```
THE GONTINUITY OF INTEGRAL TRANSFORMATIONS
    WITH POSITIVE KERMELS RETWEEN
            LP SPALES WITH MIXEO NORMS
                        by
                Howard L. Taylor
                A.E., Austin college, 1959
        M.A., University of Kamsas, 1962
```

```
Submitted to the Depertment of
```

Submitted to the Depertment of
Nathematics arod the Faculty of tho
Nathematics arod the Faculty of tho
Gracuade School of the University
Gracuade School of the University
of Kansas in pertiel fulfillment of
of Kansas in pertiel fulfillment of
the tequirements for the degres of
the tequirements for the degres of
Doclor of Philocophy.

```
Doclor of Philocophy.
```

Dissertation Sommittec:
D
Redacted Signature

Redacted Signature

Redacted Signature

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his advisor, Dr. Pawel Szeptycki, for guiding the author into the following area of research, and encouraging the author throughout the development by giving many helpful suggestions in the preparation of this dissertation, and also to Dr. Robert Brown for his encouragement, time and consideration in adising the author generally and in times of need.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
II MAPPING BETWEEN ORDERED BANACH SPACES 4
111 THE SPACES IP WITH MIXED NORNS 16
IV ORDERING WITHIN MULTI-INDICES 27
V AN EXISTENCE THEOREM 35
VI THE BOUNDEDNESS OF INTEGRAL TRANSFORMATIONS 47
VII FURTHER EXISTENCE THEOREMS 56
V11: REDUCING THE NUMBEP OF VARIABLES 71

CHAPTER ONE

Introduction

Let (A, Ω, μ) and (B, A, ν) be two totally $\sigma-f$ finite measure spaces, M and N the linear spaces of real valued functions which are measurable and finite $a . e$. on A and B respectively, with the metric topology of convergence in measure on all subsets of finite measure, and $K(x, y)$ a real valued measurable function on the product space $A \times B$. We define the integral transformation with kernel $K(x, y)$ by
(1.1) $\quad K f(y)=\int K(x, y) f(x) d \mu(x)$
for $f \in M$ if the integral on the right exists and is finite for a.e. $y \in B$. The linear subspace of all such $f \in M$ is called the donain of K and denoted by $D(K)$. The linear transformation K^{*} is the integral transformation defired by

$$
k^{*}(y, x)=\overline{k(x, y)}
$$

If $X \subset M$ and $Y \subset N$ we write $K: X \rightarrow Y$ whenever $X=D(K)$ and for all $f \in K, K(f) \in Y$. If $X C M$ and $Y \subset N$ are given Banach spaces with norms $\|\|$, and $\| \|_{y}$ respectively we can ask if K is continuous as a function defined on X with range in y. In particular we say that $" k: X \rightarrow Y$ is bounded with $\|K\| \leq c^{\prime \prime}$ if and only if

$$
\begin{equation*}
\frac{\ln _{4}!^{\prime} x}{\operatorname{la} x} \leq 0 \tag{1,2}
\end{equation*}
$$

for all ucx such that $\|u\| x \neq 0$. The case of interest is when
 K is continous (See [2]). Thus, the question of wombity of K reduces to the following: Given x, y, find conditions on K in order that $K: X \rightarrow Y$. Many authors have investigated the contiruity properties of integral transforms. for example, see $[2,3,4,7,8,9$, 10 and 12]. One set of investigations led to the followirg two results for L^{P} spaces, which were discussed by Gaglardo [9].

Result 1: (N. Aronszajn) Let $1<q \leq p<+\infty, 0<c<+\infty$, $\left(1 / p^{\prime}\right)+(1 / p)=\left(1 / q^{\prime}\right)+(1 / q)=1$ and $k(x, y) \geq 0$ a.e. be measurable on $A \times B$. If for every real $\varepsilon>0$ there exist measurable functions $\varphi(x)>0$ and $(y)>0$ and finite a.e. such that
(i) $\left(K_{c c}\right)(y) \leq(c+c)\left(\psi\left(y^{\prime}\right)\right)^{1 / q}$
(ii) $\left(K^{*} \psi\right)(x) \leq(c+c)(p(x))^{p / p^{\prime}}$
(iii) $p=q$ or $\int_{x, y} K(x, y) \varphi(x) \psi(y) d x d y \leq c+\varepsilon$
then

$$
K: L^{p} \rightarrow L^{q}
$$

is bounded with

$$
\|k\| \leq c .
$$

A converse of the above is given by the following.

Result 2: (E. Gagliardo) Let $1<p<+\infty, 1<q<+\infty$, $\left(1 / p^{\prime}\right)+(1 / p)=\left(1 / q^{\prime}\right)+(1 / q)=1$ and $K(x, y) \geq 0$ a.s. be measurable on $A \times B$. If $K: L^{P} \rightarrow L \mathcal{A}$ is bounded with $\||k| \mid \leq c$, then for every real $\varepsilon>0$ there exist functions $p \in L^{P}, \psi \in L^{\prime}, \varphi, \psi>0$ a.e. such that
(i) $(K \varphi)(y) \leq(c+\epsilon)(\varphi(y))^{\prime} / q$
(ii) $\left(K^{*}{ }^{*}\right)(x) \leq(c+\varepsilon)(\varphi(x))^{p / p^{\prime}}$
(iii) $\|\varphi\|_{p} \leq 1$ and $\|\psi\|_{q^{\prime}} \leq 1$

Remark: Conditions (i), (ii) and (iii) in Result 2 imply condition (iii) of Result. 1. Thus, for $q \leq p$, we have necessary and sufficent conditions for the boundedness of an integral transformation with a positive kernel.

In this paper, we will be concerned with extensions of Results 1 and 2 to the spaces L^{P} and L^{Q} of functions of several variables with mixed norms defined for the multi-indices $P=$ $\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ by applying successively the p_{1} or q_{s} norm to the variable x_{1} or y_{s}. Corresponding to Results 1 and 2 we have Theorems 5 and 4 respectively. These theorems only form exact converses when $p_{1} \geq p_{1+1}$ for $i=1, \ldots, n$ and $q_{j} \leq q_{j+1}$ for $\mathrm{j}=1, \ldots, \mathrm{~m}$. An open question, which is discussed toward the end of this paper, concerns the strengthening of Theorem 4 to give a converse of Theorem 5 without this restriction.

Of particular interest would be the generalization of these results to ordered Banach spaces or to Banach Function Spaces, as defined by Luxemburg and Zaanen [14], using duality mappings and stating the restriction $q \leq p$ in terms of these mappings. Theorem 1 indicates that Result 2 above can be generalized to these settings.

Most of the terminology and basic results needed in this paper are available in $[13,14]$.

An ordered Banach space X is a Banach space with a linear partial ordering. If X is an ordered Banach space, then we define $X_{+}=\{u \mid u \geq 0\}$ and postulate that for $u, v \in X_{+}$,

$$
\begin{equation*}
u \leq v \text { implies }\|u\| \leq\|v\| \tag{2.1}
\end{equation*}
$$

We will callan ordered Banach space $X \neq\{0\}$ an Mc ordered Banach space if X satisfies the following monotone convergence principle: for every increasing sequence $\left\{u_{n}\right\} \subset X_{+}$, such that $\left|\left|u_{n}\right|\right| \leq \alpha$ for all n and some $\alpha>0$ there exists $u \in \chi_{f .}$ such that $u_{n} \rightarrow u$.

Let $(A, \Lambda, 1)$ be a totally o-finite measure space and let K denote the linear space of all measurable functions on A and define an order relation \leq as follows. For $f, g \in$

$$
\begin{equation*}
f \leq g \text { iff } f(x) \leq g(x) \text { a.e. } \tag{2.2}
\end{equation*}
$$

and

$$
M_{+}=\{f \in M \mid f(x) \geq 0 \text { a.e. }\}
$$

Define $R_{+}^{e}=R_{+}^{1} U\{4, \infty\}$ to be the extended positive half axis. Following Luxemburg and Zaanen [14 § 2p. 138 and $\S 3 p .148$] a function $p: M_{+} \rightarrow R_{+}^{e}$ is called function norm if and only if
(i) $\rho(f)=0$ if and only if $f=0$ a.e.
(ii) $\rho(\alpha f)=\alpha \rho(f)$ for all $f \in M_{+}$and $\alpha \in R_{+}^{1}$
(iii) $\rho(f+g) \leq \rho(f)+\rho(g)$ for all $f, g M_{+}$
(iv) if $f, g \in M_{+}$and $f \leq g$ then $\rho(f) \leq \rho(g)$.
$(2.3) \quad L_{\rho}=\{u \in M \mid \rho(u)<\infty\}$
then L_{p} is a normed linear space with norm ρ and a linear partiai ordering defined by (2.2). If $f_{n}, f \in M_{2}$, then we say $f_{g} f f$ if and only if $f_{n}(x) f f(x)$ a.e. A function norm p is said to have the Fatou property if for $f_{B}, f \in M_{f}$,
(2.4) $f_{n} f f$ implies $p\left(f_{n}\right) p p(f)$.

It can be shown [14 \& 3 p. 149] that if p satisfies the Fatou property, then l_{f} is complete and hence an ordered Banach space. We say that a function norm ρ is smooth if and only if for $f_{n}, f \in L_{p}$

$$
\begin{align*}
& f_{n}(x) \rightarrow f(x) \text { a.e. and } \rho\left(f_{n}\right) \rightarrow \rho(f), \tag{2.5}\\
& \quad \text { implies } \rho\left(f_{n}-f\right) \rightarrow 0
\end{align*}
$$

Let ρ be a smooth function norm with the Fatou property and $f_{n} \in M_{+}$be such that $f_{n+1} \geq f_{n}$ and $\rho\left(f_{n}\right) \leq \alpha$. Then there exists $f \in M$ such that $f_{n} \hat{f}$ so by the Fatou property $\rho\left(f_{n}\right) \rightarrow \rho(f)$ and $p(f) . \leq \alpha$. But p is smooth so $\rho\left(f_{n}-f\right) \rightarrow 0$ and hence $f_{n} \rightarrow f$. Thus, if p is a smooth function norm satisfying the Fatou property, then L_{p} is an Mc ordered Banach space.

Let X be an ordered Banach space; then for $u, v \in X$ let $w=$
$u \vee v$ if and only if $u \leq w, v \leq w$ and $w \leq w_{2}$ whenever $u \leq w_{1}$ and $v \leq w_{1}$. A Banach lattice is an ordered Banach space X in which
$u \vee v$ exists and is unique for any $u, v \in X$. We are moreover assuming that if $|u| \leq|v|$, then $\|u\| \leq\|v\|$. In a Banach lattice we can define $u \wedge v=-[(-u) \vee(-v)]$, $u^{+}=u \vee 0, u^{-}=(-u) V_{0}$, and $|u|=$ $u^{+}+u^{-}$for any $u, v \in Y$. We note that $u=u^{+}-u^{-}$. Banach function spaces are examples of Banach lattices. If X_{+}is the positive cone of a Banach lattice X, then we will define the lattice interior of x_{+}as

$$
\begin{equation*}
X_{+}^{0}=\left\{u \in x_{+} \mid \text {for all } v \in X_{+} \text {if } u \wedge v=0 \text { then } v=0\right\} \tag{2.6}
\end{equation*}
$$

Note that $X_{+}^{\circ} \cup\{0\}$ is a cone and if L_{ρ} is a Banach function space, then $f \in L_{\rho+}^{\circ}$ if and only if $f(x)>0$ a.e. A Banach lattice X will be called non-trivial if there exists $u \in X_{+}^{o}$ such that $\|u\|>0$. If X is a Banach lattice, then the dual space X^{*} is also a Banach lattice with

$$
\begin{equation*}
u^{*} \leq v^{*} \text { if and only if } u^{*}(w) \leq v^{*}(w) \text { for all } w \in X_{+} \tag{2.7}
\end{equation*}
$$

since we can easily show that if $u^{*} \leq v^{*}$ then $\left\|u^{*}\right\| \leq\left\|v^{*}\right\|$ for $u^{*}, v^{*} \in X_{+}^{*}=\left\{w^{*} \mid w^{*} \geq 0\right\}$ and $\left(u^{*} v_{v}\right)(w)=\sup \left\{u^{*}\left(w_{1}\right)+v^{*}\left(w_{2}\right) \mid w_{1}, w_{2} \in X_{+}\right.$ and $\left.w=w_{1}+w_{2}\right\}$ for all $w X_{\chi_{+}}$. See Kelley and Namioka [13p. 232]. Let X and Y be ordered Banach spaces. Then a linear partial ordering \leq in $X X Y$ is defined by the positive cone.
(2.8) $\quad(X \times Y)_{+}=\left\{(u, v) \in X \times Y \mid u \in X_{+}\right.$and $\left.v \in Y_{+}\right\}$.

A norm for $X \times Y$ can be chosen in many ways. For example,

$$
\begin{equation*}
\|(u, v)\|=\max \{\|u\|,\|v\|\} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\|(u, v)\|=\left(\|u\|^{p}+\|v\|^{p}\right)^{1 / p} \tag{2.10}
\end{equation*}
$$

With either of these norms $X \times Y$ is an ordered Banach space. Moreover, if X and Y are Banach lattices, then $X: Y$ is a Banach lattice.

We will now introduce some terminology concerning mappings (in general non-linear) between ordered Banach spaces.

Let X and Y be ordered Banach spaces and let Φ be a function defined on $D(\Phi) \subset X$ into Y. Then
(i) Φ is positive if and only if $\Phi\left(X_{+} \cap D(\Phi)\right) \subset Y_{+}$
(ii) Φ is non-decreasing if and only if $0 \leq u \leq v$ implies $\Phi(u) \leq \Phi(v)$
(iii) Φ is stable if and only if $X_{+} \subset D(\Phi), \Phi$ is positive, non-decreasing, continuous and
(2.11) $\quad\|u\|_{x} \leq 1$ implies $\|\Phi(u)\|_{y} \leq 1$.

If X and Y are Banach lattices we have
(iv) Φ is strictly positive if and only if $\Phi\left(X_{+}^{\circ} \cap D(\bar{\Phi})\right) \subset Y_{+}^{\circ}$
(v) Φ is strictly stable if and only if $X_{+}^{\circ} \subset D(\Phi)$, Φ is strictly positive, non-decreasing, continuous and satisfies (2.11).

Finally,
(vi) Φ is a power function if and only if Φ is positive, continuous and satisfies (2.11) with $\Phi(0)=0$, and in addition,
(2.12) $\Phi(\alpha u)=$ 合 $(\alpha) \Phi(u)$ for a!! $\alpha \in R_{+}^{1}$ and $u \in D(\Phi)$
defines a function $\hat{\alpha}: R_{+}^{1} \rightarrow R_{+}^{1}$ independent of $u_{\text {, such that }}^{\hat{q}}$ is non-decreasing and not constant.

We notice if Φ is a power function, then $\hat{\phi}$ is both stable and a power function. Moreover, $\hat{\Phi}$ is a continuous, multiplicative homomorphism of R_{+}^{1} into itself with $\hat{Q}(1)=1$. Hence, there exists a real number $p>0$ such that $\hat{\Phi}(\alpha)=\alpha^{p}$ for all $\alpha \in[0, \infty)$ and we will define $E x(\Phi)=$ p. Finally, if Φ is a $1-1$ power function onto Y_{+}, then Φ^{-1} is defined and $\hat{\Phi}^{-1}=1 / \hat{\Phi}^{-1}$ satisfies condition (2.12) although Φ^{-1} may not be a power function.

We will now consider two examples.
Example 1: Let X, Y be ordered Banach spaces and $K: X \rightarrow Y$ a bounded positive linear transformation with $\|K\| \leq \alpha$. Then $(1 / \alpha) K$ is stable and a power function with $\hat{\frac{1}{\alpha}} K(\beta)=\beta$ for all $\beta \in[0, \infty)$ so $E \times\left(\frac{1}{\alpha} K\right)=1$. Example 2: Let (A, Λ, μ) be a σ-finite measure space, $p, q \in[1,+\infty)$. For $f \in L_{+}^{p}$ define $\Phi(f(x))=f(x)^{p / q}$ for all $x \in A$. It is easily verified that Φ is a stable function and in fact a power function with $E_{x}(\ddot{q})=p / q \cdot$. Thus, we see that stable and power functions do not have to be linear and $E x(\Phi)$ may assume any positive value.

An analogue of the function Φ in Example 2 for L^{P} spaces where P is a multi-index will be important in the study of integral transformations between these spaces as carried out in the sequel.

Note that if α is a real number, $0<\alpha \leq 1$, then $\alpha \Phi$ is stable whenever Φ is stable and $\alpha \Phi$ is a power function whenever Φ is a power function. Moreover, if $\alpha>0, \beta>0, \alpha+\beta<1$ and Φ and ψ
are stable functions with the same domains and into a common range, then $\alpha+\beta^{W}$ is a stable function.

One can verify immediately the following.
Proposition 1: Let X, Y and Z be ordered Banach spaces, $\Phi: X_{+} \rightarrow Y$ and $4: Y_{+}-2$.
(i) if Φ and 4 are (strictly) stable functions; then $\mathcal{H} \Phi$: $X_{+} \rightarrow Z$ is a (strictly) stable function.
(ii) if Φ and 4 are power functions, then $U_{0} \Phi$ is a power function, $\widehat{\psi_{\Phi}}=\hat{\varphi_{\circ}} \hat{\omega}$ and $\operatorname{Ex}\left(\psi^{\circ} \bar{\Phi}\right)=$ $E x(\psi) \cdot E x(\Phi)$.
(iii) if $\Phi: X_{+} \times Y_{+} \rightarrow Z$ is a stable (power) function and $1: X_{+} \rightarrow X_{+} \times Y_{+}$is the natural injection, then $\Phi^{\circ} 1: x_{+} \rightarrow Z$ is a stable function (power function with $\operatorname{Ex}(\Phi \circ 1)=E x(\Phi))$.

Thus, we see that compositions and restrictions of stable and power functions give functions of the same type. The norm on $X=Y$ can be calculated by either equation (2.9) or (2.10) in the above proposition. This norm can also be used in the following proposition, which gives some examples of how to construct stable and power functions on product spaces from such functions on the original spaces.

Proposition 2: Let X_{1}, X_{2}, Y_{1} and Y_{2} be ordered Banach spaces,

$$
\begin{aligned}
& X=X_{1}: X_{2}, Y=Y_{1} \times Y_{2}, \Phi_{1}: X_{1+} \rightarrow Y_{1} \text { and } \\
& \Phi_{2}: X_{2+} \rightarrow Y_{2} .
\end{aligned}
$$

(i) if Φ_{2} and Φ_{2} are (strictly) stable functions, then

$$
\begin{equation*}
\Psi_{1}\left(u_{1}, u_{2}\right)=\frac{2}{2}\left(\Phi_{2}\left(u_{1}\right), \Phi_{2}\left(u_{2}\right)\right) \tag{2.13}
\end{equation*}
$$

defines a (strictiy) stable function $\psi_{1}: x_{i}{ }^{-5} \gamma$.
Moreover, if $Y_{2}=Y_{2}$, then

$$
\begin{equation*}
\psi_{2}\left(u_{1}, u_{2}\right)=\frac{1}{2}\left[\Phi_{1}\left(u_{1}\right)+\Phi_{2}\left(u_{2}\right)\right] \tag{2.14}
\end{equation*}
$$

defines a (strictly) stable function $V_{2}: X_{4} \rightarrow V_{2}$
(ii) if Φ_{2} and Φ_{2} are power functions, then for $u=\left(u_{2}, u_{2}\right) \in X_{+}$we define

$$
Y_{1}(u)=\frac{1}{2} \Phi_{2} \circ \Phi_{2}(\|u\|)\left(\Phi_{1}\left(u_{1} /\|u\|\right), \Phi_{2}\left(u_{2} /\|u\|\right)\right)
$$

if $\|u\| \neq 0$ and $\psi_{2}(u)=0$ if $\|u\|=0$. If $\operatorname{Ex}\left(\Phi_{1}\right) \geq 1$ and $\operatorname{Ex}\left(\Phi_{2}\right) \geq 1$, then Ψ_{1} is a power function with a range in Y. Moreover, if $Y_{1}=Y_{2}$,

$$
\begin{align*}
& \Psi_{2}(u)=\frac{1}{2} \Phi_{1} \circ \hat{\Phi}_{2}(\|u\|)\left(\Phi_{1}\left(u_{1} /\|u\|\right)+\Phi_{2}\left(u_{2} /\|u\|\right)\right) \tag{2.16}\\
& \quad \text { with } \|_{2}(u)=0 \text { if }\|u\|=0 \text { is a power function } \\
& \text { with range in } Y_{1} .
\end{align*}
$$

Proof: (i) If Φ_{1} and Φ_{2} are (strictly) stable functions, then U_{1} and U_{2} are clearly continuous, (strictiy) positive and nondecreasing. $\left|\mid \psi_{1}\left(u_{1}, u_{2}\right) \| \leq \frac{1}{2}\left(\left\|\Phi_{1}\left(u_{1}\right)\right\|+\left\|\bar{\omega}_{2}\left(u_{2}\right)\right\|\right)=\right.$ if $\left\|\left(u_{1}, u_{2}\right)\right\| \leq 1$, then $\left\|u_{1}\right\| \leq 1$ and $\left\|u_{2}\right\| \leq 1$ and hence $\left\|\Phi_{7}\left(u_{1}\right)\right\| \leq 1$ and $\left\|\Phi_{2}\left(u_{2}\right)\right\| \leq 1$ and thus $\left\|\psi_{1}\left(u_{1}, \dot{u}_{2}\right)\right\| \leq 1$. Therefore, Ψ_{1} is a (strictly) stable function and so is Ψ_{2} by a similar argument.
(ii) Let Φ_{1} and Φ_{2} be power functions. Then clearly Ψ_{2} and U_{2} defined by (2.15) and (2.16) are positive or strictly positive and continuous except possibly at 0 . Moreover, $\Psi_{2}(0)=0$, $\psi_{2}(0)=0$, and $\hat{\psi}_{1}$ and $\hat{\psi}_{2}$ are well defined, non-constant and nondecreasing since $\hat{\Phi}_{2}$ and $\hat{\Phi}_{2}$ satisfy these conditions. To verify condition (2.11) for Ψ_{1} consider $u=\left(u_{1}, u_{2}\right) \in \chi_{+}$with $\|u\| \leq 1$.

Then, $0 \leq \hat{\Phi}_{1} \circ \hat{\Phi}_{2}(\|u\|) \leq 1$ since $\hat{\Phi}_{1}$ and $\hat{\Phi}_{2}$ are stable funct ions and $\left\|\left(\Phi_{1}\left(u_{2} /\|u\|\right), \Phi_{2}\left(u_{2} /\left\|u_{2}\right\|\right)\right)\right\| \leq\left\|\Phi_{1}\left(u_{2} /\|u\|\right)\right\|+$ $\left\|\dot{\Phi}_{2}\left(u_{2} /\|u\|\right)\right\| \leq 1+1=2$ since $\left\|\left(u_{1} /\|u\|\right)\right\| \leq 1$ and $\left\|\left(u_{2} /\|u\|\right)\right\| \leq 1$. Therefore, $\left\|\psi_{1}(u)\right\| \leq 1$. By a similar argument Ψ_{2} also satisfies condition (2.11). Thus, both Ψ_{2} and Ψ_{2} are p functions if they are continuous at 0 . But this follows from the assumption that $E x\left(\Phi_{2}\right)=p>1$ and $E x\left(\Phi_{2}\right)=2>1$ since

$$
\psi_{1}=\frac{1}{2}\left(\|u\|^{p(q-1)_{\Phi_{2}}\left(u_{2}\right)},\|u\|^{\left.q(p-1)_{\Phi_{2}}\left(u_{2}\right)\right)}\right.
$$

and

In a paper by Gagliardo [9 p. 431] we find the following: Lemma 1: Let X be an $M c$ ordered Banach space and $\Phi: X_{+} \rightarrow X$ be a stable function. Then for every $\delta>0$ there exists $u \in X_{+}$such that

$$
\|u\| \leq 1, u \geq 0, u \neq 0
$$

and

$$
(1+\delta) u \geq \Phi(u)
$$

Proof: Choose $u_{2} \in X_{+}$such that $u_{2} \neq 0$ and $\left.\left\|u_{2}\right\| \leq(\delta / 1+\delta)\right)$. Define $u_{n} \in X_{+}$for $n=2,3, \ldots$, by

$$
u_{n}=u_{2}+(1 /(1+\delta)) \Phi\left(u_{n-1}\right)
$$

By induction $\left|\mid u_{n} \| \leq 1\right.$ and $u_{n+2} \geq u_{n}$ for $n=1,2,3, \ldots$. Thus, there exists $u \in X_{+}$such that $u_{n} \rightarrow u$ and $\|u\| \leq 1$ by the monotone convergence (Mc) property of X. By continuity $u=u_{1}+(1 /(1+\delta)) \Phi(u)$. Hence $u \neq 0$ and $(1+\delta) u-\Phi(u)=(1+\delta) u_{2} \geq 0 \mathbb{d}$

The following theorem is related to a result of Gagliardo
[9 p. 430] but has a more general setting.

Theorem 1: Let X_{1}, X_{2}, X_{3} and X_{4} be ordered Banach spaces and suppose X_{f} is an Mc ordered Banach space. Let $\Phi_{22}: X_{1+} \rightarrow X_{2}, \Phi_{23}: X_{24} \rightarrow X_{3}, \Phi_{34}: X_{3+} \rightarrow X_{4}$ and $\Phi_{2_{2}}: X_{1_{2}} \rightarrow X_{1}$ and suppose Φ_{42} and Φ_{23} are $1-1$ stable functions and for some numbers $\alpha>0$ and $\beta>0$ we have $(1 / \alpha) \Phi_{12}$ and $(1 / \beta) \Phi_{3 \alpha}$ are stable functions. Then for each number $\epsilon>0$ there exists $\varphi_{1} \in X_{1+}$ and $\varphi_{3} \in X_{3} *$ such that

$$
\begin{aligned}
& \text { (i) } \Phi_{12}\left(\varphi_{1}\right) \leq(\alpha+\varepsilon) \Phi_{23}^{-1}\left(\varphi_{3}\right) \\
& \text { (ii) } \Phi_{34}\left(\varphi_{3}\right) \leq(\beta+\epsilon) \Phi_{4}^{-\frac{1}{3}}\left(\varphi_{1}\right) \\
& \text { (iii) }\left\|\varphi_{1}\right\|_{X_{2}} \leq 1,\left\|\varphi_{3}\right\| \|_{X_{3}} \leq 1,
\end{aligned}
$$

$$
\varphi_{1} \neq 0
$$

Proof: Let $\delta>0$ be such that $\beta(1+\delta)^{2} \leq \beta+\varepsilon$. For $u \in X_{4+}$ define $\Phi(u)=(1 / \beta) \Phi_{34}\left(\Phi_{23}\left((1 /(\alpha+\epsilon)) \Phi_{12}\left[\Phi_{41}((1 /(1+\varepsilon)) u)\right]\right)\right)$.

Note that $\bar{q}: X_{4+} \rightarrow X_{k}$ is a stable function so by Lemma 1 , there exists $u \in X_{x}+$ such that $\|u\|_{x_{2}} \leq 1, u \neq 0$ and

$$
(1 / \beta) \Phi_{34}\left(\Phi_{22}\left((1 /(\alpha+e)) \bar{\Phi}_{12}\left[\dot{\Phi}_{41}((1 /(1+\delta)) u)\right]\right)\right) \leq(1+\delta) u
$$

Let $\varphi_{1}=\bar{\phi}_{42}((1 /(1+\delta)) u)$ and $\varphi_{3}=\Phi_{23}\left((1 /(\alpha+\varepsilon)) \sigma_{22} \varphi_{2}\right)$. Note that $\left\|\varphi_{2}\right\|_{x_{2}} \leq 1$ since $\|(1 /(1+\delta)) u\|_{x_{2}} \leq 1$
and

$$
\left\|\varphi_{3}\right\|_{x_{3}} \leq 1 \text { since }\left\|(1 /(\alpha+\epsilon)) \Phi_{12} \varphi_{2}\right\|_{x_{2}} \leq 1 .
$$

Now

$$
\Phi_{12}\left(\varphi_{1}\right)=(\alpha+\varepsilon) \Phi_{23}^{1-1}\left(\varphi_{3}\right)
$$

and

$$
\begin{aligned}
\Phi_{34}\left(\varphi_{3}\right) & \leq \beta(1+\delta) u \\
& \leq \beta(1+\delta)^{2} \Phi_{4}^{-1}\left(\varphi_{1}\right) \\
& \leq(\beta+\epsilon) \Phi_{4}^{-1}\left(\varphi_{1}\right)
\end{aligned}
$$

and finally

$$
\varphi_{1} \neq 0 \text { since } \Phi_{42} \text { is } 1-1 \text { and } u \neq 0
$$

Of more special interest in the sequel is the following immediate

Corollary: Let X and Y be Banach lattices and X^{*} (which together with γ^{*} are hence Banach lattices) satisfy the monotone convergence principle. Let $\Phi: X_{+}^{*} \rightarrow X$ and $Y: Y_{+} \rightarrow Y^{*}$ be $1-1$ stable functions and $T: X \rightarrow Y$ be a bounded, positive linear transformation such that $\|T\| \leq \alpha$. Then for every real $\Leftrightarrow 0$ there exists $\varphi \in X_{\psi}$ and $\psi \in Y_{+}^{*}$ such that
(i) $T(\varphi) \leq(\alpha+\varepsilon) \psi^{-1}(\downarrow)$
(ii) $T^{*}(\dot{\psi}) \leq(\alpha+c) \Phi^{-1}(\varphi)$

$$
\text { (iii) }\|\varphi\|_{x \leq 1},\|w\|_{y} \leq 1 \quad \text { (iv) } \varphi \neq 0
$$

In a manner different than that of Aronszajn and Szeptycki
[2 p. 143], we will now generalize a theorem of S. Banach [3 p.87] (concerning the continuity of integral transformations) to positive transformations between Banach lattices.

Theorem 2: Let X be a Banach lattice such that for any sequence $u_{n} \in X_{+}$such that $0 \leq u_{n} \leq u_{n+1}$ and $\left\|u_{n}\right\| \leq \alpha$ for all $n=1,2,3, \ldots$, and some $\alpha>0$ there exists $u \in X_{t}$. such that $u_{n} \leq u$ ror all $n=1,2,3, \ldots$ and $\|u\|$ finite. Let Y be an ordered Banach space. Then a positive linear transformation $T: X \rightarrow Y$ (defined for all $u \in X)$ is necessarily bounded.

Proof: Suppose T is unbounded. Then there will exist $u_{n} \in X$ such: that

$$
\left\|T u_{n}\right\| \geq 2^{2 n}\left\|u_{n}\right\| \text { for } n=1,2, \ldots \text {. }
$$

Let

$$
v_{n}=\left(2^{-n} /| | u_{n} \|\right)\left|u_{n}\right|
$$

Note

$$
v_{\mathrm{n}} \in X_{+} \text {and }\left\|v_{\mathrm{n}}\right\|=2^{-n}
$$

Clearly

$$
T\left(\left|u_{n}\right|\right) \geq T\left(u_{n}\right) \text { since }\left|u_{n}\right|=u^{+}+u^{-} \geq u^{+}-u^{-}=u
$$

Hence,

$$
\begin{aligned}
\left\|T v_{n}\right\| & =\left(2^{-n} /\left\|u_{n}\right\|\right)\left\|T\left(\mid u_{n} \|\right)\right\| \\
& \geq\left(2^{-n} /\left\|u_{n}\right\|\right)\left\|T\left(u_{n}\right)\right\| \\
& \geq\left(2^{-n} /\left\|u_{n}\right\|\right) 2^{2 n}\left\|u_{n}\right\| \\
& =2^{n}=2^{2 n}\left\|v_{n}\right\|
\end{aligned}
$$

Let

$$
w_{1}=v_{1} \text { and } w_{n}=v_{n} v w_{n-1} \text { for } n=2,3, \ldots .
$$

Note

$$
\left\|w_{2}\right\|=\left\|v_{2}\right\|=1 / 2
$$

and by induction

$$
\begin{aligned}
\| w_{n}+1 \mid & \leq\left\|w_{n}\right\|+\left\|v_{n+1}\right\| \leq\left(\left(2^{n}-1\right) / 2^{n}\right)+\left(1 / 2^{n}+1\right) \\
& =\left(\left(2^{n}+1-1\right) / 2^{n}+1\right)<1
\end{aligned}
$$

Now

$$
0 \leq w_{n} \leq w_{n+2} \text { for all } n=1,2, \ldots
$$

so there exists $w \in X_{+}$such that $w_{n} \leq w$ and $\|w\|<+\infty_{i}$. Thus, $T w E Y$ and $\|T w\|$ is finite. However, $0 \leq v_{n} \leq w_{n} \leq w$ so $0 \leq T v_{n} \leq T w$. Hence, $\|T w\| \geq\left\|T v_{n}\right\| \geq 2^{n}$ for all $n=1,2, \ldots$ which is a contradiction. Therefore, r is bounded y

Remark 1: If X is an Mc Banach lattice or a Banach function space satisfying the Fatou property, then X satisfies the conditions of Theorem 2. In particular, a positive linear trarsformation $T: L^{p} \rightarrow L^{q}$ (defined for all $f \in L P$) is bounded for any $p \geq 1$ and $q \geq 1$.

Remark 2: If $T=T^{+}-T$ where T^{+}, T^{*} are positive linear transformations $T^{+}: X \rightarrow Y, T^{-}: X \rightarrow Y$ (both defined on all of X), then T is bounded. In particular; this remark applies to integral transformations.

ChAPTES THREE

THE SPACES ${ }^{P}$ WITH MIXED NORMS

In the next few sections we will be studying functions of several variables. Let $\left(A_{1}, n_{1}, \mu_{1}\right)$ for $i=1,2, \ldots, n$ and $\left(B_{j}, \Omega_{j}, v_{j}\right)$ for $j=1,2, \ldots, m$ be owinite measure spaces and

$$
A=\prod_{i=1}^{n} \quad \text { and } B=\prod_{i=1}^{m}
$$

be their product measure spaces. The corresponding spaces of measurable functions will be M_{1}, N_{1}, M and N. Corresponding to the vector variables $x=\left(x_{1}, \ldots, x_{1}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ we Will use the multi-indices $p=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ where $1 \leq p_{3}, q_{3} \leq o$. For $f \in M$ we define $\|f\|_{(p)}=$

$$
\|f\|_{\left(p_{1}, \ldots, \ldots, p_{n}\right)}=\|f\|_{p_{1}, \ldots, p_{n}}=\|f\|_{p}
$$

to be the value obtained by successively taking the p_{3} norm in x_{1}, the p_{5} norm in x_{2}, \ldots, the p_{n} norm in x_{n} in that order. Thus, if $p_{1}<\infty$ for all $i=1 ; \ldots, n$ then

$$
\begin{equation*}
\|f\|_{p}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{n}\right)\right|^{p_{1}} d \mu_{1}\right)^{p_{2} / p_{1}} d \mu_{2}\right)^{p_{3} / p_{2} \ldots d \mu_{n}}\right)^{1 / p_{1}} \tag{3.1}
\end{equation*}
$$

Following Benedek and Panzone $[4$ p. 30i], we dofine

$$
\begin{equation*}
L^{P}(A)=L^{P}=\left\{f \in\| \|\|f\|_{P}<\infty\right\} \tag{3.2}
\end{equation*}
$$

These are Banach function spaces with norms satisfying the Fatou property $[4 \mathrm{p} .302]$. if $1 \leq p_{1}<\infty$ for $i=1, \ldots, n$ then the function norm $\left\|\|_{p}\right.$ is smooth [4p.312]. We define $\| g \|_{Q}$ for
$g \in N$ and $L C=L Q(B)$ in the same manner.
If $x\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ is an algebraic relation among the real numbers $\alpha_{1}, \ldots, \alpha_{k}$ and $\left.P(1), P(1), \ldots, p_{k}\right)$ are multi-indices with the same number of components, then $x\left(p^{(1)}, p^{(1)}, \ldots, p(k)\right.$ means $x\left(p_{1}^{(1)}, \ldots, p_{1}^{(k)}\right)$ for each i . In particular $R^{\prime}=P(P-1)^{-1}$ means $p_{1}^{\prime}=p_{1} /\left(p_{1}-1\right)$. The "Generalized Holder Inequality" can now be stated as follows:

$$
\begin{align*}
& \left|\int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) g\left(x_{1}, \ldots, x_{n}\right) d \mu_{1}\left(x_{1}\right) \cdots d \mu_{n}\left(x_{n}\right)\right| \tag{3.3}\\
& \quad \leq\|f\|_{p}\|g\|_{p}
\end{align*}
$$

for any $\mathrm{f}, \mathrm{g} \in \mathrm{M}$ and $\mathrm{I} \leq \mathrm{P} \leq 0$. Moreover, Benedek and Canzone [4 p. 304] have proved that if $1 \leq P \leq \infty$, then the dual space of L^{P} is $L^{P^{\prime}}$. Finally, if P and Q are multi-indices of length n and m respectively and $r \xi^{3}$, then $Q<r<P$ will be taken to mean $q_{j}<r<p_{i}$ for all $i=1, \ldots, n$ and $j=1, \ldots, m$. By $L^{P, Q}$ or $L(P, Q)$ we will mean the space of functions of $m+n$ variables with mixed norm corresponding to the multi-index ($p_{2}, p_{2}, \ldots, p_{n}, q_{1}$, $\left.q_{k}, \ldots, q_{m}\right)$.

Since we will not always use the integrals and variables in the same order, at times it will be necessary to replace the usual, simpler expression $\|f\|_{p}$ by $\|f\|_{\left(\begin{array}{l}p\end{array}\right)}$ or $\|f\|_{\left(\begin{array}{l}p_{1}, p_{2}, H_{2} \\ , \ldots, \ldots, p_{n} \\ n\end{array}\right)}$
to avoid confusion or ambiguity. If $r \in[1,+\infty)$, then the norm for $L^{r}(A)$ in the product space is

$$
\begin{equation*}
\|r\|_{(\mu)}^{r}=\|r\|_{\left(\mu_{1}, \mu_{2}, \ldots, \ldots, \mu_{n}\right)} \tag{3.4}
\end{equation*}
$$

It can also be easily shown that
(3.5)

$$
\|f r\|_{p}=\|f\|_{\left(p_{2} r, p_{2} r, \ldots, p_{2} r\right)}^{r}
$$

Finally, by Tonelli's theorem, for $r \in[1, \infty)$ and f measurable on $A \times B$,

$$
\begin{equation*}
\|f(x, y)\|_{(\mu(x), v(y))}^{r}, r\left(\|f(x, y)\|_{(v(y), \mu(x))}^{r} .\right. \tag{3.6}
\end{equation*}
$$

Definition: If $\alpha, \beta \in \mathbb{R}_{+}^{e}=[0,+\infty]$, then
(3.7), $\quad a(\alpha, \beta)=\frac{\alpha \beta}{\alpha-\beta}=\frac{1}{(1 / \beta)-(1 / \alpha)}$
with the convention

$$
\begin{equation*}
a(\alpha, \alpha)=+\infty . \tag{3.8}
\end{equation*}
$$

we rote

$$
\begin{align*}
a(\alpha, \theta) & =-a(\beta, \alpha) \tag{3,9}\\
& =a\left(\beta^{\prime}, \alpha^{\prime}\right)
\end{align*}
$$

where $(1 / 0)+\left(1 / \alpha^{\prime}\right)=(1 / \beta)+\left(1 / \beta^{\prime}\right)=1$ and $a(\alpha,+\infty)=-\alpha$
while $a(-\infty, \alpha)=\alpha$.
An obvious but useful extension of a well known result is the following:

Proposition 2: let and Q be multi-indices with $1 \leq P$ and

$$
1 \leq 0<+\infty, \alpha \in(0, \infty) \text { and } K(x, y) \geq 0 a
$$ function, then $k: L^{P \rightarrow i} Q^{\text {with }}\|k\| \leq u$ if and only if

$$
\iint K(x, y) f(x) g(y) d, \alpha \leq a\|f\|\| \| g \|_{Q^{\prime}}
$$

$$
\text { for all } \mathrm{CL}_{\mathrm{t}}^{\mathrm{g}} \text { and } g \mathrm{E}^{\circ}{ }^{\prime}
$$

See [Sp. 429].

Lemme: If R_{1}, R_{2}, \mathbf{C} end Fere measurable functions of min variable on $A \% B$ and $1<0 \leq r \leq P<\infty$ where $r(1, \infty)$ then
$(3.10) \quad J=\iiint_{1} \mathrm{~S}_{\mathrm{e}} \mathrm{dud} \mid$

$$
\leq\left\|\beta_{1}\right\|\left(a\left(q_{2}, r r^{\prime}\right), a\left(q_{1}{ }^{\prime}, r^{\prime}\right), \ldots, a\left(q_{2}^{\prime}, r^{\prime}\right)\right)
$$

- $\left\|n_{2}\right\|\left(a\left(p_{1}, r\right), a\left(p_{2}, r\right), \ldots, a\left(p_{1}, r\right)\right)$
$\left.-\| \|_{\left(q_{2},\right.}, q_{1}, \ldots, q_{m^{\prime}}^{\prime}\right)$
$\cdot\|F\|\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Prof: By the generally folder inequality

$$
\begin{aligned}
& \left.n \leq\left\|n_{1}\right\|\left(a^{\prime}+r^{\prime}\right), e\left(q_{1}, r^{\prime}\right), \ldots, 2\left(q_{i} r^{\prime}\right)\right)
\end{aligned}
$$

since

$$
\left[\left(1 / r^{\prime}\right)-\left(1 / q_{j}^{\prime}\right)\right]+\left(1 / q_{j}\right)+(1 / r)=1 .
$$

By applying Tonelli's theorem followed by the generalized Holder inequality we get,

$$
\begin{aligned}
\left\|R_{2} F\right\|_{(r, r)} & =\left\|R_{2} F\right\|_{(\nu, r)} \\
& \left.\leq\left\|R_{2}\right\|_{\left(a\left(p_{1}, r\right), a\left(p_{1}, r\right), \ldots, a\left(p_{n}, r\right)\right.}\right)
\end{aligned}
$$

$-\|F\|\left(\begin{array}{l}\left(p_{2}, p_{2}, \ldots, p_{n}\right) \\ \left.\nu, \mu_{2}, \cdots, \mu_{n}\right) \\ \end{array}\right.$
since

$$
\left[(1 / r)-\left(1 / p_{1}\right)\right]+\left(1 / p_{1}\right)=(1 / r)
$$

The lem na follows immediately
The following theorem is a generalization of a theorem due to Aronszajn. See Gagliardo [9p.429].

Theorem : \quad Suppose $K(x, y) \geq 0, r \in R^{2}, 1<a \leq r \leq p<\infty$, P and Qeremitimindices and suppose there exists functions $\varphi(x), \varphi_{2}(x), f(y), d_{1}(y)$ all greater than 0 ave. and a real number $c>0$ such that
(i) $\left[K_{0}\right](y) \leq 0 v_{1}(y)$
(ii) $\left[r^{*} y\right](x) \leq c \varphi_{2}(x)$

$$
\leq 1
$$

(iv) $\left\|\left(\varphi_{2} \varphi^{1-r}\right)^{(i / r)}\right\|_{\binom{\left(\mu_{2}\left(p_{1}, r\right), \ldots, a\left(p_{n}, r\right)\right.}{\left.\mu_{n}\right)}}$
≤ 1.

Then

$$
k: L^{P} \rightarrow L^{Q}
$$

basel defined, bounded intogiai transformation and

$$
\|k\| \leq c .
$$

Proof first consider the case

$$
q_{1}<r<p_{1}
$$

let

$$
R_{2}=(k)^{\frac{1}{q_{1}}-\frac{1}{r_{1}} \frac{1}{4_{2}}}=-\frac{1}{r}
$$

$$
k_{z}=\frac{1}{\left(p_{p}\right)}-\frac{1}{p_{1}} \frac{i}{p_{i}} q^{\frac{1}{r}}
$$

and for

$$
\begin{aligned}
& f \in_{1}^{P} \text { and } g Q^{Q^{\prime}}, \\
& f=k^{\frac{1}{P_{2}}} \frac{1}{P^{P_{2}}} \varphi_{2}-\frac{1}{P_{1}} r \\
& G=k^{\frac{1}{Q^{\prime}}} \varphi^{\frac{1}{Q_{1}}} \psi^{-\frac{1}{Q_{2}} g .}
\end{aligned}
$$

Since, adding the powers of k, φ and y we get

$$
\begin{aligned}
& \frac{1}{q_{2}}-\frac{1}{r}+\frac{1}{r}-\frac{1}{p_{1}}+\frac{1}{p_{1}}+\frac{3}{q_{1}}=1, \frac{1}{q_{1}}-\frac{1}{r}-\frac{1}{r}+\frac{1}{q_{1}} \\
& \quad=1-1=0
\end{aligned}
$$

and

$$
-\frac{1}{r}+\frac{1}{r}-\frac{1}{P_{1}} \div \frac{1}{P_{1}}=0_{3}
$$

we have

$$
\begin{aligned}
& J \equiv\left|\iint k f g d x d y\right|=\iint \operatorname{lom}_{z} R_{z} d x d y \mid \\
& \leq\left\|R_{1}\right\|\left(\underset{\mu}{a}\left(x^{\prime}\right)^{\prime}\right), a^{\prime}\left(q_{1}^{\prime}, r^{\prime},, \ldots, a\left(q_{2}, r^{\prime}\right), \ldots, v_{n}\left(y_{u i}\right)\right) \\
& \cdot\left\|n_{2}\right\|_{\left(p_{1}, r\right), a\left(p_{1}, r\right), \ldots, a\left(p_{n}, ?\right.}^{\left.v(y), \mu_{2}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)} \\
& \left.\cdot\|G\|_{\left(q_{1}{ }^{\prime}, q_{2}{ }^{\prime}, \ldots, q_{m}^{\prime}\right)}, \nu_{1}, \cdots, v_{m}\right) \\
& \cdot\|F\|\left(p_{v_{1}}, q_{n}, \cdots, \cdots, p_{n}\right) \\
& \equiv J_{2} \cdot J_{2} \cdot J_{3} \cdot J_{4}
\end{aligned}
$$

Now

$$
\begin{aligned}
& J_{1}=\left\|(K \varphi)^{\frac{a}{}\left(q_{1}^{\prime} r^{\prime} r^{\prime}\right)}\left[\psi_{1}^{\frac{1}{q_{2}}}{ }^{\prime}-\frac{1}{r}\right]\right\|\left(a\left(q_{2}{ }^{\prime}, r^{\prime}\right), a\left(q_{1}{ }^{\prime}, r^{\prime}\right), \ldots, a\left(g_{a}^{\prime}, y^{\prime}\right)\right) \\
& =\left\|\left(\int k \varphi d \mu\right)^{\frac{1}{a\left(q_{1}^{\prime}, r^{\prime}\right)}}\left[{\phi_{2}}^{\frac{1}{q_{1}}} \psi^{-\frac{1}{r}}\right]\right\| a\left(q_{1}^{\prime}, r^{\prime}\right), \ldots, a\left(q_{\mathrm{m}}{ }^{\prime}, r^{\prime}\right), \\
& \left.\left.\leq c^{\frac{1}{a\left(q_{1}^{\prime}, r^{\prime}\right)}}\left\|_{\psi_{2}}^{\frac{1}{r^{\prime}}} \psi^{-\frac{1}{r}}\right\|_{\left(a \left(q_{1}\right.\right.}, r^{\prime}\right), \ldots, a\left(q_{m}{ }^{\prime}, r^{\prime}\right)\right)
\end{aligned}
$$

(by condition ; of the theorem and for the power of ψ_{1} we have

$$
\left.\frac{1}{q_{2}}+\frac{q_{1}^{\prime}-r^{\prime}}{q_{1}^{\prime} r}=\frac{r^{\prime}+q_{1}^{\prime}-r^{\prime}}{q_{2}^{\prime} r}=\frac{1}{r^{\prime}}\right)
$$

so $d_{1} \leq c^{\frac{1}{r^{\prime}}-\frac{1}{q_{2}}}$

> by condition iii of the theorem.

Similary, we can show that

$$
\begin{aligned}
& \left.J_{z}=\left\|(K \psi)^{\frac{1}{a\left(p_{1}, r\right)}}\left[\varphi_{1}^{\frac{1}{p_{2}}} \varphi^{-\frac{1}{-r}}\right]\right\|_{\rho\left(p_{2}, r\right), a\left(p_{1}, r\right), \ldots, a\left(p_{n}, r\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq c^{\frac{1}{a\left(p_{1}, r\right)}}\left\|p_{1}^{\frac{1}{r} p^{-\frac{1}{r}}}\right\|_{\left(\mu_{1}\left(p_{1}, r\right), \ldots, a\left(p_{n}, r\right)\right.}
\end{aligned}
$$

(by condition ii of the theorem and since for the powers of φ_{1} we have

$$
\left.\frac{1}{r}-\frac{1}{p_{1}}+\frac{1}{p_{1}}=\frac{1}{r}\right) .
$$

So $\mathrm{J}_{2} \leq c^{\frac{1}{r}-\frac{1}{p_{1}}}$ by condition ili of the theorem.

But

$$
\begin{aligned}
& J_{3}=\|\left.\left[(k \varphi) / \psi_{2}\right]^{\frac{1}{q_{i}}}{ }^{\prime}{ }_{g}\right|_{\left(q_{1}\right.}{ }^{\prime}, q_{1}, v_{2}, \ldots, q_{1}{ }^{\prime}, \\
& \left.=\left\|\left[\left(\int k \varphi d \mu\right) / \psi_{1}\right]^{\frac{1}{q_{1}}} \mathrm{~g}\right\|_{\left(q_{1} q_{1}, \ldots, q_{u}^{\prime}\right.}, \ldots, v_{y}\right) \\
& \left.\leq c^{\frac{1}{q_{1}}}\|g\|_{\left(q_{1}\right.}^{q_{1}}, \ldots, q_{m}^{\prime}\right)
\end{aligned}
$$

by condition i of the theorem.
And

$$
\left.J_{4} \leq c^{\frac{1}{p_{1}}}\|f\|_{\left(\mu_{1}, \ldots, \mu_{n}\right.}^{p_{1}, \ldots, p_{n}}\right) .
$$

Therefore

$$
J \leq c\|f\|_{P}\left\|_{g}\right\|_{Q^{\prime}}
$$

since

$$
\frac{1}{r}-\frac{1}{q_{1}}+\frac{1}{r}-\frac{1}{p_{2}}+\frac{1}{p_{2}}+\frac{1}{q_{1}}=1
$$

and the conclusion follows from proposition 3. The proof of the case $p_{1}=r=q_{1}$ is similar and may be outlined briefly as follows. Using the same F, G, R_{1} and R_{2},

$$
\begin{aligned}
& J \leq\left\|F \operatorname{FRR}_{1} R_{a}\right\|\left(\begin{array}{l}
\left.1, l_{\nu}\right) \\
\mu, v
\end{array}\right. \\
& \leq\left\|G R_{1}\right\|_{\binom{r^{\prime}, r^{\prime}}{\mu, \nu}} \quad\left\|F R_{2}\right\|_{\binom{r, r}{\mu, \nu}} \text { by Holder's inequality } \\
& \leq\left\||G|^{r^{\prime}} R_{1} r^{r^{\prime}}\right\|_{\binom{1,1}{\mu, v}}^{\left(1 / r^{\prime}\right)} \cdot\left\||F|^{r} R_{z}^{r}\right\|_{\binom{1,1}{v, \mu}}^{(1 / r)} \\
& \text { by Tonelli's theorem } \\
& \leq\left\|[K \varphi]_{\psi_{1}}^{-2}|s|^{r^{\prime}} R_{2} r^{\prime}\right\| \|_{\left(l_{v}\right)}^{\left(l_{1} r^{\prime}\right)} . \\
& \left\|\left[K^{*} \psi\right] \varphi_{L_{2}}{ }^{-3}|f|^{r} R_{z}^{r}\right\|_{\left(l_{\mu}\right)} \text { since } p_{1}=r=q_{2} \\
& \leq c^{\frac{1}{r^{\prime}}} \cdot\left\||g|^{r^{\prime} R_{2} r^{\prime}}\right\|_{(v)}^{\left(1 / r^{\prime}\right)} . \\
& c^{\frac{1}{r}}| ||f|^{r} R_{z}^{r} \|_{\binom{1}{1}}^{(1 / r)} \text { by } i \text { and } i i \\
& \leq c^{\frac{1}{r}+\frac{1}{r^{\prime}}} \cdot\left\||g|^{r^{\prime}}\right\|\binom{\left(Q / r^{\prime}\right)}{v} \cdot\left\|R_{1}^{r^{\prime}}\right\| \|_{\left(Q^{\prime} /\left(Q^{\prime}-r^{\prime}\right)\right.}^{\left(1 / r^{\prime}\right)} \\
& \cdot\left\||f|^{r}\right\|_{\underset{\mu}{(P / r)}}^{(1 / r)} \cdot\left\|R_{2}^{r}\right\|_{(\underset{\mu}{(P /(P-r)})}^{(1 / r)} \\
& \left.\leq c\|g\|_{\left(\underset{\nu}{Q^{\prime}}\right)} \cdot\|f\|_{(\underset{\mu}{P})} \cdot\left\|R_{2}\right\|_{(a(P, r)}^{\mu}\right) \\
& \left\|R_{i}\right\|\left({ }^{a}\left(Q_{v}^{\prime}, r^{\prime}\right)\right)
\end{aligned}
$$

$$
\leq c\|g\|_{Q} \cdot\|f\|_{p} \text { by conditions iii and iv. }
$$

Thus, the theorem follows from the preceding proposition. Note that the first iterated norm on R_{1} and R_{2} and hence for conditions iii and iv is the ∞ norm on x_{1} and y_{1} respectively

ORDERING WITHIN MULTI-INDICES

One of the important facts about L^{P} spaces is that their norms are dependent on the ordering of P. In particular

$$
\|f\|_{\binom{p_{1}, p_{2}}{\mu_{1}, \mu_{2}}}
$$

$$
\|f\|_{\left(\underset{\mu_{2}}{p_{2}, p_{1}}\right)}
$$

and

$$
\|f\|_{\binom{P_{2}, p_{1}}{\mu_{2}, \mu_{2}}}
$$

may all be different. It will be necessary for our further work to develop some notations and rules regarding the permutation of multi-indices and integrals. For σ a permutation of $\{1, \ldots, n\}$, we define
$(4.1) \quad \sigma(P)=\sigma\left(p_{2}, \ldots, p_{n}\right)=\left(P_{\sigma}(1), \ldots, P_{\sigma}(n)\right)$
and

$$
\begin{equation*}
\left.\sigma(p)=\sigma\left(p_{1}, \ldots, p_{n}\right)=\left(p, \mu_{n}\right) \quad(1), \ldots, p \sigma(n)\right) . \tag{4,2}
\end{equation*}
$$

Note that $\left[g(\rho) \operatorname{Fo}_{(1)}\right.$. We will need the following special permutations.

Defintion: let p be a multimindex. Then
(1) π_{p} is a permutation on $\{1, \ldots, n\}$ such that

$$
\left[\pi_{p}(p)\right]_{1} \leq\left[\pi_{p}(p)\right]_{1}
$$

whenever $i \leq j$ and if $p_{1}=p_{j}$ and $i \leq j$, then

$$
\pi_{p}^{-1}(i) \leq \pi_{p}^{-1}(j)
$$

(2) I_{p} is the permutation on $\{1, \ldots, n\}$ such that

$$
\left[\eta_{p}(P)\right]_{i} \geq\left[\eta_{p}(P)\right]_{1}
$$

whenever $\mathrm{i} \leq \mathrm{j}$ and if $\mathrm{p}_{1}=\mathrm{p}_{3}$ and $\mathrm{i} \leq \mathrm{j}$, then

$$
\eta_{P}^{-1}(i) \leq \eta_{P}^{-1}(j)
$$

Thus, π_{p} is a permutation that will reorder p in increasing order and M_{p} recorders P in decreasing order with equal elements left in the same order.

Proposition 4: If P is a multi-index, then
(i) $\left[\pi_{p}(P)\right]^{\prime}=\Pi_{p}\left(P^{\prime}\right)=\pi_{p}\left(p^{\prime}\right)$ and
(ii) $\left[\eta_{p}(P)\right]^{\prime}=\pi_{p}\left(P^{\prime}\right)=\eta_{p}\left(P^{\prime}\right)$. Moreover, if $r \in(1, \infty)$ and $r<p$ then

$$
\text { (iii) } \pi_{p}=\eta_{a}(p, r)
$$

and

$$
\text { (iv) } \pi_{p}=\pi_{a(p, r)} \text {. }
$$

Proof: Note if

$$
p_{1} \leq p_{j}
$$

then

$$
P_{1}^{\prime} \geq P_{1}^{\prime}
$$

Thus, parts (i) and (ii) follow immediately. Suppose $1<r<$ $P_{i}<P_{j}$. Then

$$
\begin{aligned}
& 0<(1 / r)-\left(1 / P_{1}\right)<(1 / r)-\left(1 / P_{1}\right) \\
& 0<\left(1 / a\left(P_{1}, r\right)\right)<\left(1 / a\left(P_{1}, r\right)\right)
\end{aligned}
$$

and hence

$$
a\left(P_{3}, r\right)<a\left(P_{1}, r\right)
$$

Thus, (iii) and (iv) follow immediately

We can state a further relationship between the permutation π_{p} and the multi-index P by using the following.

Definition: Let σ be a permutation on $\{1, \ldots, n\}$ and $P=$ $\left(p_{1}, \ldots, p_{n}\right)$. Then
(1) $\sigma \notin P$ if and only if for all i and $j=1, \ldots, n$, $i \leq j$ and $p_{i} \leq p_{j}$ implies $\sigma^{-1}(i) \leq \sigma^{-1}(j)$.
(2) op \quad if and only if for all i and $j=1, \ldots, n$, $i . \leq j$ and $p_{i} \geq P_{j}$ implies $\sigma^{-1}(i) \leq \sigma^{-1}(j)$.

Thus, we notice that $\pi_{P} \not p$ while $\eta_{p} \& P$. Moreover, $v \downarrow P$ if and only if $\sigma p^{\prime} p^{\prime}$. Later in Proposition 6 we will see that if σ : P then $L(\stackrel{P}{\mu})$ continuous ly contains $L^{\sigma}\binom{P}{\mu}$.

Mintowski's inequality can be stated as $\left\|\Sigma f_{n}\right\|_{p} \leq$ $\Sigma\left\|F_{n}\right\|_{p}$. In the case when p is a single number, we have the Generalized Minkowski's inequality,
$(1.3) \quad\left\|\int f(x, y) d \mu(x)\right\|_{(\nu(y))}^{p} \leq \int\|f(x, y)\|_{(\nu(y)}^{p} d \mu(x)$
See [4 p.592]. We may restate this as:

Proposition 5: Let K be a measurable function on $A \times B$ and $p \in[1, \infty]$, then
(4.4) $\|k\|_{\left(\begin{array}{c}1, p, v \\ 1, p\end{array} \leq\|k\|_{(v, \mu)}^{p, 1}\right) .}$.

Proof: For $p=1$ this is Tonelli's theorem since

$$
\|k\|_{(\mu, \nu)}^{1,1)}=\|k\|_{(\nu, \mu)}^{(1,1)} .
$$

For $p=\infty$ we have

$$
|k(x, y)| \leq\|k(x, \xi)\|_{(v(\xi))}^{\infty} \text { are. } x \text { and } y
$$

so.

$$
\begin{aligned}
& \int_{x}|k(x, y)| d \mu \\
& \left.\quad \leq \int_{x}\| \|(x, y) \|_{(v(y)}^{\infty}\right) d \mu \text { a.e. } y
\end{aligned}
$$

ard hence

$$
\begin{aligned}
\|k(x, y)\|_{\left(\begin{array}{l}
1, \infty \\
\mu, \nu
\end{array}\right.} & \left.=\left\|\int_{x}|k(x, y)| d \mu^{\mid d}\right\|_{(\nu)}^{\infty}\right) \\
& \leq \int_{x}\|k(x, y)\|_{(\nu)}^{(\infty)} d \mu \\
& \left.=\|k\|_{(\nu(y), \mu(x)}^{\infty}\right)
\end{aligned}
$$

For $1<P<\infty$ let $g \in_{L} P^{\prime}$ and $\|g\|_{P^{\prime}} \leq 1$. Then

$$
\begin{aligned}
\int g(y) \int|k(x, y)| d \mu(x) d v(y) & =\int\left(\int_{g(y)|k(x, y)| d v d \mu}\right. \\
& \leq \int\|k(x, y)\|_{(p)}^{p} d \mu \\
& =\|k\|_{(\underset{v}{p}, 1)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|k\|_{\left(\begin{array}{l}
1, p \\
\mu, v
\end{array}\right.} & =\sup _{\|g\|_{p} \leq 1} \int_{p}(y)\left(\int|k(x, y)| d \mu\right) d \nu \\
& \leq\|k\|_{\binom{p, 1}{v, \mu}}
\end{aligned}
$$

In connection with this proposition, it should be noted that if $P>1$ and $K(x, y)$ cannot be expressed as $K(x, y)=\varphi(x) \psi(y)$, then the inequality (4.4) is a strict one [10, p. 143].

We can easily derive the following:
Lemma: If $K(x, y)$ is a measurable function on $A \times B$ and $r, q \in[1,+\infty)$
with $1 \leq r \leq q$ then,
(4.5) $\quad\|k\|_{\left(\begin{array}{c}r, q) \\ \mu, \nu) \\ \end{array} \leq\|k\|_{(\nu, r)}^{q, r}\right)}$

Proof: Suppose $1 \leq r<\infty$. Applying Proposition 5 to $|K|^{r}$ with $p=q / r$,

$$
\left.\left\||k|^{r}\right\|_{(1, v, \nu}^{\left.1, \frac{q}{r}\right)} \leq\left\||k|^{r}\right\|_{\left(\frac{q}{v}, \mu\right.}^{q}\right)
$$

and hence

$$
\left.\|k\|_{\binom{r, q}{\mu, \nu}}^{r} \leq\|k\|_{(v, \mu}^{r}, r\right)
$$

If $r=+\infty$, then $q=+\infty$ and hence

$$
\|K\|_{\left(\begin{array}{l}
\infty, \infty \\
\mu, \nu
\end{array}\right.}=\|K\|_{\binom{\infty}{\mu \times \nu}}=\|K\|_{(\nu, \mu)^{\infty}, \infty}
$$

Now using this lemma and mathematical induction we can extend the theorem to cover the case of P a multi-index and σ a permutation.

Proposition 6: If P is a multimindex, $f \in L^{P}$ and σ is a permutation such that $\sigma \downarrow P$, then
(4.6)

$$
\|f\| \sigma_{\binom{P}{\mu}} \leq\|f\|_{\binom{P}{\mu}} \text { and } L^{\binom{P}{\mu}} \subset L^{\circ}\binom{P}{\mu}
$$

and if $\sigma \hat{q} P$, then
(4.7)

$$
\|f\|_{\binom{P}{\mu}} \leq\|f\|_{\binom{P}{\mu}} \text { and } L^{\sigma\binom{P}{\mu} \subset L^{\binom{P}{\mu}}}
$$

Remark 1: Theorems of this type are generally attributed to Jessen $[8$ p.530], [10 p. 150, 169].

Remerk 2: Let $P=\left(p_{1}, \ldots, p_{n}\right), Q=\left(q_{1}, \ldots, q_{n}\right), \sigma$ and $\approx \not \approx$ be permutations of $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$ respectively, and T be a bounded linear transformation;

$$
T: L^{P} \rightarrow L^{Q}, \widetilde{\sigma} \nLeftarrow Q \text { and } \sigma+P .
$$

Then

$$
T: L^{\sigma(P)} \rightarrow L^{\widetilde{\sigma}(Q)}
$$

Moreover,

$$
\|r\| \leq \alpha
$$

as an operator from

$$
L^{\sigma}(P) \rightarrow L^{\sigma}(Q)
$$

whenever the same is true as an operator from

$$
L^{P} \rightarrow L^{Q} .
$$

Froposition 1: Let P and Q be multi-indices, and $K(x, y) \in P^{\prime}, Q$. Then for the integral transformation K wh have $L^{P} \subset D(K)$ and $K L^{P} C^{Q}$. Moreover $K: L^{P} \rightarrow L^{Q}$ is bounded with norm $\|K\| \leq\|K(x, y)\| P^{\prime}, Q$.

Procf: Let $f \in L^{P}$ and $g \in Q^{Q}$. Then

$$
|(T f, g)|=\left|\int K(x, y) f(x) g(y) d \mu(x) d \nu(y)\right|
$$

34.

$$
\begin{aligned}
& \leq\|k\|_{\left(p_{1}^{\prime}, v\right)}\|f(x) g(y)\|_{\binom{p, v^{\prime}}{\mu, v}}
\end{aligned}
$$

CHAPTER FIVE
 AN EXISTENCE THEOREM

In applying Theorems 1 and 3 to the special case of L^{P} spaces, we will use some non-linear transformations between L_{+}^{P} and $L_{+}^{P \prime}$ given by the

Definition: Let $P=\left(p_{1}, \ldots, p_{n}\right)$ and $1 \leq P<\infty$. For any function $f \in L_{+}^{P}$ we define the function $I_{p}(f)$ by
with the agreement that $\Gamma_{p}(f)=0$ whenever f or any of the above partial norms are equal to zero. We define Γ_{Q} similarly.

Proposition 8: Let $f \in L_{i}^{P}$ with $1<P<+\infty$ and $\alpha \in[0,+\infty)$. Then
(i) $\left\|r_{p}(f)\right\|_{p^{\prime}}=\|f\|_{p^{n}}^{p^{-1}}$
(ii) $\Gamma_{p}: L_{+}^{P} \rightarrow L^{P^{\prime}}$
(iii) $\left\|\Gamma_{p}(f)\right\|_{p^{\prime}} \leq 1$ if any only if $\|f\|_{p} \leq 1$
(iv) $\Gamma_{p}(0)=0$
(v) $\Gamma_{p}(\alpha f)=\alpha^{p_{n}-1} \Gamma_{p}(f)$
(vi) If $g=\Gamma_{p}(f)$ then $f=\Gamma_{p}^{\prime}(g)$
(vii) $\Gamma_{p}^{-1}=\Gamma_{p}^{\prime}$
(viii) $\Gamma_{P}: L_{t}^{s P} \rightarrow L_{t}^{o P^{\prime}}$ is $1-1$, onto, continuous and open (ix) Γ_{p} is a power function.

Proof:
(i) We proceed by induction. For $n=1$

$$
\begin{aligned}
\left\|\Gamma_{p}(f)\right\| p^{\prime} & =\left\|f p_{1}-1\right\| p_{1}^{\prime} \\
& =\left\|f p_{1} / p_{1}\right\|_{p_{1}}^{\prime} \\
& =\|f\|_{p_{1}}^{p_{1} / p_{1}^{\prime}} \\
& =\|f\|_{p_{1}}^{p_{1}-1}
\end{aligned}
$$

Assume the theorem is true for $n=k$ and let f be a function of $k+1$ variables. Then applying our induction hypothes is to $\|f\| p_{1}$, we have

$$
\begin{gathered}
\left.\left\|\|f\|_{P_{2}}^{p_{2}-1} \prod_{i=2}^{k}\right\|\|f\|_{p_{1}}\| \|_{p_{2}+1}^{\left.p_{1}+\cdots, p_{i}\right)} \|_{\left(p_{2}^{\prime}, \ldots, p_{k}^{\prime}+1\right.}^{\prime}\right) \\
\left.=\| \| f\left\|p_{1}\right\|_{\left(p_{2}, \ldots, p_{k+1}\right)}^{p_{k}, 1}\right)
\end{gathered}
$$

or

$$
\begin{aligned}
& \left\|\|f\|_{p_{1}}^{p_{2}-1} \prod_{i=2}^{k}\right\| f\left\|_{\left(p_{1}, \ldots, p_{1}\right)}^{p_{1}+p_{1}}\right\|\left(p_{2}^{\prime}, \ldots, p_{k+1}^{\prime}\right) \\
& =\|f\|_{\left(p_{1}, \ldots, p_{k+1}\right)}^{p_{k+1}-1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left\|\Gamma_{p}(f)\right\|_{p^{\prime}}= \\
& \left\|\left\|f^{p_{1}-1}\right\|_{p_{1}^{\prime}} \prod_{i=1}^{k}\right\| f\left\|_{\left(p_{1}, \ldots, p_{i}\right)}^{p_{1}+1}\right\|\left(p_{2}^{\prime}, \ldots, p_{k}^{\prime}+p_{1}\right) \\
& \left.=\| \| f\left\|_{p_{1}}^{p_{1}-1}\right\| f\left\|_{p_{1}-p_{1} k}^{p_{2}-p_{1}}\right\| f\left\|_{\left(p_{1}, \ldots, p_{1}\right)}^{p_{1}+1}\right\|_{\left(p_{2}^{\prime}, \ldots, p_{k}^{\prime}+1\right.}\right) \\
& =\| \| f\left\|_{p_{1}}^{p_{2}^{-1}} \prod_{i=2}^{k}\right\| f\left\|_{\left(p_{1}, \ldots, p_{1}\right)}^{p_{1}+2}\right\|_{\left(p_{2}^{\prime}, \ldots, p_{k}^{\prime}, 1\right)} \\
& =\|f\|_{\left(p_{1}, \ldots, p_{k+1}\right)}^{p_{k}-1}
\end{aligned}
$$

Now parts (ii): (iii) and (iv) follow immediately from part (i). Since

$$
\begin{aligned}
\Gamma_{p}(o f) & =\Gamma_{p}(f) \cdot \alpha^{p_{n}-1}+\sum_{i=1}^{n-1}\left(p_{1}+1-p_{i}\right) \\
& =\Gamma_{p}(f) \cdot \alpha^{p_{n}-1}
\end{aligned}
$$

we have part (v). Now for part (vi) we note $g \in L_{+}^{p^{\prime}}$ by part (ii) above. We proceed by induction. For $n=1$,

So

$$
\begin{aligned}
g & =f^{p_{1}-1}=f^{p_{1} / p_{1}^{\prime}} \\
f & =g^{p_{1}^{\prime} / p_{1}}=g^{p_{1}^{\prime}-1} \\
& =\Gamma_{p^{\prime}}(g)
\end{aligned}
$$

For $n=2$, we have

$$
g=f^{p_{1}-1}\|f\|_{p_{1}}^{p_{2}-p_{1}}=f p_{1} / p_{1}^{\prime}\|f\|_{p_{2}}^{\left.p_{2} / p_{2}^{\prime}\right)-\left(p_{1} / p_{2}^{\prime}\right)}
$$

so

$$
\begin{aligned}
\|g\|_{p_{2}^{\prime}}^{\prime} & =\left\|f p_{2} / p_{1}^{\prime}\right\|_{p_{1}^{\prime}}\|f\|_{p_{2}}^{\left(p_{2} / p_{2}^{\prime}\right)-\left(p_{2} / p_{1}^{\prime}\right)} \\
& =\|f\|_{p_{2}}^{p_{2} / p_{1}^{\prime}}\|f\|_{p_{1}}^{\left(p_{2} / p_{2}{ }^{\prime}\right) \cdots\left(p_{1} / p_{1}^{\prime}\right)} \\
& =\|f\|_{p_{1}}^{p_{2} / p_{2}^{\prime}}
\end{aligned}
$$

and

$$
\begin{aligned}
f^{p_{1} / p_{1}^{\prime}} & =g\|f\|_{p_{1}}^{\left(p_{1} / p_{1}^{\prime}\right)-\left(p_{2} / p_{2}^{\prime}\right)} \\
& =g\|g\| p_{1}^{\prime}\left(p_{2}^{\prime} / p_{2}\right)\left(\left(p_{1} / p_{1}^{\prime}\right)-\left(p_{2} / p_{2}^{\prime}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f & =g^{p_{1}^{\prime} / p_{1}}\|g\|_{p_{1}^{\prime}}\left(p_{1}^{\prime} / p_{1}\right)\left(p_{2}^{\prime} / p_{2}\right)\left(\left(p_{1} / p_{1}^{\prime}\right)-\left(p_{2} / p_{2}^{\prime}\right)\right) \\
& =g^{p_{1}^{\prime} / p_{1}}\|g\|_{p_{1}^{\prime}}^{\left(p_{2}^{\prime} / p_{2}\right)-\left(p_{1}^{\prime} / p_{1}\right)} \\
& =g^{p_{2}-1}| | g \|_{p_{1}^{\prime}}^{p_{2}^{\prime}-p_{2}^{\prime}} \\
& =\Gamma_{p}(g) .
\end{aligned}
$$

Now assume part (vi) is true for some $n=k \geq 2$. Let
and $\quad f \in L^{P}$.
Then

$$
\begin{aligned}
& \|g\|_{\binom{P_{1}^{\prime}}{\mu_{1}}}=\left\|f^{p_{1} / p_{1}^{\prime}}\right\|_{p_{1}^{\prime}}^{\prod_{i=1}^{k}\|f\|_{P_{1}}^{p_{1}+\ldots-p_{1}}, \ldots, p_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\|f\|_{p_{2}}^{p_{z} / p_{z}^{\prime} \prod_{i=2}^{k}\|f\|_{p_{1}, \ldots, p_{i}}^{p_{1}, p_{1}}, ~} \\
& =\Gamma_{p_{2}, p_{3}}, \ldots, p_{k+1}\left(\|f\|_{\binom{p_{2}}{\mu_{1}}}\right)
\end{aligned}
$$

Hence,

$$
g=f p_{1} / p_{1}^{\prime}\|f\|_{p_{1}}^{p_{2}-p_{1}} \quad \prod_{i=2}^{k}\|f\|_{p_{1}+1}^{p_{1}+\cdots, p_{1}}
$$

$$
\begin{aligned}
& =f^{p_{1} / p_{1}^{\prime}}\|f\|_{p_{1}}^{\left(p_{2} / p_{2}^{\prime}\right)-\left(p_{1} / p_{1}^{\prime}\right)}\|f\|_{p_{1}}^{-\left(p_{2} / p_{2}^{\prime}\right)}\|g\|_{p_{1}^{\prime}} \\
& =f^{p_{1} / p_{1}^{\prime}}\|f\|_{p_{1}}^{-\left(p_{1} / p_{1}^{\prime}\right)}\|g\|_{p_{1}^{\prime}} \\
& =f^{p_{1} / p_{1}^{\prime}}\left[\|g\|_{p_{1}}^{p_{2}^{\prime} / p_{2}}{\underset{i=2}{k}\|g\|_{p_{1}, \ldots, p_{1}^{\prime}}^{p_{1}^{\prime}, 1-1}-p_{1}^{\prime}}_{-\left(p_{1} / p_{1}^{\prime}\right)}^{\|g\|_{p_{1}^{\prime}}}\right.
\end{aligned}
$$

by the induction hypothesis applied to $\|f\|_{P_{1}}$.
Finally, solving for f, we get

$$
\begin{aligned}
f & =g^{p_{1}^{\prime} / p_{1}}\left[\|g\|\left\|_{p_{1}^{\prime}}^{p_{2}^{\prime} / p_{2}} \prod_{i=2}^{k}\right\| g \|_{p_{1}, \cdots, p_{1}^{\prime}}^{p_{1}^{\prime}+\cdots p_{1}^{\prime}}\right]\|g\|_{p_{1}^{\prime}}^{-\left(p_{1}^{\prime} / p_{1}\right)} \\
& =g^{p_{1}^{\prime} / p_{1}}\|g\|_{p_{1}^{\prime}}^{\left(p_{2}^{\prime} / p_{2}\right)-\left(p_{1}^{\prime} / p_{1}^{\prime}\right)} \prod_{i=2}^{k}\|g\|_{p_{1}^{\prime}}^{p_{1}, \ldots, p_{i}^{\prime}} p_{i} \\
& =g^{p_{1}^{\prime} \cdots 1} \prod_{i=1}^{k}\|g\|_{p_{1}^{\prime}, \ldots, p_{1}^{\prime}}^{p_{1}^{\prime},+1} \cdots p_{1}^{\prime} \\
& =\Gamma_{p^{\prime}}(g) .
\end{aligned}
$$

Now part (vii) simply restates (vi). The continuity of Γ_{p} for positive function follows from part (i) since Γ_{p} preserves convergence almost everywhere and the function norms are smooth on L^{P}. Thus, (viii) and (ix) follow immediately

Remark 1: We will prove later for $2<P<\infty$ that Γ_{P} is Lipschitzian on bounded subsets of Lor $_{+}^{\circ}$.

Remert 2: Part (iii) is the same as (2.11) in the definition of stable functions, etc.

Remark 3: The function Γ_{p} is not in general monotone. For example, consider Lebsegue measure on $A_{1}=(0,2)$ and $A_{2}=(0,1)$ with $n=2, p_{3}=2, p_{2}=1$,

$$
f_{1}\left(x_{1}, x_{2}\right)=1
$$

for $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$ and

$$
f_{2}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}
1 & \text { if } x_{1} \in(0,1) \\
2 & \text { if } x_{1} \in(1,2)
\end{array}\right\} \text { for } x_{2} \in A_{2}
$$

Then $f_{1} \leq f_{2}$ but

$$
\Gamma_{P_{1}, P_{2}}\left(f_{1}\right)=(1 / \sqrt{2})
$$

for all $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$ while

$$
\Gamma_{P_{1}, P_{2}}\left(f_{E}\right)\left(x_{1}, x_{2}\right)= \begin{cases}(1 / \sqrt{5}) & \text { if } x_{1} \in(0,1] \\ (2 / \sqrt{5}) & \text { if } x_{1} \in(1,2)\end{cases}
$$

Thus for any $x_{2} \in A_{2}$,

$$
\Gamma_{p_{1}, p_{2}}\left(f_{2}\right) \leq \Gamma_{p_{1}, p_{2}}\left(f_{1}\right) \text { on }(0,1]
$$

but

$$
\Gamma_{p_{1}, p_{2}}\left(f_{1}\right) \leq \Gamma_{p_{1}, p_{2}}\left(f_{2}\right) \text { on }(1,2)
$$

However, it should be noted that if $p_{1} \leq p_{1+1}$ for all $i=1,2, \ldots$, nW then Γ_{p} is non-decreasing. This is easily seen from the definition of Γ_{p}.

(i) non-decreasing and continuous,
(ii) stable and strictly stable and
(iii) a power function.

Proof: Note

$$
L_{+}^{P} \subset L_{+} \pi_{p}(P)
$$

and

$$
L_{+} \prod_{P^{\prime}}(P) \subset L_{+} P^{\prime}
$$

and the imbeddings

$$
\tilde{\tilde{I}}_{1}: L_{+}^{P} \rightarrow L_{+} \pi_{p}(P)
$$

and

$$
\tilde{I}_{z}: L_{t} \eta_{p}^{\prime}\left(P^{\prime}\right) \rightarrow L_{+} P^{\prime}
$$

are continuous, non-decreasing and 1-1. Then

$$
\Phi \equiv \Gamma_{2} \circ \Gamma_{\pi_{p}} p \circ \tilde{i}_{1}=\Gamma_{\Pi_{P}} P^{-}: L_{+}^{P} \rightarrow L_{+} p^{\prime}
$$

is continuous and non-decreasing.

Let

$$
\beta=-1+\operatorname{Max}\left\{p_{1} \mid i=1, \ldots, n\right\}
$$

Then,

$$
\|\Phi(f)\|_{p} \leq\|\underline{\Phi}(f)\|\left\|_{p}\left(p^{\prime}\right)=\right\| f\left\|_{\pi_{p}(P)}^{\beta} \leq\right\| f \|_{p}^{\beta}
$$

Thus if

$$
\|f\|_{p} \leq 1
$$

then,

$$
\|\Phi(f)\|_{p}^{\prime} \leq 1 .
$$

Hence Φ is stable and strictly stable, since

$$
\left[\pi_{p}(P)\right]_{1+1}-\left[\pi_{p}(P)\right]_{1} \geq 0
$$

for $i=1,2, \ldots, n-1$.

Also

$$
\Phi(\alpha f)=o^{\beta_{\Phi}}(f) \text { and } \Phi(0)=0
$$

so Φ is a power function g

Since $\Gamma_{\Pi_{p}}(P)$ is strictly stable, we can prove a variation of Theorem 1 for L^{P} spaces which generalizes a theorem due to Gagliardo [9:430]. The following diagram may facilitate the reading of the proof. Note

$$
\pi_{Q}\left(Q^{\prime}\right)=\eta_{Q}\left(Q^{\prime}\right)
$$

and

$$
\Pi_{p}\left(p^{\prime}\right)=\pi_{p}\left(p^{\prime}\right)
$$

Let

$$
\begin{aligned}
& \psi=\Gamma_{\pi_{Q}}(Q) \\
& \Phi=\Gamma_{\Pi_{p}\left(p^{\prime}\right)}
\end{aligned}
$$

Theorem 4: Let $1<P<\infty$ and $1<Q<\infty$,

$$
\Phi=\Gamma \eta_{p}\left(P^{\prime}\right) \quad \text { and } \quad \Psi=\Gamma_{\pi_{0}}(Q)
$$

If $T: L^{P \rightarrow L L} Q^{Q}$ is a positive, bounded linear transfermation with $\|T\| \leq c$, then for every $\varepsilon>0$ there exist functions $\varphi \in L_{+}^{\circ} P$ and $\psi \in L_{+}^{\circ} Q^{\prime}$ such that
(i) $T \varphi(y) \leq(c+\varepsilon) \psi^{-i}(\psi)(y)$
(ii) $\mathrm{T}^{*} \psi(x) \leq(c+\varepsilon) \Phi^{-1}(\varphi)(x)$
(iii) $\|\varphi\|_{\eta_{p}(P)} \leq 1$
and

$$
\|\psi\|_{\pi_{0}}\left(e^{\prime}\right) \leq 1 .
$$

Proof: Let $\delta>0$ be such that

$$
c(1+\delta)^{2} \leq c+\varepsilon
$$

and choose $V_{0} \in L^{Q}$ and $U_{0} \in L^{\prime}$ such that

$$
V_{0}(y)>0 \text { a.e. }
$$

but

$$
\left\|v_{0}\right\|_{Q} \leq \frac{\epsilon}{c+\epsilon}
$$

and

$$
U_{0}(x)>0 \text { ace. }
$$

but

$$
\left\|u_{0}\right\|_{p}, \leq \frac{\delta}{1+\delta}
$$

For $U \in_{+}^{P^{\prime}}$ we define

$$
s(U)=\left(\frac{1}{c}\right) T^{*} 4\left(U_{0}+\left(\frac{1}{c+\epsilon}\right) T\left(U_{0}+\left(\frac{1}{1+\delta}\right) U\right)\right)
$$

Note $s: L_{+}^{P^{\prime}} \rightarrow L_{+}^{P^{\prime}}$ is a stable function since $(1 / c) T^{*}$,
$4,(1 / c) T$ and Φ are stable and $\|S(U)\|_{p} \leq \leq 1$ whenever
$\|u\|_{p}^{\prime} \leq 1$ can be checked by a simple computation.

By the lemma to theorem 1
there exists $U \in_{+}{ }^{\prime}$ such that $U \neq 0,\|U\|_{P} \leq 1$
and

$$
S(U)=\frac{1}{c} T U\left(V_{0}+\frac{1}{c+\epsilon} T \Phi\left(U_{0}+\frac{1}{1+\delta} U\right)\right) \leq(1+\delta) U .
$$

Let

$$
\varphi=\Phi\left(U_{0}+\frac{1}{1+\delta} U\right)
$$

and

$$
\psi=\Psi\left(\dot{V}_{0}+\frac{1}{c+\varepsilon} T \varphi\right) .
$$

Then $\varphi>0$ ae. and $\psi>0$ ace. since Φ and ψ are strictly positive.

$$
\begin{aligned}
T \varphi & =(c+\varepsilon)\left[\psi^{-1}(\psi)-V_{0}\right] \leq(c+\varepsilon) \psi^{-1}(\psi) \\
T^{*} \psi & \leq c(1+\delta) \cup \\
& \leq c(1+\delta)^{2}\left[\Phi^{-1}(\varphi)-U_{0}\right] \\
& \leq(c+\varepsilon) \Phi^{-1}(\varphi)
\end{aligned}
$$

$\left\|\|_{\eta_{p}}(P) \leq 1\right.$ since Φ is a stable function and

$$
\left\|u_{0}+\frac{1}{1+\delta} u\right\| \eta_{p}\left(p^{\prime}\right) \leq\left\|u_{0}+\frac{1}{1+\delta} u\right\|_{p} \leq \frac{\delta}{1+\delta}+\frac{1}{1+\delta}=1
$$

and $\left\|\left\|\|_{Q}(Q) \leq 1\right.\right.$ since ψ is a stable function and

$$
\left\|V_{0}+\frac{1}{c+\varepsilon} T \varphi\right\|_{\pi_{Q}(Q)} \leq\left\|V_{0}+\frac{1}{c+\varepsilon} T \varphi\right\|_{Q} \leq \frac{\epsilon}{c+\varepsilon}+\frac{c}{c+\varepsilon}=1_{\|}
$$

Remark 4 : Condition (iii) of Theorem 4 implies

$$
\|\varphi\|_{p} \leq 1
$$

and

$$
\|4\|_{Q^{\prime}} \leq 1
$$

by Proposition 6.

CHAPTER SIX

THE BOUNDEDNESS OF INTEGPAL TRANSFORMATIONS

We will now use the transformations Γ_{P} to reduce the conditions (i) through (iv) of Theorem 3 to a form similar to that of conditions (i) through (iii) of theorem 4. The resulting theorem is a generalization of a theorem due to N. Aronszajn. See Gagliardo [9 p. 429]. We will need several lemmas related to the simplification of conditions (iii) and (iv) of Theorem 3.

Lemma 1: If

$$
\begin{aligned}
& f(x)>0 \text { a.e., } r \in R^{1} \text { and } 1<r \leq P<\infty \\
& \text { then }
\end{aligned}
$$

$$
\begin{equation*}
\|\left(r_{p}(f) f f^{1 \cdots r)^{\frac{1}{r}}\left\|_{\left(a\left(p_{2}, r\right), \ldots, a\left(p_{n}, r\right)\right)}=\right\| f \|_{p}^{\frac{p_{n}-r}{r}} . . . \text {. } . ~ . ~}\right. \tag{6.1}
\end{equation*}
$$

Proof: We will induct on n where $P=\left(p_{1}, \ldots, p_{n}\right)$. For $n=1$,

$$
\begin{gathered}
\|\left(f^{\left.p_{1}-l_{f} 1-r\right)^{\frac{1}{r}} \|_{\frac{p_{1} r}{}}^{p_{1}-r}}=\left\|f^{\left(p_{1}-r\right) / r}\right\|_{\frac{p_{1} r}{p_{1}-r}}\right. \\
=\|f\|_{p_{1}}^{\left(p_{1}-r\right) / r}
\end{gathered}
$$

Again for $n=2$, we have

$$
\left.\left\|\left(f^{p_{1}-1}\|f\| \|_{p_{1}}^{p_{2}-p_{2}} f^{1-r}\right)^{\frac{1}{r}}\right\|_{\left(\frac{p_{2} r}{p_{1}-r}\right.}, \frac{p_{2} r}{p_{2}-r}\right)
$$

$$
\begin{aligned}
& =\| \| f\left(p_{1}-r\right) / r\left\|_{\frac{p_{1} r}{}}\right\| f\left\|_{p_{1}-r}^{\left(p_{2}-p_{2}\right) / r}\right\|_{\frac{p_{2} r}{}} \\
& =\| \| f\left\|_{p_{2}-r}^{\left(p_{1}-r\right) / r}\right\| f\left\|_{p_{1}}^{\left(p_{2}-p_{2}\right) / r}\right\|_{\frac{p_{2}}{p_{2}-r}} \\
& =\| \| f\left\|_{p_{1}}^{\left(p_{2}-r\right) / r}\right\| \|_{p_{2} r}^{p_{2}-r} \\
& =\left.\|f\|\right|_{p_{2} p_{2}} ^{\left(p_{2}-r\right) / r}
\end{aligned}
$$

Now assume the theorem is true for $n=k$. Then

$$
\begin{aligned}
& \|\left(f^{p_{1}-1}\left[\prod_{i=1}^{k}\|f\|_{p_{1}, \ldots, p_{i}}^{\left.p_{1}+1 p_{1}-r\right)^{\frac{1}{r}} \|}{ }_{\left(a\left(p_{1}, r\right), \ldots, a\left(p_{k+1}, r\right)\right.}\right)\right. \\
& =\| \|\left\|^{\left(p_{1}-r\right) / r}\right\|_{p_{p_{1}} r} \prod_{i=1}^{k}\left(\|f\|_{p_{1}, \ldots, p_{i}}^{p_{1}+1-p_{i}}\right)^{\frac{1}{r}} \\
& \left.\|\left({ }_{\left(\mu_{2}^{2}\right.}, r\right), \ldots, a\left(p_{\mu_{k+1}+1}, r\right)\right) \\
& =\| \| f\left\|_{p_{2}}^{\left(p_{1}-r\right) / r}\right\| f \|_{p_{2}}^{\left(p_{2}-p_{1}\right) / r} \\
& \left.\prod_{i=2}^{k} \quad\left(| | f| |_{p_{1}+1}^{p_{i}-p_{1}}\right)^{\frac{1}{r}}| |, a, p_{1}\left(p_{2}, r\right), \ldots, a\left(p_{k+1}, r\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\|\left(C\|f\|_{p_{1}}^{p_{2}-1}{\left.\underset{i=2}{k}\|f\|_{p_{1}, \ldots, p_{1}}^{p_{1}+1, p_{1}}\right]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\| \| f\left\|_{p_{2}}\right\|_{p_{2}, \ldots, p_{k+2}}^{\left(p_{k}+t_{1}-r\right) / r}
\end{aligned}
$$

by the induction hypothesis applied to $\quad\|f\|_{\left(\begin{array}{l}p_{1}\end{array}\right) \text {, }}$,

$$
=\|r\|_{p}^{\left(p_{x+1}-r\right) / r}
$$

We note that the above statements hold immediately for $p_{1}>r$ and each step will also hold if some $p_{1}=r$ since we take $f^{\circ}=0$ when $f=0$ and $f^{\circ}=1$ otherwise and $a(r, r)=+\infty$ to give the sup norm

Corollary: If $f(x)>0, r \in R^{2}$ and $1<Q \leq r<\infty$, then

$$
\begin{align*}
& \|\left(\Gamma_{0}^{\prime}(f) f^{\left.\left.1-r^{\prime}\right)^{\frac{1}{r}} \|_{\left(\alpha_{1}\right.}, r^{\prime}\right), \ldots, a\left(q_{\nu_{n}^{\prime}}^{\prime}, r^{\prime}\right),}\right. \tag{6.2}\\
& =\|f\|_{\binom{\left.Q_{n}^{\prime}-r\right) / r^{\prime}}{\nu} .}^{\left(Q^{\prime}\right)}
\end{align*}
$$

Theorem 5: Suppose $K(x, y) \geq 0$ a.e., P and Q are multi-indices,
$1<Q \leq P<\infty, c>0$ is a real numbers $\Phi=\Gamma_{p}$, and $U=\Gamma_{Q}$. If there exist functions $\varphi \in L_{+} P$ and $\psi L_{L_{+}}{ }^{Q}$ such that $\varphi(x)>0$ and $\psi(y)>0$ a.e. and for the integral transformation with kernel K,
(i) $[K \varphi](y) \leq \psi^{-1}(\psi)(y)$
(ii) $\left[K^{*} \psi\right](x) \leq c^{-1}(\varphi)(x)$
(iii) $\|\varphi\|_{P} \leq 1$ and $\|\psi\|_{Q^{\prime}} \leq 1$
then the kernel K defines a bounded linear trans-. formation $K: L^{P} \rightarrow L^{Q}$ with $\|K\| \leq c$.

Proof: Since $Q \leq P$, we can choose $r \in R^{2}$ such that $1<Q \leq r \leq F<\infty$ and apply Thoorem 3 with $\psi_{1}=\psi^{-1}(\psi)$ and $\varphi_{2}=\Phi^{-1}(\varphi)$. The preceding iemmas show that conditions (iii) above imply conditions (iii) and (iv) of Theorem 3 so $\|K\| \leq c^{\prime}$

Remark 1: For $\mathrm{p}<\mathrm{Q}$, Theorem 5 can be false as indicated in Remark 1.IV of Gagliardo [9 p. 430]. It should be remembered. in connection with Theorem 5, that $\Phi^{-1}=\Gamma_{p}$ and $\Psi^{-1}=\Gamma_{Q}{ }^{\prime}$.

If we consider Theorem 5 and note that the theorem remains true if we replace c by $c+\epsilon$ for any $\epsilon>0$, then under the addicional assumptions that $\Pi_{F}(P)=P$ and $\pi_{0}(Q)=Q$, we see that Theorem 4 can be used to prove a convese to Theorem 5 . Thus, we have immediately,

The relationship of Theorems 4 and 5 may be expressed as follows. If the positive integral transformation K is such that $K: L^{P} \rightarrow L Q$ with $\|K\| \leq c$, then Theorem 4 asserts the existence of the functions φ and ψ needed to apply Theorem 5 to prove the weaker statement that $K: L^{\eta_{P}(P)} \rightarrow L^{\pi_{Q}}(Q)$ with $\|k\| \leq c$. From the diagram immediately preceding Theorem 4 we see that

$$
L^{\eta_{P}(P)} \xrightarrow{T} L^{P} \xrightarrow{K} L^{0} \xrightarrow{T} L^{\pi_{0}(0)} .
$$

In the next section we will return to the question of finding a converse and more general theorems furnishing partial converses for Theorern 5 .

To conclude this section, we will give some remarks and a theorem that may be useful in applying Theorem 5 to prove
that a given integral transformation with positive kernel is bounded with bound not exceeding c.

Remark 2: In Theorem 5 if $Q=P=r$, then conditions iii) can be deleted and the theorem will still be true. This can be seen by considering the proof of Theorem 3 and the fact that

$$
\begin{gathered}
\left(f\left(r / r^{\prime}\right)_{f} 1-r\right)^{\frac{1}{r}}=f^{\frac{1}{r}} f^{\frac{1}{r}-1}=f^{\frac{1}{r}+\frac{1}{r}-1} \\
=f^{\circ} \leq 1 .
\end{gathered}
$$

The hypothes is of Theorem 5 may be difficult to check when a large number of variables are involved. If $n=1$ or $m=1$, then Theorem 5 is easier and Theorem 3 may be simplified sufficiently to become useful by setting $p_{1}=r$ or $q_{1}=r$ respectively. We will now establish some sufficient conditions for boundedness of an integral transformation that may be much easier to use, when applicable. By induction we can easily prove the

Lemma 2: If $\varphi_{1} \in$ op $_{1}$ for $i=1, \ldots, n$ and

$$
\varphi(x)=\prod_{i=1}^{n} \varphi_{i}\left(x_{i}\right)
$$

then

$$
\begin{equation*}
\Gamma_{p}(\varphi)(x)=c_{1} \prod_{i=1}^{n} \varphi_{1}\left(p_{1} / p_{1}^{\prime}\right)\left(x_{1}\right) \tag{6.3}
\end{equation*}
$$

where

$$
C_{1}=\prod_{i=1}^{n-1}| | p_{1} \|_{p_{1}}^{p_{n}-p_{1}}
$$

Proof: We will induct on n where $P=\left(p_{1}, \ldots, p_{n}\right)$.
For $n=1$ we have

$$
\Gamma_{p}(\varphi)=1 \cdot \varphi_{2} p_{1} / p_{2}^{\prime}
$$

so $C_{1}=1$.
For $n=2$ we have
so $c_{1}=\left\|p_{1}\right\|_{p_{1}}^{p_{2}-P_{2}}$.
Assuming the theorem for $n=k$, let $P=\left(p_{1}, \ldots, p_{k+1}\right)$.

$$
\begin{aligned}
& \Gamma_{p}(\varphi)=\quad \Gamma_{p}\left(\varphi_{k+1} \prod_{i=1}^{k} \varphi_{1}\right) \\
& =\Gamma_{p}\left(\prod_{i=1}^{k} \varphi_{1}\right) \cdot \varphi_{k+1}^{p_{k}-1}\|\varphi\|_{\left(p_{1}, \ldots, p_{k}\right)}^{p_{k+2}-p_{k}} \\
& \left.\left.=\left[\prod_{i=1}^{k-1}\left\|\varphi_{1}\right\|_{p_{1}}^{p_{k}-p_{1}}\right]_{i=1}^{k} \prod_{i}^{k} p_{i} / p_{i}^{\prime}\right]_{k}^{p_{k} / p_{k}^{\prime}}\right]_{k+1} .
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left[\prod_{i=1}^{k}\left\|\varphi_{i}\right\|_{p_{1}}\right]^{p_{k}+p_{k}} \cdot \varphi_{k+1}^{p_{i+1}-p_{k}} \\
& =\left[\prod_{i=1}^{k}| | \varphi_{1} \|_{p_{1}}^{p_{k}-p_{i}}\right]_{i=1}^{k+1} \varphi_{1}^{p_{1} / p_{1}^{\prime}}
\end{aligned}
$$

using the definition of Γ_{p}, the induction hypothesis and the fact that

$$
p_{k+1}-p_{k}=\left(p_{k+1} / p_{k+1}^{\prime}\right)-\left(p_{k} / p_{k}^{\prime}\right)
$$

Hence

$$
c_{1}=\prod_{i=1}^{k}\left\|\varphi_{i}\right\|_{p_{1}}^{p_{k+1}-p_{i}}
$$

$$
1
$$

Theorem f E: Suppose $K(x, y) \geq 0, P$ and 0 are malti-indices, $1<Q$ $\leq P<\infty$ and $c>0$ is a real number. Let σ and $\tilde{\sigma}$ be any permutations on $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$. If for some $c>0$, there exists functions $\varphi_{1}>0$ ae. for $i=1, \ldots, n$ and $\psi_{s}>0$ ae. for $j=1, \ldots, m$ such that the integral transform K with kernal $k(x, y)$ and the functions

$$
\varphi(x)=\prod_{i=1}^{n} \varphi_{1}\left(x_{1}\right) \text {, and } \psi(y)=\prod_{j=1}^{m} \psi_{j}\left(y_{j}\right)
$$

satisfy
(i) $K \varphi(y) \leq \prod_{j=1}^{m} \psi_{j}\left(y_{j}\right)^{q_{j}^{\prime} / q_{j}}$
(ii) $k^{*} v(x) \leq c \prod_{i=1}^{n} \varphi_{1}\left(x_{1}\right)^{p_{1} / p_{1}^{\prime}}$

$$
\begin{aligned}
& \text { (iii) } \| \log _{3} H_{P_{2}} \leq 1 \text { and } H_{H_{3}} H_{H_{3}} \leq 1 \\
& \text { \} } \begin{array}{l}
i=1, \ldots, n \\
j=1, \ldots, m
\end{array}
\end{aligned}
$$

Then $K: L^{\sigma}(P) \rightarrow \mathcal{L}^{\sigma}(Q)$ is a bounded integral transformation with $\|k\| \leq c$.

Proof: By Jessen's theorem, Proposition 6 above, if this theorem is true for $\sigma=\eta_{\mathrm{p}}$ and $\tilde{\sigma}=\pi_{\mathrm{Q}}$, then it is true for all σ and $\tilde{\sigma}$. Thus, without loss of generality, we assume $\sigma=\eta_{p}$ and $\tilde{\sigma}=T_{\mathrm{Q}}$. Note that conditions iii) and iv) above immediately imply the corresponding conditions of Theorem 5 . Let

$$
\beta=\operatorname{Mn}\left\{p_{1} \mid i=1, \ldots, n\right\}=\left[\prod_{p}(P)\right]_{n} .
$$

Then by lemma 3, condition ii) above implies condition ii) of Theorem 5 since the constant

$$
c_{1}=\prod_{i=1}^{n-1}\left\|\varphi_{1}\right\|_{p_{1}}^{\beta-p_{1}} \geq 1
$$

because $B \leq p$ for $i=1, \ldots, n-1$. We can prove that condition i) above implies condition i) of theorem 5 in a similar manner. Thus, this theorem follows immediately from Theorem 5

CHAPTER SEVEN

FURTHER EXISTENCE THEOREMS

We will now present some results that are similar in form in Theorem 1.

Theorem 7: Let X and Y be nontrivial Banach lattices and

$$
\Phi: X_{+}^{0 *} \rightarrow X_{+}^{0} \quad \text { and } Y: Y_{+}^{0} \rightarrow Y_{+}^{0 *}
$$

be continuous, 1 to 1 , positive or strictly positive functions such that

$$
\|u\|_{\chi^{*}} \leq 1
$$

implies

$$
\|\Phi(u)\|_{X} \leq 1
$$

and

$$
\|v\|_{Y} \leq 1
$$

implies

$$
\|\psi(v)\|_{\gamma *} \leq 1
$$

Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a compact, positive linear transformation such that $\|T\| \leq c$. Then for all real $\epsilon>0$ there exist $\varphi \in X_{+}^{\circ}$ and $\psi \in Y_{+}^{\circ}$ * such that
(i) $T \varphi \leq(c+\varepsilon) \psi^{-1}(\psi)$
(ii) $T^{*} \psi \leq(c+\epsilon) \Phi^{-1}(\varphi)$
(iii) $\|\varphi\|_{X} \leq 1$ and $\|\psi\|_{Y^{*}} \leq 1$

$$
\text { (iv) } \varphi \neq 0 \text { and } \psi \neq 0 .
$$

Proof: Let $\delta>0$ be a real number such that

$$
c(1 i \cdot \delta)^{2} \leq c+e
$$

and choose

$$
v_{0} \in Y_{+}^{\circ}
$$

and $\quad u_{0} \in X^{\circ}$.
such that

$$
\left\|v_{0}\right\|_{Y} \leq \frac{\varepsilon}{c+\varepsilon}
$$

and

$$
\left\|u_{c}\right\|_{x *} \leq \frac{\delta}{1+\delta}
$$

For $u \in X_{t}^{\circ} \%$ define

$$
s(u)=\frac{1}{c} T^{*} 4\left(v_{0}+\frac{1}{c+\epsilon} T \Phi\left(u_{0}+\frac{1}{1+\delta} u\right)\right)
$$

Now S is continuous, positive and if $\|u\|_{X^{*}} \leq 1$ then $\|S u\|_{x^{*}} \leq 1$. Let $w_{+}^{*} x^{\circ *}$ be such that $\|w\|_{X^{*}} \leq \frac{\delta}{1+\delta}$ and define u_{n} and v_{n} as follows for $n=1,2, \ldots$, :

$$
u_{1}=w, v_{1}=S(w), u_{n}=w-\frac{1}{1+\delta} v_{n-2} \text {, and } v_{n}=S\left(u_{n}\right)
$$

Note for $n=1,2, \ldots$ we have $\left\|u_{n}\right\| \leq 1,\left\|v_{n}\right\| \leq 1$ and $u_{n} \geq w$.

Thus there exists $v \in X_{+}^{*}$ such that some subsequence $v_{n_{k}} \rightarrow v$ since this sequence is the image of a bounded sequence under the compact operator $(1 / c) T^{*}$. Note $\|v\|_{x} * \leq 1$. Define

$$
u=w+\frac{1}{1+\delta} v \text {. Then } u_{n_{k}} \rightarrow u \text { and by continuity }
$$

of s,

$$
u=w+\frac{1}{1+\delta} s(u)
$$

or

$$
(1+\delta) u-s(u)=(1+\delta) w \geq 0
$$

where

$$
\|u\|_{x} * \leq 1 \text { and } u \in X_{+}^{\circ *}
$$

Using

$$
(1+\delta) u \geq s(u)
$$

with

$$
\varphi=\Phi\left(u_{0}+\frac{1}{1+\delta} u\right)
$$

and

$$
\psi=\Psi\left(v+\frac{1}{c+\varepsilon} T \varphi\right)
$$

we obtain the conclusion of this theorem exactly as in Theorem ${ }^{4}$

Thus, if the positive integral transformation $K: L^{P} \rightarrow L^{Q}$ with
$\|K\| \leq c$ is compact then theorem 7 asserts the existence of the functions φ and ψ needed to apply theorem 5 to prove that $K: L^{P} \rightarrow L^{Q}$ is bounded with $\|K\| \leq c$.
theorem 1 might be to use a lipschitz condition. Rather than using Lemma 1 before theorem 1, we will consider the following:

Lemma 1: Let X be a nontrivial ordered Banach lattice and $\Phi: X_{+} \rightarrow X$ be a power function (б not necessarily nondecreasing) with $E x(\Phi)=q$ which is Lipschitzian on any set of the form
(7.1) $\quad A_{w}=\left\{u \in X_{+}^{\circ} \mid u \geq w\right.$ and $\left.\|u\| \leq 1\right\}$
where

$$
w \in x_{+}^{\circ} \text { and } \| w| | \geq \frac{1}{2}
$$

Thus, there exists α_{N} such that for any $u, v \in A_{N}$,
(7.2.) $\quad\|\Phi u-\Phi v\| \leq \alpha_{w}\|u-v\|$.

If any one of the following conditions holds,
(i) $q>1$
(ii) $\quad \alpha_{w} \leq \alpha$ for all $w \in X_{+}^{\circ},\|w\| \geq \frac{1}{2}$
(iii) for each $r \in(0,1)$ there exists $w \in X_{+}^{\circ}$ such that

$$
\|w\| \leq r \alpha_{w}^{(1 /(q-1))}
$$

then for every $\delta>0$ there exists $u \in X_{+}^{\circ}$ such that

$$
\|u\| \leq 1, \quad u \geq 0, \quad u \neq 0 \text { and }
$$

(7.3) $\quad(1+6) u \geq$ (u).

Proof: Choose $u_{1} \in X_{+}^{0}$ such that

$$
\left\|u_{1}\right\| \leq \frac{\delta}{1+\delta} \quad \text { and } u_{2} \neq 0
$$

Let $A=A_{u_{1}}$ and $\alpha=\alpha_{u_{1}}$ as above so $\|\Phi(u)-\Phi(v)\| \leq \alpha\|u-v\|$ for all $u, v \in A$. Note that we can assume $\delta \in(0,1)$. Let

$$
\beta=\operatorname{Min}\left\{\frac{1}{\alpha}, 1\right\}
$$

Define the sequence $\left\{u_{n}\right\}$ by,

$$
u_{n}=u_{1}+\frac{\beta}{1+\delta} \Phi\left(u_{n-1}\right) \text { for } n=2,3, \ldots \text {. }
$$

Note

$$
\left\|u_{1}\right\| \leq \frac{\delta}{1+\delta} \leq 1
$$

and if

$$
\left\|u_{n-1}\right\| \leq 1
$$

then

$$
\left\|u_{n}\right\| \leq\left\|u_{1}\right\|+\frac{B}{T+\delta}\left\|\Phi_{n}\left(u_{n-1}\right)\right\| \leq \frac{\delta}{1+\delta}+\frac{1}{1+\delta}=1
$$

Also

$$
u_{n} \geq u_{1} .
$$

Thus

$$
u_{n} \in A \text { for } n=1,2, \ldots \text {. }
$$

Now

$$
\begin{aligned}
\left\|u_{n, 2}-u_{n}\right\| & =\frac{\beta}{1+\delta}\left\|\Phi\left(u_{n}\right)-\Phi\left(u_{n-1}\right)\right\| \leq \frac{\frac{1}{\alpha}}{1+\delta} \alpha\left\|u_{n}-u_{n-2}\right\| \\
& \leq \frac{1}{1+\delta}\left\|u_{n}-u_{n-1}\right\| \text { for } n>2 .
\end{aligned}
$$

Since

$$
\left\|u_{2}-u_{1}\right\| \leq \frac{\beta}{1+\delta}\left\|u_{1}\right\| \leq \frac{1}{1+\delta}
$$

we have

$$
\left\|u_{n+2}-u_{n}\right\| \leq \frac{1}{(1+\delta)^{n}}
$$

Thus clearly $\left\{u_{n}\right\}$ is convergent so there exists $u \in A$ such that $u_{n} \rightarrow u$. Since ${ }^{\frac{1}{\alpha}}$ is continuous,

$$
u=u_{1}+\frac{\beta}{1+0} \varphi(u) \text { or } \frac{1}{\beta}(1+\delta) u-\frac{t}{\sigma}(u)=\frac{1}{\beta}(1+\delta) u_{1} \geq 0 \text {. }
$$

If $\beta=1$ (ie $\alpha \leq 1$) we are through. Thus, assume $\alpha>1$. Let
$E x(\oint)=q$ so that for any real number $C>0$ we have $\mathscr{C}(C v)=C^{q} \Phi(v)$. Hence if $v=\alpha^{\frac{1}{1-q_{u}}}$
then

$$
(1+\delta) v \geq \sum^{5}(v)
$$

since

$$
\alpha \alpha^{\frac{-1}{1-q}}(1+\delta) v \cdots \alpha^{\frac{-q}{1-q}}(v)=\alpha(1-\delta) u_{1} \geq 0 .
$$

Note $v \geq 0$ and $v \neq 0$ and in particular $v \in X_{+}^{\circ}$. Thus all we need
to prove is that $\|v\| \leq 1$. But $\alpha>1$ so if $q>1$, then $\alpha^{\frac{1}{1-q}}<1$. Hence

$$
\|v\| \leq \alpha^{\frac{1}{1-q}}\|u\| \leq 1 .
$$

for $q>1$.

On the other hand, if $\alpha_{k} \leq \alpha$ for all $w \in x_{+}^{\circ}$ with $\|w\| \leq \frac{1}{2}$, then we can choose $\alpha_{k}=\alpha$ and u_{λ} such that it also satisfies the additional conditions

$$
\left\|u_{1}\right\| \leq \alpha^{\frac{1}{9^{*}}} \frac{\delta}{1+\delta}
$$

and

$$
\left\|\tilde{q}_{1}\right\| \leq \alpha^{\frac{q}{q-1}} \frac{\delta}{1+\delta}
$$

since

$$
\|\Phi(w)\|=\|w\|^{q}
$$

for all $w \in X_{+}^{\circ}$. Thus,

$$
\left\|u_{2} \cdots u_{1}\right\|=\frac{\beta}{1+\delta}\left\|\Phi\left(u_{1}\right)\right\| \leq \frac{1}{1+\delta} \alpha^{-1} \alpha^{\frac{q}{q-1}} \frac{\delta}{1+\delta}=\alpha^{\frac{1}{q-1}} \frac{\delta}{(1+\delta)^{2}}
$$

and

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\| & \leq \frac{\beta}{1+\delta}| | \frac{1}{1}\left(u_{n}\right)-\mathbb{2}\left(u_{n-1}\right)\left\|\leq \frac{1}{1+\delta}\right\| u_{n}-u_{n-1} \| \\
& \leq \alpha^{\frac{1}{q-1}} \frac{\delta}{(1+\delta)^{n+1}}
\end{aligned}
$$

while

$$
\left\|u_{i}\right\| \leq \alpha^{\frac{1}{\top}} \frac{\delta}{1+\delta}
$$

Hence

$$
\begin{aligned}
\|u\| & \leq\left\|u_{1}\right\|+\sum_{n=1}^{\infty}\left\|u_{n+1}-u_{n}\right\| \\
& \leq \alpha^{\frac{1}{q-1}}\left(\frac{\delta}{1+\delta}+\sum_{n=1}^{\infty} \frac{\delta}{(1+\delta)^{n+1}}\right) \\
& \leq \alpha^{\frac{1}{q-1}}
\end{aligned}
$$

and therefore

$$
\|v\| \leq \alpha^{\frac{1}{1-q}}\|u\| \leq 1 .
$$

Finally, if condition $\mathrm{ii} i$) holds then the last computations are again valida

Thus, using essentially the same proof as that of Theorem 1 we can prove:

Proposition 11: Let X and Y be nontrivial Banach lattices and

$$
\Phi: x_{+}^{*} \rightarrow X_{+} \text {and } U: Y_{+} \rightarrow Y_{+}^{*}
$$

be power functions, with $\operatorname{Ex}(\Psi)=q$ and $E x(\Phi)=p^{\prime}$, which are Lipschitzian on any set

$$
A_{u}=\left\{u E X_{+}^{\circ} \mid u \geq w \text { and }\|u\| \leq 1\right\}
$$

where $w \in X_{+}^{0}$ and $\|w\| \leq \frac{1}{2}$. Assume they are Lipschitzian on all of X_{+}^{*} and Y_{+}or that $p^{\prime} q>1$. Let $T: X \rightarrow Y$ be a bounded, positive linear transformotion with $\|T\| \leq c$. Then for every $\varepsilon>0$ there exist $\varphi \in X_{+}$and $\psi \in Y_{+}^{*}$ such that
(i) $T \varphi \leq(c+\epsilon) \psi^{-1}(\psi)$
(ii) $T^{*} \psi \leq(c+\epsilon) \Phi^{-1}(\varphi)$
(iii) $\|\varphi\|_{X} \leq 1$ and $\|\psi\|_{Y *} \leq 1$
(iv) $\varphi \neq 0$.

Moreover, if Φ, ψ and T are strictly positive, then $\varphi \in X_{+}^{\circ}$ and $\psi \in Y_{+}^{\circ} *$.

We will now attempt to find some sufficient conditions for Γ_{p} to be Lipschitzian. These will be obtained by computing the Gateaux differential of Γ_{p}. We will need the following:

Lemma 2: If $p_{1}>2$ then

$$
\left\|f p_{1}-2 g\right\| p_{2}^{\prime} \leq\|f\|_{p_{1}}^{p_{1}-2}\|g\|_{p_{1}} .
$$

Proof:

$$
\begin{aligned}
\left\||f|^{p_{1}-2} g\right\|_{p_{1}^{\prime}} & =\left\{\int|f|^{\left(p_{1}-2\right) p_{1}^{\prime}}|g|^{p_{1}^{\prime}} d x\right\}^{\left(1 / p_{1}^{\prime}\right)} \\
& \leq\left\{\left\|f^{p_{1}\left(p_{1}-2\right) /\left(p_{1}-1\right)}\right\|_{\frac{p_{2}-1}{p_{1}-2}}\left\|g^{p_{1}^{\prime}}\right\|_{\left.p_{1}-\right\}^{\prime}}\right\}^{\left(1 / p_{1}^{\prime}\right)} \\
& =\left\{\|f\|_{p_{1}}^{p_{1}\left(p_{1}-2\right) /\left(p_{1}-1\right)}\|q\|_{p_{1}}^{p_{1}^{\prime}}\right\}^{\left(1 / p_{1}{ }^{\prime}\right)}
\end{aligned}
$$

$$
=\|f\|_{p_{1}}^{p_{1}-2}\|g\|_{p_{1} g}
$$

We shall now compute the first gateaux variation of the transformations Γ_{p} and then show that this is in fact a Gateaux differential which is uniformly bounded on appropriate sets. For the remainder of this section, let $P=\left(p_{1}, \ldots, p_{n}\right)$ and for $f \in L^{P}$ let $\Phi(f)=\operatorname{sgn}(f) \Gamma_{P}(|f|)$. For $P>1$ we use e lementary calculus to compute

$$
\begin{align*}
& \partial \Phi(f, h)=\operatorname{sign}(f)|f|_{i=1}^{p_{1}-2} \prod_{i=1}^{n-1}| | f \|_{p_{1}, \ldots, p_{i}}^{p_{1}-p_{1}-1} . \tag{7.4}\\
& {\left[\left(p_{1}-1\right)\left(\prod_{i=1}^{n-1}| | f \|_{p_{1}}, \ldots . p_{1}\right) h+|f|_{i=1}^{n-1}\left(p_{1+1} \cdots p_{1}\right)\left(\prod_{j=1}^{n-1^{\prime}}| | f \|_{p_{1}}, \ldots, p_{i}\right) d f_{i}\right]}
\end{align*}
$$

where the prime on the product sign indicates that i-th factor has been deleted and

$$
\begin{equation*}
d f_{1}=\|f\|_{p_{1}, \ldots, p_{1}}^{1-p_{1}} \iint \cdots \int\left(\Gamma_{p_{1}}, \ldots, p_{1}\right)(|f|) h d \mu_{1}, \ldots, d \mu_{1} \tag{7.5}
\end{equation*}
$$

is the Gateaux differential of the partial norm. All we need to know about df_{i} is that it is 1 inear in h and that $\left|d f_{1}\right| \leq \| h| |_{p_{1}}, \ldots, p_{1}$. However, these facts follow immediately from the formula (7.5).

Lemma 3: If $2<p_{i}<\infty$ for all $i=1,2, \ldots, n$, then

$$
\begin{equation*}
\|\partial \bar{w}(f, h)\|_{p} \leq\|f\|_{p}^{p_{p}-2}\left(p_{1}-1+\left.\sum_{i=1}^{n-1}\right|_{p_{i+i}-p_{i}} \|\right)\|h\|_{p} . \tag{7.7}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& \|\partial(f, h)\| p^{\prime} \\
& \leq\left\|\prod_{i=1}^{n-1}\right\| f \|_{p_{1}, \ldots, p_{1}}^{p_{1}+1-p_{1}-1}\left[\left(p_{1}-1\right)\left(\prod_{i=1}^{n-1}\|f\|_{p_{1}, \ldots, p_{1}}\right)\left\|f p_{1}-2 h\right\|_{p_{1}^{\prime}}+\right. \\
& \left.\left\|f^{p_{1}-1}\right\|_{p_{1}}^{\prime} \sum_{i=1}^{k}\left|p_{i+1}-p_{1}\right|\left(\prod_{j=1}^{n-1},\|f\|_{p_{1}}, \ldots, p_{j}\right)\right]\left|d f_{i}\right| \|\left.\right|_{p_{2}^{\prime}}, \ldots, p_{n}^{\prime} \\
& \leq\left\|\prod_{i=1}^{n-1}\right\| f \|_{p_{1}, \ldots, p_{1}}^{p_{i}+1-p_{1}-1}\left[\left(p_{1}-1\right)\left(\prod_{i=1}^{n-1}\|f\|_{p_{1}, \ldots, p_{1}}\right)\|f\|_{p_{1}}^{p_{1}-2}\|h\|_{p_{1}}+\right. \\
& \left.\|f\|_{p_{1}}^{p_{1}-1 \sum_{i=1}^{n-1} \mid p_{1}+1-p_{1}} \mid\left(\prod_{i=1}^{n-1}| | f \|_{p_{1}}, \ldots, p_{1}\right)\right]\left|d f_{i}\right| \|\left.\right|_{p_{2}^{\prime}, \ldots, p_{1}^{\prime}} \\
& \leq\left\|\prod_{i=2}^{n-1}\right\| f \|_{p_{2}, \ldots, p_{1}}^{p_{1}+\cdots p_{1}-1}\left[\|f\|_{p_{1}}^{p_{2}-2}\left(\left(p_{1}-1\right)+\left|p_{2}-p_{1}\right|\right)\left(\prod_{i=2}^{n-1}\|f\|_{p_{1}, \ldots, p_{1}}\right)\|h\|_{p}\right. \\
& +\|f \cdot\|_{p_{1}} \sum_{i=2}^{n-1}\left|p_{i}+1-p_{1}\right|\left(n_{j=2}^{n-1}| | f \|_{p_{1}}, \ldots, p_{j}\right)\left\|d f_{1} \mid\right\| p_{2}^{\prime}, \ldots, p_{n}^{\prime}
\end{aligned}
$$

now continuing by induction, suppose for some k that $1<k<n$ and $\|\partial \Phi(f, h)\| p^{\prime}$

$$
\leq\left\|\prod_{i=k}^{n-1}\right\| f \|_{p_{3}, \ldots, p_{1}}^{p_{1}+2 p_{1}-1}\left[\|f\|_{p_{2}}^{p_{k}-2} \sum_{i=1}^{k-1}\left(\left(p_{2}-1\right)+\sum_{i=1}^{k}\left|p_{i+1}-p_{1}\right|\right)\left(\prod_{i=k}^{n-1}\|f\|_{p_{1}}, \ldots p_{1}\right)\right.
$$

$$
\left.\|h\|_{p_{1}, \ldots, p_{k}, 2}+\left.\|f\|_{p_{1}, \cdots, p_{k}-1_{i=k}}^{p_{k}-1}\right|_{p_{1}+1}-p_{1}\left|\left(\sum_{j=k}^{n-1}\|f\|_{p_{1}, \ldots, p_{j}}\right)\right| d f_{1} \mid\right] \|_{p_{k}^{\prime}, \ldots, p_{n}^{\prime}}
$$

Then

$$
\begin{aligned}
& \|\partial \Phi(f, h)\| \|^{\prime} \\
& \leq\left\|\prod_{i=k}^{n-1}\right\| f \|\left.\right|_{p_{1}, \ldots, p_{1}} ^{p_{1}+2-p_{1}-1}\left[\left(\left(p_{1}-1\right)+\sum_{i=1}^{k-1}\left|p_{i+1}-p_{1}\right|\right)\left(\prod_{i=k}^{n-1}\|f\|_{p_{1}, \ldots, p_{1}}\right) .\right. \\
& \left\|\|f\|_{p_{1}, \ldots, p_{k}-1}^{P_{k}-2}\left|h\left\|_{p_{1}}, \ldots, p_{k-1}\right\|\right|_{p_{k}}^{\prime}+\right\|\|f\|_{p_{1}}^{p_{k}-1}, \ldots, p_{k-1} \| \dot{p}_{k}^{\prime} \\
& \left.\sum_{i=k}^{n-1}\left|p_{1+1}-p_{i}\right|\left(\prod_{i=k}^{n-1}| | f| |_{p_{1}}, \ldots, p_{j}\right)\left|d f_{i}\right|\right]\left|\left.\right|_{p_{k}+1} ^{\prime}, \ldots, p_{n}^{\prime}\right. \\
& \leq\left\|\prod_{i=k}^{n-1}\right\| f \|_{p_{1}, \ldots, p_{1}}^{p_{1}+1-p_{1}-1}\left[\left(\left(p_{2}-1\right)+\sum_{i=1}^{k-1}\left|p_{1+1} \cdots p_{1}\right|\right)\left(\prod_{i=k}^{n-1}\|f\|_{p_{1}}, \ldots, p_{1}\right) .\right. \\
& \left.\|f\|_{p_{1}, \ldots, p_{k}}^{P_{k}-2}\|f\|\right|_{p_{1}, \ldots, p_{k}}+\|f\|_{p_{1}, \ldots, p_{k}-2}^{p_{k}-1} \\
& \left.\sum_{i=k}^{n-1}\left|p_{1}+1-p_{1}\right|\left(\prod_{j=k}^{n-1}| | f \|_{p_{1}}, \ldots, p_{j}\right)\left|d f_{1}\right|\right]\left|\left.\right|_{p_{k}^{\prime}+1}, \ldots, p_{n}^{\prime}\right. \\
& \leq\left\|\prod_{i=i=1}^{n-1}\right\| f \|_{p_{1}, \ldots, p_{1}}^{p_{1}+1-p_{1}-1}\left[\left(\left(p_{2}-1\right)+\sum_{i=1}^{k}\left|p_{1}+1-p_{1}\right|\right)_{i=k+1}^{n-1}\|f\|_{p_{1}, \ldots, p_{1}}\right.
\end{aligned}
$$

Thus inequality (7.7) follows by induction ending with $k+1=n_{l}$

Now clearly $\partial \bar{\Phi}(f, h)$ is well defined, l linear and continuous in h. Moreover, we can show:

Proposition 12: |f $2<\left(p_{1}, \ldots, p_{n}\right)<\infty$, then $\partial \bar{\Phi}(f, h)$ is the Gateaux differential of Φ.

Proof: For some fixed $f, h \in L^{P}$ consider

$$
\begin{aligned}
\Delta(\alpha) & =\frac{1}{\alpha}[\Phi(f+\alpha h)-\Phi(f)-\partial \Phi(f, \alpha h)] \\
& =\frac{1}{\alpha}[\Phi(\tilde{T}+\alpha h)-\ddot{(}(f)]-\partial \Phi(f, h)
\end{aligned}
$$

for α real. By the definition of $\partial \Phi(f, h)$ (see equation 7.5) we see that

$$
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}[\Phi(f+\alpha h)(x)-\Phi(f)(x)]=\partial \Phi(f, h)(x) \text { a.e. }
$$

so $\Delta(\alpha) \rightarrow 0$ a.e. If we restrict $|\alpha| \leq 1$ then by the mean value theorem,

$$
\begin{aligned}
\frac{1}{\alpha}[\Phi(f+\alpha h)(x)-\Phi(f)(x)] & \leq \partial \Phi\left(f, \alpha^{*} h\right) \\
& \leq \alpha^{*} \partial \Phi(f, h) \\
& \leq \partial \Phi(f, h)
\end{aligned}
$$

where $\left|\alpha^{*}\right| \leq|\alpha| \leq 1$ for almost every x. Hence by the Lebesgue Dominated Convergence theorem $[4, p .302]$ we have $\|\Delta(\alpha)\|_{p} \rightarrow 0$ proving that $\partial \bar{\Phi}(f, h)$ is the Gateaux differential of Φ

Proposition 13: Let $X=L^{P}$ where $P=\left(p_{1}, \ldots, p_{n}\right)>2$, and $w \mathcal{K}_{+}^{\circ}$ such that $\|w\|_{p} \leq \frac{1}{2}$. Then the function

$$
\Phi(f)=\Gamma_{P}(f)
$$

is defined and Lipschitzian on

$$
A_{w}=\left\{u \in X_{+}^{0} \mid u \geq w \text { and }\|u\|_{p} \leq 1\right\}
$$

Proof: This follows immediately since Φ has a uniformly bounded Gateaux differntial. See Kantorovich and Akilov [12, p. 660]. A

Thus, we see that Proposition 11 can be applied to prove a theorem similar to Theoren 4 if $P>2$ and $Q^{\prime}>2$ regardless of the ordering within P and Q.

CHAPTER EIGHT

REDUCING THE NUMBER OF VARIABLES

Applying the methods used in theorems 2 and 5 and using the lomes preceding those theorems, we can prove the following theorem about reducing the number of variables.

Theorem 8: Let $p(1), p(2), Q(1)$ and $Q^{(2)}$ be multi-indices for the variables $x^{(1)}, x^{(2)}, y^{(1)}$ and $y^{(2)}$. Suppose $K\left(x^{(1)}, x^{(2)}, y^{(1)}, y^{(2)}\right) \geq 0$ a.e., $r R_{t}^{1}, 1<p(2), Q^{(2)}<\infty ;$ $1<Q^{(1)} \leq r \leq P^{(1)}<\infty$ and that $K_{2}\left(x^{\left.(2), y^{(2)}\right) \geq 0 \text { a.e. }}\right.$ defines a bounded integral transformation $K_{2}: L^{P^{(2)}} \rightarrow$ $L^{Q^{(2)}}$ with $c=\left\|K_{2}\right\| \cdot 1 /$ there exist functions $\left.p\left(x^{(1)}, x^{(2)}, y^{(2)}\right), 4 x^{(1)}, x^{(2)}, y^{(2)}\right), \forall\left(y^{(1)}, x^{(2)}, y^{(2)}\right)$ and $w_{1}\left(y^{(1)}, x^{(2)}, y^{(2)}\right)$ ail positive almost everywhere, satisfying
(i) $\int K_{p o x}^{(1)} \leq K_{2}{ }_{3}$
(ii) $\int k \operatorname{lig}^{(1)} \leq \pi_{e} \varphi_{1}$
(iii) $\left\|\left\|_{1}^{\frac{1}{r}, \cdots}\right\|_{y_{(}^{a(1)}}^{\left.(1)^{\prime}\right)}\right) \leq 1$
(iv) $\left.\left\|\varphi_{2} \varphi^{\frac{1}{r}-\frac{1}{r}}\right\|_{e_{x}^{a(p}}^{(1)}, r\right), 1$
then $K: L^{(1)}, p^{(2)} \cdots L^{(1)}, Q^{(2)}$ is bounded with

$$
\begin{aligned}
& \|K\| \leq Q_{0} \text { Moreover if } \psi_{1}=\Gamma_{Q}(1)^{\prime}(v) \text { and } \\
& \varphi_{1}=\Gamma_{P}(1)(\varphi) \text { : then we can replace conditions (iii) } \\
& \text { and }(i v) \text { by } \\
& \quad \text { (v) } P(1)=Q^{(1)} \text { or both }\|\varphi\|_{P(1)} \leq 1 \\
& \text { and }\|\psi\|_{Q}(1)^{\prime} \leq 1 .
\end{aligned}
$$

Proof: Let $f \in L_{+}^{(1)}, P^{(2)}$ and $g \in Q_{+}^{(1)}, Q^{(2)}$. Define

$$
\begin{aligned}
& F=k^{1 / P_{1}(1)} \psi^{1 / P_{1}(1)} \varphi_{1}^{-1 / P_{2}}{ }_{f} \\
& G=k^{1 / q_{1}}{ }_{\varphi^{(1)^{\prime}}}^{1 / q_{2}}{ }_{\psi_{1}}^{(1)^{\prime}}-1 / q_{1}(1)^{\prime} 9 \\
& R_{a}=(K)^{\left(1 / a_{1}\right.}(i)-\frac{1}{q_{1}}, /_{4_{1}}(1)^{\prime}+\frac{1}{r}
\end{aligned}
$$

Then as in theorem 2 we have

$$
\begin{aligned}
J & =\iiint \int K f\left(x^{(1)}, x^{(2)}\right) g\left(y^{(1)}, y^{(2)}\right) d x^{(1)} d x^{(2)} d y^{(1)} d y^{(2)} \\
& =\iiint \int F_{2} R_{2} F G d x^{(1)} d y^{(1)} d x^{(2)} d y^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \iint\left\|R_{1}\right\| \underset{\left.\left(\underset{x^{\left(q_{1}\right.}(1)^{\prime}}{ }, r^{\prime}\right), \underset{y^{(1)}}{ }, \mathrm{r}^{\left.(1)^{\prime}\right)}\right)}{ } \\
& \left.\left.-\left\|R_{z}\right\| \frac{a\left(P_{y}(1)\right.}{(1)}, r\right), \quad a\left(p^{(1)}, r\right)\right) \\
& \cdot\|G\|_{\left(\underset{x}{q_{1}}(1)^{\prime}, Q_{y}^{(1)^{\prime}}\right)} \\
& \left.-\|F\|_{f_{1}}^{(1)}, \frac{p(1)}{x}\right) d x^{(2)} d y^{(2)} \\
& =\iint J_{1} \cdot J_{2} \cdot J_{3} \cdot J_{4} d x^{(2)} d{ }^{(2)}
\end{aligned}
$$

where

$$
\begin{aligned}
& \leq K_{z}^{1 /\left(a\left(q_{1}(1)^{\prime}, r^{\prime}\right)\right)}\left\|\psi^{\frac{1}{r}}, \psi^{\frac{1}{r}}\right\|_{\left(a\left(Q_{y}^{(1)^{\prime}}\right)\right.}^{\left.\left.(1)^{\prime}\right)\right)}
\end{aligned}
$$

and similarly

$$
\left.J_{z} \leq k_{z}^{1 /\left(a\left(p_{1}^{(1)}, r\right)\right.}| | \varphi_{1}^{\frac{1}{r}} \varphi^{-\frac{1}{r}} \|_{\left(x^{(1)}\right.},{ }^{(1)}, r\right)
$$

while

$$
\begin{aligned}
& \left.J_{3}=\left\|\left[\left(\int K \varphi d x{ }^{(1)}\right) / L_{i}\right]^{1 / q_{2}(1)^{\prime}} g\right\| Q_{y}(1)^{\prime}\right) \\
& \leq k_{2}^{1 / q_{1}(1)^{\prime}}| | g \|_{\left(\underset{y}{Q}(1)^{\prime}\right)}
\end{aligned}
$$

and similarly

$$
J_{4} \leq k_{z}^{1 / p_{1}(1)}\|f\|_{\left(p_{x}^{p}(1)\right)}^{(1)}
$$

Hence

$$
\begin{aligned}
J \leq & \iint K_{2}\left\|\psi_{1}^{\frac{1}{r}} \psi^{-\frac{1}{r}}\right\|_{a\left(e_{1}^{(1)^{\prime}}, r^{\prime}\right)} \\
& \left.\left\|\varphi_{1}^{\frac{1}{r}} \varphi^{-\frac{1}{r}}\right\|_{a\left(p^{(1)}\right.}, r\right) \cdot\left\|\|_{Q}(1)^{\prime}\right. \\
& \|f\|_{p}(1)^{d x}{ }^{(2)}{ }_{d y}(2)
\end{aligned}
$$

Thus, if conditions (iii) and (iv) hold, then

$$
\begin{aligned}
& J \leq \iint K_{2}\|g\|_{Q}(1) \cdot\|f\|_{p}(1)^{d x}{ }^{(2)} \mathrm{dy} \\
& \\
&(2) \\
& \leq c\|f\|_{p(1)}, p(2)\|q\|_{Q}(1)^{\prime}, Q^{(2)}
\end{aligned}
$$

so $K: L^{(1)}, P^{(2)} \rightarrow L^{(1)}, Q^{(2)}$ is bounded with $\|k\| \leq c$.

$$
\text { Let } \psi_{1}=\Gamma_{Q}(1) \cdot(\psi) \text { and } \varphi_{1}=\Gamma_{P}(1)(\varphi) \text {. Then by lemma } 1 \text { to }
$$

theorem 5 we have

$$
\begin{gathered}
J \leq \iint k_{2}\|\psi\|_{Q}(1)^{\prime}{ }_{m}^{\left.(1)^{\prime}-r^{\prime}\right) / r^{\prime} \quad\|\varphi\|_{p}\left(p_{n}^{(1)}(1)^{-r}\right) / r} \\
\|f\|_{p(1)}\|q\|_{Q}(1)^{d x}(2) d y^{(2)} \\
\leq c\|f\|_{p}(1)_{, p}(2)\|g\|_{Q}(1)_{, Q}^{\prime}(2)^{\prime} \\
\text { if } q_{m}^{(1)}(1)=r= \\
p_{n}^{(1)}(1) \text { or both }\|\varphi\|_{p(1)} \leq 1 \text { and }\|w\|_{Q}(1) \leq 1 .
\end{gathered}
$$

Thus, if condition (v) holds then our conclusion follows without checking (iii) and (iv)

Remark 1: In theorem 8 if $\mathrm{p}^{(1)}=(\alpha, \alpha, \ldots, \alpha)$ then setting $\mathrm{r}=\alpha$ we can replace condition (v) by only $\left\|\left\|\|_{Q}(1)^{\prime} \leq 1\right.\right.$. similarity if $Q^{(1)}=(\alpha, \alpha, \ldots, \alpha)$ then we only need $\|\varphi\|_{p}(1) \leq 1$.

Remark 2: Theorem 5 is essentially a corollary of theorem 8 if we think of a constant c as an integral transformation from R^{1} into R^{\prime} where $c(\alpha)=c \cdot \alpha$ for all $\alpha \in R^{1}$.

Theorem 8 allows us to reduce the problem of whether $K: L^{P} \rightarrow L^{Q}$ is bounded to a similar problem with less variables. As examples, we have the following:

Corollary 1: Let $P=\left(p_{1}, \ldots, p_{n}\right)$ and $Q=\left(q_{1}, \ldots, q_{n}\right)$ be multiindices of the same length. Suppose $i<q_{1} \leq p_{1}<\infty$ for $i=1, \ldots, n$ and $K(x, y) \geq 0$ a.e. is a measurable function. Let $K_{n+1} \in(0, \infty)$ be a real constant. If there exist functions
$K_{1}\left(x_{1}, \ldots, x_{11}, y_{1}, \ldots, y_{n}\right) \geq 0$ a.e.,
$\varphi_{1}\left(x_{1}, \ldots, x_{n}, y_{1+1}, \ldots, y_{1}\right)>0$ a.e., and
$\psi_{1}\left(x_{i+1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)>0$ a.e. for $i=1, \ldots, n$ with $k_{1}=K$ and satisfying
(i) $\int K_{1} \varphi_{1} d x_{i} \leq k_{1+1} \psi_{1} q_{1}^{\prime \cdots 1}$
(ii) $\int K_{I} 1_{1} d y_{1} \leq K_{1+1} \varphi_{1} p_{1}-1$

$$
\text { (iii) } \quad q_{1}=p_{1} \text { or }\left\|\varphi_{1}\right\|_{p_{1}} \leq 1 \text { or }\left\|\left\|_{1}\right\|_{\mathrm{C}_{2}} \leq 1\right.
$$

for all $i=1, \ldots, n$. Then $K_{1}: L^{p_{1}}, \ldots, p_{n} \rightarrow L^{q_{1}}, \ldots, q_{A}$
is bounded with $\left\|K_{1}\right\| \leq K_{n+2}$. In particular
$K: L^{P} \rightarrow L^{Q}$ is bounded with $\|K\| \leq K_{n+2}$.

Berat 2: Note if $P=Q$ then condition (iii) is automatically satisfied. If $i=n$ then $p_{i}\left(x_{i}, \ldots, x_{n}, y_{1}, \ldots, \ldots, y_{n}\right)=0\left(x_{n}\right)$ and similarly for W_{1}.

Corollary 2: Suppose $1<q \leq p_{1}<\infty$ and $p_{2} \in(1, \infty)$, and $K\left(x_{1}, x_{2}, y\right)$
≥ 0 are. If there exist functions $k_{2}\left(x_{2}\right) \in_{+}^{p_{2}^{\prime}}$,
$\varphi\left(x_{1}, x_{2}\right)>0$ a.e. and $\psi\left(x_{2}, y\right)>0$ are. satisfying
(i) $\int K \varphi d x_{1} \leq K_{2}\left(x_{2}\right) \psi^{q^{\prime}-1}$
(ii) $\int k_{\psi} d y \leq K_{2}\left(x_{2}\right) \varphi^{p_{1}-1}$
(iii) $r_{1}=q$ or $\|\varphi\|_{\left(x_{1}\right)} \leq 1$ or $\|\psi\|_{\left(q_{y}^{\prime}\right)} \leq 1$

Then $K: L^{P_{1}, P_{2}} \rightarrow L^{q}$ is bounded with $\|K\| \leq\left\|K_{2}\right\|_{P_{2}}$.

Corollary 3: Let P and Q be multi-indices. Assume $1<P, Q<\infty, q_{2} \leq p_{1}$, $K(x, y) \geq 0$ a.e., and $K_{e}\left(x_{2}, x_{3}, \ldots, x_{n}, y_{2}, y_{3}, \ldots, y_{4}\right) \geq 0$ a.e. defines a bounded integral transformation $K_{2}: L^{P_{2}}, \ldots, P_{n}$ $\rightarrow L_{2}, \ldots, q_{1}$ with $\left\|k_{2}\right\|=c$. If for every $K_{\varepsilon} \in L_{+}^{P_{2}}, \ldots, P_{n}, q_{z}^{\prime}, \ldots, q_{m}^{\prime}$ such that: $K_{\epsilon}>0$ a.e. there exist functions $\varphi\left(x, y_{2}, \ldots, y_{m}\right)>0$ ae., and $\psi\left(x_{2}, \ldots, x_{5}, y\right)$ $=0$ are. satisfying
(i) $\int k \varphi d x_{2} \leq\left(k_{2}+k_{\epsilon}\right) \psi^{q^{-1}}$
(ii) $\int K_{\psi} d y_{2} \leq\left(K_{2}+K_{\epsilon}\right) \varphi^{p_{1}-1}$
(iii) $P_{1}=q_{1}$ or $\|\varphi\|_{P_{1}} \leq 1$ or $\left\|\|_{G_{2}} \leq 1\right.$ then $K: L^{P} \rightarrow L^{Q}$ is bounded with $\|K\| \leq c$.

