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Abstract

The brain is the most complex organ in the body. Currently, its complicated
functionality has not been fully understood. However, in the last decades an exponential
growth on research publications emerged thanks to the use of in-vivo brain imaging
techniques. One of these techniques pioneered for medical use in the early 1970s was
known as nuclear magnetic resonance imaging based (now called magnetic resonance
imaging [MRI]). Nowadays, the advances of MRI technology not only allowed us to
characterize volumetric changes in specific brain structures but now we could identify
different patterns of activation (e.g. functional MRI) or changes in structural brain
connectivity (e.g. diffusion MRI). One of the benefits of using these techniques is that we
could investigate changes that occur in disease-specific cohorts such as in the case of
Alzheimer’s disease (AD), a neurodegenerative disease that affects mainly older
populations. This disease has been known for over a century and even though great
advances in technology and pharmacology have occurred, currently there is no cure for the
disease. Hence, in this work I decided to investigate whether aerobic exercise, an emerging
alternative method to pharmacological treatments, might provide neuroprotective effects
to slow down the evident brain deterioration of AD using novel in-vivo diffusion imaging
techniques. Previous reports in animal and human studies have supported these exercise-
related neuro-protective mechanisms. Concurrently in AD participants, increased brain
volumes have been positively associated with higher cardiorespiratory fitness levels, a
direct marker of sustained physical activity and increased exercise. Thus, the goal of this
work is to investigate further whether exercise influences the brain using structural

connectivity analyses and novel diffusion imaging techniques that go beyond volumetric
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characterization. The approach I chose to present this work combined two important
aspects of the investigation. First, | introduced important concepts based on the neuro-
scientific work in relation to Alzheimer’s diseases, in-vivo imaging, and exercise physiology
(Chapter 1). Secondly, I tried to describe in simple mathematics the physics of this novel
diffusion imaging technique (Chapter 2) and supported a tract-specific diffusion imaging
processing methodology (Chapter 3 and 4). Consequently, the later chapters combined
both aspects of this investigation in a manuscript format (Chapter 5-8). Finally, I
summarized my findings, include recommendations for similar studies, described future

work, and stated a final conclusion of this work (Chapter 9).
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Chapter 1

Introduction



1.1 THE BRAIN AS A CONTROL SYSTEM

From an engineering standpoint, every decision, thought, or action we take at a
specific time can be described of as a very well organized and powerful closed-loop control
system. Figure 1.1 depicts a simple representation of this idea. Let’s take, for example, a
simple conversation happening at a given time (t) between two people. If both
communicate successfully (e.g. speaking the same language), one of them could ask a
question (reference input) that will trigger a response in the other person (output). Even
though the context will be similar, the response could be informal or formal, very detailed
or vague, loud or quiet, depending on the environment and the relationship between both.
The response and its characteristics will be controlled by our very complicated, convoluted,
and high efficient controller (e.g. our brain acting as a controller unit, Figure 1.1). Now
depending on the response and reaction of the person who asked the question, the
conversation could continue leading to a more interesting talk or else it could terminate
abruptly. For any of these stages to occur, our system needs some additional response (a
feedback loop, r(t+1)) on how the conversation unfolds. This feedback input will lead our
system to output the next task or, in this case, communicate another message at time (t+1).
The simplistic block diagram in Figure 1.1 depicts how the brain works for every basic and
complex scenario happening in our life. A growing field known as a neural network is
devoted to understanding this concept but covering this field of work goes beyond my

dissertation.



Controller

Reference

Output
Input x(t)

y(t)=x(t)+r(t+1)

S5
>

Feedback Loop r(t+1)

Figure 1.1. Simplistic closed-loop control system depicting the functionality of the brain.

In summary, this complex, chaotic, and highly interconnected control system
produces a specific output (e.g. physical action) at time (t+1) when a reference input and
controlled feedback (e.g. response action) are given at time (t). However, with our current
technology, we have not yet understood how this abundantly wired system executes and
determines every action. In addition, we do not know when or why it malfunctions or
deteriorates when aging leads to neurodegenerative diseases. The following quote states

an interesting explanation for our lack of understanding,

“If the brain was so simple we could understand it, we would be so simple that we couldn’t.” -

Lyall Watson

The brain is composed of a chaotic network of hundred billions of neurons. Each
connected on average to 7,000 other neurons leading to approximately 101> (a quadrillion)
synapses that fired at the same time in a 3-year-old child. This number decreases with time
and varies in every adult ranging from 101# to 5x101% synapses (100 to 500 trillion!).

Synapses occur when long axonal terminals of a neuron pass their information to dendrite



terminals located in the soma. If we were to line up every single axon from an adult’s brain
with each other in parallel, these axons would be able to circle the circumference of the
earth 4 and half times. That being said, an adult human brain contains around 109,000
(176,000) kilometers of wiring known as myelinated and unmyelinated axons making it the
most complex and chaotic organism, a product of millions of years of natural selection

(Darwin, 1872).

Since birth the development of the brain is very plastic as investigated by the
advancements of current in-vivo imaging technology in the few decades (Leipsic, 1901). It
preserves stronger connections, and weakens or recycles information that is not as
important. For example, we can remember peculiar memories that happened decades ago.
However, we have a hard time recalling more recent events that happened even days ago
(e.g. do you remember what clothes you wore a week ago?). Similarly as we age, the brain
undergoes neurodegeneration; the brain connections start to malfunction leading to
forgetfulness and incorrect outputs in our control system analogy (Bartzokis, 2004) When
these changes impact normal life, this malfunction is clinically treated and diagnosed as a
dementia pathology, being Alzheimer’s disease the most common. The reason for the
malfunction is still unknown. However with in-vivo imaging, we can characterize what
happens with these connections in a macro-scale resolution (~1-3 mm3) using magnetic
resonance imaging (MRI). More specifically, using a novel imaging sequence known as
diffusion tensor imaging (DTI). Thus in this dissertation, I will explore how we can slow
down or ameliorate this age-related neurodegeneration. I will investigate the importance
of environmental factors (e.g. feedback loop in our control system analogy) such as aerobic

exercise and physical activity on slowing down the malfunctioning of our brain
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connectivity, specifically in older adults with and without dementia.

1.2 ALZHEIMER’S DISEASE

Alzheimer’s  disease @ (AD) is a  progressive
neurodegenerative disease characterized by a progressive
memory loss and brain deterioration. Dr. Alois Alzheimer
diagnosed the first case in 1901 in a 51-year-old woman

known as Auguste Deter, who presented a profound memory

loss, abnormal suspicion about her family and friends, and

Dr. Alois Alzheimer

. . . Germany 1864 - 1915). Retrieved from
worsening of psychological changes. After five years the ( 4 (Lorenzo, 2)012) 4

woman died, and brain autopsy revealed abnormal
atrophy and anomalous deposits in and around the nerve cell. Over more than a century
ago, advances in understanding the disease have emerged yet the cause of the disease is
still unknown. Consequently, there is no cure for the disease. However, potential risk
factors have been identified such as aging (the greatest risk factor), genetics, family history,
vascular disease, gender (women are more likely to develop AD), and a careless lifestyle
(lack of exercise, smoking, or poor diet). One in nine people over the age of 65 will have AD,
and the incidence will increase to one in three over the age of 85 (Thies et al,, 2013).
However, AD is also present in young adults (~30 to 40 years of age) but with smaller
percentages (~5% of the US population). This early manifestation is known as early-onset
AD with genetics being the greatest risk factor. In this work, [ will only focused on the late
onset manifestation of AD.

Clinical early symptoms include mild forgetfulness or confusion and are often

neglected due to concurrent mild cognitive worsening due to advanced aging. However
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over the course of time, these changes worsen and become noticeable to family members,
close friends, and co-workers. With the advances of in-vivo imaging (Section 1.3), increased
abnormal deposits of amyloid plaque formation in the brain can now be identified even at a
non-symptomatic stage. This non-symptomatic stage is currently known as the preclinical
AD stage and can last years or even decades (Johnson et al., 2012a). The first clinical stage
in AD is known as mild cognitive impairment (MCI). During this stage, mild changes in
memory and thinking abilities start to appear but are subtle enough that do not affect
work, relationships, or daily functions. Not all the patients diagnosed with MCI will develop
AD. Other possible causes for developing MCI include depression or temporary
forgetfulness due to other medical complications. However, if the disease progresses,
worsening of memory and thinking abilities become clearer, and the person progresses to
the next stage known as mild dementia due to AD. At this stage, people have difficulty
remembering recently learned information and eventually start asking the same question
many times. Problem-solving skills and sound judgments are also affected by difficulties in
planning family events or balancing financial situations. Disorientation (e.g. getting lost
even in familiar places, losing or misplacing belongings), difficulty organizing and
expressing thoughts, and changes in personalities (e.g. withdrawn, irritability or anger) are
also present at this stage. Worsening of these domains over the course of time lead to the
next clinical stage known as moderate dementia due to AD. Moderate AD patients cannot
keep track of time, recognize belongings, cannot remember personal history details (e.g.
phone number, address), need help with daily activities (e.g. proper clothing, bathing), and
in some cases have significant personality changes (e.g. restless or agitated) with possible

aggressive or physical outbursts. The final stage of AD is known as severe dementia due to



AD. Patients with severe dementia cannot communicate coherently, need help with daily
personal care (e.g. eating, dressing, using the bathroom), and have progressive worsening
in physical abilities (e.g. cannot walk alone, rigid muscles, cannot swallow or control
bladder and bowel muscles). Eventually people who have severe AD will die. Pneumonia is
a common death cause for severe AD patients due to impaired swallowing of food and
drinks leading to infection. Other causes of death include falls, cardiovascular

complications and urinary tract infection (Todd et al., 2013).

Pathologically, the brain starts to atrophy as the disease progresses and aggregates
such as extracellular amyloid beta plaques and intracellular tau fibrillary tangles start to
accumulate. These plaques and tangles are the histopathological gold standards for
diagnosing AD post-mortem. Even though neurobiological mechanisms could explain the
formation of these plaques and tangles, it is not known whether these deposits precede and
trigger the disease or are consequences of yet unknown neuro-related mechanisms. The
mechanism of amyloid beta plaques formation starts when proteolytic enzymes (enzymes
that break down proteins) incorrectly cleave a type of cellular inter-membrane protein
known as amyloid precursor protein (APP). In the “normal” non-amyloidogenic pathway,
two proteolytic enzymes known as alpha-secretase and gamma secretase cleave APP
leaving extracellular soluble fragments of APP (sAPP, Figure 1.2a). These sAPP fragments
are thought to benefit neurons by regulating the metabolism of APP and by influencing
alpha and beta-secretases (Perneczky et al., 2014). On the other hand, when APP is cleaved
by beta and gamma secretases, insoluble and toxic short fragments known as beta amyloids
start to aggregate and eventually form amyloid beta plaques (Figure 1.2b). These toxic

amyloid plaques accumulate in the extracellular spaces of the neuronal tissue and interfere
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with neuronal function leading eventually to neuronal death.

Another neuro-pathological mechanisms manifests inside the neuronal cells, where
tau neurofibrillary tangles start to form from disrupted tau proteins. Healthy tau proteins
are essential for stabilizing microtubules and maintaining the structure of the cell and
nutrient transportation (Figure 1.3b). However in AD, these tau proteins become defective
and can no longer stabilize neuronal microtubules. Then, unstable tau proteins aggregate

within the neurons and eventually cause disruption and neuronal cell death (Figure 1.3e).

a) Normal Mechanism = sAPP

/

Amyloid plaque formation

Gamma Secretase

Figure 1.2 Neurobiological formation of soluble APP (a) and amyloid plaque formation (b) in the neuronal
cell membrane. Retrieved from (NIA, 2014) in the public domain.



a)

Nucleus
=

X Microfilament

Microtubule
Axon

drites

Figure 1.3 Neurobiological formation of neurofibrillary tau-tangles (a-d) and cell death (e). Retrieved from
(NIA, 2014)from the public domain.

At early stages, the formation of amyloid-beta plaques and neurofibrillary tau
tangles are specific to brain regions, and as the disease progresses, these aggregates
disperse throughout the brain leading to global brain deterioration. Brain regions affected
early in AD are the medial temporal lobe and hippocampus, which are areas involved in
learning, memory, visual item recognition, auditory processing and emotion (Banich and
Compton, 2010)(Figure 1.4a). When these domains are affected, clinical symptoms start to
appear leading to the first diagnosis of the disease. However, as the disease progresses,
brain atrophy spread throughout the entire brain involving more posterior and anterior
brain regions. Moderate AD patients have more progressive deterioration involving more

posterior-parietal regions while decreased cognitive changes reveal higher difficulties of



communication, loss of memory, and orientation (Figure 1.4b). In severe AD, the whole
brain undergoes atrophy. Consequently, an extensive increase in plaques and tau tangles
formation throughout the brain (Braak and Braak, 1991b) (Figure 1.3c). At this stage,
patients cannot perform daily activities, have trouble communicating and have a lack of

self-care due to a complete brain deterioration.

mild stage moderate stage severe stage

Figure 1.4. Progression of AD and brain deterioration as depicted by darker regions throughout the brain.

AD is the 6t leading cause of death in the United States (US). In addition to physical
and emotional burden on the individual and their families, AD also presents a socio-
economical problem. Currently in the US, there are ~4.7 million people over the age of 65
affected by AD with estimated Medicare and Medicaid costs of around $150 billion. This
population will grow by 2050 to an estimated ~13.8 million leading to an increased cost of
about $1.2 trillion, which will definitely impact socio-economically these national insurance
institutions (Thies et al., 2013, Weuve et al,, 2014). Treatment for AD does not exist, but
pharmacological drugs can slow down clinical symptoms at the early stages of the disease.

These costly pharmacological drugs mitigate the symptoms by enhancing
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neurotransmission and brain connectivity but do not present a cure. Most of these drugs
(e.g. donepezil, galatamine, rivastigmine, and tacrine) reduce the breakdown of
acetylcholine, a neurotransmitter that preserves brain function. Others inhibit glutamine
(e.g. memantine), another neurotransmitter that accumulates in high quantities in AD
brains and has a toxic (Thies et al., 2013). While they may mitigate AD-related symptoms,
these drugs are ineffective when enough brain deterioration or AD progression has
occurred. Thus, emerging research is focusing on other alternatives that may prevent or
slow-down the progression of AD. One promising and less costly alternative is aerobic
exercise. Hence in this work, I investigated the relationship between aerobic exercise and
brain health in the older population using in-vivo brain imaging techniques (e.g. structural
and diffusion magnetic resonance imaging). In the next section, I will briefly cover these
and other in-vivo imaging techniques that are currently being used in the understanding of

AD.

1.3. IN-VIVO BRAIN IMAGING IN AD

In the past few decades, advances in neuroimaging technology made it possible to
investigate in-vivo structural and functional connectivity of the brain. A variety of brain
imaging techniques have contributed to a better understanding of Alzheimer’s disease.
Here, I will cover the most established neuroimaging techniques and describe its findings

in Alzheimer’s disease neuroimaging research.

1.3.1 Structural Magnetic Resonance Imaging (sMRI)

Structural MRI (sMRI) uses a strong magnetic field (usually 1.5-3 Tesla) to polarize

11



the angular momentums of hydrogen atoms along the direction of the magnetic field. When
polarized, radio-frequency pulses are triggered in the MRI machine leading to shorter
deviations of these angular momentums from the strong magnetic field. Eventually, these
atoms will return in alighment with the strong magnetic field, generating a frequency
signals that are perceived by a receiver coil and transformed to the spatial domain,
generating an image with specific dimensions (Figure 2.4, Chapter 2). This 3-dimensional
pixel dimension is known as voxels and this term is commonly used when in-vivo imaging is
collected. Depending on the different tissues, these voxels will have different brightness
intensities, allowing us to investigate regional volumetric changes of cortical and

subcortical regions within the brain.

In AD, brain deterioration occurs at an accelerated rate than in age-matched healthy
non-demented (Jack et al., 2002, Salat, 2011). This brain atrophy is thought to be a
consequence of dendritic and neuronal loss. Individuals with AD have reduced volume in
specific regions such as the medial temporal lobe, with the entorhinal cortex being the most
atrophied and relevant region followed by the hippocampus, amygdala and
parahippocampus (Colcombe et al., 2004, Erickson et al.,, 2009, Floel et al., 2010). Another
early stage region of atrophy is the posterior cingulate. These regions present reduced
volume even before clinical symptoms appear. One special regions is the hippocampus
where its volume decreases at a rate of 3-5% per year(Barnes et al,, 2009). However, as the
disease progresses changes spread throughout the whole brain with decreases in cortical
thickness and expansions of ventricular and sulcal volumes. sMRI has also been used as a
marker of disease progression, as cerebral atrophy is closely correlated with cognitive

dysfunction (Hua et al., 2008b). Due to the sensitivity of this methodology, sMRI is also

12



used to dissociate other non-AD related pathologies. For example, in early stage dementias,
the reduction in hippocampal volume tends to be greater in AD than in patients with other
dementias such as Lewy bodies dementia or vascular dementia. SMRI can also aid in
identifying other non-demented related pathologies such as strokes, tumors, or hematomas

(Cotman and Berchtold, 2002).

Another structural imaging technique is called diffusion tensor imaging (DTI, see
Chapter 2). DTI aims to characterize the overall integrity of bundles of axons known as
tracts that travel in specific directions (Alexander et al., 2007). This method applies small
gradient radio-frequency pulses in specific directions to alter the diffusion of water
molecules. If restricted movement is observed along a specific direction, then it reflects a
healthy and densely packed axonal bundles. DTI is the principal imaging acquisition
technique used during this dissertation and Chapter 2 will provide more detailed
information regarding the acquisition methodology. Briefly in AD, a reduction of white
matter integrity generally measured by decrease in anisotropy (or direction dependent)
has been reported. When compared to healthy controls, AD and MCI patients showed
widespread decrease in fractional anisotropy, a common measure of diffusion ranging from
1 (very anisotropic) to 0 (very isotropic) (Brun and Englund, 1986, Huang et al., 2007, Gold
et al., 2010, Teipel et al., 2010, Reid and Evans, 2013, Sachdev et al.,, 2013, Zhang et al,,
2014). More specifically, previous meta-analyses have shown decreased anisotropy in
localized white matter tracts. Large effect sizes were found in the uncinate fasciculus, the
posterior cingulum and the superior longitudinal fasciculus in individuals with AD
compared to healthy non-demented individuals. Medium effect sizes were found in the

genu and splenium of the corpus callosum, the anterior cingulum and other tracts relating
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frontal and temporal regions (Sexton et al., 2011, Clerx et al.,, 2012).

1.3.2 Functional Magnetic Resonance Imaging (fMRI)

Functional MRI is another MRI imaging technique that takes advantage of the blood
oxygenated level dependent (BOLD) signal, which increases the intensity and contrast of a
voxel when specific tasks (e.g. cognitive or arithmetic tasks) are performed during the
acquisition of the image. This acquisition technique is thought to reflect the integrated
synaptic activity due to changes in blood flow, blood volume, and the blood

oxyhemoglobin/deoxyhemoglobin ratio (Logothetis et al.,, 2001).

In patients with AD, fMRI research has shown a decrease in hippocampal activity
during the encoding of new information (e.g. encoding tasks) (Griffin et al, 2009,
Keihaninejad et al., 2013). Conversely, during encoding tasks previous research described
increased activity in prefrontal regions, which might reflect a functional activity
compensatory mechanism (Griffin et al., 2009, Joyner and Green, 2009, Marlatt et al., 2012).
Event-related functional hyperactivity during memory trails suggests to happen early in AD
(or during mild cognitive impairment [MCI]) maybe as a compensatory mechanism for
impeding neuronal failure. However, in later stages of MCI, a loss of neuronal activity is
present, similar to what it is found in AD patients (Johnson et al., 2012a). Previous reports
also suggest that these event-related functional hyperactivities might predict rapid
cognitive decline (Highley et al., 2002, Buckner et al., 2008, Sperling et al., 2014) and loss of
hippocampal function (Catani et al., 2002). During fMRI acquisition, specific brain regions
activate in a similar pattern (e.g. high intensity brightness in specific locations) and are
investigated associatively like a network of brain regions. The most frequent brain network
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studied in AD is known as the default mode network (DMN). This DMN includes the
following brain regions: the medial temporal lobe, the medial prefrontal cortex, the
posterior cingulate cortex, the ventral precuneus, and the medial-lateral and inferior
parietal cortex. Previous reports showed hypoactivity in this DMN when AD patients were
under investigation (Carro et al., 2001, Nestor et al., 2004, Buckner et al,, 2008, Gaffan and
Wilson, 2008). In the MCI group, functional hyperactivation was also found when examined
the DMN (Buckner et al, 2008). fMRI can also be collected when participants do not
perform any functional task during acquisition. This fMRI acquisition sequence is known as
a resting state fMRI and could be used easily for clinical research as no special equipment
or task is necessary. Impaired resting state functionality have also been found in AD and

MCI studies (Trejo et al., 2001, Biessels et al., 2006, Voss et al., 2013a).

1.3.3 Fluorodeoxyglucose (FDG) PET

Fluorodeoxyglucose (FGD) positron emission tomography (PET) is another in-vivo
imaging technique which uses a tracer to follow a biologically active molecule in the brain.
The brain’s source of energy is mainly glucose, and when utilized, higher synaptic activity is
present. An analog glucose tracer known as fluorodeoxyglucose (18F) with a radioactive
decay of ~20mins is introduced to the participants. This glucose tracer generates harmless
gamma rays that decay and are detected by the PET receiving unit. During this detection,
the PET machine generates an image that describes the contrast brain’s glucose uptake and
rate of metabolism activity. This methodology has been validated as a biomarker for overall

brain metabolism.

In clinically affected AD patients, even though specific alterations on FGD PET
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images have not been identified, altered hypometabolism is commonly present in specific
regions (Cotman and Berchtold, 2002, Johnson et al., 2012a). Previous AD reports showed
decreased metabolic activity in the posterior cingulate gyri, posterior midline cortices
(precuneus), inferior regions of the parietal lobe (precuneus), postero-lateral and medial
portions of the temporal lobe, and the hippocampus. As the disease progresses, reductions
of metabolic activity involve more frontal regions until its hypometabolism covers the
entire brain (Johnson et al,, 2012a). This trajectory of hypometabolism is concurrent with
cognitive function decline along the normal, preclinical, prodromal and established AD
trajectory, with early impairment in the posterior cingulate cortex (Johansen-Berg and
Rushworth, 2009). In relation to histopathological markers, even though amyloid
deposition reaches a plateau region during the progression of AD, FGD PET images
continue to decline. This decline in hypometabolism may explain a level of local toxicity
(Tian et al., 2014a). To date, this is one of the most robust functional brain imaging

techniques used to characterize changes in AD (Johnson et al.,, 2012a).

1.3.4 Fibrillar A-beta PET

Fibrillar A-beta PET is another type of PET imaging technique that uses different
ligand tracers to bind into the fibrillary A-beta depositions in AD. The most common
ligands include the 11C-labeled “Pittsburg Compound B (PiB)” and the F18 ligand (Nealey
et al, 2014, Tian et al, 2014a). Previous reports have shown that these tracers bind
specifically to AD-related amyloid pathology, which makes this technique specific to this
type of pathology (Pihlajamaki et al., 2009). However, reports showed negative results

when researchers investigated other non-AD pathologies such as prion amyloid (Raj et al,,
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2012), pathologically confirmed alpha-synucleinopathy (Bach et al., 2014), or pure cases of
taupathies related to semantic dementia (Johnson et al, 2012a). The most prominent
regions for A-beta PET imaging include the precuneus, posterior cingulate, parieto-
temporal, and frontal regions with relative sparing in the hippocampus. Previous studies
have also found deposition of fibrillary A-beta in cognitively normal adults over the age of
70, perhaps suggesting a pre-diagnosis of the disease 10-15 years before clinical onset
(Ashburner, 2007, Scharfman and Chao, 2013, Schwarz, 2013). In addition, previous
reports showed that when using the PiB tracer, its measures did not correlate with
memory assessments in established AD but it did in MCI and healthy older adults, which
also suggests that A-beta deposition occurs well before the onset of the symptoms
(Schaller, 1997, Ashburner, 2007, Onodera and Hicks, 2010). Additionally, at early AD
stages of positive amyloid results it is yet very difficult to find a direct relationship between

fibrillar A-beta PET and cognition stages of the participants.

1.4 EXERCISE AND BRAIN HEALTH

Maintaining an adequate exercise routine is one of the healthiest things anyone can
do and can start at any time. In general terms, exercise improves your mood, boosts your
energy, controls your weight, and prevents many health conditions and diseases. Routinely
exercise can increase bone density, prevent falls (by increasing balance), metabolic
syndrome, type-2 diabetes, depression, arthritis, and certain types of cancer (e.g. colon and
breast cancer). In addition it prevents stroke and lowers the risk for cardiovascular disease
by boosting your high-density lipoproteins (HDL) known as “good” cholesterol and
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decreasing unhealthy triglycerides. Besides all these benefits, emerging evidence shows the
benefits of exercise in cognition and structural brain health by boosting neurogenesis and
other neuroprotective mechanisms (Kramer et al., 1999, van Praag et al,, 2005, Van der
Borght et al,, 2009, Creer et al,, 2010, Marlatt et al,, 2012, Mustroph et al,, 2012, Erickson et
al.,, 2014).

Human studies of normal aging suggest that exercise may also protect against
cognitive decline (Hill et al, 1993, Hassmen and Koivula, 1997, Kramer et al, 1999,
Friedland et al,, 2001, Barnes et al.,, 2003, Abbott et al., 2004). For example, a recent study
showed that people who engaged in physical activity at any point in their lifetime were less
likely to show cognitive impairments in adulthood (Middleton et al., 2010). In another 6.2-
year follow-up study in older adults, it has been proven that exercise significantly reduced
the rates of dementia on participants who exercise three or more times per week when
compared to those who exercised fewer times (Larson et al, 2006). Another study also
showed that exercise provides a 20% reduction risk of cognitive impairment equivalent to
taking three years off age (Weuve et al., 2004). In specific cognitive domains, exercise
appeared to have the largest effect size in executive functions followed by mental control,
spatial tasks, and psychomotor speed (Colcombe and Kramer, 2003, Zarei et al,, 2010,
Zeineh et al., 2012, Ford et al., 2013, Lee et al,, 2013, Voss et al,, 2013b, Kirk-Sanchez and
McGough, 2014, Leuze et al., 2014). Thus, for a better understanding of exercise physiology,
in the following sections I will cover some exercise-related descriptions that are key to
understand for a thorough understanding of this dissertation work.

1.4.1 Physical activity, exercise, and physical fitness

To better understand the effects of exercise, it is worth noting the differences
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between three commonly interchangeable terms: physical activity, exercise, and physical
fitness. Physical activity is defined as any bodily movement that requires the spending of
metabolic energy. Sleep in considered a physical activity yet it demands very small
amounts of energy when compared with other leisure activities such as sports,
conditioning exercise or even household activities (e.g. home repair or cleaning). Exercise
can be thought as a subclass of physical activity as it is defined as any bodily movement
resulting in energy expenditure, but it is also a planned, structured, and repetitive activity.
The main objective of any exercise is to maintain physical fitness components. Finally,
physical fitness is a set of attributes that people have or achieve and is known as the ability
to carry out daily tasks with vigor and alertness, without undue fatigue and with ample
energy to enjoy leisure-time pursuits (Caspersen et al., 1985). Physical fitness includes five
different health-related components: cardiorespiratory fitness, muscular endurance,

muscular strength, body composition, and flexibility.

1.4.2 Energy demands in aerobic and non-aerobic exercise

In terms of fuel energy demand, exercise can be divided into two types: aerobic and
non-aerobic exercise. The main difference between these exercise types is the presence of
oxygen when producing chemical energy. Aerobic exercise needs oxygen in the release of
energy molecules while non-aerobic exercise does not. In any type, the process of
producing chemical energy begins with the ingestion of food. Differently from mechanical
engines, the body cannot extract “heat” energy from the oxidation of foods. If so, our tissues
will burst into flames, and our fluids will boil. Instead, the energy dynamics involve

chemically splitting potential energy bonds found in carbohydrates, fats, and protein bonds
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(McArdle et al.,, 2010). This process is dynamic and happens, as the body demands it.

The special carrier of free energy in the body is an energy-rich nucleotide compound
called adenosine triphosphate (ATP). At the beginning of any exercise type, ATP and
phosphocreatine (PCr) provide immediate energy to power muscle actions (e.g. start
moving your legs for running). PCr is a molecule known to rapidly mobilize high-energy
reserves in the skeletal muscle and brain. If the exercise continues after a few seconds, the
body will require more energy to continue with the activity. Thus, another non-aerobic
metabolic mechanism known as glycolysis is triggered to produce additional energy-rich
ATP molecules. This process converts glucose into another organic compound known as
pyruvate while releasing two molecules of ATP, the energy rich compound. Short-term
non-aerobic exercise triggers this instantaneous energy production mechanism. Examples
of non-aerobic exercise include weightlifting, football, or short distance sprinting. If the
exercise continues for longer periods of time (e.g. aerobic exercise), then aerobic energy
mechanisms are triggered. Here, aerobic energy production uses oxygen to generate a
higher number of ATP molecules. The number of generated ATP molecules during aerobic
glycolysis increased to 36-38 molecules of ATP per molecule of glucose. Most of these ATP
molecules are released during the citric acid cycle (or Krebs cycle) that happens in the
mitochondria, the engines of most eukaryotic cells. Some aerobic exercise examples
included running, bicycling or swimming, and it usually include activities that last longer
periods of time. During aerobic exercise, apparent physiological changes are experienced
such as an increase in breathing leading to higher exchange rates of oxygen and CO2, These
physiological exchange gas ratios allow us to measure the aerobic fitness capacity of

individuals. One of the most used measures is known as the maximum rate of oxygen
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consumption (VOzpeak).

1.4.3 Maximum rate of oxygen consumption (VO:peak)

Maximum rate of oxygen consumption (VO:peak) during incremental aerobic
exercise usually performed on a stationary treadmill measure the aerobic capacity of an
individual. This test reflects the aerobic cardiorespiratory endurance of an individual,
which is defined as the ability of the circulatory and respiratory system (e.g. heart, lungs,
and blood vessels) to balance metabolic demands by supplying adequate fuel and
eliminating fatigue products. This test is known as the maximal oxygen uptake or VO2max.
The units of this test can be expressed in liters per minute (L/min) or in milliliters of
oxygen per kilogram of body mass per minute (mL/[kg*min]). This test is set up to be

sufficiently long to exhaust the aerobic energy system.

The test begins when the participant starts running on a flat treadmill. As the test
continues, the treadmill will increase in elevation at different graded levels. As the graded
levels increase in elevation, the runner will consume more oxygen. During the first
increases, oxygen consumption will increase rapidly. However, as steeper inclines and
faster speeds increase, oxygen consumption increases will start to drop until it reaches a
plateau region. This plateau region is known as the maximal consumption rate or VO2max.
Beyond this point, the oxygen utilization is disregarded, and energy transfer will occur due
to non-aerobic glycolysis forming lactate acid accumulation (McArdle et al, 2010).
Eventually, if exercise continues beyond the point of maximal oxygen intake, the runner

will become exhaust and will not be able to continue.
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1.4.4 Exercise, AD, and brain neuroplasticity

In relation to brain neuroplasticity, recent reports have shown the positive benefits
of exercise and physical activity in animal and human models (Hayes et al.,, 2013, Voss et al,,
2013b). The main advantage for the usage of animal models is the feasibility to invasively
characterize pathological changes in the brain. However in regards to AD, it is difficult to
choose a correct animal model because many animals do not develop this pathology
despite achieving long life spans (Bartzokis, 2004). Canines are one attractive model
because they suffer from naturally-occurring cognitive decline, similar to humans. Canines
also develop deposition of amyloid plaques in their brains, which has an identical amino
acid sequence as humans (Wheeler-Kingshott and Cercignani, 2009). Hence in this model,
previous evidence suggests that exercise reduces age-related losses in cognitive function
including learning and memory (Cotman and Berchtold, 2007, Wheeler-Kingshott and
Cercignani, 2009). Other potential AD-related animal models extensively used are
transgenic rodents (e.g. rats and mice). These animals have been genetically modified to
include Alzheimer’s disease DNA material. In these models, extensive evidence has shown
that exercise enhances the production of different neurotrophic and anabolic factors (e.g.
BDNF, VEGF, IGF-1, TrkB receptor), increased cognition and behavior (adaptation, learning
and memory, executive functions, attention and processing speed), increased synaptic

plasticity, brain structure, and neurogenesis (for a review (Voss et al., 2013b)).

In humans, it is more challenging to study the effects of exercise at the cellular level
due to evident invasive limitations. Human studies are done either post-mortem or using
in-vivo brain imaging technologies. Post-mortem analyses in patients with AD helped us to

understand the pathology of the disease. However, to understand the effects of exercise in
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this population using post-mortem analyzes can be very challenging. Thus, in-vivo non-
invasively imaging techniques are currently under investigation. The main limitation with
in-vivo imaging is the large macro-scale resolution that does not allow us to identify micro-
or nano- cellular changes in the brain. Usually imaging voxel resolutions are in the
millimeter scale and encompass millions of axons yet apparent differences can be identified
(Concha, 2014, Walhovd et al,, 2014).

Using structural magnetic resonance imaging (MRI), researchers have identified
positive correlations between exercise, cognition, and brain health. For example, in a study
of 165 nondemented older adults (Erickson et al., 2009), higher levels of aerobic fitness
were associated with increased hippocampal volume, a subcortical brain region that plays
an important role in memory and is also one of the first regions to be affected by AD.
Another study found that after 6 months of aerobic fitness training in 59 healthy older
adults, significant increases in brain’s gray and white matter volume were found as a
function of fitness training (Colcombe et al., 2006). Previous work also showed that higher
levels of cardiorespiratory (CR) fitness in early AD are associated with larger whole brain
volumes (Burns et al.,, 2008). More specifically, higher levels of CR fitness were related to
regionally specific increases in gray and white matter volumes (Honea et al,, 2009). In gray
matter, these regions included the parietal and medial temporal cortices while white
matter regions included regions along the inferior parietal cortex. In a longitudinal
functional MRI study, higher levels of CR fitness showed a slower progression of AD and
lower rates of atrophy in the medial temporal lobe (Vidoni et al,, 2012a). A recent review
also explored further the positive influence of CR fitness and brain plasticity in the brain

(Hayes et al., 2013). Proposed exercise-related mechanisms in the brain include the
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increased activation of neurotrophins (e.g. brain-derived neurotrophic factor [BDNF],
insulin like-growth factor 1, [IGF-1] vascular endothelial growth factor [VEGF], and
tyrosine kinase [TrkB]), exercise-induced increase in neuronal precursor cell activity,
mediation survival of progenitor cells induced by exercise, induced exercise-related
expression of dentate granule cells, and exercise-induced activation in neurotransmitter
(e.g. cannabinoid signaling and serotonin) (Voss et al, 2013b). Here in this work, I
expanded the investigation of exercise-related brain changes by characterizing the
integrity of brain’s white matter using novel techniques for processing diffusion-weighted

images.

1.5 SUMMARY AND SPECIFIC AIMS

Evidence suggests that AD neurodegeneration in white matter occurs in the
enthorinnal and prefrontal regions of the brain and with further extends in parietal, and
occipital deterioration (Sullivan and Pfefferbaum, 2006, Davis et al.,, 2009, Barrick et al,,
2010, Bennett et al., 2010, Burzynska et al., 2010, Teipel et al., 2010, Salat, 2011). Due to
the ineffectiveness of pharmaceutical drugs to postpone or mitigate this brain
deterioration, research is focusing on inexpensive alternative treatments such as including
exercise on a weekly basis. High levels of exercise and fitness are associated with
maintenance of brain’s cortical volume across the lifespan, and a lower risk of progression
for developing AD (Colcombe et al., 2003, Gordon et al., 2008, Honea et al., 2009, Erickson
et al, 2010, Weinstein et al,, 2012, Hayes et al., 2013). However, it is not clear whether
exercise has a specific impact on white matter integrity and connectivity, especially in the

AD population. In few white matter-exercise related studies, inconclusive results showed
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positive correlations between aerobic fitness and white matter integrity in prefrontal,
temporal (Marks et al., 2007, Johnson et al., 2012b) and medial regions (Honea et al., 2009,
Johnson et al.,, 2012b, Tian et al., 2014b), while other studies did not show significant
findings (Voss et al, 2012). Additionally, there is currently no longitudinal study that
investigates the relation between exercise and white matter changes in the older
population at early stages of AD. Thus, the objective of this work was to investigate the

effects of exercise on white mater integrity using novel diffusion imaging methodologies.

Specific Aim 1 (Chapter 5): To assess the hypothesis that higher cardiorespiratory fitness is

associated with higher levels of white matter integrity in individuals at early stages of AD
(n=37). This cross-sectional investigation established a comparative analysis with current
literature on how VO:zpeak (maximal oxygen consumption), a marker of physical fitness, is
positively associated with white matter integrity in the AD population (Marks et al., 2007,

Marks et al., 2011, Johnson et al,, 2012b).

Specific Aim 2: To assess the hypothesis that a longitudinal 26-week exercise intervention

program will increase white matter integrity and connectivity in healthy older adults (n=10,
60 years and over, chapter 6) and older adults at early stages of AD (n=30, 65 years and over,
chapter 7 and 8). In humans, a recent meta-analysis utilizing questionnaires and few
interventional exercise programs found evidence that cardiorespiratory fitness links to
neural integrity in older adults at risk of dementia mainly in prefrontal, temporal, and
parietal regions (Hayes et al, 2013). Two diffusion imaging procedures were assessed
during this specific aim. First, we investigated the changes in structural white matter

integrity after the exercise intervention program in exercise-related tracts for the non-
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demented cohorts (Chapter 6)) and AD-related tracts for the AD participants (Chapter 7,8).
Secondly, we used a probabilistic tractography analysis to investigate whether exercise

affect the structural connections between the thalamus to peripheral cortical regions

(Chapter 8).
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Chapter 2

From diffusion weighted imaging to the tensor calculation
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2.1 A BRIEF INTRODUCTION TO DIFFUSION TENSOR IMAGING

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique
used to characterize the integrity of white matter tracts in the brain, by measuring the
Brownian motion of water molecules (more details in the next subsection) (O'Donnell and
Westin, 2011). This motion can be isotropic or anisotropic. Isotropic motion is the random
movement of particles with no specific direction or constraints in its environment while
anisotropic motion (or directional dependent, Figure 2a) is restricted to its environment.
For example, the motion/spreading of an ink drop in cup of water is isotropic while a
similar ink drop spilled on a texture surface (such as celery or textured wood) has a more
anisotropic spreading as it follows the direction of the texture. The same principle is
applied in the brain’s white matter tissue using DTI in a 3-dimensional perspective. White
matter in the brain consists of bundles of axons and glial supporting cells
(oligodendrocytes and fewer astrocytes) that are white in appearance (hence its name
“white matter”). These bundles of fibers are commonly known as tracts when travel in
specific directions and when healthy, they provide an anisotropic environment. Hence in
neurodegenerative (and others), we can investigate the integrity of this environment by
calculating specific diffusion metrics that may modify the environment restrictive
anisotropic characteristics (Hartline, 2008, Walhovd et al., 2014).

During the diffusion acquisition, gradient signals are triggered at specific locations,
generating diffusion characteristics in specific three-dimensional planes. The locations of
white matter tracts and its trajectory will modify the diffusion signal that is collected. For
example, if the white matter tracts are aligned parallel to a specific diffusion gradient

signal, a faster diffusion signal is acquired (e.g. higher intensity voxel). On the other hand,
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slower diffusion motion or no diffusion (e.g. a darker voxel) might be collected if the
gradient signal is applied perpendicularly to the direction of these tracts, as they act as a
restricted diffusion environment. Hence, in deteriorated white matter tracts, perpendicular

gradient fields to specific tracts may measure faster diffusion, which indicates a disruption
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Figure 2.1. Part A) represents the isotropic and anisotropic diffusion
while part B) shows the principal components of diffusion. Part C)
Walhovd et al,, 2014). depicts the most common algebraic diffusivity measurements and

finally part D) represents the shape of diffusion behavior for
fractional anisotropy values.

Diffusion imaging was
introduced for clinical and research practice by Denis LeBihan in 1986 (Le Bihan et al,,
1986) and a decade later in 1994, Peter Basser proposed the use of a 3x3 symmetric
rotationally invariant tensor (Basser et al., 1994, Le Bihan et al., 2001), which describes the
diffusion of water in an ellipsoid-like shape (Figure 2b) (O'Donnell and Westin, 2011).
From this tensor calculation (given at each specific voxel), scalar metrics were derived

using information from the three principal components of directions (or eigenvectors,

Figure 2b).
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For example, a scalar metric that measures the total diffusion is called mean
diffusivity (MD) and is calculated by averaging the three rotationally invariant components
of the diffusion tensor (Beaulieu, 2002, Sen and Basser, 2005). Another scalar diffusivity
metric known as axial diffusivity (AxD) represents the principal component of diffusion
(A1) with larger values representing faster diffusions. AxD is related to axonal injury both in
ischemic and chemically induced white matter lesions (Song et al.,, 2003, Song et al., 2005).
Radial diffusivity (RD) is another metric of the diffusion tensor and is calculated by
averaging the two orthogonal components (Az and A3) of the principal diffusion eigenvector.
RD is associated with loss of myelination and cross-sectional axonal injury (Figure 2c)
(Song et al., 2005). Fractional anisotropy (FA) is another widely used scalar metric of
diffusion. FA measures the fraction of diffusion that is anisotropic by looking at the
normalized variance of the eigenvalues of the tensor (Figure 2c). FA ranges from 0 (being
the most isotropic) to 1 (being the most anisotropic or direction-dependent) (Le Bihan et
al, 2001, Basser and Jones, 2002). It is also worth noting that although these diffusivity
measures are sensitive to micro-structural changes during in-vivo imaging, a one-to-one
relationship with cellular characteristics such as myelination quality, axonal or glial cell
density cannot be characterized due to current imaging macro-scale resolution limitations
(Jones et al,, 2013a, Concha, 2014, Walhovd et al,, 2014). Hence, these metrics provide a
more global diffusion characteristic of its environment (e.g. brain’s white matter) and
investigators should be cautious when interpreting their results in a one-to-one
relationship with cellular structures.

Recently, diffusion tensor imaging (DTI) has gained popularity making it one of the

standard measurements to characterize white matter tissue in the brain. It is currently
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used in different neurological diseases and as an additional tool for neuro-navigation in
tumor resections (O'Donnell and Westin, 2011). Thus, in this chapter I will introduce the
concepts of “self-diffusion”, the theory behind magnetic resonance imaging acquisition and
how diffusion weighted images are acquired. Finally, I will provide an analytical estimation
of the diffusion tensor imaging that will eventually allow us to calculate the different scalar

diffusivity measurements previously described.

2.2 FROM FICK’S LAW TO THE DIFFUSION TENSOR
2.2.1 Fick’s law, Brownian motion, and Einstein’s motion theory

Adolf Eugene Fick (Figure 2.2) was a German-born physician and

physiologist that introduced the law of molecular diffusion currently
known as Fick’s Law in 1855. In this law, he explained the motion
or diffusion of molecules from a high concentration region to a
lower concentration region. Let's imagine we drop a droplet of

colored dye into a 2-dimensional surface (e.g. on a table, or a liquid

media). If no other action is taken to clean or stir the droplet, Figure 2.2 Adolf Fick
(Germany 1829-1901).
the droplet will slowly expand radially. This expansion is Retrieved from (Gasson,
2014).

known as “mutual diffusion”. Fick’s law describes this process
mathematically in the following equation:
J=-D-V¢ [Eq 2.1]
where the net flux J (mol /m?s) denotes the rate of particles moving (mol/s) in a specific
area (e.g. m?). The negative sign is arbitrary and denotes a “loss” of particles from high

concentration regions to lower concentration regions, analogous on how high temperature
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flows to colder regions. “D” denotes a constant value called the “diffusivity coefficient”
(m?/s). This diffusivity constant D is specific to the temperature environment, viscosity,
and size of the specific particles. In room temperature, the values range from 0.6x10-° to
2x10-° m?/s. In biological tissues, this values range from 10-1! to 10-1° m?/s. Finally, V¢
denotes the amount of particles or concentration in a given dimension. The downwards
triangle “V" denotes the rate of change (or gradient) in the concentration of particles “¢"
that is dependent on time and its given dimensions. For example in a 3-dimensional media

using the Cartesian coordinates will look as follow:
Vp = 224004 % [Eq. 2.2]

Equation 2.1 (or Eq. 2.2 in a 3-dimensional Cartesian coordinate) describes the
behavior of molecules when a countercurrent solute is added to a media (e.g. dropping a
droplet on a surface) leading to an imbalance of particle concentrations. However, if we let
the droplet sit for an extended period without changing any environmental factors (e.g.
temperature or pressure), we will not see any apparent change in diffusion. At this stage,

many will conclude that there is no diffusion in this media. However, even though on

average the net flux of all particles can be neglected,
another type of microscopically diffusion movement was
observed known as the “self-diffusion” or “Brownian
motion”.

Robert Brown a Scottish botanist (Figure 2.3) first

observed “self-diffusion” in 1828 when he studied pollen )
Figure 2.3 Robert Brown

(Scotland 1773 - 1858).
Retrieved from
(Wikipedia.org, 2014)

grains suspended in water under his microscope (Brown,
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1828). He noticed that these grains moved randomly without any apparent cause. Many
decades after Brown’s experiment, Albert Einstein described a similar phenomenon that
will present sufficient evidence for the atom discovery (Einstein, 1905). Einstein was
unaware of Brown’s experiment when we came to the following conclusion:
“... bodies of microscopically visible size suspended in a liquid will perform movement of such
magnitude that they can be easily observed in a microscope.” (Einstein, 1956).
To explain the “self diffusion” of particles, Albert Einstein used a probabilistic framework
and reconciled Fick’s Law and Brownian motion (Einstein, 1956). He introduced the
“displacement distribution” concept as the likelihood or probability of a single particle to
move a certain distance. In a Gaussian distribution, the likelihood of displacements is
proportional to the diffusivity coefficient explained by Fick’s Law as following:
(x2)=2-D-t [Eq. 2.3]

Where (x?) denotes the mean-squared displacement of a particle, which is the most
common statistical measure of spatial movement on a random motion. D denotes the
constant coefficient diffusivity and t denotes the diffusion time. The probability of
movements is related to its diffusivity coefficient D as shown in Figure 2.4. Additionally,
these displacements are also influenced by the geometrical structure of the environment.
Thus in biological tissues (e.g. the brain), we can detect and alter the displacements of
these particles by applying a resonant frequency pulse, which is specific to water molecules

(or hydrogen atoms) in the brain, which is covered in the next section.
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Figure 2.2 Representation of the Gaussian displacement distribution plots for various diffusion
coefficients. Larger diffusion coefficients tend to have broader displacement probabilities suggesting an

increase in diffusion mobility.

2.2.2 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) was originally developed in the early 1950s in
the US and the Soviet Union (Carr and Purcell, 1954, MacWilliams, 2003). This technique
uses strong magnetic fields (usually 1.5-3 Tesla compared to Earth’s magnetic field of 25-
65 pTesla) to momentarily polarize the angular momentums of hydrogen atoms found in
water molecules. Hydrogen is the most common element in the universe and also in our
body, which is mainly composed of water (up to 60% or up to 85% in the brain) (Watson et
al, 1980). These hydrogen atoms contain a single negatively charged electron and a
positively charged proton. Interestingly under normal conditions, these atoms rotate
within an arbitrary axis (known as precession); consequently in water (with abundant
hydrogen atoms) they do not generate a total magnetization field. However, when a very
strong magnetic field is applied to these atoms (such as the MRI powerful magnetic field),

the precession of these atoms aligns along the direction of the magnetic field. Some
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hydrogen atoms will be positively aligned in the direction of the magnetic field (high
energy state) and others will align in the opposite direction (lower energy state, Figure
2.4b), generating an atom-specific magnetic dipole (thin arrow in Figure 2.4). The rotation

frequency of these hydrogen atoms is known as the Larmor frequency:

w=y'B [Eq. 2.4]

which depends on the magnetic field “B” and gyromagnetic ratio "y", a constant specific to

the atomic nucleus. The Larmor frequency for the hydrogen atom is 42.58 MHz/Tesla.

a) No Magnetic Field b) Applied Magnetic Field (B)

LR 2o
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Figure 2.3. Part a) represents the arbitrary precession of the hydrogen atoms in the absence of a strong
magnetic field. However when a strong magnetic field (thick orange arrow) is present (b), the hydrogen
atoms precess along the direction of the magnetic field (high energy state depicted in filled circles) or
oppositely to the magnetic field (low energy state depicted in open circles). The alignment of hydrogen
atoms will produce an atom-specific magnetic dipole as shown in the think blue arrow.

This spinning rate (or Larmor frequency) is important because if a radiofrequency
(rf) pulse at the Larmor frequency is triggered, it will modify momentarily the alignment of

these atoms. This action will modify the total magnetic dipole generated by the alignhment
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of the hydrogen atoms. A good analogy to understand this concept is pushing a children’s
swing. If you push too fast or too slow, you will eventually stop the swing. However, if you
push the swing at its swinging frequency (e.g. resonance frequency), you will increase the
kinetic energy of the swing and accelerate it. Thus, after the strong magnetic field is
triggered, a 90° radiofrequency pulse at the Larmor frequency is generated which modifies
the alignment of the atomic specific magnetic dipole momentarily. This pulse misaligns the
hydrogen magnetic dipole from its previously parallel alignment to the strong magnetic
force as it moves to the perpendicular direction in alignment with the radiofrequency pulse
(Figure 2.5b). However, due to inhomogeneous effects of the MRI magnetic field and
dipolar interactions some atoms rotate around its axis at a faster or slower rate. This
phenomenon is called dephasing, and it’s represented in figure 2.5c. Thus to reverse the
dephasing anomaly, an additional 180° rf pulse is applied (Figure 2.5d), leading to a better
“pulsated signal” (Figure 2.5e). Eventually, these atoms will want to align again with the
strong magnetic field (Figure 2.5f) and in doing so they generate an electrical current signal
known as the T2 relaxation signal (e.g. due to changes in the electrical current generated by
the atom specific magnetic field), which can be detected by a receiver antenna (MR coil)
and generate an image. At a longer period of time, this perpendicular dipole moment
depicted in figure 2.5f will align with the permanent strong MRI magnetic field (orange
arrow in figure 2.4) and by doing so; it also generates another electrical current known as
the T1 longitudinal relaxation sequence or T1 recovery. This echo signals are dependent on
their environment. In the brain, different brightness images are depicted due to the

different tissues s (e.g. gray matter, white matter, or cerebrospinal fluid).
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Figure 2.4 Part A depicts the magnetization dipole moment generated when all the hydrogen atoms are
aligned to the strong magnetic field generated by the MRI machine. After a 90° radio-frequency pulse is
triggered, this magnetic dipole will shift in the direction of the radiofrequency pulse (e.g. or perpendicular to
the strong magnetic field, part B). At this moment, inhomogeneities occur and will slow down or speed up its
precession rate of the dipole moment (known as dephasing”, part c). Hence, another 180° radiofrequency
pulse is introduced (part b). Slower precession atoms will speed up and faster precession atoms will slow
down (part e) and eventually a stronger perpendicular dipole moment is acquired (part f). T2 relaxation
signals occur during the dephasing of these atoms (part c-e) while T1 recovery images are acquired after the
perpendicular precession (part f) returns to its stable condition aligned with the strong magnetic field (part

a).

2.2.3 From MRI to diffusion weighted images (DWI)

In addition to triggering the secondary 180° rf pulse to improve the intensity of the
T2 relaxation signal, in diffusion-weighted images the sensitivity of the MR signal is also
dependent on the molecular diffusion within the boundaries of the biological tissue. In
1950, a physicist named Erwin Hahn described that the reduction of the MRI signal could
be accounted by the translational diffusion of particles within an inhomogeneous magnetic
field (Hahn, 1950). Four years later in 1954, Carr and Purcell proposed a mathematical and
physical framework that permitted the measurement of signal that was reduced due to

diffusivity motions (Carr and Purcell, 1954). Their idea involved adding another less strong
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“magnetic field gradient”, which would consequently modify the spinning of these particles
as they would experience different magnetic fields depending on their locations. In this
framework, they described that the Larmor frequency [Eq. 2.4] would vary not only due to
the strength of the strong magnetic field (B), but also due to the strength and direction of a
weaker gradient magnetic field "G”. Thus Eq 2.4 can be rewritten as

W=y Byg+vy-G [Eq. 2.5]

Intuitively, for a very short time 7', particles at a given position x in a particular time

t will experience a magnetic field B, + G, which will lead to a phase shift,

d@t) = —y(Bo + G x(0))7’ [Eq. 2.6]

After a decade in 1965 Stejskal and Tanner introduced another technique that
expanded the mathematical diffusion framework by Carr and Purcell (Stejskal and Tanner,
1965). They proposed to replace the additional weak gradient magnetic field by shorter
pulsed duration gradients that can be triggered right after the rf pulses. With this idea, it
was possible to identify the difference in duration between the gradient pulse time and the
diffusion time right after the gradient pulses were signaled. So if we ignored the constant
phase change due to the strong magnetic field Bo (omitting the first term in Eq. 2.6 for
simplicity), we can characterize the net phase change due to the gradient direction by

¢;=—q-8-G -x; , where i =1,2 [Eq. 2.7]

and x; is the position of the particle during the first (i=1) and second (i=2) rf pulse. The

gradient pulse duration is denoted by "6" and the magnitude by “G", which are the same in
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values for both rf pulses at 90° and 180°. However, the additional 180°reverses the phase

change of the particles so the total aggregated phase change is described by:

P — 1= —q 6-G (x—xq) [Eq. 2.8]

Clearly in the equation above (Eq. 2.8), if the particles in a specific position do not
move (i.e. X1 = X2), the phase change will equal zero and the signal acquired will solely
depend on the influence of the strong By field (only the first term in Eq. 2.5). However, if
the particles randomly move due to the additional weak field gradient “G”, then x1 # x2 and
the MRI receiving coil will detect and collect the decrease in signal. This reduction in signal
can be described by the Stejskal-Tanner equation:

Sk ol 607 a(a=3)]

5, , [Eq. 2.9]
where S, denotes the echo signal acquired without any additional pulsed gradient magnetic
field, Sk denotes the echo signal acquired when a pulsed gradient magnetic field is triggered
for a “6” duration and a “G” magnetic field magnitude, y denotes the gyromagnetic ratio, d
is the diffusion coefficient while “A” denotes the time between the two rf pulses.
Intuitively, the right side of Eq. 2.9 contains constant terms that can be grouped in a
constant variable known as the “b” factor (more of this in the next section). The left side of
Eq 2.9 contained our acquisition signals when specific gradient fields are introduced (Sk) or
when there is no presence of a gradient field (So). Thus, to derive a rotationally invariant

diffusion tensor, we need to combine a number of weak gradient fields and solve a system

of equation. This tensor calculation is covered in the next sections.
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2.2.4 From diffusion weighted Images to the Diffusion Tensor

To estimate the diffusion tensor, many diffusion gradient pulses (at least six) with
different orientation locations are applied (Behrens et al, 2003b). Depending on the
orientation of the magnetic field gradients and the anisotropy of the brain’s biological
tissues, some particles will maintain stationary along the strong magnetic pulse B. Other
more isotropic particles that diffuse parallel to the magnetic gradient pulse will move,
causing a random phase shift and decrease in echo signal (Eq. 2.8). Thus, the intensity of
the pulsed gradient signal (Sk) and the original signal with no gradient pulses (S,) are used
to calculate the diffusion tensor (D) by solving the Stejskal-Tanner equation (Eq. 2.9)
(Stejskal and Tanner, 1965, Kingsley, 2006a). For simplicity, we can arrange Eq. 2.9 as
follow,

S, = SoebIkPIx [Eq. 2.10]

Where Sk denotes the diffused signal at the specific “gk” gradient direction, “S,”
denotes the intensity of the signal with no pulse gradient field direction, and “b” is a
constant known as the b-factor. This “b” constant combines the known coefficients in Eq.
2.9, which include the gyromagnetic values (y) , the gradient magnetic pulse length (§), the
time between the initial rf pulse at 90° and the second 180° rf pulse (A), and the coefficient
diffusivity value (d). In the adult brain, common b-factor values range between 600-1200
s/mm?. Finally, “D” denotes the diffusion 3x3 symmetric tensor that needs to be calculated.

To calculate “D”, a minimum of 6 gradient diffusion weighted images are needed
(Sk) and at least an image with no gradient direction (So). Usually to increase the signal to
noise ratio, a few Sp images are collected and the averaged signal is used in diffusion

imaging. In clinical research, a higher number of diffusion-weighted images (Sk) are also
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used for better diffusion motion estimations. In this chapter, we present an analytical
solution for two diffusion weighted image acquisitions. The first example sequence
contained 1 no diffusion weighted image and 6 diffusion weighted images and the second
acquisition example contained 6 no diffusion-weighted images with 36 diffusion-weighted

images.

Given the higher number of voxels and the complication of solving these systems of
equations, most publications do not cover the estimation as it is generally done by non-
commercial software packages. Thus, the aim of the following section is to solve
analytically the diffusion tensor “D” given two different acquisition parameters. For
simplicity the solutions are bounded to one specific voxel (a 3-dimensional pixel), which
can repeatedly iterate in every voxel of the image. Matlab functions (MATLAB 2012a, The
MathWorks Inc., Natick, MA, 2000)(MathWorks, 2005), and imaging tools (for extracting
intensities at each voxel) were used during this procedure. At the end, I compared my
results with one of the most reliable software packages that derived this tensor
intrinsically (FSL) (Smith et al, 2004b, Woolrich et al.,, 2009). FSL is a comprehensive
library of analysis tools for FMRI, MRI and DTI brain imaging data. FSL tools are written
mainly by members of the Analysis Group, FMRIB, Oxford, UK. FSL runs on any operating
system (OSX, Windows, or Linux) and most of the tools can be used from the command line
and as GUIs ("point-and-click" graphical user interfaces) (Smith et al., 2004b, Woolrich et

al, 2009).
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2.2.5 Analytical implementation of the diffusion tensor

Case 1: The “H” approach for 6 DWIs: This first case represents the first sequence

acquisition example with six gradient directions (Sx) images and a single non-diffusion
image (So). Given the following gradient direction pulses and intensities with a b-value of
800 s/mm? in Table 2.1 and by denoting “gk” in the simplified Stejskal-Tanner equation

(Eq 2.10) for a 3-dimensional domain,

gk = [Gx, Gy, G,]" [Eq. 2.11]1
And our unknown “D”:
Dxx ny sz
b=\Db, D, D, [Eq. 2.12]
sz Dzy Dzz

n
———% = (G2 Dy + GLiDyy + G2Dyy + 2GyGyiDyy + 2GiG Dy + 2GyiG Dy,

[Eq. 2.13]

“u:=n
1

where the subscript “i” denotes each gradient direction pulse (in this case “i’ will go from 1

to 6).

One approach to solve this system of equations is to use matrix algebra. Thus let express D

as a six-element column vector, Dv:
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Dv = [ Dyy, Dy, Dy Dy Dz Dy |7 [Eq. 2.14]

With a six-element row matrix H containing a large M x 6 matrix (derived from the
normalized gradients gxi, gyi, and gzi), where M in the number of gradient directions (in this

case M=6 based of the diffusion weighted images for this example):

631 G}%l Gzzl ZleGyl Zle Gzl ZGylel

H = GJ%Z GJ%Z GZZZ ZGxZ GyZ 2ze GZZ ZGyZ GZZ [Eq 215]
636 6336 6226 ZGxﬁ Gy6 ZGxG Gz6 ZGyGGZG
Lastly, let’s define a Y-matrix for the left side of equation [Eq. 2.13]:
lns—o lns—o lns—0
—S1 S22 _Se
Y—(b T b) [Eq. 2.16]

Thus we can express [Eq. 2.13] with the following 6 directions system of equation as:

Y=H-Dv [Eq. 2.17]

With only six diffusion weighted signals, there is an exact analytical solution for the tensor

that can be solved using standard methods such as the Cramer’s rule,(Kinglsey, 2006)

(H'H)-Dv=Dv= H1'Y [Eq. 2.18]

The analytical solution for Eq. 2.18 was computed in Matlab scripts (see Appendix A and B)

and compared to the values calculates by FSL, a neuroimaging software tool.
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Voxel
Gradient Pulses Gradient direction pulses at Intensity
Gx Gy Gz
No diffusion image (So) 0 0 0 312
Gradient pulse 1 (Sk-1) 0.817324 -0.49673 -0.29196 206
Gradient pulse 2 (S2) 0.465087 -0.03533 0.88456 129
Gradient pulse 3 (S3) 0.820439 -0.31517 0.477018 174
Gradient pulse 4 (S4) -0.80334 0.593293 -0.05141 233
Gradient pulse 5 (Ss) -0.15636 0.78899 -0.59418 154
Gradient pulse 6 (Ss) -0.11253 -0.34483 -0.93189 187

Table 2.1. Representation of the six gradient directions and its specific intensities values at location x=66,
y=64, and z=21 in MNI space.

Case 2 The “B” approach for >>6 DWIs: In this case, thirty-six gradient directions (Sx) and
six normal no-gradient pulse images (So) were collected and the analytical solution is
presented in this section using a different approach called the “B approach” due to its
matrix derived definition. For calculations in >6 DWIs using the H approach, please refer to

the following publication (Kingsley, 2006b).

In the previous case, we were able to solve for the equations with only 6 DWIs and 1
image with no diffusion. However, our tensor approximation might not be very accurate.
For example, in cases where none of the six gradient direction pulses align with the

anisotropic direction of a white matter fiber bundle, the 6 diffusion-weighted images will
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fail to capture the ideal anisotropic diffusion motion. Additionally, shorter movements will
be detected if these gradient pulse directions are slightly off the orientation of the brain
tissue. On the other hand if these gradient pulses are applied perpendicular to the tissue,
no movement will be detected. In the 3D space, a completely accurate model will be ideally
derived if we collect infinitesimal number of diffusion weighted pulse directions. Though,
due to our current technology this is impossible and thus we relay on higher number of
gradient pulse directions. Currently, higher numbers of diffusion weighted pulse directions
are collected (~40-60 DWIs instead of 6). However, even though the higher number of
pulse gradients increases the chances of a better tensor estimation, it will also increase the
acquisition time which may eventually lead to patient discomfort and movement while
acquiring the signal. Thus depending on the study parameters (e.g. children tend to move
more in longer acquisition durations), the researcher needs to specify an optimal
acquisition protocol. Thus, for this analytical derivation example, I used 36 DWIs and 6
non-diffused images at a random specific voxel location (x=76, y=64 and z=21) as shown by

Table 2.2.

So for this “B approach” lets denote a seven-element column vector with the first six
row representing the six distinct tensor elements and the final row representing the “So” no

diffusion signal,

a = [ Dy, Dyyr Dy, ny' Dyz, Dyz» ln(So)]T [Eq' 2. 19]

When no diffusion images are collected, they are usually averaged to estimate a

better no diffusion signal (depicted as So). This must be done when utilizing the H approach
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to avoid errors in tensor calculations. However, in this approach they can either be

combined or treated individually.

In addition to the “a” matrix, lets denote an individual “b” matrix [Eq. 2.20]
(Kingsley, 2006a). These 6 terms include bxy, byy, bzz;, bxy=bys;, bx.=bz, and by,=b;y or in

vector notation:

bi = ( bxxir byyi' bzzir beyi' bezi' 2byzi) [Eq 2. 20]

“wxn
1

where denotes every individual diffusion weighed image (in this case, i=42). This b
matrix could also be combined in a seven-row vector that involves the non-diffusion signal

at the last column:

Bi = ( _bxxir - byyir _bzzi' _beyi' _bezir _ZbyziJ 1) [Eq 221]

If we expand the following vector, we get a Nx7 B matrix,

—byx1 _byyl ~b;z1 _beyl —2bys1 _Zbyzl 1
B = : . . . .

: : : : [Eq. 2.22]
_bxxN _bny _bZN _beyN _bezN —ZbyzN 1

where N denotes the number of gradient directions (in our case N=36 gradient directions).
Thus, to represent [Eqg. 2.10] in term of B and a, we get a natural logarithm formulation

that looks like this:
In(S;) = In(Sy) — bi:D=B; « [Eq. 2.23]

where “:” denotes the inner dot product and “D” represents the diffusion gradient tensor in

[Eq. 2. 12]. We could also represent every signal intensity in this Nx1 matrix called x:
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In(S;)

In(S,)

x = [Eq. 2.23]

In(Sy)
Now because the Nx7 B matrix is not squared, we will need to calculate the Pseudo inverse

of B, “B*” as follow:
(BTB)"'B"Ba = a = (BTB)"'B"TBx  [Eq.2.24]
(B"TB)"'BT = B* [Eq. 2.25]

The calculation for a could be done similar to the H method in Eq 2.8. The data
points are treated as equal for the original signal intensities, however this will not be true
for their logarithms. So if the signal intensities have the same variance, then the uncertainty
in In(S;) is proportional to 1/S;. Thus, the least-square fit should give more weight to the
In(S;) of high S; and less weight to In(S;) of low S;values. This is accomplished by modifying

(Kinglsey, 2006) Eq. 2.25 as follows:
a=(B"X1B)"Y(B"X VHx [Eq. 2.26]

Where X1 is a diagonal NxN matrix for the intensities whose elements are Si2/c:? (signal

intensities squared divided by the variance of it):

ff—} 0 0

1= ? o - ? [Eq. 2.27]
SK
0 0 s
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Thus, by computing [Eq. 2.26], we could estimate our tensor variables specified in [Eq.
2.19]. Additional programs used for comparison and algebra computations were shown in

the Appendix.

2.2.6 Comparison with FSL DTI estimation

After calculating the diffusion tensor D analytically it is worth noting that slight
differences in one of the most common packages used to evaluate DTI were found probably
due to simplistic algorithms used to balanced high computational power and accuracy in
the results. For the purpose of understanding the tensor derivations, I presented only the
first stage analytical computation for DTI in a single voxel. However a normal MRI image
includes millions of voxels and thus it will require more time and higher computer power
demands to computes all voxels. Calculating the tensor on each voxel goes beyond this
chapter as it is done in an iterative method. To put it in perspective, the imaging data
collected during this work included 65 diffusion weighed images with ~80 million voxels.
Thus, ~80 million matrices with 65x65 dimensions are necessary to derive the tensor maps
for every participant image. Thus for simplicity throughout this work, I used the FSL

toolbox (DTIFIT) to derive these calculations.

In this work, I presented the necessary background information to understand
analytically the derivation of the diffusion tensor and this major components of diffusion.
Throughout this work, I investigated the changes in diffusivity metrics derived from these
components of diffusion. Thus, I believe I covered the objective of this chapter, which was
to describe in a simple manner how these mathematical diffusion metrics are derived
analytically to be used broadly in the neuroscience world.
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Gradient Pulses Gradient direction pulses at Voxel .
Intensity
Gy Gy G

No diffusion image (So) 0.0000 0.0000 0.0000 |312
No diffusion image (So) 0.0000 0.0000 0.0000 345
No diffusion image (So) 0.0000 0.0000 0.0000 |317
No diffusion image (So) 0.0000 0.0000 0.0000 293
No diffusion image (So) 0.0000 0.0000 0.0000 318
No diffusion image (So) 0.0000 0.0000 0.0000 |327
Gradient pulse 1 (S,-;) 1.0000 0.0000 0.0000 206
Gradient pulse 2 (S,-;) 0.8173 -0.4967 -0.2920 |129
Gradient pulse 3 (S,-;) 0.4651 -0.0353 0.8846 174
Gradient pulse 4 (S,-,) 0.8204 -0.3152 0.4770 233
Gradient pulse 5 (S,-s) -0.8033 0.5933 -0.0514 154
Gradient pulse 6 (S,-¢) -0.1564 0.7890 -0.5942 187
Gradient pulse 7 (S,.;) -0.1125 -0.3448 -0.9319 |160
Gradient pulse 8 (S,-s) 0.5180 0.8004 0.3017 196
Gradient pulse 9 (S,-9) 0.8217 0.3191 0.4722 234
Gradient pulse 10 (Sy-10) -0.1539 0.3004 -0.9413 |203
Gradient pulse 11 (Sy-11) -0.7541 -0.5437 -0.3684 |212
Gradient pulse 12 (S,-2) -0.4413 -0.8974 0.0046 |214
Gradient pulse 13 (Sy-13) -0.3398 0.9397 -0.0389 124
Gradient pulse 14 (Sy-14) 0.3022 0.5148 0.8023 171
Gradient pulse 15 (Sy-15) -0.0663 0.8784 0.4734 |99
Gradient pulse 16 (Sy-16) -0.3919 -0.6726 0.6277 188
Gradient pulse 17(Sy.17) 0.4299 0.5884 -0.6848 |169
Gradient pulse 18 (S,-15) 0.2995 -0.6225 0.7231 212
Gradient pulse 19 (S-19) 0.4238 -0.5502 -0.7195 |74
Gradient pulse 20 (Sy-2) -0.6019 0.5992 0.5279 |90
Gradient pulse 21 (S,-,1) -0.0921 -0.2396 0.9665 |141
Gradient pulse 22 (S\-,) -0.6430 -0.1081 0.7582 127
Gradient pulse 23 (Si-23) 0.0444 -0.9530 0.2999 |169
Gradient pulse 24 (S,-,4) 0.2644 0.9453 -0.1909 |154
Gradient pulse 25 (Sy-35) -0.6574 0.4606 -0.5964 |232
Gradient pulse 26 (Sy-3) -0.2388 -0.7826 -0.5750 |150
Gradient pulse 27 (Sy-27) -0.9671 0.0025 -0.2543 |193
Gradient pulse 28 (S;-3s) -0.6231 -0.1211 -0.7727 |196
Gradient pulse 29 (Sy-,9) 0.8189 0.0623 -0.5705 |135
Gradient pulse 30 (Sy-3) -0.8446 -0.4754 0.2464 |197
Gradient pulse 31 (Sy-31) 0.6156 -0.7677 0.1780 155
Gradient pulse 32 (S,.s;) 0.3741 0.0276 -0.9270 |116
Gradient pulse 33 (Sy-33) 0.8046 0.5638 -0.1865 195
Gradient pulse 34 (S,.s,) -0.2403 0.3430 0.9081 122
Gradient pulse 35 (S;35) 0.2446 -0.9277 -0.2820 |153
Gradient pulse 36 (S,-36) -0.9369 0.1259 0.3260 |182

Table 2.2. Representation of the thirty-six gradient directions acquisition example with 6 no-diffusion
images and its specific intensities values at location x=66, y=64, and z=21 in MNI space.
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Chapter 3 Preface:

This chapter is my first published work on using neuroimaging data, more
specifically using diffusion imaging data. Here, the goal was to identify changes in white
matter integrity on different neurodegenerative diseases. We included four groups in this
study, Parkinson’s disease without dementia (PD), Parkinson’s disease participants
progressed into a Parkinson’s with dementia (PDD), a group of participants at early stages
of dementia (AD), and a healthy non-demented control group (CON). This work prepared
me to understand the pathology of these diseases (Parkinson’s disease and Alzheimer’s
disease), its structural changes in the brain, and the usage of neuroimaging diffusion tools
to investigate these changes. This work also allowed me to understand the advantages and
disadvantages of each DTI processing method that I applied in this chapter: a region of
interest approach and a more global whole-brain tract-based spatial statistics (TBSS)
approach. After the completion of the study, I decided to compare TBSS to a more tract-
related methodology that I described as a tract-of-interest (TOI) approach, which will be

covered in the next chapters.
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Chapter 3

A comparative white matter study with Parkinson’s disease, Parkinson’s

disease with dementia and Alzheimer’s disease
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3.1 ABSTRACT

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the most common
neurodegenerative disorders affecting older populations. AD is characterized by impaired
memory and cognitive decline while the primary symptoms of PD include resting tremor,
bradykinesia, and rigidity. In PD, when mild cognitive changes are frequent, the disease
progresses to PD with dementia (PDD). PDD and AD are different in pathology although the
differences in microstructural brain changes remain unknown. Thus, we used diffusion
tensor imaging (DTI) to investigate white matter tract differences in individuals with AD
(n=13), PD (n=12), PDD (n=9), and healthy non-demented controls (CON) (n=13). We used
whole brain tract-based spatial statistics (TBSS) and a region of interest (ROI) analysis
focused on the substantia nigra (SN). We found that individuals with PDD had more
widespread white matter degeneration compared to PD, AD, and CON. Individuals with AD
had few regional abnormalities in the anterior and posterior projections of the corpus
callosum while PD and CON did not appear to have significant white matter degeneration
when compared to other groups. ROI analyses showed that PDD had the highest diffusivity
in the SN and were significantly different from CON. However, no significant ROI
differences were found between CON, PD, or AD. In conclusion, global white matter
microstructural deterioration is evident in individuals with PDD, and thus DTI may provide

means to tease out pathological differences between these dementias.

3.2 INTRODUCTION
Aging is accompanied by alterations in physiological, functional, and structural

biological changes in the brain. In older adults the most frequent neurodegenerative
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disorder is Alzheimer’s disease (AD) followed by Parkinson’s disease (PD) (Schocke et al,,
2002, Yoshikawa et al., 2004, de Lau and Breteler, 2006). AD is characterized by impaired
memory and cognitive decline, roughly affecting 4.5 million people in the US (Thies et al,,
2013) while PD is a movement disorder with primary motor features of rest tremor,
bradykinesia and rigidity (de Lau and Breteler, 2006). The risk of developing dementia in
PD (PDD) is reported to be as high as 70% with a 6-fold chance to develop dementia
compared to age-matched controls (Aarsland et al,, 2002, Burton et al., 2004). In PD, the
loss of dopaminergic neurons in the substantia nigra is considered the hallmark
neuropathological finding (Rudow et al., 2008, Zhan et al., 2012). Yet it is evident that in
white matter, these pathological changes go beyond the basal ganglia, as shown by
significant white matter deterioration in cortical and subcortical regions (Burton et al,,
2004, Matsui et al.,, 2007a, Matsui et al., 2007b, Karagulle Kendi et al., 2008, Kamagata et al,,
2012, Zheng et al., 2013).

In the last few decades, in vivo non-invasive techniques such as diffusion tensor
imaging (DTI) have been developed to investigate white matter alterations in
neurodegenerative diseases. DTI measures the orientation and direction of water
molecules in neural tissue, and one of its functions is to characterize the integrity of white
matter fibers (Basser et al.,, 1994, Le Bihan, 2003). However, diffusion imaging studies on
individuals with PD have been inconsistent. Two studies reported a lack of white matter
deficit when comparing PD to healthy elderly subjects (Yoshikawa et al., 2004, Hattori et
al, 2012) while others found reduced white matter integrity by measures of fractional
anisotropy (FA), mainly in the substantia nigra (Yoshikawa et al., 2004, Chan et al,, 2007,

Vaillancourt et al.,, 2009), the cingulum,(Kamagata et al., 2012), the thalamus and putamen,
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and frontal and temporal cortices (Zhan et al., 2012). A study using a more global approach
(tract-based spatial statistics [TBSS]) showed reduced FA in PD compared to CON mainly in
superior and inferior pre/post central gyrus, posterior striatum and frontal white matter
regions (Zhan et al., 2012).

Alterations in PDD white matter as evidenced by decreased FA have also been
reported in a number of brain regions such as the corpus callosum (Kamagata et al., 2012),
frontal, temporal, and occipital lobes (Matsui et al., 2007b, Hattori et al., 2012). Additional
DTI studies also examined individuals with Lewy body dementia (LBD), a pathology similar
to PDD where cognitive changes occur prior to parkinsonism or motor symptoms (Dodel et
al., 2008). Hattori et. al. found that individuals with PDD and LBD both had decreased FA in
posterior and anterior brain regions compared to controls (Hattori et al., 2012). Watson et.
al. compared LBD and AD using DTI and found a reduced FA in LBD subjects compared to
CON predominantly in parieto-occipital tracts with relative sparing in frontal brain areas.
When compared to CON, AD participants showed a more widespread reduced FA in the
frontal brain (Watson et al., 2012). Kantarci et. al. found decreased diffusivity mainly in the
amygdala and the inferior longitudinal fasciculus (associated with visual hallucinations)
when patients with DLB were compared to controls while AD were characterized with
higher diffusivity in temporo-parietal regions (Kantarci et al., 2010).

Though recent studies have investigated white matter changes associated with
various neurodegenerative diseases, to our knowledge limited studies have compared AD,
PD, and PDD at the level of white matter microstructure changes. It is important to
understand these differences, which will lead us to a better understanding of each

pathology progression. Thus in this study, we aimed to characterize group differences in
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white matter neural fibers using two diffusivity metrics: fractional anisotropy (FA) and
mean diffusivity (MD). First, whole brain voxelwise analyses were performed using tract-
based-spatial statistics (TBSS) in 4 groups: PDD, AD, non-demented PD, and healthy non-
demented (CON). Secondly, we aimed to measure DTI markers of dopaminergic neuronal
loss using a region of interest (ROI) analysis in the substantia nigra (SN). We hypothesized
that the cohort with combined cognitive decline and impaired motor control (PDD) would
show the most expansive global white matter degeneration compared to AD, PD and

healthy aging individuals (CON).

3.3 METHODS
Demographics

A total of 48 participants were included in this study. Healthy elderly non-demented
subjects (Clinical Dementia Rating [CDR], 0; n=13) and individuals with AD (CDR, 0.5; n=12,
CDR, 1; n=2) were included from ongoing studies at the University of Kansas Alzheimer’s
Disease Research Center (Vidoni et al., 2012b). Diagnostic criteria for AD require the
gradual onset and progression of impairment in memory and in at least one other cognitive
and functional domains from the NINCDS-ADRDA criteria (McKhann et al., 1984b). The
presence or absence of AD dementia and its severity if present, was determined using the
CDR scale (Morris, 1993).

Individuals with PD and PDD were recruited from the Parkinson's Disease and
Movement Disorder Center at the University of Kansas Medical Center. A neurologist
specializing in movement disorders diagnosed all the idiopathic PD according to the United

Kingdom Parkinson's Disease Society Brain Bank Criteria for diagnosis (Hughes et al,
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1992). Diagnostic criteria for PDD were based on recommendations from the Movement
Disorder Society Task Force for level 1 testing (Dubois et al.,, 2007) and included tests from
the Uniform Data Set (UDS) used by the national network of Alzheimer’s disease centers
(Weintraub et al,, 2009). Extra pyramidal signs were assessed using the motor subscale of

the Unified Parkinson’s Disease Rating Scale (UPDRS).

Diffusion Imaging Acquisition

Diffusion weighted images were acquired in a 3.0 Tesla Allegra MRI scanner using
single-shot echo-planar imaging sequences with a repetition time [TR]=1000ms and echo
time [TE]=81ms. Diffusion gradients were applied in 36 directions with 2 b-values (b = 0
s/mm? and b= 800 s/mm?). Sixty-eight 2-mm sections were acquired in at in-plane
resolution of 128x128 with a 300mm field of view (FOV). The total image acquisition time

was 12 min.

Tract-Based Spatial Statistics

We performed voxelwise analysis in FA and MD using tract-based spatial statistics
(TBSS), part of the Functional Software Laboratory [FSL 4.1.9] (Smith et al., 2004a, Smith et
al,, 2006). First, FA and MD images were created by fitting a tensor model to the raw eddy
corrected diffusion data using FMRIB’s Diffusion Toolbox (FDT) and then brain-extracted
using the Brain Extraction Tool [BET] (Smith, 2002). All subjects’” FA/MD images were
aligned into a common space target (FMRIB58_FA) using the nonlinear registration tool
FNIRT (Andersson et al, 2007, Andersson et al, 2010), which used a b-spline

representation of the registration warp field (Schnabel et al., 2001). After registration, a
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mean FA image was created and thinned-out (at 0.2 threshold) to create a mean FA
skeleton, which represents the centers of all tracts common to all the groups. Each subject's
aligned FA/MD data were then perpendicularly projected onto the skeleton and the data
was fed for voxelwise cross-subject statistics.

Statistical group differences among AD, PD, PDD and CON for FA and MD maps were
performed using RANDOMISE, a TBSS statistical tool that computes non-parametric
permutations using the generalized linear model (Winkler et al, 2014). We used a
threshold-free cluster enhancement [TFCE] approach (Anderson and Robinson, 2001,
Nichols and Holmes, 2002, Smith and Nichols, 2009) and set the number of permutations to
5,000 using age and gender as the confound regressors. We compared each group to each
other. Significance values were reported at p<0.05 corrected. To discuss our results, we
overlapped a white-matter probabilistic tractography atlas derived from the John Hopkins
University (Wakana et al,, 2007, Hua et al., 2008a). Fiber tract threshold criteria included a
probability of existence greater than 0.7 with mention of no other secondary fibers in the
skeleton location.

Region of Interest (ROI) Analysis

Substantia nigra ROI were drawn on each image using Fslview 3.1.8, part of the
Oxford Center for Functional MRI of the Brain (FMRIB) software library. After identifying
the slice where the substantia nigra (SN), red nucleus, and subthalamic nucleus were
noticeable, we moved one slice ventral where the SN was visible. At this specific location,
two raters (R.P. and R.R.) drew ROIs in the red-green-blue (RGB) principal diffusivity
invariant eigenvector, using the green color as a reference for fibers in the SN traveling in

the ventral-dorsal direction. Then, we extracted FA and MD from these ROIs (Figure 3.1).
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The inter-class correlation for the ROI regions was 0.834 while intra-class correlations
were 0.913 and 0.949 respectively. Additionally, a Bland-Altman analysis (Bland and
Altman, 1986, Hanneman, 2008), was used to compare these values giving a mean
difference of 0.03 percentage points with a 95% confidence interval between -0.13 and
0.064. For comparisons between groups, one-way analysis of variance (ANOVA) was
performed using age and sex as covariates. All statistical analyses were performed using

SPSS 20.0 (SPSS Inc, Chicago, IL) while setting our alpha to p<0.05 to avoid Type I error.

Figure 3.1._ Region of Interest (ROI) image representations in the substantia nigra (SN). (A) Shows the by
slice image with darker SN. (B) Shows the FA image with brighter SN. (C) Shows the principal eigenvectors in
RGB color. (D) is a zoomed image of the region-of-interest with the mask denoted in red.

3.4 RESULTS
Demographics and clinical features

Table 3.1 shows the demographics data for the PD, PDD, AD, and CON groups.
Education and MMSE were found to be significantly different among groups. Post-hoc
analyses showed that PDD had a significantly lower mean education compared to CON
(p=0.002), and the AD group (p =0.003). The PDD group also had a significantly lower

MMSE than the AD, CON, and PD groups (p<0.001) while the AD group was significantly
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lower than the CON (p =0.006) and the PD (p=0.016). UPDRS and disease duration was

significantly higher in the PDD group when compared to the PD group (p <0.001).

Control AD PD PDD
(n=13) (n=14) (n=12) (n=9) P-Value Post-hoc significance
(LSD)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Age (yrs) 71.54 (7.45) 71.07 (7.32) 67.5(4.01) 74.78 (5.12) 0.086
Sex (M:F) 6:7 8:6 5:7 8:1 0.14
Education (yrs) 16.77 (2.09) 16.64 (2.27) 15.33(2.23) 13.67 (2.18) 0.007 CON, AD >PDD*
MMSE (max 30) 28.92(1.32) 26.79(2.45) 28.67 (1.44) 22.22(2.17) <0.001 CON, AD, PD>PDD**
and CON >AD**
Total UPDRS NA NA 19.58 (7.10)  32.89 (5.86) <0.001 PDD>PD**
Disease duration (years) NA NA 6.38 (4.19) 16.33 (6.92) <0.001 PDD>PD**

NA= not applicable; n= number; SD = standard deviation *p< 0.01; **p< 0.001.
Table 3.1. Demographics and neuropsychological data of all subjects.

Region of Interest (ROI) Analysis

In our substantia nigra, we found a significant decrease in FA in the PDD group
when compared to the CON group (p=0.004). We found that individuals with PDD also had
increased mean diffusivity when compared to the CON group (p=0.011). There were no
significant FA or MD differences between CON and AD, PD and AD, PDD and AD, PD and

CON, or PD and PDD. Mean values and standard errors are shown in Figure 3.2.
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Figure 3.2. Substantia nigra ROI results after performing a one-way ANOVA with age and sex as covariated
between each group. Overall mean diffusivity metrics across different groups: fractional anisotropy (blue)
and mean diffusivity (green). Error bars denote 1 standard error of the mean (SEM). Mean values for each
group are CON (FAmean= 0.59, MDmean=0.62), AD (FAmean= 0.51 MDmean= 0.75), PD (FAmean= 0.52
MDmean= 0.67), and PDD (FAmean=0.44 MDmean=0.86). Stars denote significant results (in FA, CON>PDD at
p=0.004* and in MD, PDD>CON at p=0.01**).

Tract-Based Spatial Statistics

Non-parametric whole brain TBSS analyses were performed to compare group
differences between PD, PDD, AD, and control groups on FA and MD. Significant results
were divided in ten different probabilistic tracts (Mori and van Zijl, 2002). Significant
group differences in specific white matter tract are depicted in Table 3.2 for FA and Table

3.3 for MD. Additionally, an image representation of the results are shown in Figure 3.3.
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Fractional Anisotropy (FA)

CON > PDD

Left Right

Left

PD > PDD

Right

Left
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Right
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Corticospinal Tract

Forceps Major

Forceps Minor

Inferior fronto-occipital fasciculus
Inferior Longitudinal fasciculus
Superior longitudinal fasciculus
Uncinate fasciculus

Cingulum (hippocampus)
Cingulum (cingulate gyrus)
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ot EE*

*

* % ot %

*

B._denotes p<0.05. .

denotes p<0.01

Table 3.2. FA results for every group comparison on specific white matter tracts. Results were
divided between left and right hemisphere. CON vs. AD and CON vs. PD did not show any significant
differences and thus they were omitted from the table.

Mean Diffusivity (MD)
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Inferior fronto-occipital fasciculus
Inferior longitudinal fasciculus
Superior longitudinal fasciculus
Uncinate fasciculus

Cingulum (hippocampus)
Cingulum (cingulate gyrus)
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B._denotes p<0.05.  *._denotes p<0.01

Table 3.3. MD results for every group comparison on specific white matter tracts. Results were
divided between left and right hemisphere. CON vs. AD and CON vs. PD did not show any significant
differences and thus they were omitted from the table.
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A. CON >PDD (FA) PDD > CON (MD)

B.PD>PDD PDD >PD

C. AD>PDD PDD >AD

D.PD>AD AD > PD

Figure 3.3. TBSS results for FA (in red) and MD (in blue). A) denotes higher diffusion in PDD when compared
to CON, B) denotes lower diffusion in PDD when compared to PD, C) depicts lower diffusion in AD when
compared to CON, and D) shows AD lower diffusion values when compared to PD. All images are displayed in
a Montreal Neurological Institute (MNI) background (in grey) with the mean group skeleton superimposed
(in green).

3.5 DISCUSSION

We characterized white matter integrity differences in AD, PD, PDD, and healthy
non-demented controls using tract-based spatial statistics and ROI analyses in the
substantia nigra. We found that the PDD group showed extensive global white matter
degeneration when compared to PD, AD and healthy controls. In addition, we found that
the AD group had lower diffusion in projection tracts of the corpus callosum (forceps minor

and forceps major) when compared to PD. Our ROI analyses in the SN showed decreased
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FA and increased MD in the PDD group when compared to controls. Though, no significant
white matter changes were found in the SN when PD, AD, or non-demented control groups
were compared. Hence, our findings suggest that individuals with PDD showed increased
diffusion sensitive to our diffusivity metrics, which may be used as a potential tool for
characterizing changes in the progression of this disease.

In the whole brain analysis, one of the tracts found to be deteriorated in PDD when
compared with the control and AD group is the corticospinal tract (CST). Deterioration and
injuries in this tract directly relate to motor weakness and rigidity leading to an impaired
human gait (Barthelemy et al, 2011). However, we did not find any white matter
deterioration differences in the CST when the PD group was compared to controls. A
possible explanation could be that this cohort was in the early stages of PD (UPDRSuean=
19.58), and probably our diffusion metrics were not sensitive to detect early PD white
matter deterioration. Additionally, diffusion of the inferior fronto-occipital fasciculus
(IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF)
were significantly decreased in the PDD when compared to PD, AD, and controls. Even
though the IFOF is poorly understood, it interconnects the frontal, temporal, and occipital
lobes and its known to affect auditory and visual processing and neuro-motor functioning
(Martino et al.,, 2010). The ILF provides a direct connection from occipital cortex to the
temporal lobe (Kvickstrom et al., 2011, Gold et al., 2012). Anteriorly the ILF joins the
uncinate fasciculus to relay information to the orbito-frontal cortex (Ashtari, 2012).
Lesions in these ILF and SLF fibers have been related to thought disorders, visual emotion,
and cognitive impairments (Makris et al, 2005, Chanraud et al, 2010). A recent

investigation found similar results in the ILF explaining an association with visual
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hallucinations (Kantarci et al., 2010). In AD, the SLF has shown to be significantly reduced
bilaterally (Parente et al., 2008). The SLF has also been reported to control movement
integrity, gait related functions, and early gait disturbances (Schmahmann et al.,, 2007,
Scherder et al.,, 2011). Finally, we found that the uncinate fasciculus showed significant FA
decrease in PDD and AD when compared to PD, and controls. The uncinate fasciculus
interconnects the anterior temporal lobe, the amygdala, and hippocampus with the
orbitofrontal cortex (Papagno et al.,, 2011). In AD, degeneration of the uncinate fasciculus
has been associated as a secondary effect after grey matter atrophy (Damoiseaux et al,,
2009) and along with the SLF, corpus callosum and cingulum are the fibers most affected
with this pathology (Douaud et al., 2011, Scherder et al., 2011).

Our results also showed white matter integrity deterioration in the PDD group
followed by a slight deterioration in the AD group mainly in white matter tracts that have
been associated with cognitive decline and movement disorders. It may be that our PDD
individuals were further along in their dementia progression than our AD individuals, who
were at early stages of the disease. This may explain the significant differences between the
PDD and the AD groups. We did not find global white matter deterioration in the PD group
when compared to the healthy individuals, which is in agreement with the previous reports
(Wiltshire et al., 2010, Hattori et al, 2012, Kamagata et al., 2012). However, another
explanation could be the age differences between PD, AD and healthy elderly individuals,
with PD being relatively younger. The decrease in white matter anisotropy could be related
to increased age and not driven by a specific pathology (Salat, 2011).

In regards to the substantia nigra, we found abnormalities only in individuals with

PDD. This finding is consistent with PD dopaminergic nigrostriatal system deterioration
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where a greater number of neurons are lost (Hodaie et al., 2007). However, no differences
were found when the PD group was compared to the healthy group. Previous ROIs
investigations in the basal ganglia also failed to distinguish differences in FA and MD
between PD and controls (Schocke et al., 2002, Yoshikawa et al., 2004, Chan et al., 2007).
However, a recent study found reduced FA in the substantia nigra in early PD when
compared to controls, with greater differences in the caudal region (Vaillancourt et al.,
2009). A possible explanation for the lack of difference in our study is that microstructural
white matter changes of dopaminergic neurons at early stages of PD may not be detectable
with our diffusion acquisition. High resolution and specific imaging sequencing for regions
of interest across the cortex could have helped identify white matter changes at these early
stages of the disease that were not apparent with our diffusion acquisition parameters.

We did not find any significant abnormalities in white matter microstructure in the
AD group when compared to healthy non-demented controls perhaps because the AD
patients were in the early stages of the disease (mean MMSE = 26.79). The accumulation of
amyloid beta in AD may lead to synaptic loss and degeneration (Braak and Braak, 1991b,
Hardy and Selkoe, 2002). However at early stages of the disease, these aggregates may
primarily damage the neuronal body of the axon, which compose mainly gray matter tissue.
Hence, axonal body deterioration, which includes white matter tissue, may occur later in
the disease even though other reports have disprove this hypothesis and believe that white
matter deterioration might precede gray matter dysfunction (Brun and Englund, 1986,
Sjobeck et al, 2006, Sachdev et al, 2013, Zhang et al, 2014). Previous studies that
compared early stages of AD, later stages of AD, and healthy normal controls showed

reduced white matter diffusion in AD, and to a lesser extent in mild cognitive impairment,
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when compared to healthy controls (Zhuang et al., 2010, Shu et al., 2011), while others did
not find any white matter changes in MCI or AD (Scola et al., 2010, Teipel et al., 2010).

Our primary limitation was the relatively small number of subjects in each disease
group. Age differences between the younger PD and older PDD groups were also prominent
and may have impacted the results, yet we controlled for age in our analyses. Moreover,
even though TBSS aims to improve the sensitivity of subject registration and smoothing, it
performs qualitative statistics in a normalized number of fibers, thus some pathological
changes in each fiber may be disregarded due to the thinning out of the skeleton map. In
addition, FA and MD might have been representing similar diffusivity metrics based on its
analytical definition (Alexander et al., 2007, O'Donnell and Westin, 2011). FA is a measure
of degree of diffusivity based ranging from 1 (very anisotropic) to 0 (very isotropic) while
MD is an averaged metric of diffusion based on the three dimensional diffusivity
components. In future studies we will consider other diffusion metrics such as radial
diffusivity and/or axial diffusivity. Finally, this study is a cross-sectional study, and further
investigation with longitudinal data could give us more insights on the progressive nature

of each of these pathologies.

3.6 CONCLUSION

We found that individuals with Parkinson’s disease dementia showed significant
regional (substantia nigra) and global white matter deterioration when compared to non-
demented individuals by means of fractional anisotropy and mean diffusivity. However,
individuals at early stages of Alzheimer’s disease and Parkinson’s disease did not appear to

have diffusivity changes when compared to non-demented elderly subjects using the
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current DTI methodology. Even though our results suggest that DTI and TBSS may be
sensitive to understand the progression of these pathologies (especially in PDD), additional
larger and longitudinal studies could improve the ability to characterize whether DTI is
sensitive enough to understand the changes and progression of white matter tract integrity

in these pathologies.
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Chapter 4 Preface:

After using diffusion imaging data to investigate changes in white matter integrity in
Parkinson’s disease and Alzheimer’s disease neurodegenerative diseases (Chapter 3), I
decided to compare the characteristics of two diffusion imaging methods: tract-based
spatial statistics (TBSS) and tract-of-interest (TOI). The rationale for this study was that I
noticed a lack of standardization in reporting diffusion imaging data in the literature, and I
sought to identify a clear methodological approach for my consequent analyses. Diffusion
imaging characterizes water diffusion within white matter tracts, a conduit of many white
axonal fibers traveling together in parallel directions. These conduits cover many brain
regions rather than being located at any one place. However, previous reports in diffusion
imaging described significant results in whole white matter conduits (known as tract) if
small cluster of voxels (3-dimensional pixels) reached significance at a specific brain
region. However, these voxels do not cover the entire white matter conduit, which might
lead to false positives interpretations when significant results are described in relation to
specific regions rather than white matter tracts.

Hence, in this chapter I sought compared TBSS to an alternative a-priori tract-of-
interest (TOI) approach where the main interest is to evaluate diffusivity measures in the
whole white matter conduits (or specific white matter tracts). Here, I also discussed each
method’s advantages and limitations in relation to a large sample dataset (n=208). This
older adult dataset encompassed healthy non-demented, participants diagnosed with

Alzheimer’s disease, and mild cognitive impairment.
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Chapter 4

Diffusion tensor imaging and Alzheimer’s disease: a comparison
between two processing methods, tract-based spatial statistics (TBSS)

and tract of interest (TOI)
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4.1 ABSTRACT
Objective

Given no DTI methodological gold standard, we characterized and compared the
ability of two diffusion tensor imaging (DTI) processing methods, tract-based spatial
statistics (TBSS) and tracts of interest (TOI), to distinguish white matter differences in
older healthy non-demented (ND), mild cognitive impairment (MCI), and Alzheimer’s
disease (AD) cohorts.
Methods

We analyzed cross-sectional DTI data from ND (n=57), MCI (n=67), and AD (n=37)
participants enrolled in the Alzheimer’s disease Neuroimaging Initiative (ADNI). We used
diffusion imaging data and measures of fractional anisotropy (FA) and radial diffusivity
(RD) to assess the integrity on white matter. Using TBSS analyses, we conducted whole
brain analyses to test FA and RD group differences (ND vs. AD, ND vs. MCI, and MCI vs. AD).
Similarly when we used TOI, we conducted parametric analyses in a-priori white matter
tracts, previously related to AD.
Results

The TBSS results showed a widespread FA decline in the AD cohorts when
compared to MCI and to a greater extent when compared to ND (p<0.05 corrected). No
significant differences were found when MCI was compared to ND or in any RD group
comparisons. The TOI method found significant group differences in both FA and RD
measures, specifically in the splenium of the corpus callosum, cingulum, inferior fronto-

occipital, and uncinate fasciculus.
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Conclusion

Both TBSS and TOI identified overall FA decline as the disease severity progressed
(AD>MCI>ND) but TBSS results were less tract specific and difficult to interpret in relation
to white matter tracts. Additionally, TBSS failed to identify differences in RD while the
results for RD in the TOI method were more sensitive than FA. Our study suggests that
choosing different DTI methods may lead to different results, which may explain the
variability in previous AD-related results. Thus, we encourage future studies to consider a
more standardized and tract specific DTI methodology such as TOI. However, researchers
should be aware that the TOI method is not sensitive to voxel-by-voxel analyses. Instead, it
uses averaged diffusivity values throughout whole white matter tracts to perform statistics.
Alternatively, we encourage researchers to understand the flaws TBSS may encounter,

especially when non-FA images (eg. RD) are under investigation.

4.2 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that disrupts
cognition and affects one in nine people over 65 and one in three over the age of 85 (Thies
et al, 2013). AD is typically considered a gray matter disease yet emerging in vivo
neuroimaging studies demonstrated that white matter changes in AD might be
independent or even precede grey matter deterioration (Bartzokis, 2004, Sachdev et al,,
2013, Amlien and Fjell, 2014). Although in-vivo imaging studies do not provide a micro-
scale cellular resolution, an indirect interpretation of integrity can be assessed using
magnetic resonance imaging such as diffusion imaging and metrics of fractional anisotropy

(FA) and radial diffusivity (RD). FA provides a degree of diffusivity orientation ranging
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from 0 (perfectly isotropic) to 1 (perfectly anisotropic) and is related to overall white
matter microstructural integrity while RD measures perpendicular diffusivity and reflects
changes in axonal diameter and myelination (Song et al., 2003, Kingsley, 2006a, Alexander
et al, 2011, O'Donnell and Westin, 2011). Hence, lower RD is related to increased white
matter integrity. These diffusivity metrics represent intrinsic characteristics of white
matter and have been widely used in AD as shown by previous reviews (Gold et al., 2012,
Reid and Evans, 2013, Zhang et al., 2014) and meta-analysis reports (Sexton et al., 2011,
Clerx et al., 2012). However due to inconsistent findings, there is still much debate where
and when these changes occur in the progression of the disease. These inconsistencies
worsen when studies include a mild cognitive group (MCI) (Damoiseaux et al., 2009,
Acosta-Cabronero et al,, 2010, Liu et al,, 2011, Alves et al., 2012, Bosch et al., 2012, Mufson
et al,, 2012). MCI is defined as an early non-demented group with highly likelihood to
develop AD. Though, not all MCIs develop AD (Zhuang et al., 2010). Thus in this study we
wanted to investigate the differences between these groups and whether different diffusion
imaging methods (TBSS or TOI) lead to similar or different results and conclusions.

One of the most common methods used in DTI is called tract-based spatial statistics
(TBSS) (Smith et al,, 2006). TBSS was established to overcome limitations that aroused
when voxel-based morphometry (Eskildsen et al., 2014) were used to process DTI data.
Originally, voxel-based morphometry methods were developed to investigate gray matter
differences in T1 high-resolution structural images. However, when the usage of VBM
methods extended to diffusion imaging space, it confounded limitations. Two main
limitations included brain tissue misalignments and the arbitrary choice of smoothing

kernels (Jones et al, 2005). When every subject’s image is registered to a common
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template, there is no guarantee that successful alignment occurs and that every voxel
represents exactly the same spatial region in every subject (Friston and Ashburner, 2004).
This problem aggravates in periventricular regions where non-white matter tissue (i.e.
cerebrospinal fluid) may be registered as white matter, leading to partial volume effects.
The arbitrary choice of smoothing is also problematic because there is no “correct amount”
or a standard choice for a smoothing threshold. In smaller white matter tracts, where a
mixed-tissue misalignment may occur, spatial smoothing will intensify this problem adding
more variability to the images and eventually leading to biased results. To overcome these
limitations, TBSS was implemented as a novel method that “thins out” major white matter
tract conduits in every subject’s DTI diffusivity measure (FA or RD) and projects its values
into a mean common skeleton template. Then, statistical analyses (usually non-parametric
permutations) are performed in these projections and the interpretations and results are
based on this thinned-out skeletonized data.

While TBSS overcomes alignment and smoothing limitations found in VBM analyses,
it engenders other flaws. First, the skeletonization step projects the highest 3-dimensional
perpendicular diffusivity voxel value (e.g. FA) into its adjacent skeleton voxel location
(Smith et al., 2006), which might create a favorable bias in thicker white matter regions
versus thinner regions (Edden and Jones, 2011). Additionally, the skeleton creation
reduces the information being derived from white matter tracts (Bach et al., 2014) and
consequently the statistical analysis will only include those voxels with the highest FA
values, omitting less anisotropic white matter information. Another limitation arises due to
the misalignment biased that occurs when choosing a specific template before the

skeletonizing step (Zalesky, 2011, Keihaninejad et al, 2012), which exacerbates with

73



longitudinal data (Keihaninejad et al., 2013). Finally and previously not reported is the lack
of reporting results in a standard and concise manner. For example, many studies report
small number of voxels within some white matter tracts (e.g. cingulum, corpus callosum,
etc...) as significant only because the results slightly overlap with standard white matter
atlases (Teipel et al,, 2010, Liu et al, 2011, Alves et al, 2012, Bosch et al,, 2012). Even
though this description specifies particular brain regions, we believe that when reporting
white matter tracts, the authors need to consider the entire continuous conduit (of the
tract) rather than just smaller overlapping regions. Alternatively, you could report white
matter differences representing brain locations (e.g. temporal, frontal, parieto-occipital) as
previously done (Damoiseaux et al., 2009, Acosta-Cabronero et al., 2010) yet the results
may be misleading. This lack of standardization when reporting white matter results makes
it difficult to reproduce data, interpret results, and draw conclusions from similar diffusion
imaging investigations. To overcome these limitations, others have used a different
approach that deviates from a skeleton-derived TBSS analysis (Zheng et al., 2013). Instead
of projecting highest DTI voxels values into a thinned out skeleton, the tract of interest
(TOI) approach identified a-priori white matter tracts, averages the diffusivity measures
(e.g. FA or RD), and feeds the mean values into a statistical program (e.g. SPSS) for further
statistical analysis. This processing methodology allows the investigator to obtain overall
diffusivity measures from specific a-priori white matter tracts rather than doing whole
brain imaging analyses as performed by the processing pipeline of TBSS (FSL, 2013c).

Thus, the goal of this study was to characterize and compare group differences using
two diffusivity metrics: TBSS and TOI. We evaluated data from a group of older adults

diagnosed as ND, MCI, and AD. We expected the AD to have the lowest integrity in white
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matter followed by the MCI and ND. We aimed to compare and discuss in relation to
specific white matter tracts and explain whether the processing methodology may cofound

interpretations.

4.3 METHODS
Sample

Baseline diffusion imaging data was obtained from the Alzheimer’s disease
Neuroimaging Initiative (ADNI, (ADNI, 2012)) on February 314, 2014. Our data included
cross-sectional DTI images from older adults who were ND (n=57), MCI (n=67), and AD
(n=37). ADNI was launched in 2003 by the National Institute of Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies, and nonprofit organizations to
sponsor an ongoing observational study, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). Its mission is to study the

rate of change in cognition, brain structure, and biomarkers.

Clinical assessment

All the participants included in this study underwent standard clinical and
neuropsychological examinations including the clinical dementia rating (CDR) (Morris,
1993), physical examination, laboratory procedures and neuropsychological tests at

baseline, and follow-up intervals (6,12, and 24 months) to identify conversion between
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diagnosis (ND to MCI, MCI to AD, ND to AD, or in the opposite direction). To assess
cognitive measures, evaluations included the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975) and an 11-item Alzheimer’s Disease Assessment Scale-cognitive scale
(ADAS-cog) (Rosen et al., 1984). These and other standardized evaluation protocols are
described specifically elsewhere (available online at (ADNI, 2013)). The ND group criteria
consisted on having a MMSE scores between 24 and 30 (inclusive), a CDR score of 0, and no
significant depression. MCI participants had a MMSE score between 24 and 30 (inclusive), a
CDR score of 0.5, memory complains and objective memory loss. AD participants scored
between 20 and 26 in the MMSE (inclusive), a CDR score of 0.5 or 1.0, and met criteria for
probably AD based on the National Institute of Neurological Disorders and Stroke. To
increase the diagnosis accuracy of the groups and the consistency of each clinical diagnosis,
we excluded participants who converted between baseline and follow-up evaluations

(n=12) or did not have follow-up interventions (n=23).

Neuroimaging

Baseline MRI was collected at 14 acquisition sites across North America with a
repetition time [TR] #9000ms and echo time [TE] #62ms. Five non-diffusion images (bo =0
s/mm?) and 42 diffusion gradient directions (bs-41= 1000 s/mm?) were collected. Fifty-nine
2.7-mm axial slices were acquired in at in-plane resolution of 256x256mm with a 66-mm
field of view (FOV). Visual checking was performed to exclude scans with excessive
movement artifacts and poor quality. After manually inspecting one hundred and diffusion
weighted images (35 excluded due to diagnosis conversion), we excluded twelve images

due to substantial distortion (n=6) or bad quality acquisition (n=6).
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Imaging Analysis

First, we performed similar pre-processing steps in TBSS and TOI using the FMRIB
Software Library (FSL 5.0.4) (Smith et al., 2004a). We applied eddy current correction in all
images to overcome small distortions and simple head motion by aligning the diffusion
weighted images to the bp images. Next, the brain extraction tool (BET2) was applied to
strip the brain from the skull, and diffusivity FA and RD maps were calculated using
DTIFIT. Then, all the FA and RD images were non-linearly registered, aligned and
transformed into a common 1x1x1mm standard MNI space template (FMRIB58_FA_1mm)
using a non-linear registration tool FNIRT, which uses a b-spline representation of the
registration map field, as part of the TBSS processing stream. The next procedures were
divided based on each methodology.

For the TBSS analysis, we followed standard published procedures (Smith et al,
2006). The FA images from every subject were non-linearly registered, aligned, and
transformed to a common template, which was thinned out to create a mean FA skeleton.
This mean FA skeleton represents the center of all tracts common to the group. Then, each
subject’s aligned FA and RD data were projected onto the mean FA skeleton. These
projections were done on every voxel in the skeleton by searching the highest FA value
perpendicular to the skeleton. Once the highest voxel value location is found, it is assigned
to the skeleton template location. In non-FA images (e.g. RD), the voxel location previously
found in FA was projected into the skeleton. These projections were repeated on every
subject’s FA and the resulting projected skeletons from every subject were combined into a

4D skeleton image. This 4D skeleton image was thresholded to include tracts with FA
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values higher than 0.2. Then, the resulting data was fed into voxelwise cross-subject
statistics (Figure 4.1a).

For the TOI approach, we omitted the “skeletonizing” step. Instead, after all
subject’s diffusion space were co-registered to the standard MNI template; we applied a 2-
mm smoothing kernel using FSLMATHS (FSL, 2013b), part of FSL. Next, to determine AD-
related a-priori tracts, we extracted white matter tract binary masks from the Johns
Hopkins University probabilistic white matter atlas previously registered to the common
MNI space (Mori et al.,, 2005, Wakana et al,, 2007, Hua et al.,, 2008a). These masks were
generated using deterministic tractography and were thresholded to account for at least
0.25 probability of tract existence (Figure 4.1b). For every subject’'s FA or RD image, we
“masked in” AD-related a-priori tracts (Figure 4.2). These tracts included the cingulum
(CCG) (Zhang et al.,, 2007, Liu et al., 2011, Alves et al., 2012), the inferior fronto-occipital
fasciculus (IFOF) (Alves et al,, 2012, Bosch et al., 2012), the inferior longitudinal fasciculus
(ILF) (Liu et al., 2011, Alves et al,, 2012, Bosch et al., 2012), the uncinate fasciculus (UF)
(Bosch et al,, 2012, Zhang et al., 2014), and the corpus callosum (genu, body and splenium)
(Stahl et al,, 2007, Alves et al,, 2012, Bosch et al.,, 2012). Average FA or RD values were
computed on every tract bilaterally and feed into a statistical program for further statistical

analyses.
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Figure 4.1. These diagrams depict step-by-step the two methodologies used during this investigation:
a) tract-based spatial statistics (TBSS) and b) the tract-of-interest approach.

Statistical analysis

For demographics data, we conducted parametric analysis of variance (ANOVA) and

chi-square (x?) tests to evaluate group differences. As appropriate, post-hoc analyses were

conducted to identify differences between groups (ND vs. MCI, ND vs. AD, and MCI vs. AD)

using the Fisher least significant difference (LSD) test.

For TBSS, we performed voxelwise non-parametric analyses using permutation-

based statistical interference (Nichols and Holmes, 2002, Winkler et al,, 2014, FSL, 2015).
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To test group differences (ND vs. MCI, ND vs. AD, and MCI vs. AD) in FA and RD, we used
the generalized linear model and include two-regressor models with age and gender as
covariates. We set the number of permutations to 5000, reported significant results using
the threshold-free cluster-enhancement (Smith and Nichols, 2009), and set our alpha (two-
tailed) to 0.05 corrected for multiple comparisons.

For TOI, average FA/RD values on a-priori tracts were extracted and analyzed
outside of imaging space using SPSS 22.0 (IBM Corp., Armonk, NY). To evaluate group mean
differences, we conducted ANOVA tests on every tract unilaterally (left and right). When
appropriate, post-hoc analyses were conducted using least square difference (LSD) tests to
identify specific group differences (ND vs. MCI, ND vs. AD, and MCI vs. AD). We included

gender and age as covariates and set our alpha (two-tailed) to 0.05 corrected.

Cingulum (CGG) Inferior fronto-occipital fasciculus (IFOF)

X=122 X=g§120 Z=70

Inferior Longitudinal Fasciculus (ILF) Uncinate Fasciculus (UF)

X=48 Y=100 Y=131
Corpus Callosum (CC)
Splenjum of CC Body of CC Genu of CC
X=95 Y=120 Z=90

Figure 4.2. Representation of the a-priori white matter tracts, which include the cingulum (top
left), the inferior fronto-occipital fasciculus (top right), the inferior longitudinal fasciculus (middle
left), the uncinate fasciculus (middle right), and the corpus callosum (bottom) divided in the genu
(blue), body (maroon), and splenium (light-blue).
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4.4 RESULTS
Demographics

Participants’ demographics are provided in Table 4.1. There were no differences in
age, gender, or education across the diagnosis groups. The cognitive measurements were
significantly different across groups with MMSE being highest in the ND, intermediate in

the MCI and lowest in the AD (p<0.001). Post-hoc analyses for the CDR sum of boxes also

showed higher values in AD, intermediate in the MCI, and lowest in ND.

ND MCI AD p-value Post hoc results
(n=57)] (n=67) (n=37)
Age 73.0+£5.7 73.6+7.4 74.5 8.5 0.609 -
Gender 24M /33F 42M /25F |22M/15F 0.058 -
Education 16.2+2.7 15.7+2.8 153 +2.38 0.287 -
MMSE 28.7+1.6 27.6 1.7 23.2+18 <0.001 ND>MCI>AD
CDR-SOB 0.05+0.2 3.5+0.7 46+15 <0.001 ND<MCI<AD

Table 4.1. Participant’s demographics divided by each group: non-demented (ND), mild cognitive
impairment (MCI) and Alzheimer’s disease (AD).

Tract-based Spatial Statistics

To investigate group differences (ND vs. AD, ND vs. MCI, AD vs. MCI), we performed
whole brain group comparisons in the FA and RD skeleton maps. The ND group showed
widespread and significantly higher FA values when compared to AD (p<0.05 corrected,
Figure 4.3a). These locations include all the a-priori white matter major tracts specified in
Figure 4.2 that travel within the frontal, temporal, parietal, and occipital lobes. No
significant results were found in the opposite direction (ND<AD). Similarly, higher FA

values were found when the MCI group was compared to the AD group but to a lesser
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extent (p<0.05 corrected, Figure 4.3b). No significant differences were found in the
opposite direction (MCI>AD) or when the ND group was compared to the MCI group.
For RD, we did not find any significant group differences. Though, there was a trend

(p<0.08 corrected) of higher RD in AD when compared to ND only in the anterior fornix.

Figure 4.3. Significant group differences using TBSS in fractional anisotropy (FA) maps. Top row
represents higher FA in ND when compared to AD (significant voxels were thickened in red using
tbss_fill for better visualization). The bottom row represents higher FA (in blue) in MCI when
compared to AD. No differences were found when ND was compared to MCI or in any of the radial
diffusivity (RD) comparison tests (images not shown). Green depicts the mean FA skeleton
overlapped in the MNI152 brain standard template (radiological orientation).

Tract of Interest Approach
To investigate group differences in averaged FA/RD values, we conducted analysis
of variance and post-hoc analyses when appropriate in every a-priori white matter tract

covarying for age and gender. When we examined FA values, significant results were found
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in the splenium of the corpus callosum, bilaterally in the cingulum, inferior fronto-occipital

fasciculus, and left uncinate fasciculus (Table 4.2). When examined RD values, all the a-

priori TOI were significantly different between groups (Table 4.3).

Fractional Anisotropy ANOVA
ND MCI AD p-value Post-hoc
Corpus Callusom (CC-)
CC-Genu 0.48 0.48 0.46 0.160 -
CC-Body 0.50 0.50 0.48 0.060 -
CC-Splenium 0.66 0.64 0.63 0.001 ND>AD
Cingulum (CCG-)
CCG-L 0.40 0.39 0.37 <0.001 ND>AD, MCI>AD
CCG-R 0.37 0.37 0.35 <0.001 ND>AD, MCI>AD
Inferior fronto-occipital fasciculus (IFOF-)
IFOF-L 0.40 0.39 0.39 0.044 ND>AD
IFOF-R 0.40 0.39 0.39 0.048 ND>AD
Inferior Longitudinal Fasciculus (ILF-)
ILF-L 0.39 0.39 0.38 0.069 -
ILF-R 0.41 0.41 0.40 0.065 -
Uncinate Fasciculus (UF-)
UF-L 0.37 0.36 0.36 0.004 ND>MCI, ND>AD
UF-R 0.36 0.35 0.35 0.175 -

Table 4.2. Group difference results for fractional anisotropy (FA) in a-priori tracts using the tract

of interest approach.

Radial Diffusivity ANOVA
ND MCI AD p-value Post-hoc
Corpus Callusom (CC-)
CC-Genu 0.97 0.96 1.03 0.001 ND<AD, MCI<AD
CC-Body 0.75 0.77 0.81 0.001 ND<AD, MCI<AD
CC-Splenium 0.49 0.51 0.55 <0.001 ND<MCI<AD
Cingulum (CCG-)
CCG-L 0.63 0.65 0.70 <0.001 ND<MCI<AD
CCG-R 0.60 0.63 0.66 <0.001 ND<MCI<AD
Inferior fronto-occipital fasciculus (IFOF-)
IFOF-L 0.65 0.67 0.69 <0.001 ND<MCI, ND<AD
IFOF-R 0.65 0.67 0.69 0.001 ND<MCI<AD
Inferior Longitudinal Fasciculus (ILF-)
ILF-L 0.64 0.66 0.68 <0.001 ND<MCI<AD
ILF-R 0.61 0.62 0.64 0.004 ND<AD, MCI<AD
Uncinate Fasciculus (UF-)
UF-L 0.68 0.72 0.77 <0.001 ND<MCI<AD
UF-R 0.66 0.69 0.75 <0.001 ND<MCI<AD

Table 4.3. Groups difference results for radial diffusivity (RD) in a-priori tracts using the tract of

interest (TOI) approach.
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TBSS vs. TOI comparison

For the purpose of comparing TBSS with TOI in terms of result interpretation, we
calculated the percent overlap between the voxels located in the TBSS skeleton and each a-
priori tract depicted in the TOI method (Figure 4.4d). We found small percent overlaps in
every tract due to the “thinned-out” skeleton template used in TBSS. The lowest TBSS-TOI
region overlap was found in the genu-CC (19.86% of the total a-priori tract mask) while the
highest percentage overlap was found in the I[FOF-R (30.13%).

In addition, we calculated the percent overlap of significant voxels depicted in TBSS
with every tract in TOI (Figure 4.4e, Table 4.4). Since we only found significant TBSS results
in the FA maps (and only in the ND vs. AD and MCI vs. AD comparison), we presented these
overlaps in Table 4.4. As expected, we found higher significant result overlaps in the
ND>AD comparison than in the MCI>AD comparison. The highest significant overlap was
the left cingulum with 21.30% overlap (CCG-L in the ND-AD comparison) while the same

tract showed the lowest percent overlap in the MCI-AD group comparison (0.73%). These
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percent overlaps might be misleading when reporting results because the significant
voxels in the skeleton represents a very small fraction of specific white matter tracts. That
is, these results might not represent an overall integrity of the whole tract but smaller and
regional (not tract specific) structural changes within the brain, which might be more
suitable for describing anatomical or volumetric structural changes and not for specific

tract-derived methods such as DTI.

TBSS All-subjects ———> The cingulum (CCG) TOI = The CCG (blue) overlapped in the
skeleton template skeleton template (yellow)

Blue denotes the % of voxels within the CCG Red denotes the % of significant TBSS voxels in
TOI (CCG- L =25.37% , CCG-R= 28.10% ). the CCG TOI (CCG-L =21.30 %, CG-R=12.98% ).

Figure 4.4. Overlapping descriptive representation of fractional anisotropy values in the cingulum
using TBSS and TOI (ND>AD). The TBSS skeleton is depicted in yellow, blue depicts the a-priori
tract of interest mask (the cingulum), and red denotes the overlapping significant voxels between
the two methods.
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% TOl represented | % TOI represented by the significant TBSS
by the TBSS skeleton voxels
ND > AD MCI > AD
Corpus Callusom (CC-)
CC-Genu 19.86% 11.11% 1.28%
CC-Body 22.89% 10.25% 0.77%
CC-Splenium 18.05% 10.81% 4.86%
Cingulum (CCG-)
CCG-L 25.37% 21.30% 0.73%
CCG-R 28.10% 12.98% 7.11%
Inferior fronto-occipital fasciculus (IFOF-)
IFOF-L 27.39% 14.79% 10.48%
IFOF-R 30.13% 13.28% 8.16%
Inferior Longitudinal Fasciculus (ILF-)
ILF-L 27.62% 9.72% 4.26%
ILF-R 25.74% 10.20% 5.64%
Uncinate Fasciculus (UF-)
UF-L 25.40% 15.65% 0.92%
UF-R 26.40% 11.48% 0%*

Table 4.4. Overlapping percentages between the cluster of voxels belonging to the TBSS skeleton
and whole white matter TOI conduits (left column). The right columns indicate the significant
voxels that overlap both methodologies (TBSS and TOI).

4.5 DISCUSSION

Currently there is no gold standard for processing and describing results using
diffusion imaging data, thus the aim of this study was to characterize and compare the
ability of two DTI processing methods: tract-based spatial statistics (TBSS) and tract of
interest (TOI) to detect white matter differences between ND, MCI, and AD groups. Our
objective was to identify whether different DTI data processing methods may account for
inconsistent results when describing AD-related studies. We found that TBSS showed lower
FA in AD group when compared to the ND group throughout the whole brain and to a lesser
extent when compared to the MCI group. TBSS results also showed no significant
differences when ND was compared to MCI nor in any RD group comparisons (ND vs. MCI,
ND vs. AD, and MCI vs. AD) but with a marginal higher RD in the anterior fornix when AD

was compared to ND (p<0.08 corrected). On the other hand, the TOI method found a
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consistent white matter decline (AD<MCI<ND) when averaged FA and RD values were
evaluated.
ND vs. AD

When examining FA, both TBSS and TOI showed a widespread white matter decline
in the AD group when compared to the ND group. These results are consistent with
previous findings (Damoiseaux et al., 2009, Acosta-Cabronero et al., 2010, Alves et al,, 2012,
Bosch et al, 2012) and indicate that different diffusion processing methodologies will
provide similar results. However, the RD results differed among these methods. In TBSS,
we did not find any group differences while TOI found higher RD in the AD group in all the
a-priori white matter tracts. A possible explanation may be related to a peculiar flaw that
TBSS has when projecting non-FA diffusion data into the skeleton. In the automated TBSS
process, all the non-FA voxels (e.g. RD) that get projected into the skeleton are in the same
location as the highest and perpendicular FA voxel location (Smith et al., 2006). Thus, the
RD voxel values that get projected into the skeleton may contain arbitrary RD values
(either higher or lower in diffusion characteristics) leading to a less inconsistent skeleton
projection protocol. This will increase the variability when doing voxelwise statistical
analyses because of unpredictable RD voxel value projections into the skeleton, which
depend solely on FA information. Even though, FA and RD are proportional by definition,
they describe different diffusion phenomena (Alexander et al., 2007, O'Donnell and Westin,
2011). Hence, we believe that this issue may account for inconsistent results previously
reported in non-FA images when using TBSS (Acosta-Cabronero et al,, 2010, Alves et al,,

2012, Bosch et al., 2012).
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To directly compare our FA results in both methodologies, we overlapped the TBSS
significant voxels with the a-priori tract masks used in TOI (Figure 4.4, Table 4.4). We
found very low percent overlaps as low as 9.72% in the left inferior longitudinal fasciculus
and as high as 21.30% in the left cingulum. Thus, we believe that results describing white
matter tract differences based on overlapping small cluster of voxels within specific white
matter atlas may be inaccurate due to its very small percentage overlaps (up to 21.30%, in
this case). Future DTI researchers who use TBSS or any whole brain imaging analysis
should be aware of this and explicitly mention that the significant findings encompass only
a projection or thinned-out overlap portion of a tract rather than reporting results in
relation to whole white matter tracts. Alternatively, we suggest investigators to report their
results in specific brain locations (e.g. temporal, frontal, occipital) rather than overlapping
their findings within specific. Though this will not resolve the issue of standardizing white
matter reports when using DTI, which is explicitly solved with the a-priori TOI
methodology.

ND vs. MCI

In TBSS we did not find any significant results in FA nor RD, which are consistent
with previous non-significant reports (Damoiseaux et al., 2009, Alves et al., 2012, Bosch et
al,, 2012, Teipel et al., 2012). In TOI, post-hoc analysis showed higher FA values only in the
left uncinate fasciculus, which agrees with a previous report (Alves et al., 2012) and the
large effect sizes of a meta-analysis report (Sexton et al, 2011). Interestingly, RD TOI
results were significantly different in all the tracts, suggesting that RD is a more sensitive
than FA for identifying white matter tract differences between these groups. However,

these results differ from the TBSS as no RD group differences were found in any of the
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group analyses. As previously discussed in TBSS, the variability of projecting arbitrary RD
voxel values into the skeleton might lead to non-significant results, especially when
comparing these since the MCI group is denoted as a transitional stage for higher likelihood
of AD conversion. Thus, according to our results we believe that subtle micro-structural
white matter changes may occur in the MCI group when compared to the ND and when
using a “thinned-out” whole brain analyses with apparent non-FA projection flaws, this
white matter integrity comparison may vanish.
MClI vs. AD

In TBSS, we found a widespread FA decline in the AD group when compared to the
MCI but to a lesser extent than the ND-AD comparison. Similarly but more specific in TOI,
post-hoc analyses showed that MCI presented higher FA values in the cingulum and
uncinate fasciculus, which have been previously found in other reports (Zhang et al., 2007,
Mielke et al.,, 2009, Liu et al,, 2011). Even though both methods showed significant results,
TBSS covers more brain locations than our a-priori TOI approach. One possibility for
widespread results in TBSS is that in the FA skeleton, we are comparing the highest FA
values that are projected into the skeleton. Thus, these results can be interpreted as an
overall decline of the “highest FA” voxel values adjacent to the skeleton template but fails to
report what happens with less anisotropic values that did not get projected into the
common skeleton. Thus, this results suggests an overall FA decline in the AD group when
compared to the MCL In relation to RD, the TOI processing method showed to be more
sensitive to white matter tract differences between AD and MCI. Post-hoc analyses showed
that all the tracts have a significant higher RD in AD when compared to MCI. On the other

hand, no changes were found with TBSS.
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When comparing TBSS and TOI using our FA percentage overlap comparison, we
found even smaller significant percent overlaps than in the ND-AD comparison due to
lesser TBSS significant voxel regions. These percentage overlaps are as small as 1% in the
left cingulum and as high as 10.48% in the left inferior fronto-occipital fasciculus. Again
misleading information may be reported when TBSS results are overlapped with available
white matter tract atlases. Interestingly, the tract with the lowest percentage overlap (the
cingulum, 1%) showed a significant group difference in TOI. On the other hand, the highest
percentage tract overlap (inferior fronto-occipital fasciculus) did not present significant
differences in TOI. The inferior fronto-occipital fasciculus is one of the longest tracts that
encompass many voxels and a possible explanation for significant findings in TBSS and not
in TOI might be related to the statistical analysis used in TBSS. Our TBSS analysis
performed non-parametric permutation-based statistical analyses (Winkler et al., 2014) in
every voxel within a tract while TOI averages a specific diffusivity metric (either FA or RD)
for each a-priori tract of interest. Thus, being the inferior fronto-occipital fasciculus one of
the longest tracts, increased probability for false positive may occur when doing statistical
comparison voxel-by-voxel as in the case of TBSS.

Final remarks

We found that when using diffusion-imaging data, differences between group
populations can occur due to specific processing methods. In the case of TBSS this problem
intensifies when non-FA measures (e.g. RD) are also under investigation. TBSS provides a
more global and less tract-specific diffusion imaging methodology but it showed to be
robust only for FA maps most likely due to its flaws when processing non-FA metrics (e.g.

RD). Additionally when describing findings in TBSS, future investigators need to describe
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clusters of significant voxels as belonging to a “portion” of a white matter tract or describe
the location in relation to a more general description of brain regions rather than
specifying whole white matter tracts. Alternatively, we suggest using a-priori hypotheses
driven methods such as TOI In this study, our a-priori TOI method showed lower
diffusivity measures in relation to the progression stages of AD (AD<MCI<ND). This
hypothesis driven method combines all the diffusivity voxel values (either FA or RD in this
case) in relation to a-priori white matter tracts and averages an overall value, allowing a
more standard description of the results. However, no voxel-by-voxel statistical analysis is
performed deviating from whole brain exploratory analyses such as TBSS. Thus, future
researchers need to make a concise decision on what method they should use based on the
questions they want to answer. More exploratory processing methods (e.g. TBSS) might
allow you to investigate broader regions yet it might increase the possibility for Type I
error and might complicate the interpretation and description of the results. Alternatively,
hypothesis-driven methods such as TOI can be used to explicitly describe results in relation
to specific white matter tracts. However, these methods are more restrictive for
exploratory whole brain analyses. It is also worth noting that in any diffusion processing
methodology although diffusion imaging measures are sensitive to micro-structural
changes in-vivo, a one-to-one relationship with cellular characteristics such as myelination
quality, dendritic spine growth, axonal density, or glial cell density cannot be characterized
due to the current imaging macro-scale resolution limitations (Concha, 2014, Walhovd et

al, 2014).

91



Limitations

One limitation for comparing these methods is the different statistical analyses used
for each method. While we performed non-parametric whole brain analyses using the
general linear model in TBSS, we performed a parametric analyses of variance in our TOI
method away from imaging space. However, the goal of this study was to characterize and
discuss white matter differences between two completely different diffusion processing
methods. Hence, alternating specific approaches to claim the usage of similar statistical
analyses will deviate from each default diffusion processing methodology. It is also
impossible to compare both methods with the same statistical analyses as whole brain
TBBS uses non-parametric statistics in a voxels-by-voxel basis while TOI does statistics on
averaged diffusivity values that contained many voxels belonging to a specific tracts. Non-
parametric statistical comparisons could have been evaluated for the TOI method but we
believe this deviates from a normal post-processing imaging protocol. Another limitations
for both methods are the susceptibilities that arise when transformation the diffusion
imaging data into a common MNI space. In relation to TBSS, these misalignments
susceptibilities are intrinsically corrected by the thinning-out or skeletonizing processing
step, as explained in the introduction and a previous report (Smith et al., 2006). However,
these susceptibilities are not corrected when extracting a-priori masks in TOI based on the
information of the atlas-based template. To overcome these limitations, we extracted white
matter tracts from defined probabilistic atlases where the cores of these tracts were
slightly thinned-out to include at least 0.25 probability of tract existence. We believe that
this thresholding mitigates misalignment and smoothing mixed-tissue variations that may

emerge at the edges of the a-priori TOI tracts. Another limitation in this study is the lack of
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other diffusivity metrics such as axonal diffusivity (AxD) or mean diffusivity (MD). Our
rationale for not using these metrics is the lack in interpretability in relation to our results.
For example AxD represents the magnitude of highest diffusivity direction and previous
Alzheimer’s disease showed inconsistent reports with increased AxD (Acosta-Cabronero et
al,, 2010, Bosch et al,, 2012) and others (Huang et al., 2007) showing decreased AxD in the
AD group. In relation to MD, we believe it does not offer any additional information as its
definition (the average of the three components of diffusion) is directly related to the
calculation of FA, which is included in this study. Additionally, the increase of statistical
analyses using other non-FA metrics would increase our error to encounter false positive
results while decreasing an alpha for multiple comparison corrections. These diffusivity
measures are also more biased to partial volume effects, crossing fibers, less anisotropic
tissue, and its diffusion shape dependency (e.g. oblate, elongated cigars shape, and low
diffusion spherical shapes might present similar axial diffusivity and mean diffusivity

values).

4.6 CONCLUSION

We characterized and compared the ability of two DTI processing methods TBSS
and TOI to differentiate white matter differences (by measures of FA and RD) in ND, MCI,
and AD cohorts. Both methods reported lower FA in the AD group when compared to MCI
and ND. However, TBSS did not find any RD differences between groups. This may be due
to limitations found when processing and projecting non-FA (e.g. RD) values to FA-
dependent skeletons. On the other hand in the TOI method, RD was more sensitive than FA

in capturing diffusivity group differences in specific white matter tracts. However,
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researchers should be aware of the information each diffusivity metric described and how

it is processed within each method.

Hence, our results indicate that different DTI processing methods may explain
inconsistent findings previously reported in relation to this pathology. For future white
matter tract-specific investigations we suggest the use of TOI as it provides an a-priori
driven hypothesis and a better interpretation of the results in relation to specific tracts.
However, TOI might not be suitable when exploratory whole-brain analyses are under
investigation. In this case, TBSS is a more feasible candidate yet future researchers should
be aware that significant findings might be prone to Type I/II errors based on its voxel-by-
voxel analysis, or when non-FA metrics (e.g. RD) are under investigation. Additionally
when reporting results in TBSS, researchers should be aware that smaller cluster of
significant regions cannot account for conclusions based on whole white matter tract
conduits as previously been described because it might only represent a small portion of

the white matter conduit.
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Chapter 5 Preface:

This chapter presents the results of my first work using diffusion imaging and an a-
priori tract-of-interest approach to characterize the effects of aerobic exercise. It extends
my progress on understanding diffusion imaging and applying a hypothesis driven method
to describe results in a more organized and scientifically sounded way, with results being
described in relation to specific a-priori white matter tracts.

During this investigation we evaluated the associations between higher measures of
cardiorespiratory level (by performing maximal oxygen test [VOzpeak]) and white matter
tract integrity by measures of fractional anisotropy and radial diffusivity. Previous studies
have shown positive relations between preserved white matter tract integrity and higher
cardiorespiratory fitness levels but only in healthy non-demented cohorts. Studies in
Alzheimer’s disease populations lack the usage of diffusion tensor imaging to evaluate
associations with cardiorespiratory fitness levels. Here, | expanded previous work done in
the University of Kansas Alzheimer’s Research Center beyond volumetric and functional

connectivity.
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Chapter 5

Cardiorespiratory fitness and white matter integrity in early Alzheimer’s

disease
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5.1 ABSTRACT

Objective:

To investigate the relationship between cardiorespiratory (CR) fitness and the
brain’s white matter tract integrity using diffusion tensor imaging (DTI) in the Alzheimer’s
disease (AD) population.

Methods:

We recruited older adults in the early stages of AD (n=37; CDR=0.5 and 1) and
collected cross-sectional fitness and diffusion imaging data. We examined the association
between CR fitness (peak oxygen consumption [VOzpeak]) and fractional anisotropy (FA)
in AD-related white matter tracts using two processing methods: a tract-of-interest
approach and tract-based spatial statistics (TBSS). If results were significant, we also
evaluated the association of CR fitness with subsequent diffusivity metrics (radial
diffusivity [RD], mean diffusivity [MD], and axial diffusivity [AxD]). Similarly, we also
evaluated whether cognitive scores were associated with preservation of white matter
tract integrity.

Results:

The tract-of-interest approach showed that higher VOzpeak was associated with
preserved white matter integrity in FA in the right inferior fronto-occipital fasciculus
(p=0.035, r=0.36). We did not find a significant correlation using TBSS, though there was a
trend for increased white matter integrity with higher VO:peak measures (p<0.01
uncorrected). In relation to cognitive scores, none of our analyses reached significance yet
we found a trend for increased processing speed with higher FA in the left inferior fronto-

occipital fasciculus.
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Conclusion:

Our findings indicate that higher CR fitness levels in early AD participants may be
related with preserved white matter integrity in the progressed deterioration of AD.
However to draw stronger conclusions, we encourage other investigators to explore

further the relationship between CR fitness and white matter integrity in AD.

5.2 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common
cause of dementia. AD affects one in nine people over the age of 65 and one in three over
the age of 85 (Thies et al., 2013). To date, there is no cure and post-mortem (Brun and
Englund, 1986, Braak and Braak, 1991b) and in-vivo neuroimaging reports showed brain
deterioration in AD as the disease progresses (Thompson et al.,, 2003, Sexton et al., 2011,
Burggren and Brown, 2014). Current contemporary pharmacological treatments have also
proven largely ineffective in attenuating AD-related brain degeneration. Thus, increasing
research is focusing on lifestyle changes that could possibly mitigate this progressed
deterioration. For instance, a growing hope is to include exercise as a daily activity, which
improves one’s overall cardiorespiratory (CR) fitness levels, and with that, brain health
(Colcombe et al., 2006, Boots et al., 2014, Erickson et al,, 2014).

In healthy older adults, higher levels of CR fitness are associated with a variety of
benefits in the brain, namely preserved overall brain volume, hippocampal volume, white
matter integrity, cognition, and overall brain health (Colcombe et al.,, 2003, Marks et al,,
2007, Erickson et al, 2009, Johansen-Berg and Rushworth, 2009, Marks et al., 2011,

Johnson et al,, 2012b, Petersen and Posner, 2012). In the AD population, higher levels of CR
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fitness have been associated with preserved brain volume (Burns et al., 2008, Petersen and
Posner, 2012). More specifically, higher CR fitness levels have been associated with
increased gray and white matter volumes in the parietal and medial temporal cortices
(Honea et al,, 2009, Tian et al., 2014a). However to our knowledge in the AD population,
there has been no research associating CR fitness levels with diffusion tensor imaging (DTI)
metrics on brain’s white matter integrity.

DTI is a structural magnetic resonance imaging technique that characterizes the
diffusivity of water molecules. In white matter, the movement of these molecules is
anisotropic as it's mainly composed of axonal bundles and supportive glial cells that travel
through specific directions (Walhovd et al., 2014). Disruption in these white matter tracts
occurs during the aging process and may accelerate in the AD population (Salat, 2011).
Previous DTI investigations on CR fitness in healthy non-demented cohorts showed that
increased CR fitness is associated with preserved white matter integrity in frontal and
temporal regions (Voss et al,, 2012, Tian et al., 2014a). Moreover, relationships between
increased levels of CR fitness and white matter tracts have been identified in the cingulum
(Marks et al., 2007, Marks et al., 2011), uncinate fasciculus (Marks et al., 2007), and corpus
callosum (Johnson et al.,, 2012b). However, there have been no DTI studies on CR fitness in
individuals with AD. Thus in this study we characterized the relationship of CR fitness with
white matter integrity using two DTI methods, an a-priori tract-of-interest approach and
tract-based spatial statistics (TBSS) (Smith et al, 2006), The a-priori tract-of-interest
method allows us to quantify the integrity of specific AD-related white matter tracts while

TBSS allows for a global whole brain voxel-wise analysis.
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5.3 METHODS
Sample

This study took place at the University of Kansas Alzheimer’s Disease Center (KU
ADC) as part of the Alzheimer’s Disease Exercise Program Trial (ADEPT). For this
investigation, we collected preliminary baseline data from individuals (n=40) enrolled in
an ongoing aerobic exercise trial (Vidoni et al.,, 2012b). The final baseline sample included
37 sedentary older adults in the earliest stages of AD (CDR 0.5; n= 23, CDR 1; n= 14) after
removing individuals due to substantial imaging distortion (n=1) or bad quality acquisition
(n=2). Institutionally approved informed consent was obtained before enrollment.
Additionally, this trial excluded individuals who have significant neurological diseases
other than AD which include: major psychiatric disorders, major depression (Geriatric
Depression Scale > 5), clinically-evident stroke or systemic infection, myocardial infarction
or significant cardiovascular or respiratory disease, history of cancer in the last 5 years,
current or past history of drug or alcohol abuse, insulin-dependent diabetes mellitus, and
significant pain or musculoskeletal disorder that would limit exercise.
Clinical assessment

A clinician performed physical and neurological examinations and assessed each
participant using a semi-structured interview given to the participant and a collateral
source (e.g. participant’s spouse or child). Medications, past medical history, family history,
education, and demographic information were collected from the collateral source.
Diagnostic classification was made at a consensus conference attended by neurologists,
neuropsychologists, and nurse practitioners of the University of Kansas Alzheimer’s

Disease Center. Diagnostic criteria for AD included the gradual onset and progression of an
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impairment in memory and at least one other cognitive and functional domain (NINCDS-
ADRDA criteria) (McKhann et al.,, 1984a). The Clinical Dementia Rating (CDR) determined
the severity of dementia (Morris, 1993). Only participants with a diagnosis of probable AD
or who were classified with mild cognitive impairment likely due to probable AD with a
Global CDR of 0.5 (very mild) or 1.0 (mild dementia) were included in the study. A battery
of neuropsychological tests was also administered to each participant by trained
psycometricians. Then, these scores were normalized using the uniform data set (UDS)
previously described (Shirk et al., 2011) and divided into 5 cognitive domains (memory,
attention, speed, executive function, and language) for further analysis.
CR fitness assessment

CR fitness was measured by peak oxygen consumption (VOzpeak [ml/kg/min])
during a graded treadmill exercise test using a Cornell modified Bruce protocol (Hollenberg
et al., 1998, Burns et al,, 2008). Each participant was asked to start walking on a treadmill
while the speed and incline increased progressively. Only individuals who achieved a
respiratory exchange ratio (RER) = 1.0 were included in the study. Oxygen consumption
was averaged over 15-second intervals, and the highest measurement was considered
VO:peak (Anderson et al,, 2011, Vidoni et al., 2012b).
Neuroimaging

Magnetic resonance imaging (MRI) was collected at baseline within three weeks of
the CR fitness assessment. The session included a high-resolution T1 image that was used
for anatomic localization and to assess for gross anatomical differences with a high gray-
white matter contrast (MPRAGE; 1x1x1mm voxels; TR = 2500, TE = 4.38, TI = 1100, FOV

256 x 256 with 18% oversample, 1mm slice thickness, flip angle 8 degrees). In addition, a
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diffusion weighted sequence was designed to provide optimal results for this analysis while
minimizing scanner duration for the participant. The diffusion weighted acquisition used a
Siemens 3.0 Tesla Skyra MRI with a repetition time (TR)= 1000ms and echo time
(TE)=90ms. Diffusion gradients were applied in 65 directions (bo= 0 s/mm? and bi.¢s=
1000 s/mm?). Seventy-five 2-mm sections were acquired in at in-plane resolution of
128x128 with a 300mm field of view (FOV).
Imaging Analysis

We processed the diffusion weighted images using the FMRIB Software Library (FSL
5.0.4) (Smith et al., 2004a). The remaining 37 images were eddy-current corrected for
small distortions and simple head motion by alignment of the diffusion weighted images to
the bo image. Next, a brain extraction tool (BET2) was applied to strip the brain from the
skull, and diffusivity FA, RD, MD, and AxD measures were calculated using DTIFIT and
FSLMATHS, part of the FSL toolbox. FA provides a measure of degree of anisotropic
diffusion ranging from 0 (perfectly isotropic) to 1 (perfectly anisotropic) and is related to
an overall measurement of white matter microstructural integrity (Alexander et al., 2011).
RD is a measure of perpendicular diffusivity and reflects changes in axonal diameter and
myelination (Song et al., 2005). MD measures an overall measure of diffusion by averaging
the three orthogonal components of diffusion while AxD measures the magnitude of

diffusion in the principal diffusion direction (Alexander et al., 2007).

For the a-priori tract-of-interest method, each diffusivity measure was non-linearly
registered, aligned, and transformed into a common 1x1x1lmm standard MNI space
template (FMRIB58), following the initial steps of TBSS processing pipeline before and

skipping the skeletonizing step (Smith et al., 2006). Next, we performed a 2-mm smoothing
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using FSLMATHS and to determine AD-related a-priori tracts, we extracted white matter
binary tract masks from the Johns Hopkins University (JHU) probabilistic atlas after being
registered to the common MNI space (Mori et al,, 2005, Hua et al., 2008a). The following
tracts previously reported to be associated with AD (Figure 5.1) were included and divided
by hemisphere: the cingulum (CCG) (Xie et al., 2005, Zhang et al., 2007, Burzynska et al,,
2010, Liu et al, 2011, Zhang et al,, 2014), the inferior fronto-occipital fasciculus (IFOF)
(Gold et al,, 2010, Teipel et al.,, 2010, Alves et al., 2012), the superior longitudinal fasciculus
(SLF) (Liu et al., 2011, Sexton et al.,, 2011, Alves et al., 2012, Bosch et al,, 2012), and the
uncinate fasciculus (UF) (Liu et al., 2011, Sexton et al,, 2011, Bosch et al.,, 2012). For every
subject’s FA and subsequent diffusivity metric (e.g. RD, MD, or AxD), we then “masked in”
every tract, included only voxels thresholded at FA values higher than 0.2, and calculated
an averaged diffusivity value on every tract. Hence, every participant contained an overall
diffusivity value for every tract, which was consequently fed into a statistical program for
further statistical analysis.

In addition to the tract-of-interest method, we also performed a TBSS analysis
(Smith et al., 2006). First, we created FA images by fitting the tensor model to the raw
diffusion data using FDT, part of FSL. After brain extraction, all subject’'s FA data were
aligned into a common MNI space using nonlinear transformations (Andersson et al,,
2007). Next, all subject’s FA data were thinned out to create a mean FA skeleton which
represents the center of all the tracts common to the group. Then, each subject’s diffusivity
metrics were projected into this skeleton and thresholded to include only voxel with FA
values higher than 0.2. The resulting data was fed into RANDOMISE, a tool for non-

parametric permutation inference on neuroimaging data (Winkler et al., 2014). Similar to
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the tract-of-interest approach, FA was the primary diffusivity metric with subsequent

measures of RD, MD, and AxD.

Cingulum (CGG) Inferior fronto-occipital fasciculus (IFOF)

X=82 Y=100 7=106 Y=120 7=70

Superior Longitudinal Fasciculus (SLF)

X=63 v=82 7=09 X=122 =131 7-63

Figure 5.5. AD-related a-priori white matter tracts: the cingulum (red, top left), the inferior fronto-occipital
fasciculus (green, top right), the superior longitudinal fasciculus (blue, bottom blue), and the uncinate
fasciculus (pink, bottom right). Tract representation is shown using the standard MNI brain in radiological
orientation.

Statistical analysis

For the tract-of-interest approach, statistical analyses were conducted using SPSS
22.0 (IBM Corp., Armonk, NY). As our primary diffusivity measure, we tested partial
correlations of FA values with VOzpeak on every a-priori tract-of-interest, controlling for
age and gender. A total of 8 correlation comparisons were performed splitting our a-priori
tracts by hemisphere (left and right). These planned comparisons were carefully selected
and are focused only in a few scientifically sensible comparisons. Thus, we do not correct
for multiple comparisons, set our alpha to 0.05 and, treated each non-overlapping a-priori
tract-of-interest as an independent analysis, as previously suggested (Keppel and Wickens,
2004). For whole brain TBSS analyses, we performed non-parametric analyses using
permutation based statistical inference known as randomise, which is part of FSL (Winkler
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et al, 2014). We assessed linear correlations between VO:peak and FA (our primary
diffusivity metric) controlling for age and gender and set the number of permutations to
5000 using threshold-free-cluster-enhancement. We set our alpha to be 0.05 corrected.
Subsequent similar analyses were performed in the other diffusivity metrics (RD, MD, and
AxD). To determine the relationship between cognition and white matter integrity, we also
performed partial correlations (correcting for age and gender) of the diffusivity measure in
the a-priori white matter tracts with mean z-scores of the uniform neuropsychological data
set (UDS) stratified in 5 cognitive categories: memory, attention, speed, executive function,

and language (Shirk et al.,, 2011).

5.4 RESULTS
Demographics
Table 5.1 summarizes the demographics, physical, and CR fitness characteristics of

the 37 participants included in the final analysis.

Mean (STDEV)

Demographics

Age (n=37) 72.35(7.9)
Female (#,%) 14 (37.8)
MMSE 25.6 (3.3)
CDR Global = 0.5 (#,%) 25 (67.6)
CDR Sum of Boxes 3.4 (1.5)
Education (years) 15.4 (3.6)

Fitness and Body measures

BMI 26.9 (4.1)
Lean Mass (kg) 47.6 (10.2)
VO, peak (ml/kg/min) 21.6 (5.1)

Table 5.1. Participants’ demographics and fitness characteristics.
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CR fitness and white matter integrity

In the tract-of-interest analysis, we found a significant correlation between
increased FA and higher VO:peak lateralized to the right inferior fronto-occipital fasciculus
(r=0.358, p=0.035), after controlling for age and gender (Table 5.2, Figure 5.2). We did not
find significant correlations with VOzpeak and MD, RD, or AD, however there was a trend
for decreased RD with higher VOzpeak in the right cingulum (r=-0.315, p=0.065) and the

right inferior fronto-occipital fasciculus (r=-0.313, p=0.067) (Table 5.3).

White matter tract: Fractional Anisotropy
Cingulum
Left 0.48 (0.04)
Right 0.42 (0.04)
Inferior Fronto Occipital Fasciculus
Left 0.41 (0.03)
Right 0.41 (0.03)*
Superior Longitudinal Fasciculus
Left 0.41 (0.03)
Right 0.41 (0.03)
Uncinate Fasciculus
Left 0.39 (0.03)
Right 0.40 (0.03)

Table 5.2. Averaged fractional anisotropy values for every a-priori white matter tract (SD).
* denotes p<0.05 during the partial correlation of FA with VO;peak analysis.
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Right Inferior fronto-occipital fasciculus

5500+

5000+

4500+

4000+

3500+
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Vo2 peak (ml/min/kg)

T T
35.0000 40.0000

Figure 5.2 Linear fit plot for VOzpeak and fractional anisotropy (FA) in the right inferior fronto-occipital
fasciculus (green), a white matter tract that passes through the frontal, temporal, and occipital lobe. The tract-
of-interest is overlaid on a T1 MNI template. * denotes p<0.05 and orientation is radiological (left is right).

The TBSS analysis did not show any significant partial correlations of the diffusivity

metrics (FA, RD, MD, or AxD) with VOzpeak at a statistical threshold of p<0.05 corrected.

However as an exploratory measure at an uncorrected threshold of p<0.01, a positive

association of FA values with VO;peak were visible more predominantly in the right

hemisphere with sparse regions in the left side (Figure 5.3).

Z=65

Z=75

Z=85

Z=95

Z =105

Figure 5.3. TBSS results associating FA with VO;peak. Red regions depicts thickened results at p<0.01
uncorrected overlapped in the green skeleton and the MNI template.
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Cognitive Measures
None of the cognitive measures were significantly associated with any diffusivity
metric, however there was a trend for a positive relationship of increased processing speed

with higher FA in the IFOF on the left hemisphere (p=.092, r=.293).

White matter tract: Radial Diffusivity Mean Diffusivity Axial Diffusivity
Cingulum
Left 0.55 (0.06) 0.76 (0.05) 1.20 (0.05)
Right 0.59 (0.06)" 0.76 (0.04) 1.13 (0.05)
Inferior Fronto Occipital Fasciculus
Left 0.69 (0.08) 0.88 (0.07) 1.27 (0.06)
Right 0.70 (0.07)* 0.89 (0.06) 1.29 (0.06)
Superior Longitudinal Fasciculus
Left 0.55 (0.06) 0.88 (0.07) 1.18 (0.06)
Right 0.59 (0.06) 0.88 (0.07) 1.19 (0.06)
Uncinate Fasciculus
Left 0.55 (0.06) 0.9 (0.09) 1.25 (0.08)
Right 0.59 (0.06) 0.88 (0.07) 1.23(0.07)

Table 5.3. Subsequent correlations of other diffusivity metrics (SD) on every tract-of-interest. *denotes
p<0.07.

5.5 DISCUSSION

In participants in the early stages of AD, we found that higher levels of CR fitness
were associated with increased white matter integrity in a tract that travels from the
occipital region to the temporal lobe. This tract is known as the inferior fronto-occipital
fasciculus and the findings were lateralized to the right hemisphere. To our knowledge,
this is the first study to demonstrate an association between CR fitness and white matter
tract integrity in older adults in the early stages of AD. Thus we encourage future research
in AD to explore these findings further to compare and validate our results.

Cardiorespiratory fitness impacts brain health in a variety of ways. In animal
models, previous studies showed that aerobic exercise attenuated age-related decreases in
hippocampal neurogenesis, potentially delayed the onset of AD, reduced amyloid beta

deposition and pro-inflammatory cytokines, and enhanced levels of brain-derived

108



neurotropic factors (for a review, (Voss et al,, 2013b)). In humans, higher CR fitness levels
were associated with better cognition, decreased risk for early AD and preserved brain
volumes (Hayes et al,, 2013). We have previously identified a relationship between CR
fitness and larger brain volumes in individuals with early AD (Burns et al., 2008), more
specifically in the parietal and medial temporal lobes (Honea et al., 2009). Furthermore, in
a longitudinal analysis we found that increased CR fitness over two years was related to
lower rates of medial temporal atrophy (Vidoni et al., 2012a). Now we expanded our
investigation beyond volume, using diffusion imaging.

Recent diffusion imaging studies in non-demented individuals found positive
associations with higher VO:peak levels and preserved white matter integrity in the
cingulum (Marks et al., 2007, Marks et al., 2011), the uncinate fasciculus (Marks et al,,
2007), and along the frontal regions of the brain (Voss et al., 2012). However and to our
knowledge none of these reports identified a relationship of higher CR fitness levels and
preserved white matter integrity in the inferior fronto-occipital fasciculus, the significant
finding in this AD-specific study. This tract is known to be one of the longest white matter
bundles in the brain connecting parts of the occipital, temporal, and frontal lobes, thus
making it difficult to isolate when conducting whole brain white matter analyses integrity
(e.g. TBSS). Hence to overcome this problem, we performed an a-priori tract-of-interest
approach. The exact role for this tract is still under debate, but previous studies have
shown that the integrity of this tract deteriorates with AD (Alves et al., 2012, Bosch et al,,
2012, Yu et al, 2014). However, this specific tract does not present the strongest AD-
related white matter deterioration. Other tracts such as the superior longitudinal

fasciculus, the cingulum, and the uncinate fasciculus have a stronger AD-related
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deterioration association as shown by large effect sizes in a previously published meta-
analysis report (Sexton et al., 2011). Thus, a possible interpretation for our findings is that
higher levels of CR fitness might act as a neuro-protective mechanism for slowing down the
progression of AD, especially in white matter tracts that have not been fully compromised.
Though, the neuro-protective effects of higher CR fitness levels may also occur in early-
deteriorated tracts (e.g. the superior longitudinal fasciculus, the cingulum, and the uncinate
fasciculus) but in healthy non-demented adults with no symptoms of AD, as previously
described (Marks et al., 2007, Marks et al., 2011, Voss et al., 2012, Tseng et al.,, 2013).
However to draw more valid conclusions, we encourage other researchers to explore
further this question in a larger sample while including participants with wider range of CR
fitness levels because our sample only included sedentary early AD participants with lower
CR fitness levels.

Another interesting finding is that our result was lateralized to the right
hemisphere. Only one other CR fitness report specified a left lateralized finding in the
cingulum (Marks et al., 2011), while others did not report any hemispheric lateralization
(Johnson et al,, 2012b, Voss et al., 2012, Tian et al., 2014b). Another study also suggested
that cortical degeneration in AD occurs faster in the left hemisphere, but mainly in gray
matter (Thompson et al., 2003). However, a meta-analysis indicated no differences in
white matter integrity between hemispheres among non-demented, mild cognitive
impairment, and AD groups (Sexton et al., 2011). Supporting our right lateralized results, a
previous DTI study showed that FA values in the right splenium and genu mediated
cognitive tasks in healthy older adults (Madden et al., 2009). Though in our study, we did

not find any cognitive relationships with increased integrity in the a-priori tracts-of
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interest. Thus more studies are needed to explore hemispheric dominance further in
regards to the relationship between CR fitness, white matter, and the possible relationships
with cognition.

In regards to the diffusion imaging processing methodology, we performed TBSS
analyses to compare our results with previous published work in non-demented
participants (Johnson et al.,, 2012b, Voss et al., 2012, Gons et al., 2013) but our results did
not show any significant results. While TBSS is the most commonly used analysis
technique, its method is limited to a skeletonized white matter evaluation, which
represents only the highest and perpendicular FA voxel intensities projected along each
voxel within the skeleton (Bach et al., 2014). These and other TBSS considerations have
been previously reported elsewhere (Zalesky, 2011, Keihaninejad et al., 2013, Bach et al,,
2014). Hence, we also performed a-priori tract-of-interest analyses, which allowed us to
quantify diffusivity metrics on specific tracts previously implicated in AD (Sexton et al,,
2011, Alves et al, 2012, Bosch et al.,, 2012, Zhang et al,, 2014). However, the tract-of-
interest analysis may also be susceptible to partial volume effects, given enlarged ventricles
and atrophy, which are common in older adults with early AD. Hence to overcome these
limitations, we only included voxels with higher anisotropy values (FA > 0.2) and reduced
our tract masks to include only voxels with a higher probability of existence based of the
white matter probabilistic atlas (Hua et al., 2008a).

Within other limitations of this study is the lack of a non-demented control group
because this investigation was conducted with preliminary baseline data from individuals
enrolled in an ongoing aerobic exercise trail. Non-demented controls could have helped

identify the effects of CR fitness on brain’s white matter integrity independent of the AD
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pathology, and future studies should include both groups. We also did not have individuals
with a broader range of dementia severity, thus we could not tested for a relationship of
disease progression or severity with fitness-related diffusion change. Additionally, we only
recruited participants that are sedentary as determined by a telephone assessment of
physical activity (Mayer et al., 2008, Vidoni et al,, 2012b). A wider range of participants
(sedentary and active) would have ideally added a better statistical estimation of the AD
population. Another limitation is that we did not control for white matter lesions (WMLs)
because we did not collect high contrast FLAIR images. However after inspecting every
image for noticeable WMLs, we also performed a threshold criterion to only include voxels
with FA values higher than 0.2. This criterion would ideally exclude highly isotropic voxels,
which may be contaminated due to unperceived WMLs. Finally, we need to acknowledge
that during the a-priori tract-of-interest approach we did not correct for multiple
comparisons. Even though we recognize that this statistical setup has a higher chance of
making Type I errors, we believed that this extra statistical power is acquired based on a

carefully planned a-priori hypothesis driven experiment.

5.6 CONCLUSION

We assessed the relationship of CR fitness with white matter integrity in individuals
with early-stage AD. We found a positive association between CR fitness levels and white
matter integrity in the right inferior fronto-occipital fasciculus, independent of age and
gender. These results suggest that increased CR fitness might positively affect white matter
integrity even after the onset of Alzheimer’s disease. To our knowledge, this is the first

diffusion imaging study in the AD population that aims to characterize the association
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between CR fitness levels and white matter tract integrity. Thus, we encourage future
investigations on this matter so we can draw stronger conclusions on the neuro-protective

effects of exercise and higher CR fitness in white matter and brain health.
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Chapter 6 Preface:

Aerobic exercise activity may improves brain health, however, there are a lack of
interventional studies quantifying the level of exercise needed to undergo neuro-protective
change. Thus, the aim of this chapter was to investigate the effects of different exercise
dose intensities on a-priori exercise-related gray matter regions and white matter tracts.
However, due to the small sample size with longitudinal imaging exercise data (n=10) I
could not statistically evaluate group differences in the 4 exercise groups, and as a
complementary alternative, I investigated the relationships between total exercise
duration and changes in volumetric gray matter cortical segmentations and diffusivity

measures of white matter tracts.
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Chapter 6

A longitudinal assessment of brain neuroplasticity and exercise intensity

in healthy older adults: a 26-week exercise intervention study.
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6.1 ABSTRACT
Objective

To investigate the effects of different aerobic exercise doses on brain’s gray matter
structures and white matter tracts on healthy non-demented older adults who underwent a
26-week aerobic intervention program.
Methods

At baseline and follow-up, brains imaging data, cardiorespiratory measures and
exercise time duration were assessed in healthy non-demented older adults (CDR = 0,
n=10, agemean= 73.2). Brain imaging data included structural gray matter cortical
segmentations and white matter diffusivity measures (fractional anisotropy [FA] and radial
diffusivity [RD]) collected at baseline and follow-up. Similarly, cardiorespiratory fitness
(CR) levels were measured by peak oxygen consumption based on body weight (VOzpeak
[ml/kg/min]) before and after the intervention program. We also collected exercise time
duration, which indicated the total amount of minutes an individual exercised in the entire
intervention program. We evaluated the associations of longitudinal volumetric and
diffusion imaging changes with changes in VOzpeak and total exercise duration using
partial correlations and controlling for age and scanner type.
Results

We did not find any significant correlations between changes in gray matter
volumes or white matter diffusivity metrics (FA or RD) and changes in VOzpeak (p>0.05).
In relation to exercise time duration, longer durations were positively associated with

decreased measures of RD in the genu of the corpus callosum (r=-0.85, p=0.01), denoting
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preservation of white matter tract integrity. Conversely, a decrease in RD was also
associated with longer durations in the right cingulum (r=0.75, p=0.03).
Conclusion

Our findings indicate that longer duration of aerobic exercise may be neuro-
protective for specific white matter tracts such as the genu of the corpus callosum.
Conversely, increased aerobic exercise duration was also associated with increased RD in
the right cingulum, probably denoting age-related or disease-related deterioration.
However due to our small sample size and the lack of exercise dose-intensity evaluations,
we encourage others to investigate this matter so better conclusion can be made in

relations to exercise dose intentisy and brain health.

6.2 INTRODUCTION

Age-related brain deterioration is associated with cognitive decline in older
populations leading to increased risk for neurodegenerative diseases such as Alzheimer’s
disease (Hedden and Gabrieli, 2004). By 2050, the number of older adults (65 years and
over) will increase almost 3-fold, from 524 million people (8% of the world’s population)
to 1.5 billion (representing 16% of the world’s population) (Hebert et al,, 2013, Pallin et al,,
2014). Thus, strategic treatments are needed to slow down cognitive decline, improve
brain health, and consequently quality of life. A potential alternative treatment is to
maintain a healthy lifestyle with the inclusion of routinely aerobic exercise. Besides the
general benefits of exercise to improve general health (e.g. reduce cardiovascular risks,
reduce morbidity, and mortality) (Haskell et al., 2007), exercise has been previously

associated with improved cognition and preserved brain health (see reviews (Hayes et al,,
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2013) and (Voss et al., 2013b)). In older adults, meta-analysis reports showed that physical
activity improves cognitive domains such as processing speed, executive function, and
memory (see reviews (Colcombe and Kramer, 2003, Smith et al., 2010, Erickson et al,,
2014)). Interestingly age-related gray matter volumes (Colcombe et al., 2006, Erickson et
al,, 2010, Floel et al., 2010, Gow et al,, 2012) and white matter diffusivity metrics (Marks et
al, 2011, Gow et al,, 2012, Johnson et al,, 2012b, Voss et al., 2012, Tian et al., 2014a) are
also positively associated with higher exercise activity. However, the exercise dose
intensity sufficient to affect brain structure remains unknown with only few studies
reporting findings in this matter (Erickson et al., 2010, Ruscheweyh et al,, 2011). Hence,
giving the lack of interventional studies to distinguish the effects of exercise dose intensity
in the brain, the aim of the study was to characterize the influence of three interventional
aerobic exercise routines, representing 50%, 100%, and 150% of the recommended dose
on brain structure. For older adults, current recommendations suggest performing
moderate-intensity exercise for a minimum of 30 mins, five days a week or a vigorous-
intensity activity for 20 mins on three days per week (Nelson et al.,, 2007). However, the
effects of different exercise doses on brain’s neuroplasticity remained unknown.

Thus, we hypothesize that previously exercise related gray matter regions
(precuneus, parahippocampal, entorhinal, caudal middle frontal, caudal anterior cingulate,
rostral anterior cingulate, rostral middle frontal, superior parietal) and white matter tracts
(corpus callosum, cingulum, superior longitudinal fasciculus, and uncinate fasciculus) may

have a positive relationship with longer exercise time durations.
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6.3 METHODS
Participants
As part of the trail of exercise on aging and memory program (TEAM;

https://clinicaltrials.gov/, NCT01129115), we randomized sedentary healthy older adults

(65 years of age and older) without cognitive impairment into a 26-week randomized
control trail of aerobic exercise (treadmill walking). Based on the recommendations from
the American College of Sports and Medicine (ACSM) (Nelson et al., 2007), we randomly
assigned the participants in four groups with specific exercise dose intensities: no exercise
(controls, n=25), 75 minutes per week (n=25), 150 minutes per week (n=27), and 225
minutes per week (n=24). The goal of the exercise trail was to keep the exercise intensity
consistent across groups while altering the exercise dose by duration. Clinical assessments,
cardiorespiratory fitness, and functional health were measured at baseline and post-
intervention. Unfortunately due to funding limitations, our brain imaging acquisition at
baseline and follow-up was assessed only in 10 participants (controls=3, 75min/week=5,
150min/week=1, 225 min/week=1).
Clinical assessment

After obtaining informed consent approved by the University of Kansas Medical
Center Institutional Review Board (#11883) in potential participants, clinicians performed
a full physical and neurological examination, a review of past medical history, and assessed
the exclusion of dementia using the Clinical Dementia Rating (CDR) (Morris, 1993, Vidoni
et al, 2012b). For the inclusion criteria, participants had to be at least 65 years of age,
sedentary or underactive, free of cognitive impairment of any etiology and possess

adequate vision and hearing to participant in cognitive testing (Mayer et al., 2008). In
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addition, participants should not be insulin-dependent and were without recent history (<2
years) of major cardiorespiratory, musculoskeletal or neuropsychiatric impairment.
Intervention

For the exercise intervention groups, participants were instructed not to start or
stop new regular physical activity for the duration of the study. The control group was also
asked not to change their previous physical activity. Exercisers began their aerobic exercise
activity at their nearest Young Men’s Christian Association of Greater Kansas City (YMCA)
location under the guidance of personal trainers (Vidoni et al., 2012b). All intervention
groups were set a goal of 60 minutes at week 1 with increases of 21 mins. per week until
they achieved their allocated exercise duration routine (e.g. 75, 150, or 225 min/week)
over 3-5 days a week. An exercise notebook was provided to log their weekly activity,
exercise intensity, and the exercise daily duration. Exercise intensity was prescribed as a
target heart zone based on a percentage of heart rate reserve (HRR) above resting heart
rate. During the first 4 weeks, the target heart rate zone was 40-55% of HRR. In weeks 5-
18, the target zone was 50-60% of HRR and during weeks 19-26, the target heart rate was
60-75% of HRR. We selected a 26-week intervention period to maximize physiological
adaptation without overburdening participants and based on the recommendations of
previous reports (Colcombe et al,, 2006, Ruscheweyh et al., 2011).
Physical activity assessment

Physical activity assessments were measured by peak oxygen consumption based
on body weight (VOzpeak [ml/kg/min]), a direct measurement of cardiorespiratory fitness,
during a graded treadmill exercise test using a Cornell modified Bruce protocol for older

adults (Hollenberg et al., 1998, Burns et al,, 2008). The participants were asked to start
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walking on a treadmill while the speed and incline increased progressively. Only
individuals who achieved a respiratory exchange ratio (RER) = 1.0 were included in this
evaluation. If the participant did not achieve an RER of 1.0, the test was repeated on a
different day. Oxygen consumption was averaged over 15-second intervals and the highest
measurement was considered VO:zpeak. The collection of these data and other
anthropomorphic measures are explained in more detailed in a previous publication
(Vidoni et al,, 2012b).
Neuroimaging

Magnetic resonance images were collected at baseline within 3 weeks of the CR
fitness assessment in a Siemens 3.0 Tesla Skyra MRI machine. The session included a high-
resolution T1 MPRAGE image for anatomic localization and gray matter segmentations
(MPRAGE; 1x1x1mm voxels; TR = 2500, TE = 4.38, TI = 1100, FOV 256 x 256 with 18%
oversample, Imm slice thickness, flip angle 8 degrees). In addition, diffusion weighted
images were collected using a repetition time (TR)= 1000ms and echo time (TE)=90ms.
Diffusion gradients were applied in 65 directions (bo= 0 s/mm? and bi.6a= 1000 s/mm?).
Seventy-five 2-mm sections were acquired in at in-plane resolution of 128x128 with a
300mm field of view (FOV).
Imaging Analysis

Cortical FreeSurfer Segmentation

After manually checking every T1 MPRAGE structural image, we performed a
longitudinal volumetric segmentation using “recon-all” as part of the FreeSurfer software
suite (FreeSurfer 5.2.3) for imaging analysis. The technical details of these procedures are

described in prior publications (Dale and Sereno, 1993, Dale et al., 1999, Fischl and Dale,
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2000, Fischl et al,, 2001, Fischl et al., 2004, Han et al., 2006, Jovicich et al., 2006). Briefly,
this procedure included an automated Talairach transformation, and segmentations of the
white matter and deep gray matter volumetric structures based on a surface-based stream
(Fischl et al,, 2002, Fischl et al.,, 2004). Due to its computationally intensive procedure, we
submitted our imaging segmentation to the high performance computing batch system at
the Information and Telecommunication Technology Center (ITTC), which is part of The
University of Kansas.

Once the segmentations were completed for every image, we extracted the
volumetric measures of cortical areas previously related to exercise and exercise intensity
(Erickson et al., 2010, Ruscheweyh et al., 2011, Braskie et al,, 2014, Coelho et al,, 2014).
These segmentations included the left and right measures of the precuneus,
parahippocampal, enthorinnal, caudal middle frontal, caudal anterior cingulate, rostral
anterior cingulate, rostral middle frontal, and superior parietal cortices (Figure 6.1). Then,
volumetric percent changes (100*[Ttonow-up — Tbaseline] / Thaseline) Were calculated and fed to

SPSS for statistical evaluations.
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Figure 6.1. Volumetric region of interest segmentations overlaid in a green cortical template. The following
cortices are: the precuneus (red, A), parahippocampal (blue, B), enthorinal (purple, C), caudal middle frontal
(yellow, D), caudal anterior cingulate (orange, E), rostral anterior cingulate (turquoise, F), rostral middle
frontal (pink, G), and superior parietal (brown, H) cortices.

Diffusion Tensor Tract-of-Interest (TOI)

We pre-processed the diffusion weighted images using the FMRIB Software Library
neuro-imaging tools (FSL 5.0.4) (Smith et al., 2004a). After manually inspecting our
diffusion weighted images, we applied eddy current correction for small distortions and

simple head motion, by alignment the diffusion weighted images to the non-diffusion bo
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image. Next, brain extraction tool (BET2) was applied to strip the brain from the skull, and
diffusivity FA and RD images were calculated using DTIFIT. As suggested by a recent article
in relation to longitudinal data, interpolation asymmetries might arise when co-registering
and resampling follow-up images to their baseline images. Hence, the choice of a halfway
co-registration method will result in an unbiased template towards any single point
(Keihaninejad et al., 2013). So as previously suggested, for every participant we linearly
registered the baseline and follow-up images to a halfway registration point, using FLIRT
and MIDTRANS, which are part of the FSL tools (Jenkinson and Smith, 2001, Jenkinson et
al, 2002). Then, we non-linearly registered, aligned, and transformed every image to a
most representative template using diffeomorphic transformations (Avants et al., 2011)
and the ANTs registration tools (e.g. buildtemplateparallel.sh), as previously suggested
(Schwarz et al,, 2014). Next, we warped the most representative template into the MNI
space and deformed all previously co-registered images to the common 1x1x1mm standard
MNI space template (FMRIB58_FA_1mm). At this stage, we created a mean FA image,
skeletonized it, and we finally projected all subject’s FA data onto a mean skeleton as stated
in steps 3 and 4 for the tract-based spatial statistics processing pipeline (Smith et al., 2006).

Then we overlapped the skeletonized image to particular a-priori white matter
tracts. To do so, we generate our white matter a-priori tracts-of-interest (TOI) masks from
the Johns Hopkins University probabilistic white matter atlas (Mori et al., 2005). We
believe this approach is more tract-specific and has the advantage of explicitly showing
results in relation to specific whole conduits of white matter tracts. We included the
following tracts because they have been reported as being positively associated with

exercise: corpus callosum, cingulum, superior longitudinal fasciculus, and uncinate
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fasciculus (Marks et al, 2011, Gow et al,, 2012, Johnson et al,, 2012b, Tian et al., 2014a)
(Figure 6.2). Average FA and RD values were computed from every skeleton voxel that
overlapped specific tract at baseline and follow-up (Figure 6.3). Additionally percent
change FA/RD measure were calculated (100*[Tfonow-up—Thasetine] / Thaseline) and fed into SPSS

for further statistical analysis.
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Corpus Callosum (Genu, Body, and Splenium)

Figure 6.2. Representation of a-priori white matter tracts. Tracts are shown in green (corpus callosum
divided into the posterior [splenium], medial [body], and anterior [genu] region), red (cingulum), blue
(superior longitudinal fasciculus), and pink (uncinate fasciculus). Skeletons are shown in yellow overlaying

the JHU tracts of interest.
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Statistical analysis

Statistical analyses were conducted using SPSS 22.0 (IBM Corp., Armonk, NY). We
performed partial correlations (controlling for age ad scanner type) of VOz2peak changes
with percent volume changes (for volumetric FreeSurfer segmentations) or with percent
FA/RD changes (for DTI data). Then, to investigate the relationship of brain health with
total exercise duration, we performed partial correlation analyses (controlling for age and
scanner type) of total exercise duration (higher intensity exercise participants will have

higher exercise dose intensity) with percent volumetric changes in gray matter or FA/RD

on every a-priori region or tract. We set our alpha (two-tailed) to 0.05.

6.4 RESULTS

Participants Demographics

Sample and fitness measures are shown in Table 6.1.

differences (exercisers vs. controls) were found when controls were compared to the

exercise group except for the percent VOzpeak change (p=0.012).

No significant group

Control
Sample Characteristics
N (female) 3(2)
Baseline Age (SD) 67.33(1.5)
Baseline MMSE (SD) 29.33(0.6)
Baseline BMI (SD) 25.2(3.1)
Fitness Measures
Baseline VO,peak (ml/kg/min) 25 (5.4)
VO, peak change (%) -0.67 (1.3)
Baseline Lean Mass (SD, units???) 42.42 (6)
Exercise Duration (hrs) -
Lean Mass Change (%) -1.4 (5.2)

Exercise (all intensities)

7(6)

75.71 (6.3)
29.57 (0.8)

26.9 (4.1)

22.6 (2.9)
1.73(0.9)
39.1(3.6)
94.89 (50)
6.1(6.5)

All Groups

10 (8)
73.2(6.6)
29.5(0.7)
26.5(3.7)

23.3(3.7)
0.92 (1.6)*
40.09 (4.4)

3.7(0.1)

Table 6.1. Participant’s demographics. * denotes significant difference between groups (p<0.05).
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FreeSurfer Cortical Segmentations

For every gray matter cortical segmentation, we performed partial correlations of
longitudinal volumetric changes with the changes in VO:peak and exercise duration,
controlling for age. The results of our partial correlations are depicted in Table 6.2. In
relation to VO:peak and total exercise duration, none of our percent cortical volumes

reached significance (p>0.05).

% Volumetric change: % change in VO,peak Exercise Duration
r p-value r p-value
PreCuneus
Left 0.42 0.3 0.28 0.5
Right 0.41 0.32 0.33 0.42
Parahippocampal
Left -0.26 0.54 -0.5 0.2
Right -0.06 0.88 -0.33 0.43
Enthorinnal
Left -0.3 0.47 -0.62 0.1
Right 0.49 0.22 -0.26 0.53
Caudal Middle Frontal
Left 0.08 0.84 0.35 0.4
Right 0.28 0.5 0.57 0.14
Caudal Anterior Cingulate
Left -0.16 0.71 -0.07 0.88
Right 0.01 0.99 -0.22 0.6
Rostral Anterior Cingulate
Left 0.47 0.25 0.34 0.41
Right 0.27 0.52 -0.4 0.33
Rostral Middle Frontal
Left 0.63 0.09 0.53 0.18
Right 0.39 0.34 0.28 0.51
Superior Parietal
Left 0.5 0.21 0.38 0.35
Right 0.42 0.3 0.52 0.19

Table 6.2. Participant’s partial correlations (controlling for age) of all the a-priori FreeSurfer
segmentations with the fitness measures (VO;peak and exercise duration). * denotes significant (p<0.05).
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White Matter Integrity

Partial correlations of percent FA/RD changes with changes in VOzpeak and exercise

duration were performed, controlling for age. When percent FA changes were correlated

with VOzpeak, none of the a-priori white matter tracts reached significance (p>0.05, Table

6.3). However, we found that participants with longer exercise durations showed a

significant decreased in percent RD change in the genu of the corpus callosum (r=-0.85,

p=0.01, Table 6.4, Figure 6.4), denoting preservation of white matter tract integrity. On the

other hand, a significant increase in percent RD change in the right cingulum was also

correlated with longer exercise duration (r=0.75, p=0.03, Table 6.4, Figure 6.3).

% change in VO,peak % change in Fractional Anisotropy % change in Radial Diffusivity
r p-value r p-value
Corpus Callosum
Genu 0.2 0.64 -0.32 0.44
Body -0.01 0.99 -0.23 0.58
Splenium 0.13 0.75 -0.53 0.17
Cingulum
Left 0.01 0.98 -0.27 0.52
Right 0.29 0.48 0.07 0.88
Superior Longitudinal Fasciculus
Left 0.28 0.5 0.09 0.84
Right 0.2 0.64 0.51 0.2
Uncinate Fasciculus
Left 0.18 0.68 -0.21 0.61
Right 0.07 0.87 0.6 0.12

Table 6.3. Depicts partial correlation analyses of percent changes in FA and RD metrics with percent change

in VOzpeak, controlling for age.
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Total exercise duration % change in Fractional Anisotropy % change in Radial Diffusivity
r p-value r p-value
Corpus Callosum
Genu -0.46 0.26 -0.85 0.01*
Body -0.48 0.23 -0.55 0.16
Splenium -0.29 0.48 -0.43 0.29
Cingulum
Left -0.41 0.31 -0.48 0.23
Right -0.35 0.4 0.75 0.03*
Superior Longitudinal Fasciculus
Left -0.46 0.25 0.07 0.87
Right -0.38 0.36 -0.2 0.64
Uncinate Fasciculus
Left -0.38 0.35 0.12 0.77
Right -0.61 0.11 0.29 0.49

Table 6.4. depicts partial correlation analyses of percent changes in FA and RD with total exercise duration,
controlling for age. * denotes p<0.05
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Figure 6.3. Scatter plots representing the associations of total exercise duration and RD percent
change in the genu of the corpus callosum (top row) or the right cingulum (bottom row). The color
dots classify each participants exercise dose: blue denotes the control participants; green denotes
75 mins/week, yellow 150 min/week, and purple 225 mins/week. The regression linear plot
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depicts all the dots with no color discrimination. * denotes p<0.05.
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6.5 DISCUSSION

The aim of this study was to characterize changes in gray matter segmentations and
white matter integrity in healthy non-demented subjects who participated in an aerobic
26-week exercise intervention program with different intensity doses. We performed
analyses in regions previously associated with physical activity in gray cortical
segmentations (Colcombe et al., 2006, Erickson et al,, 2010, Floel et al,, 2010, Gow et al,,
2012) and white matter tracts (Marks et al., 2011, Gow et al,, 2012, Johnson et al,, 2012b,
Voss et al, 2012, Tian et al., 2014a). Due to our small sample size we were not able to
perform tests to evaluate different exercise dose intensities. Alternatively, we evaluated
partial correlations of volumetric or diffusivity longitudinal changes with longitudinal
percent changes of VOzpeak and total exercise time duration. After intervention, we did not
find any significant associations of percent changes of cortical volumes with changes in
VO:peak. Similarly, no significant correlations were found in percent cortical volume
changes and exercise time duration. In relation to white matter tract integrity, we did not
find any significant correlations of diffusivity longitudinal changes (FA or RD) with changes
in VOzpeak. However, we found that decreased percent RD changes in the genu of the
corpus callosum were associated with longer exercise, denoting an increased preservation
of white matter integrity. On the contrary, an increased in percent RD changes were also
correlated with longer exercise duration in the genu of the corpus callosum.

The neuro-protective mechanisms related to physical activity and brain
preservation have been previously identified in animal models. These mechanisms include
cardiovascular, metabolic, and neurotrophic effects (Barber et al., 2012, Voss et al., 2013b).

Increased cerebral blow flow, acetylcholine and arterial pressure have also been previously
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found in walking animal models (Nakajima et al., 2003). Additionally, physical activity has
shown to be 40% more protective for the cardiovascular system than predicted risk factors
such as blood lipids, hypertension, or diabetes (Joyner and Green, 2009). Previous animal
reports have shown that physical activity upregulates different growth factors in the
hippocampus such as insulin-like growth factor 1 (IGF-1) (Carro et al., 2001, Trejo et al,,
2001), vascular endothelial growth factor (VEGF) (Tang et al,, 2010) and overexpression of
brain-derived neurotrophic factor (BDNF) proteins (Griffin et al., 2009, Marlatt et al,,
2012). Recently, serum levels for BDNF, IGF-1 and VEGF were also investigated in older
adult participants who underwent a 1-year aerobic exercise program. These researchers
showed that only in the exercise group, the connectivity between the parahippocampus
and the middle temporal gyrus was associated with increased BDNF, IGF-1 and VEGF
serum levels (Voss et al., 2013a).

In humans, our results can be compared with other reports that investigated the
relationship between high exercise intensity and preservation of brain health. For example,
a 9-year follow-up exercise study divided its participants in 4 groups according to the self-
reported number of walking blocks (Erickson et al., 2010). They reported that the highest
quartile group with higher number of walking blocks showed greater gray matter volumes
in all their specified regions (precentral gyrus, supplementary motor area, precuneus, and
hippocampus) when compared to the their control group. However, no differences were
reported when the other lower 3 quartiles were compared. Due to its observational nature
and a single neuroimaging time-point (9 years subsequent to self reported physical activity
questionnaire), they were unable to conclude that physical activity caused preservation of

gray matter volume. Another 6-month longitudinal study examined three groups of older
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adults who participated in different physical activities stratified into no exercise, Nordic
walking (medium-intensity exercise), and gymnastics (low-intensity exercise)
(Ruscheweyh et al., 2011). These researchers showed that high-intensity exercise was not
required to achieve increases in memory performance yet no exercise group differences
were reported in relation to increased gray matter volume. Instead, they showed a positive
association of increased physical activity with greater volumes in many cortical regions
with the cingulate and the prefrontal cortices being the most significant.

When we investigated the associations between the changes in cortical
segmentations and total exercise duration, we did not find any regions that reached
significance. However, when we compared the associations between the integrity of the a-
priori white matter tracts and total exercise duration, we found an association of preserved
white matter tract integrity (decreased RD percent change) in the genu of the corpus
callosum with longer exercise time durations. Previous reports that investigated the
relationship of physical activity and white matter tract integrity have found preserved
integrity in this tract (Johnson et al., 2012b) and also others (e.g. the cingulum and uncinate
fasciculus) (Marks et al., 2007, Marks et al., 2011). However, the relationship with physical
activity dose intensity and white matter tract integrity has not yet been investigated. To
our knowledge, this is the first study that investigated the effects of longer exercise
durations in white matter tracts. Interestingly and contrary to previous publications, we
also found a decreased in white matter integrity in the right cingulum (increased RD) with
longer exercise durations. One explanation for this finding could be the concurrent age-
related brain deterioration that may be affecting our participants. One interesting

observations is that most of the participants with higher increases in RD in the right
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cingulum appeared to have subtle decreases in cognitive changes (e.g MMSE at baseline is
higher than at follow-up). The cingulum is also a white matter tract that deteriorates
earlier in neurodegenerative diseases such as AD (Zhang et al., 2007, Zhang et al., 2014),
thus this negative finding may reflect early tract deterioration due to progressed aging or
earlier symptoms of AD. Though, we believe this explanation might be speculative rather
than justifiable due to our small sample size and the lack of comparable reports. Hence, we
encourage further investigations with higher number of participants and different exercise
dose intensities to investigate further the mechanism on how different exercise dose
intensities might affect the structural changes in the brain.

The results and interpretations from our study should be evaluated within the
context of its strengths and limitations. Our biggest limitation is the small neuroimaging
sample data, which did not permit us to compare the different exercise doses. Hence, we
investigated the associations between longitudinal brain changes and total exercise
duration, a directly related measure of exercise dose. We believe this investigation
described preliminary results but not conclusive in regards of the exercise dose intensity.
Another limitation in relation to exercise duration is the variability of physical activity
outside the exercise intervention facilities. It may be possible that participants with higher
doses of exercise might unintentionally decrease their physical activity due to fatigue cause
by this new activity even though there were advised against doing so. Finally, it is worth
noting the limitations with processing imaging data using voxelwise morphology
processing steps, especially in longitudinal data sets (e.g. partial volume effects, unbiased
longitudinal templates or registrations). Thus to overcome these limitations in relation to

neuroimaging, we applied the most up to date suggested methodologies previously
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published for structural gray matter segmentations (Reuter et al., 2010, Reuter and Fischl,
2011, Reuter et al., 2012) and white matter registrations (Avants et al., 2011, Keihaninejad

et al.,, 2012, Keihaninejad et al., 2013, Schwarz et al., 2014).

6.6 CONCLUSION

In healthy non-demented older adults who underwent a 26-week exercise
intervention, we found that longer exercise duration was associated with changes in white
matter tract integrity especially in the genu of the corpus callosum. On the contrary in the
right cingulum, longer exercise durations were associated with increased transverse
diffusivity (e.g. RD), which may not reflect neuroprotective exercise effects but maybe a
stronger age-related or disease-related deterioration. Thus, we believe that similar large
sample investigations are needed to explore further the neuroplasticity of the brain based

on different aerobic exercise intensity doses.
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Chapter 7 Preface:

In healthy older adults, evidence has shown that white matter integrity is positively
associated with higher levels of cardiorespiratory fitness. However, few studies have
investigated the effects of aerobic exercise, a direct regulator of cardiorespiratory fitness,
in the Alzheimer’s disease population. Previous work done at the University of Kansas
Alzheimer’s Disease Center showed increased brain volume in gray and white matter
regions associated with higher cardiorespiratory fitness levels. To continue with this
investigation, in this chapter [ examined changes in white matter using diffusion imaging
data in a sample of Alzheimer’s disease participants who underwent a 26-week
longitudinal aerobic exercise intervention.

This chapter explored the effects of aerobic exercise in longitudinal white matter
diffusivity changes and its relations with changes in cardiorespiratory fitness, total exercise

duration, and cognitive measures.
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Chapter 7

The effects of aerobic exercise on brain’s white matter integrity in the

Alzheimer’s disease population: a 26-week intervention study
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7.1 ABSTRACT
Objective:

To investigate the effects of aerobic exercise on brain’s white matter tract integrity
after a 26-week intervention program in Alzheimer’s disease (AD) older adults.
Methods:

Older adults with early AD (n=29; CDR=0.5 and 1) were randomized in two groups:
an aerobic exercise (treadmill walking) and a non-aerobic control group (stretching and
toning). As indicators of longitudinal changes in white matter integrity, we calculated
percent changes of diffusivity metrics in AD-related a-priori white matter tracts. Then, we
evaluated longitudinal diffusivity group differences (aerobic vs. non-aerobic) on every
tract. Additionally, for each group (aerobic or non-aerobic), we conducted partial
correlation analyses (controlling for baseline age and CDR sum of boxes) of longitudinal
diffusivity changes with changes in cardiorespiratory fitness (CR) levels, exercise duration,
and changes in cognitive tests.

Results:

Group comparisons (aerobic vs. non-aerobic) showed no significant differences in
the longitudinal diffusivity metrics (p>0.15). When evaluating correlation analyses, the
aerobic exercise group had no significant association of VOzpeak changes with changes in
diffusivity measures (p>0.1). However in the non-aerobic control group, decreased FA
percent change was associated with increased changes in VOzpeak in the left inferior
fronto-occipital fasciculus (r=-0.62, p=0.02). Longer aerobic exercise durations were also
marginally associated with preserved white matter integrity in the splenium of the corpus

callosum (rra=0.56, pra=0.08) and the right cingulum (rra=0.56, pra=0.06) while the non-
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aerobic group showed decreased FA in the right uncinate fasciculus with increased changes
in VOzpeak (rra=-0.6, pra=0.03). In relation to cognition, changes in executive function were
improved in the aerobic group when compared to the non-aerobic (F=5.88, p=0.024).
Additionally, only the aerobic exercise group showed that increased changes in mean
cognitive scores were associated with preserved white matter in the genu of the corpus
callosum (rra=0.59, pra=0.046 ) and marginally in the left cingulum (rra=0.57, pra=0.056).
Conclusion:

Even though we did not find any significant group differences in diffusivity metrics,
we found that (only in the aerobic exercise group) longer exercise durations and mean
cognitive measures were positively associated with preserved white matter tract integrity
in AD-related white matter tracts. Hence, longer aerobic exercise activity may benefit the
preservation of specific white matter tracts even after the onset of Alzheimer’s disease yet

further research is needed to validate our results.

7.2 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting cognition and
accelerated brain deterioration. Currently there is no cure for the disease and costly
pharmacological treatments have proven ineffective because none of the treatments slow
down or stop the disease. Instead, these pharmacological treatments excite the amount of
neurotransmitters in the brain which improves cognition but are only effective at the
earlier stages of the disease (Thies et al.,, 2013). Thus, increasing attention has been given
to non-pharmacological treatments such as aerobic exercise, which may provide a low cost

alternative to slow down the progression of AD. Evidence in animal and human studies
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have shown the neuro-protective effects of aerobic exercise in mitigating AD brain
deterioration. In animal models, one of the earlier reports showed that exercise increases
brain-derived neurotropic factor (BDNF), a growth factor neurotrophin that support the
function and survival of many neurons (Neeper et al., 1995). Then, additional studies
showed that exercise also improves neuronal survival (Wu et al., 2008), neurogenesis (van
Praag et al, 1999, Van der Borght et al,, 2009, Creer et al, 2010, Marlatt et al.,, 2012,
Mustroph et al., 2012), and cell proliferation (van Praag et al., 1999, van Praag et al,, 2005,
Wu et al,, 2008, Van der Borght et al., 2009).

In humans, it is more challenging to study the effects of exercise at the cellular level
due to current in-vivo imaging technical limitations. Nonetheless, interventional studies in
larger non-cellular resolution scales (~mm) using magnetic resonance imaging (MRI)
techniques have identified positive correlations between exercise, cognition, and brain
health. For example, in a study of 165 nondemented older adults (Erickson et al., 2009),
higher levels of aerobic fitness by measures of maximum oxygen consumption (VO:peak)
were associated with increased hippocampal volume, a subcortical brain region that plays
an important role in memory and is one of the first brain regions affected in AD. Another
study also found that after 6 months of aerobic fitness training in 59 healthy older adults,
brain’s gray and white matter volumes increased as a function of fitness training (Colcombe
et al, 2006). Gray matter regions included areas of the dorsal anterior cingulate cortex,
supplementary motor area, and middle frontal gyrus while white matter regions included
the anterior portion of the corpus callosum known as the genu of the corpus callosum.
These positive relationships between exercise and brain health are also in accordance with

previous work done in the early AD population at the University of Kansas Alzheimer’s
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Disease Center the early AD population (Burns et al., 2008, Honea et al., 2009, Vidoni et al.,
2012a).

In the early AD, researchers previously showed that higher levels of
cardiorespiratory fitness were associated with larger whole brain volumes (Burns et al,,
2008). More specifically, they found that higher levels of cardiorespiratory fitness were
related to regionally specific increases in gray and white matter volumes. In gray matter,
these regions included the parietal and medial temporal cortices while white matter
regions included the inferior parietal cortices (Honea et al.,, 2009). Longitudinally using
functional connectivity, they found that higher levels of cardiorespiratory fitness showed a
slower progression of AD and lower rates of atrophy in the medial temporal lobe (Vidoni et
al, 2012a). Here in this chapter, we expanded our investigation by characterizing the
integrity of brain’s white matter in early AD after a 26-week aerobic exercise intervention
program using diffusion imaging.

Diffusion imaging is a magnetic resonance imaging technique that measures the
displacement of water molecules by applying magnetic field gradient pulses (Le Bihan et
al, 2001). Thus, the use of this technique is more meaningful in tissues that have
anisotropic or directional dependent characteristics such as white matter in the brain.
White matter is composed of healthy myelinated axons that travel together in bundles
known as tracts. These tracts travel along specific directions and are densely packed, thus
restricting the mobility of these water molecules while providing efficient brain
connectivity. However, the integrity of these healthy tracts deteriorates with aging and
accelerates with AD (Sexton et al,, 2011, Gold et al,, 2012, Sachdev et al., 2013). These white

matter integrity changes can be investigated by derived diffusion tensor imaging (DTI)
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metrics such as fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AxD),
and mean diffusivity (MD). FA describes the degree of diffusion-related anisotropy ranging
from 0 (perfectly isotropic) to 1 (perfectly anisotropic) and is related to overall white
matter microstructural integrity (Alexander et al., 2011, O'Donnell and Westin, 2011). RD
measures perpendicular diffusion and reflects changes in axonal diameter and myelination
density (Song et al., 2005). AxD measures the magnitude of diffusion in the principal
direction while MD reflects an overall measure of diffusion by averaging the three

orthogonal components of diffusion (Alexander et al., 2007).

To date, only few publications have shown the effects of exercise and
cardiorespiratory fitness on white matter integrity using diffusion imaging and only in
healthy non-demented (ND) cohorts. In these reports, only one 1-year ND longitudinal
study showed that the aerobic exercise group was associated with increased FA mainly in
prefrontal and temporal regions yet no significant results were reported (Voss et al., 2012).
On the other hand cross-sectional studies showed that higher CR was associated with
increased white matter integrity in the corpus callosum (Johnson et al., 2012b), cingulum
(Marks et al., 2007), and uncinate fasciculus (Marks et al., 2007, Marks et al., 2011). Thus
the goal of this study is to characterize and compare longitudinal changes in white matter
integrity after a 26-week aerobic exercise intervention program in older adults at early
stages of AD. Hence, we evaluated longitudinal diffusivity changes in a-priori white matter
tracts previously related to AD (Sexton et al., 2011, Alves et al,, 2012, Bosch et al,, 2012)
and aerobic exercise (Marks et al, 2007, Marks et al, 2011, Johnson et al, 2012b).
Longitudinal group differences in white matter tract integrity and changes in

cardiorespiratory fitness were evaluated. Additionally, we also evaluated the association of
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these diffusivity longitudinal changes with changes in cardiorespiratory fitness, exercise

intervention duration, and cognitive scores.

7.3 METHODS
Sample

The study took place at the University of Kansas Alzheimer’s Disease Center (KU
ADC) as part of the Alzheimer’s disease Exercise Program Trial (ADEPT, #11969,
NTC01128361). For this investigation, we collected longitudinal data from individuals
enrolled in an ongoing aerobic exercise (n=15) or non-aerobic control (n=14) intervention
program for 26 weeks. The final sample data included 29 sedentary older adults (60 years
and older) in the earliest stages of Alzheimer’s disease (baseline CDR=0.5, n=21 and
CDR=1, n=8). In addition to a full physical and neurological examination, enrollees were
assessed using a semi-structured interview given to the participant and a collateral source
(e.g. participant’s spouse or child). Medications, past medical history, family history,
education, and demographic information were collected from the collateral source. The
ongoing intervention program excluded individuals who had significant neurological
diseases other than AD which included major psychiatric disorders, major depression
(Geriatric Depression Scale > 5), clinically-evident stroke or systemic infection, myocardial
infarction or significant cardiovascular or respiratory disease, history of cancer in the last 5
years, current or past history of drug or alcohol abuse, insulin-dependent diabetes mellitus,
and significant pain or musculoskeletal disorder that would limit exercise. Institutionally

approved informed consent was obtained before enrollment.
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Clinical assessment

Diagnostic clinical classification was made at a consensus conference attended by
neurologist, neuropsychologists and nurse practitioners of the University of Kansas
Alzheimer’s Disease Center. Diagnostic criteria included the gradual onset and progression
of impairment in memory and in at least one other cognitive or functional domain based on
the NINCDS-ADRDA criteria (McKhann et al.,, 1984a). The Clinical Dementia Rating (CDR)
determined the severity of dementia (Morris, 1993). At baseline, only participants with AD
or mild cognitive impairment likely due to AD and a Global CDR of 0.5 (very mild) and 1.0
(mild dementia) were included in the study. The CDR protocol has shown a 93% diagnostic
accuracy for AD and has shown reliability in discriminating those with mild cognitive
impairment, who have early-stage AD (Storandt et al., 2006, Burns et al., 2008).

In addition to the CDR protocol dementia, a battery of full neuropsychological tests
were given to each participant and estimated cognitive uniform data sets (UDS) z-scores
were calculated based on sex, age, and/or education (Shirk et al., 2011). Then, we divided
these z-scored in five different cognitive domains: a mean score (UDSmean), memory
(UDS_mem), attention (UDS_att), processing speed (UDS_speed), executive function
(UDS_ef), and language (UDS_lang).

Intervention program

Early onset AD participants were randomized on a one-to-one basis to either an
aerobic exercise group (e.g. walking on a treadmill) or a non-aerobic control group (e.g.
stretching and toning). The randomization procedure used block randomization within
each stratum defined by age (<75 years vs. >= 75 years old) and gender to ensure the

groups were matched across variables. The intervention began within thirty days of
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completion of the screening and baseline evaluations. In addition to neuroimaging data,
cardiorespiratory fitness and anthropometric measures were collected at baseline and
follow-up. Detailed information for the exercise and control group activities can be found in
a previous publication (Vidoni et al.,, 2012b).
Aerobic group

Trained exercise personnel lead all sessions three non-consecutive days per week
for 26 weeks in a local exercise facility most convenient for the participant. To be included
in the final analysis, AD subjects were required to attend at least 80% (62 of the 78
sessions) of the aerobic exercise sessions during the course of the study. The aerobic
training consisted primarily of walking on a treadmill with a 5-minute warm-up session
and a 5-minute cool down period. Exercise routines were spread over 3-5 days per week
with no more than 35 minutes per day for a desired duration time of 155 minutes per
week. Exercise intensity was monitored and increased from 40 to 75% of heart rate
reserve (HRR) during the progression of the study. During weeks 1-4, the heart rate zone
was set to 40-55%, week 5-18 to 50-65% HRR, and week 19-26 to 60-75 of the HRR.
Non-aerobic control group

As proposed by previous publications (Colcombe and Kramer, 2003, Colcombe et al.,
2003, Voss et al,, 2012, Hayes et al,, 2013), stretching and toning were used as a control
non-aerobic activity intervention. These participants had a similar schedule and balance of
cofounding variables such as attention, social interactions, and other unknown variables
that might influence the result. An experienced and trained exercise instructor ran these

sessions three days a week at the local exercise facility. The activities included axial and
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appendicular stretching and toning exercises, seated exercises on a large diameter exercise
ball, and modified versions of Tai Chi and yoga for older adults (Vidoni et al., 2012b).
CR fitness and total exercise duration

CR fitness evaluation

CR fitness was measured before and after the 26-week intervention program by
peak oxygen consumption VOzpeak (ml/kg/min) during a graded treadmill exercise test
using a Cornell modified Bruce protocol (Hollenberg et al.,, 1998, Burns et al., 2008). The
participants were asked to start walking on a treadmill while the speed and incline
increased progressively. Only individuals who achieved a respiratory exchange ratio (RER)
> 1.0 were included in this evaluation. Oxygen consumption was averaged over 15-second

intervals and the highest measurement was considered VO:zpeak.

Total Exercise Duration

In addition to VOzpeak measures, we provided each participant an exercise log and a
Polar hear rate monitor, which were kept at the exercise facility to record their weekly
activity for duration and intensity (for the aerobic exercise group) or duration and activity
(for the control group). Certified personal trainers assisted the participants with Polar
monitors, how to keep their heart rate zone and how to retrieve the session data from the
watch to record on the exercise log. Data were recorded at the end of each session. After
the intervention program was concluded, a total exercise intervention duration time for
each participant was calculated by adding up all the recorded exercise minutes. We used
this measurement to report adherence and to quantify the total exercise duration (in

minutes) that each participant conducted during our intervention program.
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Neuroimaging

Neuroimages were collected at baseline and follow-up within 3 weeks of the
cardiorespiratory fitness assessment. The session included a high-resolution T1 image for
anatomic localization and to assess for gross anatomical differences with a high gray-white
matter contrast (MPRAGE; 1x1x1mm voxels; TR = 2500, TE = 4.38, TI = 1100, FOV 256 x
256 with 18% oversample, 1mm slice thickness, flip angle 8 degrees). Additionally, a
diffusion weighted imaging sequence was also acquired and designed to provide optimal
acquisition parameters while minimizing scanner duration for the participant. Due to an
MRI scanner replacement during our recruitment process, two DTI sequences were
acquired. The first DTI sequence (n= 16) was acquired in a Siemens 3.0 Tesla Allegra MRI
scanner using single-shot echo-planar imaging sequences with a repetition time
[TR]=1000ms and echo time [TE]=81ms. Diffusion gradients were applied in 36 directions
(bo=0 s/mm?and b1=800 s/mm?). The second diffusion imaging acquisition (n=13) used a
Siemens 3.0 Tesla Skyra with a repetition time (TR)= 1000ms and echo time (TE)=90m:s.
Diffusion gradients were applied in 65 directions (bo = 0 s/mm? and b1.64= 1000 s/mm?).
Seventy-five 2-mm sections were acquired in at in-plane resolution of 128x128 with a
300mm field of view (FOV) in both DTI acquisitions. To maintain longitudinal differences
consistent, baseline and follow-up sequences for every participant were acquired in the
same scanner, using either the Allegra or the Skyra MRI scanner. Previous investigations
have shown the feasibility of using multi-site DTI collection for analysis (Teipel et al., 2012,
Nir et al., 2013) and no differences between participants’ age, gender or VOzpeak were

found between scanners. Therefore, we combined both DTIs sequences in our analysis.
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Imaging Analysis

We pre-processed the diffusion imaging sequence using the FMRIB Software Library
neuro-imaging tools (FSL 5.0.4) (Smith et al, 2004a). After manually inspecting our
diffusion weighted images, we applied eddy current correction for small distortion and
simple head motion, by alignment the diffusion weighted images to the bp image. Next,
brain extraction tool (BET2) was applied to strip the brain from the skull, and diffusivity FA
and RD map images were calculated using DTIFIT. As suggested by a recent article
(Keihaninejad et al., 2013), interpolation asymmetries might arise when resampling the
follow-up images to the baseline images. Therefore for every image in every participant,
first we linearly registered the baseline and follow-up images to a halfway registration
point, using FLIRT and MIDTRANS, which are part of the FSL tools. Hence, the choice of a
halfway registration would result in an unbiased template towards any single point. Then,
we non-linearly registered, aligned, and transformed every image to a common 1x1x1mm
standard MNI space (FMRIB58_FA_1mm) as suggested in the TBSS pipeline protocol (Smith
et al,, 2006), but we omitted the skeletonizing step. Instead, a 2-mm smoothing procedure
was applied to each image using FSLMATHS.

To generate the white matter a-priori masks, we registered the Johns Hopkins
University probabilistic white matter atlas (Mori et al., 2005, Hua et al.,, 2008a) to the MNI
space and masked-in all the voxels that belong to our specific a-priori white matter tracts.
Then, average diffusivity values (FA, RD, AxD, ad MD) were calculated in every tract-of-
interest for every participant at baseline and follow-up. Finally, for every subject averaged
percent changes of our diffusivity metrics ([Timepointflow-up-Timepointpaseline]/

Timepointyaseline) were fed into SPSS 22.0 for statistical analyses.
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The following tracts previously reported to be associated with AD and exercise
(Figure 7.1) were included and divided by hemisphere: the corpus callosum (split in the
genu, body and splenium) (Sexton et al., 2011, Alves et al,, 2012, Bosch et al,, 2012, Johnson
et al.,, 2012b), the cingulum (CCG) (Xie et al., 2005, Marks et al., 2007, Zhang et al., 2007, Liu
et al., 2011, Marks et al,, 2011, Zhang et al., 2014) the inferior fronto-occipital fasciculus
(IFOF) (Gold et al,, 2010, Teipel et al., 2010, Alves et al., 2012), the superior longitudinal
fasciculus (SLF) (Teipel et al,, 2010, Liu et al., 2011, Sexton et al,, 2011, Alves et al,, 2012,
Bosch et al., 2012), and the uncinate fasciculus (UF) (Marks et al., 2007, Damoiseaux et al.,
2009, Liu et al,, 2011, Sexton et al.,, 2011, Bosch et al,, 2012). We believe this approach
allows us to investigate specific tracts and we can report our results in relation to whole
white matter conduits rather than small clusters of significant voxels as previously
described (Damoiseaux et al.,, 2009, Voss et al,, 2012, Gons et al.,, 2013). We believe that
reporting white matter tract when small significant voxels showed significance may be
misleading and may increase the probability of Type I error due to probable regions that
might be located in crossing fibers or at the edges of white matter, where other less

anisotropic media (e.g. gray matter or cerebrospinal fluid) may contaminate the results.
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Corpus Callosum (CC)
Splenium of CC Body of CC

Y=120 Z=90

Cingulum (CGG) Inferior fronto-occipital fasciculus (IFOF)

Y=120 )
Z=70

X=63 7-99 X=122 Y=131

Figure 7.1. AD and exercise-related a-priori white matter tracts. These tracts include the corpus callosum
(genu in blue, body in maroon, and splenium in light blue), the cingulum (red), the inferior fronto-occipital
fasciculus (green), the superior longitudinal fasciculus (blue), and the uncinate fasciculus (pink). Tract
representation is shown using the standard MNI brain and radiological orientation.

Statistical analysis

Statistical analyses were performed using SPSS 22.0 (IBM Corp. Armonk, NY).
Demographics and physical characteristics were tested using parametric analyses (analysis
of variance) or non-parametric analysis (chi-square) when appropriate.

To evaluate the longitudinal effects of aerobic (vs. non-aerobic), we conducted
univariate group difference analyses controlling for baseline age and CDR sum of boxes
(CDRsob). We believe that age affects the exercise physiological demands on our
participants. Similarly, to account for disease progression we controlled for CDR sum of
boxes as the disease directly relates to brain atrophy and cognitive decline (Sperling et al,,

2014). Longitudinal group differences on every a-priori white matter tract were
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investigating by calculating percent FA changes ([FAfolow-up-FAbaseline] /FAbaseline). If results
were significant, subsequent percent diffusivity changes were evaluated in other non-FA
diffusivity metrics (e.g. RD, AxD, or MD). Similarly we calculated longitudinal changes in
VOzpeak (VOzpeakfolow-up— VO2peakpaseline) and cognitive UDS scores and examined group
differences using the similar univariate model.

We also examined the association of changes in CR fitness with white matter tract
integrity. To do so on each group separately (aerobic or non-aerobic), we conducted partial
correlations of changes in VOzpeak with changes in the diffusivity measures, controlling for
baseline age and CDRsob. Additionally, we assessed the effects of total exercise
intervention duration using partial correlations of total exercise duration with percent
changes in the diffusivity measures (split by intervention group). Finally, to examine
association of cognitive changes with changes in white matter integrity we conducted
partial correlations of all the longitudinal changes in UDS scores with the diffusivity

measures in every a-priori white matter tract (Table 7.1). We set our alpha to 0.05.

7.4 RESULTS
Demographics

Table 7.1 summarizes the subject’s baseline demographics, physical, and CR fitness
characteristics of the 29 participants included in the final analysis. Six participants were
excluded because they did not reach our criteria for maximal exercise testing (n=3) or had
abnormal diffusivity changes (n=3). We did not find significant differences between our
intervention groups (aerobic vs. non-aerobic) in age, MMSE, BMI, VO:peak, change in

VO:peak or intervention adherence (Table 7.1).
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N (female)

Age (SD)

MMSE (SD)

BMI (SD)

VO,peak (ml/kg/min)

VO,peak change

Intervention Adherence (% minutes attended)

Aerobic

14(4)
73.4(7.2)
26.6 (3.4)

28 (2.9)

21.1(4.2)
1.6 (2.0)

94.4%

Non-aerobic

15(5)
70.8 (7.1)
25.5 (2.9)
27.7 (4.4)
23.1 (6.0)
-0.3(2.3)

86.5%

p-value

0.55
0.34
0.36
0.89
0.31
0.09
0.12

Table 7.1. Participant's baseline demographics, physical and fitness characteristics.

Group differences in white matter tract integrity

To assess the effects of aerobic exercise on every a-priori white matter tract, we

conducted univariate analysis of variance (aerobic vs. non-aerobic) on percent FA changes

controlling for age and CDRsob. We did not find any significant differences in percent FA

(Table 7.2) thus no subsequent non-FA diffusivity analyses were conducted in this group

difference comparison.

Fractional Anisotropy
% change (mean)  Std. Deviation p-value

Corpus Callosum Body CTL -1.36 3.07 0.29
150 -2.12 2.40

Genu CTL -1.62 2.79 0.52
150 -2.12 2.92

Splenium| CTL -1.11 3.36 0.53
150 -1.34 2.88

Cingulum (CCG-) Left CTL -1.97 3.15 0.87
150 -1.74 2.40

Right CTL -1.16 3.85 0.26
150 -1.62 2.95

Inferior Fronto-occipital fasciculus Left CTL -1.03 2.86 0.23
150 -1.85 2.36

Right CTL -1.11 2.77 0.33
150 -2.01 293

Superior Longitudinal Fasciculus  Left CTL -1.11 3.08 0.50
150 -1.32 2.67

Right CTL -0.14 3.21 0.53
150 -0.71 2.62

Uncinate Fasciculus Left CTL -1.50 3.12 0.58
150 -1.66 2.96

Right CTL -1.40 3.34 0.15
150 -2.70 3.23

Table 7.2. Percent FA group differences (aerobic vs. non-aerobic) on every
a-priori white matter tract. CTL denotes the non-aerobic group and 150

denotes the aerobic group.
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Cardiorespiratory fitness and white matter tract integrity

To evaluate whether longitudinal changes of CR fitness affects changes in white
matter integrity, we conducted partial correlations of changes in VOzpeak with percent FA
changes on every a-priori white matter tract. These analyses explored whether an
increased in CR fitness due to an intervention exercise program has an effect in white
matter tract integrity. Thus, we split our results by intervention group: aerobic or non-
aerobic control. No significant correlations were found for the aerobic exercise group but
we found a marginally increased FA with increased VO:peak in the genu of the corpus
callosum (r=0.52, p=0.09, Table 7.3). On the other hand in the non-aerobic control group,
increased changes in VOzpeak were associated with decreased FA only in the left inferior
fronto-occipital fasciculus (r=-0.64, p=0.02, Table 7.3). However, subsequent analyses in
this tract showed no significant correlations (rrp=0.45, prpo=0.15; rmp=0.47, pmp=0.11;

I‘AXD=O.29, prD=O.33).

Fractional Anisotropy Aerobic Non-aerobic
r p-value r p-value

Corpus Callosum Body 0.20 0.54 -0.45 0.13
Genu 0.52 0.09 -0.19 0.53
Splenium 0.42 0.17 -0.37 0.22
Cingulum (CCG-) Left 0.29 0.37 -0.38 0.20
Right 0.12 0.72 -0.30 0.32
Inferior Fronto-occipital fasciculus Left 0.30 0.34 -0.64 0.02
Right 0.32 0.31 -0.14 0.65
Superior Longitudinal fasciculus Left 0.32 0.32 -0.38 0.20
Right 0.26 0.41 0.02 0.96
Uncinate Fasciculus Left 0.02 0.95 -0.40 0.18
Right -0.33 0.29 -0.50 0.08

Table 7.3. Partial correlations of changes in VO2peak with percent FA changes split by exercise
group (aerobic or non-aerobic) and controlling for baseline age and CDRsob.
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Total exercise duration and white matter tract integrity

To evaluate the effects of total exercise duration, we conducted partial correlation
analyses of total exercise duration with longitudinal percent FA changes. Again, we split
our results by intervention group: aerobic exercisers or non-aerobic controls. In the
aerobic exercise group, we found that longer intervention times were marginally correlated
with increased FA change in the right cingulum (r=0.56, p=0.06, Table 7.4). Subsequent
non-FA diffusivity analyses in this tract also indicated white matter preservation
(decreased in diffusivity measures) with longer exercise durations (rrp=-0.75, prp=0.01;
rmp=-0.75, pmp=0.01; raxp=-0.66, paxp=0.02). On the other hand, the non-aerobic control
group showed decreased FA with longer exercise duration only in the right uncinate
fasciculus (r=-0.6, p=0.03, Table 7.4). However, subsequent non-FA diffusivity partial
correlation analyses in the non-aerobic right uncinate fasciculus were not significant

(I‘RD=O.10, pRD=0.76; I‘MD=0.04, pMD=0.91; I‘AXD=-0.13, pAXD=0.66).

Fractional Anisotropy Aerobic Non-aerobic
r P-Value r P-Value

Corpus Callosum Body 0.33 0.30 -0.19 0.54
Genu 0.50 0.10 -0.16 0.59
Splenium 0.52 0.08 -0.11 0.72
Cingulum (CCG-) Left 0.51 0.09 -0.34 0.26
Right 0.56 0.06 -0.14 0.66
Inferior Fronto-occipital fasciculus Left 0.42 0.18 -0.13 0.67
Right 0.42 0.17 -0.25 0.42
Superior Longitudinal fasciculus Left 0.49 0.10 -0.23 0.46
Right 0.49 0.11 -0.51 0.07
Uncinate Fasciculus Left 0.30 0.35 -0.28 0.36
Right -0.07 0.83 -0.60 0.03

Table 7.4. Partial correlations of total exercise duration with percent FA changes split by exercise
group (aerobic or non-aerobic) and controlling for baseline age and CDRsob.
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Group differences in cognition

To evaluate the effects of aerobic exercise in cognition, we conducted univariate
analyses (aerobic vs. non-aerobic) in the longitudinal changes of the UDS scores (Table
7.5). We found that only the UDS executive function showed increased percent changes in
the aerobic exercise group when compared to the non-aerobic control group

(UDS_ef_changeaerobic= 1.17, UDS_ef_changenon-aerobic=-0.34, p=0.03).

N % change (Mean) Std. Deviation p-value
UDS_Mean_change CTL 11 -0.05 0.38 0.74
150 14 0.05 0.28
UDS_Memory_change CTL 12 0.27 0.89 0.83
150 14 0.38 0.63
UDS_Attention_change CTL 12 0.06 0.44 0.07
150 14 -0.28 0.43
UDS_Speed_change CTL 12 -0.06 0.62 0.41
150 14 -0.24 1.18
UDS_ExectiveFunction_change CTL 11 -0.34 1.06 0.03
150 14 1.17 2.04
UD_Language_change CTL 12 -0.25 0.60 0.58
150 14 -0.02 0.86

Table 7.5. Longitudinal group differences (aerobic vs. non-aerobic) in all the UDS cognitive scores.

Cognition and white matter tract integrity

To evaluate the association of cognitive scores with white matter tract integrity, we
conducted partial correlations of longitudinal changes in UDS scores with longitudinal
percent FA changes. Again, we split our results by intervention group: aerobic exercisers or
non-aerobic controls. In the aerobic exercise group, we found that in the genu of the corpus
callosum increased mean UDS scores were significantly correlated with increased FA
percent change (r=0.57, p=0.046, Table 7.6). Subsequent diffusivity measures supported
this finding with decreased diffusivity only in the RD metric (rrp=-0.73, prp=0.01; rmp=-

0.34, pmp=0.29; raxp=-0.32, paxp=0.31). Additionally, an increased in FA percent changes in
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left cingulum was marginally associated with increased UDS mean (r=0.57,p=0.054, Table

7.6). However, subsequent diffusivity analyses were not significant (rrp=-0.30, prp=0.35;

rmp=-0.21, pmMp=0.52; raxp=-0.12, paxp=0.72). In the non-aerobic control group, none of our

partial correlation analyses were significant (p>0.05, Table 7.7).

EXERCISE (n=14) UDS Mean UDS Memory UDS Attention UDS Speed UDS Executive Function UDS Language
r r r r r r

Corpus Callosum Body 0.48 0.00 0.14 0.35 -0.15 0.10
Genu 0.59* 0.27 0.08 0.14 -0.08 0.38
Splenium 0.44 0.04 -0.01 0.28 -0.15 0.20
Cingulum (CCG-) L 0.57* 0.21 0.20 0.26 -0.05 0.04
R 0.51 -0.11 0.14 0.41 -0.11 -0.05
Inferior Fronto-occipital fasciculus L 0.48 0.10 0.23 0.32 -0.06 0.05
R 0.45 0.12 0.07 0.28 -0.34 0.26
Superior Longitudinal fasciculus L 0.36 -0.02 0.14 0.42 -0.25 0.14
R 0.42 -0.10 0.05 0.30 -0.29 0.09
Uncinate Fasciculus L 0.39 -0.12 0.15 0.37 -0.40 0.08
R 0.15 -0.39 0.33 0.23 -0.16 -0.35

Table 7.6. Partial correlation coefficients in the aerobic exercise group when changes in UDS scores were

correlated with percent FA changes on every white matter tract. * denotes significant findings (p<0.05). * denotes
a marginally significant finding (p=0.054)

Non-aerobic (n=12) UDS Mean UDS Memory UDS Attention UDS Speed DS Executive Functiq UDS Language
Corpus Callosum Body 0.24 0.09 0.13 -0.15 -0.29 0.26
Genu 0.14 0.02 -0.02 -0.19 0.05 -0.07
Splenium 0.00 -0.15 -0.17 -0.38 0.00 -0.07
Cingulum (CCG-) L 0.19 0.05 0.05 -0.19 -0.13 0.18
R -0.09 -0.34 -0.18 -0.35 -0.05 0.21
Inferior Fronto-occipital fasciculus L -0.02 -0.17 -0.02 0.04 -0.55 0.12
R -0.18 -0.44 -0.31 0.03 0.02 0.01
Superior Longitudinal fasciculus L -0.10 -0.17 -0.15 -0.33 -0.20 -0.15
R 0.08 0.07 0.13 -0.33 -0.19 -0.07
Uncinate Fasciculus L 0.10 -0.15 -0.05 -0.30 0.32 0.16
R 0.04 -0.09 -0.04 -0.38 0.01 0.03

Table 7.7. Partial correlation coefficients in the non-aerobic control group when changes in UDS scores were
correlated with percent FA changes on every white matter tract. * denotes significant findings (p<0.05).

7.5 DISCUSSION

In this study we wanted to investigate the effects of a 26-week aerobic exercise

program on brain’s white matter tract integrity in older adults at the earlier stages of AD.

We conducted statistical analyses using scalar metrics of diffusion (FA, RD, AxD, and MD)

on a-priori white matter tracts previously disrupted in early AD (Sexton et al., 2011, Alves
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et al, 2012, Bosch et al,, 2012) and/or associated with fitness related studies (Marks et al,,
2007, Marks et al., 2011, Johnson et al., 2012b, Voss et al,, 2012, Tseng et al., 2013, Tian et
al., 2014b). First, we investigated longitudinal group differences (aerobics vs. non-aerobic)
on longitudinal changes of white matter integrity, VOz2peak, and cognitive UDS scores.
Second on each intervention group separately, we investigated if changes in
cardiorespiratory fitness levels, intervention duration, or changes in UDS scores were

associated with changes in white matter tract integrity.

Aerobic vs. non-aerobic exercise on brain’s white matter integrity

After the conclusion of the 26-week intervention program, we examined the
differences in percent diffusivity changes between the aerobic exercise and the non-aerobic
control group on specific a-priori white matter tracts. We did not find any significant
differences in percent diffusivity changes between groups. Our results are consistent with a
previous 1-year longitudinal DTI study performed in healthy older non-demented adults
(Voss et al.,, 2010). These authors did not find any significant differences in the aerobic
group when compared to the stretching group but described a marginal group difference
effect in the prefrontal regions. It is also worth noting that these authors used a different
diffusion imaging processing methodology (TBSS) and a sample of non-demented older
adults. A possible explanation for our null results may be that concurrent white matter
deterioration due to aging (Salat, 2011) and more drastically due to AD (Chua et al,, 2008,
Sexton et al,, 2011, Gold et al., 2012), which might affect and conflict with concurrent
positive effects of aerobic exercise activity on the brain’s white matter integrity (Hayes et

al,, 2013), leading to non-significant results.
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Another possibility for our null findings could be that our in-vivo diffusion imaging
acquisition was not sensitive enough to identify the effects of aerobic exercise after 26
weeks, especially in early AD participants. Even though in our study, we failed to
distinguish neuro-protective mechanisms, positive mechanisms might have been triggered
at the cellular level as supported by previous post-mortem animal studies (see review (Voss
et al, 2013b)). At the cellular level, animal models have shown that long-term exercise (e.g.
2 months) increased neuronal spine density in the enthorinal cortex and CA1 pyramidal
cells (Stranahan et al., 2007). Also animal models who run for prolonged times have shown
to improve neuronal survival (Wu et al., 2008), increased neurogenesis (van Praag et al,,
1999, Van der Borght et al,, 2009, Creer et al., 2010, Marlatt et al.,, 2012, Mustroph et al,,
2012), and increased cell proliferation (van Praag et al., 1999, van Praag et al., 2005, Wu et
al,, 2008, Van der Borght et al., 2009). Thus, subtle neuroprotective mechanisms might be
occurring but it may be undetectable with our current diffusion imaging acquisition.
Though it is worth noting that a one-to-one relationship with cellular characteristics such
as myelination quality, axonal density, or glial cell density cannot yet be characterized with
any in-vivo imaging modality (e.g. diffusion imaging) due to our current imaging macro-
scale resolution limitations (Concha, 2014, Walhovd et al,, 2014). Hence, longer exercise
programs or larger sample studies might be needed to investigate further these neuro-
protective mechanisms especially when using in-vivo neuroimaging tools.

To our knowledge, this is the first longitudinal diffusion imaging study investigating
the effects of aerobic exercise in the early AD population. Our results are in accordance
with only one other interventional study previously published in non-demented adults

(Voss et al, 2012) and contradicts with volumetric studies (Colcombe et al.,, 2006, Liu-
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Ambrose et al,, 2010, Ruscheweyh et al., 2011, Vidoni et al,, 2012a). Hence given the lack of
AD-related diffusion imaging studies, it is difficult to draw conclusions about the protective
mechanisms of aerobic exercise on brain’s white matter tract integrity. Thus, there is a
need for more research to understand how aerobic exercise may mitigate the evident white

matter deterioration due to aging and AD.

The effects of CR fitness in white matter integrity

We did not find any significant associations of longitudinal changes in VOzpeak with
changes in white matter tract integrity. These results disagreed with previous whole brain
cross-sectional (Burns et al., 2008) and regional (Colcombe et al., 2003, Colcombe et al,,
2006, Honea et al,, 2009, Vidoni et al., 2012a) volumetric analyses. Similarly, our results
diverged with previous diffusion imaging cross-sectional studies in non-demented
participants (Marks et al, 2007, Marks et al, 2011, Johnson et al, 2012b). To our
knowledge only one other longitudinal diffusion imaging report (in healthy non-demented
older adults) described a marginally positive association of aerobic exercise intervention
and preserved white matter integrity in prefrontal and temporal regions yet none of the
regions reached significance (Voss et al.,, 2012). Additionally, this study used a composite
CR fitness measure (using a graded maximal test [VOzpeak] and a Rockport walk test),
which differs from our direct measurement of CR fitness based only in VOz2peak, making it
difficult to compare our results. In our study, we also recruited sedentary AD participants
that reported an average baseline VOzpeak (ml/kg/min) below the 20t percentile (See
Table 7.1) according to the American College of Sports Medicine guidelines (Medicine,

2009). Our study sample did not cover the entire percentile fitness range but only the
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lowest and less fitted population due to the mandatory sedentary criteria during the
screening selection process. In addition, this intervention was given to sedentary early AD,
which might have a more challenging goal when performing the maximal oxygen
consumption evaluation. Hence, our tests may not be reflecting an accurate measure of
physiological strain but exhaustion due to novel physiologic demands, especially prior to
the intervention program. However to overcome this limitation, we only included those
participants who reached a respiratory exchange ratio of 1.0 during the CR fitness test.
Another explanation for our null findings might be explained by the diffusion
processing method used during this investigation. Here, we averaged a specific diffusion
value of the entire white matter tract rather than looking at voxel-by-voxel differences, as
previously done (Voss et al., 2012, Gons et al,, 2013, Tseng et al., 2013). Subtle changes may
appear in smaller regions surrounding specific white matter tracts but when averaged
values were calculated for an overall assessment of specific white matter tracts, these
changes may increase in variance and may affect reaching significance. Though, these
subtle changes in smaller voxels could be describing image-processing flaws that might not
be related to the actual white matter micro-structural changes (e.g. image co-registrations,
partial volume effects or crossing fibers). In previous diffusion imaging reports (only in
healthy older adults), they found that white matter integrity has a positive association with
CR fitness (Marks et al,, 2007, Marks et al., 2011, Johnson et al., 2012b, Voss et al., 2012).
However, these results were reported in smaller brain regions using regions-of-interest
(not whole white matter tract conduits) or “thinned-out” voxelwise statistical

methodologies (TBSS), which we believe may bring inconsistencies and limitations when
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describing and discussing study specific results in relations to specific white matter tracts

(see Chapter 2).

Longer aerobic exercise is associated with preserved white matter integrity

To investigate the effects of total exercise duration in white matter integrity, we
conducted partial correlation analyses of percent change diffusivity measures with total
intervention duration. In the aerobic exercise group, we found that the participants who
spent more time exercising had an increased percent change in FA in the right cingulum
and preserved diffusivity in subsequent diffusivity analyses (RD, MD, AxD). The cingulum
has previously found to be one of the earliest tracts to deteriorate in early AD (Xie et al,,
2005, Zhang et al,, 2007, Sexton et al., 2011, Sachdev et al,, 2013, Amlien and Fjell, 2014,
Zhang et al., 2014) and have previously shown a positive association with CR fitness (Marks
et al, 2007, Marks et al,, 2011) in older non-demented cohorts. It may be possible that
more vulnerable white matter tracts in AD receive the most benefit for an exercise
intervention program especially during longer periods of exercise. Another possibility for
our results is that participants who aerobically exercised longer times might have a better
willingness to slow down the progression of AD leading to improvement in other co-found
factors (e.g. lower depression, lower stress, increased mood, etc...) that may be facilitate
triggering neuro-protective aerobic exercise-related mechanisms.

On the other hand in the non-aerobic control group, we found a decreased FA in the
right uncinate fasciculus with longer exercise duration yet subsequent diffusivity measures
were non-significant. The uncinate fasciculus connects the anterior temporal lobe with the

lateral orbitofrontal cortex (Catani et al., 2002, Papagno et al.,, 2011). This tract is larger in
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the right hemisphere (Highley et al., 2002) and even though its role remains unknown, the
uncinate fasciculus is considered to be part of the limbic system and its function is critical
to emotion and memory with a role in formation and retrieval of memories (Nestor et al,,
2004, Gaffan and Wilson, 2008). Additionally, previous meta-analyses reports showed large
effects on this tract when AD where compared to ND and MCI (Sexton et al., 2011). Thus,
decreased FA in the non-aerobic controls might be reflecting AD-related brain
deterioration progression, as this cohort group was not exposed to aerobic exercise.

Hence, these findings suggest that longer aerobic exercise durations may have a
moderating effect in slowing down the progressed deterioration of white matter tracts due
to AD. To our knowledge this is the first diffusion study in older AD and even though our
results are partially in accordance with previously published results in animal models
(Adlard et al., 2005, E et al., 2014) and other in-vivo imaging reports (Honea et al., 2009,
Marks et al., 2011, Johnson et al., 2012b, Vidoni et al., 2012a), we encourage future research
to investigate this matter in larger interventional studies with longer intervention times

and different exercise intensity doses.

Aerobic exercise might slow down cognitive changes

To investigate the effects of aerobic exercise in cognition, first we examined group
differences in cognitive UDS scores and found that executive function was significantly
improved in the aerobic exercise group when compared to the non-aerobic control group.
Supporting our finding, a previous meta-analyses report found that fitness training
increased cognitive performance regardless of cognitive tasks, training methods or

participant’s characteristics, being executive function the domain with the highest fitness
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training benefit (Colcombe and Kramer, 2003). Another meta-analytic review also aimed to
assess the effects of aerobic exercise training on neurocognitive performance (Smith et al,,
2010). They found that aerobic exercise was associated with improvements in attention,
processing speed, executive function and memory. These and other reports describing the
effects of aerobic exercise in cognition and executive functions are described in a recent
review (Erickson et al,, 2014).

In addition to group differences in cognitive UDS scores, we also examined the
association of longitudinal changes in UDS scores with changes in white matter tract
integrity. We only found significant associations of increased mean cognitive UDS scores in
the aerobic exercise group with preserved diffusivity in the genu of the corpus callosum
and marginally preserved in the left cingulum. These tracts are previously related to
deteriorate early in AD (Sexton et al., 2011, Alves et al., 2012, Fjell et al., 2014, Zhang et al,,
2014) and have neuro-protective effects with aerobic exercise (Marks et al., 2011, Johnson
et al,, 2012b). Thus, our positive findings in these tracts (the genu of the corpus callosum
and the cingulum) suggest that a relation between micro-structural integrity of specific
white matter tracts might lead to increased cognition. To our knowledge this is the first
diffusion imaging study in early AD that investigated cognitive measures after an aerobic
exercise intervention. Thus, we encourage future work on aerobic exercise, cognition, and
brain plasticity to apply this and other analyses to investigate the structural connections of

the brain (e.g. connectomics or tractography, more in chapter 8).
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7.6 CONCLUSION

After a 26-week exercise intervention program in Alzheimer’s disease participants,
we investigated the structural diffusivity changes in white matter tract integrity and its
association with cardiorespiratory fitness, exercise intervention duration, and cognitive
UDS scores. While we did not find any group differences in white matter diffusivity
measures or changes in cardiorespiratory fitness, we found an increased in UDS executive
function (in the aerobic group when compared to the non-aerobic controls) after the
exercise intervention. Additionally, longitudinal changes in white matter integrity were
positively and marginally associated with longer exercise duration in the aerobic group in
the right cingulum and the splenium of the corpus callosum. Similarly, the aerobic group
showed marginally increased mean UDS scores with preserved diffusivity in the left
cingulum and genu of the corpus callosum. Hence, even though we did not find group
differences in longitudinal white matter changes, we believe that underlying mechanisms
might be occurring at microstructural levels as manifested by a positive white matter tract
preservation with longer exercise duration and increased cognitive scores. To our
knowledge, this is the first interventional investigation in the AD population, so a need for
future studies with longer exercise times, different exercise doses, and higher number of

participants are strongly recommended.
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Chapter 8 Preface:

In this chapter, I characterized the structural integrity of thalamo-cortical
connections and classified each subthalamic nuclei in early Alzheimer’s disease (AD)
participants who underwent a 26-week aerobic exercise intervention program using
probabilistic tractography and a classification target algorithm. The thalamus is a
subcortical structure that filters incoming information from the peripheral body to the
cerebral cortex. In Alzheimer’s disease evidence of thalamic deterioration is inconclusive
yet this structure acts as a gateway for relaying information to higher functioning cortical
regions. This cortical region is also involved in executive function and other cognitive
domains that are affected in AD yet its association with aerobic exercise is unknown. Thus,
in this chapter I decided to explore further the effects of aerobic exercise in this structure,
its connectivity to cortical regions, and its nuclei subdivision based on its likelihood of
connection and by using a classification target algorithm. To investigate the effects of
aerobic exercise in these thalamo-cortical connections, I compared percent change
diffusivity and volumetric measures between groups (aerobic vs. non-aerobic).
Additionally, after classifying every subject’s subthalamic segmentations before and after
intervention, I also calculated percent volumetric changes on every subthalamic nuclei and

investigated the effects of aerobic exercise in these subdivisions.
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Chapter 8

Aerobic exercise and thalamo-cortical connectivity in the Alzheimer’s

disease population: a 26-week exercise intervention study
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8.1 ABSTRACT
Objective:

To investigate the effects of an aerobic intervention exercise program in thalamo-
cortical connections using connectivity-based subthalamic segmentations and probabilistic
tractography in sedentary older adults with early Alzheimer’s disease (AD).

Methods:

Early AD participants (Clinical Dementia Rating [CDR] = 0.5 or 1) were randomized
into a 26-week exercise intervention group, either an aerobic exercise group (treadmill
walking, n= 16) or a non-aerobic control group (stretching and toning, n= 14). In addition
to anthropometric measures, we collected magnetic resonance images (T1 and diffusion-
weighted images) at baseline and follow-up. We performed probabilistic tractography
using the thalamus as our seed region and seven cortical gyri as our target regions:
cingulate, frontal, occipital, parietal, post-central, pre-central, and the temporal gyrus.
Then, we conducted analyses of variance to test group differences (aerobic vs. non-aerobic)
in these thalamo-cortical probabilistic connections using longitudinal percent changes in
diffusivity metrics (fractional anisotropy [FA] and radial diffusivity [RD]). Finally, for every
participant we subdivided their thalamus into seven sub-regions using connectivity-based
seed classification algorithms. These algorithms classify the voxels of the thalamus (our
seed region) according to the target cortical region that shows the highest probability of
connection. Then for every participant, we calculated a longitudinal percent change
differences in these volumetric classifications and assessed percent change group
differences (aerobic vs. non-aerobic control). For every comparison, we used the

univariateanalyses of variance controlling for age and gender and setting our alpha to 0.05.
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Results:

We did not find any significant volumetric or diffusivity changes when
characterizing the volumetric and diffusivity changes in the thalamo-cortical connections
(p>0.05). However in our classification-based algorithm after a 26-week intervention
program, the aerobic exercise group had increased thalamo-cortical connectivity to the
right cingulate gyrus (2.67% vs -0.91%, p=0.029) and decreased connectivity to the left
post-central gyrus (-1.12% vs 0.34, p=0.041) when compared to changes in the non-aerobic
control group.

Conclusion

Using diffusion imaging tractography analyses, we found that 26 weeks of aerobic
exercise is associated with dynamic changes in thalamo-cortical connectivity, suggesting
that aerobic exercise even may modify thalamo-cortical brain connectivity after the onset

of AD.

8.2 INTRODUCTION

The thalamus is an oval-shaped deep gray matter subcortical structure located in
the dorsal portion of the diencephalon (Figure 8.1). Its primary function is to convey
almost all sensory input information (other than olfaction) to the cerebral cortex. This
structure acts as a “gatekeeper” of information to the cerebral cortex as it prevents or
enhances the passage of information to the cortical regions, depending on the behavior
state of the person. Almost all the information received by the cerebral cortex coming from

the environment or by the body’s internal receptors comes through the thalamus

169



(Casagrande et al., 2005). Due to its prominent role on relaying information to the cerebral
cortex, this structure has a remarkably large number of pathways with many nuclei
devoted to different thalamo-cortical connections. These nuclei can be divided in four main
groups: anterior, medial and median, ventral anterior, and ventral posterior thalamus

(Figure 8.1).

Intrathalmic adhesion

Medial Geniculate | ateral Geniculate
Body Body

Figure 8.1. The thalamus and its four main nuclei groups: anterior (darkest), ventral anterior (darker),
medial and median (light), and ventral posterior (lightest). L = lateral V=ventral, P=posterior, M = medial,
A = anterior, I=Inferior.

The anterior group consists of only one nucleus and while its role is unknown, it is
thought to participate in memory and emotion as it involves the limbic system and it is
inter-connected with the cingulate and frontal gyri (FitzGerald et al, 2011). The
medial/median nuclei group is connected to the entire prefrontal cortex. Its role is also

unknown but it functions have been related to memory, cognition, judgment and mood
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(FitzGerald et al, 2011). The ventral anterior group contains many nuclei and can be
subdivided in the ventral anterior, ventral lateral and ventral posterior nuclei. The ventral
anterior and ventral lateral nuclei are related to motor control, and carry information from
the basal ganglia and cerebellum to the motor cortex. The ventral posterior group carries
somatosensory information to the cortex. Finally, the posterior group contains the medial
geniculate body, the lateral geniculate body and the pulvinar. The medial geniculate body is
related to the auditory pathway as it receives information from the inferior colliculus
(which carries auditory information from both ears) and projects it to the primary auditory
cortex, located in the superior dorsal part of the temporal lobe (Brodmann areas 41 and
42). The lateral geniculate body is a complex structure where optic nerve axons terminate,
and thus it is related to the visual system (Banich and Compton, 2010). The pulvinar is the
largest nucleus in the thalamus and the most developed in humans yet its function is still
very unknown. This nucleus might be involved in some aspects of visual perception or
attention with occasional reports of language deficits after damage (Nolte, 2009).

These thalamo-cortical nuclei and their connections have been extensively
characterized in non-human animals (Jones et al, 1985). However in humans, the
characterization of these connections is very limited. One method to study thalamo-cortical
connections includes the injection of fluorescent dyes post-mortem, which allows the
tracing of each pathways. However, this method limits its characterization to small
distances in the tenths of millimeters (Mufson et al, 1990, Onodera and Hicks, 2010).
Dissection and histological analysis of major tracts have also been investigated but on a
relatively small number of patients (Mufson et al., 1990, Onodera and Hicks, 2010)). Thus,

this old method has now been replace with in-vivo diffusion imaging techniques (Onodera
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and Hicks, 2010, Ford et al,, 2013, Leuze et al,, 2014). In-vivo, we can characterize these
thalamo-cortical connections using magnetic resonance diffusion imaging and probabilistic
tractography algorithms (Behrens et al, 2003a). Diffusion imaging characterizes the
diffusion of water molecules, which may be restricted to a specific media. For example, the
thalamo-cortical connections in the brain are composed of axonal bundles that provide
efficient structural connectivity between the thalamus and the cortical areas. These
bundles will also restrict the movement of water along its specific direction thus providing
a sensitive measure of diffusivity and an indirect measure of connectivity (e.g. anisotropic
diffusion will be proportional to higher white matter tract integrity) that can be used to
trace and characterize the structural integrity of these connections.

Two types of algorithms to trace diffusion tensor imaging been developed in the
past decades: streamline tractography and probabilistic tractography. Streamline
tractography is a more conventional technique that propagates from a seed mask (e.g. the
thalamus) to a specific target in a single direction on a voxel-by-voxel projection basis and
by using specific and high certainty fiber direction information (Jones et al., 1999). This
high certainty fiber direction information is constrained by local voxel diffusivity
thresholds and is limited to connections near gray matter where its isotropic diffusion is
generally beyond the local diffusivity threshold. On the other hand, probabilistic
tractography (Behrens et al., 2003b) propagates similarly to streamline tractography but
instead of propagating in a single direction or being limited to a local diffusion threshold,
this methodology estimates local probability propagation functions in every voxel that
might connect the seed region to its target. Thus, this technique is not dependent on local

diffusion thresholds and can fully propagate into more isotropic regions (e.g. gray matter),
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providing a more comprehensive characterization of the specific thalamo-cortical
connections. This technique has previously been used to describe the thalamo-cortical
connections in-vivo to compare results with animal models (Behrens et al., 2003a), reflect
variation in functional properties (Johansen-Berg et al., 2007), in early detection of AD
(Zarei et al,, 2010, Lee et al,, 2013), or in other neuro-related diseases such as primary
progressive aphasia (Galantucci et al,, 2011). Here, we used this technique to evaluate
thalamo-cortical changes in early stage AD older adults who underwent an aerobic exercise
intervention program. To our knowledge, this is the first investigation that studies the
effects of aerobic exercise in thalamo-cortical connectivity. We hypothesize that the
integrity and probability of these thalamo-cortical connections may dynamically change to

compensate for thalamo-cortical connections that get disrupted at early stages of AD.

8.3 METHODS
Sample

For this investigation, we collected data from sedentary individuals who agreed to
enroll in an ongoing aerobic exercise trial. The final sample data included 30 sedentary
older adults (60 years and older) in the earliest stages of AD (CDR, 0.5; n=21, CDR, 1; n=9).
The ongoing exercise trial study excluded individuals who have significant neurological
diseases other than AD, major psychiatric disorders, major depression (Geriatric
Depression Scale > 5), clinically-evident stroke or systemic infection, myocardial infarction
or significant cardiovascular or respiratory disease, history of cancer in the last 5 years,

current or past history of drug or alcohol abuse, insulin-dependent diabetes mellitus, and
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significant pain or musculoskeletal disorder that would limit exercise. Institutionally
approved informed consent was obtained before enrollment.
Clinical assessment

In addition to a full physical and neurological examination, enrollees were assessed
using a semi-structured interview given to the participant and a collateral source (e.g.
participant’s spouse or child). Medications, past medical history, family history, education,
and demographic information were collected from the collateral source. Diagnostic
classification was made at a consensus conference attended by neurologist,
neuropsychologists and nurse practitioners of the University of Kansas Alzheimer’s Disease
Center and by using consensus diagnostic criteria for AD: gradual onset and progression of
impairment in memory and in at least one other cognitive and functional domain (NINCDS-
ADRDA criteria) (McKhann et al.,, 1984a). The Clinical Dementia Rating (CDR) determined
the severity of dementia (Morris, 1993). Only participants with AD or mild cognitive
impairment likely due to AD and a Global CDR of 0.5 (very mild) and 1.0 (mild dementia)
were included in the study. The evaluation protocol has shown a diagnostic accuracy for AD
of 93%, and has shown reliability in discriminating those with mild cognitive impairment,
who have early-stage AD (Storandt et al., 2006, Burns et al., 2008).
Intervention program

Early onset AD participants were randomized on a one-to-one basis to an aerobic
exercise group (walking on a treadmill) or a non-aerobic control group (non-aerobic
activities). The randomization procedure used block randomization within each stratum
defined by age (<75 years vs. >= 75 years old) and gender to ensure the groups were

matched across variables. The intervention began within thirty days of completion of the
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screening and baseline evaluations. CR fitness and anthropometric measures were
collected at baseline and follow-up. Detailed information for the exercise and control group
activities can be found in a previous publication (Vidoni et al.,, 2012b).

Aerobic Intervention

Trained exercise personnel lead all sessions three non-consecutive days per week
for 26 weeks in a local exercise facility most convenient for the participant. To be included
in the final analysis, AD subjects were required to attend at least 80% (62 of the 78
sessions) of the aerobic exercise sessions during the course of the study. The aerobic
training consisted primarily of walking on a treadmill with a 5-minute warm-up session
and a 5-minute cool down period. Exercise routines were spread over 3-5 days per week
with no more than 35 minutes per day. Exercise intensity was monitored and increased
from 40 to 75% of heart rate reserve (HRR) during the progression of the study. Weeks 1-4,
heart rate zone was set to 40-55%, week 5-18 to 50-65% HRR, and week 19-26 to 60-75
HRR. The exercise duration time was set to 155 minutes per week.

Control non-aerobic intervention

As proposed by previous publications (Colcombe and Kramer, 2003, Colcombe et al,,
2003, Vidoni et al., 2012b, Voss et al., 2012, Hayes et al., 2013), stretching and toning were
used as a control non-aerobic intervention. These participants had a similar schedule and
balance of cofounding variables such as attention, social interactions, and other unknown
variables that might influence the result. An experienced and trained exercise instructor
ran these sessions three days a week at the local exercise facility. The activities included
axial and appendicular stretching and toning exercises, seated exercises on a large

diameter exercise ball, and modified versions of Tai Chi and yoga for older adults. Certified
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personal trainers were provided with a schedule of specific exercises and verbal
instructions to assist every participant.
Neuroimaging

Magnetic resonance imaging was collected at baseline and follow-up within 3 weeks
of the CR fitness assessment. The session included a high-resolution T1 image for anatomic
localization, region-of interest segmentation, and to assess for gross anatomical differences
with a high gray-white matter contrast (MPRAGE; 1x1x1mm voxels; TR = 2500, TE = 4.38,
TI=1100, FOV 256 x 256 with 18% oversample, 1mm slice thickness, flip angle 8 degrees).
A diffusion weighted sequence was also acquired and designed to provide optimal
acquisition parameters while minimizing scanner duration for the participant. Due to MRI
scanner replacement during our recruitment process, two diffusion imaging sequences
were acquired. The first DTI sequence (nbaseline and follow up= 14%x2=28) was acquired in a
Siemens 3.0 Tesla Allegra MRI scanner using single-shot echo-planar imaging sequences
with a repetition time [TR]=1000ms and echo time [TE]=81ms. Diffusion gradients were
applied in 36 directions (bo = 0 s/mm?and bi= 800 s/mm?). The second diffusion imaging
acquisition (Npaseline and follow up= 16x2=32) used a Siemens 3.0 Tesla Skyra with a repetition
time (TR)= 1000ms and echo time (TE)=90ms. Diffusion gradients were applied in 65
directions (bo = 0 s/mm? and b= 1000 s/mm?. Seventy-five 2-mm sections were acquired
in at in-plane resolution of 128x128 with a 300mm field of view (FOV) in both DTI
acquisitions. To maintain longitudinal differences consistent, baseline and follow-up
sequences for every participant were acquired in the same scanner, using either the Allegra

or the Skyra MRI scanner. No differences between participants’ age, gender or VOzpeak
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were found between scanners. Therefore, we combined both diffusion imaging sequences
in our analysis.
Imaging Analysis

T1 image segmentation

After manually checking every T1 MPRAGE structural image, we performed
volumetric segmentation using the FreeSurfer image analyses suite (FreeSurfer 5.2.3). The
technical details of these procedures are described in prior publications (Dale and Sereno,
1993, Dale et al., 1999, Fischl and Dale, 2000, Fischl et al., 2001, Fischl et al., 2004, Han et
al, 2006, Jovicich et al, 2006). This procedure includes an automated Talairach
transformation, and cortical and subcortical segmentations of white matter and gray
matter structures based on a surface-stream imaging stream (Fischl et al., 2002, Fischl et
al., 2004). Once the imaging-processing pipeline is finished, we extracted bilaterally (left
and right) the baseline and follow-up volumetric segmentations of the thalamus (our seed
region) and the following cortical regions: cingulate, frontal, occipital, parietal, post-central,
pre-central, and temporal (our target regions). We used these segmentations as our seed
and target masks during our probabilistic tractography analyses (Figure 8.2).

Pre-processing diffusion images

After manually inspecting our diffusion weighted images, we applied eddy current
correction for small distortions and simple head motion, by alignment the diffusion
weighted images to the bo image. Next, brain extraction tool (BET2) was applied to strip the
brain from the skull, and diffusivity metrics (fractional anisotropy [FA] and radial
diffusivity [RD]) were calculated for the posterior analyses. Once the diffusion weighted

images were eddy current corrected, we submitted our images and their dependencies to
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run probabilistic tractography algorithm to run in the high performance computing system

(FSL, 2013a).

Thalamus Cingulate
@;‘w
1\
Parietal Occipital Post-central Temporal

Figure 8.2. A representation of the seed mask (the thalamus in red) and target masks (highlighted in
different colors according to its locations). These masks are overlapped into a specific participant’s atructural
space using the FreeSurfer segmentations.

Probabilistic tractography

On every participant’s diffusion imaging data, we executed BEDPOSTX (FMRIB'’s
Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques)
(Behrens et al., 2003b, Behrens et al., 2007) using the high performance computing cluster
at The University of Kansas Information and Telecommunication Technology Center
(ITTC). BEDPOSTX uses intrinsic information about multiple diffusion gradient angles to
formulate orientation distribution functions (ODF) on every voxel thus creating all the

necessary dependencies (e.g. probability distribution functions on every voxel) to run
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probabilistic tractography. Next, we ran probabilistic tracking using PROBTRACKX
(Behrens et al,, 2007).

During this PROBTRACKX procedure, the algorithm repetitively samples a
streamline projection from every voxel in the seed region to its target destination using the
probabilistic distribution functions generated during BEDPOSTX. By tracing its seed-to-
target projections multiple times, PROBTRACKX is able to build up connectivity
distribution maps between the seed and the target region. All these procedures were
performed in diffusion space for every participant using the thalamus as the seed region
and target region. Thus, for every participant this process was repeated 14 times (7 for
each hemisphere) at baseline and follow-up to cover all the target masks (or cortical
regions). The analyses were done on unilateral in every hemisphere masking the
contralateral hemisphere to avoid inter-hemisphere tracking connectivity. Additionally, we
also masked other non-related structures such as the cerebellum, the midbrain, and the
brain ventricles from each person’s unique ventricle FreeSurfer segmentation.

We generated 5000 streamline samples from our seed region, with a maximum of
2000 steps with a length of 0.5 mm and a curvature threshold of 0.2. In this study, we used
the thalamus as our seed region and the seven cortical regions as our target regions
(separately), which were generated from the T1 image and using the FreeSurfer
segmentations. Hence, since our FreeSurfer segmentations were not in diffusion space, we
used FLIRT (FMRIB’s linear registration tool) to transform these segmentations from

structural space to its appropriate intra-subject diffusion space.
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Structural connectivity diffusivity measures

To characterize the structural integrity of the thalamo-cortical connections, once the
probabilistic tractography analyses were finished we applied a 15% threshold of maximum
connectivity value to include only those voxels with highest likelihood of being connected
to the seed region. This threshold criterion differs from a total streamline thresholded as
previously reported, which directly accounts for inter-subject variability (Johansen-Berg et
al., 2007). Instead as we are looking to pre- and post- intervention changes, our threshold
criteria accommodates for individual differences in connectivity values for each tract while
maximizing tract size and quality, as previously reported (Bennett et al., 2011). After we
applied our threshold criteria at baseline and follow-up, we extracted the average FA/RD
value on each thalamo-cortical connection (Figure 8.4), calculated an average FA/RD
percent changes (100*[Timepointpes — Timepointyre] /Timepointyre) and fed this value into
SPSS for further statistical analyses.

Classification Targets

After our seven probabilistic tractography analyses were conducted (thalamus-to-
every-cortical-region) in every participant separately, we characterized the connectivity
likelihood for every voxel in the thalamus to our 7 cortical target regions. To do so, we used
the classification target approach provided by FSL. This algorithm quantifies the
connectivity values on every voxel in the seed mask (e.g. the thalamus) with respect to all
the 7 target connectivity projections. Then, it classifies and sub-divides (according to its
connectivity) each voxel within the thalamus to one of the 7 cortical targets according to
maximum likelihood of thalamo-cortical connectivity (Figure 8.3) (Behrens et al., 2003a).

We then calculated the volume (on a voxel basis) of these sub-thalamic divisions before
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and after the exercise intervention program, we measured a percent change ([Timepointyos
- Timepoint,re] /Timepoint,r.), and fed this values into SPSS on every participant for further

statistical analyses.

A) B)

-

Figure 8.3. Subthalamic connectivity-based segmentations created by the classification target algorithms.
The colored maps in the thalamus represent the highest connectivity likelihood to the cortical regions: frontal
(green), precentral (orange), postcentral (purple), parietal (yellow), occipital (blue), and temporal (pink).
Sagittal (A) and axial (B) views are represented with zoomed-in thalamus segmentations (C) for a specific
participant.

Statistical analysis
Statistical analyses were conducted using SPSS 22.0 (IBM Corp., Armonk, NY).
Parametric analysis of variance (ANOVA) and chi-square tests were used to evaluate group

differences in clinical and demographic characteristics.
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To test group differences (aerobic vs. non-aerobic) on longitudinal thalamo-cortical
diffusivity metrics, we conducted similar ANOVA analyses in the percent FA/RD changes
(100*[Tpos — Tpre] /Tpre), controlling for age, gender, and scanner type.

For the classification target algorithm, we quantified and classified the thalamus
volumes into seven sub-regions according to its highest projection likelihood to the cortical
targets. We classified each thalamic volume (left and right) for every participant before and
after the intervention. Then, for every participant we calculated percent volumetric
classification difference between pre and post intervention (100*[Tpos — Tpre]/Tpre). To
compare the differences between aerobic exercise and non-aerobic controls, we then
conducted univariate analyses on the percent changes between pre and post intervention
([Tpos — Tpre] /Tpre) for every thalamo-cortical sub-region using age, gender and scanner type

as covariates. For all analyses, we set our alpha to 0.05.
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Occipital Parietal Pre-central Temporal

Figure 8.4 Thalamo-cortical connections thresholded at 15% of highest connectivity (in blue) from the
specific thalamic seed (in red) and the different cortical target masks (in green) overlapped in a participants’
FreeSurfer structural space.

8.4 RESULTS
Demographics

Table 8.1 summarizes the subject’s baseline demographics, physical, and CR fitness
characteristics of the 30 participants included in the study. We did not find any significant
group differences (aerobic vs. non-aerobic) in gender, age, intervention adherence, and
baseline MMSE, BMI, or VOzpeak. However, the aerobic exercise group presented a
significantly higher change in VOzpeak (100*[Tpost = Tpre]/Tpre) when compared to the non-

aerobic control group.
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All groups Aerobic Non-aerobic p-value

N (female) 30 (10) 14 (4) 16 (6) 0.45
Age (SD) 71.5 (6.7) 72.5 (6.4) 70.43 (7.2) 0.41
Baseline MMSE (SD) 26.1(3.3) 26.7 (3.6) 25.5(3.0) 0.34
Baseline BMI (SD) 28.2 (3.7) 28.4 (3.0) 28.0 (4.5) 0.81
Baseline VO,peak (ml/kg/min) 21.9(5.3) 20.5 (4.3) 23.6 (5.91) 0.11
VO,peak change (%) 0.45 (2.1) 1.3(1.8) -0.54 (2.0) .014*
Intervention Adherence (% minutes attended) 91.6% 86.3% 96.7% 0.06

Table 8.1 Participant's demographics, physical, and fitness characteristics.

Diffusivity measures of the thalamo-cortical connections

We investigated group differences (aerobic vs. non-aerobic) in longitudinal
diffusivity percent changes (FA and RD) of the thalamo-cortical structural connections
(Figure 8.4, in blue). We did not find any significant results in the FA nor the RD percent
measures (Table 8.2 and 8.3). Though, our data showed a trend for increased percent FA
changes in thalamo-cortical connections in the aerobic exercise group when compared to
decreased FA in the non-aerobic controls (Table 8.2, last column). Similarly, a trend (not
significant) for lower RD percent changes were found in the aerobic exercise group when

compared to the non-aerobic controls (Table 8.3).
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Averaged FA values

Aerobic Exercise (n=16)

Non-aerobic Control (n=14)

Group diff.

Pre % diff Pre % diff %change (p>0.1)
Cingulate-%
Left| 0.38 (0.08) -0.93 (11.91) 0.36 (0.08) -5.48 (19.24) 455
Right| 0.42(0.05) 1.38 (7.63) 0.040 (0.05) -1.92 (10.58) 3.3
Frontal-%
Left| 0.41(0.03) 1.54 (8.68) 0.42 (0.03) -3.62 (7.79) 5.16
Right| 0.41(0.03) 0.99 (4.13) 0.42 (0.03) -1.24 (4.59) 2.23
Occipital-%
Left| 0.46(0.03) -0.52 (7.76) 0.45 (0.05) -4.41 (11.92) 3.89
Right| 0.45 (0.05) -2.16 (5.68) 0.46 (0.04) -4.26 (10.11) 2.1
Parietal-%
Left| 0.44(0.04) -0.24 (5.38) 0.44 (0.05) -2.21(8.33) 1.97
Right| 0.46 (0.04) -0.25 (5.65) 0.44 (0.05) -1.33 (8.15) 1.08
Post-central-%
Left| 0.45(0.04) 2.11(8.48) 0.44 (0.06) -1.73 (8.41) 3.84
Right| 0.46 (0.04) 1.63 (4.58) 0.43 (0.05) 0.3 (7.74) 1.33
Pre-central-%
Left| 0.46 (0.04) 0.09 (5.27) 0.47 (0.05) -2.81 (6.45) 2.9
Right| 0.46 (0.05) 1.84 (4.73) 0.46 (0.04) -0.8 (5.83) 2.64
Temporal-%
Left| 0.33(0.04) 5.07 (16.21) 0.34 (0.03) -4.17 (13.98) 9.24
Right| 0.33(0.04) 4.68 (14.6) 0.32(0.02) -1.04 (8.51) 5.72

Table 8.2. Averaged fractional anisotropy measures before (pre-) intervention split by intervention groups.
% diff denotes the averaged percent differences before and after intervention. Group diff %change denotes
the group differences between percent changes in the exercise group compared to the non-aerobic controls.

Averaged RD values Aerobic Exercise (n=16) Non-aerobic Control (n=14) Group diff.
Pre % diff Pre % diff %change
Cingulate-%
Left| 0.85(0.22) 3.97 (13.63) 0.89 (0.27) 20.95 (43.28) -16.98
Right| 0.73(0.1) -2.9(12.93) 0.79 (0.15) 2.06 (17.82) -4.96
Frontal-%
Left| 0.68(0.07) -0.69 (8.84) 0.65 (0.07) 6.3 (12.52) -6.99
Right| 0.67 (0.06) -2.12(8.13) 0.63 (0.06) 3.29 (5.52) -5.41
Occipital-%
Left| 0.64(0.07) -0.08 (9.14) 0.65 (0.09) 16.07 (37.16) -16.15
Right| 0.69(0.12) 1.15 (7.48) 0.65 (0.08) 6.45 (15.01) -5.30
Parietal-%
Left| 0.64(0.06) -0.32 (7.53) 0.63 (0.08) 7.35(19.08) -7.67
Right| 0.63(0.05) -0.12 (7.35) 0.64 (0.09) 3.63 (10.61) -3.75
Post-central-%
Left| 0.64(0.07) -1.1(9.26) 0.66 (0.12) 2.21(15.57) -3.31
Right| 0.64 (0.05) -1.72 (10.27) 0.69 (0.1) 0.52 (9.26) -2.24
Pre-central-%
Left| 0.6 (0.06) 0.89 (9.15) 0.6 (0.08) 4.51 (8.57) -3.62
Right| 0.61(0.05) -2.91 (8.53) 0.62 (0.08) 2.81(6.21) -5.72
Temporal-%
Left| 0.95(0.14) -3.68 (13.93) 0.91 (0.11) 7.94 (25.19) -11.62
Right| 0.93(0.14) -3.71(16.87) 0.95 (0.08) 2.78 (9.97) -6.49

Table 8.3. Averaged radial diffusivity measures before (pre-) intervention split by intervention groups. % diff

denotes the averaged percent differences before and after intervention. Group diff %change denotes the
group differences between percent changes in the exercise group compared to the non-aerobic controls.
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Sub-thalamic volumetric classification

To evaluate the effects of aerobic exercise in subthalamic volumes, we conducted group
difference analyses (aerobic vs. non-aerobic) in the longitudinal volumetric changes of the
whole thalamus and its subdivisions based on its likelihood for thalamo-cortical
connectivity (Figure 8.3c). For the whole thalamus, we did not find any group differences
or longitudinal difference in any of the groups (Table 8.4, first row). When evaluating
volumetric thalamic subdivisions, we found that the exercise group had a significant
increase in subthalamic volume that projects to the right cingulate gyrus when compared
to the non-aerobic controls (2.67% vs -0.91%, p=0.029). On the other hand, we found a
significant decrease in the subthalamic volume that projects to the left post central gyrus in
the aerobic exercise group when compared to the non-aerobic controls (-1.12% vs 0.34%,
p=0.041). All the other longitudinal subthalamic volumetric changes did not show

significant differences between groups.
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Table 8.4. Connectivity-based volumetric segmentations of the subthalamic volume before (pre)
intervention. % diff denotes the percent difference after the intervention program. * denotes p<0.05.

Aerobic Exercise (n=16) Non-aerobic Control (n=14) Group % diffences
Pre % diff Pre % diff p-value
Thalamus Volume - cm?
Left 6.61 (1.0) -1.06 (2.0) 6.48 (0.7) -0.61 (1.8) 0.91
Right 6.92 (0.9) -0.85 (1.0) 6.90 (0.7) -0.78 (1.9) 0.48
Cingulate-%
Left 5.61(10.3) 0.95 (4.4) 4.03 (9.9) -0.12 (2.4) 0.07
Right 3.62 (4.8) 2.66 (6.3) 1.78 (2.6) -0.91(1.7) 0.03*
Frontal-%
Left 43.85(7.7) 0.29 (5.8) 49.22 (8.9) 1.8 (12.8) 0.83
Right 49.43 (7.8) 2.43 (4.4) 51.42 (9.0) 4.49 (9.3) 0.48
Occipital-%
Left 1.92 (1.6) 0.59 (3.3) 1.8(3.2) 0.43 (1.7) 0.87
Right 1.36 (1.5) 0.39(2.4) 1.22 (1.5) -0.01 (1.9) 0.63
Parietal-%
Left 12.76 (5.0) 1.06 (4.9) 12.02 (5.0) -2.12 (4.9) 0.14
Right 15.77 (4.6) -1.01 (3.5) 12.8 (5.6) -2.49 (6.6) 0.61
Post-central-%
Left 4.60 (2.8) -1.12 (2.1) 3.9(2.3) 0.34 (2.2) 0.04*
Right 4.16 (1.9) 0.32(1.7) 3.58 (2.0) -0.36 (2.5) 0.39
Pre-central-%
Left 12.65 (3.7) -0.57 (2.8) 12.16 (2.6) -0.44 (2.3) 0.77
Right 12.37 (3.3) -1.35(1.7) 14.55 (4.5) -0.66 (2.3) 0.36
Temporal-%
Left 4.60 (2.8) 0.95 (8.6) 16.7 (8.8) -0.37 (8.7) 0.89
Right 12.38 (5.9) -3.12 (4.5) 13.46 (7.2) -0.58 (5.4) 0.15

8.5 DISCUSSION

In this study, we investigated the effects of an interventional aerobic exercise
program in thalamo-cortical connections and subthalamic volumes in a cohort of
Alzheimer’s disease patients. Hence, to evaluate group differences (aerobic vs. non-
aerobic), we used diffusion imaging data, probabilistic tractography, and a classification
target algorithm. First, we did not find any significant changes when we evaluated group
differences in the thalamo-cortical diffusivity measures. Though, we found a trend for
increased white matter preservation (decreased diffusivity) in the aerobic exercise group
when compared to the non-aerobic control group. Second, we applied a classification target
algorithm to investigate changes in subthalamic volume according to its likelihood of

connectivity to 7 cortical regions (the cingulate, the frontal, the occipital, the parietal, the
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post-central, the precentral and the temporal gyri). In the aerobic exercise group
(compared to the non-aerobic control group), we found a longitudinal increase in the
subthalamic volume that is connected to the right cingulate gyrus and a decreased in
volume to the subthalamic region that connects the thalamus with the left post-central
gyrus. To our knowledge, this is the first AD interventional study that explored the effects
of aerobic exercise in thalamo-cortical connections.

In AD, brain atrophy is considered a marker of impaired functioning as the brain
deteriorates long before clinical symptoms start to appear (Jack et al., 2010, Johnson et al,,
2012a, Douaud et al.,, 2013). Neuroimaging studies have shown brain atrophy in gray
matter regions (more specifically in medial temporal, frontal, and hippocampus regions)
(Thompson et al, 2003) and in white matter tracts (more specifically in the uncinate
fasciculus, the cingulum, the superior longitudinal fasciculus, and the corpus callosum)
(Sexton et al., 2011, Clerx et al., 2012). In relation to thalamic atrophy and thalamo-cortical
connections, post-mortem studies have been controversial due to inconsistent results
(Braak and Braak, 1991a, Paskavitz et al., 1995). In port-mortem studies, the anterior
thalamus nucleus is thought to be most affected in AD (Braak and Braak, 1991a). This
nucleus connects directly to the hippocampus via the fornix, which is one of the earliest
structures to be affected in AD (Oishi and Lyketsos, 2014). Additionally, the pulvinar part of
the thalamus also connects to the hippocampus via the pulvinar tract (Zarei et al., 2010).
On the other hand, in-vivo volumetric analyses have found decreased volumes in the
thalamus when AD participants were compared to healthy older adults (de Jong et al,,
2008, Zarei et al,, 2010). The thalamus and brain regions including the precuneus, posterior

cingulate cortex, frontal gyrus, and precentral gyrus have also shown decreased functional
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connectivity in early AD when compared to non-demented controls (Wang et al,, 2012,
Zhou et al,, 2013).In another age-related (age range between 20 and 74) diffusion imaging
study, researchers found a significant age-related decrease in thalamo-cortical connections
to the frontal lobe, a region that plays a crucial role in different cognitive domains including
executive function, processing speed, and working memory (Hughes et al., 2012). Recent
tractography-based analyses also showed that the atrophy of the dorsal-medial region of
the thalamus in AD participants might have corresponded to changes in connectivity with
the anterior temporal cortex and posterior hippocampus (Zarei et al, 2010). Here, we
expanded the results of thalamo-cortical structural changes in AD before and after the
effects of an aerobic exercise intervention program. To our knowledge, this is the first
study of this type.

We found that the longitudinal thalamo-cortical connections to the right cingulate
gyrus increased in the aerobic exercise group when compared to the non-aerobic control
group. Similarly, we found that the thalamo-cortical connections to the left post-central
gyrus decreased in the aerobic exercise group when compared to the non-aerobic control.
These results suggest that the thalamo-cortical connections are dynamic and might change
in response to environmental factors such as exercising for 26 weeks. The cingulate cortex
received inputs from the thalamus and projects them to the enthorinnal cortex via the
cingulum (Wyss and Van Groen, 1992). Both the cingulum (Xie et al,, 2005, Zhang et al,,
2007, Sexton et al,, 2011, Sachdev et al,, 2013) and the enthorinnal cortex (Janke et al,,
2001, Thompson et al.,, 2001, Scharfman and Chao, 2013) are affected earlier in AD. Thus, it
might be possible that AD-related disruption also occurred in thalamo-cortical connections

that project to the cingulate gyrus. If this holds true, then our results indicate that AD-

189



related thalamo-cortical connections that get disrupted earlier due to AD (e.g. thalamo-to-
cingulate connection), might be positively compensated by neuro-protective aerobic
exercise mechanisms (see review (Voss et al., 2013a)), which is reflected in our results.
Consequently, another less AD-related thalamo-cortical connection may diminish its
connectivity as reflected by our decreased change in thalamo-cortical connection to the left
post-central gyrus. However, the interpretation of our results are limited to our single
study as no other thalamo-cortical connectivity studies have evaluated the effects of
exercise in this older population.

However, previous studies have shown the positive effects of aerobic exercise or
cardiorespiratory fitness in gray matter regions (Colcombe and Kramer, 2003, Colcombe et
al,, 2003, Colcombe et al., 2006, Burns et al., 2008, Erickson et al., 2009) and white matter
tracts (Marks et al., 2007, Marks et al., 2011, Johnson et al., 2012b, Voss et al,, 2012, Gons et
al, 2013, Tian et al., 2014a). Additionally, meta-analysis reports showed that physical
activity improves cognitive domains such as processing speed, executive function, and
memory (see reviews (Colcombe and Kramer, 2003, Smith et al., 2010, Erickson et al,,
2014)). In the Alzheimer’s disease populations, we have found a positive relationship
between CR fitness and brain atrophy in gray and white matter regions using structural
volumetric analyses (Burns et al, 2008, Honea et al, 2009) and functional imaging
connectivity (Vidoni et al., 2012a). Hence in this work, we expanded our investigation on

the effects of aerobic exercise in the thalamus, and its thalamo-cortical connections.
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One of the major limitations in our study is the different diffusion imaging sequence
acquired during our intervention program. To minimize this limitation, we collected pre
and post intervention data for all the participants who in the same scanner (either the
Allegra or the Skyra) and we also conducted statistical analyses on percent change
differences while controlling for scanner type. Another limitation is the small sample size in
our analyses, which might increase the variance among our thalamo-cortical diffusivity and
subthalamic volumetric measures. However a trend for preserved white matter integrity
was found in the exercise group when compared to the non-aerobic control group. We
believe that future studies with higher number of participants and an adequate diffusion
acquisition sequences will allow us to characterize further the effects of aerobic exercise in

AD after an aerobic exercise intervention.

8.6 CONCLUSION

After a 26-week aerobic exercise intervention program in older adults at the earlier
stages of AD, we characterized longitudinal group differences in diffusivity metrics of
thalamo-cortical connections and subthalamic volumes using diffusion imaging data. We
found that after the exercise program, participants who underwent aerobic exercise had
increased subthalamic volume connected to the right cingulate gyrus and decreased
subthalamic volume connected to the left post-central gyrus. These findings suggest that
the thalamo-cortical projections are dynamic and might change due to neuro-protective
factors such as aerobic exercise. A compensation mechanism might be triggered with
aerobic exercise that might allow a higher connectivity in AD-related disrupted regions

(e.g. cingulate gyrus) while undercompensating its connectivity in less AD-involved regions
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(e.g. post-central gyrus) yet further research should be done to investigate this matter

further since (to our knowledge) this is the first study of its kind.
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Preface Chapter 9

The main purpose of this work was to evaluate and apply novel diffusion imaging
methods to characterize the effects of aerobic exercise activity on brain neuroplasticity.
More specifically, [ aimed to evaluate the effects of exercise in the integrity of the brain’s
white matter fiber bundles. This work focused on the older adult population with emphasis
on participants who were diagnosed with early stage Alzheimer’s disease. In this chapter, I
discussed a brief summary of my findings, in-vivo imaging considerations and clinical
considerations for researchers new to the field, future directions and a final conclusion of

my work.
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Chapter 9

Summary of findings, recommendations, future directions, and final remarks
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9.1 Summary of findings

Chapter 3. A comparative white matter study with Parkinson’s disease, Parkinson’s disease

with dementia and Alzheimer’s disease.

The objective of this study was to investigate group differences in white matter
integrity in Parkinson’s disease (PD), Parkinson’s diseases with dementia (PDD),
Alzheimer’s disease (AD), and a healthy control group (CON). This chapter was my first
completed manuscript and allowed me to understand better the neuro-pathology and
deterioration progression of two very common neurodegenerative diseases: Alzheimer’s
disease and Parkinson’s disease. In addition, it allowed me to understand in depth the
application of in-vivo neuroimaging techniques to characterize changes of white matter
micro-structural integrity using diffusion imaging data. This study also expanded my
knowledge on the different advantages and disadvantages of two common diffusion
imaging methods: a region-of-interest (ROI) approach and whole brain tract-based spatial
statistic (TBSS). At the conclusion of this work, I was able to combine these two diffusion
imaging processing methods and I introduced a more white matter tract specific method
(e.g. looking at changes based on white matter tracts rather than localized brain regions,
see Chapter 4). Results showed whole brain deterioration in the PDD group when
compared to the CON, PD, and AD group. Additionally, the AD group also showed global but
in less extend white matter deterioration when compared to the PD group, which had

significantly younger participants than the other groups.
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Chapter 4. Diffusion tensor Imaging and Alzheimer’s disease: a comparison between two

processing methods, tract-based spatial statistics and tract of interest

This chapter focused on a methodological comparison between the most widely
used diffusion imaging method known as tract-based spatial statistics (TBSS) and an a-
priori tract-of-interest approach. Here I presented a tract-of-interest approach that
overcomes some limitations of whole brain imaging analyses such as TBSS. I also wanted to
investigate whether different diffusion imaging methods would change significant results
in the progression of AD. Hence, in this chapter I processed a large dataset from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI, n=208), a worldwide project that
provides extensive clinical and neuroimaging data for the prevention and treatment of AD.
[ characterized and compared the integrity of white matter by means of diffusion among
three groups of older adults: a healthy non-demented group, an Alzheimer’s disease group,
and a mild cognitive impairment (MCI) group, the latter being a transitional stage of non-
demented populations with a higher likelihood to develop to AD (Mufson et al., 2012). The
goal of this chapter was to use a large sample of older adults (with and without dementia)
to compare and characterize the results of the a-priori tract-of-interest approach with TBSS
for future consequent diffusion analyses. In TBSS, we found a widespread FA decline in the
AD cohorts when compared to MCI and to a greater extent when compared to ND (p<0.05
corrected). No significant differences were found when MCI was compared to ND or in any
RD group comparisons. In TOI, we found significant group differences in both FA and RD
measures, specifically in the splenium of the corpus callosum, the cingulum, the inferior

fronto-occipital, and the uncinate fasciculus.
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At the conclusion of this study, I argued for the use of an a-priori tract-of-interest
approach as it showed more descriptive results at specific a-priori whole white matter
conduits (or tracts). In whole brain volume analyses (e.g. TBSS), clusters of significant
voxels might describe deterioration only on parts of these white matter conduits. Hence,
the results and interpretations should be described in relation to brain regions rather than

white matter tracts, as they do not specify whole conduit white matter tract deterioration.

Chapter 5. Cardiorespiratory fitness and white matter integrity in Alzheimer’s disease

Previous evidence indicates that exercise and physical activity have positive effects
in slowing down the evident age-related brain deterioration. In white matter, only few
reports (Marks et al., 2011, Johnson et al., 2012b, Voss et al.,, 2012, Gons et al,, 2013,
Chaddock-Heyman et al., 2014, Tian et al., 2014a) have shown this positive association but
none have reported this in the Alzheimer’s disease population. Thus, Chapter 5 aims to
compare the relationship between cardiorespiratory fitness levels, a direct measure of
physical activity, and white matter tract integrity in a sample of early stage Alzheimer’s
disease participants. I evaluated these associations in specific a-priori white matter tracts
that deteriorate earlier in Alzheimer’s disease. Additionally, I performed whole brain tract-
based spatial statistics to look at relationships across the whole brain. The cross-sectional
sample included older adults at the earlier stages of Alzheimer’s disease (n=37). |
evaluated partial correlations controlling for age and gender in fractional anisotropy, our
primary diffusivity metric. If significant results were found, subsequent analyses were
performed in other diffusivity metrics (radial diffusivity, mean diffusivity, and axial

diffusivity). A positive correlation with preserved diffusivity and higher cardiorespiratory
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fitness was found in a tract that connects temporal, occipital, and frontal cortices (e.g.
inferior fronto-occipital fasciculus). Hence, our results suggest that increased CR fitness

might positively affect white matter integrity even after the onset of Alzheimer’s disease.

Chapter 6. A longitudinal assessment of brain neuroplasticity and exercise intensity in

healthy older adults: a 26-week exercise intervention study

To date, it is still uncertain the amount of exercise activity (or exercise dose
intensity) needed to affect positively the neuroplasticity of the brain. Thus, to continue my
investigation on the effects of exercise and brain health, in this chapter I aimed to explore
the relationship between different exercise doses and brain structural differences using a-
priori AD-related cortical gray matter regions and white matter tracts. The sample data
consisted of healthy non-demented cohorts who underwent a longitudinal intervention
program at different exercise doses (75 mins/week, 150 mins/week, 225 mins/week) and
a control group. However, due to the small longitudinal sample (n=10) I was unable to
investigate the differences between exercise doses. Instead, I performed partial correlation
analyses to test whether total exercise duration of the intervention program was related to
volumetric percent changes of gray matter or diffusivity changes of white matter integrity.
Additionally, I evaluated the association of volumetric and diffusivity percent changes with
changes in cardiorespiratory fitness. I found that none of the a-priori volumetric changes in
cortical volumes were associated with changes in VOzpeak. However, I found an association
of preserved white matter integrity in the genu of the corpus callosum with longer exercise
duration, supporting the idea that higher exercise activity might lead to preserved white

matter tract integrity. Conversely I found a decrease in integrity of the cingulum with
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longer exercise time duration, which may be explained by the AD-related progression of
the disease. However, based on our sample size our results might be speculative rather
than conclusive thus we encourage future researchers to explorer further the amount of

exercise dose intensity that might positively affect brain health.

Chapter 7.The effects of aerobic exercise on brain’s white matter integrity in the Alzheimer’s

disease population: a 26-week intervention program

Due to the lack of interventional longitudinal studies in the Alzheimer’s disease
population on the effects of exercise in brain health (especially in white matter), I
investigated the effects of a 26-week exercise intervention program on brain’s white
matter integrity. The sample data included early Alzheimer’s disease participants (n=29)
who underwent clinical, exercise, and neuroimaging evaluations at baseline and follow-up.
[ evaluated changes in diffusivity measures of a-priori white matter tracts and performed
statistical longitudinal group difference analyses between the aerobic exercise group and
the non-aerobic control group. Additionally for each group, I performed correlation
analyses of percent diffusivity measures (fractional anisotropy and radial diffusivity) with
percent changes in maximal oxygen consumption rates (VO:peak), total intervention
duration, and cognitive scores. No significant longitudinal group differences were found in
white matter tract integrity or in changes of VOzpeak. However, the exercise group showed
an increase in cognitive executive function when compared to the non-aerobic control
group. Additionally only in the aerobic exercise group, longer exercise duration and mean
cognitive scores were significantly associated with preserved white matter tract integrity

after controlling for age and CDRsob. The results suggest that increased in cognition is
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associated with preservation of white matter tract integrity yet the effects of physical
fitness and exercise duration are inconclusive. I believe that future research with longer
exercise intervention programs and a higher number of participants will allow us to
explore further the neuro-protective mechanisms of aerobic exercise in this AD population

who are at higher risk for accelerated white matter deterioration.

Chapter 8. Aerobic exercise and thalamo-cortical connectivity in the Alzheimer’s disease

population: a 26-week exercise intervention study

Evidence of exercise affecting cortical gray matter structures and white matter
connectivity was covered in the previous chapters (chapter 5-7) of this work. In relation to
the neuroprotective effect of aerobic exercise, this final chapter characterized the effects of
aerobic exercise in structural thalamo-cortical connections and subthalamic volumes. The
thalamus is a subcortical structure that acts as a relay station to filter all incoming
information before directing it to cerebral cortex (Jones et al., 1985, Banich and Compton,
2010, FitzGerald et al, 2011). Being a highly interconnected subcortical structure to
cortical regions that deteriorate in AD, I believe it is necessary to investigate whether the
neuro-protective effects of aerobic exercise will affect this structure and its connections.
Hence, I investigated whether a 26-week exercise intervention program can dynamically
modify white matter thalamo-cortical connections and subthalamic volumes that precede
cortical-to-cortical connectivity. The importance of this finding is to elucidate our
understanding of the AD progression in the brain. [ hypothesized that if higher functional
networks (cortico-to-cortico) are disrupted in AD and that exercise might provide a neuro-

protective effect, then lower functional incoming networks (thalamo-cortical) may also be
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positively affected by strengthening those thalamo-cortical connections that are prone to
disruption. I characterized the thalamo-cortical connections between an initial seed mask
(e.g. the thalamus) and final target masks (e.g. seven cortical connections) using measures
of diffusivity (e.g. fractional anisotropy and radial diffusivity). Additionally, I characterized
and classified the different subthalamic nuclei based on the higher likelihood of connection
to one of out target regions using a classification target algorithm. All these measures were
evaluated before and after the intervention program in early Alzheimer’s disease
participants who underwent either aerobic (n=15) or non-aerobic (n=14) exercise training.
I compared longitudinal group differences (aerobic exercise vs. non-aerobic controls) in
diffusivity metrics for the thalamo-cortical connections and volumetric changes in the
subthalamic nuclei. No group differences (aerobic vs. non-aerobic) were found in the
thalamo-cortical connections. However in the aerobic exercise group, I found an increase in
volume to the subthalamic region that connects to the right cingulate gyrus and a decrease
in volume to those voxels that connect to post-central gyrus when compared to the non-
aerobic control. These results suggests that aerobic exercise might dynamically change the
thalamo-cortical connectivity to strengthen those connections that might have been
deteriorated earlier in Alzheimer’s disease. To our knowledge, this is the first probabilistic
tractography analysis evaluating the effects of aerobic exercise in these thalamo-cortical
connections. Thus, we encourage other researcher to investigate further so more valid

conclusions can be drawn.
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9.2 IN-VIVO IMAGING CONSIDERATIONS

Since the early 1980s neuroscience-related publications have increased
exponentially (Jones et al.,, 2013b). The reason for this growth is related to the usage of
advanced in-vivo magnetic resonance imaging (MRI, structural and functional imaging) to
understand the behavior, functionality, and plasticity of the brain. Hence, there is a need to
understand adequately the information these in-vivo images describe in relation to the
neurobiology of the brain. In this section I will briefly describe some general considerations
[ believe every neuroscientist should consider before working with neuroimaging data.

First when acquiring in-vivo neuroimaging resonance data, researchers should be
aware of the current limitations regarding the magnetic resonance imaging resolution
(usually ~1-2 mm3) and understand that a one-to-one relationship with cellular
characteristics (usually in the pm) is complex as they offer a broader macroscopic picture
of the neurobiology of the brain. For example in the case of white matter, diffusion imaging
does not describe the characteristics of single myelinated axons but rather a macroscopic
larger picture of the diffusion of water molecules constrained or unconstrained by
thousands of axons traveling together in similar directions (Walhovd et al., 2014). If the
density or myelination of these axons and supportive glial cells significantly changes due to
some independent factor (e.g. age, gender, or aerobic exercise), then overall changes in
diffusion are reflected and can be assessed by diffusion metrics (such as fractional
anisotropy). However, the exact relationship between diffusion metrics and the underlying
neurobiology is complex and difficult to interpret (Amlien and Fjell, 2014, Concha, 2014).

Another important consideration for all newcomers acquiring diffusion weighted

images is the extent that motion artifacts during the scanning sequence could aggravate the
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process of calculating diffusivity metrics. Thus, it is crucial to adapt a sequence based on
your sample population (e.g. kids tends to move more than adults) while maintaining
adequate acquisition duration and optimal parameters that will minimize the signal-to-
noise ratio. This is very important when additional MRI sequences (e.g. fMRI, sMR],
spectroscopy, etc...) that lengthen the acquisition time are simultaneously collected in the
same MRI session. In the case of diffusion imaging, the higher the number of gradient
directions, the longer the sequence and the better estimation metrics you can get (Chapter
2), yet motion artifacts can greatly impact these calculations. However as technology gets
better, more optimal acquisition parameters are currently being developed with shorter
acquisition durations and improved metric estimations (e.g. DSI, HARDI, g-ball
reconstruction) (Tuch, 2004, Poupon et al., 2008, Lee et al., 2014, Wilkins et al., 2014).
Once the diffusion weighted images are acquired, the researcher should also consider the
different limitations that arise when processing diffusion imaging data (Chapter 2). It is
always imperative to inspect and quality check every single diffusion weighted image
because single artifacts can cause detrimental effects when processing diffusion weighted
images.

In relation to diffusion imaging data, there are two common approaches for
exploring diffusion characteristics, you can either do group-wise statistical analyses
(Chapter 5-7) or tractography analyses (chapter 8) (O'Donnell and Westin, 2011). During
group-wise statistical analyses, usually tensor-based diffusivity metrics (e.g. fractional
anisotropy or radial diffusivity)(O'Donnell and Westin, 2011) are calculated and fed into
common group-wise statistical protocols (e.g. tract-based spatial statistics or DARTEL)

(Smith et al., 2006, Ashburner, 2007). Considerations during these processing pipelines are

203



related to spatially transforming every image into a common space so a voxel-by-voxel
statistical analysis is investigated. These implications are similar to what will happen in
structural MRI images yet it might exacerbate the artifacts as diffusion imaging deals with
diffusivity metrics previously calculated from a rotationally invariant tensor rather than
volumetric measures. Thus, one of most common limitations for diffusion imaging is partial
volume effects (e.g. investigating a phantom white matter tissue that belongs to gray
matter or cerebrospinal fluid) as white matter tends to be less reliable in spatial location
than gray matter. The reason for this problem is that white matter is in close proximity to
ventricles that tend to enlarge as brain tissue atrophies especially in our sample of older
adults with or without dementia (Braak and Braak, 1991b). This issue will affect pre-
registration and post-registration misalignments as previously discussed (Edden and Jones,
2011, Zalesky, 2011). Additionally, to transform every subject’s diffusion imagin into a
common space, a “most representative” template should be chosen. Again, artifacts when
transforming every diffusion image to a less group-specific but common template might
add undesirable noise into the analysis. To overcome this limitation, different study specific
templates are considered and other methodological reports are currently investigating
strategies to improve inter-subject common template registrations (Keihaninejad et al,,
2012, Schwarz et al., 2014). This problem exacerbates even further when longitudinal data
is under investigation. To overcome this problem, a previous publication for example
suggested a mid-point transformation in the intra subject images (Keihaninejad et al,,
2013). Thus, throughout my work, I cautiously processed and used previous considerations

when doing group-wise statistical analysis.
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The second approach for using diffusion-imaging data is diffusion tractography,
which can itself be divided into streamline tractography or probabilistic tractography.
Streamline tractography uses the principal direction of diffusion and other diffusivity
parameters (e.g. curvature or angle of diffusion, step length, step size) to generate a single
tract conduit via voxel-by-voxel traveling from a seed mask to a specific target mask.
Similarly, probabilistic tractography uses a seed and target mask but instead of generating
a single connection, it creates a probabilistic map of projection based on the probability of
diffusion on every anisotropic voxel. The main advantage of probabilistic tractography is its
ability to create probabilistic conduits while streamline tractography only generates a
single conduit, and will terminate if it reaches isotropic voxels that are most common in
gray matter or cerebrospinal fluid. For either tractography method, the higher number of
gradient directions (higher number of diffusion weighted images), the better estimation of
diffusion you can achieve. However, the most known problem with diffusion data is when
the conduit reaches a point of crossing fibers. At this point for example, streamline
tractography might stop as crossing fiber voxel diffusion values tend to be isotropic anad
may not reflect a specific white matter bundle direction. Thus, future investigators need to
be aware of this problem and try to avoid these regions either by masking out potential
crossing fiber regions or by using alternative sample strategies and methodologies to
overcome these problems (Jensen et al., 2014, Lee et al.,, 2014, Wilkins et al., 2014). Finally,
caution should be taken when interpreting the diffusion imaging results in either
methodology. The researchers should to be aware of what the actual results are describing
in relation to the brain, white matter integrity, and connectivity. Diffusivity measures such

as fractional anisotropy or radial diffusivity for example, only offer information regarding
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the diffusion direction dependency in a voxel either by looking at the degree of anisotropy
(fractional anisotropy) or at the transverse diffusion (radial diffusivity). Thus, throughout
this work I cautiously described our results based on the diffusivity metrics and not into a
one-to-one relationship to neuronal characteristics (e.g. axonal bundle connectivity,
increase density of myelination or supportive glial cells). However, it is important to
recognize that these neuronal characteristics may be driven these diffusivity changes
(Walhovd et al, 2014). Similarly, tractography analyses might cofound these spatial
resolution limitations yet [ believe that as technology advances (e.g. Moore’s law (Schaller,
1997)), a future time will come where very high in-vivo imaging resolution will allow us to

make comparable and more specific cellular characteristics.

9.3 OLDER ADULT EXERCISE-RELATED CONSIDERATIONS

During this work, the main objective was to characterize in-vivo the effects of
aerobic exercise activities in older adult populations with and without memory problems.
Here, I will describe some important considerations that should be taken into account
when working with this population. First, it is worth noting that these clinical sedentary
participants have beginning memory problems so special care should be taken when
collecting neuroimaging data or evaluating the participants during the exercise tests.
Therefore before collecting imaging data, at the day of the scan we met again with the
participant and described carefully the imaging scanning procedure. Additionally, we
evaluated their performance in cognitive tasks (if any) to be performed during specific
scanning sequences (e.g. functional task-based imaging sequences). If the participants felt

uncomfortable with these tasks, we decided to exclude these sequences from the data
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collection. In relations to exercise evaluations, we adapted specific cardiorespiratory
fitness tests for older populations, as their physiological demands might deviate from
normal standardized fitness tests for younger populations (Hollenberg et al., 1998, Burns
et al,, 2008). Additionally, during the intervention program we carefully provided, a variety
of YMCA facilities, so the participants can perform their weekly exercise activity in a
conformable environment with reduced commuting time and increased accessibility. We
believed this improved the adherence interventions rate and a more successful conclusion
of our study.

Second, when working with older adult populations it is worth considering the
implications of concurrent age-related deterioration or higher risk for other related
diseases. Age-related deterioration in white matter occurs in every older adult (Bartzokis,
2011) thus in all our analyses we carefully control for this cofounding variable.
Additionally, controlling for another cofounding variable that relates to the progression of
the disease could also be an ideal strategy. To do so, we controlled for neurocognitive
scores (e.g. CDR sum of boxes, Chapter 7-8) yet it is worth noting that its use might not be
practical if a wide range of progression does not exist between our participants. Older adult
populations are also at higher risk for other related diseases that may or may not impact
white matter. Therefore, clinicians may perform a careful screening before enrolling
participants to identify other diseases that will affect neurodegeneration independent of
AD pathology. Strokes, tumors, cardiovascular disease, psychiatric disorders, myelin
disorders, and other non AD-related dementias (e.g. Lewy bodies or vascular dementia) are

some examples of disorders that might affect brain deterioration (Fields, 2008).

207



Finally, it is also worth considering the experimental statistical setup. In brain
imaging, statistical tests could be performed using a-priori hypotheses (e.g. region-of-
interest or tract-of-interest) or doing whole brain exploratory analyses. Throughout this
work, I proposed using a-priori hypotheses by selecting specific white matter tracts that
were related to exercise (Chapter 5) or AD-related deterioration (Chapter 6-8). I believe
that this approach is more specific and allows us to provide an elegant scientific
interpretation of our results based on better-planned experiments. However, we also
included whole brain exploratory analyses (e.g. TBSS) to compare our results with current
literature and confirm our a-priori evaluations. These exploratory analyses are also worth
considering as they may identify regions (or tracts) that were previously not hypothesized

yet caution should be taken due to an increase chance for detecting false positives.

9.4 FUTURE DIRECTIONS

After the conclusion of this work, I believe I have a better understanding of age-
related and Alzheimer’s disease brain deterioratin and how I can apply in-vivo
neuroimaging techniques (such as diffusion imaging) to characterize structural changes in
the brain. Additionally, I have gained much experience on how to combine my technical and
scientific views to be able to develop hypotheses in different fields that include human
physiology, neurobiology of disease, exercise science, and neuroscience.

Future work as part of my expertise might include the application of additional in-
vivo neuroimaging techniques (e.g. structural and functional MRI, FDG PET, amyloid-PET,
etc) to explore further the neuroplasticity of the brain and the neuro-protective effects of

aerobic exercise. A very interesting approach would be to combine structural and
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functional imaging data to performed more specific tractography analyses. For example,
using structural volumetric data (T1 MPRAGE images), we could identify specific
subcortical structures that are vulnerable to AD (e.g. hippocampus). Then using specific
cognitive tasks during functional imaging sequences, we could identify brain regions with
hyper- or hypo- activity similar to our region of interest (e.g. hippocampus), which may
denote a similar pattern of connectivity. Hence, we could use probabilistic tractography to
identify the patterns of connectivity and the integrity of these structural connections. This
example gets more interesting if we collect longitudinal data since we could explore further
the dynamic connectivity adaptation of these structural networks when an environmental
factor is under investigation (e.g. aerobic exercise). Similarly, we could add PET imaging
data to further classify our participants either by being amyloid negative or positive (in the
case of amyloid-related ligands) or use poorly metabolic regions (in the case of metabolic
ligands) as demarcations of poor brain connectivity. These future directions get even more
interesting when machine learning classification target algorithms (e.g. independent
component analysis, support vector machines) are added to the analyses.

Alternatively, I can also apply these methods to other sample populations where
brain alterations due to pathology or developmental processes can be detected. For
example, I believe that AD-related degeneration is a consequence of a poorly connected
brain, a topic that is recently emerging (Bartzokis, 2011, Filley, 2012, Sachdev et al., 2013,
Amlien and Fjell, 2014, Zhang et al,, 2014). That being said, I believe that white matter
deterioration might precede gray matter disruption yet not enough currently evidence
points towards this inclination. One of the possible reasons might be due pioneering

volumetric imaging results that provided the ground basis of AD-related results for in-vivo
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imaging when more novel techniques (e.g. diffusion imaging) were not yet evaluated.
Having said this, my future direction would be to investigate further my hypothesis in the
neurodevelopmental process of the brain. As previously stated (Seung, 2012), we come to
the world with our genes (similar to our dealt playing cards in a poker game). Then it’s up
to the environment to succeed on it by creating completely different brain connections.
Hence, as the brain adapts to the new environment some brain connections strengthen or
other weakens based on the adaption of every individual in their earlier years where many
more white matter connections are present than in a fully developed adult brain. I believe
that a similar but reversive process happens in the brains of older adults. Thus, my future
direction would be to identify why this happens using advanced in-vivo neuro-imaging
tools and a greater age range of individuals from childhood all the way to older adults. My
goal for my future is to understand the neurobiological mechanisms of the brain, how it
allows us to learn and remember processes, and how disease or lifespan development

could change the behavior of this very complex organ.

9.5 FINAL REMARKS

The work presented in this dissertation provided an in-vivo approach to investigate
the effects of aerobic exercise in white matter tract integrity after a supervised exercise
intervention program. After the conclusion of this work, I was able to understand different
concepts such as exercise physiology, neurodegenerative pathologies, and brain imaging
tools that allowed me to address and characterize this topic. More specifically, I
investigated and gained a broader understanding on the neuroprotective effects of aerobic

exercise in the neuroplasticity of the brain, especially in white matter integrity. The results
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reported here provided some insights on how increased aerobic exercise activity might
lead to neuro-protective mechanisms that could be identify with white matter diffusivity
metrics in early AD. However, due to our current MRI limitations I was not able to identify a
one-to-one relationship with cellular or molecular mechanisms that might explain these
neuro-protective mechanisms. Instead, a more global macro-scale picture of these changes
was investigated and supported by animal and post-mortem studies (see review (Voss et al,,
2013Db)).

To summarize our key findings using in-vivo diffusion imaging techniques, I believe
that aerobic exercise may provide a neuro-protective effect for the evident white matter
deterioration occurring either by age-related changes or specific to the AD pathology.
These neuro-protective mechanisms are also localized in specific white matter fibers, as
shown by our a-priori tract-of-interest findings. In non-demented individuals the tracts
that present a neuro-protective effects are those who are more susceptible to age-related
deterioration (e.g. cingulum, uncinate fasciculus, or corpus callosum). On the other hand,
the AD participants are also benefited from this neuro-protective effect yet the locations of
these tracts differ. These tracts have not previously been identified in healthy exercise
related studies (e.g. inferior fronto-occipital fasciculus) and due to the lack of AD-exercise
related studies in white matter; we could not compare our results with others. However,
one interpretation is that age-related tracts (e.g. cingulum, uncinate fasciculus, or corpus
callosum) that are also disrupted earlier in AD (Sexton et al.,, 2011, Clerx et al., 2012) might
not benefit completely with aerobic exercise since these tracts are already deteriorated
even though subtle changes in cognition may or may not appear. However, I believe that

aerobic exercise might trigger a neuro-protective response to other tracts where disease-
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related deterioration has not fully affected them (e.g. inferior fronto-occipital fasciculus).
However to validate this hypothesis, further research with longitudinal aerobic exercise

trails should be performed in a wider range of AD and healthy non-demented participants.

As a final neurobiological mechanism hypothesis related to age-related white matter
deterioration, I believe that this event occurs due to an abnormal and focal supply of
metabolic energy leading to disruption in brain connectivity and eventually loss of brain
mass. In relation to white matter and myelin (which makes up to ~50% of white matter
(Miller et al., 2012)), myelination occurs in a protracted and localized manner, denoting
that the development and production of myelin lasts for a long time and in different regions
of the brain (Bartzokis, 2004, Haroutunian et al., 2014). This late-myelination production
and maintenance peaks at the fifth decade and from there it declines as aging increases
(Kemper, 1994, Bartzokis et al., 2001). However to counteract this myelin dysfunction,
energy demands for optimal neurotransmission increases up to 500 fold (Hildebrand et al,,
1993) yet there isn’t an abundant increase in energy supply. Another example is the energy
demands for oligodendrocytes, which are two to three-fold higher than other brain cells
(Connor and Menzies, 1996). These cells produce and maintain myelin in the brain and are
also the only cells in the brain responsible to synthetize cholesterol de novo (Bartzokis,
2004). Cholesterol in myelin sheaths promotes a closer membrane-to-membrane contact
leading to tightly packed myelin and efficient brain connectivity (by providing an adequate
electro-chemical insulation and faster neuro-transmission). In the aged brain the content of
cholesterol is also highest in myelin (Saher et al., 2005). However as age increases, this

tightly packed myelin sheaths and oligodendrocytes may be disturbed by byproducts age-
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related levels of toxicity (e.g. increased iron levels (Power et al., 2002), excitotoxicity
(Alonso, 2000), hypoperfusion (Kurumatani et al., 1998), or nitric oxide (Merrill et al,,
1993)) or increased genetic risk factors that may disrupt cholesterol-related metabolism
(e.g. Apoliprotein E4 allele variant) (Sadigh-Eteghad et al., 2012). Thus, I believe that age-
related energy disruption may initiate a cascade of inefficient brain connectivity and
neurodegeneration. However counteracting this deleterious effect, the neuroprotective
mechanisms of aerobic exercise might slow down this cascade of inefficient brain
connectivity. The neuroprotective mechanisms of aerobic exercise include the increased
levels of neurotrophins (e.g. BDNF, IGF-1, VEGF, TrkB receptor), increase long-term
potentiation, enhance neurogenesis, and increase levels of proteins associated with
synaptic plasticity (see review (Voss et al,, 2013b)). In this work, I tried to capture these
findings using in-vivo diffusion imaging technology yet I believe that future studies
combining multi-imaging analyses (sMRI, fMRI and DTI) will elucidate further the
understanding of brain neuro-plasticity, its biological mechanisms, and its effects in aerobic
exercise in the aging and Alzheimer’s disease population. As a previously stated, “if the
brain was so simple we could understand it, we would be so simple that we couldn’t” yeta |
am a strong believer that a time will come when we will fully understand the brain and

based on our exponential growth in this field, this future is not far.
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APPENDIX A

Matlab scripts generated to analytically calculate the diffusion tensor

214



$A.1 — Functions used to calculate the simple 6 direction
diffusion tensor

$Function to make the F Matrix:
function [Y] = makeY(S)
$Include intensity at b=0
sizeS=size(S);
Ya=S(2:sizeS(1l));
Y=1log(312./Ya)/800;

$Function to make the H Matrix:
function [H] = makeH(GsWithBOs)
%$Include vector 0 0 0!!!
$Getting rid og b=0 parameter since its not important
sizeGsWithBOs=size(GsWithB0s);
%$Check how many O0s are in the function and remove them from
gradients
count=0; %index that will account for gradient with no zero
for i=1:sizeGsWithBO0s(1)

if ((GsWithBOs(i,1) ==0 && GsWithBOs(i,1l) ==0) &&
GsWithBOs(i,3) == 0)

count=count+1;

end
end
% Gs with no zero gradients
Gs=GsWithBOs(count+l:sizeGsWithB0s(1l),:);
sizeGs=size(Gs);
$Initializing H for the variables...
H=ones(sizeGs(1l),6);
for i=1l:sizeGs (1)

$For exmaple H1=[Gx"2 Gy"2 Gz"2 2GxGy 2GxGz 2GyGz]
¢same for all the other directions...
H(i,1)=Gs(i,1)"2;
H(i,2)=Gs(i,2)"2;
H(i,3)=Gs(i,3)"2;
H(i,4)=2*Gs(1i,1)*Gs(i,2);
H(i,5)=2*Gs(1i,1)*Gs(i,3);
H(i,6)=2*Gs(1,2)*Gs(i,3);
end

$A.2 — Matlab script that calls the dependent functions in A.1
to calculate the diffusion tensor from the 6 diffusion weighted
images

¢Importing gradient directions
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Gs=importdata('../bvecs');

Gs6=importdata( 'bvecs6');

$Importing intensities at the followed directions
s=importdata('../VoxelIntensities x76 y64 z2l.txt');
s6=importdata('Intensities.txt');

$Making Y matrix Nx1l, where N is the number of intensities at
each gradient

Y6=makeY(s6);

H6=makeH(Gs6) ;

H=makeH(Gs) ;

%Check size of H
sizeH=size(H);
sizeH6=size(H6);

oo

Here is where we will determine the result of our Dtensor
using either

o°

$Cramer's rule for a perfect solution or the least square
methods if N>6

o°

oo

Using Cramer's rule to determine the Deff=D if the matrix is
6x6, meaning the exact number of directions needed.

o°

%$H Approach!!

Dh6=inv (H6)*Y6;

$B Approach!!

B6=makeB(Gs6);

X6=makeX(s6);

SIGMA6=makeSIGMA(s6);
Db6All=inv(B6'*SIGMA6*B6)* (B6' *SIGMA6 ) *X6;
Db6=Db6All(l:size(Db6All)-1);

$Here we wil be using the least square methods to approximate
out D tensor components and thus using the B approach

o°

$B Approach!!

B=makeB(Gs) ;

X=makeX(s);

SIGMA=makeSIGMA(s);
DbAll=inv(B'*SIGMA*B)* (B'*SIGMA)*X;
Db=DbAll(l:size(DbAll)-1);

$Computing the Eigevalues
Egs=makeEgs (Db);
Egs6=makeEgs (Db6) ;

$Computing the Eigenvectors. Ez are arbitrary an arbitrary

216



% number for z directions so we can compare our results to
% program we used.

Ez =[ 0.697466 -0.521337 0.491680];

Ez6 =[ -.9333942 0.162498 0.3183511];

Evs=makeEvs (Egs,Db,Ez);

Evs6=makeEvs (Egs6,Db6,Ez6);

$Computing the markers used in DTI
FAMD=makeMarkers (Egs);
FAMD6=makeMarkers (Egsb6);

A.2 — Functions used to calculate the simple 6 direction
diffusion tensor

Function to make the F Matrix:
function [Y] = makeY(S)
$Include intensity at b=0
sizeS=size(S);
Ya=S(2:sizeS(1l));
Y=1log(312./Ya)/800;

Function to make the H Matrix:

function [H] = makeH(GsWithBOs)

%$Include vector 0 0 0!!!

% Getting rid og b=0 parameter since its not important

sizeGsWithBOs=size(GsWithB0s);

%Check how many 0Os are in the function and remove them from
gradients

count=0; %index that will account for gradient with no zero
for i=1:sizeGsWithBO0s(1)

if ((GsWithBOs(i,1l) ==0 && GsWithBOs(i,1l) ==0) &&
GsWithBOs(i,3) == 0)

count=count+1;

end
end
% Gs with no zero gradients
Gs=GsWithBOs(count+l:sizeGsWithB0s(1l),:);
sizeGs=size(Gs);
$Initializing H for the variables...
H=ones(sizeGs(1l),6);
for i=1l:sizeGs (1)

$For exmaple H1=[Gx"2 Gy"2 Gz"2 2GxGy 2GxGz 2GyGz]
¢same for all the other directions...
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H(i,1)=Gs(i,1)"2;
H(i,2)=Gs(i,2)"2;
H(i,3)=Gs(i,3)"2;
H(i,4)=2*Gs(1i,1)*Gs(i,2);
H(i,5)=2*Gs(1i,1)*Gs(i,3);
H(i,6)=2*Gs(1,2)*Gs(i,3);
end

A.3 Functions used to calculate the simple 6+ direction
diffusion tensor

$Function to make the X Matrix:

$Rodrigo Perea

$EECS 700 Project: Implementation of X

%0Objective: Implements X with the given input:

$Intensities= intenstity at each specific level.
Output:

X=1n(Intensities)

This equations come from part III of Kingsley 2005
"Introduction to DTI Mathematics Part II: Tensors,
Rotations, and Eigenvectors.

o® o0 o° o°

o°

$making Eigenvectors:
function [X] = makeX(Intensities)
X=log(Intensities);

Function to make the B Matrix:

$Rodrigo Perea

$Implementation of the B matrix.

%0Objective: This function will accept gradient directions w

b=0 intensities making a matrix GsWithBOs (Nx3)

and the corresponding intensities eps (Nx1l) and D %
tensor in a and will output a B matrix.

oo

oo

$This equations come from part III of Kingsley 2005
¢"Introduction to DTI Mathematics Part II: Tensors, Rotations, %
and Eigenvectors

$making Eigenvectors:
function [B] = makeB(GsWithBOs)
sizeGsWithBOs=size (GsWithB0s);

% %Check how many 0s are in the function and remove them from
gradients
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—————————————————— COMMENT BEGIN
count=0 %index that will account for gradient with no zero
for i=1:sizeGsWithBOs(1)
if ((GsWithBOs(i,1) ==0 && GsWithBOs(i,1) ==0) &&
sWithBOs(i,3) == 0)
count=count+1l;
end
end
—————————————————— COMMENT END

o0 00 o o° () o° o° o° o°

sizeGsWithBOs=size (GsWithBO0s);
Gs=GsWithBO0s;
% Gs=GsWithB0Os(2:sizeGsWithBO0s(1l),:);

sizeGs=size(Gs);
$Initializing H for the variables...
B=ones(sizeGs(1l),6);

for i=1l:sizeGs (1)

$For exmaple H1=[Gx"2 Gy"2 Gz"2 2GxGy 2GxGz 2GyGz]
¢same for all the other directions...
B(i,1)=-800*Gs(i,1)"2;
B(i,2)=-800*Gs(i,2)"2;
B(i,3)=-800*Gs(i,3)"2;
B(i,4)=-800*2*Gs(1i,1)*Gs(1i,2);
B(i,5)=-800*2*Gs(i,1)*Gs(1i,3);
B(i,6)=-800*2*Gs(1i,2)*Gs(1i,3);
B(i,7)=1;
end

Function to make the X' Matrix:

$Rodrigo Perea

$0Objective: Implements capital sigma with the given input:
% Intensities= intensity at each specific level.
This equations come from part III of Kingsley 2005
Introduction to DTI

¢Mathematics Part II: Tensors, Rotations, and Eigenvectors.

n

oo

oo

$making Eigenvectors:

function [SIGMA] = makeSIGMA(Intensities,B)

% Creating a covariance matrix and multiply it by a identity
function of

% same length

sizeI=size(Intensities);

$Making the covariance Squared

Cov=diag(cov(Intensities));%.*eye(sizeI(1l),size(2));
CovSquare=Cov."2;
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$Making the intensities Square
IntSquare=Intensities.”2;

% Making SIGMA
SIG=IntSquare./CovSquare;

% And diagonalizing SIGMA....
SIGMA=diag(SIG);

A.4 Functions for post processing (eigenvalues,
eigenvectors and diffusion markers)

$Function to calculate the eigenvalues

function [eigenvalues] = makeEgs(Donecolumn)

$This equations come from part II of Kingsley 2005

% “Introduction to DTI Mathematics Part I: Tensors, Rotations,
% and Eigenvectors.

$Making a 6x1 matrix into a 3x3 matrix
D=ones(3,3);

D(1,1)=Donecolumn(l);
D(1,2)=Donecolumn(4);
D(1,3)=Donecolumn(5);

D(2,1)=D(1,2);
D(2,2)=Donecolumn (2
D(2,3)=Donecolumn(6
D(3,1)=D(1,3);
D(3,2)=D(2,3);
D(3,3)=Donecolumn(3);

)7
)7

$Preprocessed contants that will be used to calculate evals and
evecs

I1= D(1,1)+D(2,2)+D(3,3);

I2= D(1,1)*D(2,2)+D(2,2)*D(3,3)+D(3,3)*D(1,1)-
(D(1,2)"2+D(1,3)"2+D(2,3)"2);

I3= D(1,1)*D(2,2)*D(3,3)+2*D(1,2)*D(1,3)*D(2,3)-
(D(3,3)*D(1,2)"2+D(2,2)*D(1,3)"2+D(1,1)*D(2,3)"2);
v=(I1/3)"2-12/3;

s=(I1/3)"3-I1*12/6+13/2;

theta=acos(s/v"(3/2))/3;

$Calculating the eigenvalues
lambdal=I1/3+ 2*v"(1/2)*cos(theta);
lambda2=I1/3- 2*v"(1/2)*cos(pi/3+theta);
lambda3=I1/3- 2*v"(1/2)*cos(pi/3-theta);
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eigenvalues(l)=lambdal;
eigenvalues(2)=lambda2;
eigenvalues(3)=lambda3;

$Function to calculate the following eigenvectors

$Rodrigo Perea

%0Objective: This function will accept eigenvalues (3x1) and D
% tensor in a(6xl) column and output a 3x1 Eigenvector array.

$This equations come from part II of Kingsley 2005
Introduction to DTI Mathematics Part I: Tensors, Rotations,
and Eigenvectors making Eigenvectors:

o°

o°

o°

Egs = Eigenvalues previous calculated.
D=diffusion tensor calculated with as 6xl1 column
Ez= arbitraty values for the eigenvalue Ez

oo

oo

function [Evs] = makeEvs(Egs,Donecolumn,Ez)
%Variables for Egs:

%The tensor model converted in a 3x3 matrix:

D(1,1)=Donecolumn(l);

D(1,2)=Donecolumn(4);

D(1,3)=Donecolumn(5);

D(2,1)=D(1,2);
D(2,2)=Donecolumn(2);

D(2,3)=Donecolumn(6);

D(3,1)=D(1,3);

D(3,2)=D(2,3);

D(3,3)=Donecolumn(3);

for i=1:3

A(i)=D(1,1)-Egs(i);

B(i)=D(2,2)-Egs(i);

C(i)=D(3,3)-Egs(i);

end

for i=1:3
Evs(i,1)=Ez(i)*(D(1,2)*D(2,3)-B(i)*D(1,3))/(A(i)*B(i)-D(1,2)"2);
Evs(i,2)=Ez(i)*(D(1,2)*D(1,3)-A(i)*D(2,3))/(A(1i)*B(i)-D(1,2)"2);
Evs(i,3)=Ez(1i);

end

Function to calculate the principal component markers for
diffusion in the brain. This helped on verifying our correct
calculation and compare them with FSL, the imaging software the
automates all the entire process.

$Rodrigo Perea
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$EECS 700 Project: Implementation B matrix.
%0Objective: This function will the processed eigenvalues and
will output

o

% two main important markers, FA, MD.

$This equations come from part III of Kingsley 2005
"Introduction to DTI

¢Mathematics Part II: Tensors, Rotations, and Eigenvectors.
$making Eigenvectors:

function [Markers] = makeMarkers(Egs)

$Computing the MD

MD=mean (Egs) ;

$Computing the FA

el=Egs(1l);

e2=Egs(2);

e3=Egs(3);
FA=sqgrt((3*(el-MD)"2+(e2-MD)"2+(e3-MD)"2)/(2*(el”"2+e2"2+e3"2)));
Markers(1l)=FA;

Markers(2)=MD;
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