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Executive Summary

Prior to the miell980s, steel girder bridges were designed wittetail susceptible to
distortioninduced fatigue crackingwWhile a number of retrofineasurefiave been developed to
repair this problem, many of those retrofits have {rgn performance issues or are difficult
and expensive to implement. Recent agske at the University of Kansas has focused on the
development of a new retrofifheasurethat could be effective in repairing distortiorduced
fatigue cracking while also being inexpensive and easier to install than currently available
retrofits. This new retrofitmeasure r ef erred 4with-pdatebereangfes,
problematic region and redistributes distortinduced fatigue stresses awé&pm cracking
prone areasBy eliminating the need for cumbersome installation proceduresarigleswith-
plate retrofit also provides a more economical repair that can be implemented with minimal
traffic interruptions.

This dissertation is presented in three parts and appendices. [prastides a brief
overview of distortioAinduced fatiguecracking and the development of the angléh-plate
retrofit. Part Il givesdetails and findingsf anexperimental investigation of the performance of
the angleswith-plate retrofit and a stiffened version of the angléth-plateretrofit on a 9.1 m
(30 ft.) laboratory test bridge. Part Il describes field and analytical tests performed on an active
steel girder bridge system near Park City, Kansas on which the -avitiigslate retrofit was
used as a repair for distortiamduced fatigue cracking.
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Par:tt nt roducti on

Distortion Induced-Fatigue in Steel Bridges

Prior to the miell980s, steel girder bridges in the United States were constructed without
a positive connection between the cross frame connection stiffenetiseagictier flanges. This
lack of connection createdl flexible region between the web, flange, and connection stiffener
known as a fdweb gap. o Due to di f taeseckbyt i al
loading under trafficthese web gap regions exipacedlargeout-of-plane rotations ahe cross
frame connections Theserepeatedut-of-plane rotations caused distortiorduced fague and
led to severe cracking in the wghp

Although the 1983 American Association of State Highway and Transportation Officials
(AASHTO) Bridge Design Specification addressed the issue of distartchrced fatigue
cracking in new steel bridge designs, bridges designed before 1983 thtll aveservicetoday
hawe these flexible web gap regiondMany of the web gap regions in these bridges have
experienced igtortion-induced fatigue crackingvhich could lead to severe structural damage if
allowed to propagate further into the girder welihus repairs must be installed taitigatethe
growth of dstortioninduced fatigue cracks in these steel bridges.

Angleswith-Plate Retrofit

Performance and installation issues encountered when cisirently availablenethods
to repair distortioinduced &tigue crackingled to the research and development of a new
retrofitting technique at the University of Kansas. Ttashnique t er med -witihe fiang
plateo retrofit, has been the f ocusinadditomumer o
to ensuring that the anglegth-plateretrofit would be an effectiveepairstrategy, investigators
at the University of Kansas alswantedit to be aretrofit measurehatcould simplify installation
and have the ability to be installed under traffic.

One of the most commorcurrenttechnique used torepair distortioAnduced fatigue
cracking involves bolting backo-back angleso the connection stiffener and girder flange.
While this technique has praveo be effective, it is often difficult to implemé Since
attachmento the girder flangenust occuy installation in the top web gap requires bridge deck

removal, a costly process that can majorly disrupt trafidditionally, in bridges where cross
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frame members extend into tiaertical plane of tle girder flange, cross frame members must be
removed before installing the batikback angles to girder flange retrofithich can complicate
installationof the retrofitin both the top and bottom web gap regions.

The angleswith-plate retrofit technique addresses thesgallationissues by eliminating
connectiona the girder flange. Instead, positive connection is provided between the connection
stiffener andhe girderweb. The anglesvith-plate retrofit is nade up of gair ofanglesand a
backing platethat are applied on gposite sides of the girder welOne leg of each angle is
bolted to the connection plate while the otherdégach angles bolted through thgirder web
to the backing plate.Since noconnection to the girder flange is required, installation of the
angleswith-plate retrofit does not require removal of the bridge deck when installed in the top
web gap. Additionallythe anglesvith-plate retrofit is unlikely to necessitate cross frame
removal, since installation can often take place without the need to go through an outstanding leg
of across frame memberBy eliminating the need to remove vital structural members during
installation, the anglewith-plate technique provides a repdar distortioninduced fatigue
cracking that is simpler to install and requires less neeldific interruption.

Physical and analyticalstudieson a 2.8 m (9.3 ft.) steel girder and cross frame
subassemblyt the University of Kansas focused on evahgathe performance of the angles
with-plate retrofit undeonly out-of-plane bending effects. The sucdabperformanceof the
angleswith-plate retrofit in these studies led to largerren extensive investigations. The
angleswith-plate retrofit wasassessed in physical and analytical studies on a 9.1 m (30 ft.) long
threegirder test bridge and in a fedlcale analytical study of an active bridge sysierated near
Park City, KS(Kansas Bridge 13B87(043/044) all of which considered not onlput-of-plane
but alsoin-plane bending effectsResults from the 2.8 m (9.3ft.) girder subassembly and 9.1 m
(30 ft.) test bridge physical investigations showed thgilieation of the anglewith-plate
retrofit effectively reduced owbf-plane rotations in theveb gap region anchitigated distortiorn
induced crack propagan. Additionally, finite element analyses of the 2.8 m (9.3ft.) girder
subassembly, 9.1 m (30 ft.) test bridge, andctive bridge system showed that the arglib-
plate retrofitreducedstress demands in the web gap regions

Effective performance of the anglesth-plate retrofitled investigators at theniversity
of Kansasto recommendhe use of theretrofit to the Kansas Department of Transportation

(KDOT) on Kansas Bridgel35-87(043/044) the active bridge system studied in the-fdale
.,



analytical investigation mentioned previousliansas Bridge 1387(043/044)s a steel girder
twin bridge structurghat has experienceektensive distortiofinduced fatigue cracking its
web gap regions. Upon acceptance of the recommendation, KDOT installed thevatigles
plate retrofiton the twin bridge structure To assess the performance fué tetrofit in an active
bridge investigators at the University of Kansas monitdfadsas Bridge 1387(043/044)oth
before and after installation of the angleish-plateretrofit under live truck loads.

Part Il of this dissertatiodetailsthe physical tests performed on the 9.1 m (30 ft.) three
girder test bridgand presents findingmnahe performancef both theangleswith-plate retrofit
and astiffened version ofite angleswith-plate retrofit in mitigating distortioimduced fatigue
cracking. Part Il of this dissertatiorexpounds on the history of distortiimduced fatigue
crackng in Kansas Bridge 1387(043/044)and thefindings that led to recommendation of the
angleswith-plate retrofit for its repair.Details of the field tests performed #mnsas Bridge
135-87(043/044)oth before and after installation of the angleth-plate retrofit are provided,
along with comparisons of tHeeld test resultdo complementaryinite element analyses of the
bridge In addition, Part 11l also provides results fronswpplementaryinite element analysis
that investigated théehaviorof the top web gap under application of the angleth-plate

retrofit.
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ParltExperi ment al l nvest ndatednFatfti Duest
in 9.1 m [30 ft.] Test Syste

Kathleen S. McElrath
Amanda S. Hartmah
Caroline RBennett
Adolfo B. Matamoro$
Stanley T. Rolf2

Abstract

With infrastructure in the United States deteriorating at an alarming rate, repair of
existing roadway bridges is critical for state highway agencies to responsibly allocate scarce
resources. For steel bridges that were constructed prior to th&98@s$, distortioninduced
fatigue cracking can be seriousproblem. Retrofit or repair techniques currently used in the
field may not completely halt crack growth and/or can be expensive to implement. A distortion
induced fatigue repair technique that is coomig implemented in the field is to provide positive
connection between the transverse connection plate and girder flange. However, this technique
often requires partial removal of the concrete deck to access the top of the flange to make the
connection.

To address these concerns, an innovative retrofit technique developed at the University of
Kansas was analyzed to determine its effectiveness as a distodiaed fatigue repair and its
suitability for field implementation. The approachiaken by theauthors vas to us a retrofit
t er me d -withapnl galthe¢sdilized two angle segments and a backing plate to connect the
girder connection plate and the web.

To investigate the performance of this retrofit, a-®.130-ft] long threegirder test
bridge was constructed and tested under fatigue loading to develop, and subsequently repair,
distortioninduced fatigue cracking. A total of 28 test trials were performed with varying load

! Kathleen S. McElrath, Graduate Research Assistant, University of Kansas, 153t 8., 1Bwrence, KS 66045
2 Amanda S. Hartman, Graduate Research Assistant, Unjvefsdiansas, 1530 W. 155t., Lawrence, KS 66045
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“* Adolfo B. Matamoros, PhD, Peter T. Flawn Distinguished Professor, University of Texas Aneip, One
UTSA Cir., San Antonio, TX 78249
® Stanley T. Rolfe, PhD, PE, A.P. Learned Distinguished Professor, University of Kansas, 1530" \8t.,15
Lawrence, KS 66045
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ranges to assess the effectiveness and applicability of the -avihigsate retrofit. In addition

to assessing retrofit performance, crack growth as well as girder deflections and strains were
monitored. It was found that retrofit application redueetb gaprotation, while the diagonal

cross frame angle framing into th@p web gap experienced ancrease in tensile strai When
implemented with crachrrest holes, the anglavith-plateretrofit performed well at mitigating

distortioninduced fatigue cracking in steel girders.

Introduction

During and prior to the 1970snany steel bridges were constructed withouich
knowledge of structural fatigueSeveralstructural failureoccurredin Europein the 1930s that
involved bridges in whiclkeross frame or diaphragm connection plates were weldedtly to
tension flangs (Fisher and Keating 1983herefore,common practice until 1985 was to not
weld connection plates to the tension flange. Although the intention of this detailing practice
was to prevent failuresimilar to those in European steel briddesm occurring the intentional
lack of connectiortended to result in details characterizeddny area ofvery high stresses
leading to prevalerfatigue cracking in bridges with this detailing. Many steel bridge structures
designed and constructed ohgy this time period have exhibitexktensivefatigue cracking due
to distortioninduced fatigue, presenting bridge engineers and management staff with a
challenging and expensive situation.

Distortionrinduced fatigue commonly occurs at connections rahdverse structural
membes (Roddis and Zhao 2001). Weghps that exist between connection plates and girder top
flanges are the most common location for fatigue cracking. As a bridge experiences traffic
loading,adjacentsteel girders undergo differelgvels of deflection. This results in cross frame
members inducing secondary, @itplane forces on the adjacent girders that are deforming
differently. Since the top flange of the girder is restrained from rotation by the concrete deck and
the bottomflange is freed rotate, distortion of the welpp region occurasshown inFigure 1.

While secondary forces carried by the cross frames may benlomagnitude, they often
trarslate intohighs t r e s s e s i ndueao theihighdflexibifitysof theeeld gap With the
presence of a multitude of stress concentrations in the congested geometnyeds tiegregion
fatigue cracking can be expedt® occur.

--5--



I 1 I peon
Y, Out-of-Plate
/ T Rotation

Web-Gap Caused by
Region Differential
Distortion

Connection

Plate

]

Figure 1. Out-of-plane rotation causing distortionrinduced fatigue.

Background

In addition to being a common occurrence in steel bridges, distontioiced fatigue is
also a problem thas both difficult and expensive to repair. There are a number of techniques
that can be used to retrofit bridges for distorieduced fatigue, including drilled cra@rest
holes, cross frame removal, slotting the connection plate, utilizing aupaskffener, and
connecting the connection plate to the girde
associated advantages and disadvantages, and it is useful to bridge engineers and owners to have
multiple options from which to choose.

Crackarrest loles are often drilled at the tips of sharp cracks to halt crack growth as a
first l i ne of defense against fatigue <crack
effective at stopping fatigue cracks when the cracks are initiated frowfplaned i st or t i ons
(Grondin et al. 2002Liu 2015. Although crackarrestholes may temporarily slow or stop crack
growth, they are not a permanent fix for cracking due to disteniduced fatigue. Instead,
crackarrest holes are often used in conjunctiothvather retrofit techniques such as providing
an alternate load path via a structural repair.

Cross frame removal is another retrofit option that has been examined for distortion
induced fatigue (Tedesco et al. 1995; Roddis and Zhao 2001). The conta@ptte€hnique is
to removesecondary membersetween adjacent girdersvhich eliminatesthe outof-plane
forces induced bythem thus eliminating distortioinduced fatigue. However, when cross

frames are removed from an existing bridge system, coraider should be given to: (1)
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effectiveness otthe bridge system to lateraltistribute live loads; (2) effectiveness of the
system to carry wind loading; and (3) future needs regarding deck replace@rest frames
provide restraint to prevent latettalrsional buckling wile a bridge isunder construction and in
negative bending regions pasinstruction. Due to laterédrsional buckling considerations,
cross frames or other bracing is a necessity during deck replacentarbssframes generally

cannot be removed from negative bending moment regions. Additionally, Tedesco et al (1995)
indicated that cross frame removal increases individual girder moment demand by approximately
8-14%, due to lower amounts of live load distribution.

Back-up stiffenes are a retrofit scheme that function by stiffey the webgap region,
reducing distortiorinduced fatigue effects. Placed on the opposite side of the welaftomss
frame connection plate, bacip stiffeners are simply transverseffetiers that stregthen the
web gap and reduce owtf-plane rotabn of the webgap region. Although Hassel et al. (2010)
concluded that baelp stiffeners can be effective in skewed bridge applications with staggered
cross frame layouts, the authors found that trstifieners are less effective in nstaggered
bridges applications where the only potential retrofit locations are on the fascia side of the
exterior girders.

Positive connection to the girder flange can be accomplished using several methods.
Commonly,angles are used to provide connection between the flange and connection plate by
bolting one leg to the flange aradtachingthe other to the connection plateaough either a
bolted or welded connectiqiRoddis and Zhao 2003, Fisher et al. 1990). Thathod was found
to be effective at halting fatigue crack initiation and propagation; however, applications of this
technique are not without challenges. For example, bolting to the flange is preferred over
welding due to the greater fatigue sensitivityvaided details if the webgap being repaired is
at the top flange of the girder, application of this technique usually requires removal of at least
portions of the concrete deck, bringing abogbnvenientraffic disruption and expense.

An alternativeretrofit technique tahe traditional means of positive connectignthe
ianenithepsl at e o r et r o fthe supjecioha nanhber lofangestigagive afforts at the
University of Kansas (Alemdar et al. 2013a; Alemdar et al. 2013b; Przywara 2048)retrofit
described in Alemdar et al. (2013a; 2013b) consisted of two angles which attached the
connection plate to the girder web. The angles were used in conjunction with a back plate on the

opposite side of the girder web to distribute-ofiplane forces over a large area of the web.
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Since this retrofit did not require any attachment to the flange, it eliminated any need for deck
removal and can be installed under traffic. This technigagevaluated through a series of tests
performed on 28n [9.3ft] long girdercross frame subassemblies loaded under a demanding
distortioninduced fatigue loading protocol. An analytical investigation was performed in
parallel to the physical simulations.

The test setp used in Alemdar et al. (2013a; 20)3vas such that the girdeross
frame subassembly was tested upslde wn, wi th the girderos top fI
the laboratory strong floor. Cyclic loads were applied through a semioolled hydraulic
actuator attached to the freedeofthe crossframeelements. This test sep eliminated ifplane
bending effects on the test girders and presented a demandiofypdame fatigue test. The test

setup used by Alemdar et al. is showrFigure?2.

364mm[14.3in], typ. 93mm[3.7in], typ. C10x30, typ.
—C59, typ.
o ; 7, o L E z
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° ° ° ° = of loading
@ © ]
2845 mm [112in. FL 279 x 25 mm L3x3%3/8,
J [1121n] / [Mixlin] e
El— WEBS876x10mm :
EIS  [mu2x3sing
fe ]
(b) S| FL279x16mm
- [11x5/8in] ﬂ_ﬂ\
L |
! 3804 mm [149.8in]] ! 1219 mm [48in]

Figure 2: Test setup for 2.8 m [9.3 ft.] girder sub-assembly testing (Alemdar et al. 2013a; 2013b).

The test setip and computational models were used to generate an initial set of data for
the angleswith-plate retrofit. This showed that the technique was effective under pud-out
plane fatigue loading, reducingeb gapstresses and propensity of dcagropagation under

distortioninduced fatigue.
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Objective and Scope

The objective of this study was to investigate the effectiveness of the -avitilgdate
retrofit technique initially studied by Alemdar et al. (2013a; 2013b) in reducing distortion
induced fatigue crack propensitya more realistic test sep, wherein both oubf-plane and in
plane effects are considered.

The scope of this study included performing 28 test trials on a-¢jmeer test bridge that
was 9.1m [30-t] long and includech composite concrete deck. The first 14 of these test trials
were performed as a part of one test, denoted Test 1, whitexti#4 were performed as a part
of a second test, denoted Test 2. Results from a parallel analytical investigation can e found
Part 4 of Hartman (2010). Results of these studies are currently limited to straigbkemad
bridge girders.

Experimental Program

Since the goal of this investigation was to evaluate the effectiveness of theaitigles
plate retrofit in a test that captured bothplane bending effects and secondary stresses from
distortioninduced fatigue, a setp was constructed that includedad 9.2m [30-ft] long girders
connected with Xype cross frames at the two simple support locations and at midspan. A
concrete bridge deck was cast in sections and was connected to the girders such that it would act
compositely. All loads were appligtirough a 1470 kN [33Rip] servacontrolled hydraulic
actuator. The loading end of the actuator was situated over a steel bearing plate centered on the
bridge deck. Details regarding the testigghave been provided in the following sections.

Test1l and Test 2 were identical in agi and instrumentation. However, Test 2 was
performed to further investigate the effectivenesa siiffened version of the anglegth-plate
retr of i tbridgespeximeénikachvgirder in the test bridge includes splices, allowing
for replacement of the center segment of each girder. Therefore, the middle segments of all three
girders were replaced for Test 2At the completion of Test 1, all instrumentation and the
concrete deck were removed and the sestimingirders located at the center of the test bridge
were replaced with new girder sections. The cross frames that were at the center of the bridge
were switched out with cross frames that had been located at the bridge ends during Test 1. This

was doneso that cross frames that had seen the ssagrdoading could be used during Test 2.
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Once the steel members were replaced, the concretepdeekswere re-installedand the test
bridge was instrumented in matching locations to Test 1.

Test trials a@ referred to by a combination of the Test number (2)oand the Trial
number (1 through 14). For example, Trial 14 of Test 1 is referred to as Trial 1.14, and Trial 5 of

Test 2 is referred to as Trial 2.5.

Girder Specifications

Test specimen dimensiongere based on laboratory space constraints and a sample
bridge from American Iron and Steel Institute (AISI) Example 1: Sisgpan Composite |
Girder (AISI 1997). Approximately half scale of the AISI sample brifigecrosssection) the
9.1 m [30 ft.]long girders were comprised of a 16 x 279 mm [5/8 x 11 in.] top flange, 6 x 876
mm [1/4 x 2 ft:10 1/2 in.] web, and 25 x 279 mm [1 x 11 in.] bottom flange. All girders were
supported on rollers to minimize axial forces with a cetderenter span lengtbf 8.7 m [28 ft:
6 in.] between supports. Test section dimensions and girder span with load placement are shown
in Figure3. In the laboratory, thngitudinal axis of the bridge system was oriented-e&st
which defined the exterior girders as being the north and south girders. At the section shown in
Figure3(a), looking west, the exterior girder shown on the right is the north girder and the left is

the south girder.
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Figure 3: (a) Dimensions and schematic of test region cross frames. (b) Girdgpan and load application.

The concrete deck was cast in five sectionspbid [2-in.] diameter circular voids were
created during the casting procedure, spaced to provide onthitmlgh the girder flangen
either side of the web at a maximum spacing32 mm [1 ft:5 in.]. Complete casting layout
has been provided in Appendix AEach portion of deck was cassing formwork on the
laboratory floorand then lifted into place after they had been cured. The voids cast into the
concrete deck elements miagdd a hole layoushopdrilled into the top flanges of the girders,
providing a location for higistrength structural bolts to be placed through. After the bolts were
installed the remaining void area was filled with Hydrostone. In this manner, haalzsimtar
transfer was achieved between the steel girders and the concrete deck elements. The
compressive strength of the concrete used in the deck was found to range from 267 MPa [3900
psi] to 33 MPa [4800 psi] when tested atd8/s.
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Loading

During eachtest trial, gclic loading was delivered by a MTS 201.70 actuator (1470 kN
[330 kips] capacity in compression) powered by a MTS 505.90 90 GPM pump and controlled
with a MTS FlexTest Il CTC Controller. 25mm [1.Gin.] thick steel plateused to distribute
the concentrated compressive force delivered by the actwasicentered on the bridge deck
and grouted in place under the footprint of the actuator. Loading was applied at midspan over
the interior girder, as shown the schematic inFigure3. Cyclic loading was applied at rates
varying between 1.0 2.0 Hz depending on the load range being appliEde load range was
varied throughout the testrges, from 27267 kN (660 kips) to 53534 kN (12120 kips), as

explained further in sections describing the test sequence.

Instrumentation

The test bridge was instrumented such that strain, vertical deflections, and lateral
deflections could be measurdttdugh the test sequence. Additionally, load and displacement
data were recorded from the actuator using the same data acquisition system as was used for all
other sensors. Sensors included the following: load cells, linear variable differential treansfor
(LVDTSs), string potentiometers, Bridge Diagnostics Inc. (BDI) strain transducers, and strain
gages. Global bridge response was monitored using load cells, LVDTSs, string potentiometers,
and strain transducers. Six load cells, one at each girderwamd, used to monitor load
distribution between girders. Load cells were calibrated using a 6.55V power supply.

LVDTs and string potentiometers were powered using a 15V power supply. Initially, in
Trial 1.1, LVDTs were used to monitor vertical girder deflons at midspan as well as lateral
displacements for each exterior girder at three different locations along the height of each girder
(Figure4(a)). Since exterior girder deflections included both vertical and lateral displacements,
it was found that the LVDT core could not extend and retract freely which resulted in inaccurate
deflection measurements. Due to this, four string potentiomdtegaré 4(b)) replaced the
original three LVDTs monitoring lateral girder displacements for the remaining trials in Test 1,
and all of the trials in Test 2.
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Figure 4: Instrumentation placements for (a) LVDTSs, (b) string potentiometers, and (c) strain gages.

Six Bridge Diagnostics, Inc. (BDI) strain transducers were used in theetegi. Each
girder was instrumented with two strain transducear midspanone placed at top and bottom
BDI strain

"\

(©)

of each girder web to monitor -plane bending strains in the three girders.

transducers were powered with 5V. To avoid local conaBaftrs due to geometry, these were

placed 50.8 mm [2 in.] below or above the flanges, and were located a longitudinal distance 654

mm [25 3/4 in.] from the connection plates at midspan.

Bondable strain gages were included in the bridge instrumentatiotoptaonitor strains
in the webgap region. Bondable strain gages were powered directly through the data acquisition
system in a quarter bridge configuration with excitation voltages of 2.5V or 333%¥in gages
used with theNI-9219DAQ modulewere poweed by 2.5V and strain gagased with theNI-
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9236 DAQ modulewere powered by 3.3V. In total, 20 MieMeasurements WK6-250BG

350 gages were placed web gapregions as shown ifigure 4(c). Additionally, bondable

strain gages were placed on each cross frame angle at midspan of the girders oriented along the
axis of the cross frame member. On the horizam&berof the cross framé fi H B Biguie n

4), the gage was placed mspan. For the diagonal membdérdi AT 0 a n dFigiredB 0 i n
which were bolted at midpan, the gages were placed at the qupdar of the span nearest the
exterior girder.

Due to the scale of the project and large sensor array, synchronizing the data was a
critical step. All data as recordedusing a single data acquisition system manufactured by
National Instruments (NI cDAQ 9188&hassiswith NI 9205, NI 9212, NI 9236, and NI 9239
modules). A protocol was written in Labview 2011 to read, compress, and record data in a text
file. The quantityof data required an extremely large sampling rate to sufficiently increase the
buffer size within the NI cDAQ 9188 chassis. Sampled data werecpogiressed to produce
an effective sampling rate of approximately 20 samples/second. All appropriatatialib
factors were applied within the Labview protocol, such that data written to the measurement file
contained appropriate units.

Prior toretrofit application, data wagcorded under static load application every 15,000
cycles for both Tests 1 and 2Zn other words, the test was paused every 15,000 cycles and the
system was | oaded monotonically so that c han
examined overtimét hi s is referred to thr obrguphoutest t hi s
trials performed on the bridge in the retrofitted statehdata wasrecorded at the beginning and
end ofeach trial (which usually had duration of 1.2 million cycles). Duringach static test,
loadingwas manually controlledprogressing from 0 kN [Oig] to 356 kN [80 kip] while data
was recorded continuously. Raw dataasvthenimported into Microsoft Excel and pest
processed to examine data at 11 kN [2.5 kip] load increments. As the load range applied to the
test bridge was different in various tésls, the masmum load to which data wascorded was
increased to 445 kN [100 kip] and then to 534 kN [120 kip], and the corresponding data
increment was increased to 22 kN [5 kip].
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Retrofit Specifications

The retrofit investigated in Trials 226 catained two angles providing attachment
between the connection plate and girder web with a backing plate on the opposing face of the
web. Two L152x152x19 mm [L6x6x3/4 in] angles were bolted to the connection plate and
girder web while a 457x457x19 mm [18x3/4 in] back plate was used to distribute-ofiplane

forces over a large web area, as showthénschematic ifrigure5.
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Figure 5: Retrofit as applied to topweb gapin test specimen.

Due to fit interferences with the cross frame angles, it was necessary that two retrofit
angles each have one leg shortene@®bynm [1 in.]. Shim plates were also utilized to avoid

weld interference. The bolt layout consisted of a total offidiy-tightened19-mm [3/4in.]
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diameterGr. A325 bolts for each retrofit applicatiorl.he bolts were installed using an impact
wrench ad Squirter Direct Tension Indicator (DTI) washers. Squirter DTHave flexible
silicone embedded in the depressitimst squirt out of the side of the washer when the correct
tension isachieved in thedt. The bolt array was sntigghtenedon the firstpass. After this,
the bolts were tightened with the impact wrench until the orange silicone appeared from the
squirt locations. The bolts through the angle legs and cross frame stiffener were tightened first,
followed by the bolts through the angle legsder web, and backing plate.

The retrofit applied in Trial 1.7 and 227 was identical to that used in Trials-1.B,
except that stiffening elements were added to the angle elements of the retrofit, as shown in

Figure6. Thi s version of the retrof-wthpiateefeetredf

Figure 6: Stiffened angleswith-plate retrofit appli ed to exterior girders in Trials 1.7 and 2.22.7.

Cracking and Inspection

Crack inspection was performed at regular intervals while the bridge was subjected to
cyclic loading. Inspection techniques included photographic and visual inspection as well as
evaluaton of strain measurement data. Zyglo Penetrant2ZA) by Magnaflux and an
ultraviolet flashlight were used tosually identifycrack openings and tips. When dye penetrant
was sprayed on the region of interest during cyclic loading, surface crackisbeoséen pulsing

under the ultraviolet light. At each inspection, photographs were taken using a Cannon Rebel
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XTi DSLR with an 1855mm lens. Early photographic images contained a small scale taped to
the girder web used for determining crack lengthtet,gphotographs were scaled to the previous

images to verify crack measurements obtained visuallyambnitor crack growth.

Test1

In addition to visual and photographic inspection, strain gages were monitored through
static data collection at 15,00§ates, 20,000 cycles, and 30,000 cycles, and then every 15,000
cycles until retrofitting at 150,000. Strain readings from gages placed on the fascia side directly
behind the connection plate (shown Rigure 4(c)) were compared throughout testing of the
bridge in the unretrofittedondition. These gages measured the largest strains and were found to
be highly sensitive to cracking in the connection platd weld.

As discussed further in the following sections of this paper, it was found that girder
cracking first initiated and ppagated around the connection platb weld in the topveb gaps
of the south and north girders. These cracks were closely monitored and classified by three
di fferent categories: (1) cracks growing dowt
growi ng out from the weld in the longitudinal |
and (3) cracks extending through the web thic
three crack patterns is shownRigure7. Additionally, cracking was found near the flangeb
wel d; these were termed fAlongitudinal <cracks.

\ Vertical

Crack

(b)

Figure 7: Crack definition for (a) interior side of girder web at cross frame connection plate and (b) exterior
or fascia side of girder web.
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Test 2

Visual and photographic inspectiovas performecevery 5,000 cycles in Te2.1, and
strain gages were monitored through static data collection every 15,000 cycles until retrofitting at
50,000 <cycl es. Similar to Test 1, cracks we
cracks, o0 fAspider cr ac kgi, tou dfi tnharl o uggrha ckrsa @k sC @n
however, cracking first initiated near the flangeb weld before appearing around the
connection plateveb weld in the topveb gap of the south girder. In the north girder, crack

initiation and propagation followethie same pattern as that seen in Test 1.

Test Trials

Twenty-eight test trials were performed on the test bridgéotal as summarized in
Tables1l and2. For each loading protocol on the bridge system, the two exterior girders (the
north girder and the south girder) underwent a test that. example, in Test 1, Trial 2, there is
reporteda Trial 1.2N (north girder) and Trial 1.2S (south girdefhe center girder was not
listed as undergoing a test trial since the center girder web did not experience any cracking
throughout the test sequences. Trials 1.1 and 2.1 consisted of unretsgg@mens in which
cracking was allowed to initiate and propagate until crack lengths of 24 mm [1 in.] and 38 mm
[1.5 in.] were achieved, respectively. Trials-1.Z and 2.2.7 were indicative of the bridge
with the exterior girders in the retrofittendition (sometimes with the addition a@fckarrest
holes), with each trial having a duration of 1.2 million cycles, with the exception of Trials 1.4,
2.4, 25, 2.6, and 2.7. Trials 1.4 and-2.4 did not reach 1.2 million cycles, for reasons

discussd further in the following sections.
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Table 1: Test 1 Specimen trials for North(N) and South (S) girders with load ange

. ) o Target

Trial Specimen Description

Load Range
1.1N . 27-267 kN

Bare specimen
1.1S [6-60 Kip]
1.2N fi Angvitedat ed retrofit gappplied i 27-267 kN
1.2S [6-60 Kip]
13N Same as Trial§2N and1.2 S: 0 Avitheplateesd0 r et r of i t gapop | 36-356 kN
1.3S [8-80 kip]
14N Small drilled-wihgll @s ewi mpyebgpegl & g 745 kN
1.4S [10-100 Kip]
15N Larger drill edithipdlag ewi trletiorf ggap ap 40 KN
1.5S [10-100 kip]
16N Same as Trials 5N and 5S-wthpadragen dri 53534 kN
1.6S in top webgap [12-120 kip]
L7N Stiffened ver-with@h ao e idwas iestalieain thd tep vamp 53534 kN
1.7S [12-120 kip]
Table 2: Test 2 Specimen trids for North (N) and South (S) dgrders with loadrange
] ) o Target

Trial Specimen Description

Load Range
2.1N . 27-267 kN

Bare specimen

2.1S [6-60 Kip]
2.2N Drilled holeswiths t i f f ened v e r-with-plat e®f rtett & ofian 27-267 kN
2.2S webgap [6-60 kip]
2.3N Drilled holeswiths t i f f ened v e r-with-plat e®f rteh & ofian 36356 kN
2.3S webgap [8-80 kip]
2.4N Drilled holeswiths t i f f ened v e r-with-plat e®f rteh & ofian 36356 kN
2.4S webgap [8-80 kip]
2.5N Drilled holeswiths t i f f ened ver-withphab&ot het iaf 36356kN
2.58 webgap [8-80 kip]

2.6N Same as Trials 2.5N and 2.5S in te@b gap four-angle retrofit applied in bottom  44-445 kN

2.6S webgapof center girder [10-100 Kip]
2.7N Same adrials 2.5N and 2.5S in top wefap with fourangleretrofit applied in bottom  44-445 kN

2.7S webgapof center girder; cross frame replaced between center and south girdi [10-100 kip]

The load range applied to the test bridge was varied over the course of the testing
sequences to create a demandavgluationof the anglesvith-plate retrofit effectiveness at
reducing distortiosinduced fatigue crack propensity. The load range appigtie bridge in
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Trials 1.1S, 1.1N, 1.2S, and 1.2N wasZ&7 kN [6:60 kip] which corresponded to a maximum

normal bending stress of 29.6 MPa [4.3 ksi] in the bottom flange of the center girder. For those
trials, this load range was found to produce eedil strains of i8mWr exJi mant
the topweb gapregions of the south and north girders, and to produce a maximum vertical
deflection at midspan of 2.0 mm [0.077 in.]. Details regarding the strain and deflection
measurements under the vaisdoad ranges for both Tests 1 and 2 have been provided in Tables

3 and4.

Table 3: Test 1 $ecimen trials with load range and bottom flange stresses

Trial Sample Girder Max. Girder Maximum Uncracked Top Cracked Top Web
Load Deflection Bottom Flange Web Gap Strain Gap Strain
kN [kip] mm [in.] Stress Gages (3)/(4 &5) Gages (3)/(4 &5)
MPa [Kksi] (eU) (e0)

1.1N 0.8 [0.033] 9.7 [1.4] -705/285352 -818/252333
Center 267 [60] 2.0[0.077] 29.6 [4.3] N/A N/A
1.1S 0.8[0.032] 8.3[1.2] -839/522556 -854/521556
1.2N 0.9 [0.034] 9.7 [1.4] -705/285352
Center 267 [60] 1.9 [0.075] 29.6 [4.3] N/A

1.2S 0.8[0.032] 8.3[1.2] -839/522556

1.3N 1.1 [0.044] 13.1[1.9] -963/377468
Center 356 [80] 2.3[0.091] 40.0 [5.8] N/A

1.3S 1.1[0.042] 11.0[1.6] -1120/694742

1.4N 1.3[0.051] 16.5 [2.4]
Center 445 [100] 3.4 [0.134] 48.3 [7.0]

1.4S 1.4 [0.055] 14.5[2.1]

1.5N 1.4 [0.056] 15.9 [2.3]
Center 445 [100] 3.7 [0.145] -

1.5S 1.3[0.052] 12.4[1.8]

1.6N 1.6 [0.062] 17.9[2.6]
Center 534 [120] 4.5[0.178] -

1.6S 1.5[0.059] 15.9 [2.3]

1.7N 1.4 [0.054] 15.2 [2.2]
Center 534 [120] 4.9[0.193] -

1.7S 1.3[0.053] 13.1[1.9]

--20--



Table 4: Test 2 $ecimen trials with load range and bottom flange stresses

Trial Sample Girder Max. Girder Maximum Uncracked Top Cracked Top Web
Load Deflection Bottom Flange Web Gap Strain Gap Strain
kN [kip] mm [in.] Stress Gages (3)/(4 &5) Gages (3)/(4 &5)
MPa [Kksi] (eU) (e U)

2.1N 0.8[0.031] 8.3[1.2] -924/784843 -914/815843
Center 267 [60] 2.1[0.082] - N/A N/A
2.1S 0.8 [0.033] 9.0[1.3] -950/7891011 -919/8321100
2.2N 0.7 [0.029] 7.6[1.1] -924/784843
Center 267 [60] 2.2[0.087] - N/A

2.2S 0.8 [0.030] 8.3[1.2] -950/7891011

2.3N 1.0 [0.038] 10.3[1.5] -1252/10991175
Center 356 [80] 3.0[0.117] - N/A

2.3S 1.0 [0.041] 11.0[1.6] -1308/11011421

2.4N 1.1 [0.043] 11.7 [1.7] -1252/10991175
Center 356 [80] 2.7 [0.107] - N/A

2.4S 1.2 [0.046] 12.4[1.8] -1308/11011421

2.5N 0.9 [0.035] 9.7 [1.4] -1252/10991175
Center 356 [80] 3.1[0.122] - N/A

2.5S8 1.0 [0.038] 11.0[1.6] -1308/11011421

2.6N 1.4 [0.057] 13.8 [2.0]
Center 445 [100] 3.5[0.137] -

2.6S 1.4 [0.054] 15.9[2.3]

2.7N 1.1 [0.045] 11.0[1.6]
Center 445 [100] 3.9[0.154] -

2.7S 1.1 [0.043] 11.0 [1.6]

All values in Tables3 and 4, with the exception of uncracked strains, were recogated
the end othe reportedrial. Strains in the uncracked north and south girders were only recorded
up to a load of 356 kN [80 kip]. Strains in cracked north and south girders were only recorded
for Trials 1.1N, 1.1S, 2.1N, and 2.1S since retrofit applcataused gages in the top wgdp to
fail. Maximum girder deflection at megpan was measured directly using an LVDT under each
girder. Strain transducer data wased to determine maximum bottom fi@nbending stress.
For each girder, the two strain transducers were used to develop a strain profile. These were
placed in the welhowever, bending strains were extrapolated to the bottom flange (the extreme
fiber). Additionally, these strains were nlmcated at midspan so they were modified to
represent midspan strains using a linear variation between support and midspan due to single
point loading at midspan. Sint&rgeamounts of data were collected, each strain reading is an
average of four consetive data points. All data wasseraged in a similar fashion and data for

the given maximum load was extracted which resulted in a single set of data for each load.
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Three other load ranges were applied in various test trial858&N [880 kip] (Trials
1.3S, 1.3N, 2.3S, 2.3N, 2.4S, 2.4N, 2.5S, and 2.5N34kN [16100 kip] (Trials 1.4S, 1.4N,
1.5S, 1.5N, 2.6S, 2.6N, 2.7S, and 2.7N); aneb38 kN [12120 kip] (Trials 1.6S, 1.6N, 1.7S,
and 1.7N). The largest load range used in the test sequere®4 &8l [12120 kip], produced a
maximum vertical deflection at midspan under thes33 kN [12120 kip] load range of 4.9 mm
[0.193 in.] in Trial 1.7. An issue with the bottommash transducer resulted in dorear data for
bending stresses in the battdlange of the center girder under theZ®! kN [12120 kip] load
range. Extrapolating from previous loading data for th&638 kN [12120 kip] loading, an
approximate maximum normal bending stress in the bottom flange of the center was determined
to be 57.9 MPa [8.4 ksi].

The load ranges were chosen to be quite large and were higher than what was expected
for typical fatigue loadings in an actual bridge structure. Choosing large variation in load range
was intended to assess retrofit performance avielll range of load demand. The authors did
not wish to approach the test design by using loadings that would ensure no crack initiation or
propagation under the retrofit. Therefore, it was expected that cracking would propagate under
the high load demmals, even while retrofitted. Changes in crack propagation rates between

unretrofitted and retrofitted conditions were therefore of key interest to the investigators.

Results and Discussion

Throughout testing, dataas recorded through the instrumentation plan discussed and
crack growth was monitored and charteBy examining crack length against the number of
applied cycles, the rate of crack propagation was compared between the various unretrofitted and
retrofitted est cycles. Changes in bridge behavior and crack propagate@swere used to
evaluate the retrofit effectiveness. Cross frame strains and girder lateral deflections helped to
establish changes in bridge behavior while crack inspections were usedcko cirack
propagation.

Changes in overall bridge response were observedobyparing cross frame strains
when girders were inan uncrackedcondition with cross frame strains when girders were in a
crackedcondition Similarly, this observatiowas maddor the cross framewith girdersin the
unretrofittedversus theetrofitted conditions after cracking the girdershad occurred Lateral

deflections of the north and south girder profiles were also monitored throughout telsting.
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addition totheseglobal bridge responsgcrack initiation was established through strain gage

data while crack propagation was monitored through visual and photographic inspection.

Crack Initiation and Propagation

Crack propagation was of particular importance to the investigators since the primary
method for establishing retrofit effectiveness is the ability of the retrofit to slow or halt crack
growth. Initially, measurements frotmondable strain gages in the twpbgaps on the north and
south girders were used to identifysgblecrack initiation. Aftercrackinitiation was visually
confirmedusing dye penetrantrack propagation was monitored and charted while the girder
was in the unretrofitted conditionCrack lengths were also monitored before and after retrofit
applications, providing information regarding crack propagatitiie retrofits were in place
Changs in crack propagation rateere of particular interest. In the following sections crack
initiation and propagatiobehavior for the north and south girders in Test 1 and Tleav& been
explained in detalil.

Crack Initiationi Test 1

At the beginning of the tesequence (Trials 1.1S and 1.1MW)e uncracked, unretrofitted
test bridge was cycled between2G7 kN [660 Kip] at a frequency of 1 Hz. Visual inspections
of the web gap regions were performed every 5,000 cycles while static data from all
instrumentation was recorded every 15,000 cycles. Strain gages pladerifascia side of the
north girder (gage 3 ifrigure 4(b)) indicated potential cracking at 15,000 cyclesigure 8

displays thencreasein strain from-950¢ b -1225¢ l@xperienced by the gage of interest.
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Figure 8: Strains in top webgaps at (a) 0 cycleand (b) 15,000 cycles. Top wefjap denotel by T in legend
and bottom webgap denoted by B. Number denotes gage location froRigure 4(c).

Although strain gages indated potential cracking on the north girderisualinspection
performed using dye penetrant was unable to identiple cracking at that point; however, at
20,000 cycles (just 5,000 additional cycles) cracking was visuallyifigehat the connectio
plateweb weld in the north girder. This indicated excellent agreement between the two crack

indication / inspection techniques.

Cracklnitiationi Test 2

Trial 2.1 was similar in sequence to Trial 1.1. The bridge was cycled betwe&gy XN
[6-60 kip] at a frequency of 1 Hz, and static data from all instrumentation was recorded after
every 15,000 cycles.Based oncrack initiation observationsfrom Test 1, the first visual
inspection was performeat 15,000 cycles.During this inspection, a crack waketected in the
top webgap of the south girder at the flanggeb weld. No major change in strain wasasured
by the top strain gages between 0 and 15,000 cycles; gages near the top flange were likely spaced
too far from the connection stiffeneio detet this crack. Additionally, this crack was not
expected to be the initial crack in the girder, as the connectionvptdteweld crack had
appeared first ifest 1, as well as in other investigatigAtemdaret al.2013a; 2013p

After the initial 15,000 cycles, visual inspections were performed every 5,000 cycles for
the remainder of Trial 2.1Initiation of the connection plat@eb weld crack occurred between

30,000 ad 45,000 cycles in the top welap of the south girderFigure 9 displays changes in
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strain measurementdbetween 15,000, 30,000, and 45,000 cycles. At (&0,6ycles, no
connection plateveb weld crack was apparent upon physikegpection; however, the top strain

gages near the connection plate wiadicatingincreases in strain magnitude, indicating that

crack was likely to appear in the ndature. The connection plateeb weld crack became

visible in the top welgap of he south girder at 45,000 cycles, at which point the strain gage on

the fascia side of the south girder (gage Figure4(b)) indicated an increasa strain of 170

e U. Additionall vy, the two top strain gages
bet ween 220 ¢U and 265 ¢U.
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Figure 9: Strains in top webgaps at (a) 15,000 cycles, (b) 30,000 cyclasd (c) 45,000 cycles. Top welmp
denoted by T in legendand bottom webgap denoted by B. Number denotes gage location froRigure 4(c).
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Crack Propagation Patteinrest 1

In Trials 1.1S and 1.1N, cracking initiated at the weld near the clipartrdnsverse
connection plate. Cracking progressed diagonally down through wedd until reaching the
girder web.

During Trial 1.1S, cracking progressed down the weld toe in the south girder until
branching out into a spider crack. These spider cracks propagated outward away from the
transverse connection plate. On the left siflehe transverse connection plate, cracking also
progressed dowithe web at the weld toe.Cracking in the north girderprogressed slightly
differently, in that cracks did not propagate into the web until Trial 1.2N and did not follow the
weld toe. Longudinal cracks at the flangeeb weld were found in Trials 1.6N and 1.6S. The
point of initiation was unclear for the longitudinal cracking, since the noartlerglongitudinal
cracks were quitéarge when discovered at the endTofal 1.6N. Table5 shows the cracking

patterns at the end of Trials 1.6S and 1.6N.

Table 5: Cracking at end of Trial 1.6 (6,011,097 Cycles)
Left Side of Connection Plate Right Side of Connection Plate
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Crack Propagation Patternrest 2

During Trial 2.1S, a longitudinal crack at the flangeb weld was found in the topeb
gap of the south girder, directly above the connection plate. This crack did not propagate until
initiation of the crack near the clip in the transverse connection plate, also in Trial 2.1S. The
longitudinal crackpropagated along the flangeeb weld, while the connection plateeb weld
progressed around and down each side of the weld toe. The connectiomgblateld cracks in
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the south girder never branched into spider cratile6 shows the cracking patterasthe end
of Trials 2.7S.

The north girder behaved differently in that cracking first initiated at the weld near the
clip in the transverse connection plate duriivgal 2.1N and no progression in this crack was
physically detected until Trial 2.3N. The crack propagated around the weld toe before branching
into a spider crack on the west side of the connection plate. Propagation around the east side of
the weld toevas not seen until Trial 2.4N. A longitudinal crack at the flawgé weld waslso
found in Trial 2.3N, directly above the connection plate, which pregrealong the flangeeb

weld. Table6 shows the crackingatterns at the end of Trials 2.7N.

Table 6: Cracking at End of Trial 2.7 (4,016,092 Cycles)
Left Side of Connection Plate Right Side of Connection Plate
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