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Abstract 

 
 

This work describes the development of methods to access synthetically 

useful chiral diols in enantiomerically pure form. First chapter describes the 

development of a stereodivergent approach for enantioenriched synthesis of 2-

cyclopentene-1,3-diol that was later converted to 4-hydroxy-2-cyclopentenones (4-

HCPs), which are highly privileged synthetic building blocks with numerous 

applications in natural product syntheses and pharmaceuticals. The present approach 

enables the gram scale synthesis of 4-HCPs with chemically diverse protecting 

groups, in a stereodivergent manner. In chapter 2, we describe the development of a 

unified strategy for the stereodivergent synthesis of enantioenriched 1,3-dihydroxy 

substituted six-membered carbo- and heterocyclic rings. The previously known 

approaches for accessing these compounds involve multiple synthetic steps and one 

or more enzymatic steps. We developed a purely synthetic approach to synthesize 

enantioenriched carbo- and heterocyclic six-membered 1,3-diols from a common, 

highly economical commercial available starting material. In Chapter 3, we described 

the development of a small-molecule library of stereochemically diverse compounds 

by integrating enantioenriched carbo- and heterocyclic 1,3-diols, and natural α-amino 

acids. 
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Chapter 1 

 

Synthesis of Enantioenriched 4-Hydroxy-2-Cyclopentenones 

 

1.1 Introduction to 4-hydroxy-2-cyclopentenones (4-HCPs) 

Hydroxylated cyclopentanones and cyclopentenones are common motifs in a variety of 

natural product structures including prostaglandins (e.g. PGE2), antibiotics pentenomycin 

and viridinomycin, the antitumor dienediyne natural product N1999A2, terpenes 

hymenolin and numerous others (Figure 1.1). In addition, the tremendous reactivity 

potential of the 4-HCPs that was earlier recognized in the prostaglandin chemistry, has 

been exploited over last several years in complex natural product syntheses.1,2 

 

 

Figure 1.1. Natural products containing 4-hydroxycyclopentanone or 
cyclopentenone motif 
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1.2. 4-HCPs as important synthetic intermediates for prostaglandin synthesis 

1.2.1. A brief introduction to prostaglandins 

 The prostaglandins (PGs) are a group of physiologically active lipid compounds 

derived enzymatically from fatty acids. Biosynthetically, prostaglandins are derived from 

arachidonic acid and are transformed by prostaglandin synthetase into a number of 

structurally related carbocyclic molecules. They were discovered in the early 1930s by 

von Euler and by the mid-1960s the structures of the first family of prostaglandins were 

reported by Bergstrom et al. Structurally these contain 20 carbon atoms including a 5-

carbon ring and have 4 (1.2a, PGE2) or 5 (1.2b, PGF2α and 1.2c, PGI2) stereogenic centers 

of which 3 or 4 are the contiguous stereocenters in the cyclopentane ring (Figure 1.2). 

PGs have been found in almost every tissue in humans and other animals, and are 

responsible for the control of a number of essential biological processes including sleep, 

pain, fever, inflammation, menstruation, birth, and constriction of blood vessels and 

blood3 clotting.  

 

 

Figure 1.2. Prostaglandin natural products 
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 3 

 Because of their biological importance and structural complexity, the 

prostaglandins had been very important targets for synthesis both in academia and 

pharmaceutical industry.2,4 Various research groups including Woodward5, Corey6, 

Stork7, Noyori8, Danishefsky9 and others contributed significantly by developing 

innovative chemical methodologies for PG synthesis. In 1969, Corey’s group reported an 

elegant route (Figure 1.3) for the synthesis of PGE2 via a bicyclic lactone intermediate 

(1.3a) in which all the stereocenters were installed in the correct relative stereochemistry 

as in the original natural product structure.6 The lactone (1.3a) was obtained via a Diels-

Alder reaction of 2-substituted cyclopentadiene (1.3b) and 1-chloroacrylonitrile (1.3c) 

followed by Bayer-Villiger oxidation and iodolactonization.  

 

 

Figure 1.3. Corey’s approach for the synthesis of PGE2 
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that C-4 substituent of the 4-hydroxy-2-cyclopentenone (1.1.1) could be used to direct the 

stereochemistry at both α- and β-carbons through conjugate addition of organocuprates.10 

It was an important result as it revealed that a single stereogenic center on the 

cyclopentenone ring could be used to install the remaining substituents in the desired 

stereochemistry required for the prostaglandin synthesis.  

 

 

Scheme 1.1. Sih’s two-component approach to PGs 

 

 Sih’s group also reported the synthesis of an enantiomerically pure 2-substituted-

4(R)-hydroxycyclopent-2-en-1-one 1.2.3 through microbial reduction of 2-substituted 

cyclopentanetrione 1.2.1 (Scheme 1.2).10 Reduction of the carbonyl group in 1.2.2 with 

Red-Al followed by exposure to acetic acid provided the enantioenriched 4-hydroxy 

cyclopentenone 1.2.3. 

 

 

Scheme 1.2. Sih’s approach to asymmetric synthesis of prostaglandins  
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alkylation prompted the researchers to develop efficient approaches for the synthesis of 

enantioenriched 4-hydroxycyclopent-2-en-1-one.2,4 A number of methods to synthesize 

enantioenriched 4-hydroxy-cyclopentenones have been reported since then. Following 

section highlights the conceptually unique and/or highly utilized strategies employed for 

the synthesis of enantioenriched 4-HCPs. 

 

1.3. Synthetic approaches for the synthesis of 4-hydroxy-2-cyclopentenones  
 
1.3.1. 4-HCP synthesis by enzymatic hydrolysis or acylation of cyclopentenoids  

 Kurozumi’s group was the first one to report the synthesis of both R and S 

isomers of 4-O-silyl-protected hydroxycyclopentenone.11 They performed the hydrolysis 

of a 1:1 cis/trans mixture of the racemic 2-cyclopentene-1,4-diacetate, 1.3.1, with baker’s 

yeast (Scheme 1.3).11 Depending upon the difference in the rate of enzymatic hydrolysis 

between different isomers of 1.3.1 the reaction resulted in a net accumulation of the 

trans-monoacetate (R,R)-1.3.3 and the kinetically resolved trans-diacetate R,R-l.3.2.  

 

 
 

Scheme 1.3. Baker’s yeast hydrolysis of 3,5-diacetoxy-1-cyclopentene 
 

 
 The trans-monoacetate (R)-1.3.3 was converted into 4(R)-tert-butyldimethyl-

siloxycyclopent-2-en-1-one (R)-1.4.3, by two different paths (Scheme 1.4). In the first 
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Protection of the hydroxyl group at the next step with tert-butyldimethylchlorosilane 

gave the silylether (R)-1.4.3 in 90% ee. The alternative pathway at first involved 

silylation of the alcohol 1.3.3 to give silyl ether 1.4.4. Followed by reduction of the 

acetate group with LAH gave the alcohol (R)-1.4.5 that was oxidized with manganese 

dioxide to obtain the enone (R)-1.4.3. Though the latter route gave the higher overall 

yield of (R)-1.4.3, the enantiopurity of the product was inferior than the purity of the 

product obtained by using the former route.  

 
 

 
 

Scheme 1.4. Kurozumi’s synthesis of enantioenriched 4-HCPs 
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Johnson and coworkers reported Novo SP-435 mediated monoacylation of the meso diol 

1.5.1 with isopropenyl acetate to produce (1R, 4S)-1.3.3 in 48% yield and >99% ee.13  

 
 

 

 

      Scheme 1.5. Enzymatic desymmetrization 
                                                 of meso-cyclopentene-1,4-diacetate 
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Scheme 1.6. Synthesis of meso-2-cyclopentene-1,4-diacetate 
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number of routes have been reported to obtain 4-tert-butyldimethylsilyloxy-2-

cyclopentenone. Paquette et al. reported the synthesis of both S and R isomers of 4-O-

tert-butyldimethylsilyloxy-cyclopentenones (Scheme 1.7).15 TBS protection of (1R,4S)-

1.3.3 provided (1R,4S)-1.4.4 in 77% yield. Hydrolysis of the acetate using sodium 

methoxide led to monosilylated diol (S)-1.4.5, which was subjected to oxidation with 

MnO2 to obtain enone (S)-1.4.3 in 87% over two steps. To synthesize the (R)-isomer, 

(1R,4S)-1.3.3  was oxidized to obtain acylated enone (R)-1.4.1. Treatment of (R)-1.4.1 

with wheat germ lipase for ten days provided the hydroxy-enone (R)-1.4.2 that on O-

protection with TBSCl provided (R)-1.4.3 in 32% overall yield. 

 

 

Scheme 1.7. Paquette’s route for the synthesis of (R)- and (S)- HCPs 1.4.3 

 

 Myers’s group reported an alternative to the slow enzymatic hydrolysis in the 

Paquette’s route (Scheme 1.8).16 They reported a route by introducing pivolyl-protected 

diol intermediate (R,S)-1.8.1, which was subjected to TBS protection followed by 

DIBAL-H mediated removal of the pivolyl protecting group to obtain monosilylated diol 

(R,S)-1.4.5. Finally subjecting alcohol 1.4.5 to PCC oxidation provided enone (R)-1.4.3 

in 67% overall yield.  
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Scheme 1.8. Myers’s route for the synthesis of HCP (R)-1.4.3 
 
 

1.3.2. Synthesis from D-tartaric acid  

 In 1976, Ogura reported the synthesis of both (R)- and (S)-4-hydroxy 

cyclopentenone from D- and L-tartaric acids respectively, in seven steps in 85% ee.17 In 

1995, Rokach and coworkers reported an improved version of this approach for large 

scale synthesis of (S)-4-hydroxy cyclopentenone by utilizing acidic Amberlyst resin at a 

later stage in the synthesis (Scheme 1.9).18  Their route involved an acetonide protection 

of the dimethyl ester of L-tartaric acid, followed by LAH reduction to produce diol 1.9.1, 

which was converted to bis iodo derivative 1.9.2 in two steps. Treatment of the iodo 

intermediate 1.9.2 with thiomethylmethylsulfoxide carbanion furnished 1.9.3 as a mixture 

of diastereomers. Cleavage of ketal and thioketal was accomplished by treatment with 

Amberlyst resin to produce the C2-symmetric diol 1.9.4. Treatment of the diol 1.9.4 with 

camphor sulfonic acid produced 4-hydroxycyclopentenone 1.9.5 in 99% ee.  
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Scheme 1.9. Synthesis of enantioenriched 4-HCPs from L-tartaric acid 
 
 

1.3.3. Non-enzymatic desymmetrization or kinetic resolution 

 Noyori et al. reported a direct enantioselective reduction of a prochiral 1,3-

diketone using a chiral hydride reducing agent, (S)-BINAL-H (L1), derived from C2-

symmetrical (S)-BINOL (Scheme 1.10).8 Enantioselective reduction of 1,3-

cyclopentenedione using L1, followed by acetylation provided 4-acetoxy-2-

cyclopentenone in 65% yield and 94% ee.  

 

 

Scheme 1.10. Noyori’s BINAL-H reduction of 1,3-diketones 
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conditions using the Trost ligand (R,R)-L2.19 Alcohol 1.11.2 was obtained in 87% yield 

and 96% ee, and was converted to (S)-4-tert-butyldimethylsilyloxy-2-cyclopentenone, 

(S)-1.4.3, in 56% yield over three steps. Recently, Reiser’s group reported a palladium 

catalyzed kinetic resolution of racemic 4-O-acyl- (1.4.1) or O-boc (1.11.3) protected 4-

hydroxy cyclopentenone by using the Trost ligand (R,R-L2).20 They explored a number 

of heteroatom-based nucleophiles to obtain the 4-substituted-cyclopentenones (1.11.4) in 

excellent yields and enantiomeric ratios.  

 

 

Scheme 1.11. Pd-catalyzed synthesis of 4-HCPs using Trost ligand (R,R)-L2 
 

Several groups have investigated the desymmetrization of cyclopentanoid meso epoxides 

followed by β-elimination of a leaving group to achieve a short synthesis of 4-hydroxy-2-
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(L3), to afford the trans-disubstituted cyclopantanone 1.12.2.21 Treatment of azide 1.12.2 

with alumina furnished the desired (R)-4-trimethylsilyloxy-2-cyclopentenone 1.12.3 in 

77% overall yield and 94% ee (Scheme 1.12). Another catalytic approach to epoxide 

opening was described by Shibasaki et al., who carried out the (S)-GaLB catalyzed 

enantioselective opening of the cis-epoxide giving cyclopentanoid in 90% yield and 91% 

ee (Scheme 1.12).22 In this process, catalyst plays a dual role, one as a Lewis acid at the 

gallium centre promoting the ring opening by coordinating to epoxide, and secondly as a 

Bronsted base at the lithium binaphthoxide moiety by deprotonating the incoming thiol 

nucleophile. The product thioether 1.12.5 was subjected to oxidation to furnish α-sulfinyl 

ketone, which underwent pyrrolytic β-elimination yielding the desired enantioenriched 

(S)-1.12.6 in 77% yield over three steps. 

 
 

 

Scheme 1.12. Catalytic opening of meso-epoxides 
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1.4. Synthetic Applications of 4-HCPs 
 
1.4.1. Synthetic approaches to prostaglandins from 4-HCPs 

 4-HCPs have been heavily employed in the synthesis of prostaglandins. This 

section provides a highlight of the major approaches that have targeted the synthesis of 

the optically enriched PGs using 4-HCPs as the chiral building block.  

 Noyori’s group accomplished a three-component coupling to install both α and β 

chains in a one-pot sequence (Scheme 1.13).8 The conjugate addition of the vinylcuprate 

1.13.1 to the enone (R)-1.4.3, resulted in the lithium enolate that was trapped as a tin 

enolate 1.13.2 and was subjected to react with the allyl iodide 1.13.3 to provide methyl 

ester of PGE2 1.13.4 in 78% yield. The stereocenter in the β side chain had been 

preinstalled by using Noyori’s BINAL-H reduction.  

 

 

Scheme 1.13. Noyori’s three component synthesis of PGs 

 

Danishefsky’s group reported an elegant approach using a conjugate addition of the silyl 

vinyl ether 1.14.1 to (S)-enone 1.4.3 (Scheme 1.14).9 Unlike the previously reported 
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conjugated addition of cuprates, in the present case mercuric chloride mediated addition 

happened syn to the C-4 stereochemistry of the enone 1.4.3 and an in situ migration of 

silyl group led to a silyl enol ether 1.4.3 that was subjected to Lewis acid mediated aldol 

with an α,β unsaturated aldehyde 1.14.4. The trans geometry of the olefin and the 

stereochemistry of the hydroxyl group in the side chain were established by palladium-

mediated allylic transposition of the acetate at a later stage in the synthesis. This was the 

only PG synthesis that involved substrate control to set all the stereocenters (including 

the one in the side chain) in the natural product.   

 
 

 

Scheme 1.14. Danishefsky’s synthesis of PGs 

 
 Despite the attractiveness of the Noyori’s three component coupling approach for 

the PG synthesis,8 there were several synthetic limitations associated with it. The most 

noticeable were the problems of enolate equilibration and β-elimination of the silyloxide. 

Johnson and coworkers reported a synthesis of α-iodoenones that proved really useful in 

overcoming the problems faced in conjugate addition-alkylation approaches.13 Suzuki 
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Followed by conjugate addition of the vinyl cuprate 1.15.4 provided the desired product 

1.15.5 (Scheme 1.14).23 

 

 

Scheme 1.15. Suzuki’s route to PGs  

 
1.4.2. Application of 4-HCPs in non-PG natural product syntheses 

 The developments in the prostaglandin chemistry proved the synthetic potential of 

this building block in undergoing multicomponent coupling reactions. In addition, 

stereodirecting ability of the stereogenic center present on this carbocycle, combined with 

the high functional group density displayed over the five-carbon cyclic skeleton attracted 

the attention of various research groups to utilize 4-HCP as a building block in the 

synthesis of complex natural products.  
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stereoselective [2+2] photochemical cycloaddition of  (R)-1.16.1 with the cyclobutene 

1.16.2 to obtain cyclopentanone adduct 1.16.3 in high enantiopurity, which was further 

transformed to desilylated cyclopentanone 1.16.4 in four steps. 1.16.4 was subjected to α-

diazoketone formation followed by photoinduced Wolff ring contraction and ester 

hydrolysis to produce carboxylic acid 1.16.5. Further homologation using the Wittig 

chemistry produced (+)-pentacycloanammoxic acid (R)-1.16.6.  

 

 
 

Scheme 1.16. Corey’s synthesis of (+)-pentacycloanammoxic acid 
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1.17.1, which was further transformed to 1.17.2 in two steps. The trisubstituted enone 

1.17.2 was reacted with iodo compound through a challenging cuprate conjugate addition 

in the presence of a Lewis acid (Scheme 1.17). 

 

  

Scheme 1.17. Trauner’s synthesis of guanacastepene framework 

 
 Overman’s group reported the synthesis of a spongian diterpene marine natural 
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with Pb(OAc)4 in methanol, formed tricarbonyl intermediate 1.18.5, which was further 

transformed to spongian diterpene 1.18.6. 

 

 

Scheme 1.18. Overman’s synthesis of spongian diterpenes 
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Scheme 1.19. Total synthesis of arglabin 

 

1.5. Results and discussion 

 As discussed in the previous section, several methods are known for the 

preparation of optically enriched O-protected-4-hydroxycyclopentenone. One of the most 
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 Also, it is worth noting that majority of the available methods to procure 4-O-

protected hydroxy-cyclopentenones install the acetate group first that is later transformed 

to O-silyl group by additional synthetic steps. Only method which leads to a silyl 

protected hydroxy cyclopentenone without the intermediacy of an acetate function is the 

Jacobson’s enantioselective chromium-salen-catalyzed opening of the meso-epoxide with 

TMS-azide (see Scheme 1.12).21 Though Jacobson’s method provides the TMS-protected 

enone in high yield and optical purity, it suffers from two major drawbacks: first, it 

requires the elimination of an equivalent amount of hydrazoic acid to form the desired 

enone, hence not suitable for large scale synthesis of 4-HCPs because of the hazardous 

by-product formation, and second, TMS protected HCPs have not found much interest 

from synthetic chemists because of the high acid and base sensitivity of the OTMS group.  

 Aube group has utilized 4-HCP in the past in context with the total synthesis 

projects21 and synthesized the required HCPs by the Deardorff protocol. Considering the 

diverse synthetic applications of HCPs, we aimed to develop an alternative approach 

toward the synthesis of enantioenriched 4-HCPs with the following features: 

1. A concise route involving a non-enzymatic catalytic means of introducing 

asymmetry, that would help to minimize the solvent waste generated in the process. 

The enzymatic routes in current practice generate copious amounts of the solvent 

waste  beacause of the extensive solvet extraction required to procure the product. 

2. A stereodivergent route that should provide equal access to either of the 

enantiomers of 4-HCP. 

3. A flexible route toward the synthesis 4-HCP with different protecting groups 

without adding additional synthetic steps. 
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 In considering the enzymatic route (Figure 1.4a), we noted that it involves two 

stereocontrolled steps: (1) the synthesis of meso-diacetate 1.4B (i.e., only cis and not 

trans) that is generally accomplished from cyclopentadiene by 1O2 chemistry or by 

epoxidation, followed by acetolysis of a derived π-allyl species29 and (2) the enzyme-

controlled enantioselective hydrolysis to obtain mono acetate 1.4C.12 In contrast, the 

corresponding trans-diol 1.4F (Figure 1.4b) would no longer have planar symmetry but 

instead be a chiral, C2-symmetric molecule. Thus, it would no longer be necessary to 

differentiate the two identical alcohol groups in future steps. Moreover, we felt that it 

would be possible to readily prepare diol 1.4F using the known asymmetric conversion of 

diketone 1.4D to diol 1.4E,11 followed by ring-closing metathesis. Thus, only a single 

stereoselective reaction would be required in the entire synthesis. 

 

 

Figure 1.4. Stereochemical analysis of the enzymatic route 
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enone (R)-1.20.3 via mono-TIPS protection of the C2-symmetric diol (R,R)-1.20.1 

followed by ring-closing metathesis. She synthesized and employed the corresponding 

iodo derivative (R)-1.20.4 in her efforts towards the asymmetric synthesis of 

cylindricine C.    

 

 

Scheme 1.20. Synthesis of (R)-4-hydroxy-2-cyclopentenone by 
Angelica Meyer 
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mixture of AlCl3 and chloroacetyl chloride in nitrobenzene followed by distillation 

provided 1,5-dichlorodione 1.21.2 as a clear liquid. Dichlorodione 1.21.2 is an unstable 

compound that turns into a dark solid on standing at room temperature. It was converted 

to copper bis(dichloroacetylacetonate) 1.21.3 by treating with copper (II) acetate resulting 

in a light green solid that can be safely stored at room temperature for several weeks. We 

prepared up to 56 g of the copper salt 1.21.3 by following the method reported in the 

journal of Organic Syntheses.31 The copper salt was converted to the corresponding 

dichlorodione just before performing the following hydrogenation step on treatment with 

aq sulfuric acid (10%). Hydrogenation of dichlorodione 1.21.2 was performed in the 

presence of 0.25 mol% (S)-BINAP-Ru(II)Cl2 in methanol at 1200 psi at 80ºC. (R,R)-

Dichlorodiol 1.21.4 was obtained in 38-40% yield by crystallization from 2:1 mixture of 

hexane/dichloromethane. Although we could reproduce the 40% yield of this reaction as 

reported by Rychnovski,31 others have reported yield up to 68% by using modified 

version of the ruthenium catalyst.33 

 

 

Scheme 1.21. Preparation of (2R, 4R)-1,5-dichloro-2,4-pentanediol 

 

 We used Hanson’s method to convert dichlorodiol 1.21.5 to diene diol 1.20.1 

(Scheme 1.22).34 Treatment of (R,R)-dichlorodiol 1.21.5 with 10 eq of the sulphur ylide 
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generated by treating trimethylsulfonium iodide with n-butyl lithium at -30 ºC provided 

(3R,5R)-diene diol 1.20.1 (Scheme 1.22). It was important in this reaction to use freshly 

prepared trimethylsulfonium salt obtained by mixing an equimolar ratio of dimethyl 

sulfide and methyl iodide. The salt was recrystallized from ethanol and was dried for 24 

hours under high vacuum before use.  

 

 

Scheme 1.22. Synthesis of (3R,5R)-hepta-1,6-diene-3,5-diol 

 
Having prepared the required diene diol, our next objective was to derivatize it 

with suitable protecting groups. We chose TBS, 4-methoxy-benzyl, and acetate 

functional groups for further derivatization. We chose protecting groups according to 

their diverse chemical sensitivity and applications found in the literature.  

 

1.5.2. Synthesis of mono-protected diols 

 Mono TIPS protection of 1.20.1 was performed as previously reported by 

Angelica Meyer (Scheme 1.23).30 Treatment of the diene diol with n-BuLi followed by 

the addition of TIPSCl at -78 ºC generated OTIPS protected diol 1.20.2 in 96% yield. 

TBS protection was tried under similar conditions (by employing TBSCl in place of 

TIPSCl) however only starting material was observed, presumably because of the 

extremely hydroscopic nature of the solid TBSCl reagent   Ultimately, the OTBS product 

1.23.1 was obtained in 92% yield by using TBSOTf and 2,6-lutidine at -78 ºC. 
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Scheme 1.23. Monosilylation of (3R,5R)-diol 1.21.1 

 

 Acetate protection of the (3R,5R)-diol 1.20.1 using triethylamine acetyl chloride 

provided mono acetate compound only in 10% yield. The addition of DMAP led to a 

mixture of mono and diprotected products. Finally, the monoprotected acetate was 

obtained in 84% yield by treating diol with trimethyl orthoactetate followed by stirring in 

p-TSA in methanol (Scheme 1.24). 

 

 
 

Scheme 1.24. Mono acylation of 
(3R,5R)-diol 1.20.1 

 

 4-Methoxybenzyl protection was tried using freshly prepared 4-methoxybenzyl 

trichloroimidate. However, it led to a mixture of mono- and diprotected products. Finally 

monobenzylated product 1.25.1 was obtained in 66% yield by using NaH and PMBCl in 

DMF.  
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Scheme 1.25. 4-Methoxybenzyl protection of  
(3R,5R)-diol 1.21 

 

1.5.3. Synthesis of cyclopentene diol and enones 

 Ring-closing metathesis of diene diol 1.20.2 was performed with both Grubbs I35 

or Grubbs II36  (2–3 mol%) in DCM and provided 49–53% yield in 24 h at room 

temperature. Increasing the catalyst loading or dilutions did not improve the reaction 

yields. The optimum yield was obtained by performing the reaction at 50 ºC using 3 

mol% of Grubbs I catalyst. Other mono-protected dienes were subjected to RCM using 

Grubbs I to obtain the cyclized products in 88-92% yield (Scheme 1.26).  

 

 

Scheme 1.26. Synthesis of cyclopentenols via  
ring-closing methathesis (RCM) 

  

Finally, oxidation of the cyclopentenols with pyridinium chlorochromate provided the 

targeted O-protected-4-hydroxy-2-cyclopentenones in excellent yields (Scheme 1.27). 

The enantiomeric ratios of the products 1.20.3, 1.4.3 and 1.4.1 were determined by chiral 

gas chromatography (GC) by using Astec Chiraldex B-DM fused silica column. The 

OPMB protected enone 1.27.1 could not be analytically resolved after several attempts 
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using chiral gas chromatography. Finally, the enantiomeric ratio of the OPMB enone 

1.27.1 was determined by high pressure liquid chromatography (HPLC) method by 

developing suitable conditions on CHIRALPAK IC column. 

 

 

Scheme 1.27. Synthesis of 4(R)-O- 
protected-hydroxycyclopentenones 

 

 This route can be adopted for the synthesis of (S)-1.27.1 by simply using (R)-

BINAP in the hydrogenation step (Scheme 1.28). Besides no longer requiring different 

schemes for preparing the two enantiomers, the present route proceeds in acceptable 

overall yields from commercially available starting materials (26–32%) and compares 

favourably in number of steps compared to other methods (5 steps from 1.21.2 to either 

(R)- or (S)-1.27.1 as opposed to 9 steps by enzymatic routes discussed above).  

 

 

Scheme 1.28. Synthesis of (S)-4-O-TIPS-cyclopentenone 
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Another useful 4-HCP is the α-iodo derivative of enone 1.29.1, which has found 

applications in the synthesis of prostaglandins (see Scheme 1.14).23 Thus, we transformed 

both (R)- and (S)-1.20.3 into iodides (R)- and (S)-1.29.1 following a previously reported 

procedure13 as shown in Scheme 1.27. 

 

 

      Scheme 1.29. Iodination of enone 1.20.4 

1.5.4. Derivatives of HCP 

 Just as 4-HCPs have been broadly employed in synthesis, the reduced alcohol 

precursor introduced herein should be of comparable utility. We have synthesized a few 

derivatives of the allylic alcohol 1.26.1. Thus, epoxidation of allylic alcohol 1.26.1 

provided 1.30.2 exclusively in 66% yield (likely due to a reinforcing combination of 

Henbest-like delivery of peracid and avoidance of the large OTIPS group37). Epoxide 

opening occurred regioselectively with sodium azide to provide the highly substituted 

cyclopentane 1.30.2 in 69% yield. The stereo- and regiochemistry of the product 1.30.3 

was confirmed by 2D NMR analysis of the corresponding diacetylated compound 1.30.4.  
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Scheme 1.30. Stereo and regioselective synthesis of azido derivatives  

of cyclopentane 

  

In addition, amino-substituted cyclopentene derivatives were made using simple 

displacement chemistry (Scheme 1.31). Mitsunobu displacement of the allylic alcohol 

1.26.1 with phthalimide gave 1.31.1 in 68% yield. Further subjecting to silyl deprotection 

with TBAF followed by PCC oxidation provided the 4-amino substituted enone 1.31.3 

via the alcohol intermediate 1.31.2. Displacement of allylic alcohol 1.26.1 with adenine 

under Mitsunobu conditions led to the 1,4-syn-disubstituted cyclopentene 1.31.4 in 70% 

yield. 
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Scheme 1.31. Cycopentene derivatives via Mitsunobu displacement 

 In summary, we have demonstrated a convenient synthesis of 4-HCPs, an 

important class of privileged building blocks for organic synthesis. The route is scalable 

to  >4 g scale of the diol intermediate 1.26.1 and provides access to either enantiomeric 

series of 4-HCPs using the identical route. Also this method falls in the category of few 

known methods capable of providing silylated enones in excellent optical purities without 

the intermediacy of an acetate group. This approach can be used to obtain the 4-HCPs 

with different protecting  groups in six steps from the commercially  available 

acetylacetone using the identical route.  
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Chapter 2 

 

Development of a Stereodivergent Approach Toward the Synthesis of 3,5-Dihydroxy 
Six-Membered Carbo- and Heterocyclic Rings 

  

2.1. Introduction  

 1,3-Cyclohexanediol and 3,5-dihydroxy piperidine structural motifs are present in 

numerous complex natural products (Figure 2.1). Many of these natural products are 

biologically active. For example, 1α,25-dihydroxy D3 (2.1G), a major metabolite of 

vitamin D3, have wide range of biological activities including mineral homeostasis, 

cellular differentiation and proliferation, angiogenesis,  and apoptosis.38,39 7-Deoxy-6-

epi-castanospermine (2.1H), a trihydroxy indozolidine is an inhibitor of 

amyloglucosidase.40 Alkaloid 2.1E is a competitive inhibitor of α-D-glucosidase, which 

blocks the processing of N-linked glycoproteins.  Polyhydroxy nortropane alkaloids 

calystegine B3 (2.1I) and A7 (2.1J) and related alkaloids of this class show potent 

inhibitory activity against β-glucosidase and galactosidase.41  

 The interesting biological properties of these natural products have inspired many 

to utilize polyhydroxylated diols or piperidine structural motifs for the development of 

new molecules of pharmaceutical or biomedical applications. Polyhydroxylated 

piperidines, also called iminosugars, have recently received much interest as glycosidase 

inhibitors with applications in the treatment of cancer and AIDS.42 More specifically, 3,5-

dihydroxy piperidines, which are deoxy analogs of imino sugars, are substructures in 

compounds active in the treatment of Alzheimer’s disease43 and schizophrenia.44,45 Figure 

2.2 shows examples of the compounds containing 1,3-cyclic diol moieties, which have 
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been reported for diverse range of biological activities. For example, salacinol-containing 

alditols glycosidase inhibitors (2.2E) as antidiabetic agents,46 and fused tricyclic 

 

 

Figure 2.1. Examples of natural product structures containing a 1,3-cyclohexanediol  
or 3,5-dihydroxy piperidine motif 

 
 

carbamates (2.2F)  containing thienopyrimidinedione (2.2A) as ACC (acetyl-coA 

carboxylase) inhibitors47, furopyrimidines (2.2B) as antihypertensive agents48 and aryl 

alcohol compounds (2.2C) as plasminogen activator therapeutic agents for HIV patients49 

have been reported. Piperidine or tetrahydropyran based phosphatidyl inositol mimics 

(2.2D) have been reported as inhibitors of LPS-induced cytokine production and are 
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potent anti-inflammatory agents.50 The presence of six-membered cyclic 1,3-diol motif in 

several natural and synthetic compounds of biological interest makes these attractive 

targets for synthesis. The following section provides a survey of the existing synthetic 

approaches for the synthesis of cyclohexane diols and dihydroxypiperidines. 

 

 

Figure 2.2. Synthetic compounds of therapeutic importance containing six-membered 
carbo- or heterocyclic-1,3-diol motif 

 

2.2. Synthesis and applications of cyclohexane-1,3-diols 

 1,3-Cyclohexanediols are attractive targets for synthesis because of their presence 

in important natural product structures and biologically important molecules. Different 
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low selectivity.51–54 A few examples of desymmetrization of cis-1,3-cyclohexanediol 

using enzymatic resolution have previously been reported.55–59   

 In 1990, Suemune group reported a nine-step synthesis of trans-(R,R)-

cyclohexene diol 2.1.7 via enzymatic desymmetrization (Scheme 2.1).58 They performed 

the benzylation of commercially available cis-phloroglucitol 2.1.1 ($73 for 1 g from 

Sigma) with sodium hydride and benzyl chloride to obtain 2.1.2 as a monobenzylated 

product in 40% yield. Subsequent diacetylation of 2.1.2 provided the meso diacetate 

product 2.1.3 in 91% yield. Porcine liver esterase (PLE)-catalyzed hydrolysis of diacetate 

2.1.3 produced desymmetrized monoacetate 2.1.4 in 62% yield and 87% ee. The 

inversion of the alcohol stereocenter in 2.1.4 via mesylation and elimination, followed by 

hydrogenation produced 2.1.5 in 77% yield over three steps. Triflate formation followed 

by silica gel mediated elimination resulted in diacetate 2.1.6 in 70% yield. Finally, 

Pseudomonas fluorescens lipase (PFL)-catalyzed hydrolysis of the diacetate 2.1.6 

produced mono acetate 2.1.7 in 77% yield.  

 

 

Scheme 2.1. Suemune’s approach toward the synthesis of cyclohexane-1,3-diol 
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Later, in 1992, Suemune group reported the synthesis of both cis-(1S,5S)-2.2.3 

and trans-1R,5S)-2.2.3 cyclohexane-1,3-diols  by utilizing enantioenriched triol 

(1S,3R,5S)-2.1.4 (Scheme 2.2).59 The trihydroxy compound 2.1.4 was subjected to Swern 

oxidation. Oxidation of the hydroxyl function as well as acetate elimination under the 

Swern oxidation conditions produced the enone 2.2.1 in 92% yield. Reduction of the 

ketone function in 2.2.1 with sodium borohydride produced the syn dihydroxy compound 

2.2.2 in 90% yield. Treatment of 2.2.2 with benzoyl chloride in pyridine provided the 

(1S,5S)-diol derivative 2.2.3 in 83% yield. Mitsunobu inversion of the alcohol 

stereocenter in (1S,5S)-2.2.2 with acetic acid as nucleophile formed the acetylated 

product (1R,5S)-2.2.4 that was hydrolyzed to produce mono-benzylated trans-diol 

(1R,5S)-2.2.2. Subsequent benzoylation resulted in enantioenriched (1R,5S)-2.2.3 in 91% 

yield. 

 

 

Scheme 2.2. Suemune’s synthesis of enantioenriched cis and  
trans-cyclohexene-1,3-diols 

 

They further applied these newly developed cyclohexanediol building blocks for the 

synthesis of lactone moiety of compactin (Scheme 2.3a) and toward a formal synthesis of 

quinic acid (Scheme 2.3b).59 Compactin and mevinolin are potent competitive inhibitors 

PPh3, DEAD
AcOH K2CO3, MeOH

OBn

AcO

OBn

HO

OBn

BzO

OBn

HO OAc

Swern oxid.
92%

OBn

O

NaBH4, CeCl3

OBn

HO
(1S,3R,5S)-2.1.4 (R)-2.2.1 (1S,5S)-2.2.2

OBn

BzO90%
BzCl, py

83%

(1S,5S)-2.2.3

BzCl, py
91%

OBn

HO
(1S,5S)-2.2.2

82%87%

(1R,5S)-2.2.4 (1R,5S)-2.2.2 (1R,5S)-2.2.3



 36 

of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, the rate-limiting enzyme in 

cholesterol biosynthesis. The Suemune group prepared the compactin lactone in five 

steps from 2.3.1 that was obtained by the above-described route. Ozonolysis of the 

cyclohexene diol 2.3.1, Jones oxidation and esterification with diazomethane produced 

diester 2.3.2 in 44% yield over three steps. Diester 2.3.2 was hydrolyzed using potassium 

carbonate in methanol and was subjected to acid-catalyzed lactonization to afford the 

desired lactone product 2.3.4. For the synthesis of quinic acid they utilized a trans diol 

(1R,5S)-2.3.1.59 The synthesis started with the diastereoselective epoxidation of the diol 

2.3.1 with m-CPBA to produce epoxide 2.3.5 as a single diastereomer. Epoxide opening 

of 2.3.5 with acetic acid followed by acetylation produced the triacetate 2.3.6. Palladium-

catalyzed hydrogenation followed by ruthenium-mediated oxidation afforded the 

trihydroxy ketone 2.3.8, an advanced intermediate for quinic acid synthesis.  
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a) 

 

 

b) 

 

Scheme 2.3. Applications of cyclohexanediols toward, a) the synthesis of  
compactin lactone b) formal synthesis of quinic acid  
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this approach was the regioselective hydroxyselenylation of 2.4.2 with N-

phenylselenylphthalimide and camphorsulfonic acid (CSA) to produce inseparable 

diastereomeric mixture of 2.4.3 and 2.4.4. They proposed that a hydrogen bonding 

interaction of the selenylphthalimide electrophile with the glycinate moiety directed the 

incoming electrophile to the syn face of the olefin 2.3A (Fig 2.3) resulting in selenium 

ion 2.3B, which is opened by the hydroxyl nucleophile regioselectively by an axial 

attack. Subjecting 2.4.3 and 2.4.4 mixture to deselenylating conditions produced the trans 

diols 2.4.5 and 2.4.7, which were separated by column chromatography. The isolated 

diastereomers 2.4.5 and 2.4.7 were converted to monosilylated products (S,S)-2.4.6 and 

(R,R)-2.4.8, respectively.  

 

  

 

Scheme 2.4. Sweeney’s approach toward the synthesis of 1,3-cyclohexanediol 
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Figure 2.3. Mechanistic rationale for diastereo- and regioselective 
hydroxyselenylation 

 

 In 2001, Kalkote group reported an enzymatic synthesis of both enantiomers of 

diprotected trans-3,5-dihydroxy-1-cyclohexanone starting from phloroglucitol 2.1.1.61 

Triacetylation of 2.1.1 followed by enzyme-mediated hydrolysis afforded the diacetate 

compound 2.5.1. Silylation of 2.5.1 using TBSCl followed by PLE catalyzed 

desymmetrization provided the enantioenriched monoacetate product 2.5.2. THP 

protection of the 2.5.2 and subsequent basic hydrolysis formed the alcohol 2.5.3. The 

alcohol stereocenter in 2.5.3 was inverted via a Mitsunobu displacement with benzoic 

acid followed by hydrolysis to obtain 2.5.4. Compound 2.5.4 bearing two orthogonal 

protecting groups was used as a common precursor to access both the enantiomers of the 
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Scheme 2.5. Kalkote’s approach toward the synthesis of enantioenriched  
3,5-dihydroxy cyclohexanone 

  

In 2006, Bäckvall’s group reported an elegant chemoenzymatic approach for the 

synthesis of enantioenriched 1,3-cyclohexanediols by enzymatic desymmetrization of an 

equilibrating mixture of cis and trans cyclohexane-1,3-diols (Scheme 2.6).62 A cis/trans 

mixture of 1,3-cyclohexanediol 2.6.1 was converted to meso diacetate 2.6.2 by combining 

ruthenium-catalyzed epimerization with Pseudomonas cepacia lipase (PS-C)-mediated 

acylation. Hydrolysis of the meso diacetate 2.6.2 with Candida antarctica Lipase B 

(CALB) produced the enantioenriched cis monoacetate (S,R)-2.6.3 in 97% yield and 

>99% ee. Hydrolysis of the cis diacetate 2.6.2 with lithium hydroxide followed by 

CALB-catalyzed monoacylation produced the enantiomeric (R,S)-2.6.4. Combining Ru-

catalyzed epimerization with CALB-catalyzed transesterification, 2.6.4 was converted to 

trans-diacetate (R,R)-2.6.5 in  99% ee. 
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Scheme 2.6. Bäckvall’s chemoenzymatic approach toward the synthesis of 
enantioenriched 1,3-cyclohexanediols 

 

2.2. Synthesis and applications of 3,5-dihydroxy piperidines  

 In 2006, Cossy’s group reported the synthesis of enantioenriched 3,5-dihydroxy 

piperidine via a ring-expansion approach from 4-hydroxyproline.63 They developed a 

seven-step route to obtain N-benzyl-3,5-dihydroxy piperidine from 4-hydroxyproline. 

Hydroxyproline 2.7.1 was converted to silyl-protected hydroxyl proline 2.7.2 in three 

steps. Subsequent reduction of the carboxylic acid group with LAH produced alcohol 

2.7.3 in excellent yield. Activation of the alcohol as triflate followed by treatment with 

triethylamine produced a [5,3]-bicyclic intermediate 2.7.4 that underwent ring expansion 

on treatment with sodium hydroxide to produce N-benzyl-3,5-dihydroxy-piperdine 2.7.5. 
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Scheme 2.7. Cossy’s ring-expansion approach towards  
enantioenriched 3,5-dihydroxy piperidines  

 

 In 2006, Bäckvall group reported synthesis of both racemic and asymmetric 

synthesis of 3,5-disubstituted piperidines.64 They synthesized a cis/trans mixture of 3,5-

dihydroxy piperidine from the commercially available N-benzylglycinate (Scheme 2.8). 

The glycinate 2.8.1 was N-alkylated with chloroacetone to obtain 2.8.2. Intramolecular 

Claisen condensation of 2.8.2 followed by trapping of the enolate with acetic anhydride 

resulted in β-acetoxyenone 2.8.3. The deacetylation of 2.8.3 with CALB resulted in 

diketone 2.8.4 that was subjected to ruthenium-catalyzed transfer hydrogenation 

conditions to obtain cis/trans mixture of 2.8.5 in 70% yield.  

 

 
Scheme 2.8. Bäckvall’s synthesis of racemic 3,5-dihydroxy piperidines 
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Bäckvall’s approach for the synthesis of enantioenriched 3,5-

dihydroxypiperidines involved chemoenzymatic dynamic kinetic asymmetric 

transformation of a racemic cis/trans mixture of 3,5-dihydroxy-piperidines (Scheme 2.9). 

PS-C-catalyzed monoacylation of cis/trans mixture of 2.8.5 resulted in 2:3 mixture of 

(3R,5R)-2.9.1 and (3R,5S)-2.9.2. The trans product (3R,5R)-2.9.1 and the cis product 

(3R,5S)-2.9.2 were isolated in 29% yield and 45% yield respectively with ee > 98% by 

chromatographic separation. Alternatively, PS-C mediated acylation at 50 ºC resulted 

exclusively in meso-diacylated compound 2.9.3 that was hydrolyzed with sodium 

hydroxide in methanol to produce meso-diol (R,S)-2.8.5. A second PS-C-catalyzed 

acylation gave the product (3R,5S)-2.9.2  in 91% yield and >99% ee. 

 

 
 

Scheme 2.9. Bäckvall’s chemoenzymatic approach toward the synthesis of 
enantioenriched 3,5-dihydroxy piperidines 

 

2.3. Results and discussion 

 As discussed in the previous section, 3,5-dihydroxy six-membered carbo- and 
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routes for the synthesis of enantioenriched 1,3-cyclohexanediol and 3,5-

dihydroxypiperdines involve multiple steps, extensive use of protecting group chemistry, 

multiple enzymes, and transition metal catalysts. We believe that a shorter route that can 

provide these important building blocks in significant quantities and high enantiopurities 

would be of general use to fulfill existing needs and may encourage researchers to further 

explore the synthetic and pharmaceutical applications of these versatile building blocks. 

 Having developed a concise route for the synthesis of enantioenriched 

cyclopentenones (Chapter 1), we aimed to utilize the Rychnovski’s dichlorodiol31 for the 

synthesis of six-membered rings (Figure 2.4). The proposed approach was most plausibly 

extendable for the synthesis of six-membered heterocyclic 1,3-diols. In this work, we 

describe the development of a unified strategy for the stereodivergent synthesis of 

enantioenriched 1,3-dihydroxy substituted six-membered carbocyclic and heterocyclic 

rings.  

 

 

Figure 2.4. A novel approach toward  
six-membered cyclic-1,3-diols 

  

To begin with the synthesis of carbocyclic diols, we initially considered using dithiane 

based carbanion nucleophile. 1,3-Dithianes were introduced in 1965 by Corey and 

Seebach as reagents for C–C bond formation by nucleophilic displacement and carbonyl 

addition.65 Schreiber group reported the application of this chemistry in the total 

synthesis of the avian toxin talaromycin B (Scheme 2.10).66  
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Scheme 2.10. Schreiber’s synthesis of talaromycin B 

In 1994, Tietze group reported the application of silyl-dithiane based carbanion for the 

synthesis of homocoupled diol 2.11.3.67 They performed the opening of epoxide 2.11.2 

with TMS dithiane 2.11.1 followed by crown ether promoted 1,4-Brook rearrangement to 

reveal the second carbanion that reacted with another equivalent of epoxide 2.11.2 to 

furnish a homocoupled diol 2.11.3 (Scheme 2.11). Further advancement of this chemistry 

for multi-component reactions to access complex polyols has been well studied by Smith 

and coworkers.68,69 However, to our surprise, there are very few examples in literature of 

the use of silylated dithianes for intramolecular C–C bond formation. In 1994, 

Schaumann reported the reaction of TMS-dithiane (2.11.1) with a dual electrophilic 

substrate 2.11.4 bearing an epoxide and tosylate functional groups.70 Nucleophilic 

addition of the dithiane carbanion, silyl migration followed by intramolecular 

displacement of the tosylate resulted in ring closure to provide cyclopentanol product 

2.11.5.  
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Scheme 2.11. Earlier examples of TMS-dithiane  
               as carbanion nucleophile 

 
 A recent example involving dithiane mediated cyclization of a bis epoxide to 

obtain carbanucleosides was reported by Linclau’s group (Scheme 2.11).71,72,71 They 

proposed that opening of the epoxide 2.12.2 with the lithiated 2-silyl-1,3-dithiane 

followed by 1,4-Brook rearrangement generated the carbanion 2.12.4. Newly generated 

carbanion 2.12.4 attacked the second epoxide regioselectively at the internal carbon 

leading to the formation of a five-membered ring 2.12.5. To direct this route for the 

synthesis of six-membered ring, it would require intramolecular attack of the in situ 

generated nucleophile to happen at the terminal carbon and not the internal carbon.  

 

 

Scheme 2.12. Linclau’s approach to carabanucleosides 
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We designed a modified substrate 2.13.2 similar to the one used by Schaumann 

(see scheme 2.11), bearing two differentially electrophilic carbons, an epoxide and a 

primary halide, which would undergo sequential C–C bond formation conceivably 

leading to a six-membered carbocycle (Scheme 2.12). The success of this approach 

would require control of the order and timing of three important chemical events taking 

place in this reaction. First, lithiated-1,3-dithiane 2.13.1 mediated chemoselective 

opening of the epoxide 2.13.2 in the presence of a primary halide to form an alkoxide 

2.13.3, which could in principle displace the halogen leading to an undesired furan 

product 2.13.5. However, a timely Brook rearrangement prompted by a polar solvent 

would mask the alkoxide by C- to O-transfer of the silyl group resulting in a reactive 

carbanion intermediate 2.13.4, hence ruling out the possibility of furan ring formation. 

Finally, intramolecular displacement of the chloride would provide the desired cyclized 

six-membered product 2.13.6. 

 

 

Scheme 2.13. Our design rationale for the synthesis of  
cyclohexane-1,3-diols 
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Considering the robustness of the silyl protecting groups in synthesis and our own 

experience with the TIPS as a protecting group, we planned to explore the dithiane 

chemistry using a TIPS-protected substrate. Considering the possibility of the epoxide 

formation under strong basic conditions, we attempted the mono silylation under low 

temperature conditions (Scheme 2.14). Addition of 1 eq of n-BuLi to the precooled 

solution of dichlorodiol 1.20.4 in THF at -78 ºC was followed by the addition of 1 equiv 

of TIPSCl at the same temperature. Allowing the solution to warm to rt for 16h yielded 

the mono silylated product 2.14.1 in 68% yield. Next we monitored the progress of 

reaction while maintaining low temperature conditions. It was observed that the desired 

mono-silylated product formation occurred at -78 ºC; however, the progress of the 

reaction was very slow. Slowly allowing the reaction to warm to -40 ºC and maintaining 

the temperature at -40 ºC for 6 h led to complete consumption of the starting material. 

The reaction was quenched with saturated ammonium chloride at -40 ºC. The 

monosilylated product 2.14.1 was isolated in 92% yield, which was converted to epoxide 

2.14.2 in quantitative yield using powdered potassium hydroxide in anhydrous diethyl 

ether as solvent.   

 

 

Scheme 2.14. Synthesis of the epoxide substrate 
 

 Having prepared the required epoxide substrate 2.14.2, we reacted it with 

dithiane-based nucleophile (Scheme 2.15). Our objective was to promote the selective 

epoxide opening before the halogen displacement could take place. It is known in 

Cl
OH OH

Cl
1.20.4

n-BuLi, THF 
TIPSCl                

-78 ºC to -40ºC
Cl

OH OTIPS
Cl

2.14.1
92%

KOH, Et2O O OTIPS
Cl> 95%

2.14.2



 49 

literature that terminal epoxides can be opened at low temperature with dithiane-based 

carbanion nucleophiles; however the SN2 displacement of chloride is slow at sub-zero 

temperature.73 On the basis of this, we thought it would be possible to control the order of 

epoxide opening and halogen displacement by temperature control. The lithiation of TBS 

dithiane was carried out at room temperature with n-BuLi in a 9:1 mixture of 

THF/HMPA using n-BuLi as base. The resulting yellow solution was added to a pre-

cooled solution of the epoxide 2.14.2 in THF/HMPA (9:1) at -78 ºC. The reaction 

mixture was maintained at -78 ºC for 0.5 h and then raised to -40 ºC for 2 h. 

Consumption of the starting material was observed by TLC at -40 ºC, indicating opening 

of the epoxide. Further allowing the reaction to stir at rt for 18 h formed the cyclized 

product 2.15.3 in 88% yield. The disilyl cyclohexanediol 2.15.3 was treated with 1 M 

TBAF in THF to produce C2-symmetric 1,3-cyclohexanediol 2.15.4 in 94% yield. 

 

 

Scheme 2.15. Synthesis of 1,3-cyclohexanediol  
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useful substrate. Mono deprotection of the product 2.15.3 may not be feasible and we 

were unaware of any methods for the chemoselective deprotection of either TBS or TIPS 

in the presence of the other. So we decided to use the silyl groups of significantly 

different strength in the above reaction, which can be differentiated easily at a later stage. 

We performed the above reaction exactly following the conditions described above 

except by using TMS dithiane instead of TBS dithiane to obtain the cyclohexane 2.16.1 

in 69% yield (Scheme 2.16).  

 Raney nickel-mediated reduction of 2.16.1 in refluxing ethanol led to the loss of 

the TMS group as well as removal of the dithiane resulting in cyclohexane-1,3-diol  

2.16.2 in 67% yield. Deprotection of the dithiane in 2.16.1 by using mercuric chloride in 

aqueous acetonitrile resulted in the keto product 2.16.4 in 77% yield.  

 

 

Scheme 2.16. Deprotection of dithiane 

 
Following the same route as described above for (S,S)-2.16.2, (R,R)-2.16.2 was prepared 

in 4 steps from (S,S)-1.20.4 (Scheme 2.17). 
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Scheme 2.17. Synthesis of (1S,3S)-cyclohexane-1,3-diol 

 

Synthesis of 3,5-dihydroxypiperidine 

 Synthesis of 3,5-dihydroxypiperidine using the addition of a primary amine to 

dichlorodiol 2.14.1 was attempted under different conditions (Table 2.1). However, the 

reaction was very slow and took 48 h to undergo completion with the best yield of 41% 

(Table 2.1, entry 1–4). To facilitate this reaction we converted the dichloro diol (R,R)-

2.14.1 to diiodo derivative (R,R)-2.18.1 in 92% yield by treatment with sodium iodide in 

acetone. Treatment of the diiodo compound (R,R)-2.18.1 with benzyl amine in 

acetonitrile at 80 ºC produced the desired piperidine (R,R)-2.18.2 in 66% yield. Switching 

the solvent to ethanol improved the yields significantly, resulting in 85% yield of the 

piperidine product. Under microwave heating conditions and using ethanol as solvent the 

reaction was completed in 2 h, providing the piperidine product (R,R)-2.18.2 in 88% 

yield. Treatment of (R,R)-2.18.2 with 1M TBAF in THF provided the dihydroxy 

piperidine (R,R)-2.18.3 in 94% yield and er > 99:1 (determined by chiral HPLC). 
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Scheme 2.18. Synthesis of (3R,5R)-1-benzylpiperidine-3,5-diol 

 
Table 2.1. Optimization of conditions for the synthesis of 

3,5-dihydroxy piperidines 

entry X conditions yield 

1 Cl 2 eq Hunig’s base, THF, reflux, 48 h 17% 

2 Cl 2 eq Hunig’s base, ACN, 80 ºC, 48 h 41% 

3 Cl 2 eq Hunig’s base, ACN, n-Bu4NI, 50 ºC, 48 h 10% 

4 Cl 2 eq Hunig’s base, DMF, n-Bu4NI, 80 ºC, 48 h 39% 

5 I 2 eq Hunig’s base, ACN, 80 ºC, 24 h 66% 

6 I 2 eq Hunig’s base, EtOH, 100 ºC, 24 h 85% 

7 I Hunig’s base, 2 eq EtOH, 100 ºC, µW, 2 h 88% 

 

By using the diiodo diol (S,S)-2.18.1 as starting material, N-benzylated-3,5 

dihydroxylated piperidine (S,S)-2.18.2 was obtained in four steps (Scheme 2.19). The 

TIPS cleavage using TBAF provided (S,S)-2.18.3 in 94% yield and er > 99:1. 

 

 

Scheme 2.19.  Synthesis of (3S,5S)-1-benzylpiperidine-3,5-diol 
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3,5-Dihydroxy tetrahydrothiopyran 2.20.1 was synthesized using sodium sulfide 

as the source of sulfur nucleophile (Scheme 2.20). After optimization (Table 2.2) we 

obtained 3,5-disubstituted tetrahydrothiopyran (R,R)-2.20.1 in 88% yield (er = 97:3, 

determined by chiral GC) by using 10 eq of aq sodium sulfide and diiodo diol (R,R)-

2.18.1, under refluxing conditions in ethanol in 24 h (Table 2.2). Under microwave 

conditions the reaction was completed in 2 h providing similar yields as obtained under 

the standard heating conditions. Subsequent deprotection of the silyl group provided 

(R,R)-2.20.2 in 92% yield.  

 

 

Scheme 2.20. Synthesis of (R,R)-3,5-dihydroxy  
tetrahydrothiopyran 

 

Table 2.2. Optimization of the thiopyran ring formation 

 

entry conditions yield 

1 1 eq Na2S, CH3CN, 24 h 23% 

2 2 eq Na2S, CH3CN, 24 h 41% 

 3 10 eq Na2S, EtOH, reflux, 16 h 88% 

4 10 eq Na2S, EtOH, µW, 100 ºC, 2 h 90% 

 

Starting with diiododiol (S,S)-2.18.1, using identical route as described for the synthesis 

of  (R,R)-2.20.2, 3,5-disubstituted tetrahydrothiopyran (S,S)-2.20.1 was obtained in 90% 
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yield and er 97:3 (Scheme 2.21). Treatment of (S,S)-2.20.1 with TBAF provided diol 

(S,S)-2.20.2 in 92% yield. 

 

 
 

Scheme 2.21. Synthesis of (S,S)-3,5-dihydroxy  
tetrahydrothiopyran 

 

 In summary, we have developed a concise stereodivergent approach for the 

synthesis of enantioenriched six-membered 3,5-disubstituted carbo- and heterocycles. As 

compared to the previously reported routes to access these compounds, the present 

approach is much shorter and can provide trans-cyclohexane-1,3-diols in four steps and 

the piperidine diols in three steps from the previously reported dichlorodiol. We also 

extended our approach toward the synthesis of enantioenriched dihydroxy 

tetrahydrothiopyran ring, which are being increasingly represented in newly discovered 

molecules of biological importance.  
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Chapter 3 

 

Development of Libraries Based on 5- and 6-Membered Cyclic 1,3-Diols 

 

3.1. Introduction 

 The development of small-molecule libraries for biological screening remains an 

important area of interest for drug and probe discovery.74  Although target-oriented 

synthesis75 of small molecules plays an important role to identify hits, it remains short of 

probing novel and complex targets.  Many disorders, such as cancer and 

neurodegenerative diseases, are often associated with complex interactions involving 

transcription factors, protein-protein interactions and DNA–protein interactions.76 Such 

targets have been considered “undruggable” due to the challenges they pose to a typical 

drug discovery program.77 In this context, screening of small-molecule collections to 

identify hits that can perturb the function of gene products, has proved an effective way 

of understanding complex biological processes, and allows for discovering new targets 

and compounds with potential therapeutic applications.78, However, to ensure the success 

of these efforts, it is essential that such molecule collections are diverse and contain 

compounds of suitable structural complexity.79 Diversity is important, as in phenotypic 

screens (cell-based or organism-based) there is no single particular target, any one of the 

cell’s or organism’s entire pool of macromolecules could be an eventual target.80,81 

Complexity is another important component as many biological processes, particularly 

those based on protein–protein interactions are known to be disrupted by structurally 

complex natural products.  
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3.2. Diversity-oriented synthesis based on natural products 

 Natural products have long inspired drug discovery and chemical biology. For 

example, natural products such as camptothecins, taxoids and vinca alkaloids have been 

used in clinic.82 Also, natural products such as actinonin,83 geldanamycin,84 trapoxin85 

and rapamycin86 have been important tools to study and discover new therapeutic targets 

(Figure 3.1). Natural product isolation is an important means of providing access to novel 

natural product structures. Engineered biosynthesis has been emerging as an important 

technological means to access new natural products for testing purposes. In the similar 

context, diversity-oriented synthesis of natural product-inspired libraries has emerged as 

a very successful strategy to access skeletally diverse, structurally complex, 

stereochemically rich, and densely functionalized molecules. Such libraries have resulted 

in the discovery of new biologically active molecules.   

 

 

Figure 3.1. Examples of natural products having applications  
in chemical biology 
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3.3. Design strategies for DOS of natural product-like libraries   

 Shang and Tan have reviewed the design strategies of natural product-like 

libraries, separating them into three broad categories: (1) libraries based upon the 

individual natural products; (2) libraries based upon a common substructure found across 

a class of natural products; and (3) libraries that mimic the structural features of natural 

products in a more general sense.87 

 

3.3.1. Libraries based on core scaffolds of individual natural products  

 Such libraries have been initially targeted to optimize the parent activity of the 

natural product.88 Natural product cores can also be used as biologically validated 

frameworks that can be decorated with diverse functional groups. Such libraries may 

have the potential to address biological targets different than the one targeted by the 

parent natural product.82 For example, Waldman and coworkers developed a 147 

compound butenolide library based on the natural product dysidiolide [a cell division 

cycle 25 homolog A (Cdc25A) inhibitor]. From this collection they identified several 

sub-micromolar inhibitors of acetylcholine esterase (AChE), 11-β-hydroxysteroid 

dehydrogenase 1 and 2 (11βHSD1 and 11βHSD2).89,90 

  



 58 

 

Figure 3.2. Dysidiolide inspired library of butenolide derivatives89 

 

Another example such an approach was reported by the Schreiber group.91 They 

constructed a library of spirooxindoles based on spirotryprostatin B, a mammalian cell-

cycle inhibitor. Several enhancers of latrunculin B (an actin polymerization inhibitor) 

have been identified from this collection (Figure 3.3).  

 

 

Figure 3.3. Library of spirooxindoles based on spirotryprostatin B91   
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3.3.2. Libraries based on common substructures from classes of natural products 

 Libraries based on the specific substructures, generally found within a class of 

natural products have increased potential to generate structural diversity that may address 

a wide range of biological targets. An early example of such an effort was reported by the 

Nicolaou group. They constructed a 10,000 compound library based on 2,2-

dimethylbenzopyrans, a structural motif found in numerous natural products with diverse 

activities.92–94 Screening of this library in different assays led to the discovery of 

compounds showing wide range of activities (Figure 3.4). An inhibitor of NADH 

ubiquinone oxidoreductase was identified.95 Also, they have identified a compound active 

against six different MRSA strains, which is equipotent to vancomycin.95 Screening 

against a reporter gene assay led to the identification of novel non-steroidal agonists of 

the farnesoid X reporter.96  

 

 

Figure 3.4. Library comprising 2,2-dimethylbenzopyrans as structural motif93,94,  
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identify truly novel pharmacophores that are considered undruggable. For example 

Schreiber and coworkers developed 1,3-dioxane-based libraries in this category.97,98 They 

have identified uretupamine B, a functional-selective inhibitor of the yeast nutrient 

signaling protein Ure2p. Diversifying 1,3-dioxane core with the metalloprotein binding 

side chains led to the discovery of the inhibitors of the histone deacetylase family 

(HDAC). They have identified two selective histone deacetylase, tubacin, a selective 

inhibitor of HDAC6, which is a α-tubulin deacetylase, and histacin, that have true histone 

deacetylase activity and does not inhibit HDAC6 (Figure 3.5). These studies led to the 

identification of HDAC6 as a novel potential antimetastatic and antiangiogenic 

therapeutic target.  

 

 

Figure 3.5. Inhibitors identified from Schreiber’s dioxane based library97,  
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Boger and coworkers developed structurally diverse libraries using amide-bond-forming 

reactions, resulting in peptide like collection of compounds.99 Several protein-protein 

interaction inhibitors have been identified from these libraries including antagonists of 

the MMP2-avb3,100 Epo-EpoR,101 Lef-1–β-catenin,102 and Myc-Max103,104 protein–

protein interactions (Figure 3.6). 

 

 

 

Figure 3.6. Protein–protein interaction inhibitors identified from a peptide-like library99 
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3.3. Small-molecule libraries of stereochemically diverse compounds 

 Generally, the focus of the above-cited approaches has been to achieve diversity 

through functional group variation among the members of the library. An alternative 

approach of varying functional group presentation is through extensive stereochemical 

diversification. Though constitutionally identical, the stereoisomeric compounds have 

topographical differences, resulting in distinct interactions with the macromolecular 

targets. The molecules generated by such approach are designed to explore the 

conformational space through geometric variation of the ligand scaffold. Though natural 

product-inspired libraries are often skeletally and stereochemically diverse however there 

are few examples in literature where an exhaustive stereochemical diversification has 

been used around a scaffold to produce a collection of small-molecules of diverse 

topology. An early example was reported by Paterson and co-workers in 1992.105  They 

generated a library of 32 polyketide stereopentads by exhaustive stereochemical 

diversification. In 1999, Schreiber group reported conformationally diverse macrocyclic 

lactones by using stereoisomeric building blocks (Figure 3.7).106 

 

 

 

Figure 3.7. Conformationally diverse lactones105  
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target diverse aspartyl proteases. The screening of this library resulted in the 

identification of potent cathepsin D inhibitors (Figure 3.8).107  

 

 

Figure 3.8. Examples from Ellman’s library of spatially separated compounds 
determining cathepsin D inhibitory activity107 

 

In 2000, the Verdine group reported a modular approach towards the synthesis of 

stereodiversified natural product-like libraries.108,109 They generated the libraries of all 

the possible stereoisomers of the cis-1,4-enediol and cis-1,5-enediols via silyl-tethered 

ring-closing metathesis (Figure 3.9). 

 

 

 

 

Figure 3.9. Stereodiversified library of enediols from Verdine’s group108,109 
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3.4. Results and Discussion 

 As discussed in the introduction above that the development of small-molecule 

libraries is an important area of interest to reveal novel biological targets of therapeutic 

relevance. Natural product structures have been motivation as well inspiration to design 

such libraries. Various strategies have been used in this regard as discussed in the 

introduction. However, there are not many stereochemically diverse libraries reported in 

the literature.  

 In the present work, we describe the development of a small-molecule library of 

stereochemically diverse compounds by integrating structural features of prostaglandin 

natural products, a highly important and physiologically relevant class of natural 

products, and α-amino acids that are natural chiral building blocks.  

 

3.4.1. Library Design  

We recognized that the stereo elements on a small five-membered carbocycle, 2-

cyclopentene-1,4-diol can be utilized to target stereochemically diverse compounds. This 

idea was enabled by easy access to either of the enantiomer of 2-cyclopentene- trans-1,4-

diol on gram scale by the recently developed approach in our laboratory (discussed in 

Chapter 1). Also, it was easily conceivable that the cis isomers of the diols could be 

synthesized via Mitsunobu inversion of one of the alcohol stereocenter in 2-

cyclopentene- trans-1,4-diol. The presence of alcohol functionality provides an 

opportunity for easy synthetic derivatization. 
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Figure 3.10. Integrating prostaglandin  
core with amino acids 

 

One could readily append side chains by either an ester or a carbamate linkage; however 

we chose to avoid esters considering the high hydrolytic nature of this group under 

biological conditions. The carbamate linkage was chosen due to ease of synthesis and 
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L-asparagine at the first step, leading to four scaffolds of amino acid derived alcohols. 

Each scaffold would then be derived with six different amino acids, leading to 24 

compounds. Ultimately using all of the four isomers of 2-cyclopentene-1,4-diol, a 96 

compound library was planned.  

 

 

Figure 3.11. Library plan 
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Copper salt 1.21.3 was hydrolyzed with aqueous sulfuric acid to obtain dichlorodione 

1.21.2 just prior to the Noyori hydrogenation step (Scheme 3.2). 

 

 

Scheme 3.1. Synthesis of dichlorodione  
 

Following Rychnovski’s procedure, asymmetric reduction of 22 g of 1.21.2 in a Parr 

hydrogenator at 1250 psi provided 8.7 g of the enantioenriched (R,R)-dichlorodiol 1.21.5 

after recrystallization from hexane–DCM.110 Switching the catalyst to (R)-BINAP-

Ru(II)Cl2 provided the (S,S)-1.21.5 following the same procedure (Scheme 3.2).  

 

 

Scheme 3.2. Synthesis of dichlorodiols 
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1.26.1. Cis diol (S,R)-1.26.1 was obtained in two steps via Mitsunobu reaction of   (R,R)-

1.26.1 with 4-nitrobenzoic acid followed by basic hydrolysis of the resulting benzoate 

ester. Both (R,R)-1.26.1 and (S,R)-1.26.1 were prepared on 4 g scale.  

 

Scheme 3.3. Synthesis of diols (R,R)-1.25.1 and (S,R)-1.25.1 
 

Following the same process as described above, (S,S)-1.26.1 and (R,S)-1.26.1 were 

prepared in ca. 4 g quantities each starting from the dichlorodiol (S,S)-1.20.4 (Scheme 

3.4). 

 

 

Scheme 3.4. Synthesis of diols (S,S)-1.26.1 and (R,S)-1.26.1 
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Scheme 3.5. Synthesis of alcohol carbonate 
 

Using the conditions optimized above, the isomeric alcohols 1.26.1 were converted to 

carbonates on a scale of 2.5 to 3.0 g (Scheme 3.6).  

 

 

Scheme 3.6. Synthesis of carbonates  
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Scheme 3.7. Synthesis of silyl monocarbamates  
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Scheme 3.8. Optimization of method for biscarbamate synthesis 
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Scheme 3.9. Synthesis of (S,R,R,S)-biscarbamate library 
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Table 3.1. Biscarbamate Librarya 

entry compound R1 R2 amount 
(mg) 

purity 
 (%) 

1 (S,R,R,S)-3.9.7 3-indolyl-ylmethyl PhCH2 24 100 

2 (S,R,R,S)-3.9.8 3-indolyl-ylmethyl tBuOCH2 62 98 

3 (S,R,R,S)-3.9.9 3-indolyl-ylmethyl (CH3)2CHCH2 34 94 

4 (S,R,R,S)-3.9.10 3-indolyl-ylmethyl CH3SCH2CH2 25 79 

5 (S,R,R,S)-3.9.11 3-indolyl-ylmethyl tBuO2CCH2CH2 54 99 

6 (S,R,R,S)-3.9.12 3-indolyl-ylmethyl p-tBuOPhCH2  25 92 

7 (S,R,R,S)-3.9.13 H2NCOCH2 PhCH2 27  100 

8 (S,R,R,S)-3.9.14 H2NCOCH2 tBuOCH2 44 98 

9 (S,R,R,S)-3.9.15 H2NCOCH2 (CH3)2CHCH2 39 39 

10 (S,R,R,S)-3.9.16 H2NCOCH2 CH3SCH2CH2 26  100 

11 (S,R,R,S)-3.9.17 H2NCOCH2 tBuO2CCH2CH2 66 98 

12 (S,R,R,S)-3.9.18 H2NCOCH2 p-tBuOPhCH2 22 39 

13 (S,R,R,S)-3.9.19 L-proline PhCH2 34 100 

14 (S,R,R,S)-3.9.20 L-proline tBuOCH2 10 98 

15 (S,R,R,S)-3.9.21 L-proline (CH3)2CHCH2 18 97 

16 (S,R,R,S)-3.9.22 L-proline CH3SCH2CH2 71 100 

17 (S,R,R,S)-3.9.23 L-proline tBuO2CCH2CH2 25 56 

18 (S,R,R,S)-3.9.24 L-proline p-tBuOPhCH2 34 98 

19 (S,R,R,S)-3.9.25 CH3 PhCH2 5 78 

20 (S,R,R,S)-3.9.26 CH3 tBuOCH2 27 96 

21 (S,R,R,S)-3.9.27 CH3 (CH3)2CHCH2 29 41 

22 (S,R,R,S)-3.9.28 CH3 CH3SCH2CH2 39 98 

23 (S,R,R,S)-3.9.29 CH3 tBuO2CCH2CH2 33 92 

24 (S,R,R,S)-3.9.30 CH3 p-tBuOPhCH2 38 65 

a Please see experimental section for the purification method details. 
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Following the library method optimized above, the silyl carbamates (S,S,R)-, (S,S,S)- and 

(S,R,S)-3.7.1–3.7.4 were used for a 72 compound library synthesis (Scheme 3.10).  

 

 

 
 

Scheme 3.10. Synthesis of 72-membered biscarbamate library 
 

 
Ten crude reaction mixtures were randomly chosen from this pool, were purified by 

column chromatography and the structures were confirmed by NMR and mass analysis. 

The rest of the compounds were submitted for mass-directed purification. However the 

analysis by mass did not respond well unlike the case of validation library (Note: the 

Agilent Purification system which was originally used for the validation library by 

Patrick Porubsky, was out of order and the current set of compounds was processed by 

Ben Nuenswander over a different system). Various attempts were made by analyzing the 

individual fractions by proton nmr to detect the desired compound fractions however it 

was a futile exercise considering the multiple fractions being produced for each 
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individual crude reaction mixture.  The crude products could not be recovered because of 

the numerous fractions generated in the purification process.  

 
3.4.4. Library of C2-symmetric biscarbamates 

 With an objective to increase the diversity, we also targeted the six-membered bis 

carbamates by taking advantage of the method described in Chapter 2. In this part of the 

project, we targeted a library of 24 C2-symmetric compounds based on the five and six-

membered carbo- and heterocyclic diols (Figure 3.12).  

 

Figure 3.12. Six-membered C2-symmetric biscarbamates 
 

To accomplish this goal, we scaled-up each of the trans-diols 2.16.3, 2.18.3, 2.20.2 and 

3.12.1 to 200 mg scale. Mono TIPS protection of dichloro diol (S,S)-1.21.5 provided  diol 

(S,S)-2.14.1 that was treated with powdered potassium hydroxide to form epoxide (S,S)-

2.14.2. Epoxide opening with lithiated 2-TMS-dithiane followed by intramolecular 

cyclization via SN2 displacement of chloro led to the production of cyclohexane product 

(S,S)-2.16.3. Reductive removal of dithiane using Raney Ni followed by TIPS cleavage 

using TBAF provided cyclohexane diol (R,R)-2.16.3 in 62% yield.  

N

HO OH

Ph

S

HO OH

HO OH HO OH

O O

O

H
N

R

CO2tBu

O

H
N

R

tBuO2C

S

O O

O

H
N

R

CO2tBu

O

H
N

R

tBuO2C

N

O O

O

H
N

R

CO2tBu

O

H
N

R

tBuO2C

Ph

O O

O

H
N

R

CO2tBu

O

H
N

R

tBuO2C

OCN

R

CO2tBu



 76 

 
 

Scheme 3.11. Synthesis of (S,S)-cyclohexane-1,3-diol 
 

Mono TIPS protected dichlorodiol was converted to diiodo diol (S,S)-2.18.1 that was 

converted to dihydroxy piperididne (S,S)-2.18.3 in two steps (Scheme 3.12). Treatment of 

diiododiol with sodium sulfide in ethanol followed by TIPS cleavage with TBAF 

provided diol (S,S)-2.20.2 in 88% yield. 

 

 

Scheme 3.12. Synthesis of heterocyclic diols  
 

Five-membered diol (S,S)-3.12.1 was prepared in 71% yield by subjecting diene diol 

(S,S)-1.21.2 to the ring-closing metathesis conditions using the Grubbs II catalyst. 
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Scheme 3.13. Synthesis of (S,S)-2-cyclopentene-1,3-diol 
 

The (S,S)-diols 2.16.3, 2.18.3, 2.20.2 and 3.13.1 were subjected to react with the six 

different amino acid isocyanates in 2 mL vials placed in a 24-well heating block for four 

hours at 100 ºC (Scheme 3.13). A random subset of five of the resulting reaction mixtures 

were purified by column chromatography and fully characterized to confirm structures. 

 
 

 

Scheme 3.13. Synthesis of library of five- and six-membered C2-symmetric 
biscarbamates 
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and heterocyclic diols. With an optimized method in hand and the synthetic access to the 

enantiopure building blocks, a larger library campaign could be enabled if supported by a 

suitable analytical and purification system. We believe that stereochemical diversity of 

such a library collection may provide varying topographical features to these molecules 

and the appended amino acid side chains will enable to probe the important interactions 

in biological targets.  
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Chapter 4 

 

Experimental  

 

General Methods. All reactions were carried out in oven- or flame-dried glassware 

under argon atmosphere using standard gas-tight syringes, cannulas, and septa. Et2O, 

THF and CH2Cl2 were purified by passage through an alumina based commercial 

purification system (Solv-Tek). Column chromatography was performed with Sorbent 

Technologies (30930M-25, Silica Gel 60A, 40-63 µm) and thin layer chromatography 

was performed on silica gel 60F254 plates (EM-5717, Merck). 1H and 13C NMR spectra 

were recorded in CDCl3 on a Bruker AV-400 spectrometer and calibrated to the solvent 

peak.  High-resolution mass spectra (HRMS) were recorded on Waters LCT premier 

Micromass from MS Technologies. Observed optical rotations at 589 nm, were measured 

using AUTOPOL IV Model automatic polarimeter. IR spectra were recorded on 

Shimadzu FTIR-8400S instrument.  The er values of the compounds (R)-1.20.3, (S)-

1.20.3, (R)-1.4.3, (R)-1.4.1, (R)-1.20.4, (S)-1.20.4, (R,R)-2.16.2, (S,S)-2.16.2, (R,R)-

2.20.1 and (S,S)-2.20.1 were determined by gas chromatography using a 5975CVL MSD 

triple-axis detector. The er value of the compounds (R)-1.27.1, (R)-2.18.3 and (S)-2.18.3 

were determined by chiral HPLC on an IC column with a 996 UV detector. Preparative 

reverse-phase HPLC was performed on a Waters 2767 preparative system [UV (214 nm, 

2996 PAD) and mass detection (Micromass ZQ)], using a Waters X-Bridge C18 column 

(19 x 150, 19 x 10 mm guard column), and water/acetonitrile as eluent with 20% increase 

in gradient over 4 min at a flow rate of 20 mL/min. 

 

Known compounds: The compounds 1.20.1, (R,R)-1.20.4 (S,S)-1.20.4  were prepared 

according to the reported procedures.31, 34  
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(R,R)-1.20.2 
 

 (3R,5R)-5-((Triisopropylsilyl)oxy)hepta-1,6-dien-3-ol (1.20.2). To a stirred solution of 

(3R,5R)-hepta-1,6-diene-3,5-diol 1.20.1 (2.7 g, 21.1 mmol) in THF (200 mL) at –78 ºC, 

was added n-BuLi (9.3 mL, 2.5 M in hexanes, 23.2 mmol) dropwise. The solution was 

allowed to stir for 20 min at –78 ºC followed by the slow addition of TIPSCl (4.9 mL, 

23.2 mmol). After 2 h, the reaction was allowed to slowly warm to rt overnight and was 

quenched with saturated NH4Cl(100 mL). The organic phase was washed with saturated 

NH4Cl (3 × 100 mL), brine, dried (Na2SO4), filtered, and concentrated. The crude extract 

was purified by silica gel chromatography (10% EtOAc/hexanes) to afford the product as 

yellow oil (5.4 g, 96%). Rf = 0.73 (20% EtOAc/hexanes); IR (neat) 3423 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 5.94 (ddd, J = 17.1, 10.5, 5.9 Hz, 1H), 5.83 (ddd, J = 17.1, 10.4, 5.6 

Hz, 1H), 5.26 (ddd, J = 12.0, 1.5, 1.5 Hz, 1H), 5.22 (ddd, J = 11.8, 1.4, 1.4 Hz, 1H), 5.14 

(ddd, J = 10.5, 1.4, 1.4 Hz, 1H), 5.09 (ddd, J = 10.5, 1.5, 1.5 Hz, 1H), 4.62–4.56 (m, 1H), 

4.47–4.37 (m, 1H), 3.59 (bs, 1H), 1.87 (ddd, J = 14.0, 9.6, 4.4 Hz, 1H), 1.68 (ddd, J = 

14.4, 4.4, 2.8 Hz, 1H), 1.03–1.10 (m, 21H); 13C NMR (100.6 MHz, CDCl3) δ 140.9, 

140.0, 114.9, 114.0, 73.2, 69.6, 43.2, 18.01, 17.99, 12.2; m/z (ESI+) found [M+H]+ 

285.2253, C16H33O2Si requires 285.2250; [!]!!".! –5.4 (c 1.0, DCM).  

 

 

(R,R)-1.23.1 
 

TIPSO OH

TBSO OH
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(3R,5R)-5-((tert-Butyldimethylsilyl)oxy)hepta-1,6-dien-3-ol (R,R-1.23.1). To a stirred 

solution of (3R,5R)-hepta-1,6-diene-3,5-diol (150 mg, 1.17 mmol) and tert-

butyldimethylsilyltrifluoromethane sulfonate (1.17 mmol, 0.269 mL) in THF (20 mL) at 

–78 ºC, 2,6-lutidine (1.36 mL, 11.7 mmol) was added dropwise via syringe. The solution 

was allowed to stir for 2 h at  –78 ºC. The reaction was quenched with aq NH4Cl (20 mL) 

and extracted with ethyl acetate (3 × 30 mL). The organic phase was washed with brine, 

dried (Na2SO4), filtered, and concentrated. The crude product was purified by silica gel 

chromatography (10% EtOAc in hexane) to afford the desired product as colorless oil 

(260 mg, 92%). Rf = 0.62 (20% EtOAc/hexanes); IR (neat) 3419 cm-1; 1H NMR (400 

MHz, CDCl3) δ 5.91–5.81 (m, 2H), 5.26 (dt, J = 4.0, 1.6 Hz, 1H), 5.22 (dt, J = 3.6 Hz, 

1H), 5.09 (ddt, J = 20.0, 10.4, 1.6 Hz, 2H), 4.51–4.47 (m, 1H), 4.41–4.36 (m, 1H), 3.26 

(d, J = 2.8 Hz, 1H), 1.77–1.65 (m, 2H), 0.91 (s, 9H), 0.08 (d, J = 12.0 Hz, 6H). 13C NMR 

(101 MHz, CDCl3) δ 141.0, 140.3, 114.8, 114.1, 72.4, 69.7, 43.4, 25.9, 18.2, -4.3, -4.9; 

m/z (ESI+) found [M+H]+ 243.1780, C13H27O2Si requires 243.1780; [!]!!".! –11 (c 8.9, 

DCM). 

 

 

(R,R)-1.24.1 
 

(3R,5R)-5-Hydroxyhepta-1,6-dien-3-yl acetate (1.24.1). To a stirred solution of 

(3R,5R)-hepta-1,6-diene-3,5-diol (200 mg, 1.56 mmol) in acetonitrile (15 mL), triethyl 

orthoacetate (0.43 mL, 2.34 mmol) and p-toluenesulfonic acid (20 mg) were added. The 

reaction mixture was stirred at rt for 1h and a mixture of hydrochloric acid in methanol 

(0.2 mL HCl in 1 mL MeOH) was added to it. The stirring was continued for another 3 h 

AcO OH
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at rt. The reaction was quenched with saturated NaHCO3 solution (10 mL) and was 

extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with 

brine, dried (Na2SO4) and concentrated under vacuum. Purification via column 

chromatography provided the desired product as colorless oil (213 mg, 82%). Rf = 0.52 

(20% EtOAc/hexanes); IR (neat) 3426, 1717 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.87–

5.75 (m, 2H), 5.48–5.42 (m, 1H), 5.23 (d, J = 17.2 Hz, 2H), 5.10 (dd, J = 23.2, 10.4 Hz, 

2H), 4.08 (bs, 1H), 2.73 (s, 1H), 2.06 (s, 3H), 1.85–1.64 (m, 2H); 13C NMR (101 MHz, 

CDCl3) δ 171.1, 140.2, 136.3, 116.6, 114.8, 71.8, 68.7, 42.0, 21.2; m/z (ESI+) found 

[M+H]+ 171.1017, C9H15O3 requires 171.1021; [!]!!!.! +16 (c 12.6, DCM). 

 

 

 

R,R-1.25.1 

 (3R,5R)-5-((4-Methoxybenzyl)oxy)hepta-1,6-dien-3-ol (1.25.1). To a 100 mL round 

bottom flask containing sodium hydride (83 mg of 50% dispersion, 1.72 mmol, 

prewashed with hexane) under argon, a solution of (3R,5R)-hepta-1,6-diene-3,5-diol (200 

mg, 1.56 mmol) in THF (20 mL) was transferred via syringe at 0 ºC. The solution was 

stirred for 30 min. at rt and again cooled to 0 ºC. A solution of 4-methyoxybenzyl 

chloride (366 mg in 2 mL of THF, 2.34 mmol) was added via syringe and the reaction 

mixture was stirred at rt for overnight.   The reaction was quenched with saturated NH4Cl 

solution (10 mL) and was extracted with ethyl acetate (3 × 20 mL). The combined 

organic layer was washed with brine, dried (Na2SO4) and concentrated under vacuum. 

Purification via column chromatography provided the desired product as colorless oil 

PMBO OH
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(236 mg, 66%). Rf = 0.55 (20% EtOAc/hexanes); IR (neat) 3430 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.29 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 5.93–5.79 (m, 2H), 

5.32–5.26 (m, 3H), 5.12 (ddd, J = 10.5, 1.6, 1.6 Hz, 1H), 4.56 (d, J = 11.2 Hz, 1H), 4.47–

4.37 (m, 1H), 4.30 (d, J = 11.2 Hz, 1H), 4.16–4.09 (m, 1H), 3.82 (s, 3H), 2.97 (m, 1H), 

1.90 (ddd, J = 14.4, 8.4, 3.2 Hz, 1H), 1.73 (ddd, J = 14.8, 8.0, 3.6 Hz, 1H). 13C NMR 

(101 MHz, CDCl3) δ 159.3, 140.8, 138.1, 130.2, 129.6, 117.3, 114.1, 113.9, 77.7, 70.2, 

69.8, 55.4, 41.8; m/z (ESI+) found [M+H]+ 249.1490, C15H21O3 requires 249.1491; 

[!]!!".! +139 (c 6.4, DCM). 

 

General procedure for the synthesis of cyclopentenols (1.26.1, 1.4.5, 1.3.3 and 1.26.2) 

via ring-closing metathesis. A solution of starting diene in DCM (0.02 M) was purged 

with argon for 5 min and Grubbs-I catalyst (3 mol%) was added to it under argon. The 

reaction mixture was stirred for 1 h at 50 ºC and quenched with DMSO (1 mL). The 

solution was stirred under air for 5 min and concentrated. The solvent was evaporated 

and the crude reaction mixture was purified by silica gel column chromatography to 

obtain the desired product. 
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R,R-1.26.1 
 

 (1R,4R)-4-((Triisopropylsilyl)oxy)cyclopent-2-enol (1.26.1). Following above general 

procedure diene 1.20.1 (5.00 g, 17.6 mmol) provided cyclopentenol 1.26.1 (4.14 g, 92%) 

as a colorless oil. Rf = 0.41 (20% EtOAc/hexanes); IR (neat) 3322 cm-1; 1H NMR (400 

MHz, CDCl3) δ 6.04–5.80 (m, 2H), 5.24–5.06 (m, 1H), 4.98 (d, J = 1.9 Hz, 1H), 2.24–

1.96 (m, 3H), 1.17–0.91 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 138.5, 135.5, 76.6, 

76.2, 44.8, 18.1, 18.0, 12.2; m/z (ESI+) found [M+H]+ 257.1933, C14H29O2Si requires 

257.1937; [!]!!".! +108 (c 2.2, DCM). (1S,4S)-1.26.1. [!]!!".! –103.5 (c 3.0, DCM). 

 

 

R,R-1.4.5 
 

 (1R,4R)-4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-enol (1.4.5). Following above 

general procedure diene 1.23.1 (200 mg, 17.6 mmol) provided cyclopentenol 1.4.5 (156 

mg, 88%) as a colorless oil. Rf = 0.44 (20% EtOAc/hexanes); IR (neat) 3327; 1H NMR 

(400 MHz, CDCl3) δ 5.95–5.90 (m, 2H), 5.08–5.05 (m, 1H), 5.03–4.97 (m, 1H), 2.08–

1.97 (m, 2H), 1.74 (s, 1H), 0.88 (s, 9H), 0.07 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 

138.5, 135.6, 76.7, 76.3, 44.6, 26.0, 18.3, –4.5; m/z (ESI+) found [M+H]+ 215.1465, 

C11H23O2Si requires 215.1467; [!]!!".! +120 (c 5.4, DCM). 

 

TIPSO

OH

TBSO

OH
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R,R-1.3.3 
 

(1R,4R)-4-Hydroxycyclopent-2-en-1-yl acetate (1.3.3). Following above general 

procedure diene 1.24.1  (200 mg, 1.17 mmol) provided cyclopentenol 1.3.3 (147 mg, 

88%) as a colorless oil. IR (neat) 3374, 1723 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.12–

6.06 (m, 1H), 6.01–5.95 (m, 1H), 5.81–5.74 (m, 1H), 5.04–4.97 (m, 1H), 2.49 (br s, 1H), 

2.17 (ddd, J = 14.8, 6.8, 2.8 Hz, 1H), 2.06 (ddd, J = 14.8, 7.2, 3.6 Hz, 1H), 2.00 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.2, 139.9, 132.8, 79.1, 75.8, 40.6, 21.2; m/z (ESI+) 

found [M+H]+ 143.0703, C7H11O3 requires 143.0708; [!]!!".! +227 (c 4.9, DCM). 

 

 

(1R,4R)-4-((4-Methoxybenzyl)oxy)cyclopent-2-enol (1.26.2). Following above general 

procedure diene 1.25.1 (200 mg, 0.81 mmol) provided cyclopentenol 1.26.2 (159 mg, 

89%) as a colorless oil. Rf = 0.40 (30% EtOAc/hexanes); IR (neat) 3364 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.31–7.26 (m, 2H), 6.93–6.87 (m, 2H), 6.12–6.03 (m, 2H), 5.08–

5.00 (m, 1H), 4.85–4.78 (m, 1H), 4.50 (d, J = 11.2 Hz, 1H), 4.45 (d, J = 11.2 Hz, 1H), 

3.82 (s, 3H), 2.22 (ddd, J = 14.4, 6.8, 3.2 Hz, 1H), 2.00 (ddd, J = 14.4, 6.8, 2.8 Hz, 1H), 

1.85 (bs, 1H); 13C NMR (101 MHz, CDCl3) δ 159.3, 137.9, 135.1, 130.6, 129.5, 113.9, 

82.9, 70.9, 55.4, 41.1; m/z (ESI+) found [M+H]+ 221.1179, C13H17O3 requires 221.1178; 

[!]!!".! +139 (c 6.4, DCM). 

AcO

OH

(R,R)-1.26.2

PMBO
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General procedure for the synthesis of cyclopentenones (1.20.3, 1.4.3, 1.4.1 and 

1.27.1). To a stirred solution of starting cyclopentenol in DCM (0.1 M) was added 

pyridinium chlorochromate (1.5 equiv) at 0 ºC. The reaction mixture was stirred at rt for 

6 h followed by filtration over Celite. The Celite bed was washed with diethyl ether. The 

combined filtrate was concentrated and purified by silica gel  column chromatography to 

afford the desired enone. 

 

 

 (R)-1.20.3 
 

 (R)-4-((Triisopropylsilyl)oxy)cyclopent-2-enone (1.20.3). Following the general 

procedure above, cyclopentenol 1.26.1 (2.00 g, 7.81 mmol) provided cyclopentenone 

1.20.3 (1.86 g, 94%) as a colorless oil. Rf = 0.30 (10% EtOAc/hexanes); IR (neat) 1725 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 2.3 Hz, 1H), 6.16 (dd, J = 5.7, 1.2 

Hz, 1H), 5.06 (m, 1H), 2.73 (dd, J = 18.1, 5.9 Hz, 1 H), 2.28 (dd, J = 18.1, 2.2 Hz, 1H), 

1.21–0.98 (m, 3H), 1.06 (d, J = 5.4 Hz, 18H). 13C NMR (101 MHz, CDCl3) δ 206.5, 

163.8, 134.3, 70.9, 45.4, 18.0, 17.9, 12.1; m/z (ESI+) found [M+H]+ 255.1786, 

C14H27O2Si requires 255.1780; [!]!!".! –53 (c 1.05, MeOH). Chiral GC separation: Astec 

Chiraldex B-DM fused silica capillary column, 30m × 0.25 mm × 0.12 mm, temperature 

175 ºC, tR = 37.9 min, tS = 38.7 min, er 97:3. By following the same procedure, 

cyclopentenol (S)-1.26.1 (100 mg, 0.39 mmol) provided cyclopentenone (S)-1.20.3 (93 

mg, 94%) as a colorless oil.  (S)-1.20.3 er 99:1. 

 

TIPSO

O
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(R)-1.4.3 
 

 (R)-4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-enone (1.4.3). Following above 

general procedure cyclopentenol 1.4.5 (120 mg, 0.56 mmol) provided cyclopentenone 

1.4.3 (110 mg, 93%) as a colorless oil. Rf = 0.73 (20% EtOAc/hexane); IR (neat) 1722 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 5.6, 2.4 Hz, 1H), 6.16 (dd, J = 5.6, 1.2 

Hz, 1H), 5.10–4.94 (m, 1H), 2.69 (dd, J = 18.4, 6.0 Hz, 1H), 2.22 (dd, J = 18.0, 2.0 Hz, 

1H), 0.88 (s, 9H), 0.11 (d, J = 4.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 206.4, 163.8, 

134.4, 70.8, 44.95, 25.7, 18.1, –4.6 (2); m/z (ESI+) found [M+H]+ 213.1315, C11H21O2Si 

requires 213.1311; [!]!!".! +64 (c 1.6, MeOH). Chiral GC separation: Astec Chiraldex B-

DM fused silica capillary column, 30m × 0.25 mm × 0.12 mm, temperature 175 ºC, tR = 

14.38 min, tS = 15.11 min, er 97:3.  

 

 

(R,R)-1.4.1 
 

(R)-4-Oxocyclopent-2-en-1-yl acetate (1.4.1). Following above general procedure 

cyclopentenol 1.3.3 (100 mg, 0.70 mmol) provided cyclopentenone 1.4.1 (91 mg, 92%) 

as a colorless oil. Rf = 0.73 (20% EtOAc/hexanes); IR (neat) 1720 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.55 (dd, J = 5.6, 2.4 Hz, 1H), 6.31 (dd, J = 5.6, 1.2 Hz, 1H), 5.85–5.80 

(m, 1H), 2.80 (dd, J = 18.7, 6.4 Hz, 1H), 2.30 (dd, J = 18.7, 2.0 Hz, 1H), 2.07 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ 205.0, 170.5, 159.0, 137.0, 72.0, 41.0, 20.8; m/z (ESI+) found 

TBSO

O

AcO
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[M+H]+ 141.0550, C7H9O3 requires 141.0552; [!]!!".!  +100 (c 1.4, MeOH). Astec 

Chiraldex B-DM fused silica capillary column, 30m × 0.25 mm × 0.12 mm, temperature 

105–110 ºC, tR = 9.85 min, tS = 10.77 min, er 98.2.  

 

 

(R)-1.27.1 
 

(R)-4-((4-Methoxybenzyl)oxy)cyclopent-2-enone (1.27.1). Following above general 

procedure cyclopentenol 1.26.2 (130 mg, 0.59 mmol) provided cyclopentenone 1.27.1 

(119 mg, 92%) as a colorless oil. Rf = 0.73 (20% EtOAc/hexanes); IR (neat) 1714 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 5.7, 2.3 Hz, 1H), 7.29 (d, J = 8.6 Hz, 2H), 

6.91 (d, J = 8.6 Hz, 2H), 6.24 (dd, J = 5.7, 1.2 Hz, 1H), 4.78–4.72 (m, 1H), 4.56 (dd, J = 

21.3, 11.3 Hz, 2H), 3.81 (s, 3H), 2.67 (dd, J = 18.4, 6.0 Hz, 1H), 2.34 (dd, J = 18.0, 2.0 

Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 205.9, 161.3, 159.5, 135.5, 129.5, 129.5, 113.9, 

76.5, 71.6, 55.2, 41.8; m/z (ESI+) found [M+H]+ 219.1023, C13H15O3 requires 219.1021; 

[!]!!".! +51 (c 3.9, DCM). HPLC (Chiralpak IC column n-hexane/i-PrOH = 90/10, flow 

rate = 1.0 mL/min, tR = 38.29 min, tS = 38.8, er >99:1).  

 

 

(R)-1.20.4 
 

 (R)-2-Iodo-4-((triisopropylsilyl)oxy)cyclopent-2-enone (1.20.4). To a stirred solution 

of I2 (110 mg, 0.43 mmol) in Et2O (10 mL) was added pyiridine (0.02 mL, 0.25 mmol) 

PMBO

O
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O
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followed by dropwise addition of enone 1.20.3 (89 mg, 0.35 mmol) at rt. The reaction 

flask was completely covered with aluminum foil to protect from light. After 24 h, the 

reaction was quenched with aq Na2S2O3 (50 mL). The organic layer was washed with 

brine, dried (Na2SO4), filtered, and concentrated. The resulting oil was purified using 

silica gel chromatography (10% Et2O in hexane) to afford the product as colorless oil (11 

g, 85%). Rf = 0.45 (20% EtOAc/hexanes); IR (neat) 1726 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.84 (d, J = 2.5 Hz, 1H), 6.04 (ddd, J = 6.0, 2.3, 2.3, 1H), 2.90 (dd, J = 18.1, 

6.0 Hz, 1H), 2.40 (dd, J = 18.1, 2.1 Hz, 1H), 1.30–0.87 (m, 3H), 1.07 (d, J = 5.3 Hz, 

18H). 13C NMR (100.6 MHz, CDCl3) δ 200.4, 169.4, 105.0, 72.4, 43.0, 18.0 (2), 12.1; 

m/z (ESI+) found [M+H]+ 381.0750, C14H26IO2Si requires 381.0747; [!]!!".! +23 (c 4.3, 

DCM). Chiral GC separation: Astec Chiraldex B-DM fused silica capillary column, 30m 

× 0.25 mm × 0.12 mm, temperature 175 ºC, tR = 20.99 min, tS = 21.84 min, er 97:3. (S)-

1.20.4 [!]!!".! –25 (c 2.7, DCM), er 99:1. 

 

 

1.30.2 
 

 (1R,2R,4R,5R)-4-((Triisopropylsilyl)oxy)-6-oxabicyclo[3.1.0]hexan-2-ol (1.30.2). To a 

solution of (1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-enol (500 mg, 1.95 mmol) in 

DCM (20 mL) m-CPBA (657 mg, 2.93 mmol) was added at 0 ºC and the reaction mixture 

was stirred at rt for 28 h. The reaction mixture was quenched with saturated Na2S2O3 (20 

mL) and extracted with DCM (3 × 50 mL). The combined organic layer was washed with 

saturated NaHCO3, brine and dried (Na2SO4). Evaporation of the solvent followed by 

column chromatography (silica gel, 10% EtOAc/hexane) gave the desired product as 

OTIPSHO

O
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colorless oil (350 mg, 66%). Rf = 0.37 (10% EtOAc/hexanes); IR (neat) 3320 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 4.50 (td, J = 7.9, 0.9 Hz, 1H), 4.42 (d, J = 5.3 Hz, 1H), 3.57–

3.51 (m, 1H), 3.43–3.36 (m, 1H), 2.30 (m, 1H), 1.96 (dd, J = 13.7, 8.0 Hz, 1H), 1.47 

(ddd, J = 13.5, 8.0, 5.4 Hz, 1H), 1.12–0.94 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 

72.3, 71.7, 58.7, 58.6, 39.1, 18.0, 12.1; m/z (ESI+) found [M+H]+ 273.1883, C14H29O3Si 

requires 273.1886; [!]!!".! +26 (c 2.5, DCM). 

 

 

1.30.3 

 (1R,2S,3R,4R)-2-Azido-4-((triisopropylsilyl)oxy)cyclopentane-1,3-diol (1.30.3). To a 

solution of (1R,2R,4R,5R)-4-((triisopropylsilyl)oxy)-6-oxabicyclo[3.1.0]hexan-2-ol (150 

mg, 0.55 mmol) in DMF (10 mL), tetrabutylammonium chloride (153 mg, 0.55 mmol) 

and sodium azide (358 mg, 5.5 mmol) were added. The reaction mixture was heated at 80 

ºC for 24 h. The solvent was removed under reduced pressure and the residue was diluted 

with water. The reaction mixture was extracted with ethyl acetate and was dried 

(Na2SO4). Evaporation of the solvent followed by column chromatography (silica gel, 

20% EtOAC/Hexane) provided the desired product as colorless oil. Rf = 0.30 (20% 

EtOAc/hexanes); IR (neat) 3320, 2102 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.24–4.12 

(m, 1H), 3.84 (dt, J = 7.8, 4.9 Hz, 1H), 3.53 (t, J = 7.4 Hz, 1H), 2.28 (d, J = 4.6 Hz, 1H), 

2.10 (m, 1H), 2.07–2.00 (m, 2H), 1.66 (m, 1H), 1.13–1.00 (m, 21H); 13C NMR (101 

MHz, CDCl3) δ 82.5, 75.1, 72.7, 72.2, 40.2, 17.9, 12.1; m/z (ESI+) found [M+H]+ 

316.2055, C14H30N3O3Si requires 316.2056; [!]!!".! –53 (c 0.6, DCM).  

OTIPSHO

N3 OH
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 Stereo- and regiochemistry of the compound 1.30.3 was confirmed by 2D HNMR 

analysis of the corresponding diacetate 1.30.4, which was made by treating 1.30.3 with 

acetic anhydride and pyridine. IR (neat) 2104, 1747 cm-1; 1H NMR (400 MHz, CDCl3) δ 

5.09 (dd, J = 13.2, 6.1 Hz, 1H), 4.96 (t, J = 5.1 Hz, 1H), 4.34 (dd, J = 11.3, 5.7 Hz, 1H), 

3.71 (t, J = 5.5 Hz, 1H), 2.33 – 2.18 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 2.03–1.89 (m, 

1H), 1.16–0.90 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 170.2, 170.0, 82.4, 75.8, 73.6, 

68.8, 38.0, 21.0, 20.9, 17.82, 17.78, 12.0. Both H1 and H3 show COSY correlation with 

H2 that confirms the regiochemistry of azide. Further existence of 1D NOE correlation of 

H1 with H3 and H2 with H4 confirms the stereochemistry of the compound 1.30.4, hence 

establishing the structure 1.30.1. 

 

 

 

   

 

 

 

 

1.31.1 

2-((1S,4R)-4-((Triisopropylsilyl)oxy)cyclopent-2-en-1-yl)isoindoline-1,3-dione 

(1.31.1). To a solution of cyclopentenol 1.26.1 (300 mg, 1.17 mmol), phthalimide (344 

mg, 2.34 mmol) and triphenylphosphine (614 mg, 2.34 mmol)  in benzene (10 mL) 

diethyldiazocarboxylate (0.36 mL, 2.34 mmol) was added dropwise at rt and the reaction 
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mixture stirred at rt for 24 h. The reaction mixture was quenched with water (10 mL) and 

was extracted with diethylether (3 × 30 mL). The combined organic layers were washed 

with brine, dried (Na2SO4), filtered, and concentrated. Column chromatography of the 

crude provided the desired product as viscous oil (319 mg, 68%). Rf = 0.74 (20% 

EtOAc/hexanes); IR (neat) 1698 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.85–7.74 (m, 2H), 

7.74–7.62 (m, 2H), 6.01 (ddd, J = 5.6, 2.5, 1.8 Hz, 1H), 5.86 (dt, J = 5.7, 1.7 Hz, 1H), 

5.10 (tq, J = 8.4, 2.0 Hz 1H), 4.91 (tq, J = 6.9, 1.7 Hz, 1H), 2.75 (dt, J = 12.3, 7.4 Hz, 

1H), 2.20–2.05 (ddd, J = 12.4, 8.4, 6.8 Hz, 1H), 1.16–0.95 (m, 21H); 13C NMR (101 

MHz, CDCl3) δ 168.1, 137.1, 134.0, 132.0, 130.8, 123.2, 75.6, 53.4, 40.4, 18.1, 12.21; 

m/z (ESI+) found [M+H]+ 386.2147, C22H32NO3Si requires 386.2151; [!]!!".! –97 (c 5.2, 

DCM).   

  

 

 

1.31.2 

2-((1S,4R)-4-Hydroxycyclopent-2-en-1-yl)isoindoline-1,3-dione (1.31.2). To a solution 

of 2-((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl)isoindoline-1,3-dione (100 

mg, 0.25 mmol) in THF (5 mL), tetrabutylammonium fluoride (0.5 mL of 1M solution in 

THF, 0.5 mmol) was added dropwise and stirred at rt for 1 h. The reaction mixture was 

quenched with water (5 mL) and was extracted with ethyl acetate (3 × 30 mL). The 

combined organic layer was washed with brine, dried (Na2SO4), filtered, and 

concentrated. Column chromatography (silica gel, 30% EtOAc/Hexane) of the crude 

provided the desired product as viscous oil (45 mg, 79%). Rf = 0.20 (20% 

OHN

O
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EtOAc/hexanes); IR (neat) 3315, 1697 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.86–7.79 

(m, 2H), 7.77–7.69 (m, 2H), 6.23 (dt, J = 5.6, 2.0 Hz 1H), 5.75 (dd, J = 5.5, 2.6 Hz, 1H), 

5.25 (ddd, J = 9.6, 4.4, 2.2 Hz, 1H), 4.76 (m, 1H), 4.15–4.01 (m, 1H), 2.84 (ddd, J = 15.4, 

9.6, 7.8 Hz, 1H), 1.99 (ddd, J = 15.4, 2.0, 1.5 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 

168.6, 138.6, 134.4, 131.9, 130.3, 123.5, 76.0, 53.1, 38.3; m/z (ESI+) found [M+H]+ 

230.0809, C13H12NO3 requires 230.0817; [!]!!".! –120 (c 3.0, DCM).   

 

 

1.31.3 

(S)-2-(4-Oxocyclopent-2-en-1-yl)isoindoline-1,3-dione (1.31.3). To a solution of 2-

((1S,4R)-4-hydroxycyclopent-2-en-1-yl)isoindoline-1,3-dione (40 mg, 0.18 mmol) in 

dichloromethane (3 mL), pyridiniumchlorochromate (56 mg, 0.26 mmol) was added at 0 

ºC. The reaction mixture was stirred at RT for 1h and was diluted with Et2O (15 mL). The 

mixture was filtered through Celite. Evaporation of solvent followed by column 

chromatography (silica gel, 10% EtOAc/hexane) gave the desired product as colorless oil 

(36 mg, 91%). IR (neat) 1721, 1698 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.90–7.81 (m, 

2H), 7.80–7.70 (m, 2H), 7.52 (dd, J = 5.7, 2.4 Hz, 1H), 6.44 (dd, J = 5.7, 2.2 Hz, 1H), 

5.54 (ddt, J = 6.9, 3.3, 2.3 Hz, 1H), 2.80 (qd, J = 18.3, 5.2 Hz, 2H); 13C NMR (100.6 

MHz, CDCl3) δ 205.3, 167.7, 159.7, 136.3, 134.6, 131.8, 123.7, 49.8, 39.7; m/z (ESI+) 

found [M+H]+ 228.0661, C13H10NO3 requires 228.0661; [!]!!".! –67 (c 2.0, DCM).   
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1.31.4 

9-((1S,4R)-4-((Triisopropylsilyl)oxy)cyclopent-2-en-1-yl)-9H-purin-6-amine (1.31.4 ). 

To a solution of (1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-enol (100 mg, 0.39 mmol), 

adenine (106 mg, 0.78 mmol) and triphenylphosphine  (205 mg, 0.78 mmol)  in THF (10 

mL), diethyldiazocarboxylate (0.12 mL, 0.78 mmol) was added dropwise at rt and the 

reaction mixture stirred for 24 h. The reaction mixture was quenched with water (5 mL) 

and extracted with ethyl acetate (3 × 30 mL). The combined organic layer was washed 

with brine, dried (Na2SO4), filtered and concentrated.  Column chromatography (silica 

gel, 30% EtOAc/hexane) of the crude provided the desired product as viscous oil (103 

mg, 70%). Rf = 0.35 (30% EtOAc/hexanes); IR (neat) 3360 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 8.37 (s, 1H), 8.07 (s, 1H), 6.26 (dt, J = 5.6, 2.0 Hz, 1H), 6.23 (m, 2H), 6.00 (dd, 

J = 5.5, 2.2 Hz, 1H), 5.63 (m, 1H), 5.00 (dt, J = 6.8, 2.0 Hz, 1H), 2.96 (ddd, J = 14.9, 8.2, 

6.9 Hz, 1H), 1.88 (dt, J = 14.4, 3.1 Hz, 1H), 1.20–0.99 (m, 21H); 13C NMR (101 MHz, 

CDCl3) δ 155.8, 153.0, 149.7, 139.8, 139.3, 131.3, 119.6, 75.6, 56.7, 42.8, 18.1, 12.1; m/z 

(ESI+) found [M+H]+ 374.2370, C19H32N5OSi requires 374.2376; [!]!!".! –53 (c 0.6, 

DCM).   
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(R,R)-2.14.1 
 

(2R,4R)-1,5-Dichloro-4-((triisopropylsilyl)oxy)pentan-2-ol (2.14.1). To a solution of 

dichloro diol 1.21.5 (1.00 g, 5.76 mmol) in THF (60 mL) at  –78 ºC, n-BuLi (2.5 mL, 

5.76 mmol, 2.5 M in hexanes) was added dropwise. The reaction mixture was stirred at –

78 ºC for 30 min. Triisopropylsilyl chloride (1.11 g, 5.76 mmol) was added via syringe 

and the reaction mixture was brought to –40 ºC over 2 h. The reaction was allowed to stir 

at –40 ºC for 4 h and the progress of the reaction was monitored by TLC. The reaction 

was quenched with saturated aq NH4Cl and was extracted with diethyl ether. The 

combined organic layers were dried (Na2SO4), filtered and concentrated. The crude 

reaction mixture was purified by column chromatography to obtain the product as 

colorless oil in 94% yield (1.85 g). Rf = 0.35 (10% EtOAc/hexanes); IR (neat) 3360 cm-1; 

1H NMR (400 MHz, CDCl3) δ 4.34–4.28 (m, 1H), 4.16–4.05 (m, 1H), 3.59 (dd, J = 10.9, 

4.3 Hz, 1H), 3.57–3.51 (m, 2H), 3.49 (dd, J = 11.1, 6.2 Hz, 1H), 3.11 (s, 1H), 1.89–1.85 

(m, 2H), 1.14–1.02 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 70.7, 68.1, 50.2, 47.2, 38.0, 

18.1, 18.07, 12.6; m/z (ESI+) found [M+H]+ 329.1470, C14H31Cl2O2Si requires 329.1470; 

[!]!!".!  +31.7 (c .86, DCM). (2S,4S)-2.14.1  [!]!!".!!–30.3 (c 1.0, DCM). 

 
   

 

(R,R)-2.14.2 
 

 (((R)-1-Chloro-3-((R)-oxiran-2-yl)propan-2-yl)oxy)triisopropylsilane (2.14.2). To a 

solution of (2R,4R)-1,5-diiodo-4-((triisopropylsilyl)oxy)pentan-2-ol 2.14.1 (1.0 g, 3.0 

Cl
OH OTIPS

Cl
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mmol) in anhydrous Et2O (25 mL) dry KOH powder (0.56 g, 9.9 mmol) was added at 0 

ºC and the mixture was stirred at room temperature for 3 h. The reaction mixture was 

filtered through a bed of anhydrous MgSO4, and the MgSO4 was washed with diethyl 

ether. The filtrate was concentrated and was subjected to column chromatography to 

obtain the product as colorless oil in 97% yield (860 mg). Rf = 0.35 (30% 

EtOAc/hexanes); IR (neat) 2945, 2867, 2358,  cm-1; 1H NMR (400 MHz, CDCl3) δ 4.24 

(tt, J = 6.4, 4.6 Hz, 1H), 3.57 (dd, J = 4.5, 11.0 Hz, 1H), 3.53 (dd, J = 6.5, 11.0 Hz, 1H), 

3.09 (dddd, J = 6.6, 5.1, 3.9, 2.7 Hz, 1H), 2.82 (dd, J = 5.1, 4.0 Hz, 1H), 2.55 (dd, J = 5.1, 

2.7 Hz, 1H), 1.89 (ddd, J = 14.0, 6.2, 4.9 Hz, 1H), 1.86–1.79 (m, 1H), 1.12–1.03 (m, 

21H); 13C NMR (101 MHz, CDCl3) δ 70.8, 49.1, 48.4, 47.6, 38.2, 18.22, 18.20, 12.7; m/z 

(ESI+) found 293.1700 [M+H]+, C14H30ClO2Si requires 293.1704; [!]!!".! +25.1 (c 2.3 , 

DCM).  

 By following above procedure, (2S,4S)-2.14.1 (600 mg, 1.82 mmol) in anhydrous 

Et2O (20 mL) on treatment with dry KOH powder (306 mg, 5.5 mmol) provided (2S,4S)-

2.14.2 as a colorless oil in 95% yield (506 mg). [!]!!".! –24.6 (c 1.1, DCM). 

 
 

 

(R,R)-2.15.3 
 

tert-Butyldimethyl(((8R,10R)-10-((triisopropylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-

8-yl)oxy)silane (2.15.3). To a solution of tert-butyl(1,3-dithian-2-yl)dimethylsilane (46 

mg, 0.19 mmol) in THF (0.9 mL), n-BuLi (0.086 mL, 2.5 M in hexanes),  was added 

dropwise at room temperature. The resulting yellow solution was stirred for 15 min and 

S S
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was transferred dropwise via syringe to a solution of epoxide (R,R)-2.14.2 (56 mg, 0.19 

mmol) in THF/HMPA (0.9 mL/0.1 mL) precooled to –40 ºC. The reaction mixture was 

stirred at –40 ºC for 30 min and then was allowed to rise to room temperature for 16 h. 

The reaction was diluted with water and was extracted with Et2O. The combined organic 

layer was washed with brine, dried (Na2SO4), filtered, and concentrated. The crude 

product was purified by column chromatography to obtain the product as colorless oil in 

69% yield (860 mg). Rf = 0.40 (5% EtOAc/hexanes); IR (neat) 2358, 2329 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 4.37 (tt, J = 7.6, 3.6 Hz, 1H), 4.25 (tt, J = 6.2, 3.4 Hz, 1H), 2.91 

(ddd, J = 14.4, 8.4, 3.5 Hz, 1H), 2.79 (ddd, J = 6.0, 3.8, 1.6 Hz, 2H), 2.74 (dt, J = 10.9, 

3.6 Hz, 1H), 2.44 (d, J = 13.4 Hz, 1H), 2.13 (dd, J = 13.9, 3.5 Hz, 1H), 2.01–1.74 (m, 

5H), 1.67 (ddd, J = 13.0, 7.9, 3.4 Hz, 1H), 1.07 (s, 21H), 0.89 (s, 9H), 0.06 (s, 3H), 0.04 

(s, 3H); 13C NMR (101 MHz, CDCl3) δ 67.0, 66.2, 48.6, 46.0, 45.6, 43.8, 26.8, 26.0, 

25.6, 18.3, 18.2, 12.5, -4.7, -4.8; m/z (ESI+) found [M+Na]+ 513.2685, C24H50O2S2SiNa 

requires 513.2688; [!]!!".!  –6.0 (c 1, DCM).  

 

 

(R,R)-2.15.4 
 

(8R,10R)-1,5-Dithiaspiro[5.5]undecane-8,10-diol (2.15.4). To a solution of tert-

butyldimethyl(((8R,10R)-10-((triisopropylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-8-

yl)oxy)silane in THF (50 mg, 0.10 mmol), tetrabutylammonium fluoride (0.15 ml, 0.15 

mmol, 1M solution in THF) was added and the reaction mixture was stirred at room 

temperature for 2 h. The reaction mixture was diluted with water and was extracted with 

S S
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ethyl acetate. The combined organic layer was washed with brine, dried over Na2SO4, 

filtered and concentrated. The crude reaction mixture was purified by column 

chromatography to obtain the product as colorless oil in 91% yield (20 mg). Rf = 0.30 

(30% EtOAc/hexanes); IR (neat) 3360 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.29–4.22 (m, 

2H), 3.00–2.85 (m, 6H), 2.27 (dd, J = 14.0, 6.8 Hz, 2H), 2.18 (dd, J = 14.0, 4.1 Hz, 2H), 

2.02 (p, J = 5.7 Hz, 2H), 1.87 (t, J = 5.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 65.4, 

48.3, 43.9, 42.3, 26.5, 25.3; m/z (ESI+) found [M+H]+ 221.0672, C9H17O2S2 requires 

221.0670; [!]!!".!  +39.5 (c .85, DCM).  

 
 

 

(R,R)-2.16.1 
 

Triisopropyl(((8R,10R)-10-((trimethylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-8-

yl)oxy)silane (2.16.1). To a solution of (1,3-dithian-2-yl)trimethylsilane (36 mg, 0.18 

mmol) in THF (0.5 mL) n-BuLi (0.092 mL, 0.21 mmoL) was added dropwise at room 

temperature. The resulting yellow solution was stirred for 15 min and was transferred 

dropwise via syringe to a solution of epoxide (R,R)-2.14.2 (50 mg, 0.17 mmol) in 

THF/HMPA (1.7 mL/0.8 mL) precooled to –40 ºC. The resulting light yellow solution 

was stirred at –40 ºC for 1 h and was then brought to room temperature for 16 h. The 

reaction mixture was diluted with water and was extracted with diethyl ether. The 

combined organic layer was washed with brine, dried, filtered and concentrated. The 

crude product was purified by column chromatography to obtain the product as colorless 

oil in 72% yield (55 mg). Rf = 0.35 (5% EtOAc/hexanes); IR (neat) 2358, 2329 cm-1; 1H 
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NMR (400 MHz, CDCl3) δ 4.36 (td, J = 5.7, 2.9 Hz, 1H), 4.30 (dt, J = 8.0, 4.2 Hz, 1H), 

2.93 (ddd, J = 14.4, 8.5, 3.6 Hz, 1H), 2.87–2.77 (m, 2H), 2.77–2.71 (m, 1H), 2.47–2.38 

(m, 1H), 2.15 (dd, J = 14.1, 3.6 Hz, 1H), 2.05–1.87 (m, 3H), 1.81 (dt, J = 13.4, 8.4 Hz, 

2H), 1.67 (ddd, J = 12.5, 8.2, 3.4 Hz, 1H), 1.08 (s, 21H), 0.13 (s, 9H); 13C NMR (101 

MHz, CDCl3) δ 67.2, 65.9, 48.7, 46.0, 45.7, 43.8, 26.8, 26.7, 25.6, 18.33, 18.29, 12.5, 

0.2; m/z (ESI+) found [M+Na]+ 471.2219, C21H44O2S2Si2Na requires 471.2219; [!]!!".!  

+103.5 (c 2.1, DCM).  

 By following above procedure, 500 mg (1.71 mmol) of the (((S)-1-chloro-3-((S)-

oxiran-2-yl)propan-2-yl)oxy)triisopropylsilane was converted to (S,S)-(1.1 g, 2.4 mmol).  

[!]!!".!  –104.7 (c 2.3, DCM).   

 

 
(S,S)-2.16.2 

 
 (1S,3S)-3-((Triisopropylsilyl)oxy)cyclohexanol (2.16.2). To a solution of 

triisopropyl(((8R,10R)-10-((trimethylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-8-

yl)oxy)silane (50 mg, 0.11 mmol) in ethanol (1 mL), Raney Nickel (0.3 mL suspension in 

water) was added in one portion and the reaction mixture was heated to reflux for 4 h. 

Reaction did not go to completion in 4h [Note: In some cases, an additional 5 mL 

suspension of Raney Nickel (washed with ethanol) was added and the reaction was 

refluxed for further 16 h.] The grey suspension was filtered through a plug of silica and 

the filtrate was concentrated. The crude reaction mixture was purified by column 

chromatography to obtain the product in 77% yield (20 mg, 0.085 mmol) as colorless oil. 

Rf = 0.32 (10% EtOAc/hexanes); IR (neat) 3378 cm-1; 1H NMR (400 MHz, CDCl3) δ 
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4.22 (tt, J = 5.8, 3.1 Hz, 1H), 4.07 (td, J = 8.9, 4.3 Hz, 1H), 2.00–1.66 (m, 3H), 1.66– 

1.42 (m, 7H), 1.41–1.19 (m, 2H), 1.13–0.92 (m, 18H); 13C NMR (101 MHz, CDCl3) δ 

68.2, 67.6, 43.5, 35.3, 34.3, 19.4, 18.6, 12.8; [!]!!".!  +39.5 (c 2.1, DCM); m/z (ESI+) 

found [M+Na]+ 295.2066, C15H32NaO2Si requires 295.2069. Chiral GC separation: Astec 

Chiraldex B-DM fused silica capillary column, 30m × 0.25 mm × 0.12 mm, temperature 

145 ºC, tR = 10.33 min, tS = 11.03 min, er 99>1.  

  Similarly, 1.02 g (2.28 mmol) of the triisopropyl (((8S,10S)-10-

((trimethylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-8-yl)oxy)silane in ethanol (20 mL) was 

treated with Raney-Nickel (5 mL of 50% aq suspension washed with ethanol) to provide 

(1R,3R)-3-((Triisopropylsilyl)oxy)cyclohexanol as colorless oil (430 mg, 1.35 mmol). 

[!]!!".!  –42.5 (c 2.3, DCM); er >99:1.   

 

 
(S,S)-2.16.3 

 
(1S,3S)-Cyclohexane-1,3-diol (2.16.3). To a solution of (1S,3S)-3-

((triisopropylsilyl)oxy)cyclohexanol 2.16.2 (50 mg, 0.11 mmol) in THF (0.5 mL), 

tetrabutylammonium fluoride (0.15 ml, 0.15 mmol, 1M solution in THF) was added and 

the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was 

diluted with water and was extracted with ethyl acetate. The combined organic layer was 

washed with brine, dried (Na2SO4), filtered and concentrated. The crude reaction mixture 

was purified by column chromatography to obtain the product as colorless oil in 91% 

yield (20 mg). Rf = 0.2 (100% EtOAc); IR (neat) 3378 cm-1; 1H NMR (400 MHz, CDCl3) 

δ 4.15–4.06 (m, 2H), 1.83–1.55 (m, 8H), 1.52–1.35 (m, 2H); 13C NMR (101 MHz, 
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CDCl3) δ67.1, 42.2, 33.9, 18.9; [!]!!".!  +3.7 (c 2.0, DCM); m/z (ESI+) found [M+Na]+ 

139.0734, C6H12NaO2 requires 139.0735.  

 By following above procedure, 410 mg (1.50 mmol) of the (1R,3R)-3-

((triisopropylsilyl)oxy)cyclohexanol was converted to (1R,3R)-cyclohexane-1,3-diol 

2.16.3 (218 mg, 1.35 mmol); [!]!!".!  – 3.5 (c , DCM).  

 
 

 
(R,R)-2.16.4 

 
(3S,5S)-3-Hydroxy-5-((triisopropylsilyl)oxy)cyclohexanone (2.16.4). To a solution of 

triisopropyl(((8S,10S)-10-((trimethylsilyl)oxy)-1,5-dithiaspiro[5.5]undecan-8-

yl)oxy)silane (50 mg, 0.11 mmol) in acetonitrile (0.5 mL), HgCl2 (59 mg, 0.22 mmol) 

was added in one portion and the reaction mixture was stirred vigorously at room 

temperature for 16 h. The white suspension was filtered through a plug of silica and the 

filtrate was concentrated. The crude reaction mixture was purified by column 

chromatography to obtain the product in 76% yield (20 mg, 0.085 mmol) as a colorless 

oil. Rf = 0.33 (50% EtOAc/hexanes); IR (neat) 3380, 1719 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 4.51 (tt, J = 6.3, 3.4 Hz, 1H), 4.43 (t, J = 4.0 Hz, 1H), 2.72 (ddt, J = 14.2, 4.6, 

1.6 Hz, 1H), 2.56 (ddt, J = 14.3, 4.0, 1.2 Hz, 1H), 2.47 (ddt, J = 14.2, 5.6, 1.5 Hz, 1H), 

2.38 (ddd, J = 14.2, 8.2, 1.2 Hz, 1H), 2.18 (dddt, J = 13.1, 6.5, 3.8, 1.4 Hz, 1H), 2.00–

1.92 (m, 1H), 1.64 (s, 1H), 1.13–0.96 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 207.6, 

67.1, 66.5, 50.4, 50.0, 41.7, 18.1, 12.3; m/z (ESI+) found [M+Na]+ 309.1859, 

C15H30O2SiNa requires 309.1862; [!]!!".!  +42.5 (c 1.1, DCM).  
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(R,R)-2.18.1 

 
(2R,4R)-1,5-Diiodo-4-((triisopropylsilyl)oxy)pentan-2-ol (2.18.1). A mixture of 

dichorodiol 2.14.1 (300 mg, 0.91 mmol) and NaI in acetone was allowed to reflux for 24 

h. The reaction mixture was concentrated and was subjected to  column chromatography 

to obtain the diiodo product as colorless oil in 94% yield (439 mg). Rf = 0.35 (10% 

EtOAc/hexanes); IR (neat) 3360 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.29 (ddt, J = 8.0, 

5.7, 4.1 Hz, 1H), 3.93–3.83 (m, 1H), 3.60 (dd, J = 11.0, 4.3 Hz, 1H), 3.54 (dd, J = 11.0, 

8.1 Hz, 1H), 3.31 (dd, J = 10.1, 4.5 Hz, 1H), 3.22 (dd, J = 10.1, 6.1 Hz, 1H), 3.20–3.16 

(m, 1H), 1.99 (ddd, J = 14.4, 5.7, 2.4 Hz, 1H), 1.85 (ddd, J = 14.1, 10.2, 3.5 Hz, 1H), 

1.10–1.05 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 71.0, 67.6, 46.8, 40.0, 18.2, 18.1, 

15.2, 12.5; m/z (ESI+) found [M+H]+ 513.0180, C14H31I2O2Si requires 513.0183; [!]!!".!  

–22.7 (c 1.2 , DCM).  

 By following above procedure, (2S,4S)-2.18.1 was obtained in 90% yield using  

(2S,4S)-2.14.1 (1.5 g, 4.5 mmol). [!]!!".! +20.7 (c 0.53, DCM). 

 
 

 
(R,R)-2.18.2 

 
 (3R,5R)-1-Benzyl-5-((triisopropylsilyl)oxy)piperidin-3-ol (2.18.2). 

To a solution of diiodo diol (2R,4R)-2.19.1 (50 mg, 0.097) in ethanol, benzylamine 

(0.013 mL, 0.12 mmol) was added and the resulting mixture was refluxed for 16 h at 100 

ºC. The reaction mixture was diluted with water and was extracted with ethyl acetate. The 
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combined organic layer was washed with brine, dried (Na2SO4), filtered and 

concentrated. The crude reaction mixture was purified by column chromatography to 

obtain the product as colorless oil in 71% yield (25 mg, 0.69 mmol). Rf = 0.35 (30% 

EtOAc/hexanes); IR (neat) 3310 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.34–7.21 (m, 5H), 

4.09 (tt, J = 9.7, 4.7 Hz, 1H), 3.95 (s, 1H), 3.56 (d, J = 3.0 Hz, 2H), 2.95 (ddt, J = 10.8, 

3.8, 1.8 Hz, 1H), 2.76 (ddt, J = 11.4, 3.8, 1.8 Hz, 1H), 2.50 (d, J = 10.3 Hz, 1H), 2.19 (dd, 

J = 11.5, 1.9 Hz, 1H), 2.14 (td, J = 5.3, 4.4, 3.2 Hz, 1H), 1.93 (dd, J = 10.7, 9.4 Hz, 1H), 

1.38 (ddd, J = 13.2, 10.4, 2.9 Hz, 1H), 1.08–0.91 (m, 21H); 13C NMR (101 MHz, CDCl3) 

δ 138.0, 129.1, 128.4, 127.3, 66.3, 65.4, 62.4, 61.4, 59.0, 41.3, 18.2, 12.4; m/z (ESI+) 

found [M+H]+ 364.2676, C21H38NO2Si requires 364.2672. [!]!!".!  +18.3 (c 2.1, DCM).  

 Similarly, a mixture of (2S,4S)-2.18.1 (710 mg, 1.38 mmol) on treatment with 

benzyl amine (1.66 mmol, 0.18 mL) in ethanol (40 mL) provided (3S,5S)-1-benzyl-5-

((triisopropylsilyl)oxy)piperidin-3-ol as colorless oil in 80% yield (402 mg, 1.11 mmol); 

[!]!!".!  –19.0 (c 1.0, DCM).  

 

 
(R,R)-2.18.3 

 
(3R,5R)-1-Benzylpiperidine-3,5-diol (2.18.3). To a solution of (3R,5R)-2.19.2 (300 mg, 

0.83 mmol) in THF 1M tetrabutylammonium fluoride (1.2 mL, 1.2 mmol) was added and 

the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was 

diluted with water and was extracted with ethyl acetate. The combined organic layer was 

washed with brine, dried (Na2SO4), filtered and concentrated. The crude reaction mixture 
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was purified by column chromatography to obtain the product as light brown oil (161 mg, 

0.78 mmol). Rf = 0.2 (5% MeOH/DCM); IR (neat) 3360 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.36–7.23 (m, 5H), 4.06–3.98 (m, 2H), 3.64–3.54 (m, 2H), 2.80–2.48 (m, 2H), 

2.45–2.27 (m, 2H), 2.13 (s, 2H), 1.82–1.71 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 

137.5, 129.3, 128.6, 127.6, 65.3, 62.4, 59.8, 40.4; m/z (ESI+) found [M+H]+ 208.1337, 

C12H18NO2 requires 208.1338; [!]!!".!  +16.1 (c 2.0, DCM). HPLC (Chiralpak IC column 

n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, tR,R = 22.96 min, tS,S = 24.67, er 

>99:1).  

Similarily, a solution of (3S,5S)-2.18.2 (395 mg, 1.08 mmol) in THF, on treatment 

with tetrabutylammonium fluoride (1.8 mL, 1M in THF) provided (3R,5R)-1-

benzylpiperidine-3,5-diol as colorless oil in 92% yield (220 mg, 1.0 mmol); [!]!!".! –17.0 

(c 1.1, DCM); er >99:1. 

 

 
(R,R)-2.20.1 

 
(3R,5R)-5-((Triisopropylsilyl)oxy)tetrahydro-2H-thiopyran-3-ol (2.20.1). To a 

solution of diiodo diol (2R,4R)-2.18.1 (50 mg, 0.15 mmol) in ethanol (1 mL), aqueous 

sodium sulfide (120 mg, 1.5 mmol) was added and the resulting mixture was refluxed for 

16 h at 100 ºC. The solvent was evaporated and the reaction mixture was extracted with 

ethyl acetate. The reaction mixture was diluted with water and was extracted with ethyl 

acetate. The combined organic layer was washed with brine, dried (Na2SO4), filtered and 

concentrated. The crude reaction mixture was purified by column chromatography to 

obtain the product as light yellow oil in 88% yield (38 mg, 0.13 mmol). Rf = 0.35 (20% 
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EtOAc/hexanes); IR (neat) 3421 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.52 (m, 1H), 4.03 

(m, 1H), 3.82–3.67 (m, 2H), 2.90–2.77 (m, 1H), 2.77–2.63 (m, 1H), 2.26 (ddd, J = 13.4, 

7.4, 6.3 Hz, 1H), 1.82 (ddd, J = 13.0, 5.7, 3.6 Hz, 1H), 1.25 (s, 1H), 1.08–1.01 (m, 21H); 

13C NMR (101 MHz, CDCl3) δ 78.8, 76.0, 73.0, 41.1, 37.9, 18.2, 12.2; m/z (ESI+) found 

[M+H]+ 291.1814, C14H31O2SSi requires 291.1814; [!]!!".!  +17.6 (c 0.85, DCM). Chiral 

GC separation: Astec Chiraldex B-DM fused silica capillary column, 30m × 0.25 mm × 

0.12 mm, temperature 160 ºC, tR,R = 13.39 min, tS,S = 15.40 min, erR,R 97:3.  

  In an identical manner as described above, a solution of (2S,4S)-2.18.1 (1.23 g, 

2.41 mmol) in ethanol (40 mL), aqueous sodium sulfide (1.88 g, 24.1 mmol) on refluxing 

for 20 h at 100 ºC, followed by column chromatography provided (3S,5S)-5-

((triisopropylsilyl)oxy)tetrahydro-2H-thiopyran-3-ol  as light yellow oil in 87% yield 

(618 mg, 2.12 mmol). [!]!!".!  –18.0 (c 1.0, DCM); erS,S 97:3.  

 
 

 
(R,R)-2.20.2 

 
 (3R,5R)-Tetrahydro-2H-thiopyran-3,5-diol (2.20.2). To a solution of (3R,5R)-2.20.1 

(312 mg, 1.21 mmol) in THF, tetrabutylammonium fluoride (1.8 mL, 1M in THF) was 

added and the reaction mixture was stirred at room temperature for 2 h. The reaction 

mixture was diluted with water and was extracted with ethyl acetate. The combined 

organic layer was washed with brine, dried over Na2SO4, filtered, and concentrated. The 

crude reaction mixture was purified by column chromatography to obtain the product as 

colorless viscous mass in 92% yield (149 mg, 1.1 mmol). Rf = 0.25 (100% EtOAc); IR 

(neat) 3306 cm-1; 1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 4.21–
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4.02 (m, 2H), 2.65 (ddd, J = 13.3, 3.1, 1.0 Hz, 2H), 2.44 (ddd, J = 13.3, 7.4, 1.1 Hz, 2H), 

2.23 (s, 2H), 1.73 (t, J = 5.5 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 65.6, 41.6, 35.3; 

m/z (ESI+) found [M+Na]+ 157.0297, C5H10NaO2S requires 157.0299; [!]!!".!  +6.3 (c 

2.1, EtOH).  

 Similarly, a solution of (3S,5S)-5-((triisopropylsilyl)oxy)tetrahydro-2H-thiopyran-

3-ol 2.20.1 (618 mg, 1.21 mmol) in THF, on treatment with tetrabutylammonium fluoride 

(1.8 mL, 1M in THF) provided (3S,5S)-tetrahydro-2H-thiopyran-3,5-diol as colorless 

viscous mass in 92% yield (149 mg, 1.1 mmol); [!]!!".!  –6.9 (c 1.1, EtOH). 

 
 

 
(1R,4S)-1.26.1 

 
 (1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-enol (1.26.1). To a solution of (1S,4S)-4-

((triisopropylsilyl)oxy)cyclopent-2-enol (3.41 g, 13.2 mmol) in THF (100 mL), triphenyl 

phosphine (13.8 g, 52.8 mmol) and 4-nitrophenyl benzoic acid (8.8 g, 52.8) were added. 

Then diethylazodicarboxylate (8.3 mL, 52.8 mmol) was added dropwise and the reaction 

mixture was stirred at room temperature for overnight. The reaction mixture was 

quenched with ammonium chloride and was extracted with diethyl ether. The combined 

organic layer was washed with brine, dried (Na2SO4), filtered and concentrated. The 

residue was dissolved in methanol and sodium methoxide (20 mol%, 58 mg) was added 

and the reaction mixture was stirred at room temperature for 4 h. The reaction mixture 

was filtered through a plug of anhydrous magnesium sulfate and was concentrated. The 

product was obtained by column chromatography in 72% yield (2.4 g) as colorless oil. Rf 

= 0.35 (10% EtOAc/hexanes); IR (neat) 3282 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.98–
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5.88 (m, 2H), 4.73 (ddt, J = 6.9, 4.4, 1.3 Hz, 1H), 4.57 (ddt, J = 7.2, 4.6, 1.4 Hz, 1H), 

2.70 (dt, J = 13.9, 7.0 Hz, 1H), 2.15 (s, 1H), 1.56 (dt, J = 13.7, 4.5 Hz, 1H), 1.24–0.87 

(m, 21H); 13C NMR (101 MHz, CDCl3) δ 137.2, 135.7, 75.3, 75.2, 45.1, 18.1, 18.09, 

12.2; m/z (ESI+) found [M+H]+ 257.1934, C14H29O2Si requires 257.1937; [!]!!".!  –19.4 

(c 2.0, DCM). Ent-1.26.1 (2.43 g) was prepared starting from (1R,4R)-4-

((triisopropylsilyl)oxy)cyclopent-2-enol (3.5 g, 13.2 mmol); [!]!!".! +20.0 (c 2.3, DCM).  

 
 

 
(R,R)-3.5.1 

 
4-Nitrophenyl ((1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) carbonate 

(R,R-3.5.1). To a solution of (1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-enol (3.5 g, 

13.6 mmol) in THF (136 mL), at -78 ºC, n-BuLi (5.4 mL, 2.5 M in hexanes) was added 

dropwise. The solution was stirred for 30 minutes at –78 ºC and a solution of 4-

nitrophenyl chloroformate (5.48 g, 27.2 mmol, in 20 mL THF) was added to it quickly. 

The reaction mixture was stirred at –78 ºC for 1 h and was quenched with saturated 

ammonium chloride while reaction still at – 78 ºC.  The reaction was extracted with 

diethyl ether. The combined organic layer was washed with brine, dried (Na2SO4), 

filtered and concentrated. The crude reaction mixture was purified by column 

chromatography to obtain the product as colorless oil in 77% yield (4.4 g). Rf = 0.45 

(10% EtOAc/hexanes); IR (neat) 1770 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 

9.2 Hz, 2H), 7.39 (d, J = 9.2 Hz, 2H), 6.14 (dt, J = 5.6, 1.6 Hz, 1H), 5.99 (ddd, J = 5.6, 

1.9, 1.3 Hz, 1H), 5.51 (ddt, J = 7.3, 5.0, 1.0 Hz, 1H), 4.84 (ddt, J = 6.9, 4.8, 1.0 Hz, 1H), 

2.94 (dt, J = 14.0, 7.3 Hz, 1H), 1.85 (dt, J = 13.9, 4.9 Hz, 1H), 1.31 – 0.71 (m, 21H); 13C 
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NMR (101 MHz, CDCl3) δ 155.7, 152.3, 145.5, 143.4, 129.7, 125.4, 121.9, 84.6, 76.2, 

41.6, 18.1, 12.2; m/z (ESI+) found [M+H]+ 422.1999, C21H32NO6Si requires 422.1999; 

[!]!!".! +23.5 (c 0.95, DCM). 4-Nitrophenyl ((1S,4S)-4-((triisopropylsilyl)oxy)cyclopent-

2-en-1-yl) carbonate S,S-3.5.2 was obtained in similar manner from (1S,4S)-4-

((triisopropylsilyl)oxy)cyclopent-2-enol; [!]!!".! –23.7 (c 1.2, DCM). 

 
 

 
(1S,4R)-3.5.1 

 
4-Nitrophenyl ((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) carbonate (S,R-

3.5.1). Starting with 3.5 g (13.6 mmol) of (1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-

enol, the carbonate product was obtained in 77% yield (4.4 g, 10.4 mmol) as a colorless 

oil. Rf = 0.42 (10% EtOAc/hexanes); IR (neat) 1769 cm-1; δ 1H NMR (400 MHz, CDCl3) 

δ 8.25 (d, J = 9.2 Hz, 2H), 7.36 (d, J = 9.2 Hz, 2H), 6.21 (dd, J = 5.8, 1.9 Hz, 1H), 6.04 

(ddd, J = 5.6, 2.4, 1.4 Hz, 1H), 5.82 (dd, J = 7.0, 2.0 Hz, 1H), 5.20 (ddd, J = 6.3, 4.1, 1.8 

Hz, 1H), 2.40 (ddd, J = 14.7, 6.6, 1.9 Hz, 1H), 2.16 (ddd, J = 14.7, 6.9, 4.2 Hz, 1H), 

1.18–0.98 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 152.3, 145.5, 140.9, 129.7, 125.4, 

122.0, 82.3, 74.8, 41.2, 18.11, 18.09, 17.8, 12.2; m/z (ESI+) found [M+H]+ 422.1992 , 

C21H31NO6Si requires 422.1999; [!]!!".!  –27.1 (c 0.15, DCM).  

 Starting with 1.7 g (6.6 mmol) of (1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-

enol, carbonate product S,R-3.5.1 was obtained in 79% yield (2.2 g, 5.2 mmol) as a 

colorless oil. [!]!!".!  +29.4 (c 1.3, DCM). 
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Parallel synthesis of silyl carbamates  

 

 

 
A solution of the carbonate 3.5.1 (1 eq, 1.8 mmol) in THF (10 mL) was added to a 20 mL 

microwave vial placed on a heating block fitted on a magnetic stirrer. N,N’-dimethyl 

aminopyridine (10 mol%), Hunig’s base (2 eq) and amino acid hydrochloride (1.2 eq) 

were added and the vial was sealed with an aluminum cap. The reaction mixture was 

heated at 80 ºC for 18 h. The solvent was evaporated and the crude product was purified 

by column chromatography (silica gel, ethyl acetate/hexane as eluent) to obtain the 

product 3.7.1 in 79–84% yield. All of the sixteen isomers of 3.7.1 were prepared on 600–

700 mg scale. Each of the isomers were individually purified using silica-gel column 

chromatography, and were characterized by nmr and mass analysis. The characterization 

data is provided below. 

 
 

 
(S,R,R)-3.7.1 

 
 (S)-tert-Butyl 3-(1H-indol-3-yl)-2-(((((1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-

en-1-yl)oxy)carbonyl)amino)propanoate (S,R,R-3.7.1). Yield 84%; Rf = 0.2 (30% 

!!
!!O
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(S,S)-3.5.1
(R,S)-3.5.1

(S,R,R)-3.7.1–(S,R,R)-3.7.4
(S,S,R)-3.7.1–(S,S,R)-3.7.4
(S,S,S)-3.7.1–(S,S,S)-3.7.4
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        -CH2CONH2
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EtOAc/hexanes); IR (neat) 1747, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 

7.61 (d, J = 7.9 Hz, 1H), 7.40–7.29 (m, 1H), 7.19 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.12 

(ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.01 (d, J = 2.3 Hz, 1H), 6.04 (dd, J = 5.8, 1.8 Hz, 1H), 

5.93 (dt, J = 5.9, 1.7 Hz, 1H), 5.74 (dt, J = 7.2, 2.3 Hz, 1H), 5.18 (d, J = 8.1 Hz, 1H), 

5.13–5.06 (m, 1H), 4.59 (dt, J = 8.2, 5.8 Hz, 1H), 3.27 (qd, J = 14.8, 5.8 Hz, 2H), 2.16 

(ddd, J = 14.5, 5.4, 2.6 Hz, 1H), 2.11–2.02 (m, 1H), 1.38 (s, 9H), 1.06 (d, J = 4.3 Hz, 

21H); 13C NMR (101 MHz, CDCl3) δ 171.3, 155.9, 140.9, 136.2, 131.8, 128.0, 122.8, 

122.2, 119.6, 119.1, 111.2, 110.5, 82.1, 79.7, 76.4, 55.1, 41.7, 28.1, 18.1, 12.2; m/z 

(ESI+) found [M+H]+ 543.3255, C30H47N2O5Si requires 543.3254; [!]!!".! +232 (c 1.0, 

DCM). 

 
 

 
(S,R,R)-3.7.2 

 
 (S)-2-tert-Butyl 1-((1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) 

pyrrolidine-1,2-dicarboxylate (S,R,R-3.7.2). Yield 82%; Rf = 0.3 (30% 

EtOAc/hexanes); IR (neat) 1749, 1713 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.06–5.91 

(m, 4H), 5.83 (d, J = 8.4 Hz, 1H), 5.69 (m, 1H), 5.10 (ddd, J = 6.7, 4.1, 2.0 Hz, 1H), 4.39 

(dt, J = 9.0, 4.7 Hz, 1H), 2.85 (dd, J = 16.0, 5.1 Hz, 1H), 2.70 (dd, J = 16.0, 4.4 Hz, 1H), 

2.18 (ddd, J = 14.4, 6.7, 2.3 Hz, 1H), 2.05 (ddd, J = 14.4, 7.0, 4.0 Hz, 1H), 1.42 (s, 10H), 

1.08–0.99 (m, 21H); 13C NMR (101 MHz, CDC3) δ 172.7, 170.2, 156.4, 141.0, 131.7, 

126.2, 115.8, 82.5, 79.9, 76.4, 51.3, 41.6, 37.6, 28.0, 18.0, 12.2; m/z (ESI+) found 

[M+H]+ 454.2985, C24H44NO5Si requires 454.2989; [!]!!".! +179 (c 1.0, DCM). 
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(S,R,R)-3.7.3 

 
 (S)-tert-Butyl 4-amino-4-oxo-2-(((((1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-

1-yl)oxy)carbonyl)amino)butanoate (S,R,R-3.7.3).  Yield 79%; Rf = 0.32 (70% 

EtOAc/hexanes); IR (neat) 1745, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.01–5.95 

(m, 1H), 5.95–5.87 (m, 1H), 5.74–5.65 (m, 1H), 5.11–4.98 (m, 1H), 4.17–4.04 (m, 1H), 

3.58–3.27 (m, 2H), 2.21–1.97 (m, 3H), 1.95–1.73 (m, 2H), 1.43–1.35 (m, 9H), 1.06–0.95 

(m, 21H); 13C NMR (101 MHz, CDCl3) δ 172.5, 170.3, 156.4, 141.1, 140.2, 82.5, 79.9, 

76.3, 51.3, 41.6, 29.9, 28.0, 18.1, 12.1; m/z (ESI+) found [M+H]+ 471.2990, 

C23H43N2O6Si requires 471.2989; [!]!!".! +89 (c 1.1, MeOH). 

 
 

 
(S,R,R)-3.7.4 

 
 (S)-tert-Butyl-2-(((((1R,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-

yl)oxy)carbonyl)amino)propanoate (S,R,R-3.7.4).  Yield 83%; Rf = 0.40 (20% 

EtOAc/hexanes); IR (neat) 1747, 1711 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.02–5.99 

(m, 1H), 5.95–5.88 (m, 1H), 5.75–5.65 (m, 1H), 5.22 (m, 1H), 5.09 (qd, J = 3.8, 1.7 Hz, 

1H), 4.18–4.01 (m, 1H), 2.17 (ddd, J = 14.4, 6.7, 2.3 Hz, 1H), 2.05 (ddd, J = 14.5, 7.0, 

4.0 Hz, 1H), 1.42 (s, 9H), 1.32 (d, J = 7.2 Hz, 3H), 1.12–0.93 (m, 21H); 13C NMR (101 

MHz, CDCl3) δ 172.3, 155.7, 140.8, 131.8, 81.8, 79.6, 76.4, 50.1, 41.7, 28.0, 19.0, 18.0, 

12.2; m/z (ESI+) found [M+H]+ 428.2832, C22H42NO5Si requires 428.2832; [!]!!".! –69.7 

(c 1.2, DCM).  
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(S,S,R)-3.7.1 

 
(S)-tert-Butyl 3-(1H-indol-3-yl)-2-(((((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-

en-1-yl)oxy)carbonyl)amino)propanoate (S,S,R-3.7.1). Yield 81%; Rf = 0.20 (20% 

EtOAc/hexanes); IR (neat) 1744, 1713 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.60–8.31 

(m, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.19 (ddd, J = 8.1, 7.0, 1.2 

Hz, 1H), 7.15–7.07 (m, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.08 (dd, J = 5.6, 1.9 Hz, 1H), 5.93 

(dt, J = 5.7, 1.8 Hz, 1H), 5.78–5.53 (m, 1H), 5.40–5.15 (m, 1H), 5.14–4.95 (m, 1H), 

4.70–4.30 (m, 1H), 3.28 (qd, J = 14.9, 5.8 Hz, 2H), 2.19 (ddd, J = 14.5, 6.7, 2.2 Hz, 1H), 

2.11–2.00 (m, 1H), 1.42 (s, 9H), 1.06 (d, J = 3.9 Hz, 21H); 13C NMR (101 MHz, CDCl3) 

δ 171.5, 162.8, 156.4, 140.9, 139.1, 136.2, 131.2, 127.6, 123.0, 122.3, 119.7, 111.3, 

109.8, 82.7, 78.0, 74.9, 55.2, 41.5, 28.0, 17.98, 17.95, 12.1; m/z (ESI+) found [M+H]+ 

543.3256, C30H47N2O5Si requires 543.3254; [!]!!".! –23.7 (c 2.0, MeOH). 

 
 

 
(S,S,R)-3.7.2 

 
 (S)-2-tert-Butyl 1-((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) pyrrolidine-

1,2-dicarboxylate (S,S,R-3.7.2).  Yield 79%; Rf = 0.35 (70% EtOAc/hexanes); IR (neat) 

1749, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.94–5.72 (m, 2H), 5.42–5.29 (m, 1H), 

4.70 (m, 1H), 4.12–4.08 (m, 1H), 3.57–3.25 (m, 2H), 2.87–2.71 (m, 1H), 2.22–1.71 (m, 

3H), 1.69–1.50 (m, 1H), 1.37 (m, 10H), 1.02 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 
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172.0, 154.7, 138.3, 131.8, 81.1, 77.5, 74.9, 46.8, 42.0, 30.9, 28.0, 24.2, 23.5, 17.99, 

17.98, 12.2; m/z (ESI+) found [M+H]+ 454.2989, C24H44NO5Si requires 454.2989; [!]!!".! 

+37.7 (c 1.0, DCM). 

 
 

 
(S,S,R)-3.7.3 

 
 (S)-tert-Butyl 4-amino-4-oxo-2-(((((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-

1-yl)oxy)carbonyl)amino)butanoate (S,S,R-3.7.3). Yield 80%; Rf = 0.40 (20% 

EtOAc/hexanes); IR (neat) 1745, 1700, cm-1; 1H NMR (400 MHz, CDCl3) δ 6.17–5.82 

(m, 4H), 5.38 (t, J = 6.5 Hz, 1H), 4.75 (dtd, J = 7.2, 2.8, 1.3 Hz, 1H), 4.56–3.89 (m, 1H), 

2.98–2.53 (m, 3H), 1.63 (dt, J = 13.7, 5.1 Hz, 1H), 1.42 (s, 9H), 1.35–1.12 (m, 1H), 1.11–

0.91 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 172.7, 163.3, 156.3, 139.0, 126.2, 115.8, 

82.5, 77.7, 74.9, 51.3, 41.8, 37.6, 28.0, 18.03, 18.01, 12.2; m/z (ESI+) found [M+H]+ 

471.2887, C23H43N2O6Si requires 471.2890; [!]!!".! +30.4 (c 0.95, DCM). 

 
 

 
(S,S,R)-3.7.4 

 
 (S)-tert-Butyl-2-(((((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-

yl)oxy)carbonyl)amino)propanoate (S,S,R-3.7.4). Yield 82%; Rf = 0.42 (20% 

EtOAc/hexanes); IR (neat) 1747, 1710 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.94 (dt, J = 

5.6, 1.6 Hz, 1H), 5.92–5.78 (m, 1H), 5.54–5.01 (m, 2H), 4.87–4.60 (m, 1H), 4.27–3.92 

(m, 1H), 2.79 (dt, J = 13.7, 7.3 Hz, 1H), 1.61 (dt, J = 13.6, 5.2 Hz, 1H), 1.41 (s, 9H), 1.32 
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(d, J = 7.1 Hz, 3H), 1.03–0.99 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 172.2, 155.6, 

138.8, 131.5, 81.8, 77.4, 74.9, 50.2, 41.7, 28.0, 18.0, 12.1; m/z (ESI+) found [M+H]+ 

428.2830, C22H42NO5Si requires 428.2832; [!]!!".! –30.4 (c 1.2, DCM). 

 

 
(S,S,S)-3.7.1 

 
 (S)-tert-Butyl 3-(1H-indol-3-yl)-2-(((((1S,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-

en-1-yl)oxy)carbonyl)amino)propanoate (S,S,S-3.7.1).  Yield 80%; Rf = 0.22 (20% 

EtOAc/hexanes); IR (neat) 1744, 1712 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.60–8.31 

(m, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.19 (ddd, J = 8.1, 7.0, 1.2 

Hz, 1H), 7.15–7.07 (m, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.08 (dd, J = 5.6, 1.9 Hz, 1H), 5.93 

(dt, J = 5.7, 1.8 Hz, 1H), 5.78–5.53 (m, 1H), 5.40–5.15 (m, 1H), 5.14–4.95 (m, 1H), 

4.70–4.30 (m, 1H), 3.28 (qd, J = 14.9, 5.8 Hz, 2H), 2.19 (ddd, J = 14.5, 6.7, 2.2 Hz, 1H), 

2.11–2.00 (m, 1H), 1.42 (s, 9H), 1.06 (d, J = 3.9 Hz, 21H); 13C NMR (101 MHz, CDCl3) 

δ 171.5, 156.4, 136.2, 131.3, 127.7, 126.2, 122.9, 122.2, 119.6, 118.8, 115.7, 111.3, 82.5, 

80.2, 76.3, 55.2, 41.5, 28.0, 18.0, 12.1; m/z (ESI+) found [M+H]+ 543.3250, 

C30H47N2O5Si requires 543.3254; [!]!!".! +157 (c 1.3, DCM). 
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(S,S,S)-3.7.2 

 
 (S)-2-tert-Butyl 1-((1S,4R)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) pyrrolidine-

1,2-dicarboxylate (S,S,S-3.7.2). Yield 83%; Rf = 0.42 (20% EtOAc/hexanes); IR (neat) 

1745, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.17–5.82 (m, 4H), 5.38 (t, J = 6.5 Hz, 

1H), 4.75 (dtd, J = 7.2, 2.8, 1.3 Hz, 1H), 4.56–3.89 (m, 1H), 2.98–2.53 (m, 3H), 1.63 (dt, 

J = 13.7, 5.1 Hz, 1H), 1.42 (s, 9H), 1.35–1.12 (m, 1H), 1.11–0.91 (m, 22H); 13C NMR 

(101 MHz, CDCl3) δ 172.7, 170.3, 163.3, 156.3, 139.0, 131.4, 126.2, 115.8, 82.5, 77.7, 

74.9, 51.3, 41.8, 37.6, 28.0, 18.0 (d, J = 1.8 Hz), 12.2; m/z (ESI+) found [M+H]+ 

454.2994, C24H44NO5Si requires 454.2989; [!]!!".! +202.3 (c 1.0, DCM). 

 

 

 
(S,S,S)-3.7.3 

 
 (S)-tert-Butyl 4-amino-4-oxo-2-(((((1S,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-

yl)oxy)carbonyl)amino)butanoate (S,S,S-3.7.3). Yield 77%; Rf = 0.34 (70% 

EtOAc/hexanes); IR (neat) 1746, 1699 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.03–5.60 

(m, 2H), 5.39 (m, 1H), 4.73 (dtd, J = 7.1, 5.1, 2.4 Hz, 1H), 4.11 (m, 1H), 3.46–3.80 (m, 

2H), 2.94–2.67 (m, 1H), 2.25–1.74 (m, 3H), 1.62 (m, 1H), 1.40 (m, 9H), 1.02 (m, 21H); 

13C NMR (101 MHz, CDCl3) δ 172.0, 154.7, 154.4, 138.4, 138.3, 132.2, 131.8, 81.1, 

77.5, 74.9, 59.9, 59.5, 46.8, 46.4, 42.0, 41.8, 30.9, 30.0, 28.0, 24.3, 23.5, 18.0, 12.1; m/z 
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(ESI+) found [M+H]+ 471.2889, C23H43N2O6Si requires 471.2890; [!]!!".! +214 (c 1.0, 

MeOH). 

 

 

 
(S,S,S)-3.7.4 

 
 (S)-tert-Butyl-2-(((((1S,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-

yl)oxy)carbonyl)amino)propanoate (S,S,S-3.7.4). Yield 80%; Rf = 0.45 (20% 

EtOAc/hexanes); IR (neat) 1747, 1717 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.04 (dd, J = 

5.7, 1.8 Hz, 1H), 5.94 (ddd, J = 5.6, 2.4, 1.4 Hz, 1H), 5.79–5.58 (m, 1H), 5.25–4.88 (m, 

2H), 4.35–3.83 (m, 1H), 2.19 (ddd, J = 14.5, 6.7, 2.2 Hz, 1H), 2.05 (ddd, J = 14.4, 7.0, 

4.1 Hz, 1H), 1.44 (s, 9H), 1.33 (d, J = 7.2 Hz, 3H), 1.12–0.96 (m, 21H); 13C NMR (101 

MHz, CDCl3) δ 172.4, 155.7, 141.0, 131.7, 81.9, 79.7, 76.4, 50.2, 41.7, 28.1, 19.0, 

18.1.05, 18.04, 12.2; m/z (ESI+) found [M+H]+ 428.2829, C22H42NO5Si requires 

428.2832; [!]!!".! +129.7 (c 0.87, DCM). 

 

 

 
(S,R,S)-3.7.1 

 
 (S)-tert-Butyl 3-(1H-indol-3-yl)-2-(((((1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-

en-1-yl)oxy)carbonyl)amino)propanoate (S,R,S-3.7.1). Yield 79%; Rf = 0.22 (20% 

EtOAc/hexanes); IR (neat) 1748, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 
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7.61 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.4 

Hz, 1H), 6.98 (d, J = 2.4 Hz, 1H), 5.99 (d, J = 5.8 Hz, 1H), 5.86 (d, J = 5.6 Hz, 1H), 

5.52–5.15 (m, 2H), 4.78 (t, J = 6.3 Hz, 1H), 4.60 (dt, J = 8.2, 5.8 Hz, 1H), 3.27 (m, 2H), 

2.87 (dt, J = 14.1, 7.3 Hz, 1H), 1.65 (dt, J = 13.6, 5.3 Hz, 1H), 1.39 (s, 9H), 1.09 (d, J = 

4.5 Hz, 21H); 13C NMR (101 MHz, CDCl3) δ 171.2, 155.8, 138.8, 136.2, 131.6, 127.9, 

122.9, 122.1, 119.6, 119.0, 111.2, 110.3, 82.0, 77.4, 75.0, 55.1, 53.5, 41.9, 28.0, 18.06, 

18.05, 12.2; m/z (ESI+) found [M+H]+ 543.3250, C30H47N2O5Si requires 543.3254; 

[!]!!".! +107 (c 1.0, DCM).  

 
 

 
(S,R,S)-3.7.2 

 
 (S)-2-tert-Butyl 1-((1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-yl) pyrrolidine-

1,2-dicarboxylate (S,R,S-3.7.2). Yield 80%; Rf = 0.35 (20% EtOAc/hexanes); IR (neat) 

1749, 1715 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.03–5.79 (m, 2H), 5.56–5.31 (m, 1H), 

4.90–4.55 (m, 1H), 4.18 (m, 1H), 3.69–3.22 (m, 2H), 2.84 (m, 1H), 2.16 (dd, J = 6.5, 2.8 

Hz, 1H), 2.03–1.75 (m, 3H), 1.72–1.51 (m, 1H), 1.42 (m, 9H), 1.03 (m, 21H); 13C NMR 

(101 MHz, CDCl3) δ 172.1, 154.8, 138.5, 132.1, 81.2, 77.5, 75.0, 59.9, 46.5, 30.9, 28.1, 

24.3, 23.5, 18.06, 18.04, 12.1; m/z (ESI+) found [M+H]+ 454.2985, C24H44NO5Si requires 

454.2989; [!]!!".! +169 (c 1.1, DCM). 
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(S,R,S)-3.7.3 

 
 (S)-tert-Butyl 4-amino-4-oxo-2-(((((1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-en-

1-yl)oxy)carbonyl)amino)butanoate (S,R,S-3.7.3).  Yield 78%; Rf = 0.35 (30% 

EtOAc/hexanes); IR (neat) 1744, 1704 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.21 (s, 2H), 

6.08–5.88 (m, 2H), 5.83 (dt, J = 5.6, 1.6 Hz, 1H), 5.36 (t, J = 6.4 Hz, 1H), 4.85–4.58 (m, 

1H), 4.38 (dt, J = 9.6, 5.0 Hz, 1H), 2.90–2.70 (m, 2H), 2.65 (dd, J = 16.3, 4.2 Hz, 1H), 

1.59 (dt, J = 13.6, 5.3 Hz, 1H), 1.39 (s, 9H), 1.00 (d, J = 4.6 Hz, 21H); 13C NMR (101 

MHz, CDCl3) δ 172.7, 170.3, 156.2, 138.8, 131.5, 82.2, 77.5, 74.9, 51.3, 41.7, 37.5, 27.9, 

17.92, 17.90 12.1; m/z (ESI+) found [M+H]+ 471.2889, C23H43N2O6Si requires 471.2890; 

[!]!!".! +202 (c 1.4, DCM). 

 
 

 
(S,R,S)-3.7.4 

 
(S)-tert-Butyl-2-(((((1R,4S)-4-((triisopropylsilyl)oxy)cyclopent-2-en-1-

yl)oxy)carbonyl)amino)propanoate (S,R,S-3.7.4). Yield 82%; Rf = 0.42 (20% 

EtOAc/hexanes); IR (neat) 1749, 1712 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.01–5.92 

(m, 1H), 5.92–5.72 (m, 1H), 5.62–5.02 (m, 2H), 4.90–4.62 (m, 1H), 4.39–3.87 (m, 1H), 

2.84 (dt, J = 14.1, 7.3 Hz, 1H), 1.72–1.52 (m, 1H), 1.45 (s, 9H), 1.35 (d, J = 7.1 Hz, 3H), 

1.12–0.96 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 172.22, 155.5, 138.7, 131.6, 81.8, 

77.3, 74.9, 50.1, 41.9, 28.0, 18.9, 18.01, 17.99, 12.16; m/z (ESI+) found [M+H]+ 

428.2830, C22H42NO5Si requires 428.2832; [!]!!".! +132 (c 1.1, DCM). 
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Library Synthesis  

 

 

 

 
 

Step I. Each of the silyl monocarbamates 3.7.1–3.7.4 were treated with 

tetrabutylammonium fluoride (2 equiv) in THF for 2h. The reaction was quenched with 

water and extracted with ethyl acetate. The organic layer was dried (Na2SO4), filtered and 

concentrated to obtain the corresponding unprotected alcohol that was used as starting for 

the next without subsequent purification.  

 
Step II. To 2 dram vials placed on a 6x4-well heating block, 50 mg of the alcohol 

obtained in step I, amino acid isocyanate (3 eq) and 10% N,N’-DMAP were added. The 

block was heated to 100 ºC for 2 h. After cooling, 2 mL of dichloromethane was added to 

each vial. The contents were transferred to collection tubes, purged with nitrogen gas in a 

sample evaporator. The crude reaction mixtures (S,R,R,S)-3.9.7–(S,R,R,S)-3.9.30 on 

mass-directed purification produced 18 compounds in >90% purity and amounts in the 

(S,S,R)-3.7.1–(S,R)-3.7.4
(S,S,R)-3.7.1–(S,R)-3.7.4
(S,S,S)-3.7.1–(S,R)-3.7.4
(S,R,S)-3.7.1–(S,R)-3.7.4

!!!! OTIPSO

O

H
N

tBuO2C

R1

OCN

CO2tBu
R2

!!!! OO

O

H
N

tBuO2C
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O

HN

CO2tBu
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96 biscarbamates16 scaffolds

(S,S,R,S)-3.9.7–(S,R,R,S)-3.9.30
(S,S,R,S)-3.9.7–(S,S,R,S)-3.9.30
(S,S,S,S)-3.9.7–(S,S,S,S)-3.9.30
(S,R,S,S)-3.9.7–(S,R,S,S)-3.9.30

2.
1. TBAF

NH

CO2tBu

NH

Me

H2NOC

Ph

S
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range of 4–62 mg. A random subset of ten compounds from the crude library of the 72 

compound library [(S,S,R,S)-3.9.7–(S,S,R,S)-3.9.30, [(S,S,S,S)-3.9.7–(S,S,S,S)-3.9.30 and 

(S,R,S,S)-3.9.7–(S,R,S,S)-3.9.30] were purified by column chromatography to obtain the 

25–37 mg of the desired biscarbamate products (the spectral data are listed below). The 

rest of the crude library compounds were subjected to mass-directed purification and 

analysis.  

 

   

 
(S,R,R,S)-3.9.7 

 
 (S)-tert-Butyl-2-(((((1R,4R)-4-((((S)-1-(tert-butoxy)-1-oxo-3-phenylpropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-(1H-indol-3-

yl)propanoate (3.9.7). Yield 29%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 1749, 1693 

cm-1; 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.50–6.82 (m, 

9H), 6.06 (s, 2H), 5.73 (d, J = 5.9 Hz, 2H), 5.22 (dd, J = 20.4, 8.3 Hz, 2H), 4.77–4.49 (m, 

2H), 3.37–3.18(m, 2H), 3.14–3.00 (m, 2H), 2.14 (t, J = 5.1 Hz, 2H), 1.43 (s, 9H), 1.41 (s, 

9H); 13C NMR (101 MHz, CDCl3) δ 171.2, 171.1, 170.7, 155.7, 136.2, 135.6, 129.6, 

128.5, 127.9, 127.1, 122.8, 122.2, 119.6, 118.9, 111.3, 110.4, 82.4, 82.1, 79.1, 78.9, 60.5, 

55.3, 53.5, 38.6, 37.9, 28.1, 21.1, 14.3; m/z (ESI+) found [M+H]+ 634.3130, C35H44N3O8 

requires 634.3128; [!]!!!.! +112 (c 1.0, DCM). 
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(S,R,R,S)-3.9.9 

 
(S)-tert-Butyl 2-(((((1R,4R)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-4-methylpentanoate 

(3.9.9). Yield 44%; Rf = 0.2 (30% EtOAc/hexanes); IR (neat) 1749, 1703 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 8.32 (m, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 

7.21 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.14 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.04 (d, J = 2.3 

Hz, 1H), 6.22–5.92 (m, 2H), 5.84–5.51 (m, 2H), 5.15 (m, 2H), 4.72–4.20 (m, 1H), 3.39–

3.16 (m, 2H), 2.17 (m, 2H), 1.78–1.55 (m, 1H), 1.48 (s, 9H), 1.41 (s, 9H), 1.04–0.88 (m, 

9H); 13C NMR (101 MHz, CDCl3) δ 172.4, 171.2, 155.7, 136.2, 135.8, 135.6, 127.9, 

122.8, 122.3, 119.7, 119.0, 111.3, 110.5, 100.1, 82.1, 82.0, 79.0, 55.1, 42.2, 38.0, 29.8, 

28.1, 28.07, 25.0, 23.0, 22.1, 21.2; m/z (ESI+) found [M+H]+ 600.3285, C32H46N3O8 

requires 600.3285; [!]!!".! –143.9 (c 1.0, DCM). 

 
 

 
(S,R,R,S)-3.9.11 

 
(S)-Di-tert-butyl 2-(((((1R,4R)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-

oxopropan-2-yl)carbamoyl)oxy)cyclopent-2-enyl)oxy)carbonyl)amino)pentanedioate 

(3.9.11). Yield 62%; Rf = 0.4 (30% EtOAc/hexanes); IR (neat) 1748, 1714, 1693 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.0 Hz, 

1H), 7.19 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.13 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.02 (d, J = 
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2.3 Hz, 1H), 6.07 (s, 2H), 5.87–5.48 (m, 2H), 5.43–5.17 (m, 2H), 4.74–4.20 (m, 2H), 

3.37–3.16 (m, 2H), 2.50–2.12 (m, 5H), 1.99–1.81 (m, 1H), 1.48 (s, 9H), 1.47 (s, 9H), 

1.40 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 172.2, 171.2, 155.9, 155.7, 136.2, 135.7, 

135.6, 127.9, 122.9, 122.2, 119.6, 118.9, 111.3, 110.7, 110.3, 82.4, 82.1, 80.8, 79.1, 78.9, 

55.1, 54.0, 37.8, 31.6, 28.2, 28.1, 28.0, 21.1, 14.3; m/z (ESI+) found [M+H]+ 672.3490, 

C35H50N3O10 requires 672.3496; [!]!!".! +249 (c 1.0, DCM). 

 

 

 
(S,R,R,S)-3.9.8 

 
(S)-tert-Butyl 2-(((((1R,4R)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-(4-(tert-

butoxy)phenyl)propanoate 3.9.8). Yield 67%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 

1748, 1728, 1715, 1693 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.25 (m, 1H), 7.59 (d, J = 

7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.22–7.14 (m, 1H), 7.15–7.09 (m, 1H), 7.09–6.98 

(m, 3H), 6.91 (d, J = 8.1 Hz, 2H), 6.05 (s, 2H), 5.87–5.47 (m, 2H), 5.25–4.87 (m, 2H), 

4.72–4.21 (m, 2H), 3.34–3.14 (m, 2H), 3.02 (d, J = 6.1 Hz, 2H), 2.23–2.07 (m, 2H), 1.38 

(s, 9H), 1.38 (s, 9H), 1.32 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 171.2, 170.7, 155.7, 

155.6, 154.5, 136.2, 135.7, 131.1, 130.1, 127.9, 124.2, 122.8, 122.3, 121.7, 119.7, 119.0, 

111.3, 110.5, 82.4, 82.2, 79.1, 78.9, 78.6, 55.3, 55.1, 38.1, 37.9, 29.0, 28.1, 21.2, 14.2; 

m/z (ESI+) found [M+H]+ 706.3703, C39H52N3O9 requires 706.3704; [!]!!".! –219 (c 1.6, 

MeOH). 
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(S,R,S,R)-3.9.10 

 
(S)-tert-Butyl 2-(((((1R,4S)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-4-(methylthio)butanoate 

(3.9.10). Yield 52%; Rf = 0.2 (30% EtOAc/hexanes); IR (neat) 1745, 1727, 1699 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.16 (m, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 8.1 Hz, 

1H), 7.19 (dd, J = 8.1, 1.2 Hz, 1H), 7.11 (dd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.03 (m, 1H), 6.05 

(m, 2H), 5.56 - 5.37 (m, 2H), 5.37 - 4.99 (m, 2H), 4.73 – 4.08 (m, 2H), 3.41 – 3.05 (m, 

2H), 2.95 – 2.64 (m, 1H), 2.51 (m, 2H), 2.12 (m, 4H), 1.92 (m, 1H), 1.74 (dt, J = 14.9, 

3.6 Hz, 1H), 1.47 (s, 9H), 1.37 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 171.0, 170.6, 

155.5, 155.4, 136.1, 134.8, 134.6, 127.8, 122.6, 122.2, 119.5, 118.9, 111.1, 110.4, 82.4, 

82.0, 79.1, 78.9,  54.8, 53.7, 37.3, 32.4, 29.9, 28.0, 27.9, 15.5; 15.4; m/z (ESI+) found 

[M+H]+  618.2850, C31H44N3O8S requires 618.2849; [!]!!".! +189 (c 1.0, MeOH). 

 

 

 
(S,R,S,R)-3.9.12 

 
(S)-tert-Butyl 2-(((((1R,4S)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-(4-(tert-

butoxy)phenyl)propanoate (3.9.12). Yield 56%; Rf = 0.4 (30% EtOAc/hexanes); IR 

(neat) 1748, 1714 cm-1; 1H NMR (400 MHz, CDCl3) 8.22 (m, 1H), 7.60 (d, J = 7.8 Hz, 
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1H), 7.38 - 7.31 (m, 1H), 7.18 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.11 - 6.90 (m, 4H), 6.90 

(d, J = 8.5 Hz, 2H), 6.04 (s, 2H), 5.48 – 5.36 (m, 2H), 5.19 (dd, J = 27.1, 8.1 Hz, 2H), 

4.64 - 4.41 (m, 2H), 3.41 - 2.60 (m, 5H), 1.83 – 1.43 (m, 1H), 1.37 (s, 18H), 1.32 (s, 9H); 

13C NMR (101 MHz, CDCl3) δ 171.2, 170.8, 155.5, 155.3, 154.4, 136.2, 135.0, 134.7, 

131.0, 130.1, 127.9, 124.3, 122.8, 122.3, 119.6, 119.1, 111.2, 110.5, 82.4, 82.2, 78.5, 

77.5, 77.2, 76.8, 55.4, 54.9, 38.1, 37.5, 30.0, 28.1, 15.4; m/z (ESI+) found [M+H]+ 

706.3699, C39H52N3O9 requires 706.3704; [!]!!".! +66 (c 0.89, MeOH). 

 

 

 
(S,R,S,R)-3.9.19 

 
 (S)-1-((1S,4R)-4-((((S)-1-(tert-Butoxy)-1-oxo-3-phenylpropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl) 2-tert-butyl pyrrolidine-1,2-dicarboxylate 

(3.9.19). Yield 62%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 1748, 1714, 1693 cm-1; 1H 

NMR (400 MHz, CDCl3) 7.30 – 7.14 (m, 3H), 7.13 - 7.05 (m, 2H), 6.11 – 5.80 (m, 2H), 

5.58 – 5.30 (m, 2H), 5.16 - 4.82 (m, 1H), 4.55 – 4.22 (m, 1H), 4.21–4.02 (m, 1H), 3.58 – 

3.26 (m, 2H), 3.00 (m, 2H), 2.87 - 2.70 (m, 1H), 2.24 – 2.01 (m, 1H), 1.98 – 1.46 (m, 

4H), 1.38 (m, 9H), 1.33 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 172.0, 171.9, 170.7, 

155.4, 154.7, 154.6, 136.2, 135.0, 134.3, 129.6, 82.4, 81.2, 81.3, 60.7, 55.2, 46.9, 46.4, 

38.7, 37.6, 31.0, 28.1, 28.0, 23.4; m/z (ESI+) found [M+H]+ 545.2863, C29H41N2O8 

requires 545.2863; [!]!!".! +136.4 (c 1.0, MeOH). 
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(S,R,S,R)-3.9.23 

 
 

(S)-2-tert-Butyl 1-((1S,4R)-4-((((S)-1,5-di-tert-butoxy-1,5-dioxopentan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl) pyrrolidine-1,2-dicarboxylate (3.9.23) 

Yield 46%; Rf = 0.5 (30% EtOAc/hexanes); IR (neat) 1744, 1714, 1693 cm-1; 1H NMR 

(400 MHz, CDCl3) 6.24 – 5.95 (m, 2H), 5.89 – 5.63 (m, 2H), 5.22 (d, J = 8.1 Hz, 1H), 

4.32 – 3.97 (m, 2H), 3.64 – 3.27 (m, 2H), 2.50 – 1.62 (m, 10H), 1.45 (s, 9H), 1.43 (s, 

9H), 1.40 (s, 9H); 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 172.2, 

171.9, 171.2, 155.9, 154.8, 154.4, 136.3, 136.2, 135.4, 135.1, 82.4, 81.4, 81.2, 80.8, 79.2, 

79.1, 60.0, 59.6, 54.0, 46.9, 46.5, 37.8, 31.6, 31.0, 30.0, 28.2, 28.1, 28.1, 24.3, 23.5; m/z 

(ESI+) found [M+H]+ 583.3228, C29H47N2O10 requires 583.3231; [!]!!".! +176 (c 1.0, 

MeOH). 

 

 

 
(S,R,S,R)-3.9.25 

 
 (S)-tert-Butyl 2-(((((1R,4S)-4-((((S)-1-(tert-butoxy)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-phenylpropanoate 

(3.9.25). Yield 49%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 1744, 1690 cm-1; 1H NMR 

(400 MHz, CDCl3) 7.34 – 7.20 (m, 3H), 7.20 - 7.13 (m, 2H), 6.15 – 5.89 (m, 2H), 5.57 – 

5.36 (m, 2H), 5.36 - 4.89 (m, 2H), 4.68–4.41 (m, 1H), 4.55 – 3.97 (m, 1H), 3.06 (d, J = 
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7.5 Hz, 2H), 2.92 – 2.74 (m, 1H), 1.74 (m, 1H), 1.46 (s, 9H), 1.39 (s, 9H), 1.36 (d, J = 7.2 

Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.3, 170.7, 155.7, 155.4, 136.2, 134.8, 129.6, 

128.5, 127.1, 119.2, 82.4, 82.1, 78.2, 55.3, 50.2, 39.2, 38.7, 37.6, 28.3, 28.1, 19.1; m/z 

(ESI+) found [M+H]+ 519.2700, C27H39N2O8 requires 519.2706; [!]!!".! +173 (c 1.0, 

DCM). 

 
 

 
(S,R,S,R)-3.9.28 

 
 (S)-tert-Butyl 2-(((((1R,4S)-4-((((S)-1-(tert-butoxy)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-4-(methylthio)butanoate 

(3.9.28). Yield 60%; Rf = 0.2 (30% EtOAc/hexanes); IR (neat) 1747, 1705 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 6.09 (d, J = 8.3 Hz, 2H), 5.50 (dt, J = 7.6, 4.0 Hz, 2H), 5.28 (dd, J = 

23.0, 7.9 Hz, 1H), 4.57–4.16 (m, 2H), 3.93 (p, J = 6.9 Hz, 1H), 2.84 (dt, J = 15.0, 7.5 Hz, 

1H), 2.52 (m, 2H), 2.20–2.05 (m, 4H), 1.95 (m, 1H), 1.76 (dt, J = 14.8, 3.8 Hz, 1H), 1.47 

(s, 9H), 1.46 (s, 9H), 1.37 (d, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 170.97, 

170.95, 155.5, 155.2, 134.7, 134.6, 82.4, 81.9, 53.7, 53.5, 50.1, 46.2, 37.4, 32.5, 29.9, 

28.0, 27.9, 18.9, 15.5; m/z (ESI+) found [M+H]+ 503.2427, C23H39N2O8 requires 

503.2427; [!]!!".! –66.4 (c 0.90, DCM). 
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(S,R,S,R)-3.9.29 

 
(S)-di-tert-Butyl 2-(((((1R,4S)-4-((((S)-1-(tert-butoxy)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)pentanedioate (3.9.29). 

Yield 60%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 1746, 1700 cm-1; 1H NMR (400 

MHz, CDCl3) δ 6.05 (m, 2H), 5.58–5.38 (m, 2H), 5.36–5.00 (m, 2H), 4.34–4.03 (m, 2H), 

2.85 (dt, J = 15.0, 7.6 Hz, 1H), 2.45–2.04 (m, 3H), 2.01–1.69 (m, 2H), 1.49 (s, 9H), 1.48 

(s, 9H), 1.46 (s, 9H), 1.38 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.1, 

172.0, 171.2, 155.7, 155.3, 134.9, 134.8, 82.4, 82.0, 80.8, 79.1, 54.0, 50.2, 41.1, 40.3, 

37.5, 31.6, 28.2, 28.13, 28.10, 19.0; m/z (ESI+) found [M+H]+ 557.3070, C27H45N2O10 

requires 557.3074; [!]!!".! +77 (c 1.0, DCM). 

 

 

 
(S,S,S,S)-3.9.7 

 
 (S)-tert-Butyl 2-(((((1S,4S)-4-((((S)-1-(tert-butoxy)-3-(1H-indol-3-yl)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-(4-(tert-

butoxy)phenyl)propanoate 3.9.7). Yield 59%; Rf = 0.2 (30% EtOAc/hexanes); IR (neat) 

1749, 1705 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 

7.48–6.91 (m, 9H), 6.07 (s, 2H), 5.72 (s, 2H), 5.13 (dd, J = 31.1, 8.2 Hz, 2H), 4.70–4.26 

(m, 2H), 3.45–3.13 (m, 2H), 3.06 (d, J = 6.2 Hz, 2H), 2.36–1.90 (m, 2H), 1.40 (s, 9H), 

1.38 (s, 9H); 13C NMR (101 MHz, CDCl3) δ171.1, 170.6, 136.2, 135.8, 135.6, 129.6, 
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128.5, 127.9, 127.0, 122.7, 122.3, 119.6, 119.1, 111.2, 110.6; 110.4, 82.4, 82.1, 79.1, 

78.9, 60.5, 55.3, 53.5, 38.6, 37.9, 28.1, 21.1, 14.3; m/z (ESI+) found [M+H]+ 634.3125, 

C35H44N3O8 requires 634.3128; [!]!!".! +73 (c 1.1, DCM). 

 
 

 
(S,S,S,S)-3.9.25 

 
 (S)-tert-Butyl 2-(((((1S,4S)-4-((((S)-1-(tert-butoxy)-1-oxopropan-2-

yl)carbamoyl)oxy)cyclopent-2-en-1-yl)oxy)carbonyl)amino)-3-phenylpropanoate 

(3.9.25). Yield 52%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat) 1747, 1703 cm-1; 1H NMR 

(400 MHz, CDCl3) δ7.36–7.07 (m, 5H), 6.22–6.00 (m, 2H), 5.85–5.59 (m, 2H), 5.26–

4.90 (m, 2H), 4.68–4.57 (m, 1H), 4.34–3.95 (m, 1H), 3.19–2.82 (m, 2H), 2.35–1.89 (m, 

2H), 1.46 (s, 9H), 1.39 (s, 9H), 1.35 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) 

δ171.5, 172.3, 170.7, 136.2, 135.7, 129.7, 129.6, 128.5, 128.4, 127.1, 126.8, 82.4, 79.1, 

78.9, 55.2, 54.6, 38.9, 38.6, 37.6. 28.10, 28.08; (m/z (ESI+) found [M+H]+ 519.2706, 

C27H39N2O8 requires 519.2706; [!]!!".! –155 (c 1.0, DCM). 

 
 

 
(S,S)-3.13.2 

 
(1S,3S)-Cyclopent-4-ene-1,3-diol (S,S-3.13.2). A solution of (3S,5S)-hepta-1,6-diene-

3,5-diol (500 mg, 3.91 mmol) in DCM (78 mL) and methanol (78 mL) was purged with 

argon for 15 min and 5 mol% of Grubbs II catalyst (166 mg) was added to it. The 

reaction mixture was stirred at rt for 6 h and was quenched with DMSO (1 mL). The 

reaction mixture was stirred under air for 5 min and concentrated. The crude product was 
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H
N
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COOtButBuOOC
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purified by silica gel chromatography (100% EtOAc) to afford the product as colorless 

oil (266 mg, 68%). Rf = 0.20 (100% EtOAc); IR (neat) 3420 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 6.05–6.01 (m, 2H), 5.07 (t, J = 4.8 Hz, 2H), 2.10 (t, J = 5.0 Hz, 2H), 1.56 (br s, 

2H); 13C NMR (101 MHz, CDCl3) δ 137.4, 76.4, 44.4; m/z (ESI+) found [M+Na]+ 

123.0421, C5H8NaO2 requires 123.0422; [!]!!".! –232 (c 1.0, MeOH).   

 
 

Parallel synthesis of C2-symmetric biscarbamates 

 

 

 

On a 6x4-well heating block, 24 two-dram vials were placed. Each of the C2-symmetric 

diols (30 mg) was charged separately into 6 two-dram vials. Then amino acid isocyanate 

(3 eq) were charged and 10% N,N’-DMAP were added. To each vial 0.1 mL of THF was 

added to facilitate the mixing of the reagents. The vials were closed with Teflon caps and 

the block was heated to 100 ºC for 2 h. Following cooling 2 mL of dichloromethane was 

added to each vial. The contents of the vials were transferred to 24 different collection 

tubes. The solvent was evaporated by purging nitrogen gas to obtain the crude reaction 

products. A random subset of five compounds from the crude library of 24 compounds 
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was purified by column chromatography to obtain the products 25–35 mg of quantity (the 

spectral data is listed below). The rest of the crude library compounds were subjected to 

mass-directed purification and analysis, however due to lack of an analytical response the 

product peaks could not be identified.  

 
 

 
(S,S,S,S)-3.14.1 

 
 (2S,2'S)-Di-tert-butyl 2,2'-((((1S,3S)-cyclopent-4-ene-1,3-

diylbis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoate (3.14.1). Yield 

66%; Rf = 0.3 (30% EtOAc/hexanes); IR (neat), 1744, 1693 cm-1; 1H NMR (400 MHz, 

CDCl3) δ7.37–7.05 (m, 10H), 6.07–5.97 (m, 2H), 5.79–5.64 (m, 2H), 5.18 (m, 2H), 4.51–

4.21 (m, 2H), 3.16–2.86 (m, 4H), 2.17 (t, J = 5.1 Hz, 2H), 1.41 (s, 18H); 13C NMR (101 

MHz, CDCl3) δ170.6, 155.5, 136.2, 135.6, 129.5, 128.5, 127.1, 82.3, 79.0, 55.2, 38.6, 

37.8, 28.0; (m/z (ESI+) found [M+H]+ 595.3018, C33H43N2O8 requires 595.3019; [!]!!".! 

+139 (c 1.0, DCM). 

 

 

 
(S,S,S,S)-3.14.7 

 
 (2S,2'S)-Di-tert-butyl 2,2'-((((1S,3S)-cyclohexane-1,3-

diylbis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoate) (3.14.7). Yield 

62%; Rf = 0.3 (25% EtOAc/hexanes); IR (neat) 1746, 1698 cm-1; 1H NMR (400 MHz, 

O O

O

H
N

O

H
N CO2tButBuO2C

Ph Ph



 131 

CDCl3) δ7.62–6.81 (m, 10H), 5.36–4.82 (m, 2H), 4.73–4.23 (m, 4H), 3.25–2.80 (m, 4H), 

2.36–2.13 (m, 2H), 2.05–1.84 (m, J = 5.9, 1H), 1.39 (s, 18H), 1.62–0.95 (m, 5H); 13C 

NMR (101 MHz, CDCl3) δ 170.7, 155.0, 136.2, 129.5, 128.4, 126.9, 82.2, 71.2, 55.0, 

38.4, 31.1, 27.9, 20.0; m/z (ESI+) found [M+H]+ 611.3330, C34H47N2O8 requires 

611.3332; [!]!!".! +275 (c 1.0, DCM). 

 

 

 
(S,S,S,S)-3.14.13 

 
 (2S,2'S)-Di-tert-butyl 2,2'-(((((3R,5R)-1-benzylpiperidine-3,5-

diyl)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoate) (3.14.13). 

Yield 51%; Rf = 0.3 (50% EtOAc/hexanes); IR (neat) 1744, 1700 cm-1; 1H NMR (400 

MHz, CDCl3) δ7.36–6.90 (m, 15H), 5.22–5.02 (m, 3H), 4.54–4.20 (m, 2H), 3.62–3.37 

(m, 2H), 2.97 (d, J = 6.1 Hz, 4H), 2.62–2.46 (m, 2H), 2.42–2.24 (m, 2H), 1.84–1.52 (m, 

3H), 1.31 (m, 18H); 13C NMR (101 MHz, CDCl3) δ 170.6, 155.1, 137.4, 136.3, 129.6, 

129.1, 128.5, 128.4, 127.3, 127.0, 82.3, 68.5, 62.3, 56.1, 55.3, 38.7, 34.5, 28.0; m/z 

(ESI+) found [M+H]+ 702.3749, C40H52N3O8 requires 702.3754; [!]!!".! +109.7 (c 1.0, 

DCM). 
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(S,S,S,S)-3.14.19 

 
(2S,2'S)-Di-tert-butyl 2,2'-(((((3S,5S)-tetrahydro-2H-thiopyran-3,5-

diyl)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoate) (3.14.19). 

Yield 57%; Rf = 0.4 (50% EtOAc/hexanes); IR (neat) 1747, 1697 cm-1; 1H NMR (400 

MHz, CDCl3) δ7.32–7.11 (m, 10H), 5.30–4.93 (m, 4H), 4.55–4.33 (m, 2H), 3.16–2.91 

(m, 4H), 2.78–2.65 (m, 2H), 2.59–2.48 (m, 2H), 1.87–1.68 (m, 2H), 1.40 (s, 18H); 13C 

NMR (101 MHz, CDCl3) δ170.5, 154.7, 136.2, 129.6, 128.5, 127.1, 82.4, 69.1, 55.3, 

38.7, 36.0. 31.6, 28.1; (m/z (ESI+) found [M+H]+ 629.2899, C33H45N2O8S requires 

629.2897; [!]!!".! –129 (c 1.7, DCM). 

 

 

 
(S,S,S,S)-3.14.20 

 
 (2S,2'S)-Di-tert-butyl 2,2'-(((((3R,5R)-tetrahydro-2H-thiopyran-3,5-

diyl)bis(oxy))bis(carbonyl))bis(azanediyl))dipropanoate (3.14.20). 

Yield 59%; Rf = 0.3 (50% EtOAc/hexanes); IR (neat) 1744, 1698 cm-1; 1H NMR (400 

MHz, CDCl3) 5.41–4.89 (m, 4H), 4.33– 4.20 (m, 2H), 2.77 (dd, J = 13.5 Hz, 2.5 Hz, 2 

H), 2.68–2.53 (m, 2H), 2.19–1.76 (m, 2H), 1.46 (s, 18 H), 1.37 (d, J = 7.1 Hz, 6H); 13C 

NMR   (101 MHz, CDCl3) δ 172.0, 154.6, 81.9, 68.9, 50.1, 36.0, 31.6, 27.9, 18.8; m/z 

(ESI+) found [M+H]+ 477.2270, C21H37N2O8S requires 477.2271; [!]!!".! +181(c 1.0, 

DCM). 
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