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CHAPTER OMNE

INTRODUCTION

Ltet (A,n,1) and (B,#A,Vv) be two totally o-finite measure
spaces, M and N the linear spaces of real valued functions which
are measurable and finite a.e. on A and B respectively, with the
metric topology of convergence in measure on all subsets of finite
meaéure,and K{x,y) a real valued measurable function on the product
space A x Bi We define the integral transformaticn with kernel

K(x,y) by
(LD KW = [Keay) Pl ()

for f€M if the integral on the right:exiéts and is finite for a.e.
y€B. The linear subspace of all such f&M is czalled the domain of
K and denoted by D(K). The linear transformation K* is the integral

transformation defined by

e

iy = KiY)

I XCM and YON we write K:X = Y whenever X D(K) and for
all fQLK(f)eY. |If XCM and YCON are given Banach spaces with
no s li l!x.and ll i!y respectively we can ask if K is continuous
as a function defined on X with range in Y. In particular we

say that "KiX = Y i5 bounded with lel\g e if and onl? if

1 ]
(1.2) Pl -
Ty O <c
| Et} 4 i.\f

for all uC{ such that 1}u!%x # 0. The case of interest is when

..]._‘
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Pen KXY amslies

X,Y are continuously contained in M and N.

K is continous (See [27). Thus, the quesiion of cortinuity of K

reduces to the following: Given X,Y, find conaitions on K in

i

order that K:X = Y. Many authors have investiaa
‘properties of integral transforms. #or exemple, sze (2,3.4,7,8,9,

10 and 127, . Ong set of investigations led to the following two

Bgﬁglg‘l; (N» Aronszajn) Let 1< qlp < ©, 0<c<
(/7py + (1/p) = (l/q')l+ (17q) = 1 and K(x;y)g.O a.e.
be,ﬁeasuraole on A x B. If for every reaf e>0.there
exist measurable functions @(x) > 0 and §(y) > 0 and
finite a.e. such that

() (Ke) (y) & (ere) (413)) 9 /9
(1) (€50) (0 € (ere) (0())P/P

(iii) p =g or f{K(x,y)w(x)¢(y)dxdy < Ghe
D $34
then
is bounded with

Lkl < e

A converse of the zbove is given by the following.

(E. Gagliardo) let 1< p<+.0, 1< q<+ =

T
P
o

v
o
~

In

{
i
=

1 and K(x,y) > 0 ..

i

(1/p")+(1/p) = (1/q")+(1/q)
be measurable on A x B. |[f K:lP = 19 s boundad

. P, ' .
with g}h\l < ¢, then for every real £ > 0 there exist

) '
functions wELf, $€Lq , @0 > 0 a.e. such that



() (k) () < (ore) (5T /9
(i) (K9 (x) < (ce) (0(x) /P

(i) Hollp < 1 and |lyllq” <0

Remark: Coﬁditions (i),,(ii)’and‘(iii) in Résult 2‘imply‘cahditibn
(iii) of‘Resujt j.’ Thus, for g < p, vie havg nécéssary and suf%%éent
conditions‘for‘the baundedness of an integral transformation with a
positive kernel.

in this paper, we will be concerned with extensions of
Results 1 and 2 to the spaces LP aﬁd‘LQ of funct%ons of several
variables with mixed norms defined for the mu}ti"indicesAP =
(Prsecvrspn) @nd Q = (qyyeee;qy) by épplyingusucééssively the p,
or qg norm to the variable x; or yy. lCofréspoﬁdng to Results 1
and 2 we have Theorems 5 and 4 respectively. These theorems bn&y
form exact converses whén’p; 22p1+1 for i:l,...,h and q; < gyt
for jzl,...,ﬁ. An open questioh, which is discussed toward the
end of thfs paper, concerns the strengtheniné of Theorem & to give
a converse of Theorem 5 without this restriction.

0f particular interest Qould be the generalization of these
results to ordered Banach spaces or to BanachkFunction Spaces,féé
defined by Luxemburg and Zaanen [14], using duality mappings and
stating the restriction q < p in terms of these mappings. Theorem

1 indicates that Result 2 above can be generalized to these settings.



CHAPTER TWO

MAPPINGS BETWEEN ORDERED BANACH SPACES

Most of the terminology and basic resuits needed in this
paper are available in»[lB,lhj.
N An ordered Banach space X is a Banach space with a iinear
partiél ordering. [If X is an ordered Banach space, then we define

Xy = {u\u > 0} and postulate that. for u, veX,,
(z.1) u< v implies ||ul} < |v]].

We will callen ordered Banach space X # {0} an Mé ordered
Banach spﬂca'if X satisfies the followiﬁg monotone convergence
principle: ’$or every increasing sequence {uy} C X4. such ﬁhat
]{unll < o tor all n énd‘scme'a > 0 there existsbuEX+ stich that

up = Ue

Lét (A,4,11) be a totally o-finite measure space and let M
denote the linear space'of all measurable functions on A and

define an order relation < as follows. For f, g€l

(2.2) f< g iff f(x) < g(x) a.e.
and

Define Ri\: R} Ul+ =} to be the extended positive half axis.
Fqllowing Luxemburg and Zaanen [14 g 2p. 138 and g 3p. 18] a
fuﬁction psMy-RL is called function norm if and only if
(1) p(f) = 0 if and only if f=0 a.e.
(i1) plof)=ap(f) for all fan, and‘aﬁai
(i1i) p(f+g) < p(f) + p(g) for all f,géM,

(iv) if f,geM, and f < g then p(f) < p(g).

e



For f&M define p(f) = p(!fl).

If for a function norm p, we let
(2.3) Lo = {uénip(u) <=}

then L. is a normed linear space with norm p and a lirear partiai

Y
ordering defined by (2.2). [If f,,f&,, then we say T ¢f if and
only if f,(x)% f(x) a.e. A function norm p is said tc have the

Fatou property if for f,,f@4,,
(2.4 f4f implies p(f )% p(F).

it can be shown [14 g 3 p. 149] that if p satisfies the Fatou
property, then Lp is complete and hence an ordered Banach space.
We say that a function norm p is smocth if and only if for

o, Felp

(2.5) fo(x) = f(x) a.e. and p(f,) - o(f),
implies p(f,~f) - 0.

Llet p be a smooth function norm with the Fatou property and
fo@M, be such that f_ ., > f, and p(f,) < a;"Then there exists
f&M such that f,ff so by the Fatou property p(f,) - p(f) and
p(f). < @. But p is smooth so p(fy~f) = 0 and hence f, - f. Thus,
if pis a smooth function norm séfisfying the Fatou prqperty,‘then

.Lp is an Mc ordered Banach space. |

Let X be an ordered Banach space; then for u, v€X let w =

uVy ff and only if Q <w, 9 < wandw < wy whenever u < w

and v < w,. A Banach lattice is an ordered Banach space X in which



u Vv exists and is unique for any u, yGX, We are moreover assuming
_ that if,‘ulg ]V‘, ‘then llu}l < l[v||. in a Banach lattice we can
define u A v = ~[(~u)V(~v) ], ut = u Vo, u = (~u)Vo, and [ul =

ut +'u" for any u, v&X. We note that‘u ; ut ~ u” . Banach functfon
spaces are examplés of Banach lattices. If Xy is the positive cone
of a Bahach lattice X, then we will define the lattice interior of

A4 as
(2.6) Xi = {uet,| for all vex, if u Av =0 then v = 0}.

Note that X§ U {0} is @ cone and if L, is a Banach function space,

p
then feLg+ if and only if f(x) > 0 a.e. A Banach lattice X will
he called non-trivial if there exists u€Xs such that.l‘u“ > 0.

If X is a Banach lattice, then the dual space X* is also a

Banach lattice with
(2.7) u* < V¥ if and only if u¥(w) < v¥(w) for all WX,

since we can easily show that if u® < v¥ then l\u*ll < | V¥ for

u”, V*EXf = {w|w® > 0} and (U W) (w) = sup{u™(wy) + v*(wz)lwi,wgex+

and'w = wy, + vz} for all weX, . See Kelley and Namioka (13 p. 2327.
Let X and Y be Ordered'Banach spaces. Then é linear partialb

ordering <in X ¥ Y is defined by the positive cone.

‘(2.8) (X % Y)+ = {(u,v)€X x Y‘uGX+ and ve&y,}.

A norm for X x Y can be chosen in many ways. - For example,
(2.9) ‘l(u,V)l‘ = max{||u]], |Iv]]]

or for 1 L p< e



o) Nl = QP+ []PYP

With either of these norms X = Y is an,ordered‘Banach space. More=
over, if X and Y are Banach lattices, then X z Y is a Sanach lattice.
'We will now introduce some t§rmin0109y concerning mappings

(in general non-linear) between ordered Banach spaceﬁ.
Let X and Y be Qrdered Banach §paces and ‘let @ be.a funthon
defined on D(§) C X into Y. Then g |
(i) ¢ is positiVe if and only if (XD (2))C Yy
(ii) % is non-decreasing if and only if 0 <u<v
| {mplies (u) < &(v)
(iii) @ is stable if and only if X, cD(%), & is

positive, non-decreasing, continuous and

'(2.11) '||ul|x < implies He |1y <1

if X and Y are Banach lattices we haye
~ (iv) @ is strictly positive if and only if.
& (X300 (3))< Y5
(v) & is'strictly stable if and only if X3 € D(3),
$ is strictly positive, non~decreasin3, éontinuous
and satisfies (2.11).
Finally,
(vi) @& is a power function if and only if & is
poéitive, continuous and satisfies (2.11) with

(0) = 0, and in addition,



(2“12) | &(au) = €(c)&(u) for all «€R} and u€D(3)

defines a function @:Ri - Ri independent of u, suﬁh that é is
non~decreasing and not constant. .

‘We notice if @ is a power fqnction,»then g.is both stable
and. a power function. .MOFCOVGF, % is a continuous, multiplicative
homomorphism of R} into itself with @(i) = 1, Hén;e, there exists-

a real number p > 0 such that g(d) = oP for all «€l0,») and we
wi}l define Ex(@) = p. Finally, if & is a 1-1 power function oﬁto
Y;, then &' is defined and ng = l/g satisfies cohdition‘(Z.IZ)
although &% may not be a'powerkfunction.

We will now consider two ekampies.

Example 1: Let X, Y be ordered Banach sbaces and K:X - Y a bounded
positive linear transformation with llK]] < . Then (1/o)K is stable
and a power function with gK(B) = B for all BE[0,®) so Ex(éK) = 1.
Examp]e'g: Let (A,4,1) be a c—finite.measure space, p,qé[l,+m).

for fELﬁ define 3(f(x)) = f(x)p/q for all X€. It is easily verified
that & is a stable function and in fact a power function with
Ex(@)‘=Ap/q._ Thus, we see that stable and power functions do not
have to be linear and Ex(2) may assume any positive value.

An analogue of the function @’in Example 2 for LP spaces
vhere P is a multi-index will be important‘in the study of integral
transformations between these spaces as carried out in the sequel.

Note that if ¢ is a real number, 0 < o < 1, then o? is stable

whenever & is stable and o® is a power function whenever @ is a

power function. Moreover, if > 0, B> 0, o + B< 1| and & and ¥



‘are stable fuhctigns with tﬁe same domains and into.a common range,
then @ + B¢ is a stable function.

One can verify immediately the‘fol]owing..

Proposition 1: et X,Y and Z be orderedABanach spaces, #:X, - Y

and Y:vy - 2z |

‘(i)’ if @ and ¥ are (strictly) stable functions,
then Woézx+ -7 is a (strictly) stgblé\function,

(ii) if & and Y are poﬁe;'functioﬁs, then Yo is
a powef functien; @?b = @°$ and Ex(Yed) =
Ex(@)'Ex(@). |

(iviy if @;X+xY+ ~ 7 is a stab]e (power) fuhction’
and i, = Xy x Yy is the natural injéctfon,
then §ol:X, — Z is a‘stable function (power
functionbwith Ex(®el) = Ex(®) ).

Thus, we see that compositions and restfictions of stable
and power functions give functfons of the same type. ‘The norm on
X = Y can be calculated by‘either equation (2.6) or (2e10) in‘the
‘ébove proposition. This norm can also be used in the following
propoSTtion;jwhich gives some examples of how fo construct stébIe'
éﬁd power functions on product spaces from such functions on fﬁe
original spaces.

B

Proposition 2: Let Xy, Xz, Y, and Y, be ordered Banach spaces,

X

1

Xy % Xp, Y= Y1 % Ya, &;:X4 - Yy and

&yt Xoy — Yoo | |

(i) if %, and &, are (strictly) stabie functiéns,
then |

(2.13) Uy (up,up) = 5(8y (u), 8, (uz))



0.

 'defines a (strictly) stable function lexﬁﬁY. 
‘ Moreover, if Y, = Yy, then
(215 Yo(up,up) = 308 (uy) + 25(up))
‘defines a (strictly) stable function Va1 X4mYy
(ii) 1f & and &, are power functions, then for

u = (ul,ug)EX+ we define

,(2*15) l*'l (v) = %é\l"gz(uui b (8, (Ul/\ ‘UH)’ é’z(uz/H“H) )

if [Jull #0and ¥ (u) =0 if |Jull=0. 11
Ex(®;) = 1 and Ex(%;) > 1, then ¥, is a power

function with a range in Y. Moreover, if Y; = Y,,

(2.16) We(u) = %@;oga(‘lul‘)(él(ul/\‘u‘l) + ée(uz/‘\u\l) )

with Y, (v) = 0 if l]ul[ = 0 is a power function

with range in Yy.

Proof: '(i)_ If & and §, are (strictly) stable functions, then
¥, and Y, are clearly continuous, (strictly) positive and non-
decreasing. ||y (uy,up) IS B (& (W) Vel lea(ua) [lyon iF
“(ul,uz)ll < 1, then llulll < 1 and “u2|r < 1 and hence ‘lél(ui)ltg 1
and l‘éz(ug)l] < 1 and thus ||, (uy;0.) | < 1. Therefore, ¥, is a
(strictly) stable function and so is Y, by a similar argument.

(ii) Let & and &, be power functions. Then clearly
¥, and Y, defined by (2.15) and (2.16) ére positivé or strictly
positive and continuou§ except possibly at 0. Moreover,‘ml(O) = 0,
¥, (0) = 0, and G& and @é are well defined, non-constant and non-

. . A N . - ; .
decreasing since ¢, and ¢, satisfy these conditions. To verify

condition (2.11) for ¥, consider‘u.—-(ul,ug)@(+ with |{u]] < 1.



1.

Then, 0 < élo£;<|]u[;) < 1 since g} and @; are stable funétioﬁs

nd 1108 i/l D 2 /e | D) 1] < e G Ll DT

o (oLl DI < 1w 1= 2 since [ /]lol D} < 1 and

l}(ug/i[ull)][ < 1. Therefore, |[¥y(u)]] < 1. By a similar

argunent Y, also satisfies condition (2.11). Thus, both Y, and

Y, are p functions if they are continuous at 0. But this follows

from the assumption that Ex(3;) = p> 1 and Ex(@é) - 2> 1 since
by = 3o PO e (), |90 D, (ug) “

and |

Vo = 3(0lul 1P ey () + 110} 190 e, (),

In a paper by Gagliardo [9 p. 4317 we find the following:
Lemma 1: Let X be an M ordered Banach space and &:X, = X be a
stable function. Then for every 6 > 0 there exists
u€X, such that
Hull <1, uz0, u#o0
and
(1 + 6)u > 3(u). |
| Proof: Choose uy€X, such that Ql # 0 and ||u, || € (871486)).
Define un€X+'for n=2,3..., by
| u, = uy + (1/(01+8))8(uy.y)
By induction l[u“]l S 1 oand uyyy 2 Uy fér n =‘l,2,3,..., . Thus,
there exists u€X, such that u, — u and |[u|| <1 by the monotoﬁe
convergence (Mc) propefty of X. By continuity u = u; + (1/(1+8))&(u).
Hence u # 0 and (l+6)u = &(u) = (1+8)uy > O |
The following theorem is related to a result Qf Gagliardo

[9 p. 4307 but has a more general setting.



Theorem 1: Let Xy X2, X3 and X;'be‘ordered Banach spaces

and suppose X, is an Mc ordered Banach space.

Let &15: X1 = Xz @aai¥ay = Xay %gai%ay 7 Xy
and 9,4 1%, - X and suppose &, and b,5 are
1-1 stable functions and for some numbers
@> 0and B> 0 we have (1/0)&5 and (1/B)%
are stable functions. Then for each number
e > 0 there ex‘ists Py €X3 4. and @3 Xg  such

that

(i) 8y,(01) < (o + )83 ()
(i1) a4 (@s) < (B + €) &3 (1)

(i) ety <0 Heally <1

¢, # 0.
41 .
X1+ o Xg-{-
A
78 &2
Xg 4% X5+
9

Proof: Let 8 0 be such that B(1+8)° < B + e. For u€¥,

e

define §(u) = (1/B) 254 (%2 ((1/(0e)) 21208, ((1/ (1)) u) 1))

12«



13.

Note that €:X,.,. — X is a stable function so by Lemna 1, there

exists uéX;+ such that l!“ilx, <1, u# 0and

.

/B as (0 (017 (@r2)) 3,085 ((1/(146))0) ) S (148)u-

Let ¢y = 2., ((1/(1+0))u) and @5 = 855 ((1/(@re)) 0ynpy ). Note

that Hcpﬂ!xl < 1 since H(?/(IM))QH@ <1

and _
 Heallg < 7 sinee I|(1/<d~f'e))512¢illx2 <1
Now ' ' :
&) = (@ + ) %h(gs)
and

a0 (93) < B(1 + 8)u
<8l + 971 (m)
S B+ €)%l ()
ana fina]iy |

@, # 0 since &, is 1-1 and u # 0 " \

0f more special interest in the sequel is the following
immediate

Corollary: tLlet X and Y be Banach lattices and X* (which together

A

with Y* are hence Banacﬁ lattices) satisfy‘the mohotone
convergence princip)gi Let @:Xj — X and W:Y+~Y* bg 1-1
stable functions and T:X-Y be a bounded, positive \}near
transformation such that ||T!|5 o. Then for every real
e>0 there exists @€X, and wEYj such that

(i) Tl < (ore)i™ (v)

(1) T < (e+e)™ (o)



(iii) ﬂ\}@{

In a manner different than that of Aronszajn and Szeptycki

S llllst o G

¢ # 0.

14,

[2 p. 143], we will now generalize a theorem of $. Banach (3 p.87]

(concerning the continuity of integral transformationd to positive

transTormations between Banach lattices.

Theorem 2:  Let X be a Banach lattice such that for any sequence

s e s

uy €X4 such that 0»5 Uy S:ﬁn+1 and {!un[l S o for

ali n=1,2,3,..., and some o > 0 there exists u€X,

such that u, < u for’all n=1,2,3,... and ‘\ul‘

finite. Let Y be an ordered Banach space. fhen

& positive linear transformation T:X - Y (defined

for all u€X) is necessarily bounded.

that

VllTUni‘ > 222 |{ug |] for n = 1,2,...

let

e @D |-

~ Note

V:nGX.’. and anH = 2—n.

Clearly

T(‘Unl) 2 T(Un) since iunl = u* 4+ u

Hence,

Hrval|

]

Y

il

(2~n/l l“n”) HT(‘un‘) H |

@/ P | HT ) ]
@/l 1D 2> [u, 1]
2" = 22" ||v, ||

Proof: Suppose T is unbounded. Then there will exist u, €X such



Let
wy = vy and wy, = vpMw, -y for n=2,3,... .
Note

lell = HV1H = 1/2

and by induction

l‘wn+l“

IA
N

Henl ]+ Hvaa Il < (@-1y727) & (1724)

= (2= 1)/28) < 1.
Now
0 Swy Cwygy Torall n= 1,2,000
so there exists w&X, such that wn < w and !lw\\ < + w. Thus,
TwEY and |lTw1‘ is finite. However, 0 SVpSwy Sv s0
0 < Tvy, < Twe Heﬁce,’[\Twl\ > v |l = 2 for‘all n=1,2,c00
which is a contrédictione Thérefore, T is boundedﬁ |

emark 1: If X is an Mc Banach lattice or a Banach function

wol

|

-space satisfying the Fatou‘property, then XAsatisfieS‘the\condi~
tions of Theorem 2. |In particular, a positive linear transformation
TP = 19 (defined for all %ELP) is bounded for any p> 1 and
q>1. |

Remark 2: [f T = T+ - 77 where T%, T~ are positive linear

transformations TH:X = Y, T:X = Y (both defined on all of X),
then T is bounded. In particular; this remark applies to integral

transformations.



CHAPTER THREE -
THE SPACES ©7 WITH MIXED NORMS
in the next few sections we will be studying functions of

several variables. Let (A, A, ,1y) for i = 1,2,...,n and

(By,Ny,vy) for j = 1,2,..0,m be o-finite measure spaces and

1] m
: A = Uﬁ’; I3 an d B = }.EB i

i=1 , P=1

be their product measure spaces. Tha corresponding spaces of
casurable functions will be M;, Ny, M and N. Corresponding

to the vector variables X = (Xq,cve,%,) @and v = {yy,e:0,y,) we

will use the multi~indices P = (py,c«.,pPy) and Q ='(q1,...,qu)
where 1 < py,a, < @ For TG we define %éf{[(p) =
' i

an(ﬁl :::’S“ = Hf:le’,,,spn = H‘ch

to be the value cbtained by successively taking the p; norm in
Xy, the p; norm in Xg,..., the p, norm in x, in that order. Thus,

if p, < & for all @ = l,...,n then

(3.1) llf‘lp - (I...(j(flf(xl’.“,xn)‘Pidul)Pz/P:duz)Re/Pd...d“u)}/Pu
Following Benedek and Panzone 4 p 3017, we dﬁf;ne’

(3.2) Pn) =P = ffema[lflip < =},

These are Banach function spaces with norms satisfying the Fatou
property {4 p. 302]. if 1 <p, <« for i = 1,...,n then the
function norm il I!P is smooth [ p.312]. We define tlgl‘q for

m]()»



geN and LQ = LQ(B) in the same manner.

If‘x(aa,ab,...,ak) is anfaigebraic relaﬁgon among the real
humbers Oy yeee,0p and ﬁb,ﬁﬁ;...JQQare multi-indices with'thev ,
same number of components, then (AU, F2,...,7H) means x(pflz..,.pfka

for ecach .. In particular B'=p(P=1)7" meéns:ﬁ!:pi/(pi~l). The

”Generélized Holder Inequality' can now be stated as follows:

(3:3) o f o) gl e ) din (xa) " "t () |

< 1l sl

forvany f,g& and 1 < P £ . Horeover, Benedek and Panzone
(L p. 304]_Have proved that if 1 < P < «, then the dual space of
LP is 1P, Finally, if P and Q'ére multi-indices of length n
and m respectively and rén’, then Q < r < P will be taken to mean
gy <r<pg forall i=1,cc,nandj=1,c0e,m 8y LP:Qor
L(P,Q} we will mean the space of functions of m + n variables with
mixed norm corresponding to the multi~index (pl,pg,;..;pn,ql,
Grsevesa)

Since we will not always use the integrals and variahles

in the same order, at times it will be necessary to replace the

or “'fH(pl,Pg:”')pn)

usual, simpier éxpression l]f[lp by ‘Ifl‘(p)
‘ ' 33 Hyalo s v euy iy

to avoid confusion or ambiquity. {f r€ [1, + «), then the norm
for Lr(A) in. tha product space is

(3'14) Hrll(‘l‘) = ”{H(i‘ g P yees, I
1 , %

AUEATIY)



It can also be easily shown that

. eI - f r ‘ '
(3'5) ilfllp - iE{H'(plr,Pgr:""spnr)
Hi oo sevenbly 70 e

Finally,‘by'Tone!Ii‘s theorem, for r€ [1,=) and f measurable on

AXB’

5.6 f(x, ! , ' ~ |l < !,f‘ s
A L LA AR

| O SRR
<3'7.)'* g = '&-@-}" T (1/B) - (1/e)

with the convention

(3.8) afo,0) = 4 o,
~We rote
{3.9) alo,8) = -a(p,0)

i

a(p’,0")

where (}/qﬁ +~(I/a') = (1/8) + (]/B') = | and a(o,+0) = =
while af4e,0) = o

40 obvious hut u;efui extension of a well known result is
the follewing:

Froposition 2: et P and Q be multi~indices with 1 < P and

-
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function, then K:LP-iQ with !lKll <oif

'and‘on¥yﬂif ‘ ‘ BN o
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s ince

LO/e’) = (/a0 T+ (/g ) + (177)

By applying Tone]li‘s theorem feollowed by the generalized Holder

.

ineguality we get,

HroF R F
(:‘L’\)) , l “( )

]

I

(a(pl,r) a{pysr)se.e,al pn,r)}

s MJ_ KA | 'p'u

H H upv"“apw)
v sy e ee,lly

since

LG/e) = (7p) T+ (/) = (/r).
The Lewma fol¥owa;,3mmediately§

The following thecrem is a generalization of a theorem

due to Aronszajn. See Gagliardo [9 p.h297.

Ihg(genkgz Supnose KIix,y) = 0O, rér*, 1 << f <P <o,
P and Qkaré multti-indices and suppose there
exists fuﬁci%ohs w{>), @1(x), §{y}, ¥ (v) all
greater tnan O a.e. and a real number ¢ > 0

such that



Lkapdly) < ¢ 4 (y)

(ii) 3 ¢ gy (%)

K00 <

(iii) e

Vi Yl)

o gm0
(iv) ™" H(a(p

p1\’\1)

IA

Then

o
ORI

mawsil defined, bounded in

f} < <.

Proot: First consider ine

cane

<r

A
s

5

1w
let
U S | )
oy, r U R
Pirany V] ) H
Rg - Q_}\'.::.») Yq u

1 ; .
Lol
sy 3 Yy e T

o= (K P i, f g
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and for

F

Since, adding the powers of K, ©

1.1
gy T
and
1
)
r
we have
!}:::
<

by the above

LY
nd g:LQ,
AR

1 ] ]
g e e P
by P * P

= 1 ol | =

L NERH

r Py

P

'E!Rzl‘(afﬁxwf)oﬁ(PL’rg

vi{y)
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Now .
‘ o3 gvi?v) 1, i
- 1 alqy, , T .
Jio= ll(KW) i £W1QI ) rl{l(a(qll,r/),a(qlf,r Yseooralay s
. : 3 ’ 1 3 oy Wy
B 1
' Ny N — i
a(q!’r,) LT ! ¢ -4 !
= | (frpd)® ¥ [y, %y F ]\l(a(cn oty eesalaeir ),
o . Vs seees  Vy )
SN N i
alay Hr )|yt o T — T,
SC 1o HWl v H(a(ql s T ),"‘sa-(cba ,l')
N . Vl 3 v ey \)m )
{by condition i of the theorem and for the
power of {, we have
I' /7 4 4 I
1 4 -F s P AL
T + 7T S S == 1 )
da ql‘r (S T
-
S ,
sody € ¢ r a0

by condition iii of the theorem.

Similary, we can show that

1

| -1
kP o, Py

Jg =
a ,r),a ) seee,d , F
)22 )
— 1
. a , B~ B
= |1 ([kydy) (Py )[%%r'ﬂl(a(plsr),a(Pe,r),-«-,a(pn,r})
‘ . p'l ’ p{} s ,?;'-n
o e S N
5 c a(py,r) ii@lfm~ ri

E!fa<Plai')s"‘9‘a(pnar))
AR U R I M

(by condition ii of the theorem and since

for the powers of ¢, we have
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I-—”l"*}‘v“[—' = -l).
r P1 P o r
1ol
SoJ, <c ™ Pa by condition iii of the theorem.

But 1

v . iy | |
Ja = |{L(e) /4,17 Ql‘(q-j",qlf',...,qg',)
o : BV sew ey Vg

1

e
'l‘[(jwﬁd“)/wqul 9!‘(Q1I;-?f:Qm')
, Ve g ees,Vy

i

qu l‘gll(qi ["’,':qm I)
Vi seee;3Vy

A

by condition i of the theorem.

And 1
.. Py
J‘}. :\..C“ "1Hf‘ll(91,-~wpn)
H1:~-,Un -
Therefore
sz e Hellpllally
Since
LR A A A R
r . r Py p; 91

and the conclusion foilows from proposition 3. The préof of the case
py = r =.qy is similar and wmay be outlined briefly as follows. Using

the same F, 5, Ry and R,,



JS HFGR;IRQ H(),])
' B,V

< HGRI‘H rr H(R,,H by Holdors inequality
(“.,\) (U- Y] )

<] \G\r llgl/$ } . lF\ Rz \‘Ev/Li

- by Tonel 1i's theorem

r')

IN

kel ol & " 1)

S NG

(1
O

‘EEK \J@1 Y| Ry [; 0 since py = r = g

,L
1, R
ERR IR FTLE T
o
+ - (1/r)
SRS l{( ) by i and ii
T]"+l]:" . (/¢ ") ('/l’ )
<e I el “ (Q/r 0, R ll (Q’/(Q . ))
vV \

e I [ o,

B "

IN

CHQH(Q' an(p) ”REH(E)(P,I‘))
v I

HR:LH(a(Q\:,r'))



B~

< clisll, . [£]], by conditions iii and iv.

Thus, the theorem follows from the preceding proposition. MNote
that the first iterated norm on Ry and R, and hence for conditions

iii and iv is the « -norm on x, and y, respectivelyy

o



CHAPTER FOUR

ORDERING WITHIN MULTI=INDICES

‘One of the important facts about LP spaces is that their
norms are dependent on the ordering of P. |In particular

Ilf‘i(ﬁl’rz)
1sHp 5

.F
| “ ‘!(ig:ii) T
and

Nl
(2205)

~may all be different. It will be necessary for our further work
to develop some notations and rules regarding the'permutation of

multi-indices and integrals. For o a permutation of {1,»..,n},

we define
(h.}} O(P> = U(P{,...,pn) == (pg(}),.o.,pg(n))
frd
. P, - . PO(1) e e e s PI(R),
(G.2) G) = ofPreecespy = (), ),
M My g e '-,un) ?“5(!),.. .,“U(n)

Note that [o(f)1,

"

)

oy We will need the following specia}'

permutations.

Defintion: Let P be a multi~index. Then

(1) m, is a permutation on {1,...,n} such that
S P

-27-
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(P 3y < D (P ]y
whenever i < j and if p, = p; and i < j, then
(1) < ().
(2) Tp is the permutation on“{],...,n} such that
whenever 1 < j and if p; = py and i <j, then
;1 . -1 .

Thus, Tp is a permutation that'will reorder P in increasing
order and Tp rcorders P in decreasing order with equal elements

left in the same order.

Proposition Lk If P is a multi-index, then

e s

il
1

(1) [P = Mpr(P) = mp(P)

and

(i) [Mp(P) )’

]

Trpi(P') Tp(P') e

1

Moreover, if r€(l,o) and r < P then

i

(1) T = Ta(p,r)

and

(iv) '?P, ﬂa(p,r) .

Proof:  Note if

Py £ Py



then

¥ 4
Py = Py -
Thus, parts (i) and (ii) follow immediatély. Suppose T < r <

P, < P,. Then |
o 0< (1/r) ~ (1/Py) < (i/r) = (1/7,)
0< (1/a(Py,r) < (1/a(P,,r))
and hence |
a(Py,r) < a(Py,r).

Thus, (iii) and (iv) follow immediatelyy

We can state a further relationship between the permutation

g and the multi~index P by using the following.

Definition: - lLet 0 be a permutation on {1,...,n} and P =
(pl,...,pn).’ Then
(1) o¢P if and only if for all i and j = 1,...,n,
i <J and py < py implies 0¥ (i) <07 (]).
(2) o+P if and only if for all i and j = 1,.4.,n,

i.<jandp; 2 py implies o' (i) < ().

Thus, we notice that ﬂpifP while T+ P. Moreover, ovPp
if and only if o# P’. Later in Proposition 6 we will see that

p
P | (u)
(u) continuously contains L° " .

if od P then L
Minkowski's inequality can be stated as l]anl]p <

Elifn‘]p. In the case when p is a single number, we have the

Generalized Minkowski's inequality,



30.

(4.3) MIEICROEHEONY

(\)(y)) “lf(st) H )dU(X)

See [4 p.592]. We may restate this as:

Proposition 5:° Let K be a measurable function on A x B and

p&l 1,7, then

oty nxnlp) llK‘Hp,

\)’M

Proof: For p = 1 this is Tonelli's theorem since

HKH(&;\‘) = HKHQ):;)

For p = ® we have

\K(x,y)l S~‘IK(X,§)1‘(V?g)) a.e. x and y

SO

TG, y) L du
X*X ‘ .

< Illh(x y)|| ) ace. y
v(y)

and. hance
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il

Lo = IKGoy) L] .

(u,\)) X e (\’)

\iK(XQy)ll

IA

r " \ %, ‘ @ d
kG 1] o

il

kIl

V(Y):u(z))'

For 1 < P< o let géL.P’ and lig[lpf.g 1. Then

1

IQ(Y)IIK(x,y)Hu(X)dV(y) JTay) [k (x,y) Jdvdn

IA

Tk y) ll(\?) d

k] |

, 1
o)

Hence

i

llKll(1,p sup Ig(y)(f‘K(x,y)idp)dQ
bV Hallp'< :

< 1kl g,

v,u)~ﬁ

In connection with this prépositfbn; it should be noted
that if P> 1 and K(x,y) cannot be expressed as K(x,y) = o(x){¥(y),
then the inequality (h.4) is a strict one {10, p. 1487.

We Ean easily derive the following:

Lemma: If K(x,y) is a measurable function on A«<B and r,q€[1,+»)

with 1 < r £ q then,



R (NIRRT}

(SIVES

V’U)

Proof: Suppose 1 < r < «. - Applying Proposition 5 to IK‘r'with

= q/.'i‘,

HIIL = 1R

j,V

and hence

K110y < 101

if r = +o, then q = +» and hence

L T T

(u,\)) ’ Ux Vv <\),U5E

Now using this lemma and mathematical induction we can
extend the theorem to cover the case of P a multi~index and

o a permutation.

™~

F:uposuglgn E: If P is‘a~multi"index,.FELP and o is'a permutation

14w A i

such that o¥ P, then

By e
.6)  lrllopy < 1e]l ey and L) e 1o
(1) )

cand if o4 P, then

(k.7) !if||(P) < l'fl‘O(p) and LG(E) C:L(E) .
i H



Remark 1: Theorems of this type are generally attributed to

Jessen [8 p.5307, [10 p.‘150;16§];

emark 2: Let P = (py,eee,Py), Q= (ql,;.ﬂ,qm), o and © be

=

permutations of {1,...,n} and {1,...,m} respectively, and T be
a bounded linear transformation;

T:LP - LQ, %4, Q and o4 P.

T:LO(P) - L%J(Q) .
Moreéver,
il s e

as an operator from

o) L 5

whenever the same is true as an operator from

LP e LQ' .
L P!
Proposition 7: Let P and Q be multi-indices, and K(x,v) Gl Q,
Then for the integral transformaticn K weg have
LPep (k) and kKLPAQ.  Moreover K:LP-LQ is bounded

with norm [[KIWIéT{WK(x,y)l‘P',Q.

¢

Prouf: . Let ferP and gELQ . Then

HTf o) | = 1RG0y £ a(y) dua(x) du(y) |
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CHAPTER FIVE

‘AN EXISTENCE THEGREM

In applying Theorems 1 and 3 to the special case of LP
spaces, we will use some non-linear transformations between

LE and Li' gjven by the

Definition: Let P = (pl,..,,pn) and 1 €< P < w, For any function
fGLi we define the function 1p(f) by
(5.1) Tp(f) = P11 l|fHP1+1 Pi.
_l pl’ et e e p
R L ES .-.:ui(xi>)
with the égreement that FP(f) = 0 'whenever f or any of the above

partial norms are equal to zero. We define TQ similarly.

Proposition 8&: Let fGLz with 1 < P < + « and «€[0,+=). Then
. : -1 .
(1) Irp(E) e = [IF]15

] r
(i) Tprty - iF

(iii) I{Fé(f)lﬁpf 5 1 jf‘any only if [|f}|p <1
(iv) Tp(0) = |
(v) Tplef) = ap&“rp<f)

(vi) If g=Tp(f) then f = Tp(q)

(vii) r;l = Tpr

- gy . . . :
(viii) TP:L+‘ - L;P is 1-1, onto, continuous and open

(ix) Tp is a power function.

(i) We proceed by induction. For n = |

\ A)

35~



Hrp() | ]p*

1

LS

i

[1£P2 /P | |p, *

G

P

i

llfllpl '

I

3é.

Assume the theorem is true for n = k and let f be a function of

k + 1 variables.

llfllpl, we have

Then applying our induction hypothesis to

i ilf*ipz""fy\l 1 T ol 2,

or

SETAIL Hes ‘lp“*l !
AP2seeesPra)

pa-l Pigq "Ps
IRIGIH lgzllfll(p oo et et

Thus,

= £l Pegr-]l
|| H(l,;_"pm) ‘

Hrp (1 =

1

hii

el e pi,pi>*‘@z,

1 efiP i sz P [l (s ™™

j=2 ’

L g P
i=2

e fPes”
(P1seeesPra)

‘ ’pi)

( Pisecesp 1)‘l(pé,...

.,
“npl:.(.l)

LY pkl.*.l)

e

(pgs--

,P;+1)

o P}:I'.]-l)



wa
by
.

Now parts {ii). (iii) and (iv) follow immediately from part (i).

Since ‘ B .
1";; (L«'f) = Tp(f) . cypn-l‘ *+ 2(pi+1"p5)
~ i=1

= F({). pn'

. ot )
we have part (v). Now for part (vi) we note gELT by part (ii)

above. \le proceed by induction. For n = 1,

Pl fPl/P;;,

4
so f = 9P1/P1 = qfﬁ -1

1

i .
For n= 2, we have

. ' ’ gy /
g = fpl"]k|f“zz P1 =_fp1/p11!f!{$j/pe) (p;/pl).

op/pz) (PJ/PI b

Holl s = llfplkplll 115,
o IR g (ol 0 o 0D
il
) I!fllpz/pé
and |
ey gjlf\\éfl/P{)"(pz/Pé)

3

= allg|lpy (P2/P2) ((p, 7P} ~(par/ps))



Hence,

38,

% - p:/pl\‘gl‘ (pl/pl)(pg/Pe)((pl/p )= (p2/P2))

gpl/Plligl‘égz/Pz)f(Pi/Pl)

gL ]HgH pP P.\.

-

il

Ip(g) -

Mow assume part (vi) is true for some n:klz_z. let

,pi

P = (pl,...,pk_H)
and feLP.
Then ,
‘lgl|(Pll) = l‘fpl/pllip F Hf‘lpifl Pi
Hy :
= “flli pll‘ l‘(Pz/Pe) (P, /py)
- Hfll"z“’z R
Py i=2 eres Py
* Touperteenpun 1)
Hence,

g = fP1/P1HfHP2 Py II HFHPHI Pipi

i=2

H

T

pl""’pi
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2 2] /7 \O/D
o /9|51 027 “’” AL

p1 /Py = (py/p))
fr | \‘fllpl

Al .

Py

o
1

7 ; o k - K
PP 2277 ngn*’i“,f’ipq (P2 72) g1 |
1o i=2 . i

by the induction hypothesis applied to el -
. ) 1

Finally, solving for f, we get

f = gP1/P1[|l 1 2/p2,ﬁ g l‘P1+1 Py ]“ || fpl/pl

Pl/PlH H(PQ/F’Q) (Pl/Pl) I H Hpi+] Py
=2 Pl:"':Pi

Is:
= gpl’ n ll Hpi+1 pi

,_- P ,""Pi

]

Tpl(g) .

Now part (vii) simply restates (vi). The continuity of.FP for
positive function follows from part (i) since FP preserves convergence
almost everywhere and the function norms are smooth on LP. Thus,

(viii) and (ix) follow immediatelyEa

A LI Y

Remark 1: We will prove later for 2 < P < « that FP is Lipschftzian

on bounded subsets of L:P .

Remari 2:

Part (iii) is the same as (2.11) in the definition of

stable functions, etc.
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Remark 3: The function T, is not in general monotone. For

P

‘example, consider Lebseque measure on Ay = (0,2) and Ay = (0,1)

“with n = 2, P =‘2, pe = 1;

(% ,%e) = 1

for 21€A1 and x, @, and

1 if x3 €(0,1)

(A

Then fy S fa but

r ) = 1/ :
pl)‘PE( 14 ( /‘/2) .

for all x;€A; and xz€A; while

e _((IA/5) if x.€(0,1]
Toup, () Coa) = {000 i Se(1)a)

Thus for any x,@A,,

r

In

I ,pg(fl) on (0,1]

P1 P2 (fz) P1

but

1“Pl » Pz ({3) S rpl s Po (f2) on (] 72) .

’However, it should be noted that if p; < Pyqa for all i = 1,2,...,

n~1 then Tp is non-decreasing. This is easily seen from the

daTinition of TQ .

R '
Proposiiﬁgn 9: Llet 1 <P <+ @ Then TﬁP(P)zLiﬂP(P)f LiﬁP(P) is
(1) non-decreasing and continuous,

(ii) stable and strictly stable and

(iii) a power function.



L.

Proof:  Note

and

L T]p’(P) ‘ P
+
and the imbeddings ‘

o p 11, (P)
. - P
P L, L,

‘and

N p’ 7
Izt L+nP (P7) - P
are continuous, non-dacreasing and i-1. Then,

~

¢ = LoTnpol = TopiLPorl
- R nPP - TTP'..'. -'-

1

is continuous and non-decreasing.

Let
| B = =1 + Max {pili:!,...,ﬂ}.
Then, \
IR LN l\fl\ip(P)swlxi.
Thus if

1711, <



L2,

then,

Hence & is stable and strictly stable, since
.[ﬂp(P)]1+l - [”p(P)]s 20
fOl’ i = ],2,.'..,!’1"‘],

Also

8(of) = oP3(F) and 8(0) -0

so ¢ is a power functiong

Since fTﬂP(p) is strictly stable, we can prove a variation
of Theorem 1 for LP spaces which generalizes a theorem due to
Gagliardo [9:430]. The following diagram may facilitate the

reading of the proof. ' Note

@) = T

and
Tp(P)) = 7 0(P").

Let .
¢ o= T (@
3 = T

Ip (P



2] T ‘
Ly - L-;-QN
o sl
L+np (P) o 'L,;.TTQ (Q)
~ ‘ : ‘

5 | \Lw
L;ﬂp(P') L,,”Q(Q )
/\. ~
T [I Tv’: !l,"l
< 19

Theorem h: Let 1< P<wand ]l <Q< o,

¢ = rﬁé(f") and !i" = F“TQ(Q).

if T:P-1Q s a positive, bounded linear transfor-
mation with llT]l < ¢, then for every e > 0 there

exist functions wELiP and wELiQ, such that
() Tely) < (¢ + W) (y)
(i) TH(x) < (c + &) () (x)

(iii) HQPHT]P(P) .<_1

and

|l¢|an(Q') <1



bk

‘Proof: Léf 6> 0 be such that
c(l +8)% <c+e

; :
such that -

and chocsefvoéLQ and UOELP
V. {y) > 0 a.e.

but

Vo llg = <

and
Uy (x) > 0 a.e.

but

N

+io>
o

‘oni‘Pf = 1

’

Fdr‘UGLZ we define

S(U) = TV +HTEU, )

! . pf

Note S:i, = Ly is a stable function since (1/¢)T,

¥, (1/¢)T and & are stable and ‘\S(U)&lp: < 1 whenever

llul‘p/ < 1 can be checked by a simple computation.

By the lemma to theorem 1



vthere,estts UEL+P‘fSUChﬁthat U # o0, llullp/ < i

and

s = Yy, + o= TR (U, "’”1'}”5 U)) < (1+8)U.
Let ‘

: B

(P = @(U g ]+6 )
and »

~ . I

g o= W(v, + 35 T9).

Then ¢ > 0ae.and § > 0 ae.since ¢ and ¥ are strictly positive.

—
S
It

(ere) LY (1) -V, ] < (cre)¥ T (1),

c(1+8)U

o=
< -
N

< c(1+8)2[F () -U,]

< (ete) 3t (g),

!ivi]]p(P) 1 since & is a stable function and
‘ b
.__5.... A
o, *T?é”“ﬂ (p1y < uo + s Ul ST + T3
and “ﬁ[‘ﬂQ(Q) < 1 since I is a stable function and

1. - e, S
Vv, + e “PHTTQ(Q) S “Vc * e TCPHQS cie | cte



Remark 4: Condition (iii) of Thebrem L implies

Hell, < 1

and ‘ : |

by Proposition 6.

16,



CHAPTER SIX

THE . BOURQEDNESS OF INTEGRAL TF AN%FORMATIONS

w§ will now use ﬁhe'transfqrmétions'rp to reduce the conditions
(i) through (iv) of Theorem 3 to a fofm similar to that of condi-
tions (i) through (iii) of theorem 4. The resuiting theofem is
a generalization of a theorem due to N. Aronséajn. See Gagliardo
[9 p. 4297. Wé will need sevefél'lemméé related to the simplifi~

cation of conditions (ll!) and (iv) of Theorem 3.

Lemma 1: I
T(X) > 0 a.e., r&* and l.< r < F < w
then .
pn-r

6.1 T (F)F17F f
(6-1) liEp ey H( (s o1 >,...,a<pn, r)) - 1l “ .

Proof: We will induct on n where P = (py,.«.,py). For n=1,

1
SR B B - (py=r)/r
I A U N | L T

pp-r ‘ pPy=r

e

Again for n = 2, we have
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IRTGCS T nfm*’e LT

N o PaTr

it

H l.ifl\éfl“l’)/ri},fl\éfz"pﬁ)/rllp
: e

(pa-r)/r

IR

P2"T

i

l\fll(Pg"r)/f

il

Now assume the theorem is true for n = k. Then

, p p 1
S R s N
| SR TPt s A

- (P1“F)/f S PitaPs
H Hf H‘g‘i"—’-? 1:1;[] Hf”Px,...,Pi)

g‘(a(ﬁg;r)a:-- (Py+1ar))

300 e, k+1

(pr-r (pa- RO/r

= || llf le e I,

k 1

P4 +1 “Pi1 T
?2 (llfii P ) l‘(a(pz,r),o-',a(Pk¢1=r))
= . Mo sevey Hyga



Lo,

A R
: ‘ ‘ Pr i=2- Piseee;Py

oy . 1
:l‘ jl ) [l(a(pg,r),-~~,a(Pk+1:f))

2 g e e,y 1\!)

‘ .
= ,‘l &tflipli‘éSTTf‘i;kil

by the induction hypothesis applied to- ]lfil
' ' : L Nl
ipk+1”f)/r

= Il

We note that the above statements hold immediately for p; > r
and each step will aiso hold if some py = r since we take fe =0
when f = 0 and f° = 1 otherw:se and a(r r) = 4+ to give the sup

normﬁ

Corollary: If f(x) > 0, réR! and 1 < ng r < e, then

| ,
(6.2) e g’ (Fel- "' “"H{d Q5.r"),eena@y,r’) ;

“\)1 g e ey Vi

/

- s n““

Theorem 5: Suppose K(x,y) > 0 a.e., P and Q are multi~indices,

BT ]



50.

1 <qQ S p< @,kC'>‘0'iS a real number, § = pr‘and‘
U2 ry. 1f there exist functions peL,’ and yeL, 2
f=Tg I rere exist functions @€l and §CL,
such that (x) > 0 and §(y) > © a.e. and for the

integral transformation with kernel K,

(1) [Ke(y) < (4) ()
(1) K% <8 (9) (%)

(i) el < jand: Hylly =

then the kerhei K defines a bounded linear trans-.
formation kit? - 12 with 1‘K“v§ c.
Proof: - Since Q < P, we can choose r€R1 such that 1 < Q< r <P <o
and apply Theorem 3 with 4 = Y2 (y) and @ = & (¢). The preceding
temmas show that conditions (iii) above imply conditions (iii)

and (iv) of Theorem 3 so ‘\K\\ < ¢y

Remark 1: For P< Q, Theorem 5 can be false as indicated in

Remark 1.1V of Gagliardo [9 p. 430]. It should be remembered.

in connection with Theorem 5, that &% = Tp and y= = Tg’ -

If WG €on53der Theorem 5 and note that the theorem remains
true if we replace c by ¢ + ¢ for any ¢ > 0, then under the
additional assumptions that ﬂé{?),= P and ﬂQ(Q) = Q, we see that
Theorem 4 can be used tc prove a converse to Theorem 5. Thus,

we have immediately,



Proposition lg: Suppose K(x,y) > 0, P and Q are multi-indices
1 <Q < P<w, the p's are decreasing and the
~q''s are increasing, ¢ > 0 is a real number,

® = Ip’ and Y = Iy Then the integral trans-

Formation with kernel K is defined on L and
K:L? ~ LQ is bounded with |[K|| < ¢ if and
oniy if the conditions (i) through (iii) of

“Theorem U are satisfied for all ¢ > 0.

The relationship of Theorems 4 aﬁd‘s,may be expressed as
folldws. If the positive jnt@gral transformation K is such
that K:LP ~ 1Q with ]‘K‘l < ¢, then Theorem 4 asserts the
éxistence of the functions ¢ and § needed to apply Theorem 5
to prove the weaker stétement’fhat K:LHP(P) - LﬂQ(Q) with
,liKll < c. From the diagram fmmédiafé]y‘preceding Theorem 4

we. see that

an(p) ‘ Ta LP Ky l.Q T N LTTQ(Q)
s 4 J :

In the next section we will return to the question of

finding a converse and more general theorems furnishing partial
9 g .

conversas for Theorem 5.

To conclude this section, we will give some remarks and

a theorem that may be useful in applying Theorem 5 to prove

51.



52.

that a given integral transformation with positive kernel is bounded

with bound not exceeding c. .

Remark 2: In Theorem 5 if Q = P= r, then conditions iii) can
be deleted and the theorem will still be true. This can be seen

by considering the proof of Theorem 3 and the fact that

, 1 LR N l,+.L -
(/e gloryr o gt =g
= fo < ‘c

The hypothesis of Theorem S may be difficult to check when
a large number of Qariables are'invdlved. 1f n=1orm=1,
then THeorem 5 is easier and Theérgm 3 may be simplified suff)ciéntly
to become useful by setting pi =rorqy=r respectively. Ve
will now establish some sufficient‘conditions for boundedness of
an integral transformation that may be much easier to use,when

applicable. By induction we can easily prove the

Lesma 2: I @ €SP for 1= 1,...,n and
4 n
. \'P(X') = Il Qpi (xi) ,
i=1
then

n '
(6.3) T (060 = 6 g PP )
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Where
' Pn
Cy HH&H
-~ Proof: We will induct on n where P = (P1seeespy)-

For n = 1 we have

, ." 1 P1/P;
- Tp () = P
SO Cl = ]-
For n = 2 we have
. Pl/Pl (Pz/Pe) (P1/P1>
o - ol
P1/P1 Pl/Pl Pa/Pz (Pl/P{) (pg/Pé)“(Pl/P{)
= Py ll@lll Pa
Pi Pi/P{ Pz/Par
= “@1“ 1. ¢z
c, = ¢ .
So 1 \l@lllpl |

Assuming the theorem for n = k, let P = (pl,---:Px+1)-

k
N — I
FP ((P) = T P (QPK +1 cPi )

Py ~1 Pk 1" Px

k
=. Tp ‘(igi ;) "Pra ‘l@l‘(pl,...,pk)

k-1 P1 Ps/PiiPk/Pk

14
= [ 1l l‘@x\i J{~ﬂ]w5 JPran

{=1 R



. _L;‘L} .

O PR TR peny
I 7 { : ’ . e Tvk
' [iglll@i“PéJ “v;u ‘?k+lﬂ
| k ‘ .".“" - ;573 . ‘,‘: ‘
LE IR
—i=1 RN =]

using the definition of I'p, the induction hypothesis and the fact

‘that
Pit1 Pk~ = (Px+1/P£+1)“(Pk/P£)-
~ Hence
: k Pxiy1~Py
¢; = 1 i‘@i“p, ‘
i=1 | 1
Theorem &: Suppose K(x,y) > 0, P and Q are muiti-indices, 1 <Q

< P<wandc> 0 is a real number. Let o and ©

be any permutations on {1,+¢.,n} and {i,v..;m}. {f
for 'some. ¢ > 0, therekexists fungtiéns @, > 0 a.e.
for f:],...,n‘andﬂ¢5 > 0 a.e.var j=l,..;,m;such that
the integral transform K with.kérnal K(x,v) and the

functions

' n ‘ m
¢(x) = .Hl@i(xi): and k¢(Y)' = ‘»HIWJ(YJ)
- | RS j=1

satisfy

m ,/ :
(i} kely) < C.U]%(yj)qJ 4
J:

: n
(i) K < c o (x
i=1

/ 4
)Pi Pi



A
A

‘ = b, e e,

ity oy, < vend Hylly, g1 ] j=1,e00,m

Then K:1.9 (P} w»LU‘Q) is a bounded integral transformation

7

| with‘ Pkl < e

.

Proof: By Jesserk theorem, Proposition 6 above, if this theorem
- g N ~ - - : R A/
is true for o = ﬂp and o = WQ, then it is true for al}l o and o.

Thus, without loss of generality, we assume U = ﬂp and
s = Ty - Note that conditions iii) and iv) above jmmediately
imply the corresponding conditions of Theorem 5. Let

B = :~-esn{P_i[i==1,...,n} = M, (P) Ty

Then by lemma 2, condition ii) above impiies conditicn ii) of

Theorem 5 since the gonstant

n=l : B=py.
G o= 1 Heddl, 2 \

because B < p, for i=1,...,n~1. We can prove that condition i)
~above implies condition i) of Theorem 5 in a similar manner.

Thus, this theorem Tolliows 7mmediately~from Theorem S



CHAPTER SEVEN -

FURTHER EXISTENCE THEOREMS

~We will now present some results that are similar in form

in Theorem 1.

Theorem 7: Let X and Y be nontrivial Banach lattices and

Lo 0 o o
éﬂk+ - X3 o and @.Y+ = Y3

be continuous, 1 to 1, positive or strictly pos{tive
functions such fhat

HUH;(*ﬁ 1
implies

He(w iy s v

and
llvl\y <
implies

‘sw(V)‘\Yé < ].

Llet T:X - Y be a compact, positive linear transfor-~
mation such that “Tl‘ gvc. Then for all real ¢> 0

there exist &X% anﬂ ¢€Yi* such that
(i) To < (c+e)¥™ ()
(ii) T < (cre) 5 (o)

RUDERIGIERELRININE,

..56..



~(iv). 9 £ 0 and ¥ # 0.
Proof: Let 6> 0 be a real number such that

c(148)® < c+e

‘and choose

Vo €Y,
and o, &
such thaf
el < <52
and

o H T;‘é" )
For uEX - define

S(u) = —-T YW(vo+ oo cee Te(u, 4"—g u))

Now S is continuous, positive and if llu||x*;j£l then

——————

ilgullx* <1 Let wéxl* be such that.llwiixk < 7+ and define
v, and v, as follows for n = 1,2,0.4,

Vo1, and vy = S(u,).

1
= =0 = Wi T
Uy = W, vy S(w){ Up -

‘Note for n = 1,2,... we have Ilun‘l <1, llvn\l'g 1 and u, > w.



Thus there exists vEXY such that some subsequence Va, TV since
this sequence is the image of a bounded sequence under the compact

operator‘(l/c)T"“. r-JQte HVHx,c < 1. Define

U = W+ T&gv. Thenyun‘k - u and by continuity
of §,

u = w L S (u)

1+

or :

(1+8)u = S(u) = (i+8)w> 0
where

HuHx‘z'.- <1 and uéxl"{.
Using

(1+8)u > S(u)
with

: 1

¢ = &(u + 75w

and

<
il

]
Y(v + e T

we obtain the conclusion of this theorem exactly as;in Theorem hﬁ

Thus, if the positive integral‘transformation k:tP - L2 with

k1] < ¢ is compact then theorem 7 asserts the existence of the

58.

functions ¢ and § nceded to apply theorem 5 to prove that K:LP - LQ

is bounded with l‘KlIPS c.

Another method of’trying to prove theorems similar to



theorem 1 might be to use a Lipschitz condition. Rather than

using Lemma 1 before theorem 1, we will consider the following:

Lemma 1:

(7.1)

(7.2.)

Let X be éfnon-trivia? érderéd Banach lattice and
9:X, = X be a power function (§~not necessarily non-
decreasing) with Ex(2) = q which is Lipschitzian on

any set of the form

Ay o= fuexg Juzwand P luld S 1}

‘where

wEXi and l!wll > ‘% .
Thus, there exists o, such that for any u,V@A,,
l‘@u - @Vl‘ < awl‘u~v‘&.
If any one of the following conditions holds,

(i) g>1

(ii) oy < o for al]vwﬁxi, ‘[wll Z,%

(iii) for each rE(b,l) there exists we&X}

such that
(1/(q-1))

Hwll < roy

then for every 6 > 0 there exists uéxi such that

H‘H <1, u>0, u#0and,



(7.3) (146)U> (OF
Proof:  Choose uléxi such that

o 11 < T%g and u, # 0.

Let A = Ay and @ = o, as above so H@ﬁﬁ'@ﬁﬂl g‘dl‘u~vl‘ for

all u,v€A. Note ‘that we can assume 6€(0,1). Let

B = t4in{l 3 1}.

Define the sequence {u,} by,

u, = uy + 73 @(up-y) forn=2,3,... .
Note

oo [} <msl
and if

”“n;'-li! <1
then

Hual] < H”l”'ﬁ'T%H@(U -l)H...]_‘é
Also

Up 2 Uy
Thus

UDGA fOI‘ n = ],2,0»-‘0 .

TS

60.



6.

o
Mol = 725 11502 1< 2 ol foyovaa |
< 5 v || for n> 2.
Since
n% ull < 1lull< s
we have

. 1
.”Un+l-un“ < (H_é)n.

Thus clear?y {u,} is convergent so there exists u€A such that

u, = u. Since ¥ is continuous,
, B 5 - E ]
u = ity &(u) o E(I+6)u~m(u): E(l+6)u1 > 0.

If 8=1 (ie o< 1) we are through. Thus, assume & > 1. Let
Ex(%) = q so that for any real number C > 0 we have &(Cv) = CA%(v).

Hence if v = Q!un

then
(1+8)v > &(v)
s ince ’
m.L =9

ool (16 )V“ o7 ®(v) = «(1-8)uy > 0.

Note v > 0 and v # 0 and in particular VEX: « Thus all we need



6.

s ; ‘ 1
to prove is that ‘\v{l < 1. But o> 1so if q> 1, then o7 <.

Hence |
L
vl < ov‘"f‘ Hull < 1.

for q > l.r
On the other hand, if @, <o forall wex) with ||| <4,

then we can choose ©; = o and u; such that it also satisfies the

additional conditions

]
q-1 _9%
Hu1|‘<0’q T;r‘é
and
,gT
Heu |l <%0 733
since
B = W)
for all wéxi . Thus,
: =
i\uzful‘l = T%E “@(Ul)l‘S'T%E o o 146 © of - (140)2
and '

‘lunfl a || < _.]+5 ‘[% (ug) =8 (uy) || < I+ ”“U ~Uy. Wl

while



|
Hulu< ;"‘"%;

Hencev
' lll“i] S.il”l“ + ? tlu“i’ “nll
n=1
< of Gys + Z;(‘]‘.{_é)n-f-l )
: ) n=
.
< o7
.and therefore
]

——————

! Ju]] < 1.

]

IN

Finally, if condition iii) holds then the last computations

are again validyg

Thus,:using essentially the same prodf as that of Theorem 1

we can prove:

Proposition 11+ Let X and Y be nontrivial Banach lattices and

Gy = X, and Yiv, - vy

be power functions, with Ex(Y¥) = q and Ex(8) = p’,
which are Lipschitzian on any set

= {UEXi ‘ u Z’W and |lu]l < 1}



Bl

where WGXi ands\fw}[ 5.% . -Assume. they are

Lipschitzian on all of Xi and Y, or that p'q > 1.

Let T:X»*'Y be a bounded, positive linear transfor-

mation w?thy“Tl\fﬁ,c,; Then for -every e > 0 there

Cexist @&, and Y& such that

(1) Te < {cre)VH(y)

(1) TR < (c+e) 5 (o)
G el ly
(iv) ¢ # 0.

< 1 and

il <

‘Moreover, if &, Y and T are strictly positive, then

XS and YEVIX,

We will now attempt to find some sufficient conditions for T

to be Lipschitzian, " These will be obtained by computing the Gateaux

differential of Tp. We will need the following:

Lemma 2:

Proof:

‘If py > 2 then

P 20| [o! < |

e g

4

P1

!
!

1

IA

p
f]l

{“ﬂ(P

2 ol

1“2)Pf P{

(]/P{)

‘g‘ dx}

‘fpl(P1”2)/(P1“])



=

BT 7wgu

Ve shé]l how chputé the first Gateaux variation of the
transfofmatfons Térand then show thét this is in faét é Gateaﬁx
differential which is uniformly bounded bn_appropriate:sets.
For the remainder of this section, let P = (pl,.;.,pn) and for

P

feLf tet 8(f) = sgr{(f)rp(lf]). For P> 1 we use elementary

calculus to compute

- ' pr-2 " p =p; -1
(7.4) a@(t‘ h) = SIgn(f) M f]Hprifl...j,pi

’

-1 -
_r_IIHfH LI

)h+|f1 z (P1+1 “ps ) (

; n-1
[(pfn(iglllfl\pl py

=

where the prime on the product‘sign'indicates that i-th factor has

been deleted and

(7.5 o - U T L) (I Dbttty

is the Gateaux differential of the partial norm. All we need to

know about df, .is that it is linear in h and that ldf l < ‘lhi‘Pl,'~-»P1-

However, these facts follow immediately from the formuta (7.5).

.emmna 3 If 2 <p; <o for all i=1,2,...,n, then

' - -1
G- A sl e '3 Ly bl



Proof: -

/"lia@(f,h)llp‘

Pi+17Py~
Il H Hfl!pl

:JA

' Pl‘] L
e Ty 2

Pig1"Py~

l! H ll llp1

‘!A

e

IN

+ e,

now continuing by induction, suppose for some k that 1 < |

and lla@(f,h)llp'

Pi+17Py™
< |l §yl! ...

Trarn (7 nrn

n-

.}“ ‘pi.{.l pi‘ .
n,’}‘ ‘ Py 1"]

lligzlIfllp;ffipi[ilfﬂ

Z ‘P141 PsK H]‘tfll

e

6.

[(p1~1) n I{fil p)l‘fpl'zhl‘P; B

in pa)]ldfi‘lzpé,--g,p{

n—l o P12
SN T (T TSI

KT SHERTNEN

’pn

-1
((py=1)+]|pe- P1|)( I lifll
i=2

- RN LY
<< n

k-1 ' n-1
k_f(Pl”‘)+i§]lPi+1"Pil)(igth%

e bl

1,"'pi)



6;"

px -1

'-HﬁHp#wmffﬂfn - bul}n!gflﬂﬂl L leE
Then
| 132 (F,h) | |p”
Pi41Py - k= | ‘
< H H H H ' [((Dl"])'*'z lpm Py l)( H Hfli eep)
. Px =2 | =1
H Hprls“‘,pk-'}!'h”pl""rp}' -1 l N H Hprl "pk-,\.Hfsk,
n-1
lfklpiil Pi’( H llfll .Py )ldf ]]Ilkal,... Py
-1 Py | k=1 ol
H n n Al L 2 Toraamp DT, -
P2 \ Pe=1 ' R
l‘“’“pl,.v.,,pk‘lf“?1;-°'spk+ Hf“Ppnqunl
n-1 -1 ' ‘
Eik Pi4a™ PiI(JEIk“fH ""pj)ldf‘l“lp;{.n,...,p,,' |
- n-1 Py+17Ps” k. '
<Iho el [((Pa“l )+ 2 |pesapy ) i llfll

Pt P=1 P=lt PrsceesPy

f
a3 Pn -
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n n o Ml ,_,p;l»lfllzi,..

LA DY

¢ Pr~1

n-l ' o
T fpyaa-pg 1 |]E ' - ;o
i:.k_ﬂlm Piﬁ(‘“ H 1, coeopy) 4P l]llpx..,ﬂl,f-',pn
~oon=] Pi+1 Py- 1 k =1
< ‘} I i! !‘ Llpy-1)+ ipi41 Ps\) H l‘f“
A=kl Coi=l ik 1o ee Py

T [T T

z 1l f Vdf
i=k+llpi}1 Pil}"k ]“ ‘t -‘,PJ)J il]lkp£+1,.."p;

Thus inequality (7.7) foliows by induction ending with k+l = ng

Now clearly 3%(f,h) is well defined, linear and continuous

in h. Moreover, we can show:

Proposition 12: 1f 2 < (py,.ie,py) < o then 98 (f,h) is the

Gateaux differential of &.

Proof: For some fixed f,hELP cons i der

A(a) = SLe(f4h) - B(f) - 28(f,ah) ]

= He(reah) - &(F)] - 88 (F,h)



for o real. By the definition of 6@(f¥h) {see equation 7.5) we sec

that

Tim a8 (fach) () - 8(F) ()] = 38 (F,h) () ase.
o0 R

so A(@) =0 a.e. If we restrict [al < 1 then by the mean value theorem,

ale(froh) (x) = 8(F) (x)1 < 38(f,0%h)
< a0, h)

S 08(f,h)

~where la*l'S lai < 1 for almost every X. Hence by the Lebesgue
Dominated Convergence theorem [4,p.302] we have “As(a)l‘P’ - 0

proving that 3%(f,h) is the Gateaux differential of ég

Proposition 13: Let X = LP where P = (PrseeesPy) > 2,

o e e e ot A

and WGXi such that |[w|‘P 5.% . Then the furction
8(f) = Tp(f)

is defined ‘and Lipschitzian on



Proof:  This follows immediately since & has a uniformly bounded

Gateaux differntial. See Kantorovich and Akilov [12,p.6607. g

‘Thus, we see that Proposition 11 can be applied to
prove a theorem similar to Theorem 4 if p > 2 and )

regardless of the ordering within P and Q.

70.



CHAPTER EIGHT

CREDUCING THE NUMBER OF VARIABLES

Applying the methods used in theorems 2 and 5 and using the
lemmas preceding those'theorems,_we’can prove the following

theorem about reducing the number of variables.

Let P(i),P(Z),Q(])‘and Q(Z) be multi~indices for the

variables x(l),x(z),y(])and y(z). Suppose
K(x(i),x(z),y(]),y(z));z_O»a;e.,~f€Ri, 1< P(Z),Q(z) < o)

1< oM <r<pD) <oand that ke (x(2),y(2)y 5 0 ae.
p(2)

defines a bounded integral

2@ |

transformation Kg:L -

f there exist functions.

X i‘=x<2),y(2)),»w(y(l),x(z),y(z))

positive almost everywhere,

(5 frosl) < ko
(i) Iﬁﬁjy(s) Ry
: 1
- Fiom T B
(iii) ”“fl ki “(a(Q(])"r’)‘ <
S ()
AU
. ro-Te
{iv) ‘IQH'@ li(a(P(l),r)) <)
} 2 1) {2
then K:LP( )’P( ) - LQ( )’Q‘ ) is bounded with

../]..



‘1iK|l <c. Moreoﬁer’if ¢; = FQ(i)’(w)‘and

#&,; TP(])(w); then we can replace conditicns (iii}

and (iv) by

,'(Y) ‘P(‘)“ Q(l)Of poth‘l‘m]\P<]) <1

and H‘VHQ(I)" < ‘f

. Detine

Proof: Let fELE(‘),P( ) and QEL%(. jQ( )

L, . )

Fo= K]/Pl ¢]/P]_" (P:L ]/Pl £
Ve 0 e O g ()

6 = k70 Ma Ty TV

G L 1)' 1
(/e 7 (D0 L5
o= {Key TR " po AT o F
R, \Kep) ¥ , ¥
Loy ) L,
Rg = (*’f*\:;) Qpl o (P r

Then a3 in theorem 2 we have

5o IR @y () (@) g (1D (2 4y (1) g, (2)

v

’ T Y0 1 ~ 2 #
e [fJ TR RaFade (D ay (D) i () 5, (2)



< rR | ; o k '
J:ll 1‘l(a(ql(?) ,rlj, a(Q(l)l,ré)
' MOl s Y(l)‘ )

“Rz‘l r), a(P(]);r) v
(l) (D )

nen m' Qm')

N 0P ax® ey @)
Y X

= IJHJI.JQ‘JS‘J{L dx(?-) dy(z)

whore

- oy /00 e g (0
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while ’ , : S ) _
. : o . : ~1 (1 ’
o= My 3V gl
| | Gy
, &
(ne
< kP el
‘ | )
and similarly
K ]/pl( )
< K VL] o (1)
o (5(1)
Hence
1 1
Pl g Ty T
Jo< [Tkt v Ha(Ql(;) o

A A A N  CIINOX

‘]f‘!P(J)dX(z)dy(2>
Thus, if conditions (iii) and (iv) hold, then
o< Jfkaallgn Ny ex ey @)

< c!iprU),‘p(?«) lHallg7 (@7

‘ ?4;



“so KiL"

) L(2 1 2y |
k¥ ’P( )ﬂ LQ( ) ’Q( ) is boundad with ]lK!l <c

‘Let ;»Fi(ljr(w)'and Gy = Té(])(@). Then by lemma 1 to

theorem 5 we have

qm’— r.’ RN r -
. ml ) )/t' ‘ CalD™ Ny
J < ijzll¢\\ (} ’ - 1‘@1‘P(1) 'i o
Hfupml|guqmdx<z>dy‘2>
éHpr(u) 'F')(Z)HQHQ(U/’Q(?.)/

SR

if qé%%) = o= pﬁ}%) or both li@]lp(]) <1 and \l#‘xQ(l)»S 1

Thus, if condition (v) holds then our conclusion follows. without

checking (iii) and (:iv)i

Remark 1: in Lheorem 8 if P(]) (a a,...,oo then qetrznb r= o

we can replace condition {v) by only ][W{[Q(] < 1. Similariy

if Q(l) = {¢,0,...,0) then we only need ‘lmllp(]) < 1.

Remark 2: Theorem 5 is essentially a corollary of theorem 8 if

1

we .think of a constant c as an integral transformation from R

]

into R' where c¢{o) = ¢ » o for all ocr!.



" Theorem 8 allows us to reduce the problem of whether
(:L—P ﬂ;LQ is bounded to a similar problem with less variables.

As examples, we have the following:

gﬂiéiiiﬁi 1: let P = (pl,o..ipn} aﬁd Q = (ql}.a.;dn)‘bé multi-

indices of the same length. Suppose i< qi~§”Pi < o« for
i=1,¢ee.,n and K(x,y)“i 0 a.e. is a measurable function.
Let‘Kn+1€(O,®) be a reaj constant. |f there éxfst
functions |

Ki(xi,,,.;xn,‘yi?;;;,yn) > 0 a.e.,

wi(xi,..f,xn, y1+1,.;.,yn) > 0 a.e., and

| ¢5(xi+l,..;,xn, Yiseses¥a) > 0 @ee. for i=l,.c.,n

with K = K and Satisfying

¢ o

7. kT3 . PR ) N-]
(i) jkimidxi < K1+1‘¥1qi

- " L py 1
(i) IhsﬁidY4 S Kyga9s !

(i) ap = pyoor Jogfl, < v or Myl -1
for ail i=1,...,n Then Ki:Lpi""’p“ AR
is boundgd with IlKiii < Kn+1. In partjcular
L P q . .

K:L" - 1% is bounded with ||K|| < Kopa

Renarls 3: Noto if P = @ then condition (iii) is automatically

satistied. If i=n then @i(xi,-»-,Xn,y,+1,...,yn)d@(xh) and similarly for



s

CoroNary 2:  Suppose 1< q < pp < and p€(1,9), and K{xy, %y, V)

Ps

> 0 a.e. If there exist functions Ko (x2) €LY

©(x33%) > 0 a.e. and {x;,y) > 0 a.e. satisfying

: g
(1) Jkeda < Ka ()98

(1) Jkydy < 1 (xa)oP 7!

G0 o= aor Tl or [l <0
1 : k4

Then K:LP P2 - 19 is bounded with l\K‘l~§ i‘Kg‘lpJ .

Coroliary 3: Let P and Q be multi~indices. Assume I<P,Q<w, qy < py,
K(x,y) > 0 a.e., and Kz (%o, Xg,eeesXnsYorYareoosYy)2 0 2ce,
2 Pls

defines a bounded integral transformation KB:LPQ""

S LR n yith

Kol = ¢ 1F for every

N . : : . I N ’ . . 3 )
KGELia"“’P“’q”"‘°’qm such that Kg > 0 a.e. theve
exist functions @(X,yn,+++,¥5)>0 ave., and Y(Xp, - e %s,Y)

> 0 a.e. satisfying

(i) fkmmﬁ < Kz ¥i%)¢%,
(1) [kidyy < (ks + Ke)o™ ™!
(1) po=a or Jloflp < v or [l

then K;LP - LQ is bounded with tiKgl < c.



