
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 925864, 14 pages
doi:10.1155/2012/925864

Research Article

A Convolve-And-MErge Approach for Exact Computations on
High-Performance Reconfigurable Computers

Esam El-Araby,1 Ivan Gonzalez,2 Sergio Lopez-Buedo,2 and Tarek El-Ghazawi3

1 Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC 20064, USA
2 Departments of Computer Engineering at Escuela Politecnica Superior of Universidad Autonoma de Madrid, 28049 Madrid, Spain
3 Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA

Correspondence should be addressed to Esam El-Araby, aly@cua.edu

Received 31 October 2011; Revised 1 February 2012; Accepted 13 February 2012

Academic Editor: Thomas Steinke

Copyright © 2012 Esam El-Araby et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work presents an approach for accelerating arbitrary-precision arithmetic on high-performance reconfigurable computers
(HPRCs). Although faster and smaller, fixed-precision arithmetic has inherent rounding and overflow problems that can cause
errors in scientific or engineering applications. This recurring phenomenon is usually referred to as numerical nonrobustness.
Therefore, there is an increasing interest in the paradigm of exact computation, based on arbitrary-precision arithmetic. There are a
number of libraries and/or languages supporting this paradigm, for example, the GNU multiprecision (GMP) library. However, the
performance of computations is significantly reduced in comparison to that of fixed-precision arithmetic. In order to reduce this
performance gap, this paper investigates the acceleration of arbitrary-precision arithmetic on HPRCs. A Convolve-And-MErge
approach is proposed, that implements virtual convolution schedules derived from the formal representation of the arbitrary-
precision multiplication problem. Additionally, dynamic (nonlinear) pipeline techniques are also exploited in order to achieve
speedups ranging from 5x (addition) to 9x (multiplication), while keeping resource usage of the reconfigurable device low, ranging
from 11% to 19%.

1. Introduction

Present-day computers built around fixed-precision com-
ponents perform integer and/or floating point arithmetic
operations using fixed-width operands, typically 32 and/or
64 bits wide. However, some applications require larger
precision arithmetic. For example, operands in public-key
cryptography algorithms are typically thousands of bits long.
Arbitrary-precision arithmetic is also important for scientific
and engineering computations where the roundoff errors
arising from fixed-precision arithmetic cause convergence
and stability problems. Although many applications can
tolerate fixed-precision problems, there is a significant num-
ber of other applications, such as finance and banking, in
which numerical overflow is intolerable. This recurring phe-
nomenon is usually referred to as numerical nonrobustness
[1]. In response to this problem, exact computation, based
on exact/arbitrary-precision arithmetic, was first introduced
in 1995 by Yap and Dube [2] as an emerging numerical

computation paradigm. In arbitrary-precision arithmetic,
also known as bignum arithmetic, the size of operands is only
limited by the available memory of the host system [3, 4].

Among other fields, arbitrary-precision arithmetic is
used, for example, in computational metrology and coor-
dinate measuring machines (CMMs), computation of fun-
damental mathematical constants such as π to millions of
digits, rendering fractal images, computational geometry,
geometric editing and modeling, and constraint logic pro-
gramming (CLP) languages [1–5].

In the earlier days of computers, there were some
machines that supported arbitrary-precision arithmetic in
hardware. Two examples of these machines were the IBM
1401 [6] and the Honeywell 200 Liberator [7] series. Nowa-
days, arbitrary-precision arithmetic is mostly implemented
in software, perhaps embedded into a computer compiler.
Over the last decade, a number of bignum software packages
have been developed. These include the GNU multiprecision
(GMP) library, CLN, LEDA, Java.math, BigFloat, BigDigits,
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and Crypto++ [4, 5]. In addition, there exist stand-alone
application software/languages such as PARI/GP, Mathemat-
ica, Maple, Macsyma, dc programming language, and REXX
programming language [4].

Arbitrary-precision numbers are often stored as large-
variable-length arrays of digits in some base related to the
system word-length. Because of this, arithmetic performance
is slower compared to fixed-precision arithmetic which is
closely related to the size of the processor internal registers
[2]. There have been some attempts for hardware implemen-
tations. However, those attempts usually amounted to spe-
cialized hardware for small-size discrete multiprecision and/
or to large-size fixed-precision [8–12] integer arithmetic
rather than to real arbitrary-precision arithmetic.

High-performance reconfigurable computers (HPRCs)
have shown remarkable results in comparison to conven-
tional processors in those problems requiring custom designs
because of the mismatch with operand widths and/or opera-
tions of conventional ALUs. For example, speedups of up to
28,514 have been reported for cryptography applications [13,
14], up to 8,723 for bioinformatics sequence matching [13],
and up to 32 for remote sensing and image processing [15,
16]. Therefore, arbitrary-precision arithmetic seemed to be
a good candidate for acceleration on reconfigurable comput-
ers.

This work explores the use of HPRCs for arbitrary-pre-
cision arithmetic. We propose a hardware architecture that is
able to implement addition, subtraction and multiplication,
as well as convolution, on arbitrary-length operands up to
128 ExibiByte. The architecture is based on virtual convo-
lution scheduling. It has been validated on a classic HPRC
machine, the SRC-6 [17] from SRC Computers, showing
speedups ranging from 2 to 9 in comparison to the portable
version of the GMP library. This speedup is in part attained
due to the dynamic (nonlinear) pipelining techniques that
are used to eliminate the effects of deeply pipelined reduction
operators.

The paper is organized as follows. Section 2 presents a
short overview of HPRC machines. The problem is formu-
lated in Section 3. Section 4 describes the proposed approach
and architecture augmented with a numerical example for
illustrating the details of the proposed approach. Section 5
shows the experimental work. Implementation details are
also given in Section 5, as well as performance comparison
to the SW version of GMP. Finally, Section 6 presents the
conclusions and future directions.

2. High Performance
Reconfigurable Computing

In the recent years, the concept of high-performance recon-
figurable computing has emerged as a promising alternative
to conventional processing in order to enhance the perfor-
mance of computers. The idea is to accelerate a parallel com-
puter with reconfigurable devices such as FPGAs where a
custom hardware implementation of the critical sections of
the code is performed in the reconfigurable device. Although
the clock frequency of the FPGA is typically one order of

magnitude less than the one of high-end microprocessors,
significant speedups are obtained due to the increased paral-
lelism of hardware. This performance is especially important
for those algorithms not matching the architecture of con-
ventional microprocessors, because of either the operand
lengths (e.g., bioinformatics) or the operations performed
(e.g., cryptography). Moreover, the power consumption is
reduced in comparison to conventional platforms, and the
use of reconfigurable devices brings flexibility closer to that
of SW, as opposed to other HW-accelerated solutions such
as ASICs. In other words, the goal of HPRC machines is
to achieve the synergy between the low-level parallelism
of hardware with the system-level parallelism of high-per-
formance computing (HPC) machines.

In general, HPRCs can be classified as either nonuniform
node uniform systems (NNUSs) or uniform node nonuni-
form systems (UNNSs) [13]. NNUSs consist of only one
type of nodes. Nodes are heterogeneous containing both
FPGAs and microprocessors. FPGAs are connected directly
to the microprocessors inside the node. On the other hand,
UNNS nodes are homogeneous containing either FPGAs
or microprocessors which are linked via an interconnection
network. The platform used in this paper, SRC-6 [17], be-
longs to the second category.

SRC-6 platform consists of one or more general-purpose
microprocessor subsystems, one or more MAP reconfig-
urable processor subsystems, and global common memory
(GCM) nodes of shared memory space [17]. These subsys-
tems are interconnected through a Hi-Bar Switch communi-
cation layer; see Figure 1. Multiple tiers of the Hi-Bar Switch
can be used to create large-node count scalable systems. Each
microprocessor board is based on 2.8 GHz Intel Xeon micro-
processors. Microprocessors boards are connected to the
MAP boards through the SNAP interconnect. The SNAP card
plugs into the memory DIMM slot on the microprocessor
motherboard to provide higher data transfer rates between
the boards than the less efficient but common PCI solution.
The peak transfer rate between a microprocessor board and
the MAP board is 1600 MB/sec. Hardware architecture of the
SRC-6 MAP processor is shown in Figure 1. The MAP Series
C board is composed of one control FPGA and two user
FPGAs, all Xilinx Virtex II-6000-4. Additionally, each MAP
unit contains six interleaved banks of on-board memory
(OBM) with a total capacity of 24 MB. The maximum
aggregate data transfer rate among all FPGAs and on-board
memory is 4800 MB/s. The user FPGAs are configured in
such a way that one is in the master mode and the other
is in the slave mode. The two FPGAs of a MAP are di-
rectly connected using a bridge port. Furthermore, MAP pro-
cessors can be chained together using a chain port to create
an array of FPGAs.

3. Problem Formulation

Exact arithmetic uses the four basic arithmetic operations
(+, −, ×, ÷) over the rational field Q to support exact
computations [1–5]. Therefore, the problem of exact compu-
tation is reduced to implementing these four basic arithmetic
operations with arbitrary-sized operands.
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Table 1: Computational complexity of arithmetic operations [18].

Operation Input Output Algorithm Complexity

Addition Two n-digit numbers One (n + 1)-digit number Basecase/Schoolbook O(n)

Subtraction Two n-digit numbers One (n + 1)-digit number Basecase/Schoolbook O(n)

Multiplication Two n-digit numbers One 2n-digit number

Basecase/Schoolbook O(n2)

Karatsuba O(n1.585)

3-way Toom-Cook O(n1.465)

k-way Toom-Cook O(n1+ε), ε > 0

Mixed-level Toom-Cook O(n(logn)2
√

(2 logn))

Schösnhage-Strassen O(n(logn)(log logn))

Note: The complexity of multiplication will be referred to as M(n) in the following

Division Two n-digit numbers One n-digit number
Basecase/Schoolbook O(n2)

Newton’s method O(M(n))

Goldschmidt O(M(n))

Square root One n-digit number One n-digit number
Newton’s method O(M(n))

Goldschmidt O(M(n))

Polynomial evaluation n fixed-size polynomial coefficients One fixed size
Horner’s method O(n)

Direct evaluation O(n)

Hi-Bar Switch

IFP IFP
Memory Memory

μP μP μP μP

PCI-X PCI-X

· · ·
· · ·

· · ·

· · ·

Gig ethernet

RP

OBM

FPGA FPGA

RP

OBM

FPGA FPGA

Chaining GPIO

GCM GCM

μP ≡microprocessor

IFP ≡ interface processor (SNAP)

RP ≡ reconfigurable processor (MAP)

OBM ≡ on-board memory

GCM ≡ global common memory

GPIO ≡ general-purpose input/output

Figure 1: Hardware architecture of SRC-6.

The asymptotic computational complexity of each oper-
ation depends on the bit length of operands [5, 18], see
Table 1. Our formal representation of the problem will
consider only the multiplication operation. This is based on
the fact that multiplication is a core operation from which
the other basic arithmetic operations can be easily derived,
for example, division as a multiplication using Newton-
Raphson’s approximation or Goldschmidt algorithm [19,
20]. Our proposed arithmetic unit can perform arbitrary-
precision addition, subtraction, multiplication, as well as
convolution operations. We decided to follow the Base-
case/Schoolbook algorithm. Although this algorithm is not
the fastest algorithm having a complexity of O(n2), see
Table 1, it is the simplest and most straightforward algorithm
with the least overhead. In addition, this algorithm is usually
the starting point for almost all available software imple-
mentations of arbitrary-precision arithmetic. For example,

in the case of GMP, the Basecase algorithm is used up
to a predetermined operand size threshold, 3000–10,000
bit length depending on the underlying microprocessor
architecture, beyond which the software adaptively switches
to a faster algorithm [20, 21].

The main challenge of implementing arbitrary-precision
arithmetic in HPRC machines is the physical/spatial lim-
itations of the reconfigurable device. In other words, the
reconfigurable device (FPGA) has limited physical resources,
which makes it unrealistic to accommodate for the resource
requirements of arbitrarily large-precision arithmetic oper-
ators. Therefore, the problem can be formulated as given a
fixed-precision arithmetic unit, for example, p-digit by p-
digit multiplier, how to implement an arbitrary-precision
arithmetic unit, for example, arbitrary large-variable-size
m1-digit by m2-digit multiplier. Typically, p is dependent on
the underlying hardware word-length, for example, 32-bit
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n1

n2

n2

p digits

An1−1 A2 A1 A0

Bn2−1 B2 B1 B0

· · ·

· · ·

·An1−1B0 An1−2B0 An1−3B0 A2B0 A1B0 A0B0

·An1−1B1 An1−2B1 An1−3B1 A2B1 A1B1 A0B1

·
· · · · · · ·

·
·

· · · · · · ·

·
· ·

· · · · ·

An1−1B2 An1−2B2 An1−3B2 A2B2 A1B2 A0B2

Ci

Ci = Qlow
i + Q

high
i x + Δix2, x = r p

Δi Q
high
i

Qlow
i

nΔi p p

nci

Ci =
i∑

k=0
BkAi−k =

i∑
k=0

AkBi−k , 0 ≤ i ≤ (n1 + n2 − 2)

Bk = 0∀ k ≥ n2 , Ai−k = 0 ∀(i− k ≥ n1)

n1 + n2 − 2
2p digits

C2 C1 C0Cn1+n2−2

An1−1Bn2−1 A2Bn2−1 A1Bn2−1 A0Bn2−1

Figure 2: Multiplication matrix of high-precision numbers.

or 64-bit. In achieving this objective, our approach is based
on leveraging previous work and concepts that were intro-
duced for solving similar problems. For example, Tredennick
and Welch [22] proposed architectural solutions for variable-
length byte string processing. Similarly, Olariu et al. [23]
formally analyzed and proposed solutions for the problem of
sorting arbitrary large number of items using a sorting net-
work of small fixed I/O size. Finally, ElGindy and Ferizis [24]
investigated the problem of mapping recursive algorithms on
reconfigurable hardware.

4. Approach and Architectures

4.1. Formal Problem Representation. An arbitrary-precision
m-digit number in arbitrary numeric base r can be repre-
sented by

A = a0 + a1r + a2r
2 + · · · + am−1r

m−1,

A =
m−1∑
j=0

ajr
j , 0 ≤ aj < r.

(1)

It can also be interpreted as an n-digit number with base
rp, where p is dependent on the underlying hardware word-
length, for example, 32-bit or 64-bit. This is represented by
(2) as follows:

A =
n−1∑
i=0

(i+1)p−1∑
j=ip

ajr
j =

n−1∑
i=0

p−1∑
k=0

ak+ipr
k+ip

=
n−1∑
i=0

⎡
⎣p−1∑
k=0

ak+ipr
k

⎤
⎦rip = n−1∑

i=0

Air
ip,

where Ai =
p−1∑
k=0

ak+ipr
k, n =

⌈
m

p

⌉
.

(2)

Multiplication, accordingly, can be formulated as shown
in Figure 2 and expressed by (3). In other words, as
implied by (4a), multiplication of high-precision numbers
can be performed through two separate processes in se-
quence. The first is a low fixed precision, that is, p-digits,
multiply-accumulate (MAC) process for calculating the coef-
ficients/partial products Cis as given by (4b). This is followed
by a merging process of these coefficients/partial products
into a final single high-precision product as given by (4a).
Equation (4b) shows that the coefficients Cis can be repre-
sented at minimum by 2p-digit precision.

The extra digits are due to the accumulation process.
Therefore, Cis can be expressed as shown by (4c);

A =
n1−1∑
i=0

Air
ip =

n1−1∑
i=0

Aix
i = A(x),

B =
n2−1∑
i=0

Bir
ip =

n2−1∑
i=0

Bix
i = B(x),

C = AB = A(x) · B(x) = C(x),

where n1 =
⌈
m1

p

⌉
, n2 =

⌈
m2

p

⌉
, x = r p.

(3)
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Q(n1+n2−2)
low Q(n1+n2−3)

low

Q(n1+n2−2)
high Q(n1+n2−3)

high

Qi
low Q3

low Q2
low Q1

low Q0
low

Qi−1
high

Q2
high Q1

high Q0
high

Δ(n1+n2−2) Δ(n1+n2−3) Δi−2 Δ1 Δ0

···

··· ···

···
···

···
···
···

Clow

Chigh

Ccarry

S(n1+n2) S(n1+n2−1) S(n1+n2−2) S(n1+n2−3) SI S3 S2 S1 S0

p digits p digits p digits

Figure 3: Merging schedule.

C(x) = C0 + C1x + C2x
2 + C3x

3 + · · · + C(n1+n2−2)x
(n1+n2−2),

(4a)

where

Ci =
i∑

k=0

BkAi−k =
i∑

k=0

AkBi−k, 0 ≤ i ≤ (n1 + n2 − 2),

Bk = 0, ∀k ≥ n2,

Ai−k = 0, ∀(i− k) ≥ n1,
(4b)

Ci = Qlow
i + Q

high
i x + Δix

2, x = r p. (4c)

4.2. Multiplication as a Convolve-And-MErge (CAME) Pro-
cess. It can be easily noticed that the coefficients Cis given
by (4b) are in the form of a convolution sum. This led us to
believe that virtualizing the convolution operation and using
it as a scheduling mechanism will be a straightforward path
for implementing multiplication and hence the remaining
arithmetic operations. The different sub operands, that is, As
and Bs, being stored in the system memory, will be accessed
according to the convolution schedule and passed to the
MAC process. The outcome of the MAC process is then
delivered to the merging process which merges the partial
products, according to another merging schedule, into the
final results. The final results are then scheduled back into the
system memory according to the same convolution schedule.

The convolution schedule, on one hand, can be derived
from (4b). It is simply a process that generates the addresses/
indexes for As, Bs, and Cs governed by the rules given in (4b).
On the hand, the merging schedule can be derived from (5)
which results from substituting (4c) into (4a). Figure 3 shows
the merging schedule as a high-precision addition of three
components. The first component is simply a concatenation
of all the first p-digits of the MAC output. The second
component is a p-digit shifted concatenation of all the second
p-digits of the MAC output. Finally, the third component is a
2p-digit shifted concatenation of all the third p-digits of the
MAC output:

C(x) =
n1+n2−2∑

i=0

Qlow
i xi +

⎛
⎝n1+n2−2∑

i=0

Q
high
i xi

⎞
⎠ · x

+

⎛
⎝n1+n2−2∑

i=0

Δix
i

⎞
⎠ · x2,

C(x) ≡Clow + Chigh · x + Ccarry · x2,

where Clow =
n1+n2−2∑

i=0

Qlow
i xi, Chigh =

n1+n2−2∑
i=0

Q
high
i xi,

Ccarry =
n1+n2−2∑

i=0

Δix
i.

(5)

The merging schedule, as described above, is a high-pre-
cision schedule which will work only if the merging process
is performed after the MAC process has finished completely.
Given the algorithm complexity O(n2) and allowing the two
processes to work sequentially one after another would dra-
matically impact the performance. However, modifying the
merging process to follow a small-fixed-precision scheduling
scheme that works in parallel and in synchrony with the
MAC process would bring back the performance to its theo-
retical complexity O(n2). The modified merging scheme can
be very easily derived either from (5) or Figure 3 resulting in
(6):

Si= δi−1 + Qlow
i + Q

high
i−1 + Δi−2,

i = 0, 1, 2, . . . , (n1 + n2),

δi = Si · x−1 = Si · r−p = SHR
(
Si, p digits

)
,

Qlow
k = Q

high
k = Δk = 0 ∀k < 0, k > (n1 + n2 − 2),

δk = 0 ∀k < 0, k ≥ (n1 + n2).

(6)

This would mean that, as soon as the MAC process fin-
ishes one partial result, Ci in 3p-digit precision, the merging
process, in-place, produces a final partial result Si in p-digit
precision, see Figure 4. This precision matches the word-
length of the supporting memory system which allows easy
storage of the final result without stalling either the MAC
or the merging process. The merging process registers the
remaining high-precision digits for use in subsequent calcu-
lations of Sis.

In addition to performing multiplication, the derived
architecture in Figure 4 can also natively perform the con-
volution operation for sequences of arbitrary size. This is
because the MAC process generates the coefficients in (4b)
according to a convolution schedule and in fact they are the
direct convolution result. In other words, only the MAC
process is needed for the convolution operation. Further-
more, the same unit can be used to perform addition and/or
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Virtual

convolution

scheduler

Aaddress

Baddress

Caddress

(p bits) (p bits)

(p bits)

(p bits)

(p bits)

(p bits)

Amemory

Bmemory

Cmemory

Ai−k

Bk

Si

MAC

Merger

Ci

(3p 
bits)

CAME

CAME

≡
MAC ≡

Convolve-And-MErge

multiply-accumulate

(a) Architecture hierarchy and memory requirements

MAC Merger

Ai−k
(p bits)

(p bits) (p bits)

(p bits)

(p bits)

(p bits)

(p bits)

Bk

(p bits)

Mult
A× B

(2p bits)
Accum

Δi

Qi
high

Qi
low

Delay

Δi−2

Qi−1
high

Qi
low

Adder1
sumi

t t

Adder2

δi
(2 bits)

Si

(p bits)(p + 2 bits)

(b) Arithmetic unit architecture

Figure 4: CAME architecture.

subtraction by passing the input operands directly to the
merging process without going through the MAC process.

4.3. Illustrative Example. In order to show the steps of the
proposed methodology, we will consider multiplying two
decimal numbers, A = 987654321 and B = 98765. We will
assume that the underlying hardware word-length is 2 digits.
The formal representation for this example is

r = 10, p = 2 =⇒ x = r p = 100,

A=987654321=⇒m1=9, n1=
⌈
m1

p

⌉
=
⌈

9
2

⌉
=5,

B = 98765 =⇒ m2 = 5, n2 =
⌈
m2

p

⌉
=
⌈

5
2

⌉
= 3,

A(x) =
5−1∑
i=0

Aix
i = A4x

4 + A3x
3 + A2x

2 + A1x + A0,

A(x) = 09x4 + 87x3 + 65x2 + 43x + 21,

B(x)=
3−1∑
i=0

Bix
i=B2x

2 +B1x+B0=09x2 +87x+65,

C(x) = 81x6 + 1566x5 + 8739x4 + 11697x3 + 8155x2

+ 4622x + 1365.

(7)

As described in Section 4.2, multiplication is performed as
a two-step CAME process, as shown in Figure 5. The MAC
process is first applied to calculate the convolution of the
two numbers, see Figure 5(a), after which the partial results
are then merged, as shown in Figure 5(b), to obtain the final
result.

4.4. Precision of the Arithmetic Unit. One challenge of im-
plementing an arbitrary-precision arithmetic unit is to en-
sure that it is possible to operate with any realistic size of
operands. It is therefore necessary to investigate the growth
of the MAC process as it represents an upper bound for the
unit precision. As discussed earlier, shown in Figure 2, and
given by (4c), the outcome of the MAC process, Ci, consists

of three parts: the multiply digits, Qlow
i , Q

high
i , and the

accumulation digits,Δi. The corresponding number of digits,
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n1 = 5

p = 2

09

09

87

87

65

65

43 21 A

B

n2 = 3

81 1566 8739 11697 8155 4622 1365 C

1 4

0 13 65

0 46 22

0 81 55

1 16 97

0 87 39

0 15 66

0 00 81

2

4

6

8

10

12

C0

C1

C2

C3

C4

C5

C6

nΔmax =


logr


m2

p


=


log10


5
2


= 1 carry digit

(a) Multiply-accumulate (MAC) process

01
00
46
55

35

13
22

000001000000
00 00

00

97

15
81

65795654

811687
65973966

2 digits 

0097545679013565

987654321

98765

Clow

Chigh

Ccarry

S

A
×
B

=
C

S7 S6 S5 S4 S3 S2 S1 S0

(b) Merge process

Figure 5: Example of decimal multiplication.

nCi , nQlow
i

, n
Q

high
i

, nΔi , can be expressed as given by (8a), (8b),

(8c), and shown in Figure 6:

nCi = nQlow
i

+ n
Q

high
i

+ nΔi , nQlow
i
= n

Q
high
i
= p, (8a)

nΔi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

logr(i + 1), 0 ≤ i ≤ (n2 − 2),

logr(n2), (n2 − 1) ≤ i ≤ (n1 − 1),

logr(n1 + n2 − 1− i), n1 ≤ i ≤ (n1 + n2 − 2),
(8b)

nΔmax =
⌈

logr

(
m2

p

)⌉
,

0 ≤ nΔmax ≤ p =⇒ p ≤ m2 ≤ p · r p,

when

p =64=⇒64≤m2≤ 64 · 264≡ 128 EiB
(
ExibiByte

)
.

(8c)

Controlling the growth of the MAC process by keeping
the accumulation/carry digits less than or equal to p-digits,
(8c) gives the upper bound on the precision of the input
operands. This is in terms of the hardware unit word-length,
that is, p-digits, and the numeric system base r. For example,
for a binary representation, that is, r = 2, and a 64-bit
arithmetic unit, that is, p = 64, the accommodated operand
precision is 128 ExibiByte which is beyond any realistic
storage system. In other words, a hardware unit with such
parameters can provide almost infinite-precision arithmetic.
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nCi

2p +logr(n2)

2p

0
0 (n2 − 1) (n1 − 1) (n1 + n2 − 2)

i

nCi = 2p + nΔ i

nΔ i =


logr(i + 1), 0 ≤ i ≤ (n2 − 2)

logr(n2), (n2 − 1) ≤ i ≤ (n1 − 1)

logr(n1 + n2 − 1− i), n1 ≤ i ≤ (n1 + n2 − 2)

nΔmax =

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Figure 6: Growth of MAC process (accumulation/carry digits).

5. Experimental Work

Our experiments have been performed on one represen-
tative HPRC systems, SRC-6 [17], previously described in
Section 2. The proposed architecture was developed partly
in Xilinx System Generator environment as well as in
VHDL. In both environments, the architectures were highly
parameterized.

The hardware performance was referenced to one of the
most efficient [21] software libraries supporting arbitrary-
precision arithmetic, namely, GMP library on Xeon 2.8 GHz.
We considered two versions of GMP. The first was the
compiled version of GMP which is a precompiled and highly
optimized version for the underlying microprocessor. The
other was the highly portable version of GMP without any
processor-specific optimizations.

5.1. Implementation Issues. Large-precision reduction oper-
ations used in both the MAC (i.e., 3p-digit accumulation)
and the merging processes proved to be a challenge due to
critical-path issues. For example, the accumulation of a
stream of integers can be impractical for FPGA-based imple-
mentations when the number of values is large. The resultant
circuit can significantly reduce the performance and con-
sume an important portion of the FPGA.

To eliminate those effects of reduction operations, tech-
niques of deep pipelining [25, 26] and those of nonlinear
pipelining [27, 28] were considered. The buffering mecha-
nism, presented in [25, 26], showed either low throughput
and efficiency, or high latency and resources usage for our
case, see Figure 7(a). Therefore, we leveraged the techniques
of nonlinear pipelines [27, 28] which proved to be effective,
see Figure 7(b). Furthermore, we derived a generalized ar-
chitecture for nonlinear pipelined accumulation; refer to

(9). The main component of this structure is a p-digit ac-
cumulation stage in which delay elements are added for syn-
chronization purposes, see Figure 8. The p-digit stages are
arranged in a manner such that overflow digits from a given
stage j are passed to the subsequent stage j + 1. The total
number of stages ns depends on the size of the input operand
mA as well as on the number of accumulated operands N, see
(9). In doing so, we have proved

S =
N−1∑
i=0

Ai, Ai =
nA−1∑
j=0

Ai, jx
j ,

S =
N−1∑
i=0

⎛
⎝nA−1∑

j=0

Ai, jx
j

⎞
⎠ = nA−1∑

j=0

⎛
⎝N−1∑

i=0

Ai, jx
j

⎞
⎠

=
nA−1∑
j=0

⎛
⎝x j

N−1∑
i=0

Ai, j

⎞
⎠,

S =
nA−1∑
j=0

SN−1, jx
j ,

SN−1, j =
N−1∑
i=0

Ai, j ⇐⇒ Si, j = Si−1, j + Ai, j ,

∀i ∈ [0,N − 1], S−1, j = 0,

Si, j = Qi, j + Δi, j · x,

Qi, j + Δi, j · x = Qi−1, j + Δi−1, j · x + Ai, j ,

Qi−1, j + Ai, j = Qi, j + ci, j · x,

=⇒ Δi, j = Δi−1, j + ci, j ⇐⇒ ΔN−1, j =
N−1∑
i=0

ci, j ,
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Figure 7: Accumulator of the MAC process.

where x = r p, mS = mA + mΔ, mΔ = logrN ,

nA =
⌈
mA

p

⌉
, nΔ =

⌈
mΔ

p

⌉
,

nS = nA + nΔ =
⌈
mA

p

⌉
+

⌈
logrN

p

⌉
,

(9)

that large-size accumulation operations which are prone to
deeply-pipelined effects and hardware critical-path issues
can be substituted with multiple and faster smaller-size
accumulations. In other words, a single large-size (p · ns)-
digit accumulator can efficiently be implemented using ns
faster p-digit accumulators, see Figure 8.

We analyzed the pipeline efficiency, as defined in [27, 28],
of our proposed architecture. This is expressed by (10a),
(10b), and shown in Figure 10. The pipeline efficiency η as
expressed by (10a) can be easily derived by considering the
pipeline reservation table [27, 28]. As shown in Figure 9, the
example reservation table is used to calculate the pipeline
efficiency η. We implemented two versions of the arithmetic

unit, that is, 32-bit and 64-bit. For very large data, the
efficiency for the 32-bit unit was lower bounded to 80%
while the efficiency for the 64-bit unit was lower bounded
to 84.62%, see (10b) and Figure 10:

η = Full Cells
Total Cells

= 1− Empty Cells
Total Cells

,

η =1− Lmerger(n1 − 1)(n2 − 1)

Ltotaln1n2

= 1− 1
1 + Lmac/Lmerger

·
(

1− 1
n1

)(
1− 1

n2

)
,

where Lmac ≡ Latency of the MAC− process,

Lmerger ≡ Latency of the merging− process,

Ltotal = Lmac + Lmerger,

(10a)
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Table 2: FPGA resource utilization.

32-bit unit 64-bit unit

Slice flip flops 6,155 (9%) 9,183 (13%)

4-input LUTs 2,524 (3%) 6,311 (9%)

Occupied slices 3,983 (11%) 6,550 (19%)

18× 18b multipliers 4 (2%) 10 (6%)

Clock frequency 102.8 MHz 100.4 MHz

when

η∞ = lim
n1,n2 →∞

η = Lmac

Ltotal
,

p=32 bits, Lmac=4, Lmerger=1=⇒η∞=80.00%,

p=64 bits, Lmac=11, Lmerger=2=⇒η∞=84.62%.
(10b)

5.2. Experimental Results. Our experiments were performed
for two cases, that is, 32-bit and 64-bit units. FPGA resources
usage and clock frequency are shown in Table 2. While
resource usage in the 64-bit unit is larger, as expected, clock
frequency is similar in both cases due to the clock frequency
requirement imposed by SRC-6 (100 MHz). As it can be seen
in Table 2, the proposed architecture consumes relatively low
hardware resources requiring at maximum 19% of the recon-
figurable device for the 64-bit unit. These implementation
results allow taking advantage of the inherent parallelism of
the FPGA and adding more than one operational unit upper
bounded by the number of available memory banks. For
example, in SRC-6, there are six memory banks which make
it possible to allocate two units per FPGA, see Figure 4(a).

Next, we show the results of the 64-bit Basecase algorithm
for addition/subtraction, and the 32-bit and 64-bit Basecase
algorithm for multiplication.

The arbitrary-precision addition/subtraction perfor-
mance was measured on SRC-6 and compared to both
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Figure 12: Addition/subtraction hardware speedup versus GMP
(64-bit).

the compiled and portable versions of GMP. As shown in
Figure 11, T COMP HW, that is, the total computation time
of the hardware on SRC-6, is lower than the execution time
of both the compiled and portable versions of GMP. The
performance speedup is shown in Figure 12. The hardware
implementation asymptotically outperforms the software, by
a factor of approximately 5, because of the inherent paral-
lelism exploited by the hardware. We can also notice that,
for small-precision addition/subtraction, the speedup factor
starts from approximately 25. This is due to the large over-
head, relative to the data size, associated with the software,
while the only overhead associated with the hardware is due
to the pipeline latency. This latency is independent on the
data size. It is also worth to notice the linear behavior,
O(n), of both the software and the hardware. This is because
both execute the same algorithm, that is, Bascase addition/
subtraction [20, 21], see Table 1.

In the case of multiplication, we notice a nonlinear be-
havior O(n1+e), 0 < e < 1; see Figure 13 and Table 1. We
notice also a similar behavior to the addition/subtraction for
small-size operands. Figures 13(a) and 13(b) show a signifi-
cant performance for the hardware compared to the portable
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Figure 13: Multiplication execution time.

version of GMP. This is because this version of GMP uses the
same algorithm as ours, that is, Basecase with O(n2) see
Table 1, independent of the data size [20, 21]. As shown
in Figure 14, the hardware behavior asymptotically outper-
forms the portable GMP multiplication by a factor of ap-
proximately 2 for the 32-bit multiplication, see Figure 14(a),
and 9 for the 64-bit multiplication, see Figure 14(b). How-
ever, this is not the case with the compiled GMP multiplica-
tion which is highly optimized and adaptive. Compiled GMP
uses four multiplication algorithms, and adaptively switches
from a slower to a faster algorithm depending on the data
size and according to predetermined thresholds [20, 21]. For
these reasons, the hardware, as can be seen from Figure 13(c),
outperforms the compiled GMP up to a certain threshold,
approximately 10 Kbits, beyond which the situation rever-
ses.

6. Conclusions and Future Work

This paper shows the feasibility of accelerating arbitrary-
precision arithmetic on HPRC platforms. While exact com-
putation presents many benefits in terms of numerical ro-
bustness, its main drawback is the poor performance that
is obtained in comparison to fixed-precision arithmetic. The
results presented in this work show the possibility of reducing
the performance gap between fixed-precision and arbitrary-
precision arithmetic using HPRC machines.

The proposed solution, the Convolve-And-MErge
(CAME) methodology for arbitrary-precision arithmetic, is
derived from a formal representation of the problem and
is based on virtual convolution scheduling. For the formal
analysis, only the multiplication operation was considered.
This decision was made due to the fact that multiplication
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is a core operation from which other basic arithmetic
operations, such as division and square root, can be easily
derived.

Our proposed arithmetic unit can perform arbitrary-
precision addition, subtraction, multiplication, as well as
arbitrary-length convolution operations. Our approach in
implementing the CAME process was based on leveraging
previous work and concepts that were introduced for solving
similar problems. Dynamic (nonlinear) pipelines techniques
were exploited to eliminate the effects of deeply pipelined
reduction operators. The use of these techniques allowed us
reaching a minimum of 80% pipeline utilization for 32-bit
units and reaching 84.6% efficiency for 64-bit units. This
implementation was verified for both correctness and perfor-
mance in reference to the GMP library on the SRC-6 HPRC.
The hardware outperformed GMP by a factor of 5x speedup
for addition/subtraction, while the speedup factor was lower
bounded to 9x compared to the portable version of GMP
multiplication.

Future directions may include investigating hardware
support for floating-point arbitrary precision, considering
faster algorithms than the Basecase/Schoolbook presented in
this paper, as well as adopting methods for adaptive algo-
rithm switching based on the length of the operands. In
addition to, full porting of an arbitrary-precision arithmetic
library such as GMP to HPRC machines might also be favor-
able.

References

[1] V. Sharma, Complexity analysis of algorithms in algebraic com-
putation, Ph.D. dissertation, Department of Computer Sci-
ence, Courant Institute of Mathematical Sciences, New York
University, 2007.

[2] C. K. Yap and T. Dube, “The exact computation paradigm,” in
Computing in Euclidean Geometry, D. Z. Du and F. K. Hwang,
Eds., vol. 4 of Lecture Notes Series on Computing, pp. 452–492,
World Scientific Press, Singapore, 2nd edition, 1995.

[3] D. E. Knuth, “The art of computer programming,” in Seminu-
merical Algorithms, vol. 2, Addison-Wesley, 3rd edition, 1998.

[4] http://en.wikipedia.org/wiki/Arbitrary precision arithmetic.
[5] C. Li, Exact geometric computation: theory and applications,

Ph.D. dissertation, Department of Computer Science, Institute
of Mathematical Sciences, New York University, 2001.

[6] http://bitsavers.org/pdf/ibm/140x/A24-1401-1 1401 System
Summary Sep64.pdf.

[7] http://ibm-1401.info/1401-Competition .html#IntroHoney-
well200.

[8] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J.
Dongarra, “Exploiting the performance of 32 bit floating point
arithmetic in obtaining 64 bit accuracy (Revisiting Iterative
Refinement for Linear Systems),” in Proceedings of the ACM/
IEEE SC Conference, Tampa, Fla, USA, November 2006.

[9] J. Hormigo, J. Villalba, and E. L. Zapata, “CORDIC processor
for variable-precision interval arithmetic,” Journal of VLSI Sig-
nal Processing Systems, vol. 37, no. 1, pp. 21–39, 2004.

[10] S. Balakrishnan and S. K. Nandy, “Arbitrary precision arith-
metic—SIMD style,” in Proceedings of the 11th International
Conference on VLSI Design: VLSI for Signal Processing, p. 128,
1998.

[11] A. Saha and R. Krishnamurthy, “Design and FPGA implemen-
tation of efficient integer arithmetic algorithms,” in Proceed-
ings of the IEEE Southeastcon ’93, vol. 4, no. 7, April 1993.

[12] D. M. Chiarulli, W. G. Rudd, and D. A. Buell, “DRAFT—a
dynamically reconfigurable processor for integer arithmetic,”
in Proceedings of the 7th Symposium on Computer Arithmetic,
pp. 309–321, IEEE Computer Society Press, 1989.

[13] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
and D. Buell, “The promise of high-performance reconfig-
urable computing,” IEEE Computer, vol. 41, no. 2, pp. 69–76,
2008.

[14] A. Michalski, D. Buell, and K. Gaj, “High-throughput recon-
figurable computing: design and implementation of an idea
encryption cryptosystem on the SRC-6e reconfigurable com-
puter,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL ’05), pp. 681–686,
August 2005.

[15] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj, “Wavelet
spectral dimension reduction of hyperspectral imagery on



14 International Journal of Reconfigurable Computing

a reconfigurable computer,” in Proceedings of the IEEE Inter-
national Conference on Field-Programmable Technology (FPT
’04), pp. 399–402, Brisbane, Australia, December 2004.

[16] E. El-Araby, M. Taher, T. El-Ghazawi, and J. Le Moigne,
“Prototyping Automatic Cloud Cover Assessment (ACCA)
algorithm for remote sensing on-board processing on a recon-
figurable computer,” in Proceedings of the IEEE International
Conference on Field Programmable Technology (FPT ’05), pp.
207–214, Singapore, December 2005.

[17] SRC Computers, SRC Carte C Programming Environment v2.2
Guide (SRC-007-18), 2006.

[18] http://en.wikipedia.org/wiki/Computational complexity of
mathematical operations.

[19] T. Granlund and P. L. Montgomery, “Division by invari-
ant integers using multiplication,” in Proceedings of the ACM
SIGPLAN’94 Conference on Programming Language Design and
Implementation (PLDI ’94), pp. 61–72, June 1994.

[20] GMP Manual, GNU MP The GNU Multiple Precision Arith-
metic Library, 4.2.1 edition, 2006.

[21] http://gmplib.org/.

[22] H. L. Tredennick and T. A. Welch, “High-speed buffering for
variable length operands,” Proceedings of the 4th Annual Sym-
posium on Computer Architecture (ISCA ’77), vol. 5, no. 7, pp.
205–210, March 1977.

[23] S. Olariu, M. C. Pinotti, and S. Q. Zheng, “How to sort N items
using a sorting network of fixed I/O size,” IEEE Transactions
on Parallel and Distributed Systems, vol. 10, no. 5, pp. 487–499,
1999.

[24] H. ElGindy and G. Ferizis, “Mapping basic recursive structures
to runtime reconfigurable hardware,” in Proceedings of the FPL,
August 2004.

[25] L. Zhou, G. R. Morris, and V. K. Prasanna, “High-perfor-
mance reduction circuits using deeply pipelined operators on
FPGAs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 10, pp. 1377–1392, 2007.

[26] L. Zhuo and V. K. Prasanna, “High-performance and area-
efficient reduction circuits on FPGAs,” in Proceedings of the
17th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’05), pp. 52–59, Rio
de Janeiro, Brazil, October 2005.

[27] K. Hwang, Advanced Computer Architecture: Parallelism, Scal-
ability, Programmability, McGrawHill, 1993.

[28] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology,
Architecture, Programming, McGrawHill, 1998.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


