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Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels,

pp! VH (V ¼ W�, Z), at hadron colliders are well understood. We combine higher-order perturbative

QCD calculations with soft gluon resummation of both threshold logarithms and logarithms which are

important at a low transverse momentum of the VH pair. We study the effects of both types of logarithms

on the scale dependence of the total cross section and on various kinematic distributions. The next-to-next-

to-next-to-leading logarithmic resummed total cross sections at the LHC are almost identical to the fixed-

order perturbative next-to-next-to-leading order rates, indicating the excellent convergence of the

perturbative QCD series. Resummation of the VH transverse momentum (pT) spectrum provides reliable

results for small values of pT and suggests that implementing a jet veto will significantly decrease the

cross sections.
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I. INTRODUCTION

The recent discovery of a Higgs-like particle [1,2] has
brought our understanding of electroweak symmetry break-
ing to a deeper level. Now it is imperative to study the
detailed properties of this particle in the hope of finding any
hints for new physics beyond the Standard Model (SM). An
important Higgs production mechanism at hadron colliders
is the associated production of a Higgs boson and a vector
boson, VHðV ¼ W�; ZÞ [3]. At the Tevatron, the process
q �q0 ! VH, with the decay of the vector boson to leptons
and of the Higgs to the b �b and WþW� channels, has
provided important sensitivity to a light Higgs boson
[4,5]. At the LHC, the production rate for associated VH
production is small, but with �30 fb�1, a light Higgs in
association with aW or Z can potentially be observed in the
boosted regime via H ! b �b [6]. Reliable predictions are
essential for the observation and study of the VVH cou-
plings in this channel [7,8].

The rate for associated VH production is perturbatively
known to next-to-next-to-leading order (NNLO), i.e.,
Oð�2

sÞ [9,10]. At next-to-leading order (NLO), the QCD
corrections are identical to those of the Drell-Yan process
for an off-shell gauge boson, q �q0 ! V� [11–13]. At NNLO,
however, the ZH process receives a small additional con-
tribution from the gg initial state, gg! ZH [9]. The NLO
rates are available in the general-purpose MCFM [14] pro-
gram, while the total rate can be found to NNLO using the
VH@NNLO code [9].

Infrared finite results in higher-order QCD processes
occur due to a cancellation of virtual and real soft diver-
gences. The fixed-order calculation is reliable, provided
that all of the scales are of the same order of magnitude.
When the invariant mass MVH of the final state particles
WH or ZH approaches the center-of-mass energy of the

colliding partons, there is less phase space available for
real emission. While the infrared divergences will still
cancel, large Sudakov logarithms will remain. These
logarithms can spoil the convergence of the perturbative
series and need to be resummed to all orders for reliable
results in this threshold region [15]. Threshold corrections

involve terms of the form �n
s
log2n�1ð1�zÞ
ð1�zÞ , which are large

when z ¼ M2
VH=ŝ� 1, where ŝ is the partonic center-

of-mass (c.m.) energy squared [16–20]. Similarly, large

logarithms of the form �n
s log

2n�1ðM2
VH

p2
T;VH

Þ can also occur

when the VH system is produced with a small transverse
momentum pT;VH [21,22]. The techniques for resumming

both types of logarithms to all orders are well known, and
the fixed-order perturbative and resummed calculations
can be consistently matched at intermediate values of the
kinematic variables.
We consider the process pp! VH þ X and present

results from both the threshold resummation and the trans-
verse momentum resummation of large logarithms sepa-
rately for LHC energies. Since the final-state particles are
color singlets, both types of resummation can be straight-
forwardly adopted from results in the literature for the
Drell-Yan process [20–22]. (We do not discuss the joint
resummation of the logarithms [23].) Section II contains a
brief review of the resummation formalisms we apply.
Details are relegated to several appendixes. Section III
presents results for the total cross section, including the
resummation of threshold logarithms and a discussion of
the theoretical uncertainties, while Secs. IVA and IVB
contain some kinematic distributions resulting from the
resummation of pT;VH and threshold logarithms, respec-

tively. Finally, Sec. V discusses the relevance of our results
to searches at the LHC.
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II. RESUMMATION FORMALISM

In this section we briefly review the transverse momen-
tum and threshold resummation formalism that we utilize
in deriving our numerical results.

A. Transverse momentum resummation

The discussion of the transverse momentum resumma-
tion follows that of Grazzini et al. [21]. The hard scattering
process under consideration is Higgs boson production in
association with a vector boson in hadronic collisions:

AB! V� þ X ! VH þ X; (1)

where V ¼ W�, Z, and X is the hadronic remnant of a
collision. We apply the well-known impact parameter
space (b-space) resummation [24,25] to the partonic
cross section,

d�̂VH

dM2
VHdp

2
T;VH

¼ d�̂resum
VH

dM2
VHdp

2
T;VH

þ d�̂finite
VH

dM2
VHdp

2
T;VH

; (2)

where pT , VH is the transverse momentum of the VH

system and
d�̂resum

VH

dM2
VHdp

2
T;VH

contains the resummation of the

logðM2
VH

p2
T;VH

Þ enhanced terms. Since all the logarithmically

enhanced terms are factored into the resummed piece, the

remaining contribution
d�̂finite

VH

dM2
VHdp

2
T;VH

is finite as pT;VH ! 0

and can be computed at fixed order in �s [21]:�
d�̂finite

VH

dM2
VHdp

2
T;VH

�
f:o
¼

�
d�̂VH

dM2
VHdp

2
T;VH

�
f:o

�
�

d�̂resum
VH

dM2
VHdp

2
T;VH

�
f:o
; (3)

where the subscript f:o: refers to a fixed-order expansion. In
the low transverse momentum region, pT;VH � MVH, the

resummed distribution is dominant, while in the high trans-
verse momentum region, pT;VH �MVH, the perturbative

expansion of the cross section dominates. Using Eq. (3),
the two regions can be consistently matched in the inter-
mediate pT;VH region, maintaining theoretical accuracy.

To correctly account for momentum conservation, trans-
verse momentum resummation is performed in impact
parameter space:

M2
VH

d�̂resum
VH

dM2
VHdp

2
T;VH

¼ M2
VH

ŝ

Z 1
0

db
b

2
J0ðbpT;VHÞWVH

� ðb;MVH; ŝ; �r; �fÞ; (4)

where J0ðxÞ is the zeroth-order Bessel function and �r, �f

are the renormalization/factorization scales. By perform-
ing a Mellin transformation,1 it is possible to factor the

terms that are finite and logarithmically enhanced as
pT;VH ! 0:

WVH
N ðb;MVH;�r;�fÞ
¼ HVH

N

�
MVH; �sð�rÞ;MVH

�r

;
MVH

�f

;
MVH

Q

�

� exp

�
GN

�
�sð�rÞ; L;MVH

�r

;
MVH

Q

��
; (5)

where L ¼ lnðQ2b2=b20Þ with b0 ¼ 2 expð��EÞ, H con-

tains the finite hard scattering coefficients, and G contains
the process-independent logarithmically enhanced terms.
Hence, all the terms that are divergent as pT;VH ! 0 are

exponentiated into the function GN , achieving the all-
orders resummation. The split between the finite and
logarithmically enhanced terms is somewhat arbitrary;
that is, a finite shift in the invariant mass MVH can alter
the separation:

log

�
M2

VH

p2
T;VH

�
¼ log

�
Q2

p2
T;VH

�
þ log

�
M2

VH

Q2

�
: (6)

The scale Q, termed the resummation scale, is introduced
to parameterize this arbitrariness and is the same as that in
Eq. (5). To keep the separation between the finite and
logarithmically enhanced terms meaningful, the scale Q
has to be chosen to be close to MVH.
As mentioned in the previous paragraph, all of the

logarithmically enhanced contributions are contained in
GN . The divergent pieces can be reorganized such that
GN is written as an expansion that is order-by-order
smaller by �s [21]:

GN

�
�s; L;

MVH

�r

;
MVH

Q

�
¼ Lg1Nð�sLÞ þ

X
n¼2

�
�s

�

�
n�2

� gnN

�
�sL;

MVH

�r

;
MVH

Q

�
; (7)

where gnN ¼ 0 for �sL ¼ 0, and Lg1N contains the leading
log (LL) terms �n

sL
nþ1, g2N contains the next-to-leading

log (NLL) terms �n
sL

n, etc. Since the large logarithms are
associated with collinear and soft divergences from real
radiation, the functions giN are only dependent on the
initial-state partons and are independent of the specific
hard process under consideration. Explicit expressions
for the LL and NLL terms needed for pp! VHþ X are
given in Appendix A.
The resummed distribution is valid in the low pT;VH �

MVH region, while the perturbative expansion is valid in
the high pT;VH �MVH region. However, asQb approaches

zero, the logarithm L grows uncontrollably. As a result, the
resummed distribution makes an unacceptably large con-
tribution to the high pT;VH region. This problem can be

solved via the replacement [26] L! ~L¼logðQ2b2=b20þ1Þ,
such that ~L � L for Qb� 1 and ~L � 0 for Qb� 1.
Hence, using ~L, the resummed contribution maintains the

1The Mellin transformation of a function hðzÞ is defined as
hN ¼

R
1
0 dzz

N�1hðzÞ.
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correct dependence on the large logarithms at low pT;VH

and does not make unwarranted contributions to the high
pT;VH region. This replacement has the added benefit of

reproducing the correct fixed-order cross section once the
transverse momentum is integrated [21].

The process-dependent functionH is finite as pT;VH!0.
Hence, its Mellin transform HN does not contain any
dependence on b and can be computed as an expansion
in �s,

HVH
N

�
MVH;�s;

MVH

�r

;
MVH

�r

;
MVH

Q

�

¼�0ð�s;MVHÞ
�
1þX

n¼1

�
�s

�

�
n
HVHðnÞ

N

�
MVH

�r

;
MVH

�f

;
MVH

Q

��
;

(8)

where �0 is the Born-level partonic cross section for
q �q0 ! VH. At NLL accuracy, only the first hard coeffi-

cient HVHð1Þ
N is needed. The value of this coefficient is

given in Appendix A.

B. Threshold resummation

In the original approach to threshold resummation
[16,18], the resummation is performed after taking the
Mellin transformation of the hadronic cross section
[27,28]. The Mellin-transformed hadronic cross section
can then be factored into the product of the partonic cross
section and the parton luminosity. The threshold loga-
rithms for VH production are of the form lnð1� zÞ, where
z ¼ M2

VH=ŝ, and are contained in the partonic cross sec-
tion. After resummation, an inverse Mellin transformation
is performed to obtain the physical cross section. This
leads to a new divergence due to the presence of the
Landau pole in �s. Prescriptions for how to perform the
inverse Mellin transformation have been developed to re-
move this problem. The resummation of threshold loga-
rithms for Drell-Yan production has been extensively
studied [29–32].

More recently, techniques using soft collinear effective
theory [33–36] have been developed in which the resum-
mation is performed in momentum space, obviating the
need to go to Mellin space. This in turn removes the
problem of the Landau pole. In this paper, we will general-
ize the soft collinear effective theory resummation results
of Ref. [20] to the case of VH production.

The leading singular terms at threshold in the hadronic
differential cross section can be written as

1

��0

d�

dM2
VH

¼
Z 1

�

dz

z
Cðz;MVH;�fÞL

�
�

z
;�f

�
; (9)

where � ¼ M2
VH=s with s the hadronic c.m. energy

squared, L is the parton luminosity

Lðy;�fÞ ¼
Z 1

y

dx

x
fqðx;�fÞfq0

�
y

x
;�f

�
þ ðq$ q0Þ; (10)

and �0 is the Born-level partonic cross section for
q �q! VH and is defined such that Cðz;MVH;�fÞ ¼
�ð1� zÞ þOð�sÞ. In the threshold region, z� 1,
Cðz;MVH;�fÞ can be factorized into a hard contribution

and a soft contribution,

Cðz;MVH;�fÞ ¼H ðMVH;�fÞSðMVHð1� zÞ; �fÞ: (11)

The hard function H ðMVH;�fÞ and soft function

SðMVHð1� zÞ; �fÞ, evaluated at �f, are obtained by

renormalization groups running from the hard scale
�h �MVH and soft scale �s �MVHð1� �Þ, respectively,
to sum the threshold logarithms to all orders in �s.
The final result is found from that for the Drell-Yan

process [20],

Cðz;MVH;�fÞ
¼ jCVð�M2

VH;�hÞj2UðMVH;�h;�s; �fÞ z��

ð1� zÞ1�2� ~sDY

�
�
ln
M2

VHð1� zÞ2
�2

sz
þ @�;�s

�
e�2�E�

�ð2�Þ ; (12)

where � ¼ 2a�ð�s;�fÞ, and CV and ~sDY are the perturba-

tively calculable Wilson coefficient and soft Wilson loop
coefficient, respectively. Equation (10), with C given by
Eq. (12), is defined only for �> 0. For �< 0, an analytic
continuation is required. The analytic expressions for a�,
CV , ~sDY, and U which are necessary for our numerical
calculations are given in Appendix B.
Equation (12) is only valid in the threshold region, z�1.

To obtain a formula valid for all values of z, we match the
threshold-resummed result with the fixed-order result,
�

d�

dM2
VH

�
matched

¼
�

d�

dM2
VH

�
thresholdresum

�
�

d�

dM2
VH

�
thresholdf:o:

þ
�

d�

dM2
VH

�
f:o:

: (13)

Here ½ d�
dM2

VH

	threshold resum is the result obtained using the

threshold resummation formula of Eq. (12), ½ d�
dM2

VH

	f:o: is
the fixed-order perturbative result, and ½ d�

dM2
VH

	threshold f:o: is
obtained from the fixed-order result by keeping only the
leading threshold singularity in C. The order of the loga-
rithmic approximation in the resummed result and the
corresponding fixed-order results used in the matching of
Eq. (13) are summarized in Table I.

TABLE I. Approximation schemes for threshold resummation
given a fixed order matched to a logarithmic approximation as in
Eq. (13).

Fixed order Log. Accuracy ��n
sL

k �cusp �V , �	 CV , ~sDY

LO NLL 2n� 1 
 k 
 2n 2-loop 1-loop tree-level

NLO NNLL 2n� 3 
 k 
 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n� 5 
 k 
 2n 4-loop 3-loop 2-loop
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III. SCALE DEPENDENCE OF
THE CROSS SECTION

In this section, we study the scale dependence of the
total cross section for VH production at the LHC, begin-
ning with the sensitivity of the resummed threshold distri-
butions to the hard, soft, and factorization scales. Near the
threshold � � M2

VH=s! 1, the threshold logarithms are
enhanced, leading to potentially large scale violations. The
naive choice for the soft scale is �s �MVHð1� �Þ. We
follow the prescription of Ref. [20] to determine a sensible
range of parameters for the soft scale. A low value of �s is
found empirically from the scale where the one-loop cor-
rection to ~sDY is minimal,

�ðIÞs ¼ MVHð1� �Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 100�
p : (14)

Alternatively, an upper scale for the soft variation can be
chosen as the value where the one-loop correction to ~sDY
drops below 10%:

�ðIIÞs ¼ MVHð1� �Þ
0:9þ 12�

: (15)

Empirically, the forms of �
ðI;IIÞ
s

MVH
are insensitive toMVH. Here

and henceforth, we adopt the Higgs mass value

MH ¼ 125 GeV: (16)

We investigate the numerical effects of the scale varia-
tion by plotting the differential cross section of the thresh-
old resummation of Eq. (12) and varying the soft, hard, and
factorization scales. It is customary to measure the size of
QCD corrections by a K factor, typically defined as the
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FIG. 1 (color online). The (a) soft scale, (b) hard scale, and (c) factorization scale dependence of the threshold-resummed cross
section for pp! ZH at NLL between the dotted lines, NNLL between the dashed lines, and NNNLL between the solid lines,
normalized to the LO result [the K factor is defined in Eqs. (17) and (18)]. The invariant mass MZH is fixed at 1 TeV.
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ratio of a higher-order cross section to the lowest-order
cross section:

d�

dM2
VH

� K
d�

dM2
VH

��������LO
; (17)

where d�
dM2

VH

is a distribution defined at higher order in QCD.

To study the scale variation arising from threshold
resummation, we investigate the K factor of Eq. (17)
defined with

d�

dM2
VH

�
�

d�

dM2
VH

�
threshold�resum

: (18)

To isolate the effects of the scale variation due to thresh-
old resummation from the effects due to parton distribu-
tion functions (PDFs) and running �s, the K factor is
evaluated by using the NNLO MSTW20008 [37] PDF set

and the three-loop value of �s for all orders of the
threshold-resummed cross section and the leading order
(LO) cross section. Figure 1 shows the scale variation of
this choice of K factor as a function of � at NLL between
the dotted curves, next-to-next-to-leading logarithmic
(NNLL) between the dashed curves, and next-to-next-to-
next-to-leading logarithmic (NNNLL) between the solid
curves for ZH production at MZH ¼ 1 TeV. The soft
scale variation in pp! ZH, with �h and �f held con-

stant, is shown in Fig. 1(a). The variation in the NLL
result is significant, but the NNLL and NNNLL curves
have little dependence on the soft scale, justifying the

ad hoc choices of �ðI;IIÞs . The K factor grows rapidly as �
increases, as expected. The sensitivity to the hard scale is
shown in Fig. 1(b), with fixed �s and �f. The hard scale

is set by the invariant mass of the VH pair, and again we
find that at NNLL and NNNLL, there is little dependence
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FIG. 2 (color online). Scale dependence of the fixed-order (dashed) and threshold-resummed matched (solid) cross sections for (a,b)
ZH and (c,d) WH production at (a,c)

ffiffiffi
s
p ¼ 8 TeV and (b,d)

ffiffiffi
s
p ¼ 14 TeV. The NNLO and NNNLL-NNLO matched ZH results

include the contribution from the gg initial state.
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on �h, showing excellent convergence of the perturbation
series. Finally, we show the factorization scale depen-
dence in Fig. 1(c). The factorization scale dependence is
small even at NLL.

We have also considered the scale dependence of the
matched result for the total cross section. Analytic ex-
pressions for the LO and NLO fixed-order results are
found in Refs. [9,11–13], and we use the computer code
VH@NNLO for the fixed-order NNLO results. The matched

curves are found using the threshold resummation results
of Eq. (13). In Fig. 2, we use the MSTW2008 68%
confidence level PDFs, and we use LO PDFs for the LO
and the NLL-LO matched curves, NLO PDFs for the
NLO and NNLL-NLO matched curves, and NNLO
PDFs for the NNLO and NNNLL-NNLO matched curves,
using one-, two-, and three-loop evolutions of �s, respec-
tively. We include the small contribution from the gg
initial state in the ZH NNLO and NNNLL-NNLO
matched curves.

The results for ZH production at
ffiffiffi
s
p ¼ 8 TeV andffiffiffi

s
p ¼ 14 TeV are shown in Figs. 2(a) and 2(b) respec-
tively. We have chosen the central scale to be �0¼MZH.
The top- and bottom-quark loops from the gg initial state

contribute �
t;bloops
gg ¼0:06pb at

ffiffiffi
s
p ¼14TeV with �f¼�0.

This is the reason for the larger splitting between the NLO
and NNLO curves than is seen in the WH results below.
The fixed-order and matched curves have the renormaliza-
tion/factorization scales set equal, �r ¼ �f. The matched

and resummed curves have the hard scale, �h ¼ 2MVH,

and the soft scale, �s ¼ 1
2 ð�ðIÞ2 þ�ðIIÞs Þ. The NNNLL-

NNLO matched curve is almost identical to the NNLO
fixed-order curve, and the resummation has little effect at
this order. On the other hand, the NNLL-NLO matched
curve increases the fixed-order NLO result (at �f ¼ �0)

by about 7%.
The matched cross sections for WH production atffiffiffi
s
p ¼8TeV and 14 TeV are shown in Figs. 2(c) and 2(d)
These figures show the sum ofWþH andW�H production.
As in the ZH case, the NNLO and NNNLL-NNLO
matched results for WH production are quite close and
show little scale variation. The NNLL resummation in-
creases the NLO fixed-order result by �3%.

The uncertainties in the ZH and WH cross sections
from PDFs, renormalization and factorization scale de-
pendence, and the determination of �s have been inves-
tigated by the LHC Higgs Cross Section Working Group
for the NNLO total cross section [7]. They find a total
uncertainty at

ffiffiffi
s
p ¼ 8 TeV of Oð4%Þ for WH and

Oð5%Þ for ZH production for a 125 GeV Higgs boson.
Our results show that including the resummation of thresh-
old logarithms to NNNLL accuracy does not induce any
further uncertainties. We note that Ref. [7] also includes
the NLO electroweak effects [38], assuming complete
factorization of the QCD and electroweak corrections. In
the G� renormalization scheme, these corrections reduce

the total Higgs and vector-boson associated rates by about
Oð5%Þ.

IV. KINEMATIC DISTRIBUTIONS

A. Transverse momentum distributions

We now give numerical results for the resummed trans-
verse momentum distributions. The distributions are
computed at NLL-NLO accuracy with NLO MSTW2008
68%-confidence-level PDFs [37] and the two-loop evolu-
tion of �s using the formulas of Appendix A. The numeri-
cal results were found by modifying the program HqT2.0
[21,39,40]. The factorization and renormalization scales
are set to the central values of �f ¼ �r ¼ MV þMH.

Also, the resummation scale is set equal to the invariant
mass of the vector boson and Higgs pair, i.e., Q ¼ MVH.
Figures 3(a) and 3(b) show the transverse momentum

distribution for ZH and WH production, respectively, atffiffiffi
s
p ¼ 14 TeV. The matched transverse momentum distri-
bution defined by Eqs. (2) and (3) (solid), resummed (dot-
dashed), fixed-order expansion of the resummed (dashed),
and fixed-order perturbative (dotted) distributions are
shown separately. As expected, the fixed-order expansion
of the resummed and perturbative distributions are in good
agreement. Hence, the finite piece, defined to be the dif-
ference between the perturbative distribution and fixed-
order expansion of the resummed distribution as in
Eq. (3), is negligible at low transverse momentum, and
the matched distribution is dominated by the resummed
contribution. The transverse momentum distribution is
peaked around 5 GeV for both WH and ZH production.
For comparison, in Figs. 3(c) and 3(d) we present the

normalizedmatched transverse momentum distributions for
ZH andWH production, respectively, at both

ffiffiffi
s
p ¼ 8 TeV

(dashed) and
ffiffiffi
s
p ¼ 14 TeV (solid). The position of the

peak of the transverse distribution is not significantly differ-
ent between the two LHC energies. However, the distribu-
tion at

ffiffiffi
s
p ¼ 14 TeV has a longer tail than at

ffiffiffi
s
p ¼ 8 TeV.

This can be understood by noting that higher transverse
momentum events correspond to higher partonic center-of-
mass energies. Since events with higher partonic center-of-
mass energies are more easily accessible at

ffiffiffi
s
p ¼ 14 TeV

than at
ffiffiffi
s
p ¼ 8 TeV, we would expect there to be a larger

fraction of high pT;VH events at
ffiffiffi
s
p ¼ 14 TeV than at

ffiffiffi
s
p ¼

8 TeV. Hence, the transverse momentum distribution has a
longer tail for

ffiffiffi
s
p ¼ 14 TeV.

Finally, we comment on how the transverse momentum
resummation can affect the analysis of kinematical cuts on
the signal cross section, particularly in relation to jet
vetoes. At hadron machines, the VH production with
Higgs decaying to b �b has large QCD backgrounds. To
reduce the backgrounds and effectively trigger on the
signal, one usually considers leptonic decays of the vector
boson. However, if the vector boson decay contains miss-
ing energy, W ! ‘
 or Z! 

, semileptonic decays of t�t
can be a significant background. Since the t�t background
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typically has more hard jets than the VH signal, a jet veto
may be applied to suppress this background. We note that
vetoing jets with a minimum transverse momentum can be
approximated by placing an upper limit on the VH trans-
verse momentum and, as can be seen in Figs. 3(a) and 3(b)
the perturbative calculation is unreliable in this regime.
Hence, to fully account for the effects of a jet veto, the soft
gluon resummation is needed. There has been much recent

work on the systematic resummation of the large loga-
rithms associated with jet vetoes [41].
To approximate the effect on the total cross section of a

veto on jets with transverse momentum larger than pT;VH,

we define

�ðpT;VHÞ ¼
Z pT;VH

0
dqT;VH

d�

dqT;VH
; (19)
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FIG. 3 (color online). Transverse momentum distributions for (a,c) ZH, and (b,d) WH production at the LHC. In (a) and (b), the
matched distribution is shown with a solid line, the resummed distribution with a dot-dash line, the fixed-order expansion of the
resummed distribution with a dashed line and the fixed-order perturbative distribution with a dotted line at

ffiffiffi
s
p ¼ 14 TeV. In (c) and

(d), the normalized matched transverse momentum distributions are shown for both
ffiffiffi
s
p ¼ 8 TeV (dashed) and

ffiffiffi
s
p ¼ 14 TeV (solid)

LHC. In (e), the transverse pT distribution of (b) is shown normalized to the matched distribution.
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where d�=dqT;VH is the matched transverse momentum

distribution at NLL-NLO in Eqs. (2) and (3). Figure 4 shows
this cross section normalized to the total pT;VH resummed

and matched cross section as a function of pT;VH for (a) ZH
and (b) WH production for both

ffiffiffi
s
p ¼ 8 TeV (dashed) andffiffiffi

s
p ¼ 14 TeV (solid). As noted before in the discussion of
Figs. 3(c) and 3(d) at

ffiffiffi
s
p ¼ 14 TeV, there is expected to be

a larger fraction of high transverse momentum jets than atffiffiffi
s
p ¼ 8 TeV. Hence, �ðpT;VHÞ=� grows more slowly atffiffiffi
s
p ¼ 14 TeV than at

ffiffiffi
s
p ¼ 8 TeV. From the figures, we

see that the effects of a 20 (30) GeV pT;VH cut decreases the

NLO cross section by�45% (�33%) and�50% (�37%)
at

ffiffiffi
s
p ¼ 8 TeV and

ffiffiffi
s
p ¼ 14 TeV, respectively.

B. Invariant mass distributions

In this section, we give numerical results for the invariant
mass distributions including threshold resummation and
matching, using the analytic formulas of Appendix B.
Since the distributions vary over many orders of magnitude,

it is easier to see the effects in the K factor, as defined in
Eq. (17). Figures 5(a) and 5(b) show theK factor versus � at
NNLL-NLO with

ffiffiffi
s
p ¼ 14 TeV for pp! ZH þ X and

pp! WH þ X, respectively. TheK factor for the matched
result of Eq. (13) is shown with solid lines, the threshold-
resummed contribution with dot-dashed lines, the fixed-
order perturbative contribution with dashed lines, and the
contribution from the leading threshold singularity of the
fixed-order perturbative piece with dotted lines. Here we
use MSTW2008 68%-confidence-level PDFs [37]. The
scales are chosen to be�f ¼ MZH,�h ¼ 2MZH, and�s ¼
1
2 ð�I

s þ�II
s Þ, as in Sec. III. For the NLO fixed-order result,

the leading threshold singularity of the NLO fixed-order
result and the threshold-resummed result at NNLL, the
NLO PDFs and two-loop �s are used, whereas for the LO
fixed-order denominator of the K-factor, we use the LO
PDFs and one-loop �s. As expected, the leading singularity
and fixed-order results (the two lower curves) are close to
each other, since the leading singularity dominates in the
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fixed-order result. On the other hand, the resummation
effect is significant at high �, as seen by the large enhance-
ment of the NNLL (the two upper curves) from the NLO
result of �20% for both ZH and WH at � ¼ 0:3.

The decrease of the K factor at higher � values is due
to the PDF effect. To see this, we artificially adopt the
NLO MSTW2008 68%-confidence-level PDFs and two-
loop �s for the NLO fixed-order result, the leading thresh-
old singularity of the NLO fixed-order result, and the
threshold-resummed result at NNLL, as well as the LO
denominator, and show the K factors of these results withffiffiffi
s
p ¼ 14 TeV for pp! ZH þ X and pp! WH þ X in
Figs. 6(a) and 6(b) respectively. This is to isolate the effects
of PDFs from a dynamical origin. The choice of scales is
the same as in Fig. 5. We note that the monotonic increase
of theK-factor distributions in Fig. 6 is drastically different
from that in Fig. 5. This demonstrates the importance of a
consistent choice of PDFs as in Fig. 5.

To examine the convergence of the perturbative series,
we plot the K factors for the resummed results at NLL,
NNLL and NNNLLwith

ffiffiffi
s
p ¼ 14 TeV for pp! ZH þ X

in Fig. 7, using NNLO MSTW2008 68%-confidence-level
PDFs and three-loop �s for all the resummed results, as
well as the LO denominator. We see from Fig. 7 that the
difference between NNLL and NNNLL is tiny (< 1%),
confirming the excellent convergence of the perturbative
series at this order, especially after leaving out the PDF
effect.

V. CONCLUSIONS

Given the exciting discovery of a Higgs-like particle at
the LHC [1,2], it becomes imperative to determine its
properties. Thus, its production rate at the LHC must be
calculated as accurately as possible. Since the gauge

boson–Higgs associated production is one of the channels
that unambiguously probes the VVH coupling with
V ¼ W� or Z, it is of particular interest. We combined
the long-known fixed-order perturbative QCD calculations
for VH production [9] with soft gluon resummation of both
threshold logarithms and logarithms which are important at
a low transverse momentum of the VH pair.
After a brief overview of the resummation formalism,

we carried out detailed numerical analyses at the LHC forffiffiffi
s
p ¼ 8 TeV and 14 TeV. The overall corrections from
NNLO fixed-order calculations are sizable, increasing the
LO rate by a factor as large as about 30% [7]. After
implementing threshold resummation, the dependence of
the cross section and various kinematic distributions on the
soft and hard scales, as well as on the factorization scale, is
very weak, indicating the reliability of the calculations.
The NNLL threshold-resummed total cross section in-
creases the fixed-order NLO result by about 7%, while
the NNNLL resummed result has little impact on the
NNLO fixed-order rate, demonstrating the excellent con-
vergence of the perturbation series.
The transverse momentum spectrum of the VH system is

calculated via soft and collinear gluon resummation. The
distribution is peaked near 5 GeV, and the spectrum is
slightly harder at the center-of-mass energy of 14 TeV
than at 8 TeV. Using the matched transverse momentum
distribution, we have also calculated the effect on the NLO
cross section of placing an upper bound on the pT of the
VH system. Since such an upper bound on the transverse
momentum of the VH system limits the amount of trans-
verse momentum a jet may carry in VH þ X events, we
expect the upper bound on the pT;VH of the VH system to

approximate a jet veto.
As a final remark, our calculations can be easily ex-

tended to other electroweak pair production processes with
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FIG. 6 (color online). K factor distributions at
ffiffiffi
s
p ¼ 14 TeV for (a) ZH and (b)WH production. The NNLL-NLO matched result is

shown with solid lines, the NNLL threshold-resummed result with dot-dashed lines, the leading threshold singularity of the NLO fixed-
order result with dashed lines, and the NLO fixed-order result with dotted lines. The NLO PDFs and two-loop �s are adopted for all the
results, as well as the LO denominator.
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the same color structures which arise via q �q0 annihilation
at leading order, such as the EW gauge boson pairs and
the Higgs pair production H0A0, H0H�, A0H�, and
HþH� [42].
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APPENDIX A: pTV RESUMMATION

In this appendix, we list the functions needed for the
pT;VH resummation of Sec. II A [43,44]. All formulas in

this appendix can be found in Ref. [21], but we include

them for the convenience of the reader. First, the coeffi-
cients of the QCD beta function are normalized according
to the expansion

d ln�sð�2Þ
d ln�2

¼ �ð�sð�2ÞÞ ¼ �X1
n¼0

�n

�
�sð�2Þ
4�

�
nþ1

:

(A1)

At LL, only the function g1N is needed, and the Born-level
contribution arises only from qq0 scattering [21]:

g1Nð�sLÞ¼
�
4A1

q

�0

�
�þ lnð1��Þ

�
; ��

�
�0

4�

�
�sð�rÞL;

�0¼
�
33�2nf

3

�
; A1

q¼4

3
¼CF; (A2)

and Ł ¼ lnðQ2b2

b20
Þ.

At NLL, the functions g2N and HVHð1Þ
N are needed [21],

g2N

�
�sL;

MVH

�r

;
MVH

Q

�
¼ 4 �B1

q;N

�0

lnð1� �Þ � 16A2
q

�2
0

�
�

1� �
þ lnð1� �Þ

�
þ 4A1

q

�0

�
�

1� �
þ lnð1� �Þ
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�
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�
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�B1
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3

2
CF þ 2�1

qq;N þ A1
q ln

�
M2

VH

Q2

�
; (A3)

and nf is the number of light flavors. The anomalous
dimensions �ab;N are the Mellin transforms of the
DGLAP splitting functions, Pab [45]:

�ab;N ¼
X1
n¼1

�
�s

�

�
n
�n
ab;N �

Z 1

0
dzzN�1PabðzÞ: (A4)
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The process dependence arises through HVHð1Þ
N [46,47],

HVHð1Þ
N;q �q qg ¼ �1

qg;N log
Q2

�2
f

þ 1

2ðN þ 1ÞðN þ 2Þ ; (A5)
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where

AVH ¼ CF

�
�8þ 2�2

3

�
: (A7)

APPENDIX B: THRESHOLD RESUMMATION

In this appendix, we list the functions needed for the
threshold resummation of Sec. II B, taken from Ref. [20].
All formulas in this appendix can be found in Ref. [20], but
we include them for the convenience of the reader.

The running kernel U is defined as

UðM;�h;�s;�fÞ ¼
�
M2

�2
h

��2a�ð�h;�sÞ
exp½4Sð�h;�sÞ

� 2a�V ð�h;�sÞ þ 4a�	ð�s;�fÞ	;
(B1)

where a� is the anomalous exponent of � defined by

a�ð
;�Þ ¼ �
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and S is the Sudakov exponent
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The renormalization group equations, Eqs. (B2) and
(B3), can be solved perturbatively. The anomalous dimen-
sions are expanded as
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The solutions to Eqs. (B2) and (B3) are then
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where r � �sð�Þ=�sð
Þ.
The cusp anomalous dimension is known to three loops [48,49]. The coefficients are
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The four-loop coefficient �3 has not yet been calculated, so we use the Padé approximate, �3 ¼ �2
2=�1. The anomalous

dimension �V can be obtained from the partial three-loop on-shell quark form factor [50]. The coefficients are
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The final anomalous dimension, �	, is known from the NNLO calculation of the Altarelli-Parisi splitting function [49].
The coefficients are

�	
0 ¼ 3CF; �	

1 ¼ C2
F

�
3

2
� 2�2 þ 243

�
þ CFCA

�
17

6
þ 22�2

9
� 123

�
� CFTFnf

�
2

3
þ 8�2

9

�
;

�	
2 ¼ C3

F

�
29

2
þ 3�2 þ 8�4

5
þ 683 � 16�2

3
3 � 2405

�
þ C2

FCA

�
151

4
� 205�2

9
� 247�4

135
þ 844

3
3 þ 8�2

3
3 þ 1205

�

þ CFC
2
A

�
� 1657

36
þ 2248�2

81
� �4

18
� 1552

9
3 þ 405

�
þ C2

FTFnf

�
�46þ 20�2

9
þ 116�4

135
� 272

3
3

�

þ CFCATFnf

�
40� 1336�2

81
þ 2�4

45
þ 400

9
3

�
þ CFT

2
Fn

2
f

�
� 68

9
þ 160�2

81
� 64

9
3

�
: (B9)

The other functions needed are the Wilson coefficient CV and the soft function ~sDY. The Wilson coefficient CV has the
expansion

CVð�M2 � i�;�Þ ¼ 1þ CF�s
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where L ¼ lnðM2=�2Þ � i�, and
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This agrees with the corresponding expression in Ref. [51].
The soft function to two loops is

~s DYð‘;�Þ ¼ 1þ CF�s

4�

�
2‘2 þ �2

3

�
þ CF

�
�s

4�

�
2ðCFWF þ CAWA þ TFnfWfÞ; (B12)

where
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This again agrees with the moment space expression in Ref. [51].
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