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ABSTRACT 

 

 River metamorphosis is a well-documented global phenomenon, particularly for the 

historic period. The Arkansas River in western Kansas is an example of a river channel that has 

undergone a major historical metamorphosis: the pre-1900’s channel was wide, shallow and 

braided, but subsequently transformed into a narrow, sinuous meandering system. This study 

establishes the relationship between the hydrology and dynamics of channel morphology, 

determined the period in which the metamorphosis occurred, and quantified the channel change. 

In order to document channel change along a reach of the Arkansas River within the Kansas 

High Plains this study used ArcGIS to evaluate aerial photography for seven discrete years 

within the past 75 years, USGS stream gages to document the historical decrease in discharge, 

Public Land Survey records to characterize early settlement channel widths, and lesser sources 

such as historical ground-based images and bridge construction plans to further document 

historical changes in channel morphology. Channel width and sinuosity were measured and 

recorded for each year of aerial photography to quantitatively determine the magnitude of change 

and to characterize progression of the historical metamorphosis. The river channel has narrowed 

by about 145 meters and increased in sinuosity from 1.22 to 1.46 since the acquisition of the first 
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aerial photography (1939). Historical changes in the channel morphology have occurred because 

of many anthropogenic modifications including a dam, irrigation diversion canals, and 

groundwater pumping for center pivot irrigation systems. These anthropogenic influences have 

directly altered the hydrology of the river by decreasing mean annual discharge, reducing peak 

annual flows, and lowering the water table. The upstream part of the study reach, near the 

Colorado-Kansas border experiences sporadic flows and has a narrow sinuous channel, where 

the discharge is actively building and stabilizing the floodplain and channel banks. The 

downstream reach, below irrigation diversions, channel width increases and sinuosity decreases, 

where the surface flow is extremely rare, resulting in little or no channel change. Upstream 

reaches, near Syracuse, have high sinuosity values from riparian vegetation stabilizing point bars 

and cutbanks, whereas downstream reaches, near Garden City, have low sinuosity values due to 

minimal riparian vegetation. The character of the Arkansas River channel within the Kansas 

High Plains may continue its present trajectory as long as the present-day hydrologic regime is 

maintained and the prevailing climate is unchanged. 
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INTRODUCTION 

 

  

The overall geometry of a river channel is controlled by independent variables, such as 

the climate and geology of the drainage basin, whereas each river reach is the result of many 

hydraulic variables, local lithology, and upstream factors (Morisawa, 1985). River channels are 

dynamic systems that react to numerous changes in discharge and other hydraulic variables 

caused by internal and external forcings (Schumm, 1973; Hickin, 1974; Schumm, 1979; Knox, 

1983; Ritter, 2002; Gregory, 2006). Hydraulic variables and discharge are constantly changing 

and interdependent, which leads to complexity in fluvial geomorphology. Rivers adjust their 

hydraulic geometry, channel slope, and channel shape in response to changes in these hydraulic 

variables in order to reach a quasi-equilibrium state (Schumm, 2005). River channels can adjust 

to these factors by changing laterally and vertically, where lateral changes occur in channel 

position, width, and sinuosity (Morisawa, 1985). Channels that experience similar conditions 

form distinct patterns in map view and can be classified based on numerous metrics. Sinuosity is 

a useful measure to differentiate between channel patterns, especially in remote sensing research, 

where particle size and other metrics are not available (Table 1). 

 Many fluvial geomorphology investigations have focused on channel pattern change, and 

time series of aerial photography as well as historical maps have often been used to detect this 

change (Petts et al., 1989; Kondolf, 2003). Large-scale changes in channel shape are usually 

discernible; however, each image must be georeferenced in order to accurately view and quantify 

the magnitude of channel change. Many geomorphologists have explored historical channel 

change using aerial photography along rivers (Braga and Gervasoni, 1989; Bryant and Gilvear, 

1999; Juracek, 2000; Tiegs and Pohl, 2005; Wellmeyer et al., 2005; Wallick et al., 2007; Block, 
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2014; Arnaud et al., 2015). In a study of the geomorphic evolution of the Little Colorado River 

in Arizona, Block (2014) used historical aerial photographs (1936-2010) to determine that the 

channel has narrowed by about 90% over the study period, which was attributed to changes in 

temperature and precipitation. The channel planform changes were hydrologically driven from 

primarily decreases in precipitation and to a lesser extent from vegetation encroachment; 

groundwater withdrawals have led to the continued channel narrowing along the Little Colorado 

River (Block, 2014). Juracek (2000) investigated the Neosho River downstream of John 

Redmond Dam in southeast Kansas using multiple sets of aerial photography and stream gage 

data and found minor overall change to the river channel planform. The Neosho River is 

suspected to be a relatively stable system, and channel changes are not yet recognizable even 

though the dam was built in 1964 (Juracek, 2000). Wellmeyer et al. (2005) analyzed the 

downstream impacts of the Livingston Dam on the lower Trinity River in eastern Texas and 

deduced that the river planform is gradually adjusting to the dam with no major channel changes 

yet appearing. On the River Dee near the Welsh-English border, Gurnell (1997) used six sets of 

aerial photographs from the past 50 years to find that the channel had narrowed because of flow 

regulation. Bryant and Gilvear (1999), employed Airborne Thematic Mapper data to quantify 

changes on the River Tay in Scotland before and after a flood event, concluded that only subtle 

channel changes occurred. Gregory et al. (2002) used General Land Office (GLO) maps along 

with U.S. Army Corps of Engineer surveys to quantify the historical channel pattern changes on 

the Willamette River, Oregon. In Europe, river regulation has evolved for more than 200 years, 

where many cartographic sources have assessed channel change in Britain, Italy, and France 

(Braga and Gervasoni, 1989; Bravard and Bethemont; Hooke and Redmond, 1989; Petts, 1989). 

In the United States Great Plains, Dort (2009) employed historical maps and early aerial 
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photography to document historical channel change along the Kansas River and its major 

tributaries.  

 

Metamorphosis 

 

 Metamorphosis, a concept introduced by Schumm (1969) in his investigation of the 

Murrumbidgee River in western Australia, refers specifically to a shift from one channel pattern 

to another (Figure 1). Hydrology, riparian vegetation, and sediment load are factors that 

influence a metamorphosis, where a dramatic shift in any of these factors can lead to a complete 

change in channel pattern. Many studies have reported this phenomenon in historical and Late 

Quaternary contexts (Table 2). The Mississippi River in the central United States (Rittenour et 

al., 2007), Murrumbidgee River (Schumm, 1969), the Maas River in the Netherlands (Huisink, 

1997), and multiple river systems throughout the southeastern United States (Leigh, 2006) 

underwent a metamorphosis during the Late Quaternary, whereas the Ain River in France 

(Marston et al., 1995), Arkansas River in the south-central United States (Nadler and Schumm, 

1981), Gilmore Creek (Page et al., 2007) and MacDonald River in Australia (Erskine, 1986), and 

South Platte River of Nebraska (Nadler and Schumm, 1981) have transformed their channel 

patterns during the historical period.  

 Factors such as particle size and riparian vegetation help control channel morphology, but 

a major shift in the hydrologic regimen alone can trigger a response, which if sufficient, will 

completely alter channel morphology (Schumm, 1969). Past examples of channel pattern 

changes occurring due to altered hydrology were reported on river systems in the Southeastern 

United States (Leigh, 2006) and the Murrumbidgee River (Schumm, 1969) during the Late 
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Quaternary. Hydrologic fluctuations can be induced by climate, such as the case of the Little 

Colorado River in Arizona, where a decline in annual precipitation triggered channel narrowing 

by floodplain accretion and the spread of riparian vegetation (Hereford, 1984). Previous research 

has demonstrated that a complete transformation of river morphology can occur in response to 

river regulation, such as dams and diversion canals (Schumm, 1969). Dam construction on river 

channels regulates discharge downstream, flow regime, sediment transport, and hydraulic 

gradient (Williams and Wolman, 1984; Mangelsdorf et al., 1990; Brandt, 2000; Graf, 2001). The 

impact of dam construction often results in changes in planform size, channel sinuosity, and 

channel stability (Wellmeyer et al., 2005). Diversion canals redirect the flow of the river, which 

results in channel morphology changes comparable to those of dam emplacement (Schumm, 

1969; Nadler and Schumm, 1981). Tiegs and Pohl (2005) analyzed the historical channel 

planform dynamics of the lower Colorado River in response to river regulation from the Morelos 

Dam using aerial photography and geographic information systems (GIS); they found that 

channel contraction dominated but periodic floods result in channel expansion. 

 Another factor associated with metamorphosis is the sediment particle size and load 

within the system, which are each key elements in identifying a channel pattern (Brotherton, 

1979). Sediment particle size influences channel bank stability, in that channels flowing in silt 

and clay-rich sediments enable meanders to form, in contrast to sand-rich sediments (Osterkamp, 

1977; Schumm and Meyer, 1979). Further, riparian vegetation influences channel morphology, 

typically width, by promoting deposition of cohesive fine sediment and increasing resistance to 

erosion (Burkham, 1972; Smith, 1976; Marston et al., 1995). An increase in riparian vegetation 

can influence channel morphology by reducing the channel capacity, colonizing and stabilizing 
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wet sandy surfaces, thereby modifying islands to become longer and wider, and increasing 

channel roughness (Gesink et al., 1970; Graf, 1978; VanLooy and Martin, 2005).  

 

Great Plains Historical Channel Change 

 

 Historical channel change is an important avenue for river channel investigations due to 

its many implications, for example flooding, river rehabilitation, stream regulation, and 

ecological effects (Schumm and Lichty, 1965; Rosgen, 1994; Covich et al., 1997; Friedman et 

al., 1998; Luttrell et al., 1999; Graf, 2006). Research on historical channel change in the Great 

Plains was conducted on the North Platte River (Williams, 1978; Eschner et al., 1983), Platte 

River (Williams, 1978; Eschner et al., 1983), Cimarron River (Schumm and Lichty, 1965; 

VanLooy and Martin, 2005), Arkansas River (Nadler and Schumm, 1981), Medicine Lodge 

River (Martin and Johnson, 1987), and South Platte River (Nadler and Schumm, 1981; Eschner 

et al., 1983). These studies concluded that the majority of Great Plains fluvial systems have 

decreased in channel width, increased in density of riparian vegetation, and increased in 

sinuosity since early settlement time (Table 3). These river channels have narrowed and 

increased in length due to discharge regulation or reduced precipitation, with exception of the 

Cimarron River, which experienced channel widening due to a large flood event. 

 Great Plains river systems are highly susceptible to large magnitude events, such as 

floods and anthropogenic constructs, both of which can take channels decades to recover (Baker, 

1977; Richards, 1982). Historical river modifications on the Great Plains can be attributed to 

anthropogenic activity, where dams, diversion canals, and exotic vegetation growth have altered 

the channels (Schumm, 1977). Changes on the South Platte and Arkansas rivers were dramatic 
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enough to transform the rivers from braided to meandering systems (Nadler and Schumm, 1981). 

Despite the growth of vegetation, increased potential of flooding, and significant changes in 

morphology, fluvial studies on Great Plains rivers are limited (Graf, 2001). Additional research 

focused on channel morphology and stream-flow regimes is necessary to predict quantitatively 

future change (Eschner et al., 1983; Dominick et al., 1998).  

 

Arkansas River Metamorphosis 

 

 Dramatic channel changes have occurred along the Arkansas River within the Great 

Plains during the last century (Mead, 1896; Schumm and Meyer, 1979). In western Kansas, the 

Arkansas River channel was a braided system with wide, sand-bed channels, and sparse 

vegetation, whereas the present river is meandering with relatively narrow, silt and clay-rich 

channels, and considerable riparian vegetation (Figure 2). The river previously followed a 

relatively straight course and had largely intermittent flow, but now the river is meandering and 

has perennial discharge. Schumm (1969) predicted that anthropogenic influences on the 

hydrologic regimen of the Arkansas River would change from wide sandy channels to a 

suspended load system. Many influences on channel morphology are at work on the river, for 

example, dams in Colorado, numerous diversion canals, invasive riparian vegetation, and 

groundwater withdrawals. Whereas Schumm’s usage of “metamorphosis” is in specific reference 

to a complete shift in channel pattern (e.g., braided to meandering), this study considers this 

historical metamorphosis of the Arkansas River channel as a continuum of historical channel 

change.  
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STUDY OBJECTIVES 

 

Previous research on historical channel change of the Arkansas River includes that of 

Nadler and Schumm (1981), who focused on an eastern Colorado reach of the Arkansas and 

analyzed the metamorphosis through a sedimentology approach. Johnson et al. (1994) 

concentrated on the historical changes in channel morphology and density of riparian vegetation 

over a Kansas portion of the Arkansas River. Research is expanded upon from earlier studies by 

focusing on a reach of the Arkansas River along the Kansas High Plains, extending the period of 

documented change, assessing the role of hydrology, and quantifying channel change. This study 

1) documents and quantifies historical channel change for the past 75 years, 2) establishes a 

relationship between the hydrology and the dynamics of channel morphology, and 3) develops a 

time-line of historical change in the channel. Channel change was investigated using successive 

sets of aerial photography, U.S. Geological Survey stream gage data, Public Land Survey (PLS) 

records, and lesser sources such as historical ground-based images and bridge construction plans. 

As the primary data source, aerial photographs were compiled, georeferenced and analyzed using 

GIS-based methods, with width and sinuosity being measured from the ArcGIS extension 

XToolsPro. Archival inquiries at the Kansas Historical Society and site-based investigations 

including a low-altitude flight were conducted to support each objective. 
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STUDY AREA 

 

Kansas High Plains Reach 

 

 The Arkansas River is about 2,364 km long and is the sixth longest river in the United 

States. Headwaters of the Arkansas River are the Sawatch and Mosquito ranges in eastern 

Colorado, from which the river flows through Kansas, Oklahoma, and Arkansas, where it joins 

the Mississippi River. The project study area covers nearly 180 km along the Arkansas River 

corridor from the Colorado border, east through Hamilton, Kearny, and Finney counties on the 

Kansas High Plains (Figure 3). Western Kansas lies in the High Plains region of the Great Plains 

physiographic province, where the climate is semiarid and mean annual precipitation ranges 

from 43 to 51 cm (Young et al., 2000; Layzell, 2012). Riparian vegetation within the Kansas 

High Plains is short-grass prairie, which includes salt cedar (Tamarix ramoissima), cottonwood 

(Aigeiros), little blue stem (Schizachyrium scoparium), sagebrush (Artemisia), and blue grama 

(Bouteloua gracilis) (Kuchler, 1974).  

 

Historical Accounts 

 

 Spaniards and French trappers were the earliest explorers of the Kansas High Plains, but 

it was not until the early 1820s that there was a description of the Arkansas River, compiled 

during the Stephen Long Rocky Mountain Expedition (cited in Nadler and Schumm, 1981; 

Tomelleri, 1984). The 1820 expedition described the river in western Kansas as “knee deep” and 

a “bed of sand and gravel.” In his summary of the geology of southwestern Kansas, St. John 

(1887- as described in the autumn of 1886) characterized the Arkansas River as having few 
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tributaries of considerable size and that much of the water in the tributaries sinks into the sandy 

river bed. Explorers, in some instances, may have documented abnormal measurements from 

rare flooding or unusually narrow accounts of the river’s width, which vary widely from 137 to 

402 m between 1839 and 1846 (cited in Nadler and Schumm, 1981; Parkman, 1948). As early as 

the 1890s, there were observations that the Arkansas River channel was shrinking from irrigation 

canal diversions (Haworth, 1897; Mead, 1896). One historian notes that in 1852 plainsmen were 

able to float down the Arkansas River from Pueblo, Colorado into Arkansas in boats of 15 to 20 

men (Mead, 1896). Early records of the Arkansas River morphology are invaluable due to the 

vivid insight they provide, though these chronicles should be reviewed with discretion due the 

ambiguous location of descriptions, unique observations of one reach may not necessarily 

describe the entire region, and the observers’ prior experiences. 

 

Geomorphology and Hydrology 

 

 The Arkansas River valley width varies within this reach of the Kansas High Plains: in 

Hamilton County, the valley width is 3-5 km, though farther east (downstream) to Hartland in 

Kearny County it narrows to about a kilometer (Figure 3). At Lakin the valley widens to about 8 

km until Garden City, where it narrows to about 3 km (Young et al., 2000). Given the pattern of 

valley width change, the study reach was subdivided into four sections based on width (Figure 

3). The river channel bed and banks are composed of mostly coarse sediment and coarse sand 

channel bars are limited. The wide floodplain dips subtly towards the shallow meandering river, 

where channel depths do not exceed one meter and the channel width is narrow. Well-developed 

point bars and cut banks occur frequently in the Hamilton County reach but are rare downstream 
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in Kearny and Finney Counties. The Arkansas River valley has subtle, low-relief loess-mantled 

uplands to the north and sand dunes bordering the valley to the south (Young et al., 2000). The 

river gradient over the study reach is about 1.3 m/km (Dunlap et al., 1985), and the valley 

consists of permeable, poorly sorted, coarse Pleistocene-age alluvium underlain by fine-grained 

Holocene-age deposits, with most runoff seeping into the alluvium during rainfall events 

(Dunlap et al., 1985; Young et al., 2000). The maximum depth to bedrock throughout the valley 

is 20 m, but the thickness of the alluvium varies considerably (Tomelleri, 1984). Sand dunes 

border the southern extent of the valley and have been intermittently active from the late 

Pleistocene with various reactivations occurring during the Holocene (Halfen, 2012). Remnants 

of two or three terrace sequences evident within this reach of the valley were deposited when the 

ancestral river channel transported much larger volumes of water during the Pleistocene glacial 

epochs (Smith, 1940; Johnson and Arbogast, 1993; Forman et al., 2008; Halfen, 2012). 

 The study area has a few minor, ephemeral tributaries from the northern valley uplands: 

Sand Creek, East and West Bridge Creeks, Shirley Creek, Sandy Creek, and Syracuse Creek 

contribute scant volumes of water to the Arkansas River within the study reach (Figure 4). 

Previously the Arkansas River experienced intermittent flows during the spring from snowmelt 

originating in the Sawatch and Mosquito ranges. John Martin Dam and Reservoir, completed in 

1948, altered flow of the Arkansas from seasonal to perennial flow (Nadler and Schumm, 1981). 

Several floods are documented historically along the Kansas High Plains most notably in 1921, 

1942, 1949, 1951, and 1965 (Figures 5 and 6). The High Plains Aquifer is a major source for 

irrigation within the Kansas High Plains, which has caused the aquifer water level to decline on 

average by 7.2 m from predevelopment (around 1960) to 2011 due to substantial withdrawals 
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and only minor recharge (McGuire, 2012). Along the Kansas High Plains reach, the USGS 

maintains a network of stream gages on bridges and diversion canal gates. 

 

Anthropogenic Influences 

 

 Numerous anthropogenic influences are cited for altering the landscape on the Kansas 

High Plains, which then led directly and indirectly to changes in the Arkansas River. In 1873, 

multiple railways were completed along the Arkansas River valley, at which time settlement 

populations increased (Tomelleri, 1984). Numerous irrigation canals such as the Amazon 

Irrigation Canal, Great Eastern Ditch, Frontier Ditch, Southside Ditch, and Farmers Ditch began 

diverting flow from the Arkansas River by 1895 (Tomelleri, 1984) (Figures 6 and 7). The advent 

of center pivot irrigation in the 1960s made it economically feasible to water crops with 

groundwater rather than with surface water from the Arkansas River (Tomelleri, 1984) (Figure 

6). As groundwater extraction progressed, the baseflow of the Arkansas River decreased due to 

the drop in the High Plains aquifer water table (Sherow, 1990; McGuire, 2012).  

In Colorado, the Arkansas River flow has also been reduced from irrigation canal 

diversions and groundwater withdrawals, but in Kansas John Martin Reservoir (JMR) has 

considerably influenced the Arkansas River discharge. JMR altered the hydrologic regime of the 

river as to eliminate ephemeral flows, reduce peak flows, and limit volumes of water released to 

western Kansas beginning in 1948 (Figure 7) (Luckey, 1975). JMR has produced a concomitant 

reduction in the volume of sediment delivered to the Kansas High Plains reach due to the 85.7% 

trap efficiency of the dam (cited in Nadler and Schumm, 1981). JMR and irrigation canals have 

reduced the baseflow of the river and trapped about 4.7 million m
3
/yr of sediment (cited in 
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Nadler and Schumm, 1981). The majority of sediment entering Kansas by way of the Arkansas 

River is presently silt and clay, in contrast to sand and gravel of the pre-dam era (Osterkamp, 

1977). Salt cedar (Tamarix pentandra), an invasive phreatophyte from the Mediterranean 

introduced to stabilize channel banks, was first documented in the Arkansas River valley 

beginning in 1921 (cited in Nadler and Schumm, 1981; Gesink et al., 1970). 

 

METHODS 

 

 Historical channel changes on the Arkansas River in western Kansas were documented 

by 1) assembling an atlas derived exclusively from seven discrete years of aerial photography, 2) 

analyzing the hydrology of the river using USGS stream gage data, and 3) quantifying the 

channel morphology within ArcGIS. Channel width and sinuosity were measured and recorded 

for each year of aerial photography to determine quantitatively the magnitude of change and to 

characterize progression of the historical metamorphosis. The procedure for compiling the aerial 

photography into a map was conducted in three sequential steps: aerial photographs were first 

scanned, georeferenced, and the river channel boundaries were then digitized. Additionally, 

hydrology of the river was analyzed using USGS stream gage data to establish the relationship 

between the river discharge and the dynamics of channel morphology. Stream gages record many 

different metrics, for example annual and peak discharge as well as frequency of peak flows, all 

of which were used to determine their individual effect on river width and sinuosity.  
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Scanning Aerial Photographs 

 

 The earliest aerial photography available for the Kansas High Plains Reach was flown in 

1939 and the latest images in 2014, a period spanning 75 years. Aerial photography, taken by the 

United States Department of Agriculture (USDA) Farm Service Agency, was accessed from 

multiple curators including the Kansas Geological Survey, Kansas Biological Survey, United 

States National Archives, and Kansas State Historical Society. Channel change in the study reach 

was documented from aerial photography taken in 1939, 1957, 1965, 1986, 1991, 2003, and 

2014 (Table 4). Images from 1991, 2003, and 2014 were available in digital format from the 

Data Access and Support Center at the Kansas Geological Survey (http://www.kansasgis.org). 

Printed reproductions (1:20,000) of the 1939, 1957, 1965, and 1986 photographs, taken for the 

most part in undetermined months, were scanned at a resolution of 300 dpi into a digital file 

format (.png). The National Agriculture and Imagery Program (NAIP) captured their aerial 

photography (1991, 2003, and 2014) during June and July at a 1:12,000 scale. 

 

Georeferencing Images 

 

 All aerial photographs were georeferenced within the geographic information system of 

ArcGIS and in the USA Contiguous Albers Equal Area Conic Projection. Each image was 

georeferenced to the 2014 NAIP imagery base map and rectified based on a minimum of five 

ground control points (GCPs). Previous studies with similar objectives used on average 20 GCPs 

for small scale images over urbanized regions; this study justified the use of five GCPs due to the 

large scale of the images and to the sparse nature of man-made structures in western Kansas 
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(Leys and Werritty, 1999; Block 2014). Examples of GCPs include crossroads, railroad 

intersections, permanent structures, and oil well storage tanks, which were spatially distributed 

across each image to improve locational accuracy. 

 

Digitizing the River Channel 

 

 As with georeferencing, digitization of the channel boundaries was also conducted within 

ArcGIS, where the channel from each year of aerial photography was delineated at the bankfull 

channel limits (Gurnell, 1997; Surian, 1999; Winterbottom, 2000; Juracek, 2000; VanLooy and 

Martin, 2005; Wallick et al., 2007). Reliable indicators of the bankfull channel limits were often 

interpreted as being the first, continuous, clearly demarcated line of woody vegetation. The 

bankfull channel was digitized following Juracek (2000), using the base of mature trees nearest 

the channel bank to interpolate the channel boundary. Along reaches with sparse vegetation, 

physical sedimentary features, such as point bars and cutbanks were used to interpret the channel 

boundaries. Channel boundaries were determined at 1:2,000 scale in the USA Contiguous Albers 

Equal Area Conic Projection within an ESRI shapefile. The consistent, previously cited 

application of these strategies was determined to yield the most accurate channel delineation 

results possible. 

 

Quantification of Channel Change 

 

Channel change was quantified in regards to sinuosity and width for each year of aerial 

photography, but a system in which to differentiate channel patterns must be determined before 
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measurements can be classified. Many different classification schemes for channel patterns have 

been derived and can be differentiated based on methods and metrics used. Leopold and Wolman 

(1957) identified three channel categories: straight, meandering, and braided, which Ritter (1999) 

expanded upon by adding the anabranching classification. Subsequently, Morisawa (1985) added 

a fourth category of sinuous. Schumm (1963) correlated the three previous Leopold and Wolman 

(1957) qualitative categories with a quantitative approach based on sediment particle size 

dominating the river’s sediment load and concluded there are numerous definable categories of 

channel patterns (Figure 1). Knighton (1998) classified channel patterns into two groups based 

on their number of thalwegs, where a single thalweg category would be defined as a straight and 

meandering channel, and the multiple thalweg category as braided and anastomosing channels. 

 Fluvial geomorphologists have applied thresholds for each channel pattern, however due 

to the inconsistent methods in which the thresholds were applied many diverse classifications 

have been proposed (Lewin and Brewer, 2001). When a river surpasses a threshold, a channel 

pattern change may be activated and system processes are modified until a new equilibrium can 

be reached (Schumm and Khan, 1972; Ritter et al., 1999; Ritter et al., 2002). Many of the 

thresholds are based on metrics such as sinuosity, particle size, and number of thalwegs. 

Sinuosity is a convenient and widely cited classification metric, especially when studying rivers 

in map view (Leopold and Wolman, 1957; Schumm, 1963; Moody-Stuart, 1966; Rust, 1977; 

Rosgen, 1994).  

 Extensive discussion and research have focused on using sinuosity to differentiate 

between meandering and braided systems (Rust, 1977). The sinuosity threshold values 

distinguishing the two channel patterns range from 1.3 to 1.7 and are highly arbitrary, often 

based on the investigator’s preference (Moody-Stuart, 1966; Leeder, 1973; Rust, 1977). The 
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Schumm (1963) and Moody-Stuart (1966) classifications chose 1.3 as the sinuosity threshold 

value and as the transitional point between the meandering and braided channel patterns (Table 

1). In his study of alluvial river sinuosity on the Great Plains, Schumm (1963) found that a 

channel with a sinuosity of 1.3 exhibits very flat curves and repetitive meanders. A sinuosity 

value of 1.3 has been adopted herein because previous research on the Great Plains used the 

same value, one that has been most widely accepted (Moody-Stuart, 1966; Schumm, 1963; Rust, 

1977). 

The magnitude of channel change was quantified with the ArcGIS extension XToolsPro, 

which was employed to measure channel area and channel boundary lengths for each year of 

aerial photography. Mean channel width was calculated for each year of photography by dividing 

total area of the channel for each year by the mean channel boundary length. This method was 

chosen to measure the channel width because it calculated the mean channel as a continuous 

whole compared to other methods that computed mean channel widths at various discrete cross 

sections (Leys and Werritty, 1999). As stated previously, sinuosity is a metric often used to 

differentiate between meandering and braided channel patterns, where a sinuosity greater than 

1.3 is considered a meandering system. Sinuosity was computed also for each year of 

photography by applying the total sinuosity index (TSI) method from Richards (1982). Total 

sinuosity was calculated as channel boundary length divided by the length between channel 

endpoints or Euclidean distance, where each channel measurement used the same endpoints. The 

TSI method was preferred over other sinuosity methods because it is scale-independent and is 

widely adopted (Juracek, 2000; Marston et al., 2005; Egozi and Ashmore, 2008). 
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Hydrologic Analysis 

 

 Hydrologic records are useful in many applications, such as flood forecasting, reservoir 

design and operation, and fluvial geomorphic investigations (Juracek and Fitzpatrick, 2009). In 

this study, hydrologic data were used to detect a large shift in the hydrologic regimen that may 

have triggered a complete channel pattern transformation (Schumm, 1969). Data from four 

USGS stream gages on the Arkansas River were utilized to establish a relationship between the 

hydrology and the dynamics of channel morphology; gages included Below John Martin 

Reservoir (JMR), Coolidge, Syracuse, and Garden City (Figure 4). The Below JMR gage began 

collecting hydrologic data in 1938, Coolidge in 1951, Syracuse in 1921, and Garden City in 

1923. The stream gage located downstream of JMR is about 400 m from the dam and does not 

have an associated floodstage. These gages were used to conduct numerous analyses, such as 

computing 1) mean annual discharge, 2) peak annual discharge, and 3) frequency of high flows. 

Mean and peak annual discharge were calculated for all four gages using daily flow statistics, 

where mean discharge is the sum of the daily discharges over a year divided by the number of 

days and peak discharge is the largest daily flow event of the record year. Frequency of high 

flows was computed for the Coolidge, Syracuse, and Garden City gages by analyzing daily flow 

statistics in order to find the number of days where the bankfull depth was met and exceeded. 

High flows were defined by the National Weather Service’s use of floodstage, which was 

verified as a height were the lowest lying areas become inundated.  
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1871 Public Land Survey and KDOT Bridge Crossing Comparisons 

 

Public Land Survey (PLS) maps from 1871 provide an estimate of the early settlement 

channel widths. Martin and Johnson (1987) utilized channel widths indicated on PLS maps in 

their study of the Medicine Lodge River historical channel change and noted two inherent 

problems with the measurements. The 1871 survey is not clear on 1) if the surveyors measured 

the channel at water widths or bankfull widths and 2) if the channel width measurements were 

always recorded along section lines or at right angles to the channel banks (Martin and Johnson, 

1987). For this study, the perpendicular section line crossings to the river channel were 

measured, and the survey measurements were interpreted to be taken from one bank to the other 

regardless of the actual width of the water flowing in the channel bed.  

The Public Land Survey indicates measurements of channel width taken at 83 section line 

crossings, and, in most cases, these crossings were at oblique angles to the river. The 38 section 

lines that crossed the river in at least a quasi-perpendicular manner provided an opportunity to 

document the channel width well prior to the first aerial imagery (1939) (Figure 3; Appendix 1). 

As a result, every section line crossing that was roughly perpendicular to the river channel in the 

1871 was compared to the equivalent, perpendicular section line crossing in the subsequent 

seven years of aerial photography. 

Bridge construction profiles provided by the Kansas Department of Transportation 

(KDOT) were compared with on-site inspections. Three bridge plan schematics were used in an 

effort to reconstruct the historical channel. KDOT completed the bridge at Syracuse during 1952, 

the Lakin bridge in 1983, and the Garden City bridge in 1973. These bridge cross-channel 
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profiles and accompanying site photographs were examined for evidence of channel migration, 

artificial stabilization, and downcutting. 

 

Reduction of Errors 

 

 Aerial photographs can provide more accurate information about river channel change 

than historical map sources in that data on aerial photographs is uniformly represented and 

absent of the inherent distortions present in early maps. Aerial photographs present an impartial, 

standard depiction of the land surface; however, these images are susceptible to a range of errors 

that must be addressed. The same operator interpreted each aerial image, and each year of 

photography was captured at similar baseflow conditions with one exception. The June 1965 

aerial photography for the Kansas High Plains Reach reveals high flow conditions; although, 

data from the USGS stream gages indicate peak flooding occurred in August 1965. 

 Delineation of the Arkansas River channel followed the bankfull channel technique in 

order to be as consistent as possible in the interpretation of channel boundaries for each year. 

Despite this strategy, complications occurred due to the dynamic nature of the metamorphosis 

and to anthropogenic activity. The changes in channel width did not always coincide with the 

bankfull channel technique. For example, the first continuous mature line of vegetation was used 

as a proxy for bankfull channel, although a rapid reduction in channel width was not always 

recorded due to the delay in time for vegetation to reach maturity. For example, salt cedar was 

introduced into western Kansas in 1921, but it wasn’t prominent until the 1957 aerial 

photography and was indiscernible in the 1939 imagery (Gesink et al., 1970). Other 

anthropogenic influences led to complications in channel delineation, such as gravel pits, roads, 
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irrigation canals, center pivots, and vehicle tracks. These structures provided artificial 

stabilization and controlled flow paths of the river channel especially near urban reaches of the 

river. Research for this study on the Arkansas River along the Kansas High Plains was largely 

derived from remote sensing-based techniques. A thorough site-based investigation and low-

altitude flight of river reaches with notable change, USGS gages, artificial river barriers, 

tributaries, and canal diversions was conducted in order to verify the data and results. 

 

RESULTS 

 

 Research on the historical metamorphosis of the Arkansas River along the Kansas High 

Plains has yielded two themes. The first, river hydrology, covers the analysis from USGS stream 

gage data and presents information from the study area hydrographs. Another theme in the 

results about channel morphology change details how the sinuosity and channel width have 

varied with each year of aerial photography. PLS measurements ranging from 1871 to 2014 are 

also described in the channel morphology change section. 

 

River Hydrology 

 

Peak annual flow (Figure 5), mean annual flow (Figure 8), and frequency of high flows 

(Figure 9) characterize the hydrologic history of the Arkansas River beginning in 1921, when the 

stream gage at Syracuse was installed. The mean annual flow hydrograph  illustrates that moving 

downstream from Coolidge and Syracuse to Garden City, the discharge decreases farther 

downstream (Figure 8). For instance, the mean discharge at Coolidge and Syracuse is on most 

occasions relatively high, above 100 cfs, but decreases downstream, below 100 cfs, as reflected 
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in the gage data at Garden City. The Coolidge gage was activated in 1951 and since then has 

similar mean annual discharge values, from 70 to 500 cfs, to that of the Syracuse gage (Figure 8). 

Mean annual flow values for Garden City are consistently lower than the other three gages 

(Figure 8). Also, the 1965 flood is visible on each hydrograph as a surge in discharge exceeding 

10,000 cfs at Coolidge, Syracuse, and Garden City (Figure 5). 

Peak annual flows recorded at the Below JMR and Coolidge gages are dramatically 

decreased in downstream data at Garden City (Figure 5). The same phenomenon exists in the 

frequency of high flows, where substantial flows that appear in the Coolidge gage data are not 

present in the downstream gages. Garden City has not experienced a flow exceeding 2000 cfs 

since the 2001 flood, and the last instance that this gage exceeded the flood stage of 10 ft was 

during the 1965 flood. At Syracuse, the flood stage of 10 ft was surpassed in 1965 but not again 

until 1987, but for only two days. Since 1948 when the John Martin Dam was completed, the 

flood stage in Garden City has been exceeded for only 11 days. In contrast to the Coolidge data, 

Garden City has appreciably lower peak annual discharges throughout the period of record. At 

Garden City, the mean and peak annual flows decrease dramatically from above 100 to below 50 

cfs for peak flows and from above 50 to below 1 cfs during 2002 to 2003. At JMR, the discharge 

is relatively stable, for example, the peak discharge is consistently around 1,500 cfs and the mean 

annual discharge fluctuates from 150 to 400 cfs (Figures 5 and 8). 

 

Channel Morphology Change 

 

 Arkansas River channel morphology within the Kansas High Plains has experienced 

remarkable changes in the 75-year period of study, where width and sinuosity were used as the 
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primary indicators of such (Figure 10; Appendix 2). The present-day Arkansas River in this 

reach is a meandering, narrow and entrenched channel, which is in stark contrast to the wide and 

braided channel of the 1800s and 1939. Width and sinuosity were each quantified as a single 

measurement for the entire study reach and also for each valley width section for every year of 

aerial photography (Table 5) (Figure 3). The Public Land Survey Maps from 1871 document the 

channel width 143 years ago (Figure 11); section line crossings range from 240 to 572 m, with a 

mean channel width of 363 m. Overall, the river channel has greatly narrowed and increased in 

sinuosity during the period of study. In 1939, the mean channel width was about 175 m, but by 

2014 the mean channel width was around 30 m. Presently the Arkansas River channel is 17% of 

the 1939 width, and the seven years of aerial photographic documentation show that the channel 

has progressively narrowed, with the exception of two years: 1965 and 1991. Sinuosity has 

increased considerably in the last 75 years, resulting in a large increase in river length over the 

study area: from 296 km (1939) to 355 km (2014). From 1939 to 2014 sinuosity increased by 

84%, with the largest increases occurring between 1939 to 1957 and 2003 to 2014.  

Maps illustrating the channel courses for each year of aerial photography were compiled 

with the latest year as top map layer as shown in the sample reach, where the middle portion of 

the study area reach is depicted (Figure 12). Only a portion of reaches resemble the sample 

reach, whereas major changes in channel morphology occurred east of Syracuse (western portion 

of study reach), where the sinuosity increased dramatically and the channel narrowed 

considerably in comparison to downstream reaches of the river (Figure 13). Minor modifications 

to the channel were documented at the eastern portion of the study reach in Finney County, 

where channel sinuosity has remained relatively stable from 1.1-1.2 during the 75 years of record 

(Figures 14 and 15).  
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The study area was divided into four sections based on valley width: two relatively wide 

valley sections and two relatively narrow valley sections (Figure 3). Mean sinuosity 

measurements for each of these sections for the 75-year period of study suggest that the wide 

valley sections have exhibited far more sinuous channel morphology (Figure 15). The largest 

sinuosity increase occurred in section two (1.8), and the least sinuosity increase in section four 

(1.08). All of the section sinuosity values increase as time progresses, however with 1965 and 

2003 again being exceptions. Channel width measurements according to valley width sections 

were plotted, though no difference or pattern for narrow and wide valleys was recognized. 

 

 

DISCUSSION 

 

Flow Regime 

 

 Analysis of mean and peak flow events provides evidence that change in the hydrologic 

regime is responsible for channel planform adjustments, where the hydrology and channel width 

are directly related (Figures 5 and 9) (Wellmeyer et al., 2005). Schumm (1969) predicted that 

“unstable” rivers of the Western United States were subject to channel pattern transformations 

following anthropogenic modifications, such as reduced flood peaks and altered sediment 

particle transport. The Arkansas River channel has narrowed considerably during the period of 

this study (except for 1965 and 1991), which is attributed to anthropogenic modifications in 

stream hydrology. High peak discharges from rare hydrologic events were recorded at each study 

area stream gage during the two exceptional years, which resulted in short-term widening. After 

the completion of John Martin Dam in 1948 the mean annual discharge was reduced, peaks flows 



 24 

were diminished, and flow became perennial (Figures 5 and 8). At Garden City, the large 

decrease from in peak annual flows, for instance, above 100 cfs to below 50 cfs during 2003 to 

2004 is likely attributed to the sustained use of free flow to the irrigation canals and closed flow 

to the river due to the drought occurring at that time (Figure 16) (Layzell and Evans, 2013). 

The dramatic changes in width and sinuosity for the study reach are not caused by 

changes in precipitation because no major temporal change is evident (R
2
 0.0077) during the 

period of record (Skaggs, 1978; Garbrecht et al., 2004) (Figure 16). Since 1920 the precipitation 

values have varied from 5 to 100 cm per year, however due to the valley geomorphology the 

variation in precipitation is not influencing channel morphology (Figure 16). For example, 

increases in rainfall will not dramatically shift channel width and sinuosity due to the high 

infiltration rates from the valley’s sandy soils and the limited tributaries within the Kansas High 

Plains reach of the Arkansas River are short and ephemeral, therefore contributes only minor 

flow to the river. In comparison, the Little Colorado River narrowed considerably from decreases 

in precipitation and relatively minor anthropogenic influences on hydrology (Block, 2014).
 

 Other anthropogenic and geomorphic influences were factors affecting hydrology of the 

Arkansas River within the Kansas High Plains, which then subsequently affected channel 

morphology. Landscape factors, such as the reduced valley gradient and absence of significant 

tributaries, have resulted in the study reach channel morphology to be distinctly different from 

upstream and downstream reaches (Sherow, 1981). For instance, the limited number of 

tributaries within the Kansas High Plains adds only minor discharge to the river and as result 

narrow channels, whereas upstream in Colorado the river has contributions from Cheyenne 

Creek, Pauls Arroyo, and Buffalo Creek and downstream near Larned and Great Bend the 

Arkansas River has contributions from the Pawnee River and Walnut Creek. Effects of irrigation 
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canal diversions and wells to supply groundwater for center-pivot irrigation in the Arkansas 

River valley are evident in the river hydrographs. The peak annual flow hydrograph indicates a 

decrease in discharge from below JMR relative to Garden City for each year (Figure 5). The 

High Plains aquifer has been extensively used for irrigation, with dramatic increases in use from 

2.1 million acres in 1949 to 13.7 million acres in 1980 (McGuire, 2012). In 1940 alone, 520 

irrigation wells were drilled in southwestern Kansas, withdrawing 90,000 acre-feet/yr (Pabst and 

Gutentag, 1979). This increased dependence on the High Plains aquifer has lowered the water 

table in eastern Kearny County and Finney County in extreme cases by up to 31 m (McGuire, 

2012). As a result of groundwater pumping, the river in the study reach has lost its baseflow. An 

important temporal change in the hydrologic regime is present at Coolidge and Garden City gage 

locations, which display a pronounced decrease in annual mean discharge, peak discharge, and 

flood events (Figures 5, 8, and 9). This decrease in peak discharge at these two locations is due 

to 1) the lack of large tributaries in this reach of the river and 2) diversions for four canals 

between these two gage locations (Figure 6). Furthermore, years in which the discharge was 

fairly consistent, such as in 1957, 2003, and 2014, the channel responded to the absence of peak 

flows by narrowing. The notion that an altered hydrologic regime can bring about changes in 

channel morphology on the Arkansas River was previously predicted by Nadler and Schumm 

(1981) for a river reach in eastern Colorado and holds true along the Kansas High Plains. 

 

 

Historical Channel Planform Change 

 

 The Arkansas River channel narrowed during the 75-year period of study, though some 

deviations from that trend did occur during the seven discrete years of photographic 
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documentation. When the 1939 photographs were taken, the mean Arkansas River channel width 

was about 175 m with a sinuosity of 1.22. By 1957, channel sinuosity increased slightly to 1.28, 

and mean width decreased by 60%. The completion of John Martin Dam in 1948 and the 

widespread extraction of groundwater for center pivot irrigation starting in the 1960s modified 

the hydrologic regime, which then transformed the channel morphology (Pabst and Gutentag, 

1979). The third year of aerial photography, 1965, indicated a reversal of the previous trend: 

sinuosity decreased slightly (1.27) and mean channel width increased by 23 m from the previous 

year of aerial photography. The large-magnitude flood event of 1965 was responsible for 

increasing channel width by destroying existing riparian growth and removing the previously 

constructed floodplain. Aerial photographs from 1986 indicated that mean channel width had 

decreased by 49 m and sinuosity increased to 1.30. The changes in width and sinuosity during 

this time are likely due to the fact that in 1980 the recorded use of the High Plains Aquifer for 

irrigation levels off in use with 13.7 million acres (McGuire, 2012). By the 1991 aerial 

photography, mean channel width had increased by about 2 m and sinuosity continued increasing 

to 1.32. The frequency of high-flow events in 1987 at Coolidge and a surge in mean annual flow 

produced this reversal to an increase in width. The 2003 mean channel width was similar to that 

of the 1991 channel, which may be a result of peak flow events in 1999 at Coolidge. The last 

year of photographic documentation, 2014, indicated the largest periodic increase in channel 

sinuosity (to 1.46 from 1.35 in 2001) and a decrease in mean channel width by about 16 m. The 

lack of peak flow events along the entire study reach and the highest recorded rate of 

groundwater for irrigation in 2005 (15.5 million acres irrigated) were the drivers of these 

morphologic changes. 
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 Changes in Arkansas River channel morphology have also varied spatially along this 

Kansas High Plains reach. Previous research reported that clusters of riparian vegetation, such as 

cottonwood trees and salt cedar, were prevalent on the south side of the channel in Hamilton 

County and became increasing sparse to the east in Finney County. Channel sinuosity is 

appreciably greater in Hamilton County than in eastern Kearny County and Finney County, a 

pattern that is due to vastly reduced riparian vegetation growth in the latter area (Figure 17). The 

difference in riparian vegetation growth is due to a number of irrigation canals between Hamilton 

and Finney Counties, which limits water available for plants. For example, the Amazon and 

Southside irrigation canals near the town of Hartland and the Farmers irrigation canal at the 

Kearny-Finney County border divert considerable water (Sherow, 1990) (Figure 7).  

 Channel change analyses from seven years of aerial photography indicate a substantial 

downstream narrowing of the Arkansas River following the construction of JMR. JMR and 

irrigation diversion canals control discharge on the Arkansas River, which then dictates in-

channel processes and influences channel morphology. Riparian vegetation coverage and 

channel sediment availability are dependent on artificially-controlled flow conditions, where 

river reaches close to the Colorado border and JMR have a different channel morphology 

compared to those reaches downstream (Figure 18). Reaches that experience sporadic flows, for 

example around Coolidge and Syracuse, have narrow sinuous channels, where the discharge is 

actively building and stabilizing the floodplain and channel banks. Downstream, below the 

irrigation diversions, the channel is wider and follows a relatively straight course. Near Holcomb 

and Garden City channel-forming flows are rare. Diversion canals, occurring at two locations in 

the study reach, one west of Hartland and another west of Holcomb have resulted in morphologic 

changes in the channel immediately downstream (Figure 7). Upstream of Holcomb above the 
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Farmers Ditch diversion, the channel is fairly sinuous (1.47), somewhat narrower (20m), and has 

vegetated banks, but below the diversion the channel is wide (55m) and artificially-straightened 

(1.15) with only sparse riparian vegetation. 

 The density and channel juxtaposition of riparian growth enhances sinuosity, though 

valley width is also a major controlling factor. The two relatively wide valley sections, one in the 

western half of Hamilton County and the other in the eastern half of Kearny County, 

accommodate large increases in sinuosity due to the 3-8 km valley widths (Figure 3). Narrow 

valley width imposes a constraint on the width of the meander belt, but changes in sinuosity are 

also dependent on channel-forming flows. Sinuosity may have the lateral space to increase but 

without an increased discharge sufficient to affect modifications in channel position sinuosity 

will not change. The first section from Coolidge to Kendall has a wide valley section with 

frequent channel-forming flows, which results in a larger sinuosity value than the other wide 

valley section, section 3, which rarely experiences any channel-forming discharge. Valley width 

is a factor contributing to the variation in the sinuosity; however, the hydrology or occurrence of 

channel-forming flows has a larger influence (Figure 15). Multiple factors, such as riparian 

vegetation growth, artificial stabilization from center pivots and rip rap, and the locations of 

irrigation canals all influence the channel morphology and cannot be differentiated. 

 Cross-channel profiles of bridge crossings from KDOT and ground truthing images show 

that the channel near Garden City has entrenched roughly a 1.5 m over time (Figure 19). The 

timing and magnitude of downcutting is beyond the scope of this study and the necessary data 

sources to systematically characterize the vertical changes are not available. Anecdotal evidence, 

however from bridge construction profiles and ground-based observations reveal that the modern 

channel has entrenched below the pre-development channel. Entrenchment is difficult to assess 
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at bridge crossings due to the emplacement of rip rap, Kellner jetty jacks, and other channel 

control methods, but entrenchment is evident on each of the bridges where one or more support 

columns are within the river channel. Bridges often create atypical flow conditions; there is 

consistency among the study area bridges as to the evidence for entrenchment. Upstream from all 

the study area diversion canals (Hamilton County), channel entrenchment is greatest due to the 

frequent channel-forming flows. 

 

Chronology of Channel Pattern Change 

 

 A result of this research is that of developing the chronology of channel change in this 

reach of the Arkansas River. Schumm (1963) and Moody-Stuart (1966) classifications for 

channel patterns and the total sinuosity index were used to quantitatively determine the time 

period in which the river shifted from braided to meandering. The channel pattern change 

occurred between the years of 1986 and 1991 when the sinuosity crossed the 1.3 value, where the 

channel transitioned from a braided classification to a meandering one (Table 1). After 1991 the 

sinuosity began to increase relatively quickly to 1.35 in 2003 and 1.46 in 2014. No one event led 

to the time in which the river experienced a complete channel pattern change but a culmination 

of events. Together the absence of peak flow events, such as in 1965, have not occurred, 

groundwater withdrawals have increased, salt cedar has become ubiquitous for stabilizing 

channel banks, and the continued use of numerous irrigation diversion canals has resulted in the 

complete channel pattern change between 1986 and 1991.  

 The shift from the braided to meandering channel pattern for the Kansas High Plains 

reach did occur between the 1986 and 1991 period, however as previously noted channel 



 30 

changes have varied based on study area location (Figures 13,14 and 18). Upstream sections 

have sinuosity values above 1.6 in some cases, whereas downstream sections have mean 

sinuosity values of 1.2 (Figure 15). These differences between upstream and downstream 

sinuosity values are attributed to the locations of the Farmers and Amazon Irrigation Diversion 

Canals, which have limited the flows reaching downstream (Figures 4 and 7). Sections 1, 2, and 

the majority of section 3 receive channel forming flows, where as section 4 rarely experiences 

flows exceeding bankfull depths (Figure 9). Upstream reaches near Syracuse have well-defined 

cutbank and pointbar sequences in comparison to downstream reaches near Garden City where 

the channel is fairly straight (Figure 20). This contrast in sinuosity between sections 1, 2, and 3 

from section 4 occurred between 1965 and 1986 when the majority of sinuosity values for the 

first three sections are above 1.3 (Figure 15). The metamorphosis of the Kansas High Plains is 

shown to occur earlier, during the 1965-1986 period, when the downstream reach, near Garden 

City, exhibiting minor change is not included in the analysis. 

 

CONCLUSIONS 

 

River metamorphosis has been documented in global river systems during the historical 

and Late Quaternary contexts. For example, during the Late Pleistocene to Holocene transition 

many rivers underwent a metamorphosis, such as the Mississippi River (Rittenour et al., 2005), 

Murrumbidgee River (Schumm, 1969), Maas River (Huisink, 1983), and multiple rivers in the 

southeastern U.S. (Leigh, 2006). At this time, around 20 ka, the Arkansas River appears to have 

changed its channel pattern from a highly sinuous meandering stream channel to a braided 

system (Johnson and Dort, 1988; Jaumann, 1991). While these late-Pleistocene changes in 

channel patterns were climatically induced, the historical changes in the Arkansas River channel 
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within the Kansas High Plains are being driven by anthropogenic influences, but the changes are 

equally dramatic in regards to the large degree of channel change over a small expanse of time. 

This study of historical channel change along the Kansas High Plains reach of the 

Arkansas River has documented the channel as it relates to surface-water and groundwater 

hydrology for the past 75 years. The hydrologic history of the Arkansas River explains the major 

significant changes in sinuosity and width changes. The Arkansas River metamorphosis was 

observed along with other rivers on the Great Plains such as the North and South Platte Rivers, 

where a dramatic change in the hydrologic regimen transformed the channel morphology. In 

most cases, as with the North and South Platte Rivers, tributary streams below the point of main-

channel regulation still contribute water and sediment to the main channel (Schumm, 2003). The 

metamorphosis of the Arkansas River channel is especially intense and more developed 

compared to downstream and upstream reaches due to local conditions, such as minor tributary 

inputs and the large amount of diversion canals. Along the Kansas High Plains reach of the 

Arkansas River anthropogenic influences from irrigation diversion canals to groundwater 

pumping are extensive and compound the hydrological effects of upstream dams and limited 

local tributary input. 

The recent history of the Arkansas River along the Kansas High Plains and any 

indications of possible future behavior will impact, directly or indirectly a substantial number of 

people and a large portion of the state’s economy (Dort, 2009). Therefore, in order to predict 

future changes in the Arkansas River channel one should appreciate the channel transformation 

that occurred historically. Research regarding the historical channel changes along the Kansas 

High Plains reach is intended to aid future river engineering decisions from the U.S. Army Corps 

of Engineers and KDOT. The Arkansas River along the Kansas High Plains has experienced 
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changes in width, depth, and sinuosity; therefore, in light of channel entrenchment and meander 

migration, erosion of the channel bed and bank is anticipated. Government agencies can utilize 

this research to mitigate erosion levels and propose solutions to stabilize the channel banks by 

limiting the proximity of center pivot irrigation systems and gravel pit operations to the river 

channel and allowing riparian vegetation to mature. Channel change research is also 

exceptionally valuable to natural resource management agencies to maintain watershed 

conditions, wildlife habitat, and the aesthetic value of fluvial landscapes.  

The GIS-derived analysis of the Arkansas River channel morphology produced from 

aerial photographs has confirmed trends predicted by previous studies regarding channel 

narrowing and sinuosity increases (Schumm, 1969; Nadler and Schumm, 1981; Schumm, 2003). 

As a result of documenting and quantifying the historical channel change for the past 75 years 

this study indicates that 1) the Arkansas River along the Kansas High Plains is a relatively 

unstable system adjusting to changes in hydrology and 2) the river has experienced a historical 

metamorphosis from anthropogenic modifications of surface-water and groundwater hydrology. 

The Arkansas River channel will likely continue its current trend of increasing sinuosity and 

narrowing as long as the present-day hydrologic regime is maintained. Subsequent research on 

the Arkansas River historical channel change should determine if these morphologic patterns 

occur upstream and downstream of the Kansas High Plains reach. 
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TABLES 

 

Table 1: Classification and parameters for alluvial river channel patterns within the Great Plains 

(Schumm, 1963). 
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Table 2: Complete channel pattern change studies. 
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Table 3: Central Great Plains river systems where historical river channel change has been 

documented. 
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Table 4: Aerial photography from which channel courses were digitized. 
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Table 5: Sinuosity and mean width calculations derived from digitized channel courses. 
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FIGURES 

 

 
Figure 1: Channel pattern classification and relative stability of alluvial channels for the Great 

Plains (Schumm and Meyer, 1979). 
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Figure 2: Past (left) and present (right) comparison of the Arkansas River in western Kansas. Top 

Left- 1939 aerial image of the Arkansas River as a braided channel pattern in Finney County 

(National Archives). Top Right- 2012 aerial image depicting the same reach of the Arkansas 

River as the top left image but as a meandering pattern (National Agriculture Imagery Program). 

Bottom left- Historical ground perspective image of the Arkansas River bridge at Garden City 

(view south/southwest) during the late 1800s (Kansas State Historical Society). Bottom right- 

Present day upstream (west) view from the Garden City bridge at U.S. Highway 83 (United 

States Geological Survey).  
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Figure 3: Kansas High Plains reach of the Arkansas River in western Kansas. The top image is a 

LiDAR-derived, hillshade-digital elevation model (DEM) of the study area. Highlighted black 

dots represent selected Public Land Survey (PLS) locations. Dotted white lines delineate each 

study area section based on valley width. 
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Figure 4: Locations of USGS stream gages, irrigation diversion canals, and tributaries along the 

Kansas High Plains reach of the Arkansas River. 
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Figure 5: Maximum annual discharge events for the Arkansas River from four stream gages 

within the study area reach. The vertical black line on year 1948 indicates the completion of John 

Martin Dam. Note that the Coolidge gage began collecting data in 1951, and the Below John 

Martin gage started recording in 1938. (USGS: http://waterdata.usgs.gov/ks/nwis/rt) 
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Figure 6: Timeline of the major floods, river engineering projects, and years of aerial 

photography for the study reach of the Arkansas River valley. 
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Figure 7: Locations where the Arkansas River channel is artificially stabilized or controlled: A) 

Amazon irrigation diversion canal, B) center pivot irrigation system, C) Farmers irrigation 

diversion canal, D) gravel road build up by riprap crossing the channel, and E) construction pit 

building up the channel bank. 
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Figure 8: Mean annual discharge for the Arkansas River from four stream gages along the study 

area. The vertical black line on year 1948 indicates the completion of John Martin Dam. Note 

that the Garden City gage does not have data from 1969 to 1987, the Coolidge gage began 

collecting data in 1951, and the Below John Martin gage started recording in 1949. (USGS: 
http://waterdata.usgs.gov/ks/nwis/rt) 
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Figure 9: Frequency of flows that exceeded bankfull depth at each study area stream gage that 

had a specified National Weather Service floodstage. (USGS: 
http://waterdata.usgs.gov/ks/nwis/rt) 
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Figure 10: Image pairs depicting river reaches that illustrate temporal change in channel 

morphology. Upper left-south of Garden City; upper right-west of Hartland; bottom left-east of 

Hartland; bottom right-southeast of Syracuse. 
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Figure 11: 38 selected Public Land Survey (PLS) measurements (color dots), mean PLS 

measurements (black squares), and aerial photograph mean calculations (black triangles) within 

the study reach from 1871 to 2014. 
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Figure 12: Sample reach of the Arkansas River southwest of Lakin, Kansas. While not typical of 

the entire Arkansas River channel of the Kansas High Plains, this reach exemplifies historical 

channel changes from 1939 to 2014. 
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Figure 13: Reach of the Arkansas River exhibiting major historical channel changes (1939-

2014), here southeast of Syracuse in Hamilton County. 
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Figure 14: Reach of the Arkansas River exhibiting minor historical channel change (1939-2014) 

southwest of Garden City. Gravel pits, irrigation canals, and roads have stabilized channel 

segments by enhancing the channel banks with riprap, sediment, and Kellner jettyjack fields. 

Here gravel extraction activities have partially constrained channel position. 
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Figure 15: The study reach classified into four sections based on valley width. Sections 1 and 3 

have wide valleys (circles) and sections 2 and 4 (triangles) have narrow valleys. 
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Figure 16: Annual precipitation recorded at Syracuse, Lakin, and Cimarron beginning in 1920. 

(High Plains Regional Climate Center: http://www.hprcc.unl.edu/data/historical/) 
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Figure 17: LiDAR-derived hillshade digital elevation models (top) and image pairs exemplifying 

the effect of riparian vegetation on channel sinuosity (bottom). A) Reach of major change 

showing high sinuosity southeast of Syracuse in Hamilton County. B) 2014 NAIP image of area 

in A, depicting dense riparian vegetation. C) Reach of minor change showing low sinuosity 

southwest of Garden City in Finney County. D) 2014 NAIP image of area in C, illustrating 

minimal riparian vegetation. 
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Figure 18: Town Bridge crossings (left to right) going downstream of the Kansas High Plains. 

Left images are ground views captured from bridges and right images are oblique aerial photos 

of the associate bridge. Riparian vegetation decreases and channel width increases in the 

downstream direction (to the right on the map). 
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Figure 19: Examples of evidence for channel entrenchment at four locations within the study 

area reach: A) author standing on the former braided channel bed, B) the change in elevation of 

the river flowing east near Kendall, C) author standing on the present-day channel bed (dry); 

when the Garden City West Bridge pilings were emplaced in 1957 the channel bed was at the 

base of the cross panel between the support columns (entrenchment of about 1.5 m), and D) 

Pierceville Bridge with similar conditions to that of C. 
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Figure 20: Differences in sinuosity from upstream and downstream reaches within the Kansas 

High Plains reach: A) Map illustrating reach of major channel change near Syracuse, B and C) 

Well-defined cutbank and pointbar sequences upstream, D) Map illustrating reach of minor 

channel change near Garden City, E) Channel reach downstream exhibiting low sinuosity. 


