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Abstract. Predator–prey body size relationships influence food chain length, trophic
structure, transfer efficiency, interaction strength, and the bioaccumulation of contaminants.
Improved quantification of these relationships and their response to the environment is needed
to parameterize food web models and describe food web structure and function. A compiled
data set comprising 29 582 records of individual prey eaten at 21 locations by individual
predators that spanned 10 orders of magnitude in mass and lived in marine environments
ranging from the poles to the tropics was used to investigate the influence of predator size and
environment on predator and prey size relationships. Linear mixed effects models
demonstrated that predator–prey mass ratios (PPMR) increased with predator mass. The
amount of the increase varied among locations and predator species and individuals but was
not significantly influenced by temperature, latitude, depth, or primary production. Increases
in PPMR with predator mass implied nonlinear relationships between log body mass and
trophic level and reductions in transfer efficiency with increasing body size. The results suggest
that very general rules determine dominant trends in PPMR in diverse marine ecosystems,
leading to the ubiquity of size-based trophic structuring and the consistency of observed
relationships between the relative abundance of individuals and their body size.
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INTRODUCTION

Body size has a profound influence on the biology and

ecology of any animal, accounting for much of the

variation in rates of metabolism, energy use, production,

and mortality (Dickie et al. 1987, Brown et al. 2004,

Marquet et al. 2005, Woodward et al. 2005, Hildrew et

al. 2007). Plants and animals in marine food webs span

many orders of magnitude in body mass, from small

phytoplankton weighing ,10�15 g wet mass (Agawin et

al. 2000) to large predatory sharks of .106 g (Compag-

no 1984). Size-based predation is predominantly re-

sponsible for the transfer of energy from phytoplankton

to progressively larger animals and total production falls

with body mass as trophic level rises (Sheldon et al.

1972). Many marine animals grow by five to six orders

of magnitude in mass during their life cycle and fulfill a

number of trophic roles; thus individual body mass is

often a better indicator of trophic level than species

identity (Jennings et al. 2001). Knowledge of relation-

ships between the sizes of predators and their prey can

be used to predict the strength of predatory interactions,

the length of food chains (Reuman and Cohen 2004),

and the pathways of energy transfer in the food web.

The role of the predator–prey mass ratio (PPMR) in

describing the passage of energy in marine food webs

has long been recognized (Sheldon et al. 1972, Silvert

and Platt 1980, Moloney et al. 1991); and thus estimates

of mean PPMR and variability around the mean PPMR

are necessary as inputs to, or for validation of, models of

the structure and function of marine food webs (Sheldon

et al. 1972, Dickie et al. 1987, Andersen and Beyer 2006,

Blanchard et al. 2008) and subsets of those webs

(Duplisea and Kerr 1995, Hallowed et al. 2000, Shin

and Cury 2001, Hall et al. 2006, Pope et al. 2006).

PPMR determines the length of food chains, with

smaller PPMR leading to longer food chain length in a

community of given size composition. Thus PPMR can

be one way by which many interacting factors such as

resource availability, environmental stability, ecosystem

size, and colonization history (e.g., Briand and Cohen

1987, Pimm et al. 1991, Post 2002) might affect food

chain length (Jennings and Warr 2003) and therefore

permit animals feeding at high trophic levels to persist or

colonize. Changes in food chain length also affect the

efficiency of energy transfer from phytoplankton to

higher trophic levels and the bioaccumulation of

contaminants (Cabana and Rasmussen 1994).

Measurement of mean PPMR in entire food webs is

challenging, and estimates are usually based on dietary

studies for a small number of species in a relatively
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narrow size range. These estimates may or may not be

representative of values for other groups of species and

body sizes, or in other locations. For size windows in the

food web, typically of three to four orders of magnitude

in body mass, mean PPMR has been measured using

size-based nitrogen stable isotope analysis (Jennings et

al. 2008a). However, this approach is less easily applied

to smaller size classes with very variable dynamics and

has only been used in a few locations. To improve our

capacity to generalize about PPMR in marine food

webs, and its relationship with body size and the

environment, a complementary approach is to compile

information on PPMR from many studies in many

locations. Such attempts to generalize may be successful

since, within groups that have been intensively studied,

there can be remarkable consistency in prey size

selection among years (Rice et al. 1991).

Here, we analyze data from a published marine data

set (Barnes et al. 2008) to identify relationships between

predator size, prey size, environment (latitude, longi-

tude, primary production, temperature, depth, and

ecosystem), PPMR, trophic level and transfer efficiency.

Body sizes of predators span ten orders of magnitude

and environments range from the poles to the tropics.

METHODS

The analyses were based on a published consolidated

data set of nearly 35 000 predation events from 27

marine locations, with all records linked to studies in the

peer-reviewed literature (Barnes et al. 2008). The criteria

used to determine which data should be included in this

analysis were (1) that predators were sampled in the

natural marine environment, (2) that the location of the

study was identified, (3) that predators were identified to

genus or species, and (4) that predator and prey sizes

were measured and reported and, if necessary, could be

converted to mass. Records were selected from the data

set that included predator and prey mass data of

satisfactory quality (mass had either been measured or

could be estimated from length measurements using

length-mass relationships that were known for the

species, genus, family or at least general shape of the

organism; for details, see Barnes et al. [2008]).

Latitude and longitude were taken directly from the

original publication or determined from charts and

descriptions. Estimates of mean annual sea surface

temperature (SST) were derived from the moderate-

resolution imaging spectroradiometer (MODIS) data

collected by NASA terra-satellites. The satellites provide

thermal infrared remote sensing of global waters that we

analyzed at a resolution of 36 km. Monthly SST

averages for each year from 2001 to 2005 were extracted

through the Jet Propulsion Laboratory physical ocean-

ography DAAC web portal and mean annual SST

values calculated (data available online).5 Primary

production estimates were obtained for the years

2001–2004 at a 36 3 36 km resolution from the outputs

of a model that uses the approach of Longhurst et al.

(1995) to predict primary production from the surface

concentration of chlorophyll a pigment as measured by

the sea-viewing wide field-of-view sensor (SeaWiFS;

Mélin 2003). Depth was estimated using the General

Bathymetric Chart of the Oceans (GEBCO) digital atlas

(maintained and published by the British Oceanography

Data Centre, Proudman Oceanographic Laboratory,

Bidson Observatory, Birkenhead, Merseyside, UK).

Large Marine Ecosystem boundaries were defined using

NOAA shape files (available online).6

Predator mass and prey mass were log10-transformed

for all analyses, as logged values had distributions closer

to normal. Predator mass was treated as the independent

variable as it is usually measured or calculated with less

error than prey mass (prey removed from predator guts

are often damaged or deformed and prey may not be

identified to species thus requiring that general rather

than species-specific relationships are used to convert

length measurements to mass) and because prey size

choice is made by the predator. Owing to the potential

biases introduced by nonindependence of data (multiple

records for the same predator, multiple predators of the

same species, and multiple predator species at the same

site), mixed effects models (Pinheiro and Bates 2000)

coded in R (R Development Core Team 2007) were used

to investigate relationships between log10(PPMR) and

the factors log10(predator mass), predator species, study

location, individual predator identifier, ecosystem,

depth, mean annual sea surface temperature, mean

primary production, and latitude; incorporating them as

nested random effects or as fixed effects as appropriate

(see results for structures and properties of selected

models).

Our analyses are based on diet data and thus describe

realized PPMR, a function of the range of prey sizes

available in the environment and prey size selection by

the predator (Ursin 1973). These two processes are often

parameterized independently in food web models but

cannot be distinguished here because there is no

information on the sizes of prey encountered by

individual predators in their environment. Some re-

searchers have attempted to predict or measure the

range of prey sizes available in the environment to

determine prey size selection. However, the efficacy of

such approaches is difficult to judge when we do not

know how the range of prey sizes encountered by an

individual predator reflects the range of prey sizes in the

environment. The ideal way of determining prey size

selection would be through observation of prey encoun-

ters and feeding events by individual predators, a

possibility in small experimental systems but not yet

5 hhttp://poet.jpl.nasa.govi 6 hhttp://www.edc.uri.edu/lme/gisdata.htmi
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feasible for the range of predators and environments

considered here.

Body size-related changes in realized PPMR would be

expected to lead to size-related changes in trophic

transfer efficiency (e, the ratio of the production of a

trophic level or mass category to that of its prey) if the

slopes (b) of time-averaged size-spectra are relatively

constant among ecosystems and across body size classes,

as proposed by Boudreau and Dickie (1992). The size

spectrum is the relationship, often linear, between the log

numbers of individuals in log body mass categories and

the category centers. If Boudreau and Dickie’s (1992)

examples are representative, then we can predict how

changes in PPMR (l) with body mass will affect e. The
slope of the numbers spectrum at equilibrium can be

approximated as b ¼ (log e/log l) � 0.75 (Borgmann

1987, Andersen et al. 2008) where 0.75 is the assumed

scaling of consumption (assumed to be driven by

metabolic rate) with body mass. Thus, log e ¼ log l 3

(b þ 0.75) or e ¼ lbþ0.75.

If trends in PPMR based on studies in many locations

are indicative of trends in complete food webs in one

location, then the rate of change of PPMR with body

mass as determined by the linear mixed effects models of

this study reflects the rate of change of PPMR with body

mass in complete local food webs. The mean trophic

level (k) of animals of body mass W in a food web

depends on PPMR (l), as well as on the body mass Wr

and the trophic level kr of animals in a reference body

mass class for which trophic level is known or assigned

(Jennings et al. 2008b). Following Jennings et al. (2008b,

their equation 2.10, expressed here using the current

notation),

kx ¼
log Wx � log Wr

l
þ kr

if the PPMR, l, is constant. Replacing the fixed PPMR

in the denominator with a mean value to account for the

observed relationship between PPMR and body mass,

and adopting subscript x to refer to the body mass class

for which k will be determined,

kx ¼
log Wx � log Wr

0:5ðlog lx þ log lrÞ
þ kr: ð1Þ

Trophic levels were estimated assuming kr¼4 whenW

¼ 10 g. This assumption influences the absolute but not

the relative values of k.

RESULTS

A total of 29 582 records from 21 locations identified

in 23 studies (Table 1) met the criteria for inclusion;

13 361 individual predators of 92 species and 183 types

of prey were represented. Data were from a range of

habitats, from a shallow estuary to an oceanic gyre.

Mean sea surface temperature ranged from �18C to

nearly 308C and average primary production from 90 to

1740 mg C�m�2�d�1.
Predators were larger than their prey in 99.8% of cases

and prey mass increased with predator mass in all

locations, with 20 of the 21 relationships significant at

the 5% level (Fig. 1, Table 2). In 11 of the 21 locations,

PPMR increased with predator mass, in two locations

PPMR decreased and in the remaining eight PPMR

TABLE 1. Data sources for predator and prey mass data with environmental information, for all study locations.

Code Location Large marine ecosystem Latitude Longitude Depth (m)

1 Greenland East Greenland Shelf 608000 N 1408000 W 2686
2 Strait of Georgia Gulf of Alaska 498000 N 1238000 W 127
3 Apalachicola Bay, Florida Gulf of Mexico 298400 N 1858100 W 30
4 Gulf of Alaska Gulf of Alaska 568500 N 1568000 W 209
5 Off the Bay of Biscay NE Atlantic 448000 N 1168000 W 3798
6 Gulf of Maine, New England, USA NE US Continental Shelf 428000 N 1708000 W 20
7 Mid Atlantic Mid Atlantic 398500 N 1738000 W 48
8 Great South Bay, Long Island,

New York, USA
NE US Continental Shelf 408100 N 1738100 W 52

9 Antarctic Peninsula Antarctic 638000 S 1588000 W 881
10 Antarctic Peninsula Antarctic 628000 S 1558000 W 1752
11 Oxwich Bay, Wales Celtic-Biscay Shelf 518520 N 1048100 W 8
12 French Polynesian EEZ Mid Pacific 128000 S 1448000 W 4785
13 Northeast North Sea and Skaggerak North Sea 578000 N 1088000 E 31
14 Western Greenland West Greenland Shelf 668200 N 1568000 W 215
15 Andaman Sea (west of south Thailand) Bay of Bengal 088240 N 1978530 E 371
16 Celtic Sea, Europe Celtic-Biscay Shelf 508500 N 1088000 W 102
17 Off the Bay of Biscay NE Atlantic 458000 N 1188000 W 4562
18 Catalan Sea Mediterranean Sea 408550 N 1028400 E 1783
19 Western North Pacific Kuroshio Current 378000 N 1438000 E 3322
20 Atlantic Ocean NE US Continental Shelf 408000 N 1718000 W 677
21 Eastern Mediterranean Mediterranean Sea 388000 N 1238000 E 75

Total

Note: Codes refer to the codes used for study locations in Tables 2 and 3 and Figs. 1 and 2.
� Data used with permission of Northwest Atlantic Fisheries Organization.
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FIG. 1. Relationship between the body mass of predators and their prey by location. Locations are numbered following Table
1, and the numbers are centered on the means of log10(predator) and log10(prey mass). Solid lines show significant relationships, as
estimated from a linear mixed effects model, between log10(prey mass) and log10(predator mass) in 20 of the 21 locations (PPMR¼
predator–prey mass ratio). Mass was measured in grams. The dotted line identifies a nonsignificant slope in one location. The
dashed line is the 1:1 relationship. Separate slopes and intercepts are estimated for each location, with random effects for predator
species and for predator individuals within species.

TABLE 1. Extended.

Temperature (8C)
Primary production
(mg C�m�2�d�1)

No. predator–prey
pairs

No. individual
predators Reference

6.3 233 49 23 Bainbridge and McKay (1968)�
10.5 1739 606 405 Barraclough (1967)
24.1 866 115 78 Bethea et al. (2004)
7.6 782 43 14 Brodeur (1998)
15.6 469 827 77 Chancollon et al. (2006)
10.6 1414 1909 196 Chase (2002)
14.1 1031 113 113 Hunsicker and Essington (2006)
13.9 1142 297 101 Juanes and Conover (1995)

�1.3 230 2103 683 Kellermann (1987, 1990)
�1.1 245 105 90 Kellermann (1989)
12.2 1399 1315 35 Lancaster (1991)
28.4 316 4011 233 Menard et al. (2006)
10.4 946 21 21 Munk (1997)
2.1 357 163 163 Munk (2002)
29.0 91 34 34 Ostergaard et al. (2005)
12.9 607 2091 499 Pinnegar et al. (2003)
15.4 437 3585 39 Pusineri et al. (2005), Quéro et al. (2004)
18.9 524 420 244 Sabates and Saiz (2000)
17.9 601 414 110 Sassa and Kawaguchi (2004)
15.1 867 10 994 10 191 Scharf et al. (2000)
19.3 435 367 12 Stergiou and Fourtouni (1991)

29 582 13 361
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increased in three and decreased in five, although the

relationship was not significant at the 5% level (Table 3).

These results are based on a model with fixed effects

allowing a different slope and intercept for each of the

21 locations and random effects for predator species,

and predator individuals within species, fitted to the

whole data set. Conditional F tests of the model terms

showed that (1) when location-specific slopes in the full

model were constrained to be equal, model fit was very

slightly but significantly reduced (F ¼ 4.3, df ¼ 20,

16 196, P , 0.001); (2) further constraining the common

slope to be 0 caused a substantial and significant

reduction in fit (F ¼ 269.3, df ¼ 1, 16 196, P , 0.001);

and (3) still further constraining location-specific inter-

cepts to be the same caused a substantial and significant

reduction in fit (F ¼ 35.7, df ¼ 20, 13 253, P , 0.001).

TABLE 3. Predator–prey body mass relationships in each study location and associated linear mixed effects statistics.

Code

Slope, b Constant, a

Mean 95% CI df P Mean 95% CI df P

1 0.22 �0.80, 1.24 20 0.227 2.88 2.51, 3.25 26 ,0.001
2 0.38 0.22, 0.54 191 ,0.001 4.62 4.53, 4.71 395 ,0.001
3 0.56 �0.27, 1.39 69 ,0.001 0.04 �0.20, 0.28 69 0.921
4 �1.79 �3.07, �0.51 12 0.353 3.71 �0.29, 7.71 29 ,0.001
5 0.45 �0.65, 1.55 75 ,0.001 1.08 0.86, 1.30 750 0.050
6 0.08 �2.32, 2.48 1712 0.722 3.44 2.98, 3.90 1712 0.004
7 �0.32 �1.18, 0.54 111 0.185 2.57 2.09, 3.05 111 ,0.001
8 0.27 0.07, 0.47 195 0.002 1.40 1.23, 1.57 195 ,0.001
9 0.41 0.34, 0.48 1419 ,0.001 5.21 5.15, 5.27 1419 ,0.001
10 0.52 0.09, 0.95 88 0.007 1.21 0.83, 1.59 88 ,0.001
11 �0.66 �1.08, �0.24 33 0.087 2.43 1.67, 3.19 1280 ,0.001
12 0.53 �0.62, 1.68 230 ,0.001 1.65 1.41, 1.89 3778 0.005
13 0.35 0.10, 0.60 19 0.002 4.43 4.23, 4.63 19 ,0.001
14 �1.23 �1.74, �0.72 160 ,0.001 1.62 1.10, 2.14 160 ,0.001
15 0.50 �0.08, 1.08 29 ,0.001 4.59 4.37, 4.81 29 ,0.001
16 0.12 �0.17, 0.41 1591 0.001 1.54 1.47, 1.61 1591 ,0.001
17 �2.08 �8.36, 4.20 36 0.014 11.63 9.99, 13.27 3546 ,0.001
18 �0.15 �0.79, 0.49 175 0.190 3.42 3.19, 3.65 238 ,0.001
19 0.13 �0.40, 0.66 107 0.255 3.57 3.34, 3.80 304 ,0.001
20 0.24 0.01, 0.47 802 ,0.001 1.37 1.33, 1.41 10 173 ,0.001
21 �0.12 �0.64, 0.40 10 0.291 1.13 0.89, 1.37 355 ,0.001

Notes: Codes refer to the codes used for study locations in Table 1. For each location, relationships were expressed as
log10(PPMR) ¼ a þ b 3 log10(predator mass), with predator species and individual predators within species as random factors.
PPMR is the predator–prey mass ratio.

TABLE 2. Predator–prey body mass relationships in each study location and associated linear mixed effects statistics.

Code

Slope, b Constant, a Mean of
log10(predator

mass)

Mean of
log10(prey
mass)Mean 95% CL df P Mean 95% CL df P

1 0.78 0.41, 1.15 20 ,0.001 �2.88 �3.90, �1.86 26 ,0.001 �2.08 �4.58
2 0.62 0.53, 0.71 191 ,0.001 �4.62 �4.78, �4.46 395 ,0.001 �0.95 �5.32
3 0.44 0.20, 0.68 69 ,0.001 �0.04 �0.87, 0.79 69 0.921 3.53 1.45
4 2.79 �1.21, 6.79 12 0.158 �3.71 �4.99, �2.43 29 ,0.001 0.30 �3.00
5 0.55 0.33, 0.77 75 ,0.001 �1.08 �2.18, 0.02 750 0.050 4.87 1.53
6 0.92 0.46, 1.38 1712 ,0.001 �3.44 �5.84, �1.04 1712 0.004 5.10 1.15
7 1.32 0.84, 1.80 111 ,0.001 �2.57 �3.43, �1.71 111 ,0.001 1.78 �0.21
8 0.73 0.56, 0.90 195 ,0.001 �1.40 �1.60, �1.20 195 ,0.001 1.10 �0.58
9 0.59 0.53, 0.65 1419 ,0.001 �5.21 �5.28, �5.14 1419 ,0.001 �0.88 �5.79
10 0.48 0.42, 0.54 88 0.013 �1.21 �1.64, �0.78 88 ,0.001 �1.08 �1.78
11 1.66 0.90, 2.42 33 ,0.001 �2.43 �2.85, �2.01 1280 ,0.001 �0.54 �3.59
12 0.47 0.23, 0.71 230 ,0.001 �1.65 �2.80, �0.50 3778 0.005 4.25 0.21
13 0.65 0.45, 0.85 19 ,0.001 �4.43 �4.68, �4.18 19 ,0.001 �1.20 �5.21
14 2.23 1.71, 2.75 160 ,0.001 �1.62 �2.13, �1.11 160 ,0.001 �0.85 �3.43
15 0.50 0.28, 0.72 29 ,0.001 �4.59 �5.17, �4.01 29 ,0.001 �2.45 �5.84
16 0.88 0.81, 0.95 1591 ,0.001 �1.54 �1.83, �1.25 1591 ,0.001 2.74 1.07
17 3.08 1.44, 4.72 36 0.001 �11.63 �17.91, �5.35 3546 ,0.001 3.78 �0.36
18 1.15 0.92, 1.38 175 ,0.001 �3.42 �4.06, �2.78 238 ,0.001 �2.63 �6.48
19 0.87 0.64, 1.10 107 ,0.001 �3.57 �4.10, �3.04 304 ,0.001 �2.19 �5.50
20 0.76 0.72, 0.80 802 ,0.001 �1.37 �1.60, �1.14 10 173 ,0.001 2.97 0.93
21 1.12 0.88, 1.36 10 ,0.001 �1.13 �1.65, �0.61 355 ,0.001 1.27 0.36

Notes: Codes refer to the codes used for study locations in Table 1. For each location, relationships were expressed as log10(prey
mass)¼ a þ b 3 log10(predator mass), with predator species and individual predators within species as random factors.
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Differences among slopes in the unconstrained model

were not related to predator mass (Fig. 2), temperature,

depth, primary productivity, latitude, longitude or

ecosystem (all P . 0.05, ordinary least squares

regression). These results suggest it is reasonable to use

a simpler model with a common slope for all locations

henceforth (constraint 1 above): while the complex

model was a slightly better fit, the small additional

explanatory power was not worth the 20 additional

parameters, which reduced interpretability and which

appeared to vary randomly. The validity of this

approach was confirmed by the nearly identical predict-

ed values of the unconstrained model and the model

with slopes equal but with no further constraints

(Pearson correlation r ¼ 1.00, t ¼ 13 749, df ¼ 29 580,

P , 0.001).

A mixed effects model for log10(PPMR) vs. log10(pred-

ator mass) was fitted with a common slope for all

locations, but intercepts differing by location according

to a random effect. Random effects were also included

for predator species within location, and predator

individual within species. This model differed from the

simpler model of the previous paragraph only insofar as

the intercepts of the new model were random effects,

whereas those of the previous model were fixed effects

(implications of the nested random effects are shown in

Fig. 3). The fitted model had a (common) slope for the

generalized relationship between log10(predator mass)

and log10(PPMR) of 0.24 (0.21–0.27; mean and 95%

CL), and random intercepts by location of 2.66 (2.08–

3.24). When the analyses were repeated with invertebrate

predators excluded, the generalized slope and mean

intercept did not differ significantly from those calculat-

ed for all predators.

Since the predators in the data set were primarily fish

and squid, and since these groups dominate the biomass

of animals in size classes 101 to 106 g (e.g., Jennings et al.

2008b), we assumed that the trend in PPMR in this size

range was representative for organisms greater than 10 g

in all marine food webs. PPMR as predicted by the fixed

effects of the final model ranged from 805:1 for

predators of 101 to 13 239:1 for predators of 106 g. For

b ¼�1.05, a typical slope of the numbers size spectrum

(e.g., Borgmann 1987, Boudreau and Dickie 1989,

Andersen et al. 2008), the corresponding transfer

efficiencies would be 0.134 and 0.058, respectively (Fig.

4a), i.e., transfer efficiency fell with body mass. Since

PPMR increased with predator size, the rate of increase

in trophic level fell with body mass (Eq. 1; Fig. 4b), and

transfer efficiency decreased at higher trophic levels

(Fig. 4c).

DISCUSSION

Predator–prey mass ratios generally increased with

predator mass. The specific nature and magnitude of the

change of PPMR with predator body mass varied

FIG. 2. Relationship between the mean of the log10(body mass) of the predators sampled in each location and the slope of the
dependence of log10(PPMR) in the location on log10(predator body mass), as estimated from linear mixed effects models. Mass was
measured in grams. Locations are numbered following Table 1. Significant slopes are identified by solid black circles. The models
used here had the response variable log10(PPMR); separate slopes and intercepts were estimated for each location, with random
effects for predator species and for predator individuals within species. The dotted line identifies the slope of the linear mixed effects
model with a common slope in all 21 locations.
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among locations, but this change was not significantly

influenced by temperature, latitude, depth or primary

production. Unmeasured environmental factors or

methodological factors such as the species selected for

analysis in each location may explain some of the

deviations of individual studies from the general increase

in PPMR with predator body mass, as a power law with

exponent 0.24.

The increases in PPMR with predator mass led to

nonlinear relationships between log(body mass) and

trophic level and suggest that there are reductions in

transfer efficiency with increasing body size. The

analyses of the effects of changing PPMR on transfer

efficiency are predicated on the assumption that size

spectra slopes are constant across the body mass range

of a system. This is a reasonable assumption that is

supported by data for time-averaged size spectra that

include all animals in marine food webs (Boudreau and

Dickie 1992). If size spectrum slopes are broadly

constant among ecosystems and a function of transfer

efficiency and PPMR, as suggested by theory (Borg-

mann 1987, Boudreau and Dickie 1989, Brown and

Gillooly 2003, Brown et al. 2004, Andersen et al. 2008)

and supported by some empirical evidence (Jennings and

Mackinson 2003, Blanchard et al. 2008) then transfer

efficiency must decrease when PPMR increases and must

not vary systematically with temperature or primary

production, since PPMR was found here not to vary

with those factors. This is consistent with the observa-

tion that primary production determines the intercept

rather than the slope of size spectra and that temper-

ature acts predominantly to alter the rate at which

energy is passed through the spectrum rather than its

slope (Boudreau and Dickie 1992). These broad

characteristics of size spectra, although not the focus

of the present research, can belie complex dynamics that

result from spatial and temporal variations in primary

production, PPMR and transfer efficiency and which

may not be apparent or detectable when observations

are averaged over time, space and a range of body mass

classes (Pope et al. 1994, Blanchard et al. 2008).

Since PPMR varied systematically with body size but

not with temperature or primary production, the rate of

increase of trophic level with body size is not predicted

to vary systematically among ecosystems. This implies

that the rate of decrease in energy availability for a given

increase in body size is broadly comparable among

ecosystems. The nonlinearity of the relationship between

trophic level and logged body size was inconsistent with

commonly held theoretical assumptions and with the

FIG. 3. Predictions of a linear mixed effects model with a common slope for all locations and nested random intercept effects
for location, predator species within location, and predator individual within predator species. Predictions are based on (a)
including all the random effects, (b) excluding the random effects of predator individual, (c) additionally excluding the random
effects of predator species, and (d) additionally excluding the random effects of location. Mass was measured in grams.

CAROLYN BARNES ET AL.228 Ecology, Vol. 91, No. 1



results of the few empirical studies of community-wide

PPMR. If this effect is real, as implied by the predator

and prey mass data assembled, then it is perhaps not

surprising that it has not been assumed or detected when

the deviations from linearity are relatively subtle over

narrow size windows (three to four orders of magnitude

in body mass) and thus the potential to detect these

deviations statistically would be low when applying

methods such as size-based stable isotope analysis

(Jennings et al. 2008a).

One consequence of increasing PPMR with size is that

it allows predators to feed down the food chain on

relatively smaller prey that have greater total produc-

tion. However, theoretical analyses suggest that preda-

tors feeding on prey much smaller than themselves can

destabilize size spectra (Law et al. 2009). Higher PPMR

for some larger predators may only be possible in real

food webs because they have greater capacity to store

energy over longer periods and to forage over larger

scales, thus reducing their vulnerability to local changes

in prey dynamics. Extreme examples include the large

sharks such as Rhincodon typus (whale shark), which

feeds on zooplankton nine orders of magnitude smaller,

and Cetorhinus maximus (basking shark), which forages

on oceanic scales (e.g., Sims et al. 2003).

As each record in the data set represents an individual

predator and all available records were included, the

number of observations is proportional to the abun-

dance of each species in the data set. To avoid treating

each observation as independent we used a mixed effects

model, which reflects the average effects on PPMR

across location and species, rather than reflecting the

number of individuals per species. This is similar to

taking an average from sampling designed to give equal

representation of species although we recognize that the

different motivations of the original investigators mean

their sampling designs do not necessarily allow us to

achieve this.

Most predators in the data set of this study were fish

(91 fish species and only one species of squid). These

groups typically dominate the biomass and production

of marine animals with body sizes of 10 g to 106 g, but

are minor contributors to the biomass of animals with

body sizes less than 1 g. As such, the estimated

dependence of PPMR on body mass described in this

study is probably indicative of PPMR for marine food

webs only in the size range 10–106 g. PPMR of fish and

squid is likely a consequence of their morphologies and

feeding modes, which have developed through evolu-

tionary time. These species often rely on visual

identification and pursuit of prey (e.g., Hunter 1981).

Other animals of the same size and smaller, such as

zooplankton, have evolved a wider range of feeding

strategies such as filter feeding that allow them to

consume very small prey.

Sheldon et al. (1977) expressed realized predator–prey

size ratios for a range of zooplankton in terms of

equivalent spherical diameter (ESD), and concluded that

the modal ratio was around 14:1. If weight is propor-

tional to ESD3 this is equivalent to a PPMR of 2744:1.

Hansen et al. (1994) reported a median ratio based on

ESD of approximately 10:1 (PPMR ¼ 1000:1). Given

FIG. 4. (a) Relationship between PPMR (continuous line),
transfer efficiency (dashed line), and predator mass; (b)
relationship between trophic level and predator mass (measured
in grams) from Eq. 1; and (c) relationship between PPMR
(continuous line), transfer efficiency (dashed line), and trophic
level. These plots are based on the central tendency of the linear
mixed effects model (log10[PPMR] ¼ 0.24 3 log10[predator
mass]þ 2.66), and on the dependency e¼ lbþ0.75 where e is the
trophic transfer efficiency, l the predator–prey mass ratio, and
b the slope of the time-averaged size spectrum.
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that invertebrate zooplankton dominate biomass and

production in small size classes, these results, when

combined with those from the present study, imply that

mean PPMR in the community probably decreases

gradually with decreasing predator size, but not so

rapidly in the smaller size classes as implied by the

relationship for fish and squid. Invertebrate zooplank-

ton were not included in our analysis owing to limited

information on individual prey size.

Transfer efficiency is widely assumed to be unrelated

to trophic level and yet our results suggest that it may

decrease with increasing trophic level, as previously

suggested by some modelers (e.g., Christensen and Pauly

1993). High rates of transfer efficiency have been

measured in plankton communities (Hairston et al.

1993, Cebrian 1999, Elser and Hessen 2005) but there

are few systematic assessments of transfer efficiency

through food chains that are independent of model

structures and assumptions (e.g., Ware 2000). Our

results suggest that the assumption that transfer

efficiency is unrelated to trophic level could usefully be

revisited and that modelers might like to look at the

consequences of changing PPMR with size (either for

the whole community or a subset thereof ).

Estimates of mean PPMR in food webs would be

improved by more systematic analyses of the realized

prey size selection by all individuals in all size classes,

either through stomach contents analysis or nitrogen

stable isotope analysis. Given the very variable dynamics

of smaller individuals and the difficulty of reliably

recording and measuring prey that are digested very

rapidly, it is unrealistic to expect that these methods

could be applied to many food webs. Our approach is a

compromise, synthesizing the results from many studies

and locations to make inferences about trends in mean

PPMR with predator size, and among ecosystems. Not

surprisingly, the analyses reveal variation in realized

PPMR among locations, a result consistent with the

diversity of species and feeding strategies studied. Such

variation is expected in food webs (Sheldon et al. 1977,

Cohen et al. 1993, Hansen et al. 1994, Brose et al. 2006),

but of greater relevance in the present context are the

generalities occurring across locations and that these

generalities provide insight into size-related, rather than

species-related, structure and energy flux which are not

systematically related to the environment.
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Quéro, J. C., R. Bellail, J. Spitz, J. Tardy, and J. J. Vayne. 2004.
Observations ichthyologiques effectuées en 2003. Annales de
la Societe des Sciences naturelles de la Charente-Maritime
9(4):367–370.

R Development Core Team. 2007. R: a language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Reuman, D. C., and J. E. Cohen. 2004. Trophic links’ length
and slope in the Tuesday Lake food web with species’ body
mass and numerical abundance. Journal of Animal Ecology
73:852–866.

Rice, J. C., J. G. Daan, J. G. Pope, and H. Gislason. 1991. The
stability of estimates of suitabilities in MSVPA over four
years of data from predator stomachs. ICES Marine Science
Symposia 193:34–45.

Sabates, A., and E. Saiz. 2000. Intra- and interspecifc variability
in prey size and niche breadth of myctophiform fish larvae.
Marine Ecology Progress Series 201:261–271.

Sassa, C., and K. Kawaguchi. 2004. Larval feeding habits of
Diaphus garmani and Myctophum asperum (Pisces: Mycto-
phidae) in the transition region of the western North Pacific.
Marine Ecology Progress Series 278:279–290.

Scharf, F. S., F. Juanes, and R. A. Rountree. 2000. Predator
size–prey size relationships of marine fish predators: inter-
specific variation and effects of ontogeny and body size on

trophic-niche breadth. Marine Ecology Progress Series 208:
229–248.

Sheldon, R. W., A. Prakash, and W. H. Sutcliffe. 1972. The size
distribution of particles in the Ocean. Limnology and
Oceanography 17:327–340.

Sheldon, R. W., W. H. Sutcliffe, and M. A. Paranjape. 1977.
Structure of pelagic food chain and relationship between
plankton and fish production. Journal of the Fisheries
Research Board of Canada 34:2344–2353.

Shin, Y.-J., and P. Cury. 2001. Exploring fish community
dynamics through size-dependent trophic interactions using a
spatialized individual-based model. Aquatic Living Resourc-
es 14:65–80.

Silvert, W., and T. Platt. 1980. Dynamic energy-flow model of
the particle size distribution in pelagic ecosystems. Pages
754–763 in W. C. Kerfoot, editor. Evolution and ecology of
zooplankton communities. University Press of New England,
Hanover, New Hampshire, USA.

Sims, D. W., E. J. Southall, A. J. Richardson, P. C. Reid, and
J. D. Metcalfe. 2003. Seasonal movements and behaviour of
basking sharks from archival tagging: no evidence of winter
hibernation. Marine Ecology Progress Series 248:187–196.

Stergiou, K. I., and H. Fourtouni. 1991. Food habits,
ontogenetic diet shift and selectivity in Zeus faber Linnaeus,
1758. Journal of Fish Biology 39(4):589–603.

Ursin, E. 1973. On the prey size preferences of cod and dab.
Meddelelser fra Danmarks Fiskeri-og Havundersogelser 7:
85–98.

Ware, D. M. 2000. Aquatic ecosystems: properties and models.
Pages 161–194 in P. J. Harrison and T. R. Parsons, editors.
Fisheries oceanography: an integrative approach to fisheries
ecology and management. Blackwell Science, Oxford, UK.

Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya,
J. M. Olesen, A. Valido, and P. H. Warren. 2005. Body size in
ecological networks. Trends in Ecology and Evolution 20(7):
402–409.

CAROLYN BARNES ET AL.232 Ecology, Vol. 91, No. 1



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


