariance matrix of the matching variables for the full set of control subjects (Guo & 

Fraser, 2014). 

𝑑(𝑖, 𝑗) = (𝑢 − 𝑣)𝑇𝐶−1(𝑢 − 𝑣) 

The control subject, j, with the smallest distance is matched to the treated subject, i, and then 

both subjects are removed from the pool. This process is repeated until matches are complete for 

all treated subjects. One of the drawbacks of this technique is that as the number of covariates 

increases, so does the distance between the treated and control subjects, making close matches 

difficult (d’Agostino, 1998). When using the Mahalanobis metric matching with propensity 

scores, the propensity score is an additional covariate.  

Matching within calipers 

A caliper is a preset tolerance for the distance between the propensity scores of the 

treated and control subjects to enable the matching (Rosenbaum & Rubin, 1984). Using calipers 

overcomes the subjectivity of erroneously choosing a control participant to match to a treated 

participant. The formula used to determine a match based on calipers is below, where 𝜀 is the 

previously specified caliper.  

‖𝑃𝑖 − 𝑃𝑗‖ < 𝜀 

All control subjects within a caliper of the treated subject’s estimated propensity score (or 

estimated logit of the propensity score) are selected, and the closest control subject and the 

treated subject are then matched and removed from the pool. The process is then repeated. All 

remaining control subjects are available for the next matching with a treated subject. The size of 

the caliper is determined a priori by the investigator, because it is difficult to know what 
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tolerance level is reasonable. Cochran and Rubin (1973) and Rosenbaum and Rubin (1985b) 

suggest that caliper size of a quarter of a standard deviation of the logit of the propensity score be 

used to reduce 90% of the bias in propensity scores.  

Choosing an algorithm for matching 

This step involves matching treated to control subjects based on their propensity scores. 

Matching approaches are used when the goal is to reduce as many possible differences between 

groups as possible; consequently, not all subjects are retained. Matching is often referred to as 

resampling due to the loss of subjects without a good match. Different matching techniques exist 

to try to retain as many subjects as possible.  

Nearest available matching  

Nearest available matching, also called nearest neighbor or greedy matching, is the most 

common matching algorithm and consists of placing the treated subjects in random order and 

then selecting the nearest control subject with the closest propensity score (Rubin, 1976). Both 

subjects are then removed from consideration for matching and the next treated subject is 

selected, repeating this process for all unmatched treatment subjects until all are matched. If 

more than one control subject is needed for each treated subject, then once every treated subject 

has one control the first treated subject is assigned to the nearest of the remaining available 

controls. Nearest available matching is the most prevalent matching technique, but it does not 

minimize the total distance within matched pairs (Gu & Rosenbaum, 1993).  
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Optimal Matching 

An alternative to the nearest available technique is optimal matching. This matching 

method can minimize the total within-pair difference of the propensity score by finding the 

matched pairs with the smallest average distance across all pairs. Optimal matching is most 

appropriate when there are not many control matches for the treated subjects. The two options 

(nearest available and optimal) were found to be comparable in terms of producing a balanced 

matched sample, but optimal matching was found to be better at minimizing the distance within 

the pairs (Gu & Rosenbaum, 1993). This matching technique is more complicated and time-

consuming, yet it is slowly increasing in use and feasibility due to the availability of software 

programs and packages that can perform optimal matching quickly and efficiently.  

The structure of the matched set 

After the algorithm for matching is determined by the researcher, the structure of the 

matched set must also be decided. In matching with replacement (also called one-to-many), a 

treated subject can be matched with more than one control subject, depending on the availability 

of adequate matches. In other words, the treated subject is matched with the control subject 

regardless of whether that control subject has been previously matched. This matching technique 

minimizes the propensity score distance between the matched control and the treated subject and 

is beneficial in bias reduction (Dehejia & Wahba, 2002). Matching with replacement becomes 

ideal when the distributions of the estimated propensity scores (region of common support) are 

very different. For example, a sample may have a treated group with high propensity scores and 

very few control subjects with high propensity scores to match with. In this example, allowing 
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replacement will reduce the number of control subjects used to construct the matches and will 

increase the variance (Smith & Todd, 2005).  

A special case of a one-to-many match (with replacement) is called full matching, where 

each matched set can contain one treated unit with one or more control or one control matched 

with one or more treated subjects (Gu & Rosenbaum, 1993). Matches are created based on the 

closest propensity score distance between any treated subject and control subject, not based on a 

previously determined distance or number. Gu and Rosenbaum conducted a Monte Carlo 

simulation and found that full matching is better than one-to-many matching; forcing every 

treated unit to have k control matches created poor matches (1993).  

 In matching without replacement (also called one-to-one matching), a control subject is 

no longer available to match for subsequent treated subjects once the control subject has been 

matched to a given treated subject. In order to ensure the smallest possible propensity score 

distance between the treated and control units, matching without replacement would be used 

where a single control unit is utilized for a single treated unit.  

When there are fewer comparison subjects similar to the treated subjects, forced 

matching may occur on propensity scores that are quite different, increasing bias (Dehejia & 

Wahba, 2002); however, using more control units per treated unit in matching with replacement 

increases the precision of the estimates while also increasing bias. An additional concern for 

matching without replacement is that the results can be sensitive to the order in which they are 

matched (Rosenbaum & Rubin, 1985a). In practice, the selection of a method becomes difficult 

and is dependent on both the subjective decision of the researcher and the specific dataset.  
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There are many different types of matching techniques and each researcher must decide 

which matching algorithm is right for their particular dataset, the treated and control groups’ 

common region of support aids in this decision. The common support region is the overlap 

between the distributions of the propensity scores of the treated and the control groups. The 

distributions of the propensity scores can be assessed visually by looking at a Q-Q plot or a jitter 

plot. The common support region informs the researcher about sufficient overlap between the 

two groups and is linked to the type of generalization of the causal effect that can be made. A 

broad region of common support allows causal effect estimates over the full range of the 

propensity score in the sample, whereas small common support regions restrict the estimation of 

a causal effect to a subsample. Further, observing the common support region ensures that there 

are common characteristics in both the treated and control groups and is further evidence that 

matching is a possible analysis for the sample (Bryson, Dorsett, & Purdon, 2002). When there is 

substantial overlap in the propensity score distributions, the matching methods will yield similar 

results. When the distributions of the propensity scores are very different for the treated and 

control groups, finding a satisfactory match without replacement can be difficult. It has been 

advised by Imai and colleagues to exclude the units that fall outside the common support region, 

as no causal effect is defined for these units (Imai, King, & Stuart, 2008).  However, Bryson and 

his colleagues (2002) caution that discarding a large number of observations causes a concern for 

the representativeness of the remaining sample. They recommend looking at the characteristics 

of the discarded observations for possible important distinctions when providing estimates of the 

treatment effects (Bryson et al., 2002).  
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Postmatch Analysis  

Assessing the Matching Quality 

In observational studies, researchers are concerned with threats to internal validity, or 

factors other than the intended intervention that could impact the evaluation of the treatment 

effect. Messick (1989) provided the most modern view of validity as how relevant the test scores 

are at measuring the construct. Validity is now seen as a unitary concept with construct validity 

being the integrating force in which there is only evidence of validity and includes the 

consequences of test use/misuse. The nine common threats to internal validity include: Attrition, 

regression to the mean, maturation, selection bias, history, instrumentation, testing effects, 

construct-underrepresentation and construct-irrelevant variance (Shadish et al., 2002). These 

threats to validity have been studied extensively and are collectively named “bias” when 

assessing the quality of matches in these analyses.  

Rosenbaum (2002) discussed the two main types of bias found in observational studies: 

overt bias and hidden bias. Overt bias can be observed in the data, while hidden bias cannot be 

observed because the required information to reveal a bias was omitted from data collection. 

Overt bias can be assessed and accounted for, while hidden bias cannot be directly corrected for. 

Rosenbaum (2002) provides a method for assessing hidden bias in a sensitivity analysis. A 

sensitivity analysis examines whether the qualitative conclusions drawn would change in 

response to hypothetical hidden biases of varying magnitudes. However, it is important to 

recognize that propensity score matching only accounts for overt bias due to the inclusion of 

only observable covariates. Only randomized control trials (when conducted appropriately) can 

control for both overt and hidden bias.  
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Randomized experiments control for hidden bias and therefore remain the gold standard 

in practice. Selection bias occurs when the treatment or control status of subjects is related to 

unmeasured or unobserved characteristics that are related to the outcome in question. The term 

bias refers to the potential to misinterpret estimations of the treatment effect on the outcome 

(Barnow et al., 1980). Selection bias is a departure from the strongly ignorable treatment 

assignment assumption, which assumes that given balance in the covariates; there are no 

measured or unmeasured differences other than the treatment received (Rosenbaum, 2002). The 

propensity score matching method relaxes the ignorability assumption by resampling the treated 

and control groups by the covariates, so they become more similar to randomly assigned groups. 

Bias in observational studies exists and analyses should be conducted before generalizing 

findings to a population. 

It is important to examine whether the distribution of covariates is similar between the 

treated and control subjects in the matched sample both before and after matching. Bias in the 

matched pairs is assessed by determining the average matched pair difference due to incomplete 

matching (the failure to match all treated units by discarding some treated units as unmatchable) 

or inexact matching (the failure to obtain exact matches) (Rubin, 2006). Rubin and Thomas 

(1996) provide approximations that can be used to determine the possible bias reduction from 

matching in a specific dataset based on the initial difference in the covariates between the 

groups, sample size, the number of matches desired, and the correlation between the covariates 

and the outcome. If considerable differences are found, Rosenbaum and Rubin (1985b) suggest 

including additional covariates, interactions between covariates, or polynomial terms to model 

the nonlinear relationships between treatment and covariates. Several procedures exist to analyze 

the balance of the covariates both before and after matching. 
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There are two different aspects for evaluating matches. They can be evaluated on distance 

and balance. The distance is the difference between the propensity score values of the matched 

treated subject and the control subject(s).The distance of the propensity scores prior to the match 

is determined using the Mahalanobis distance measure or calipers (discussed previously). If a 

matched set contains a treated subject to one or more control, then there are multiple distances to 

assess. For example, when a treated subject is matched to two control subjects, there is a distance 

between the treated and the first control and a second distance between the treated and the 

second control. The average distance within matched sets is the calculated average over all 

matched sets of all the distances within the matches (Gu & Rosenbaum, 1993). A small distance 

implies that the pairs are comparable in terms of covariates.  

The balance is defined as “the similarity of the empirical distributions of the full set of 

covariates in the matched treated and control groups (Stuart, 2010, p. 11).” In other words, a 

match is considered balanced when the distributions of the covariates in the treated and control 

units being matched are similar. A balanced match implies that the matched pairs are comparable 

as a whole. There are several different methods used to evaluate the balance of the matched 

pairs; each of these will be discussed below.  

t-test of significance  

Balance can be calculated using a bivariate test (e.g. Wilxozon rank sum test, an 

independent sample t test, or a one-way analysis of variance (ANOVA)) for a continuous 

covariate, or a chi-square test for a categorical covariate before and after matching and is similar 

to an effect size. If the bivariate test shows significant differences between the treated and 

control groups on a covariate prior to matching, then the covariate needs to be controlled for by 
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including it as a covariate in the propensity score analysis. If the postmatching bivariate test 

shows significant differences, the model used to predict the propensity score should be 

reevaluated. If the postmatching bivariate test is nonsignificant, the conclusion is that the 

propensity score has successfully removed group differences based on the covariates. Matches 

are considered to be balanced when the differences in the means of the covariates are less than 

.25 and the variance ratios are between .5 and 2 (Rubin, 2001).  

Utilizing t-tests to address imbalance by observing the difference in means for each 

variable in the treated and control groups is misleading according to Imai, King, and Stuart 

(2008) and Austin, Grootendorst, and Anderson (2007). The t-test is a function of both balance 

and power. Finding matched pairs of treated subjects to control subjects ultimately demands 

larger numbers of control units being discarded, decreasing power; therefore, the value of the t-

statistic becomes closer to zero, falsely indicating improvements in balance. Smaller sample 

sizes typically produce less power and will falsely inflate the p-value (Imai et al., 2008).  

Furthermore, Ho and colleagues state that the use of the hypothesis testing is inappropriate in this 

context as balance is a characteristic of a sample, not a hypothetical population (2007). 

Alternatively, researchers suggest evaluating balance using difference in the means first but then 

following up with higher-order evaluations such as non-parametric density plots, propensity 

score summary statistics, or a quantile-quantile (QQ) plot (Austin & Mamdani, 2006; Imai et al., 

2008). They identified the two key features when evaluating balance as, 1) the statistic should be 

a characteristic of the sample and not of a hypothetical population and 2) the sample size should 

not affect the value of the statistic (Austin, 2008; Imai et al., 2008).  
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Standardized Bias 

An alternative to assess the balance of the propensity score is by looking at the 

differences between the means of each covariate divided by the standard deviation in the total 

treated group, called ‘standardized bias’ or ‘standardized difference in the covariate means’ 

before and after matching (Haviland, Nagin, Rosenbaum, & Tremblay, 2008). This is also 

referred to as the percent reduction in bias or B, which is used widely when evaluating matching 

(Rubin, 1980). Haviland and colleagues developed the formula below to calculate the absolute 

standardized difference in the covariate means prior to matching, where Mxt and Mxp are the 

means of X for treated and potentially control groups, respectively. 

𝑑𝑥 = 

|𝑀𝑋𝑡 − 𝑀𝑋𝑝|

𝑆𝑋
 

After matching, the balance in the covariates is assessed with the following formula, where c 

denotes the control group and Mxc denotes unweighted mean of the means of the covariate X for 

the control matched to the treated.  

𝑑𝑥𝑚 = 

|𝑀𝑋𝑡 − 𝑀𝑋𝑐|

𝑆𝑋
 

The absence of significant differences between the treated and control groups after the match is 

acceptable evidence that balance has been achieved. A concern with the standardized bias 

approach is that there is not a defined level of success of the matching procedure in the literature. 

In most empirical studies a bias reduction below ten percent is seen as sufficient (Austin et al., 

2007; Austin & Mamdani, 2006; Stuart, Marcus, Horvitz-Lennon, Gibbons, & Normand, 2009), 

while others state the need for five percent or less (Caliendo & Kopeinig, 2008).  
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Plots and Histograms  

Multidimensional histograms, a quantile-quantile (Q-Q) plot, or jitter plots can be used to 

observe the distributions of the covariates before and after matching. The Q-Q plot displays 

quantiles of a covariate in one group against quantiles of the same covariate in the other group. If 

the two distributions exhibit perfect distributional equivalence all data points in the Q-Q plot will 

fall on one single line, the 45 degree diagonal through the plot. Deviations from balance are 

characterized by data points that fall above or below this diagonal. The advantage of the Q-Q 

plot is the ease with which deviations can be detected.  

The common support region that quantifies the amount of overlap on the propensity score 

between the two groups can easily be assessed by observing the range of the distributions, or 

graphically by overlaying the histograms of the propensity score in each group. The R program 

twang (Ridgeway, McCaffrey, Morral, Burgette, & Griffin, 2013) and MatchIt (Ho, Imai, King, 

& Stuart, 2004) produce graphical representations for checking imbalances in covariates both 

before and after matching.  

Propensity Score Summary Statistics  

The c-statistic is a measure of the predictive ability of a model and is commonly used to 

assess the quality of a propensity score. It calculates the proportion of pairs in which the treated 

subject had a higher estimated propensity score than the control subject (Harrell, 2001). It is used 

to compare the goodness of fit of the logistic regression model. Values for this measure range 

from 0.5 to 1.0. A value of 0.5 indicates that the model is no better than chance at making a 

prediction of membership in a group, and a value of 1.0 indicates that the model perfectly 
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identifies those within a group and those not. Models are typically considered reasonable when 

the c-statistic is higher than 0.7 and strong when c exceeds 0.8 (Hosmer, Lemeshow, & 

Sturdivant, 2000). The c-statistic has also been used to identify which covariates to include or 

possibly exclude in a research design. Any covariate that increases the c-statistic, or the 

predictive ability of the model, would be included in the design (Brookhart et al., 2006); other 

researchers have argued that the c-statistic is not an accurate measure of classification ability 

because it does not use covariate balance as a criterion (Augurzky & Schmidt, 2001; Brookhart 

et al., 2006; Setoguchi, Schneeweiss, Brookhart, Glynn, & Cook, 2008). Including the c-statistic, 

when evaluating the overall balance, remains common practice.  

Estimating the treatment effect  

After the treated and control subjects are matching on propensity scores, any multivariate 

analysis that allows for matched pairs can be completed. However, most multivariate analyses 

are only permissible for matched samples created by nearest neighbor or greedy matching. 

Matches created by optimal matching require a different type of regression adjustment, such as 

the Hodges-Lehmann aligned rank test. Due to this additional requirement for analysis, most 

propensity score matching utilizes nearest neighbor or greedy matching.  

The method chosen for analyzing the matched pairs for the treatment effect must account 

for the matching procedure. Propensity score matching is part of the design of the study and not 

part of the actual analysis; therefore, the actual analysis for the causal inference must include 

methods that account for the matched nature of the sample data. Regression-based methods or 

models can be utilized as long as the assumptions are met (Austin, 2008).  
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Advantages 

 Matching methods have a few advantages over other alternate approaches that control for 

background variables (regression, structural equation modeling, or selection models) such as 

highlighting insufficient overlap between the covariates in the treatment and control groups. 

Regression and selection models have been shown to perform poorly when there is not sufficient 

overlap, but these procedures do not involve checking for this overlap (Dehejia & Wahba, 2002; 

Glazerman et al., 2003). Matching methods assess the amount of overlap in the covariates, thus 

making the researcher aware of the quality of the resulting inferences that would be made. 

Further, matching methods have straightforward diagnostics and procedures by which the quality 

and performance can be assessed.  

Like other matching procedures, propensity score matching estimates an average 

treatment effect from observational data. After Rosenbaum and Rubin (1983) designed 

propensity score matching, many studies regarding the effectiveness of propensity score 

matching have occurred (Glynn, Schneeweiss, & Stürmer, 2006; Heckman et al., 1998; Kurth et 

al., 2006). Prior to propensity score matching, traditional methods of adjustment (matching, 

stratification and covariance adjustment) were often limited because they could only use a 

limited number of covariates for adjustment. However, propensity scores, which provide a scalar 

summary of the covariate information, do not have this limitation and that is considered its’ key 

advantage. If the treatment and control were balanced on covariates one at a time, large numbers 

of observations would be needed. In a simulation conducted by Gu and Rosenbaum (1993), they 

found that propensity score matching outperformed other matching techniques due to this ability 
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to balance on many covariates simultaneously, potentially approximating the balance similar to 

randomization.   

In quasi-experimental studies the propensity scores are estimated due to the fact that the 

true propensity is unknown. One would expect that an estimated value would not perform as well 

as a true value, but researchers have found the opposite in theory, simulation, and in practice. 

The estimated propensity scores remove some of the chance imbalances in the propensity scores 

that the true propensity scores leave behind.  

Propensity score matching can be especially useful in research studies in which there is a 

small number of subjects that received the intervention or treatment and a larger number of 

control subjects that did not. Contrary to the Mahalanbois matching technique (matching is done 

by randomly ordering subjects and then calculating the distance between the first treated subject 

and all controls and repeated) in which it is difficult to find close matches when there are many 

covariates, propensity score matching can be completed with many covariates and is typically 

easier to find matches (Gu & Rosenbaum, 1993). Propensity matching was found to remove 

more than twice the bias removed my Mahalanobis metric matching when a simulation study 

was conducted with 20 covariates (Gu & Rosenbaum, 1993; Joffe & Rosenbaum, 1999). 

Limitations 

Based on the literature, there are three limitations of propensity score matching (Guo, 

Barth, & Gibbons, 2006; Rosenbaum & Rubin, 1983; Rubin, 1997).  One limitation of is that 

propensity scores can only be attained from observed (and observable) covariates. Factors that 

affect assignment to treatment but that cannot be observed cannot be accounted for in the 
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matching procedure. Therefore, the accuracy of estimates from propensity score matching could 

be seriously affected by missing predictors or confounds (Bai, 2011; Joffe & Rosenbaum, 1999; 

Weitzen, Lapane, Toledano, Hume, & Mor, 2004). Imai and colleagues discuss the possibility of 

error in observational studies due to the imbalance in unobserved variables, the “Achilles heel of 

observational studies (Imai et al., 2008, p. 493).” To deal with hidden bias, Rubin (1997) 

recommends conducting sensitivity analysis and testing different sets of conditioning variables to 

address this limitation. Secondly, propensity score matching requires large samples, with 

substantial overlap between treatment and control groups (Rubin, 1997; Weitzen et al., 2004). 

Smaller sample sizes have less overlap between treated and control groups, which could result in 

discarding more units due to lack of matches and ultimately even fewer matches for analysis 

(Weitzen et al., 2004). Finally, propensity scores consider the covariates that are related to the 

treatment but not the outcome the same as those that are related to the treatment and strongly 

related to outcome (Rubin, 1997). Inclusion of covariates that are only slightly predictive of the 

outcome reduces the efficiency of the relevant covariates. However, this is a feature that 

propensity score matching shares with randomization. Further, Rubin and Thomas discovered 

that the bias effects for not including a weak predictor covariate override the efficiency gains 

(1996). Judea Pearl has also argued that hidden bias may actually increase because matching on 

observed variables may unleash bias due to dormant unobserved confounders. Similarly, Pearl 

has argued that bias reduction can only be assured (asymptotically) by modeling the qualitative 

causal relationships between treatment, outcome, observed and unobserved covariates (2009, 

2011).  
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Concerns in Educational Research 

This literature review has provided an overview of the methodology necessary to utilize 

propensity score matching. Many studies have been conducted to demonstrate the effectiveness 

of propensity scores at increasing precision by reducing the variances of the distributional 

differences across treated and control groups in quasi-experimental designs. Recent work, 

however, has shown that the degree of bias reduction achieved and the efficiency of the 

covariates as estimators can differ greatly based on the methodology used to perform the 

matching as it relates to sample size, the caliper width, and the relation of the covariates to 

treatment or outcome (Althauser & Rubin, 1970; Angrist & Hahn, 2004; Frölich, 2004; 

Glazerman et al., 2003; Zhao, 2004).  

Sample Size  

The need for a large sample size when conducting propensity score matching, to allow 

for overlap between the treated and control groups with many potential relevant covariates has 

been documented (Dehejia & Wahba, 2002; Fan & Nowell, 2011; Glazerman et al., 2003; Lane 

et al., 2012; Luellen et al., 2005; Rubin, 1997; Smith & Todd, 2005; Yanovitzky, Zanutto, & 

Hornik, 2005). It seems logical that in order to have sufficient matches, there must be a large 

pool of potential matches in the nontreated group. Some research suggests that propensity score 

matching may only be feasible when there are extremely large sample sizes over 10,000 (Peikes, 

Moreno, & Orzol, 2008). However, an overly large sample of controls is usually impractical in 

educational research due to difficulty of obtaining consent, finding a comparable group, or cost.  

For research in the social sciences it is typical to have non-random convenience samples, 

such as from one school, which they were able to gain access to or permission to study. These 
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research designs are fraught with small sample sizes in the treatment groups and possibly even 

smaller nontreated groups. A typical sample size in educational research could be less than 500. 

Literature on the efficacy of propensity score matching with sample sizes less than 500 is 

limited. Recent research on propensity score matching found that sample sizes less than 300 may 

be too small for matching when prediction of group assignment is high (Lane et al., 2012). 

Studies of propensity score matching and sample size agree that small sample sizes could lead to 

poor matches and unstable estimations of the treatment effect. Further, large sample sizes are 

required for propensity score analysis in order to balance the covariates across groups and reduce 

bias, but the required minimum for sample size is yet to be determined for propensity score 

matching.  

Caliper width 

The most common method used for propensity score matching is nearest neighbor 

(greedy) matching within fixed caliper widths. As mentioned previously, a caliper is a preset 

tolerance for the distance between the propensity scores of the treated and control subjects, 

which enables matching (Rosenbaum & Rubin, 1984). The size of the caliper is determined a 

priori by the investigator, but at what tolerance the caliper width should be set is still in question. 

Most researchers use a caliper width 0.2 standard deviations of the logit of the propensity score 

due to the research by Cochran and Rubin (1973) and Rosenbaum and Rubin (1985b) suggesting 

that this caliper size would reduce 99% of the bias in propensity scores (Austin, 2008, 2009; 

Austin et al., 2007) while others have used a caliper width of 0.6 as this same research stated this 

caliper width would reduce 90% of the bias (Ayanian, Landrum, Guadagnoli, & Gaccione, 

2002). Propensity score matching has been used more frequently in medical research, where 
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caliper widths can vary greatly. This limited literature review found researchers that have used a 

caliper width of 0.005 (Christakis & Iwashyna, 2003; Cole et al., 2002), 0.03 (Yu et al., 2003), 

0.02 (Murray, Singer, Dawson, Thomas, & Cebul, 2003), 0.01 (Hall, Summers, & Obenchain, 

2003; Magee, Coombs, Peterson, & Mack, 2003; Seeger, Walker, Williams, Saperia, & Sacks, 

2003), and 0.1 (Moss et al., 2003).  

With limitations in sample size, the question of what caliper width to use becomes even 

more complicated. The choice of caliper width should be a decision of the variance-balance trade 

off. However, caliper width will impact the final sample size of the successful matches. A 

narrower caliper width will result in matching more similar subjects, reducing bias by reducing 

the systematic differences in the treated and nontreated groups, but will also reduce the final 

matched sample size and will increase the variance in the estimated treatment effect. Using a 

wider caliper width will retain more subjects, decrease the variance in the estimated treatment 

effect, but will increase the bias and systematic differences in the two groups. Currently, there is 

not been an identified optimal caliper width as it relates to studies with limitations in sample 

size.  

Limitations in Covariate Selection 

Rubin and Thomas (1996) used approximations for the reduction in bias and variance and 

suggested including all covariates thought to be related to the outcome regardless of their 

relationship to the treatment. Later, Rubin further supported this by stating that including 

variables that are strongly related to the treatment but unrelated to outcome will decrease the 

efficiency of the estimated treatment effect; however, he also stated that excluding those 

variables would actually cause more concern with estimating the treatment effect than leaving 
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them in the design when samples are substantial in size (1997). These results have been 

replicated by other studies as well (Brookhart et al., 2006; Drake, 1993; Perkins, Tu, Underhill, 

Zhou, & Murray, 2000; Robins, Mark, & Newey, 1992). Conversely, a Monte Carlo simulation 

conducted by Brookhart and his colleagues found that it would be advantageous to exclude 

covariates that are confounders in small studies (n=500) that are strongly related to the treatment 

and only weakly related to the outcome (2006). The inclusion of such a covariate and the 

increase in variance is not offset by a decrease in bias to improve the mean squared error. As 

sample size increased (n=2500), they found that the variance of the covariate decreases 

proportional to 1/n, yet the bias remains. They concluded that it would not be recommended to 

exclude covariates related to treatment in moderately sized studies unless it was known to be 

unrelated to the outcome. However, these studies have not analyzed the inclusion or exclusion of 

covariates as it relates to treatment and/or outcome with sample sizes less than 500.  

With limitations in sample size, comes a limitation in the number of possible covariates 

to include in the matching design. In small samples, it may not be possible to include a very large 

set of variables in the procedure. With limited covariates, Brookhart and colleagues (2006) 

suggest that the priority should be given to variables that are believed to be related to the 

outcome, as choosing variables with low relation to the outcome and high relation to the 

treatment will result in increased variance. Another strategy when working with a limited sample 

size, is to include a small number of covariates that are known to be related to the outcome, 

conduct the matching and then assess the variance on all of the available covariates, including 

any additional variables that remain unbalanced after the match (Stuart, 2010). Specific strategies 

of covariate selection are yet to be determined when working with limited sample sizes.   
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The propensity score matching technique has considerable potential for educational 

research given the likelihood for selection bias due to programs being implemented that are 

intended for special populations, the seldom use of random assignment, and the examination of 

only the observed covariates. Research with quasi-experimental design must be able to 

demonstrate that the intervention and comparison groups are equivalent on observable 

characteristics in order to meet evidence standards for the What Works Clearinghouse. The U.S. 

Department of Education currently supports the use of propensity score matching as a method of 

evidence-based research when group equivalence can be established in the analysis (Lane et al., 

2012). However, further research must be done to ensure that causal inference and impact 

estimates are effectively reducing bias when using propensity score matching with limited 

sample size. The current research on propensity score matching is missing imperative 

information for educational researchers regarding the practical implications of utilizing this 

method with sample sizes smaller than 500. The objective of the current study is to assess the 

effectiveness of propensity score matching at reducing bias in a real data set with limited sample 

size as compared to an ideal data set created in a Monte Carlo simulation study. It is 

hypothesized that the effectiveness of propensity score matching at reducing bias will drop 

below acceptable levels for research when sample size is reduced to a certain point.  
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Chapter Three - Methods 

 The purpose of this study was to evaluate the effectiveness of propensity score matching 

in quasi-experimental research when limited by sample size as determined by a reduction in bias. 

In an effort to determine the optimal selection of covariates and caliper width with a limited 

sample size, this research included both simulated and real data.  This chapter describes the 

participants, data cleaning procedures, software, experimental design and methods used for the 

real data study as well as the experimental design and methods for the simulation study. The 

assumptions, statistical analysis, and limitations of this study will also be discussed.  

Real Data Set 

Participants  

Data for this study used a real life dataset acquired from a local school district that 

partnered with a federally-funded program aimed at helping minority students gain access to the 

skills necessary to pursue and complete post-secondary education. The intervention was 

implemented in the seventh grade and continued through high school graduation. This dataset 

was collected when the students were in the second year of the program. The original data file 

from the school district that was shared included 2059 subjects. Those subjects with any missing 

data were deleted, which resulted in 307 subjects being removed out of the original dataset or 

14.9%. The resulting dataset included 1752 students within one school district; schools that 

participated and some that did not were included, deriving comparable samples of students with 

similar covariates that were in the treatment and the control group. Students that did not disclose 

their ethnicity status (N=26) were then removed from the dataset, resulting in a sample size of 

1726 students (886 having received the intervention and 840 that had not received the 
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intervention). I received access to this data with a data sharing agreement with the Kansas City, 

Kansas Public School District (See Appendix A). The data contained no identifiable information. 

Human subject approval was received from the Institutional Review Board at the University of 

Kansas (See Appendix B).  

The matching variables provided from the district and how they were coded is described 

in Table 1. Students with missing data on any of the six covariates (grade, gender, ethnicity, 

socioeconomic status defined by enrollment in the free/reduced lunch program, English language 

learners, and students with disabilities) were excluded from the dataset prior to the matching 

process. Frequencies of the covariates in the final sample (N=1726) are provided in Table 2 for 

both the treated and control groups prior to matching. Both groups had similar frequencies of 

covariates, indicating viable candidacy for the propensity score matching method.   

Table 1. Summary of Covariate Labels, Descriptions, and Codes 

Table 1. 

Summary of Covariate Labels, Descriptions, and Codes 

Label Description Code 

Group Participation in intervention 0 = Control 

1 = Treated 

Grade Grade level  8 = 8th grade 

9 = 9th grade  

Gender Gender  0 = Female 

1 = Male 

Ethnic Ethnicity  1 = Asian 

2 = Black 

3 = Hawaiian/Pacific Islander 

4 = Hispanic 

5 = Non-disclosed  

6 = White 

7 = Native American  

Lunch Participates in Free/Reduced Lunch program; 

indicator of SES 

0 = No 

1 = Yes 

ELL Participates in services for English Language 

Learners 

0 = No 

1 = Yes 

SWD Student with Disabilities  0 = No 

1 = Yes 
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Table 2. Frequencies of Covariates 

Table 2. 

Frequencies of Covariates (N=1726) 

Covariate Label  Covariate Option Control  Treated  

Grade 8 472 445 

 9 368 441 

Gender Female 403 452 

 Male 437 434 

Ethnic Asian 40 28 

 Black 333 335 

 Hawaiian/Pacific Islander 0 1 

 Hispanic 377 392 

 White 83 126 

 Native American 7 4 

Lunch No 66 112 

 Yes 774 774 

ELL No 515 580 

 Yes 325 306 

SWD No 729 802 

 Yes 111 84 

  

Similar to other program evaluation studies, the dependent variable (provided from the 

school district) for this dataset to assess impact of the intervention was cumulative grade point 

average (GPA).  The variable cumulative GPA was scaled on a typical 4.0 scale with 0.0 being 

the lowest possible score and 4.0 being the highest. The table below displays the descriptive 

statistics for cumulative grade point average for the treated and the control group.  

Table 3. Descriptive Statistics of GPA 

Table 3.  

Descriptive Statistics of GPA  

Group  N Mean  Standard Deviation  Standard Error 

Control 840 2.609 0.850 0.029 

Treated 886 2.716 0.854 0.0287 
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Software 

The software packages used to complete this study include SPSS (IBM version 20.0) and 

R (R version 3.2.2 “Fire Safety”). The initial analysis of the dataset provided from the school 

district (e.g., frequencies, descriptive statistics, correlations, and t-tests) was calculated using 

SPSS. The R software program was used to assess the three research questions.  

Few software packages are currently available for implementing propensity score 

matching. At this time, Stata (StataCorp, 2008), R (The R Foundation for Statistical Computing, 

2008), and SAS offer computational packages for performing PSM. The R software package was 

used to compute the propensity score matching for this study based on its comprehensive and 

convenient offerings and the author’s experience with this software. R is a free statistical 

package that can be downloaded and installed from the website: http://www.r-project.org. There 

are various R packages that will conduct propensity score matching including MatchIt (Ho, 

King, & Stuart, 2011), Matching (Sekhon, 2011), twang (Ridgeway, McCaffrey, & Morral, 

2006), cem (Iacus, King, & porro, 2008), optmatch (Hansen & Frederickson, 2009), 

PSAgraphics (Helmreich & Pruzek, 2009), and Synth (Abadie, Diamond, & Hainmueller, 2011). 

The most popular package in the R software program is MatchIt, based on this limited literature 

review, and was used in this research. The MatchIt: Nonparametric Preprocessing for Parametric 

Casual Inference software package in R was created by Ho, Imai, King & Stuart in 2011 in order 

to reduce model dependence in matching methods by preprocessing data with semi-parametric 

and non-parametric matching methods. This program allows researchers to use whatever 

parametric model and software they want without modifications.  
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Simulation Study 

To explore the covariate selection problem with limited sample sizes, a Monte Carlo 

simulation study was created based on the real data sample. Unstandardized beta coefficients of 

reasonable size for educational research were selected based on the original data set. The 

treatment effect found in the initial analysis after the match was used to evaluate the precision of 

the estimates for the varying associations of the covariates to the outcome and to the treatment. 

One hundred replications were required for each condition in order to increase power of the 

findings. The averages of these replications were reported for each condition.  

Research Questions 

The considerations for conducting propensity score matching is ultimately a decision of 

which is superior: bias reduction or precision in matching. Because they are related, this decision 

places importance on one at the expense of the other. In matching, the removal of bias is 

preferred over the precision of the matches and is used to evaluate the quality and success of the 

method. Similarly, in this study the success of the propensity score matching method, as it relates 

to limitations in sample size, will be assessed by the removal of bias. However, both bias 

removal and precision in matching will be reported for each condition.  

Many questions regarding best practices in propensity score matching for educational 

research remain. The primary question in educational research with policy evaluation is how well 

some intervention is meeting the intended goal. Quite often this question is convoluted in 

educational research as so many confounding variables can be present. Therefore, this question 

often becomes which method of analysis would be best in order to determine a causal effect 

using a quasi-experimental design. This research addresses how effective propensity score 
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matching is at reducing bias with the aforementioned common issues in educational research of 

sample size, caliper width, and covariate selection using a real life dataset compared to simulated 

data with the following questions. 

Initial Analysis 

Often in research with a quasi-experimental design, the true effect is unknown. In this 

research, the original dataset provided by the school district (N=1762) served as a baseline 

comparison or “true score” for all subsequent research questions. Some initial analyses were 

conducted on this original sample. First, simple mean differences, t –tests, were used to 

determine whether mean differences between the treated and control groups were statistically 

significant both before and after matching. This type of analysis is confounded with selection 

bias, but is frequently used in educational research and was therefore considered a benchmark for 

the results obtained in this study using propensity score matching.  

Logistic regression was used to collapse the covariates into the propensity score, or the 

likelihood of having received the treatment. Using the following equation in which Ti is group 

membership (1=treatment), 𝑋1𝑖, … ,  𝑋𝑛𝑖 are the scores on the covariates, and 𝑒𝑖 is random error: 

ln (
𝑃𝑖(𝑇𝑖 = 1)

1 − 𝑃𝑖(𝑇𝑖 = 1)
) = 𝛽̂0 + 𝛽̂1𝑋1𝑖 + … + 𝛽̂𝑛𝑋𝑛𝑖 + 𝑒𝑖 

 

The six covariates included in this analysis used to predict the propensity of a student to be 

included in the intervention were grade, gender, ethnicity, free/reduced lunch status, disability 

status, and English language learners. They were matched using the MatchIt program in the R 

software. Matches were created using the Nearest Neighbor method, which selects matches that 



45 
 

are nearest to the treated subject one at a time using a distance option with the order specified as 

largest.  This type of matching is often called “greedy matching” because it matches treated 

subjects to controls without minimizing a distance measure. Participants were selected without 

replacement using one-to-one matching. Both of these techniques for matching, nearest neighbor 

and one-to-one matching, were chosen after reading a study by Austin who found that these 

techniques account for 83% of the methods used to conduct propensity score matching 

implemented by the studies between 1996 and 2003 (Austin, 2008).  

As mentioned previously, a crucial part of any matching procedure is assessing the 

balance of the covariate distributions in the treatment group and the control group. The MatchIt 

software provided the standardized mean bias before and after the match for each covariate and 

summarizes this information into quantile-quantile plots (QQ plots), jitter plots, and histograms. 

The balance between the treated subjects and the control subjects was assessed both before and 

after matching. If the matching is successful, the measures of balance will be smaller in the 

matched data set. The results of the matching provides means, the original control group standard 

deviation, mean differences, standardized mean differences, and quantile-quantile plot 

differences in addition to the numerical overview of how many units were matched, unmatched 

and discarded and the percent improvement of balance after matching. The standardized mean 

difference was assessed because it is not confounded by sample size. A bias reduction in the 

standardized mean differences less than ten percent after matching was considered effective, 

based on this literature review of what is most frequently used. The c-statistic, used to assess the 

quality of the propensity scores and goodness of fit, is available using the rms package and was 

installed in addition to the MatchIt package. A c-statistic higher than 0.7 was considered 

favorable and greater than 0.8 strong based on this literature review (Hosmer et al., 2000).  
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Research Question 1: Limitations in Sample Size 

How does propensity score matching perform with limitations in sample size as measured by 

bias reduction?  

As mentioned previously, the need for a large sample size when conducting propensity 

score matching, to allow for overlap between the treated and control groups with many potential 

relevant covariates has been documented (Dehejia & Wahba, 2002; Fan & Nowell, 2011; 

Glazerman et al., 2003; Lane et al., 2012; Luellen et al., 2005; Rubin, 1997; Smith & Todd, 

2005; Yanovitzky et al., 2005). It seems logical that in order to have sufficient matches, there 

must be a large pool of potential matches in the control group.  Some research suggests that 

propensity score matching may only be feasible when there are extremely large sample sizes 

over 10,000 (Peikes et al., 2008). However, educational research if often fraught with low 

sample sizes, typically below 500. One study found that sample sizes less than 300 may be too 

small for matching when prediction of group assignment is high (Lane et al., 2012). The 

minimum requirement of sample size for propensity score matching is yet to be determined. The 

answer to this question can help researchers in education evaluate whether propensity score 

matching is a good method to use with limitations in sample size.  

 The full dataset, with a sample size of 1726 students (886 in the treated group and 840 in 

the control group), will be matched prior to sample reduction to pose as a “true score” of best 

possible bias reduction. Four sample sizes were chosen of 500, 400, 300, and 200 for 

comparison. The table below displays the four conditions for this study.  
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Table 4. Q1: Limitations in Sample Size 

Table 4. 

Q1: Limitations in Sample Size 

Conditions N 

1 500 

2 400 

3 300 

4 200 

 

These four conditions were selected due to the lack of information found on sample sizes 

less than 500 regarding the efficacy of propensity score matching, coupled with the abundance of 

educational research constrained by limitations in sample size below this same level. More 

specifically, sample sizes above 300 were chosen to assess if previous findings of successful bias 

reduction using propensity score matching could be found using a real dataset in educational 

research. Sample sizes below 300 were chosen due to the studies on the lack of efficacy in bias 

reduction when using propensity score matching at these limited sample sizes. 

Analysis 

The four sample sizes were randomly selected from the dataset provided from the school 

district of 1726 students in the R software for comparison of bias reduction to the “true score” in 

the original dataset. This analysis was replicated 100 times for each condition of sample size in 

order to increase power and precision of the findings. The mean reduction in bias of these 

replications for each condition is presented. 
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Research Question 2: Caliper Width 

What is the ideal caliper width used for propensity score matching when a sample is limited in 

size, as determined by bias reduction?  

As mentioned previously, a caliper is the preset tolerance for the distance between the 

propensity scores of the treated and control subjects, which enables the matching (Rosenbaum & 

Rubin, 1984). The size of the caliper is determined a priori by the investigator, but at what 

tolerance the caliper width should be set is still in question. Most researchers use a caliper width 

0.2 standard deviations of the logit of the propensity score due to research suggesting that this 

caliper size would reduce 99% of the bias in propensity scores (Austin, 2008, 2009; Austin et al., 

2007) while others have used a caliper width of 0.6 as this same research stated this caliper width 

would reduce 90% of the bias (Ayanian et al., 2002). Propensity score matching has been used 

more frequently in medical research, where caliper widths can vary greatly.  

With limitations in sample size, the question of what caliper width to use becomes even 

more complicated. A narrower caliper width will result in matching more similar subjects, 

reducing bias by reducing the systematic differences in the treated and control groups, but will 

also reduce the final matched sample size and will increase the variance in the estimated 

treatment effect. Using a wider caliper width will retain more subjects, decrease the variance in 

the estimated treatment effect, but will increase the bias and systematic differences in the two 

groups. Currently, there is not been an identified optimal caliper width as it relates to studies 

with limitations in sample size. The table below displays the four conditions of caliper width that 

were selected for this research, based on the literature review.  
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Table 5. Q2: Caliper Width 

Table 5.  

Q2: Caliper Width 

Condition  Caliper Width 

X1 0.1 

X2 0.2 

X3 0.3 

X4 0.6 

 

The propensity score matching studies that have been conducted in educational research thus far 

have consisted mostly of research using caliper widths of 0.2. However in medical research, 

where propensity score matching is far more utilized, calipers varied from .0005 to .6. The four 

conditions for caliper widths for this study were chosen based on frequency of use for both 

education and medical research.  

Analysis 

 To address this question, the aforementioned four sample sizes that were randomly drawn 

from the original dataset (e.g., 500, 400, 300, 200) were matched with each of the four conditions 

of caliper widths (table above) for a total of 16 conditions displayed in Table 6 below. 

Table 6. Q2: Caliper Width Conditions by Sample Size 

Table 6.  

Q2: Caliper Width Conditions by Sample Size   

N Caliper Width 

 0.1 0.2 0.3 0.6 

500 X1 X2 X3 X4 

400 X5 X6 X7 X8 

300 X9 X10 X11 X12 

200 X13 X14 X15 X16 

 

This analysis was replicated 100 times for each condition of sample size in order to increase 

power and precision of the findings. The mean reduction in bias for these replications for each 
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condition is presented as well as the mean number of successful matches, exclusions, and c-

statistics after the match.  

Research Question 3: Covariate Selection 

What relationship of the covariates to treatment and outcome is optimal when sample size is 

limited, as determined by bias reduction and treatment effect?  

Research by Rubin found that including variables that are strongly related to the 

treatment but unrelated to outcome will decrease the efficiency of the estimated treatment effect; 

however, he also stated that excluding those variables would actually cause more concern with 

estimating the treatment effect than leaving them in the design when samples are substantial in 

size (1997). These results have been replicated by other studies with large sample sizes 

(Brookhart et al., 2006; Drake, 1993; Perkins et al., 2000; Robins et al., 1992). A Monte Carlo 

simulation conducted by Brookhart and his colleagues found that it would be advantageous to 

exclude covariates that are confounders in small studies (n=500) that are strongly related to the 

treatment and only weakly related to the outcome (2006). The inclusion of such a covariate and 

the increase in variance is not offset by a decrease in bias to improve the mean squared error. 

However, in this literature review, studies assessing the inclusion or exclusion of covariates as it 

relates to treatment and/or outcome with sample sizes less than 500 were not found. 

 To address this question, a Monte Carlo simulation was created in the R software 

program based on the real dataset. The unstandardized beta coefficients (b) of the covariates 

were observed in the original dataset as a baseline of typical coefficients found in educational 

research. A quick literature review was also conducted to assess typical relationships of 

covariates to treatment and outcome in the education field. Unstandardized beta coefficients 
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were used to avoid possible bias due to standardization with small samples. This coefficient (b) 

indicates the average change in the dependent variable (e.g., final GPA) associated with one unit 

change in the corresponding predictor covariate, while statistically controlling for the other 

independent variables (covariates). The unstandardized beta coefficients chosen for each 

relationship to outcome were defined as no relationship = 0, weak relationship = .20, moderate 

relationship = .40, and strong relationship = .60. Odds ratios were used to determine the measure 

of association between the covariates and the treatment. The odds ratio represents the odds that 

an outcome will occur, given a particular exposure, compared to the odds of the outcome in the 

absence of that exposure. In other words, the odds ratio will be the odds that a student would be 

in the treatment group, given the covariates in this study (grade, gender, ethnicity, free/reduced 

lunch status, ELL status, and SWD status). Odds ratios greater to one are interpreted as exposure 

of the covariate is associated with higher odds of the outcome (being in the treated group); ratios 

less than one mean that exposure is associated with lower odds of the outcome. Odds ratios 

equivalent to one are interpreted as exposure does not affect the odds of the outcome. The 

magnitude of the odds ratios chosen for association of the covariates to the treatment assignment 

were defined as no relationship = 1, weak relationship = 1.44, moderate = 2.47, strong = 4.25 as 

determined from Chinn (2000). The simulation was designed to assess what combinations of 

association of covariates to the treatment were optimal when the relationship of the covariates to 

outcome were strong and vice versa. The average treatment effect was set at 0.11, based on the 

findings of the original dataset. Conditions for the associations of the covariates to outcome and 

treatment were chosen at the extremes. In other words one relationship was held constant as a 

strong association while the other associations were evaluated. The table below shows the six 

conditions that were assessed for covariate relationship to outcome and to treatment.  



52 
 

 
Table 7. Q3. Covariate Selection Relations 

Table 7.  

Q3. Covariate Selection Relations 

Condition Relation to Outcome Relation to Treatment 

X1 Strong None 

X2 Strong Weak 

X3 Strong Moderate 

X4 None Strong 

X5 Weak Strong 

X6 Moderate Strong 

 

Sample sizes (500,400,300,200) and caliper widths (0.1, 0.2. 0.3, 0.6) designated in the 

previous questions of this study will be utilized for this question as well. The same criterion for 

the match, one-to-one matching using the nearest neighbor method without replacement, was 

used. This analysis was replicated 100 times for each condition in order to increase power and 

precision of the findings. The mean reduction in bias for these replications for each condition is 

presented as well as the mean number of successful matches, exclusions, and c-statistics after the 

match. The impact on measurement of the “true” treatment effect given the limitations in sample 

size is also discussed.  

Data Analysis Summary 

Overall, limitations in sample size were assessed as it related to covariate selection and 

caliper width. The original dataset served as a baseline or “true score” for best possible bias 

reduction. Sample sizes were randomly reduced from this original dataset to assess bias 

reduction as it related to caliper width. These analyses were replicated 100 times and the mean 

statistics are provided for each condition of sample size and caliper width. A Monte Carlo 

simulation was created based on the original dataset to assess covariate selection as it related to 
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the strength of the relationship to the treatment and to the outcome with the same limitations in 

sample size and conditions for caliper width. These analyses were also replicated 100 times in 

the R software program to increase power and precision of the findings. A complete copy of the 

R code used to complete this analysis is available in Appendix C.  
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Chapter Four – Results 

The propensity score matching technique has considerable potential for educational 

research. The current research on propensity score matching is missing imperative information 

for educational researchers regarding the practical implications of utilizing this method with 

sample sizes smaller than 500. The objective of the current study was to assess the effectiveness 

of propensity score matching at reducing bias in a real data set with limited sample sizes and 

varying caliper widths as compared to an ideal data set created in a Monte Carlo simulation 

study. It was hypothesized that the effectiveness of propensity score matching at reducing bias 

will drop below acceptable levels for research when sample size is reduced to a certain point.  

Initial Analysis 

 The initial dataset from the school district served as a baseline comparison for the 

research questions in this study. Participants with missing data in any of the covariates or the 

dependent variable of cumulative GPA were removed. The remaining dataset included 1726 

students to be matched (886 in the treatment group and 840 in the control group). The six 

covariates included in this analysis used to predict the propensity of a student to be included in 

the intervention were grade, gender, ethnicity, free/reduced lunch status, disability status, and 

English language learners. The dependent variable provided for this dataset in order to evaluate 

impact of the intervention was cumulative GPA. Pearson correlations of these covariates to each 

other, to the treatment assignment, and to the outcome of cumulative GPA were conducted in 

order to evaluate the contribution of each covariate and can be found in the table below.  
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Table 8. Correlations of Covariates to Treatment and Outcome 

Table 8.  

Correlations of Covariates to Treatment and Outcome 

 Grade Gender Ethnicity Lunch ELL SWD Treatment Final GPA 

Grade 1.0        

Gender .018 1.0       

Ethnicity -.011 .009 1.0      

Lunch -.086** -.016 .137** 1.0     

ELL .013 .057* .263** .119** 1.0    

SWD -.023 .072** -.064** -.017 -.032 1.0   

Treatment .060* -.030 .056* -.079** -.043 -.059* 1.0  

Final GPA .005 .007 -.034 -.023 -.005 .044 .063** 1.0 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

  

 

In the table, the variable ‘Treatment’ identifies the treatment assignment and ‘Final GPA’ 

is the outcome variable. Pearson’s correlation coefficient ranges from -1 to +1. Interpretation of 

the strength of the correlations used Cohen’s 1988 descriptions (weak 0.1< |𝑟| <0.3; moderate 

0.3< |𝑟| <0.5; strong 0.5<|𝑟|<…). Using these benchmarks, the strengths of the correlations of 

the covariates to each other, to the treatment assignment, and to the outcome are considered 

weak. Of specific interest is the relationship of the covariates to the treatment assignment when 

choosing which covariates to include in a matching study. The covariates with a significant 

relationship to the treatment assignment were ethnicity (.056, p<.05), students with disabilities (-

.059, p<.05), grade level (.060, p<.05), GPA (.063, p<.01), and free/reduced lunch status (-.079, 

p<.01). These findings are not surprising, given that the requirement to be included in the 

intervention was at-risk students in a specific grade level. The determination of treatment 

assignment was significantly correlated with the outcome variable of Final GPA (.063, p<.01). 

This significance identifies a positive relationship between students being involved in the 

intervention and the outcome variable of final grade point average.  
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The covariates included in this study are all nominal variables; they are categorical. The 

outcome, dependent, variable of final grade point average is considered to be a ratio variable 

because it has a true zero on the scale of 0 to 4.0. A correlation indicates the strength and 

direction of a linear relationship among continuous, not categorical variables. Therefore, a chi-

square test was also conducted for the covariates to assess the relationship of the covariates to the 

treatment assignment.  The chi-square statistic evaluates the impact of a covariate by comparing 

how the log-likelihood decreases or increases as covariates are added or deleted. The table below 

provides the results of the chi-square tests.  

Table 9. Chi-Square Test of Covariates 

Table 9.    

Chi-Square Test of Covariates (N=1726)    

Covariate  Covariate Option Control  Treated  Chi-Square p Cramer’s V 

Grade 8 472 445 6.16 .01* .06 

 9 368 441    

Gender Female 403 452 1.59 .21 .03 

 Male 437 434    

Ethnic Asian 40 28 11.86 .04* .08 

 Black 333 335    

 Hawaiian/Pacific 

Islander 

0 1    

 Hispanic 377 392    

 White 83 126    

 Native American 7 4    

Lunch No 66 112 10.67 p<.001** .08 

 Yes 774 774    

ELL No 515 580 3.21 .07 .04 

 Yes 325 306    

SWD No 729 802 6.00 .01* .06 

 Yes 111 84    

*Significant at the 0.05 alpha level 

**Significant at the 0.01alpha level  

 

An alpha level of .05 was used to determine a significant association between categorical 

variables for the chi-square tests. The chi-square test determined whether a relationship between 
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the covariate and treatment assignment exists. Greater differences between an expected and 

actual data produce a larger chi-square value. The larger the chi-square value, the greater the 

probability that there is a significant difference.  Similar to the findings of the Pearson 

correlations, significant differences were found for the covariates grade (6.16, p<.05), ethnicity 

(11.86, p<.05), free/reduced lunch status (10.67, p<.01), and students with disabilities (6.00, 

p<.05).  

If the relationship between a covariate and the treatment assignment was found to be 

significant, the Cramer’s V indicated the strength of that significance. Cramer’s V values can 

range from 0 to 1. Classifications for Cramer’s V statistics utilized for this study were taken from 

Cohen’s suggestion (small = 0.1, medium = 0.3, large = 0.5). Using these benchmarks, all 

covariates with significant chi-square statistics were found to have small Cramer’s V values.  

An independent samples t –test was calculated to determine whether mean differences on 

the outcome variable of grade point average between the treated and control groups were 

statistically significant before matching. Simple mean differences between groups alone, both 

before and after an intervention, are not a sufficient indicator of impact of an intervention. 

However, this method of analyzing impact is typical and was included in the analysis as one 

indicator of potential matching success. The table below displays the findings from the 

independent samples t-test before matching.  

Table 10. Independent Samples t-test for GPA before match  

Table 10.      

Independent Samples t-test for GPA      

Group  N Mean  Standard 

Deviation  

t df p Mean Diff Standard Error 

Control 840 2.61 0.85 -2.607 1724 .009* -.107 .041 

Treated 886 2.72 0.85      
*Significant at the 0.05 alpha level 
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Findings from the independent samples t-test indicate a significant difference on the 

outcome variable final grade point average between the treated and control groups. More 

specifically, the mean grade point average of the control group is significantly less than the 

treated group by .107 points. This significant difference between groups provides evidence in 

support of utilizing the propensity score matching method.   

Initial Match  

The participants were matched using the MatchIt program in the R software. Matches 

were created using the most common methods, the Nearest Neighbor method, without 

replacement, using one-to-one matching with a caliper width of 0.2. The dataset included 1726 

students prior to the match, with 886 in the treated group and 840 in the control group. After the 

students were matched the sample included 1478 students, with 739 in both groups. Frequencies 

of the samples before and after they were matched are provided in the table below.  
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Table 11. Frequency of the Covariates before and after Match 

Table 11. 

Frequency of the Covariates before and after Match  

 

Covariate 

 Before Match 

N=1726 

After Match 

N=1478 

  Control Treated Control Treated 

Grade 8 472 445 398 404 

 9 368 441 341 335 

Gender Female 403 452 369 375 

 Male 437 434 370 364 

Ethnic Asian 40 28 26 24 

 Black 333 335 291 295 

 Hawaiian/Pacific 

Islander 

0 1 0 1 

 Hispanic 377 392 334 329 

 White 83 126 82 90 

 Native American 7 4 6 0 

Lunch No 66 112 58 59 

 Yes 774 774 681 680 

ELL No 515 580 469 478 

 Yes 325 306 270 261 

SWD No 729 802 665 662 

 Yes 111 84 74 77 

 

Matching without replacement, with the ratio of one-to-one and a caliper width of 0.2, 85.6% of 

the original sample was successfully matched and 14.4% had to be excluded (101 control and 

147 treated). The findings used to evaluate the success of the matching method, provided in the 

MatchIt software, are provided in the table below.   
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Table 12. Summary of Balance for Matched Data 

Table 12.   

Summary of Balance for Matched Data (N=1478)   

Covariate  Before Match 

Standardized Mean 

Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully  

Matched 

Excluded 

Overall  .02 .00 99.98% 85.6% 

(N=1478) 

14.4% 

(N=248) 

Grade .06 -.00 86.39%   

Gender -.03 -.00 73.29%   

Ethnic .16 -.00 95.74%   

Lunch -.05 -.00 97.17%   

ELL -.04 .00 70.68%   

SWD -.04 -.01 89.13%   

 

The matching process for this initial dataset of 1726 participants resulted in many 

matches and a substantial reduction in bias overall. The c-statistic was observed as a 

discrimination index of the logistic regression for how well the model can discriminate between 

observations at different levels of the outcome. The minimum value of a c-statistic is 0.5 and the 

maximum is 1.0. In their textbook, Hosmer and Lemeshow consider c-statistic values of 0.7 to 

0.8 to show acceptable discrimination, values of 0.8 to 0.9 to indicate excellent discrimination, 

and values of ≥0.9 to show outstanding discrimination. The c-statistic value in the unadjusted 

model was 0.576 and 0.512 in the adjusted model, both below the threshold for acceptable 

discrimination, yet the decrease in c-statistic indicates better prediction of the model after the 

match due to possible exclusion of outliers. These findings will serve as a “true score” of best 

possible indices as sample size is reduced and caliper width is varied in this study.  

To further evaluate the quality of the original match, the MatchIt software provides 

graphical representations of the distributions of the propensity scores before and after the match 

(e.g., jitter plots and histograms). The figure below is the jitter plot of the original match.  
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Figure 7. Jitter Plot of Original Data (N=1762) 

 

Jitter plots display the overall distribution of propensity scores in the treated and control 

groups. The size of each point is proportional to the weight given to that unit. The desired 

outcome of successful matching is to visually observe similar distributions of the propensity 

scores for the matched treated and control groups. In the figure above, you can see the 

distributions for the propensity scores prior to match for the treated subjects is heavily distributed 

to the right and the treated subjects are heavily distributed to the left. After the match, both 

groups have similar distributions of propensity scores, suggesting successful matches of the two 

groups. Another visual representation of the distribution of the propensity scores before and after 

the match is a histogram, provided below. 
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Figure 8. Histogram of the Original Data (N=1762) 

 

These histograms can be compared vertically in order to quickly assess the balance 

before and after matching have been completed. After matching, the histogram distributions of 

the propensity scores on the right are more similar than prior to matching, indicating successful 

matching.  

The following figures 9 through 12 display the distributions of the outcome variable, 

Final GPA, before and after the match of the original dataset.  
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Figure 9. Distribution of Final GPA Prior to Match 

 

Figure 10. Distribution of Final GPA Prior for Control 
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Figure 11. Distribution of Final GPA Prior Treated 

 

 

Figure 12. Distribution of Final GPA after Match 
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These figures display the distributions of the outcome variable before and after the match. 

All distributions are negatively skewed, with more students above a 3.0 GPA in the treated group 

(61.5%) compared to the control group (58.1%) prior to the match. After the match, the 

distribution of the outcome variable, Final GPA, is negatively skewed but more even distributed.  

After the match was completed for the initial analysis, an independent samples t-test was 

conducted again in order to estimate the possible treatment effect on cumulative grade point 

average. The table below displays the findings from the independent samples t-test after 

matching.   

Table 13. Independent Samples t-test for GPA after match 

Table 13.      

Independent Samples t-test for GPA      

Group  N Mean  Standard 

Deviation  

t df p Mean Diff Standard Error 

Control 739 2.59 0.87 -2.174 1476 .03* -.099 .046 

Treated 739 2.69 0.89      
*Significant at the 0.05 alpha level 

 

 Findings from the independent samples t-test after the match indicates a significant 

difference on the outcome variable, final grade point average, between the matched treated and 

control groups. The mean grade point average for the control group is significantly less than the 

treated by .11 points at the 0.05 alpha level. These findings will serve as a baseline for the 

following research questions:  
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Research Questions 1and 2: Limitations in Sample Size and Caliper Width 

How does propensity score matching perform with limitations in sample size as measured by 

bias reduction? What is the ideal caliper width used for propensity score matching when a 

sample is limited in size, as determined by bias reduction?  

Research questions 1 and 2 were completed using this same dataset provided by the 

school district. Four sample sizes (500, 400, 300, and 200) were randomly drawn from the 

original dataset and were matched with each of the four conditions of caliper widths (0.1, 0.2, 

0.3, and 0.6) for a total of 16 conditions. These conditions were replicated 100 times to increase 

the power and precision in the findings. The tables below display the means over all of the 

replications for the standardized differences in the means before and after the match, the balance 

improved (bias reduction), and the number of successful matches and exclusions, given the 

criterion selected.  

Table 14. Summary of Balance for Matched Data (N=500) 

Table 14.   

Summary of Balance for Matched Data (N=500)   

Caliper 

Width 

Before Match 

Standardized Mean 

Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

0.1 0.3138 0.0002 99.93% 
38.8% 

(N=194) 

61.2% 

(N=306) 

0.2 0.3303 0.0008 99.77% 
39.0% 

(N=195) 

61.0% 

(N=305) 

0.3 0.3279 0.0018 99.45% 
39.6% 

(N=198) 

60.4% 

(N=302) 

0.6 0.3047 0.0058 98.17% 
40.8% 

(N=204) 

59.2% 

(N=296) 

 

For the sample size of 500 you can see that regardless of the caliper width chosen, the 

balance improvement (or bias reduction) is all well above the acceptable level of 90%. The level 
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of balance improvement decreases as caliper width is widened, yet all are acceptable. Levels of 

balance improvement compare to that found in the original dataset matched (N=1478) with a 

balance improvement of 99.98%. For this dataset, this suggests that with samples of this size the 

choice of caliper width is insignificant because all have acceptable bias reduction. As expected 

as the caliper width becomes wider, the number of participants successfully matched increases, 

while the number of exclusions decreases. However, these numbers only slightly change when 

the caliper width is varied.  

Table 15. Summary of Balance for Matched Data (N=400) 

Table 15.   

Summary of Balance for Matched Data (N=400)   

Caliper 

Width 

Before Match 

Standardized Mean 

Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

0.1 0.3325 0.0002 99.92% 
37.8% 

(N=151) 

62.3% 

(N=249) 

0.2 0.3221 0.0008 99.77% 
38.5% 

(N=154) 

61.5% 

(N=246) 

0.3 0.3452 0.0025 99.33% 
38.8% 

(N=155) 

61.3% 

(N=245) 

0.6 0.3480 0.0092 97.53% 
40.3% 

(N=161) 

59.8% 

(N=239) 

 

The sample size of 400 has similar trends, with all possible caliper widths creating 

balance improvement levels that are deemed acceptable (>90%). These levels of balance are also 

all comparable to that found in the original dataset matched (N=1478) with a balance 

improvement of 99.98%. The same expected trend for caliper width related to number of 

participants successfully matched versus excluded is seen.  
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Table 16. Summary of Balance for Matched Data (N=300) 

Table 16.   

Summary of Balance for Matched Data (N=300)   

Caliper 

Width 

Before Match 

Standardized Mean 

Difference 

After Match 

Standardized 

Mean Difference 

Balance 

Improvement 

Successfully 

Matched 

Excluded 

0.1 0.3594 0.0003 99.92% 
35.7% 

(N=107) 

64.3% 

(N=193) 

0.2 0.3315 0.0008 99.75% 
36.7% 

(N=110) 

63.3% 

(N=190) 

0.3 0.3814 0.0028 99.29% 
37.3% 

(N=112) 

62.7% 

(N=188) 

0.6 0.3640 0.0078 97.99% 
39.7% 

(N=119) 

60.3% 

(N=181) 

 

This sample size of 300 also displays all possible caliper widths creating balance 

improvement levels that are deemed acceptable (>90%). The level of balance improvement 

decreases as caliper width is widened, yet all are acceptable. For this dataset, this suggests that 

with samples of this size the choice of caliper width is insignificant because all have acceptable 

bias reduction. These levels of balance are also all comparable to that found in the original 

dataset matched (N=1478) with a balance improvement of 99.98%. The same expected trend for 

caliper width related to number of participants successfully matched versus excluded is seen.  

Table 17. Summary of Balance for Matched Data (N=200) 

Table 17.   

Summary of Balance for Matched Data (N=200)   

Caliper 

Width 

Before Match 

Standardized Mean 

Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

0.1 0.4054 0.0004 99.88% 
33.5%  

(N=67) 

66.5% 

(N=133) 

0.2 0.4018 0.0013 99.69% 
35.0%  

(N=70) 

65.0% 

(N=130) 

0.3 0.4108 0.0037 99.13% 
35.5%  

(N=71) 

64.5% 

(N=129) 

0.6 0.4128 0.0146 96.77% 
37.5%  

(N=75) 

62.5% 

(N=125) 
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Unexpectedly, similar trends are again seen for this sample size of 200. All possible 

caliper widths for this sample size condition created balance improvement levels that are deemed 

acceptable (>90%). The levels of balance are all still comparable to that found in the original 

dataset matched (N=1478) with a balance improvement of 99.98%. The same expected trend for 

caliper width related to number of participants successfully matched versus excluded is seen for 

the sample size of 200. The figure below displays the overall bias reduction for all conditions of 

sample size and caliper width.  

 
Figure 13. Bias Reduction by Sample Size and Caliper Width 

 

As you can see in the figure, reduction in bias performs similarly for each condition of 

reduction in bias and caliper width until you get to the widest caliper of 0.6. At this point, the 

bias reduction varies from 98.17% for a sample size of 500 to 96.77% for a sample size of 200. 

Although each caliper width provided balance improvement at acceptable levels, the widest 

caliper one could chose before much dispersion would be 0.3.  

Although the success of a matching method is not evaluated by the number of successful 

matches or exclusions, this information becomes more pertinent as samples are limited in order 
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to have a powerful comparison. The figures below display the number of successful matches and 

exclusions over all sample sizes and caliper widths. These reveal the trend discusses previously 

of greater retention of participants with wider calipers.  As expected the greater the sample size, 

the greater the number of successful matches and fewer exclusions.  

 

 

 
Figure 14. Match Success by Sample Size and Caliper Width 

 

 
Figure 15. Exclusions by Sample Size and Caliper Width 
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The c-statistic is frequently used to assess the quality of the propensity scores and 

goodness of fit, in addition to the standardized mean bias reduction. It is a measure of the 

predictive ability of the model by calculating the proportion of the pairs in which the treated 

subject had a higher estimated propensity score than the control subject (Harrell, 2001). Values 

for this measure range from 0.5 to 1.0. A value of 0.5 indicates that the model is no better than 

chance at making a prediction of membership in a group, and a value of 1.0 indicates that the 

model perfectly identifies those within a group and those not. Models are typically considered 

reasonable when the c-statistic is higher than 0.7 and strong when c exceeds 0.8 (Hosmer et al., 

2000).  The mean c-statistic after the match for all of the 16 conditions is provided in the table 

below.  

Table 18. Mean c-statistic by Sample Size and Caliper Width 

Table 18.  

Mean c-statistic by Sample Size and Caliper Width  

Caliper 

Width 

Sample Size 

 500 400 300 200 

0.1 0.5211 0.5238 0.5258 0.5331 

0.2 0.5270 0.5278 0.5303 0.5485 

0.3 0.5388 0.5380 0.5443 0.5526 

0.6 0.5450 0.5487 0.5528 0.5680 

 

The c-statistic for the original dataset was considered below the threshold for what is 

considered to be reasonable or strong prior to matching (c =.576). After randomly reducing the 

sample size for the four conditions and matching across the four caliper conditions, the mean c-

statistic ranged from 0.52 to 0.57. These values remain below the threshold of what is considered 

reasonable or strong for predictive power of a model by Hosmer and colleagues (2000). 

However, it is important to note that using a wider caliper width consistently increased the c-

statistic for this study. These findings are consistent with previous studies that state that wider 
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caliper widths increase the power of the estimated treatment effect by decreasing the variance. 

As calipers are widened the subjects matched are less similar and the higher the proportion of the 

pairs in which the treated subject had a higher estimated propensity score than the control 

subject. The figure below further reveals this trend. 

 

 
Figure 16. Mean c-statistic by Sample Size and Caliper Widths 
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associations were designated based on the associations in the real dataset in the previous 

questions. The unstandardized beta coefficients chosen for each relationship to outcome were 

defined as no relationship = 0, weak relationship = .20, moderate relationship = .40, and strong 

relationship = .60. The magnitude of the odds ratios chosen for association of the covariates to 

the treatment assignment were defined as no relationship = 1, weak relationship = 1.44, moderate 

= 2.47, strong = 4.25. Based on the findings in the previous study, it was decided to use a caliper 

width of 0.3 given that it maintained similar bias reduction regardless of sample size. However, 

for all sample sizes the caliper width of 0.3 was too stringent and the simulation would not 

converge. The convergence rates for each sample size were: 500 = 49%, 400 = 67%, 300 = 52%, 

and 200 = 6%. The caliper width of 0.6 was attempted and displayed no convergence issues with 

these limited sample sizes. Therefore, a caliper width of 0.6 was used to answer this research 

question. Findings from the previous questions indicated that this caliper width still had 

acceptable levels of bias reduction regardless of sample size. The “true” treatment effect of 0.11, 

based on the original dataset, was used in this simulation to evaluate how well the treatment 

effect was estimated given the varied covariate relationships and sample size. These conditions 

were replicated 100 times to increase the power and precision in the findings. Tables 19 through 

22 below display the means over all of the replications for the standardized differences in the 

means before and after the match, the balance improved, and the number of successful matches 

and exclusions, given the criterion selected. The covariate associations are stated as the 

magnitude of the relationship to the outcome and then the relationship to treatment second (i.e., 

strong_none means a strong covariate/DV relationship and not covariate/treatment relationship). 
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Table 19. Summary of Balance for Simulated Match (N=500) 

Table 19.   

Summary of Balance for Simulated Match (N=500)   

 Before Match 

Standardized 

Mean Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

strong_none 
0.0672 0.0048 94.38%* 

28.8%   

(N=144) 

71.2% 

(N=356) 

strong_weak 
0.3625 0.0478 87.20% 

41.0%   

(N=205) 

59.0% 

(N=295) 

strong_mod 
0.8457 0.1693 80.22% 

36.4%   

(N=182) 

63.6% 

(N=318) 

none_strong 
1.2596 0.3336 73.68% 

31.6% 

(N=158) 

68.4% 

(N=342) 

weak_strong 

 
1.2645 0.3361 73.61% 

31.8% 

(N=159) 

68.2% 

(N=341) 

mod_strong 

 
1.2591 0.3360 73.50% 

31.6% 

(N=158) 

68.4% 

(N=342) 
*Defined as effective bias reduction in the literature 

All replications were completed with a caliper width = 0.6 

 

Table 20. Summary of Balance for Simulated Match (N=400) 

Table 20.   

Summary of Balance for Simulated Match (N=400)   

 Before Match 

Standardized 

Mean Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

strong_none 
0.0721 0.0049 94.41%* 

27.3% 

(N=109) 

72.8% 

(N=291) 

strong_weak 
0.3734 0.0454 88.28% 

40.0% 

(N=160) 

60.0% 

(N=240) 

strong_mod 
0.8369 0.1609 81.04% 

36.3% 

(N=145) 

63.8% 

(N=255) 

none_strong 
1.2676 0.3293 74.22% 

31.3% 

(N=125) 

68.8% 

(N=275) 

weak_strong 
1.2682 0.3309 74.09% 

31.3% 

(N=125) 

68.8% 

(N=275) 

mod_strong 
1.2576 0.3313 74.00% 

31.5% 

(N=126) 

68.5% 

(N=274) 
* Defined as effective bias reduction in the literature 

All replications were completed with a caliper width = 0.6 
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Table 21. Summary of Balance for Simulated Match (N=300) 

Table 21.   

Summary of Balance for Simulated Match (N=300)   

 Before Match 

Standardized 

Mean Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

strong_none 
0.0978 0.0070 94.54%* 

26.0% 

(N=78) 

74.0% 

(N=222) 

strong_weak 
0.3785 0.0444 89.01% 

38.7% 

(N=116) 

61.3% 

(N=184) 

strong_mod 
0.8292 0.1539 81.79% 

36.0% 

(N=108) 

64.0% 

(N=192) 

none_strong 
1.2546 0.3139 75.24% 

31.0% 

(N=93) 

69.0% 

(N=207) 

weak_strong 

 
1.2585 0.3168 75.06% 

31.0% 

(N=93) 

69.0% 

(N=207) 

mod_strong 

 
1.2542 0.3123 75.40% 

31.0% 

(N=93) 

69.0% 

(N=207) 
* Defined as effective bias reduction in the literature 

All replications were completed with a caliper width = 0.6 

 

Table 22. Summary of Balance for Simulated Match (N=200) 

Table 22.   

Summary of Balance for Simulated Match (N=200)   

 Before Match 

Standardized 

Mean Difference   

After Match 

Standardized 

Mean Difference  

Balance 

Improvement 

Successfully 

Matched 

Excluded 

strong_none 
0.1208 0.0081 94.78%* 

24.5% 

(N=49) 

75.5% 

(N=151) 
strong_weak 

0.3727 0.0393 90.40% 
36.0% 

(N=72) 

64.0% 

(N=128) 
strong_mod 

0.8612 0.1509 83.12% 
34.5% 

(N=69) 

65.5% 

(N=131) 
none_strong 

1.2536 0.2996 76.49% 
30.5% 

(N=61) 

69.5% 

(N=139) 
weak_strong 

1.2697 0.3119 75.75% 
30.5% 

(N=61) 

69.5% 

(N=139) 
mod_strong 

1.2624 0.3034 76.38% 
30.5% 

(N=61) 

69.5% 

(N=139) 
* Defined as effective bias reduction in the literature 

All replications were completed with a caliper width = 0.6 
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The findings for covariate association to outcome and to treatment were again consistent 

across all conditions of the sample sizes for a reduction in bias. For all of the replications across 

sample sizes, the mean balance improvement was best for the covariates that were strongly 

related to outcome. These findings coincide with the recommendation from Rubin and Thomas 

to include all variables thought to be related to outcome, regardless of the relation to treatment 

(1996). The covariate relationship magnitude strong_none (strong relationship to DV_no 

relationship to treatment) displayed the best overall mean bias reduction across sample size 

conditions. The covariate magnitude selection that had the worst balance improvement for most 

sample sizes was mod_strong (moderate relationship to DV_strong relationship to treatment). 

For the smallest sample size of 200, the relationship weak_strong (weak relationship to 

DV_strong relationship to treatment) was the worst.  The findings by Brookhart and colleagues 

that covariates that have a weak relationship to DV and a strong relationship to treatment (i.e., 

weak_strong) are confounders that should be eliminated in sample sizes smaller than 500 was 

found in this study. In addition, covariates that had a mod_strong relationship (moderate to 

DV_strong to treatment) also increased levels of bias to a similar level. Using the same criterion 

for what is considered effective bias reduction in the literature (balance improvement above 

90%), only the covariate relationship strong_none was able to be deemed effective matching for 

all sample sizes. The association strong_weak was close to achieving 90% balance improvement 

across all sample sizes. The figure below further reveals this trend.  
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Figure 17. Bias Reduction by Sample Size for Simulation 

 

The mean c-statistic for the simulated dataset was calculated across the conditions for 

each of the replications to assess the predictive power of the models. This statistic provides 

information for how effective the model is at predicting which subjects are in the treated group, 

based on the covariates. The table below displays the mean c-statistic for each of the selected 

associations for covariates to dependent variable and to treatment across each of the randomly 

selected sample sizes.  
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Table 23. Summary of Mean c-statistics by Sample Size for Simulation 

Table 23.  

Summary of Mean c-statistics by Sample Size for Simulation    

DV/Tx Sample Size  

 500 400 300 200 

strong_none 0.7688* 0.7699* 0.7661* 0.7703* 

strong_weak 0.7806* 0.7806* 0.7795* 0.7749* 

strong_mod 0.7724* 0.7718* 0.7747* 0.7725* 

none_strong 0.6407 0.6384 0.6395 0.6424 

weak_strong 0.6813 0.6847 0.6823 0.6842 

mod_strong 0.7272* 0.7230* 0.7261* 0.7289* 
* Defined as favorable predictive power in the literature  

**Defined as strong predictive power in the literature  

All replications were completed with a caliper width = 0.6 

 

The mean c-statistic is fairly stable across all randomly selected sample sizes. The figure below 

displays the overall trend for each covariate relationship.  

 

 
Figure 18. Summary of Mean c-statistics by Sample Size for Simulation 

The c-statistics ranged from 0.64 to 0.78, staying consistent across the reductions in 

sample size. The simulation with the association strong_weak had the highest predictive power, 

while the model with the association none_strong had the weakest. These findings were true for 

all sample sizes selected. Using the criteria set forth by Hosmer and colleagues (2000) that a c-
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statistic higher than 0.70 is considered favorable and greater than 0.80 strong, all covariate 

selections would be deemed favorable except for the relationship none_strong and weak_strong. 

The c-statistics for these magnitudes were just under favorable across the sample sizes selected, 

with the average being 0.64 and 0.68 respectively. These findings suggest that covariates that are 

not associated or only weakly associated to the dependent variable could decrease the predictive 

power of the matching model, regardless of sample size. Further covariates that are strongly 

related to the dependent variable have high predictive power in the model, regardless of 

association to the treatment or sample size. Covariates that are strongly related to the treatment 

require at least a moderate association to the dependent variable to be deemed favorably 

predictive, regardless of sample size.  

 A further analyses of the covariate relationship to outcome and treatment was evaluated 

the bias in estimating the “true” treatment effect for matched and unmatched groups. The figure 

below displays the findings for all sample sizes and covariate associations with the caliper width 

of 0.6.  
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Figure 19. Bias in Estimated Treatment Effect for Matched and Unmatched 

 

 Findings for estimating the “true” treatment effect are again consistent across sample 

sizes for reduction in bias. These results display that the relationships strong_none and 

none_strong estimate the treatment effect the closest and without bias at the extremes regardless 

of being matched, as expected. The relationships that displayed the greatest reductions in bias 
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when estimating the treatment effect after the match (as compared to prior to being matched) 

were strong_moderate and moderate_strong across all sample sizes. The covariate associations 

strong_weak and weak_strong displayed similar, smaller reductions in bias when estimating the 

treatment effect after matching.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

Chapter Five – Discussion 

Overall, limitations in sample size were assessed as it related to covariate selection and 

caliper width. The original dataset served as a baseline or “true score” for best possible bias 

reduction. Sample sizes were randomly reduced from this original dataset to assess bias 

reduction as it related to caliper width. A Monte Carlo simulation was created based on the 

original dataset to assess covariate selection as it related to the strength of the relationship to the 

treatment and to the outcome with the same limitations in sample size and a set caliper width of 

0.6. These analyses were replicated 100 times in the R software program to increase power and 

precision of the findings. A complete copy of the R code used to complete this analysis is 

available in Appendix C.  

Sample Size 

Overall, the findings for sample size reduction are surprising. Contrary to the hypothesis 

that with reduction in sample size the balance improvement would drop below what is 

considered effective bias reduction, the reduction in bias (or balance improvement) ranged from 

96.77% to 99.93% for the sample sizes selected. In the literature, effective bias reduction in the 

standardized mean differences less than ten percent after matching was considered effective. For 

this particular sample, randomly reducing the sample to even 200 didn’t produce matches that 

were considered ineffective for reduction in bias with the varying caliper widths.  

Caliper Width 

The overall findings for all of the 16 conditions were expected for calipers. A narrower 

caliper width resulted in reducing bias by reducing the systematic differences in the treated and 
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control groups, but also reduced the final matched sample size. Using a wider caliper width 

retained more subjects, but increased the bias and systematic differences in the two groups with 

less overall balance improvement in the overall design. As discussed previously with sample 

sizes that are limited, the increased variance in the estimated treatment effect will affect the 

precision of the estimated treatment effect.  

The size of the caliper is determined a priori by the investigator. Most researchers use a 

caliper width of 0.2 standard deviations of the logit of the propensity score due to research 

suggesting that this caliper size would reduce 99% of the bias in propensity scores (Austin, 2008, 

2009; Austin et al., 2007) while others have used a caliper width of 0.6 as this same research 

stated this caliper width would reduce 90% of the bias (Ayanian et al., 2002). The findings of 

this research found that with sample sizes less than 500 the most commonly used caliper width of 

0.2 effectively reduced the bias consistently around 99.7%, confirming the previous findings by 

Austin and his colleagues. However, in this sample the caliper width of 0.6 consistently reduced 

bias by at least 96.77%. These findings show greater reduction in bias with this wider caliper 

width than that was previously noted by Ayanian and colleagues in 2002. At no point, over the 

16 conditions selected for this study did the reduction in bias fall below the ten percent reduction 

that was deemed as ineffective matching from the literature review. This suggests that with 

limited sample sizes below 500, researchers could consider a wider caliper in order to retain 

more subjects and still be able to stay within what is deemed as effectively removing bias in the 

matched sample, when using the same matching criterion that was utilized in this study. A 

notable finding is that caliper widths provided similar levels of bias reduction across all sample 

size conditions until the widest sample size of 0.6. At this point, the bias reduction varies from 

98.17% for a sample size of 500 to 96.77% for a sample size of 200. Although each caliper width 
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provided balance improvement at acceptable levels, the widest caliper one could chose before 

much dispersion would be 0.3. This suggests that researchers could consider the minimum 

caliper width of 0.3 when limited by sample size, as they performed similarly.  

Covariate Selection 

Propensity score matching collapses all covariates into one predictive scalar, regardless 

of the strength of the association to outcome or treatment. This analysis was completed to 

determine the optimal covariate relationships to outcome and to treatment for limited sample 

sizes. For all of the replications across sample sizes, the mean balance improvement was best for 

the covariate relationship magnitude strong_none (strong relationship to DV_no relationship to 

treatment). The covariate magnitude selection that had the worst balance improvement for most 

sample sizes was mod_strong (moderate relationship to DV_strong relationship to treatment). 

For the smallest sample size of 200, the relationship weak_strong (weak relationship to 

DV_strong relationship to treatment) was the worst.  The same findings by Brookhart and 

colleagues that covariates that have a weak relationship to DV and a strong relationship to 

treatment (i.e., weak_strong) are confounders that should be eliminated in sample sizes smaller 

than 500 was also found in this study. In addition, covariates that had a mod_strong relationship 

(moderate to DV_strong to treatment) also increased levels of bias to a similar level yet the c-

statistic showed favorable predictive power. Using the same criterion for what is considered 

effective bias reduction in the literature (balance improvement above 90%), only the covariate 

relationship strong_none was able to be deemed effective matching for all sample sizes. The 

association strong_weak was close to achieving 90% balance improvement across all sample 

sizes. These findings suggest that ideal covariates are those that are strongly related to the 
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outcome variable and only weakly or moderately related to treatment when sample sizes are 

limited. Inclusion of covariates that are only slightly predictive of the outcome should be used 

with caution as they can reduce the efficiency of the relevant covariates.  

Limitations and Future Research  

There are certain limitations to the current study. The main objective of this study was to 

evaluate the effectiveness of propensity score matching at reducing bias with limited sample size 

both in a real dataset and in an ideal scenario created using a Monte Carlo simulation study. The 

current study only examined the matching methodology using nearest neighbor or greedy 

matching. There is also optimal matching in which the objective is to find the matched pairs with 

the smallest average distance across all pairs. The two options were found to be comparable in 

terms of producing a balanced matched sample, yet nearest neighbor is the prevailing approach. 

Optimal matching uses the smallest average distance across all pairs and does not use caliper 

widths. Therefore, the findings of this study regarding caliper widths are not applicable to 

optimal matching. Further, the current study conducted matching using one-to-one without 

replacement. There are also the matching methods many-to-one or many-to-many. These 

methods were not discussed as they are rarely used. Future research should include all matching 

methods.  

A possible limitation in the current study is in the basic method of creating the matched 

groups. This study used logistic regression for creating the propensity score as it is the most 

commonly used approach. There are other possible methods for calculating a propensity score 

such as the probit model, discriminant function analysis (DFA) and boosted regression trees. 
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Future research should include other methods of calculating a propensity score when analyzing 

the possible effects of limited sample size.  

 The sample sizes and caliper widths selected for the current study were chosen based on a 

literature review of information that is lacking or frequency of use. Findings indicate that the 

threshold for what is deemed acceptable bias reduction lies in the caliper width and not 

necessarily in limitations in sample size. However, future research should find the true breaking 

point for both sample size and caliper width instead of preselected categories based on bias 

reduction. Minimum sample sizes less than 100 were originally conditions for this study, 

however, sample sizes less than 200 would not converge. Sample sizes were iteratively tried on 

for this particular sample and convergence was successful with approximately 185 subjects. 

Further, caliper widths 0.1, 0.2, and 0.3 behaved similarly for all sample size conditions for this 

dataset until the width of 0.6. Although the amount of bias reduction was acceptable for a caliper 

width of 0.6 for all sample sizes, future research should locate the exact caliper width between 

0.3 and 0.6 in which this dispersion of bias reduction amongst sample sizes first occurs.  Further, 

research on the exact breaking point at which caliper widths become too wide to successfully 

reduce bias should be conducted.  
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Appendix C 

####Master File PSM Code for "true/full" match data 
####Last edited 20151016 
 
setwd("C:/Users/stephani.howarter/Desktop/Master File PSM/data") 
dir() 
data1 <- read.table("Master File PSM.csv", header=TRUE, sep=",") 
head(data1, 5) 
 
#####calculate descriptive stats for the covariates before matching 
####################################################################### 
 
#####calculate frequencies for covariates  for "nontreated" group 
data7 <- data1[data1$GROUP== 0,] 
table(data7$Grade) 
table(data7$Gender) 
table(data7$Ethnic) 
table(data7$Lunch) 
table(data7$SWD) 
table(data7$ELL) 
rm(data7) 
########################################################################    
           
 
######calculate frequencies for covariates for "treated" group 
data7 <- data1[data1$GROUP== 1,] 
table(data7$Grade) 
table(data7$Gender) 
table(data7$Ethnic) 
table(data7$Lunch) 
table(data7$SWD) 
table(data7$ELL) 
rm(data7) 
######################################################################## 
 
 
####end  
####chi-square test and cramer V to show group differences in covariates before matching 
####criteria of cramer V: small, 0.1 medium 0.3, large 0.5 
######################################################################## 
 
z1=chisq.test(data1$GROUP, data1$Grade, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$Grade, correct=FALSE)$statistic 
cramer.of.Grade= sqrt(as.numeric(z)/1726) 
cramer.of.Grade 
# calculate the cramer V between "GROUP before match" and Grade 
 
z1=chisq.test(data1$GROUP, data1$Gender, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$Gender, correct=FALSE)$statistic 
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cramer.of.Gender= sqrt(as.numeric(z)/1726) 
cramer.of.Gender 
# calculate the cramer V between "GROUP before match" and gender 
 
z1=chisq.test(data1$GROUP, data1$Ethnic, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$Ethnic, correct=FALSE)$statistic 
cramer.of.Ethnic= sqrt(as.numeric(z)/1726) 
cramer.of.Ethnic 
# calculate the cramer V between "GROUP before match" and Ethnic 
 
z1=chisq.test(data1$GROUP, data1$Lunch, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$Lunch, correct=FALSE)$statistic 
cramer.of.Lunch= sqrt(as.numeric(z)/1726) 
cramer.of.Lunch 
# calculate the cramer V between "GROUP before match" and Lunch 
 
z1=chisq.test(data1$GROUP, data1$SWD, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$SWD, correct=FALSE)$statistic 
cramer.of.SWD= sqrt(as.numeric(z)/1726) 
cramer.of.SWD 
# calculate the cramer V between "GROUP before match" and SWD 
 
z1=chisq.test(data1$GROUP, data1$ELL, correct=FALSE) 
z1 
z=chisq.test(data1$GROUP, data1$ELL, correct=FALSE)$statistic 
cramer.of.ELL= sqrt(as.numeric(z)/1726) 
cramer.of.ELL 
# calculate the cramer V between "GROUP before match" and ELL 
#####end 
 
################################################################################ 
 
######################### library the packages need for PSM 
library(MASS) 
library(digest) 
library("MatchIt") 
library(VIM) 
################################################################################ 
 
######create the criteria for distance for PSM, CaliperValue =.2 
################################################################################ 
glmResult <- glm(GROUP ~ Grade + Gender + Ethnic + Lunch +SWD + ELL, binomial, 
data= data1) 
 
a= predict(glmResult,data1, type="response") 
b= 1-a  
LogistScore= log((a/b),10) 
CaliperValue=sqrt(var(LogistScore))*0.2 
 
################################################################################ 
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#####MatchIt for PSM 
################################################################################ 
m.out <-matchit(GROUP ~ Grade + Gender + Ethnic + Lunch + SWD + ELL, data= data1, method= "nearest", caliper= 
CaliperValue, distance= "logit", m.order="largest", replace = FALSE, ratio=1) 
 
#### GROUP is the membership variable (1= treatment group, 0= control group 
#### X is the covariate variables used to match the data 
#### method= nearest neighbor matching technique. Default method of MatchItpackage. 
#### caliper value should be set to be 0.2* S.D of propensity score according to literaure calculated as CaliperValue 
#### ratio = 1 means 1:1 matching; ratio = 2 means 2 nontreated matched to one treated 
 
#######report PSM results, and put result into the file call match.data1 
m.out   
summary(m.out) 
match.data1 <- match.data(m.out) 
 
#### Provides which T matched to which C  
m.outmatrix <- m.out$match.matrix  # This gives us the matched matrix 
m.outmatrix 
 
################################################################################# 
#####will provide QQ plot, jitter plot, and histogram 
 
plot(m.out) 
plot(m.out, type = "jitter") 
plot(m.out, type="hist") 
################################################################################# 
 
#####extract matched data set & check; writes csv file "matched" to folder 
match.data1 <- match.data(m.out) 
 
## check that it has the expect number of rows 
nrow(match.data1) 
 
## export the data to a CSV file 
write.table(match.data1, file = "matched.csv", sep = ",", row.names = FALSE) 
 
################################################################################## 
 
#####install package to display C statisics before and after matching 
 
library(rms) 
################################################################################## 
 
#####displays c stat before matched  
lrm(formula = GROUP ~ Grade + Gender + Ethnic + Lunch +SWD + ELL, data=data1) 
 
#####displays c stat after matched; successful match = drop in c stat 
lrm(formula = GROUP ~ Grade + Gender + Ethnic + Lunch +SWD + ELL, data= match.data1) 
 
################################################################################## 
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#####calculate the descriptive stats for covariates after matching 
################################################################################## 
 
#####calculate freq for covariates for nontreated group after match 
data7 <- match.data1[match.data1$GROUP== 0,] 
table(data7$Grade) 
table(data7$Gender) 
table(data7$Ethnic) 
table(data7$Lunch) 
table(data7$SWD) 
table(data7$ELL) 
rm(data7) 
################################################################################## 
 
#####calculate freq for covariates for treated group after match  
data7 <- match.data1[match.data1$GROUP== 1,] 
table(data7$Grade) 
table(data7$Gender) 
table(data7$Ethnic) 
table(data7$Lunch) 
table(data7$SWD) 
table(data7$ELL) 
rm(data7) 
################################################################################## 
 
#####use the cramer V to show that group difference in covariates are small after matching 
#####criteria of cramer V: small, 0.1 medium 0.3, large 0.5 (Cohen) 
################################################################################## 
 
z1=chisq.test(match.data1$GROUP, match.data1$Grade, correct=FALSE) 
z1 
z=chisq.test(match.data1$GROUP, match.data1$Grade, correct=FALSE)$statistic 
cramer.of.Grade= sqrt(as.numeric(z)/1478) 
cramer.of.Grade 
# calculate the cramer V between "GROUP after match" and Grade 
 
z1=chisq.test(match.data1$GROUP, match.data1$Gender, correct=FALSE) 
z1 
z=chisq.test(match.data1$GROUP, match.data1$Gender, correct=FALSE)$statistic 
cramer.of.Gender= sqrt(as.numeric(z)/1478) 
cramer.of.Gender 
# calculate the cramer V between "GROUP after match" and gender 
 
z1=chisq.test(match.data1$GROUP, match.data1$Ethnic, correct=FALSE) 
z1 
z=chisq.test(match.data1$GROUP, match.data1$Ethnic, correct=FALSE)$statistic 
cramer.of.Ethnic= sqrt(as.numeric(z)/1478) 
cramer.of.Ethnic 
# calculate the cramer V between "GROUP after match" and Ethnic 
 
z1=chisq.test(match.data1$GROUP, match.data1$Lunch, correct=FALSE) 
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z1 
z=chisq.test(match.data1$GROUP, match.data1$Lunch, correct=FALSE)$statistic 
cramer.of.Lunch= sqrt(as.numeric(z)/1478) 
cramer.of.Lunch 
# calculate the cramer V between "GROUP after match" and Lunch 
 
z1=chisq.test(match.data1$GROUP, match.data1$SWD, correct=FALSE) 
z1 
z=chisq.test(match.data1$GROUP, match.data1$SWD, correct=FALSE)$statistic 
cramer.of.SWD= sqrt(as.numeric(z)/1478) 
cramer.of.SWD 
# calculate the cramer V between "GROUP after match" and SWD 
 
z1=chisq.test(match.data1$GROUP, match.data1$ELL, correct=FALSE) 
z1 
z=chisq.test(match.data1$GROUP, match.data1$ELL, correct=FALSE)$statistic 
cramer.of.ELL= sqrt(as.numeric(z)/1478) 
cramer.of.ELL 
# calculate the cramer V between "GROUP after match" and ELL 
 
 
############################################################################################# 
 
#### Q1Q2 Howarter  
#### Last edited 20151029 
 
#### Clear the workspace 
rm(list = ls()) 
 
getwd() 
setwd("C:/Users/stephani.howarter/Desktop/Master File PSM/data") 
dir() 
dat <- read.table("Master File PSM.csv", header=TRUE, sep=",") 
str(dat) 
head(dat) 
colnames(dat) 
summary(dat) 
 
#### Load required libraries 
library(MASS) 
library(digest) 
library(MatchIt) 
library(rms) 
library(rockchalk) 
############################################################################### 
#### Function that creates the criteria for distance for PSM with caliper=0.2 
#### will compute the c-statistics from orignal and matched  
#### Note: dat is the original data  
###browser() to step by step view pulls 
createPSMcrit <- function(dat, set_caliper){  
   
  ####browser() 
  glmResult <- glm(GROUP ~ Grade + Gender + Ethnic + Lunch +SWD + ELL,  
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                   family = binomial, data= dat) 
   
  #### Compute a, b, LogistScore, and CaliperValue  
  a <- predict(glmResult, dat, type = "response") 
  b <- 1 - a 
  LogistScore <- log((a/b), 10) 
  CaliperValue <- sqrt(var(LogistScore)) * set_caliper 
   
  #### Call matchit to do the PSM 
   
  m.out <- matchit(GROUP ~ Grade + Gender + Ethnic + Lunch + SWD + ELL, 
                   data = dat, method = 'nearest', caliper = CaliperValue, 
                   distance = 'logit', ratio = 1, replace = FALSE)  
   
  #### Saves the summary of m.out as an object  
  get_m.out_summary <- summary(m.out, standardize = TRUE) 
   
  #### Get the data from sum.out 
   
  bias_std<- unlist(c(get_m.out_summary$sum.all[1,4, drop=TRUE],  
                               get_m.out_summary$sum.matched[1, 1:4, drop = TRUE], 
                               get_m.out_summary$reduction[1,1, drop=TRUE],  
                               get_m.out_summary$nn[2,1, drop =TRUE])) 
   
   
  #### Get the output data set 
  m.out_data <- match.data(m.out) 
   
  #### Compare matched and unmatched data 
  unmatched <- lrm(GROUP ~ Grade + Gender + Ethnic + Lunch + SWD + ELL, data = dat)  
  matched <- lrm(GROUP ~ Grade + Gender + Ethnic + Lunch + SWD + ELL, data = m.out_data)   
   
  #### Get the C statistics from matched and unmatched 
  c_unmatched <- unmatched$stats['C'] 
  c_matched <- matched$stats['C'] 
   
    
  #### Return the difference 
  ####out_list <- list(diff, bias_std) 
  out_list <- list(c_matched, bias_std) 
} 
#############################################################################################
## 
#### Function runs the simulation  
runQ1Q3simulation <- function(row, input_data, cond_mat, n_reps){  
  SS_use <- cond_mat[row, 1] 
  caliper_use <- cond_mat[row, 2] 
   
  #### Create c-dif storage vector 
  ####c_dif_out <- rep(NA, length = n_reps) 
  c_matched_out <- rep(NA, length = n_reps) 
   
  #### Create standardized bias list of matrices 
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  bias_mat <- matrix(NA, nrow = n_reps, ncol = 7) 
  colnames(bias_mat) <- c("Mean Diff","Means Treated", "Means Control", "SD Control", "Mean Diff", "Mean Diff.", 
"Matched") 
   
  #### For loop over the number of replications 
  for(i in 1:n_reps){ 
    #### Get pick index  
    pick_index <- sample(x = 1:nrow(input_data), size = SS_use, replace = FALSE) 
     
    #### Get a random selection of rows 
    ran_samp <- input_data[pick_index, ] 
     
    #### Run the createPSMcrit function  
    out_list <- createPSMcrit(dat = ran_samp, set_caliper = caliper_use) 
     
    #### Note first element of out_list corresponds to c-dif and second 
    #### element corresponds to the bias matrix 
    ####c_dif_out[i] <- out_list[[1]] 
    
    c_matched_out[i] <- out_list[[1]] 
    bias_mat[i, ] <- out_list[[2]] 
     
  }  
  
#############################################################################################
## 
  #### End for loop over replications 
   
  #### Return a list 
  ###list(c_dif_out, bias_mat) 
  list(c_matched_out, bias_mat) 
} 
####Total number of rows to sample without replacement  
totalN <-nrow(dat) 
 
####Sample sizes to sample from 
sampSizes <- c(500,400,300,200) 
 
####Create List of caliper values 
caliper_vector <- c(0.1,0.2,0.3,0.6) 
 
####Create conditions matrix using Sampsizes and calip_vector 
condsMat <- expand.grid(SS = sampSizes, caliper = caliper_vector) 
####Number of times to replicate 
nReps <- 100 
 
set.seed (062103) 
 
big_list_out <- lapply(1:nrow(condsMat), runQ1Q3simulation,  
                       input_data = dat,  
                       cond_mat = condsMat,  
                       n_reps = nReps) 
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####Note elements of the list correspond to condsMat 
 
#### Removes scientific notation 
options(scipen=999) 
 
#### To get mean of the c stats 
c_stat_list <- list() 
for(i in 1:length(big_list_out)){ 
  c_stat_list[[i]] <- big_list_out[[i]][[1]] 
} 
mean_c_stats <- lapply(c_stat_list, mean) 
 
#### to make a vector use unlist(mean_c_stats) 
cbind(condsMat, unlist(mean_c_stats)) 
 
#### To get means of bias mat 
bias_mat_list <- list() 
for(i in 1:length(big_list_out)){ 
  bias_mat_list[[i]] <- big_list_out[[i]][[2]] 
} 
means_bias_mat <- lapply(bias_mat_list, colMeans) 
 
means_bias_mat 
 
############################################################################################# 
 
#### Q3 Howarter  
#### Last edited 201511101 
 
## Clear the workspace 
rm(list = ls()) 
 
setwd("C:/Users/stephani.howarter/Desktop/Master File PSM/data") 
dir() 
 
library(MASS) 
library(digest) 
library(mvtnorm) 
library(MatchIt) 
library(rms) 
 
####plot packages 
####library(ggplot2) 
####library(tidyr) 
####library(dplyr) 
####library(plyr) 
 
############################################################################################# 
############################################################################################# 
############################################################################################# 
 
## Function to create vector with the necessary relationships for covar to Treatment and DV 
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createCovRelations <- function(covStr){ 
  ## Series of if else statements to get the conditions 
  if(covStr == "strong_none"){ 
     
    out <- c(Coef = .6, OR = 1) 
     
  } else if(covStr == "strong_weak"){ 
     
    out <- c(Coef = .6, OR = 1.44) 
     
  } else if(covStr == "strong_mod"){ 
     
    out <- c(Coef = .6, OR = 2.47) 
     
  } else if(covStr == "none_strong"){ 
     
    out <- c(Coef = 0, OR = 4.25) 
     
  } else if(covStr == "weak_strong"){ 
     
    out <- c(Coef = .2, OR = 4.25) 
     
  } else if(covStr == "mod_strong"){ 
     
    out <- c(Coef = .4, OR = 4.25) 
     
  } else { 
     
    stop("You used something that you should not have") 
     
  } 
   
  cov_vector <- out 
  cov_vector  
} 
 
## Function to makeData. The function takes the cov_vector from  
## createCovRelations function, the sample size, and the treatment 
## effect (the default value is 0.5, true treatment effect = .11).  
## The function returns a data frame with y, x, and treat for use in  
## createPSMcrit function 
makeData <- function(cov_vector, sampSize, trt_effect = .11){ 
  require(mvtnorm) 
  Coef <- cov_vector["Coef"] 
  OR <- cov_vector["OR"] 
  ## Generate x from standard normal 
  x <- rnorm(sampSize) 
  ## propensity score stuff 
  f <- log(OR) * x 
  probs <- exp(f)/(1 + exp(f)) 
  treat <- rbinom(sampSize, 1, probs) 
  ## Generate the y values 
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  y <- Coef * x + trt_effect * treat + rnorm(sampSize, 0, .5) 
  ## Create data frame to output 
  out_df <- data.frame(y = y, x = x, treat = treat) 
  attr(out_df, "trt_effect") <- trt_effect 
  out_df  
} 
 
 
## A function that creates the criteria for distance for PSM with 
## caliper value = 0.6, this function will compute the c-statistics from  
## original data and matched data 
## Note dat is the original data (a single data frame) 
createPSMcrit <- function(dat, set_caliper){  
  ## Get the treatment effect from the dat attributes  
  trt_effect <- attributes(dat)$trt_effect 
  ## Put the formula you will use on all data sets along with the normal 
  ## glmResult stuff in your file 
  glmResult <- glm(treat ~ x, family = binomial, data = dat) 
   
  ## Compute a, b, LogistScore, and CaliperValue as per your syntax file 
  a <- predict(glmResult, dat, type = "response") 
  b <- 1 - a 
  LogistScore <- log((a/b), 10) 
  CaliperValue <- sqrt(var(LogistScore)) * set_caliper 
   
  ## call matchit to do the PSM 
  m.out <- matchit(treat ~ x, data = dat, 
                   method = 'nearest', caliper = CaliperValue, 
                   distance = 'logit', ratio = 1, replace = FALSE) 
   
  #### Saves the summary of m.out as an object  
  get_m.out_summary <- summary(m.out, standardize = TRUE) 
   
  #### Get the data from sum.out 
  ##  
   
  bias_std<- unlist(c(get_m.out_summary$sum.all[1,4, drop=TRUE],  
                      get_m.out_summary$sum.matched[1, 1:4, drop = TRUE], 
                      get_m.out_summary$reduction[1,1, drop=TRUE],  
                      get_m.out_summary$nn[2,1, drop =TRUE])) 
   
   
  ## Get the output data set 
  m.out_data <- match.data(m.out) 
   
  ## compare matched and unmatched data 
  unmatched <- lrm(y ~ x + treat, data = dat) 
  matched <- lrm(y ~ x + treat, data = m.out_data) 
   
  ## Get the C statistics from matched and unmatched 
  c_unmatched <- unmatched$stats['C'] 
  c_matched <- matched$stats['C'] 
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  out_list <- list(c_matched, bias_std) 
   
} 
 
 
## This function runs the simulation  
runQ2simulation <- function(row, cond_mat, n_reps, caliper_val){  
  sampSize <- cond_mat[row, "SS"] 
  covStr <- cond_mat[row, "covStr"] 
  caliper_use <- caliper_val  
   
  ## Create c-dif storage vector 
  ###c_dif_out <- matrix(NA, nrow = n_reps, ncol = 1) 
  c_matched_out <- rep(NA, length = n_reps) 
   
  ## Create standardized bias list of matrices 
   
  bias_mat <- matrix(NA, nrow = n_reps, ncol = 7) 
  colnames(bias_mat) <- c("Mean Diff", "Means Treated", "Means Control", "SD Control", "Mean Diff", "Mean 
Diff.", "Matched") 
  ## For loop over the number of replications 
  for(i in 1:n_reps){ 
    print(i) 
    ## Get cov_vector  
    cov_vector <- createCovRelations(covStr) 
     
    ## make a data set with the appropriate sample size 
    ## and covariate stuff 
    data_set <- makeData(cov_vector, sampSize, trt_effect = .11) 
     
    ## Run the createPSMcrit function  
    out_list <- createPSMcrit(dat = data_set, set_caliper = caliper_use) 
     
     
    c_matched_out[i] <- out_list[[1]] 
    bias_mat[i, ] <- out_list[[2]] 
     
  } ## End for loop over replications 
  print(paste0("Finished condition ", row)) 
  c_matched_out <- suppressWarnings(data.frame(c_matched_out, cond_mat[row, ], cond = row)) 
  bias_mat <- suppressWarnings(data.frame(bias_mat, cond_mat[row, ], cond = row)) 
  ## Return a list 
  list(c_matched_out, bias_mat) 
   
} 
 
## Function used for summarizing the means and SDs, SEs, and CI for plotting 
## This function was taken from R cookbook 
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, 
                      conf.interval=.95, .drop=TRUE) { 
  library(plyr) 
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  # New version of length which can handle NA's: if na.rm==T, don't count them 
  length2 <- function (x, na.rm=FALSE) { 
    if (na.rm) sum(!is.na(x)) 
    else       length(x) 
  } 
   
  # This does the summary. For each group's data frame, return a vector with 
  # N, mean, and sd 
   
  datac <- ddply(data, groupvars, .drop=.drop, 
                 .fun = function(xx, col) {  
                   c(N    = length2(xx[[col]], na.rm=na.rm), 
                     mean = mean   (xx[[col]], na.rm=na.rm), 
                     sd   = sd     (xx[[col]], na.rm=na.rm) 
                   ) 
                 }, 
                 measurevar 
  ) 
   
  # Rename the "mean" column     
  datac <- rename(datac, c("mean" = measurevar)) 
   
  datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean 
   
  # Confidence interval multiplier for standard error 
  # Calculate t-statistic for confidence interval:  
  # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 
  ciMult <- qt(conf.interval/2 + .5, datac$N-1) 
  datac$ci <- datac$se * ciMult 
   
  return(datac) 
} 
 
####################################################################################### 
####################################################################################### 
####################################################################################### 
####################################################################################### 
 
## Create conditions for conditions matrix 
sampSize <- c(500,400,300,200) 
 
covRelations <- c("strong_none", "strong_weak", "strong_mod", "none_strong", 
                  "weak_strong", "mod_strong") 
caliper_val <- 0.6 
## create conditions matrix 
condsMat <- expand.grid(SS = sampSize, covStr = covRelations) 
 
nReps <- 100 
set.seed (062103) 
 
big_list_out <- lapply(1:nrow(condsMat), runQ2simulation,  
                       cond_mat = condsMat,  
                       n_reps = nReps, caliper_val = caliper_val) 
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#### Removes scientific notation 
options(scipen=999) 
 
############################################################################################ 
#### To get mean of the c stats 
c_stat_list <- list() 
for(i in 1:length(big_list_out)){ 
  c_stat_list[[i]] <- big_list_out[[i]][[1]] 
} 
c_stat_list 
 
#### To get means of bias mat 
bias_mat_list <- list() 
for(i in 1:length(big_list_out)){ 
  bias_mat_list[[i]] <- big_list_out[[i]][[2]] 
} 
 
bias_mat_list 
 
write.csv(bias_mat_list, file="Q3.csv") 
write.csv(c_stat_list, file="Q3_cstat.csv") 
 
#################### Plotting Code Below ###################### 
 
############# C DIF ############### 
 
## Get all c_dif  
c_dif_list <- lapply(big_list_out, function(x) x[[1]]) 
 
## Make a big data frame by binding all the rows of the data frames 
c_dif_df <- do.call(rbind, c_dif_list) 
 
c_dif_df_plot <- summarySE(c_dif_df, measurevar = 'c_dif_out',  
          groupvars = c('cond', 'SS',  'covStr')) 
 
c_dif_df_plot <- mutate(c_dif_df_plot, SS = factor(SS, levels = c(200, 300, 400, 500), 
                                              labels = c('200', '300', '400', '500'))) 
 
 
gg_bias <- ggplot(c_dif_df_plot, aes(x = covStr, y = c_dif_out))  +  
  geom_errorbar(aes(ymin = c_dif_out - ci, ymax = c_dif_out + ci), width = .2) +  
  geom_point(size = 2) +  
  geom_hline(yintercept = 0.0, colour='black', linetype = "dashed") 
 
gg_bias <- gg_bias + ggtitle("C Difference Statistic") + theme_bw() +  
  theme(panel.background = element_rect(fill = 'gray88'),  
        panel.grid.major = element_line(colour = "white", size = .5), 
        panel.grid.minor = element_line(colour = "white", size = 0.3)) + ylab("C Difference") +  
  xlab(paste0("Covariate Strength")) +  
  theme(axis.title.x = element_text(face = "bold"), axis.title.y = element_text(face = "bold"),  
        plot.title = element_text(face = "bold"), axis.text.x=element_text(face = "bold"),  
        axis.text.y=element_text(face="bold")) +  
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  facet_grid(SS~.) + theme(strip.text.y = element_text(face = "bold", size = 11), strip.text.x =  
                             element_text(face = "bold", size = 11)) 
ggsave("CDIF.pdf", width = 10, height = 10, units ="in") 
 
 
####### Bias list ############## 
 
## Get all bias  
bias_list <- lapply(big_list_out, function(x) x[[2]]) 
 
## Make a big data frame by binding all the rows of the data frames 
bias_df <- do.call(rbind, bias_list) 
 
## The following code will be used to put the data frame in long format 
## for ggplot2 
bias_df_long <- gather(bias_df, match_type, dv, Matched:Unmatched) 
 
bias_df_plot <- summarySE(bias_df_long, measurevar = 'dv',  
                          groupvars = c('cond', 'SS',  'covStr', 'match_type')) 
bias_df_plot <- mutate(bias_df_plot, SS = factor(SS, levels = c(200, 300, 400, 500), 
                                                 labels = c('200', '300', '400', '500'))) 
## Plot bias 
gg_bias <- ggplot(bias_df_plot, aes(x = covStr, y = dv, shape = match_type))  +  
  geom_errorbar(aes(ymin = dv - ci, ymax = dv + ci), width = .2) +  
  geom_point(size = 2) +  
  scale_shape_manual(values = c(19, 1), labels = c('Matched', 'Unmatched'), name = "Group") + 
  geom_hline(yintercept = 0.0, colour='black', linetype = "dashed") 
 
gg_bias <- gg_bias + ggtitle("Treatment Effect Bias:\nMatched vs Unmatched") + theme_bw() +  
  theme(panel.background = element_rect(fill = 'gray88'),  
        panel.grid.major = element_line(colour = "white", size = .5), 
        panel.grid.minor = element_line(colour = "white", size = 0.3)) + ylab("Bias") +  
  xlab(paste0("Covariate Strength")) +  
  theme(axis.title.x = element_text(face = "bold"), axis.title.y = element_text(face = "bold"),  
        plot.title = element_text(face = "bold"), axis.text.x=element_text(face = "bold"),  
        axis.text.y=element_text(face="bold")) +  
  facet_grid(SS~.) + theme(strip.text.y = element_text(face = "bold", size = 11), strip.text.x =  
                               element_text(face = "bold", size = 11)) 
ggsave("TreatmentEffectBias.pdf", width = 10, height = 10, units ="in") 
 
 
 
 
 
 


