
 

 

EVALUATION OF CORROSION RESISTANCE 

 OF MICROALLOYED REINFORCING STEEL 
 
 
 

By 

Javier Balma 

David Darwin 

JoAnn P. Browning 

Carl E. Locke, Jr. 
 
 
 
 
 

A Report on Research Sponsored by 
 

GERDAU AMERISTEEL CORPORATION 
 

 THE NATIONAL SCIENCE FOUNDATION 
Research Grant No. CMS - 9812716 

 
KANSAS DEPARTMENT OF TRANSPORTATION 

Contract Nos. C1131 and C1281 
 
 

Structural Engineering and Engineering Materials 
SM Report No. 71 

 
 

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. 

December 2002  



 ii

ABSTRACT 

 

 The corrosion resistance of three microalloyed steels and two conventional 

reinforcing steels in concrete is evaluated.  The microalloyed steels contain 

concentrations of chromium, copper, and phosphorus that, while low, are significantly 

higher than used in conventional reinforcing steel.  Two of the microalloyed steels 

contain amounts of phosphorus that exceed the amounts allowed in ASTM 

specifications (ASTM A 615), while the other microalloyed steel has normal amounts 

of phosphorus. One of the conventional steels and the three microalloyed steels are 

heat treated by the Thermex process, which includes quenching and tempering of the 

steel immediately after rolling, while the other conventional steel is hot-rolled.   The 

study was undertaken because earlier tests on similar steels indicated that the 

Thermex-treated, microalloyed steel corrodes at only one-half the rate of 

conventional reinforcing steel.  The relative corrosion rate dropped to one-tenth if 

both steels were epoxy-coated.  In the current study, the reinforcing steels were tested 

using two rapid evaluation tests, the corrosion potential and corrosion macrocell tests, 

and three bench-scale tests, the Southern Exposure, cracked beam, and ASTM G 109 

tests.  The corrosion potential, corrosion rate, and mat-to-mat resistance are used to 

evaluate the steel.  Tension and bending tests were performed to evaluate the effect of 

the microalloying and heat treatment on the mechanical properties of the reinforcing 

steel. 

Results show that the corrosion potential of the five steels is approximately 

the same, indicating that they have a similar tendency to corrode.  The results from 

the rapid macrocell test showed that the five steels had similar corrosion rates, with 

no improved behavior for the microalloyed steels.  The microalloyed steel with 
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regular phosphorus content (CRT) exhibited consistently lower corrosion losses than 

conventional steel in the bench-scale tests.  Although CRT appears to be much more 

corrosion resistant than conventional steel in the G 109 tests (64% less total corrosion 

loss after 70 weeks), its overall performance does not show such an advantage.  In the 

cracked beam test after 70 weeks, it had only 4% less corrosion loss than 

conventional steel, which indicates that in cracked concrete the two steels behave in a 

similar manner.  In the Southern Exposure test, CRT steel had a 11% lower corrosion 

loss than conventional steel after the same period. This improved behavior is not 

enough to use the steel without an epoxy coating or to justify continued research on 

the steel as a superior epoxy-coated material.  The mechanical properties of the 

microalloyed steels were similar to those of conventional steel, indicating that the 

increased phosphorus content did not affect the mechanical properties. 

 

 

Key words:  chlorides, concrete, corrosion, microalloys, reinforcing steel, potential, 

macrocell, corrosion rate.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. GENERAL 

One of the major durability problems in reinforced concrete structures is the 

corrosion of the reinforcing steel.  According to the Federal Highway Administration 

(FHWA), approximately 30% of the nation’s bridges are classified as either 

structurally or functionally deficient (FHWA 1999).  It is estimated that it will cost an 

average $10.6 billion a year for 20 years to eliminate the existing bridge investment 

backlog and correct bridge deficiencies that are likely to develop over this period. If 

the bridge investment backlog is maintained at its current level, it will take an average 

$5.8 billion a year for that same period to selectively correct existing deficiencies and 

other deficiencies that will develop with time. 

Due to the bare pavement policies implemented during the 1950s, deicing salts 

such as sodium chloride and calcium chloride are used on highways and bridges to 

keep them free of ice and snow.  These chlorides can penetrate the concrete and 

attack the reinforcing steel, causing corrosion.  Bridge decks are most likely to be 

damaged, but other elements, such as beams and piers, can also be affected due to 

runoff.  Structures in marine environments are also subjected to chloride-induced 

corrosion.  Corrosion causes cracking and spalling of concrete due to the increased 

volume of corrosion products compared to the original steel.  Loss of bond between 

the reinforcing steel and the concrete and loss of steel area also reduce the strength of 

the member. 

 Several methods to protect reinforcing steel from corrosion have been 

developed over the years.  These methods include barriers that prevent chlorides from 
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reaching the steel (overlays, sealers), electrochemical methods (cathodic protection), 

corrosion inhibitors in the concrete, and alternative reinforcing steels, such as 

stainless steel or epoxy-coated reinforcing bars.  This study focuses on the evaluation 

of the corrosion-resistant properties of three different microalloyed steels. 

 Tata Steel Company in India originally developed a microalloyed steel with 

mechanical properties that are similar to those of conventional steel and with 

corrosion resistance that was claimed by the original developers to be three to five 

times better than conventional steel (Tata 1991). The alloying process is carried out 

“to affect the electrochemical behavior in such a way that either the corrosion 

potential increases or the critical current density decreases, so that the on-set of 

anodic reaction gets lowered” (Tata 1991).  These microalloyed steels have a carbon 

equivalent of 0.30 to 0.45%, and the alloys contain concentrations of chromium, 

copper and phosphorus that, while low, are significantly higher than used in 

conventional reinforcing steel.  According to Tata (1991), the copper reacts with 

chlorides on the steel surface to form a layer of CuCl2 ·3 Cu(OH)2 that has low 

solubility and retards the corrosion process.  Phosphorus oxides act as inhibitors and 

also slow the corrosion process.  Chromium results in the formation of a spinel oxide 

layer (FeO·Cr2O3) that is a poor conductor of electrons.  Some of the steel is also heat 

treated by the Tempcore or Thermex process (tradenames), which involves quenching 

and tempering of the steel immediately after rolling.  This process places the exterior 

of the bars in compression, reducing microcracks on the surface of the steel. 

 Accelerated corrosion tests were conducted by Tata Steel to select the best 

chemistry for the corrosion resistant steel (CRS).  The accelerated corrosion tests on 

bare steel included: salt spray, alternate immersion in salt water, placement in a sulfur 

dioxide chamber, and potentiodynamic tests.  Atmospheric corrosion tests were also 
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conducted for periods of two months to two years.  Tests on bars embedded in 

concrete consisted of exposing the concrete blocks in a saline solution to 60 cycles of 

wetting and drying.  Each cycle consisted of 24 hours of immersion of the concrete 

block in a saline solution for 48 hours at room temperature, followed by drying at 

60oC (140oF) in an air circulation chamber for 48 hours.  After 50 cycles, the concrete 

blocks containing CRS bars were intact, while concrete blocks containing 

conventional steel had disintegrated due to volume expansion of the corrosion 

products.  Salt spray tests conducted for 720 hours resulted in a severely pitted 

surface for conventional steel, while CRS bars showed a smooth surface.  Bars rolled 

using the Thermex process were more corrosion resistant than the bars rolled using 

conventional methods. 

 Similar microalloyed steels, provided by Gerdau AmeriSteel (formerly Florida 

Steel Corporation) were evaluated at the University of Kansas (Senecal et al. 1995, 

Smith et al. 1995, Schwensen et al. 1995, Darwin 1995).  Four types of steel, hot-

rolled conventional, Thermex-treated conventional, hot-rolled microalloyed, and 

Thermex- treated microalloyed steel, were evaluated.  Corrosion potential, macrocell, 

Southern Exposure and cracked beam tests were performed.  The Southern Exposure 

and cracked beam tests (bench-scale tests) lasted for 48 weeks.  The corrosion 

potential and macrocell tests are described in Section 2.3 and the Southern Exposure 

and cracked beam tests are described in Section 2.4. 

In general, the Thermex-treated microalloyed steel had a macrocell corrosion 

rate equal to about one-half that of conventional steels in both the rapid macrocell and 

the Southern Exposure tests.  The hot-rolled microalloyed steel showed higher 

corrosion rates than conventional steels in the bench-scale tests, but exhibited half the 

corrosion rate of conventional steel in the rapid macrocell test.  The Thermex-treated 



 4

conventional steel showed improved corrosion resistance compared to the hot-rolled 

conventional steel. All four types of steel showed similar corrosion potentials when 

exposed to the same concentrations of NaCl.  Epoxy-coated Thermex-treated 

microalloyed steel performed particularly better when compared to conventional 

epoxy-coated steel (corroding at only about 10% of the rate).  Based on these 

observations, a recommendation was made to continue development of the new steel 

to be used as a superior epoxy-coated reinforcing steel.  In addition, a 

recommendation was made to extend the testing period for the bench-scale tests to 

two years to better evaluate the corrosion behavior as affected by the deposition of 

corrosion products. 

 In the current study, two rapid evaluation tests, the corrosion potential and 

macrocell tests, and three bench-scale tests, the Southern Exposure (SE), cracked 

beam (CB), and ASTM G 109 tests, described in Chapter 2, are used to evaluate new 

microalloyed reinforcing steels.  Tension tests and bend tests are performed to 

determine the mechanical properties and the ductility of the steels.  The balance of 

this chapter provides background for the tests performed in this study. 

 

1.2. CORROSION OF STEEL IN CONCRETE 

Metals are usually reduced from chemical compounds (minerals, ores), and a 

certain amount of energy is needed for this process.  The corrosion process returns the 

metals to their original chemical compounds, releasing the same amount of energy, 

although at a different rate.  Jones (1996) defines corrosion as “the destructive result 

of chemical reaction between a metal or metal alloy and its environment.” 

Steel corrosion products (rust) have a greater volume, three to five times 

more, than the original metal.  This produces internal compressive stresses at the 
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steel/mortar interface that produce tension in the surrounding material and results in 

cracking and spalling of the concrete.  As cracks grow, concrete permeability 

increases allowing greater access of chlorides to the steel.  The cracks can also cause 

significant loss of bond between the reinforcing steel and the concrete.   

Corrosion of steel in concrete is an electrochemical process that involves the 

transfer of ions.  Electrochemical corrosion requires four factors: an anode, a cathode, 

an electrolyte, and an electronic circuit. The anode and cathode are different sites in 

the reinforcing steel.  They can be located either on the same bar or on different bars.  

The electrolyte is usually the moisture in the concrete, and the electrical contact 

between different bars can be provided by steel wire ties or chair supports.  To protect 

the steel against corrosion, at least one of these factors must be eliminated. 

The type of corrosion that occurs when the anode and the cathode are located 

on the same bar is called microcell corrosion.  Macrocell corrosion occurs when the 

anode and the cathode are located on different bars, such as two different layers of 

steel.   

In reinforcing steel, when oxygen is present, iron is oxidized at the anodic site 

and releases electrons [Eq. (1.1)].  At the cathode, oxygen combines with moisture 

and the electrons released at the anode to form hydroxyl ions [Eq. (1.2)]. 

Fe    Fe2+   +   2e-               (1.1) 
1/2O2  +  H2O  +  2e-     2OH-                  (1.2) 

The ferrous ions combine with hydroxyl ions to produce ferrous hydroxide 

[Eq. (1.3]).  The ferrous hydroxide is oxidized in the presence of moisture and oxygen 

to produce ferric hydroxide [Eq. (1.4]).  The ferric hydroxide can dehydrate to form 

ferric oxide, which is the red-brown oxide commonly known as rust [Eq. (1.5)]. 

Fe2+  +  2OH-    Fe(OH)2                   (1.3) 
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4Fe(OH)2  +  2H2O  +  O2    4Fe(OH)3                 (1.4) 

2Fe(OH)3    Fe2O3  +  3H2O             (1.5) 

Reinforcing steel in concrete is passive due to the high alkalinity of the 

cement paste in concrete (pH = 13.0 to 13.5).  This high alkalinity leads to the 

formation of a γ-ferric oxide passive film on the surface of the steel that protects it 

from corrosion. 

Fe(OH)2  +  O2    γ-FeOOH  +  H2O                   (1.6) 

This passive film can be destroyed by two mechanisms: (1) the presence of 

chloride ions, which results in a localized breakdown of the passive film, and (2) 

carbonation, which results in a decrease in the pH of the concrete, thus reducing the 

passivity.   

On a concrete slab, chlorides typically enter from the top surface.  Once 

chlorides reach the top mat of steel, its electrochemical or corrosion potential with 

respect to a standard electrode will drop, becoming more negative.  The potential of 

the bottom mat of steel will retain a more positive value.  This difference in potential 

results in the formation of a galvanic cell that drives the corrosion process. 

In the presence of chlorides, iron at the anode is oxidixed as before [Eq. (1.1)] 

and the ferrous ions react with chloride ions to form a soluble iron-chloride complex 

[Eq. (1.7)].  The iron-chloride complex reacts with hydroxyl ions and forms ferrous 

hydroxide [Eq. (1.8)], which is a greenish black product.   

Fe2+  +  2Cl-    [FeCl complex]+             (1.7) 

[FeCl complex]+  + 2OH-    Fe(OH)2  +  Cl-                       (1.8) 

The ferrous hydroxide is oxidized to ferric hydroxide that, in turn, dehydrates 

to form ferric oxide, as shown in Equations (1.4) and (1.5).  At the cathode, hydroxyl 

ions are formed when oxygen combines with moisture and the electrons released at 
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the anode as before [Eq. (1.2)].  As demonstrated by Equations (1.7) and (1.8), the 

chloride ions are not consumed and remain available to continue contributing to 

corrosion.  Chloride attack on reinforcing steel usually occurs as pitting corrosion.  

Pitting will continue to increase if the chloride content exceeds a specific 

concentration.  This chloride threshold is believed to be dependent on the 

concentration of hydroxyl ions (Hausmann 1967). 

 

1.3   CORROSION MONITORING METHODS 

 The corrosion of metals can be evaluated using a number of methods.  These 

include measuring corrosion potential and macrocell corrosion rate, linear 

polarization resistance, electrochemical impedance spectroscopy, and visual 

inspection.  The following is a brief description of each method. 

 

1.3.1 Corrosion Potential 

 The electrochemical potential of a metal is a measure of its thermodynamic 

state and its tendency to corrode.  It is measured in volts.  The more negative the 

potential, the higher the tendency to corrode.  The potential serves as an indicator 

rather than as a direct measure of the corrosion rate.  When a macrocell is formed, the 

driving force is the difference in potential between the anodic and cathodic sites. As 

the potential difference increases with all other variables constant, so does the 

corrosion rate of the bars, and the anode will always have a more negative potential 

than the cathode. 

The corrosion potential of a bar is obtained by measuring the potential 

difference between the bar and a reference electrode.  A reference electrode “has a 

relatively fixed value of potential, regardless of the environment” (Uhlig 1985) and 



 8

often consists of a metal that is submerged in a solution containing its own ions.  The 

reaction that takes place in the standard hydrogen electrode (SHE) [Eq. (1.9)] has 

been chosen to represent “zero potential”. The reaction that occurs in a reference 

electrode is always known and so is its half-cell potential with respect to the standard 

hydrogen electrode.   

2H+  +  2e-     H2              (1.9) 

Other electrodes have been developed and are used more frequently than the 

SHE.  The two reference electrodes most commonly used are the saturated calomel 

electrode (SCE) and the copper-copper sulfate electrode (CSE).  The differences in 

potential between the SHE and these two electrodes, as well as their half-cell 

reactions, are shown in Table 1.1.   

 
Table 1.1 – Standard reference electrodes 

 

Electrode Half-cell reaction Potential vs. SHE 
(V) 

Copper-copper sulfate (CSE) CuSO4 + 2e-    Cu + SO4
2- +0.318 

Saturated calomel (SCE) HgCl2 + 2e-   2Hg + 2Cl- +0.214 
Standard hydrogen (SHE) 2H+  +  2e-     H2 0.000 

  

The potential of a metal indicates its tendency to corrode in a given 

environment.   ASTM C 876 is used to evaluate the corrosion potential of uncoated 

reinforcing steel in concrete.  Table 1.2 shows the probability of corrosion based on 

potential measurements, as presented in ASTM C 876. 

 

 

 

 



 9

Table 1.2 – Interpretation of half cell readings (ASTM C 876) 
 

Interpretation
CSE SCE

< -0.200 < -0.125 greater than 90% probability that corrosion is not ocurring
-0.200 to -0.350 -0.125 to -0.275 corrosion activity is uncertain

> -0.350 > -0.275 greater than 90% probability that corrosion is ocurring

Half-Cell Reading (V)

 
 
 

1.3.2  Macrocell Corrosion Rate 

The corrosion rate of a reinforcing bar in a corrosion test where the corrosion 

current density has been measured can be obtained using Faraday’s law as follows: 

DFn
ai

KRate c

⋅⋅
⋅

⋅=                                  (1.10) 

where Rate is given in µm/year, and 

K = conversion factor = 31.5·104  amp·µm ·sec/µA·cm·year 

ic = corrosion current density, µA/cm2 

a = atomic weight of the metal 

 For iron, a = 55.8 g/g-atom 

n = number of ion equivalents exchanged 

 For iron, n = 2 equivalents 

F = Faraday's constant 

 F = 96500 Coulombs/equivalent 

D = density of the metal, g/cm3 

 For iron, D = 7.87 g/cm3 

 

Using Eq. (1.10), the corrosion rate for iron can be expressed in terms of the 

corrosion current density: 
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          ciRate ⋅= 6.11            (1.12) 

In a test where a macrocell is formed, the corrosion current density can be 

obtained by measuring the voltage drop across a resistor that connects the anode and 

the cathode within the cell 

     
AR

V
c ⋅

=i                        (1.13) 

where 

V = voltage drop across the resistor, mV 

R = resistance of the resistor, ohm 

A = area of exposed metal at the anode bar, cm2 

 

1.3.3  Polarization Resistance 

 The corrosion current density can also be obtained in a polarization resistance 

test.  A  potentiostat can be used to impose a range of potentials on the metal, usually 

–10 to +10 mV versus the open circuit corrosion potential, and measure the 

corresponding corrosion current. A polarization curve is obtained and a portion of this 

curve is linear.  The slope of the linear portion of the curve is called the polarization 

resistance, Rp, and is proportional to the corrosion resistance of the metal.  The 

corrosion current density is: 

       
p

c R
B

=i                                             (1.14) 

where 

ic = corrosion current density, µA/cm2, 
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B = constant with a value of 26 to 52 mV for steel in concrete, Tafel slope [see Jones 

(1996) for additional discussion]. 

Rp = polarization resistance (slope of linear portion of polarization curve), kΩ⋅cm2. 

 The corrosion rate is then determined using Eq. (1.10).  Polarization resistance 

can be used to determine the total corrosion rate for a metal, which will be the sum of 

the macrocell and microcell corrosion rates.  

 

 1.3.4  Electrochemical Impedance Spectroscopy 

 A potentiostat is used to apply an alternating current to the system.  The 

different constituents of reinforced concrete (concrete, reinforcing steel, and coatings) 

can be modeled as a network of capacitances and resistances.  When an alternating 

current is applied, each constituent can be evaluated independently for its contribution 

to the corrosion resistance of the system. 

 

1.4  CORROSION TESTS 

Two rapid evaluations tests, the corrosion potential and corrosion macrocell 

tests, and three bench-scale tests, the Southern Exposure, cracked beam, and ASTM 

G 109 tests, are used to evaluate the corrosion performance of the steel.  These tests 

use corrosion potential and corrosion rate to evaluate the performance of the steels.  

Full details of the specimens and testing procedures are given in Chapter 2. 

 

1.4.1 Rapid Evaluation Tests 

The rapid corrosion potential and macrocell tests were developed by Martinez 

et al. (1990).  Their research included the development and evaluation of a standard 

test specimen and the use of the corrosion potential and corrosion macrocell tests to 
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evaluate the effect of different concentrations of three deicing chemicals (calcium 

chloride, sodium chloride, and calcium magnesium acetate) on the corrosion of 

reinforcing steel cast in mortar. 

The specimen used in the rapid evaluation tests consisted of a 127 mm (5 in.) 

long, No. 13 [No. 4] reinforcing bar, partly embedded in mortar.  The specimen had a 

thin mortar cover to allow the chlorides to reach the steel in a short period of time.   

The corrosion potential test determines the relative tendency of a material to corrode 

in a given environment.  The corrosion potential was measured versus a saturated 

calomel electrode. The macrocell test is used to measure the corrosion rate of steel.   

 In the early work, the corrosion potential test provided more consistent results 

than the macrocell test and additional modifications to the macrocell test were 

recommended.  Based on the test results for the different deicers, calcium chloride 

was observed to be more aggressive than sodium chloride, while calcium magnesium 

acetate was the least corrosive.  The tests and test specimens have been modified in 

subsequent studies (Senecal et al. 1995, Schwensen et al. 1995, Smith et al. 1995, 

Kahrs et al. 2001, Darwin et al. 2002) to improve the consistency and repeatability of 

the results. 

 

1.4.2   Bench-Scale Tests 

 Bench-scale tests include the Southern Exposure (SE), cracked beam (CB), 

and ASTM G 109 tests.  These tests simulate the conditions found in concrete bridge 

decks subjected to deicing chemicals.  Bench-scale specimens consist of a small 

concrete slab containing two mats of steel.  The slabs are subjected to alternate 

ponding and drying cycles with a salt solution.  The macrocell current between the 
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two mats of steel is measured to obtain the corrosion rate of the bars (Section 1.3.2).  

The corrosion potential of the top and bottom mats is also recorded. 

 The Southern Exposure (SE) specimen consists of a concrete slab, 305 mm 

(12 in.) long, 305 mm (12 in.) wide, and 178 mm (7 in.) high.  The cracked beam 

(CB) specimen is the same length and height as the SE specimen, but half the width.  

A crack is simulated in the concrete, parallel to and above the top bar, using a 0.30 

mm (0.012 in.) stainless steel shim, 152 mm (6 in.) long, cast into the concrete and 

removed 24 hours after casting.  In both specimens, a concrete dam is cast around the 

top edge of the specimen at the same time as the specimen is cast.  The ASTM G 109 

specimen consists of a concrete slab, 279 mm (11 in.) long, 152 mm (6 in.) wide, and 

114 mm (4.5 in.) high.  A plexiglass dam is used to pond a solution on the top of the 

specimen over a region with dimensions of 76 x 150 mm (3 x 6 in.).   

The SE tests were originally used by Pfeifer et al. (1981) in a study to evaluate 

concrete sealers for bridges.  The test was developed to simulate the exposure 

conditions in southern climates, thus the name Southern Exposure.   A flexural crack 

was induced in some specimens to evaluate the behavior of cracked concrete.  The 

cycle for these tests consisted of ponding the specimens for 100 hours with a 15 

percent NaCl solution followed by drying in a heat chamber at 100oF for 68 hours.  

This weekly cycle was repeated 24 times.  The ASTM G 109 test was developed to 

evaluate the effect of chemical admixtures on the corrosion of metals in concrete and 

follows a cycle that includes ponding the specimens for two weeks.  After this period 

the specimens are allowed to dry for two weeks and the cycle is repeated until a 

corrosion current between the two mats of steel of 10 µA (equivalent to a current 

density of 0.072 µA/cm2 and a corrosion rate of 0.83 µm/year for a No. 16 [No. 5] 

bar) is measured on at least half the specimens. 
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  Tourney et al. (1993) used the G 109 test to evaluate different corrosion 

inhibiting admixtures.  Slabs in which a flexural crack was induced on top of the 

steel, similar to the CB specimen, were also used in the test program.  Nmai et al. 

(1994) used the SE test evaluate if sodium thiocyanate-based accelerating admixtures 

are safe for use in reinforced concrete structures.  The SE and CB tests have been 

used at the University of Kansas in the earlier tests of microalloyed steel (Darwin 

1995, Senecal et. al, 1995), as mentioned in Section 1.1, and are currently in use to 

evaluate several corrosion protection systems.  McDonald et al. (1998) used SE and 

CB tests to evaluate epoxy-coated, metallic-clad, and solid metallic reinforcing bars 

in concrete.  In that study, certain modifications in the procedures were performed, 

which included 12 weeks of continuous ponding after the first 12 weeks of cyclic 

ponding and drying, and the extension of the testing period to 96 weeks. 

 

1.5  OBJECTIVE AND SCOPE 

The corrosion resistance of three microalloyed and two conventional 

reinforcing steels in concrete is evaluated.  The five types of reinforcing steel, 

provided by Gerdau AmeriSteel Corporation, include:  conventional normalized steel 

(N); conventional steel, Thermex treated (T); microalloyed steel with a high 

phosphorus content, 0.117%, Thermex treated (CRPT1); microalloyed steel with a 

high phosphorus content, 0.100%, Thermex treated (CRPT2); and microalloyed steel 

with normal phosphorus content, 0.017%, Thermex treated (CRT).  A principal 

objective of the study is to determine if the new steels possess enough advantage over 

conventional steels to justify additional studies that include evaluating the new steels 

with epoxy coatings as suggested in prior work (Darwin 1995). 
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Two rapid evaluation tests, the corrosion potential and corrosion macrocell 

tests, and three bench-scale tests, the Southern Exposure, cracked beam, and ASTM 

G 109 tests, were used to evaluate the reinforcing steel. 

Fifty-five corrosion potential tests were performed, five tests for each steel 

type in the bare condition in a 1.6 m ion NaCl and simulated concrete pore solution 

and three tests for each steel type with a mortar cover in 0.4 and 1.6 m ion NaCl and 

simulated concrete pore solutions. 

One hundred fifteen macrocell tests were performed; five bare bar tests for 

each steel type in 1.6 m ion NaCl solution, four mortar-encased bar tests for each 

steel type with the ends covered with an epoxy-filled cap in 0.4 and 1.6 m ion NaCl 

solutions, and five mortar-encased bar tests for each type of steel without caps in 0.4 

and 1.6 m ion NaCl solutions.  In all cases, the NaCl solutions were combined with 

simulated concrete pore solution. 

 Six Southern Exposure, cracked beam, and G 109 tests were performed for 

each type of steel.  The effect of combining conventional steel with corrosion-

resistant steel was also evaluated using six SE specimens with N steel in the top mat 

and CRPT1 in the bottom mat (N/CRPT1), and six SE specimens with CRPT1 steel 

in the top mat and N steel in the bottom mat (CRPT1/N).   

Mechanical tests were performed to obtain the yield and tensile strength, as 

well as the elongation of each microalloyed steel.  Bend tests were also performed.



 CHAPTER 2 

EXPERIMENTAL WORK 

 

2.1 GENERAL 

The corrosion potential, corrosion macrocell, Southern Exposure, cracked beam 

and ASTM G 109 tests are used to compare the different types of reinforcing steel.  

The first two are rapid evaluation tests, while the other three are longer-term bench-

scale tests.  This chapter describes the equipment, materials, and procedures used to 

prepare the specimens and to monitor and record corrosion behavior. 

 

2.2 REINFORCING STEEL 

Three microalloyed steels and two conventional steels provided by Gerdau 

AmeriSteel are evaluated on this study.  The chemical composition and mechanical 

properties of the steel, as reported by Gerdau AmeriSteel, are given in Tables 2.1 and 

2.2. The types of steel are identified as follows: 

N:  conventional steel, normalized. 

T: conventional steel, Thermex treated. 

CRPT1:  microalloyed steel with a high phosphorus content (0.117%), Thermex 

treated (quenched and tempered). 

CRPT2: microalloyed steel with a high phosphorus content (0.100%), Thermex 

treated. 

CRT:  microalloyed steel with normal phosphorus content, Thermex treated. 
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Table 2.1 – Chemical composition of reinforcing steel, % 

Designation C Mn P S Si Cr Cu Ni Sn Mo V

0.160

0.031 0.3900.190 0.940 0.017

0.040

CRT

T 0.770 0.0180.360

0.180 0.960 0.117CRPT1

CRPT2

0.0020.710

0.180

0.450 0.110

0.120

0.310 0.140 0.004

0.550 0.520

0.009 0.040

0.140

0.019

0.160 1.010 0.100 0.033 0.290 0.650 0.560

0.025 0.290

0.010 0.040 0.003

0.010 0.035 0.013

0.009

0.042 0.004

0.036

N 0.2000.400 0.0221.010 0.032 0.220 0.200 0.300

 

Table 2.2 – Mechanical properties of reinforcing steel 

a Information for two different rollings 

Steel
designation (MPa) (ksi) (MPa) (ksi) (mm) (in.) (kg/m) (lb/ft)

1.570

1.568/1.587a

1.559/1.678a

Weight
Elongation Bending

1.666

Tensile strength

112.3

102.9

111.6

709.5

Yield strength

67.7

81.6

89.4

562.7

N

1.067 0.997

466.5 774.0 13.0% OK 0.965 1.058

OK13.0%

CRT

CRPT1 769.5

T

13.0%

CRPT2

600.2

616.1

765.1 OK 0.1.016/1.067a 0.992/1.008a

0.940/0.1.041a 0.996/1.008a

OK 0.991/0.1.067a 0.990/1.066a

OK

1.562/1.587a12.0%

607.2 756.4 12.5%88.1

87.1

109.7

111.0 0.040/0.042a

Deformation height

0.038

0.042

0.037/0.041a

0.039/0.042a

 

2.3 RAPID EVALUATION TESTS 

The rapid evaluation tests used in this study are the corrosion potential and the 

corrosion macrocell tests.  The corrosion potential test provides a measure of the 

tendency of the bars to corrode in a given environment.  The corrosion macrocell test 

is used to determine the corrosion rate of the bars.  Bars are tested with and without a 

mortar cover at two different NaCl ion concentrations (0.4 m and 1.6 m). The study 

includes 55 corrosion potential tests and 115 macrocell tests.  This section includes a 

description of the test procedures, the test specimens, and the equipment and 

materials required for the tests. 
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2.3.1 Test Procedures 

Corrosion Potential Test 

The corrosion potential test determines the relative tendency of a material to 

corrode in a given environment.  The corrosion potential of the reinforcing bars in 0.4 

and 1.6 m ion NaCl solutions is measured with respect to a saturated calomel 

electrode in a saturated potassium chloride solution.  Readings are taken daily. 

As shown in Figure 2.1, the specimen is placed in the center of a container 

and fixed in place with the help of a styrofoam support.  In the case of the mortar 

specimens (shown in Figure 2.1), the specimen is surrounded with mortar fill.  Mortar 

fill is not used for bare bar specimens.  The simulated concrete pore solution with 

NaCl is added to the container until the level of the solution is 51 mm (2 in.) from the 

top of the bar for bare specimens and 13 mm (1/2 in.) from the top of the steel-mortar 

interface for mortar-encased specimens.  The free end of a copper wire attached to the 

specimen is threaded through the container lid and then attached to a binding post on 

the terminal box.  A salt bridge connects the solution surrounding the specimen with 

the solution surrounding the electrode, which is placed in another container with 

saturated potassium chloride solution. 

 Voltage readings are taken by connecting the saturated calomel electrode to 

the positive terminal on the voltmeter and the negative terminal of the voltmeter to 

the specimen through a binding post in a terminal box. 
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Figure 2.1 – Corrosion potential test setup with mortar specimen. 

 

Corrosion Macrocell Test 

Mortar Fill
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 The corrosion macrocell test is used to measure the corrosion rate of steel.  As 

shown in Figures 2.2 and 2.3, the macrocell consists of an anode and a cathode.  The 

cathode is made up of two specimens in simulated concrete pore solution.  The anode 

consists of one specimen in simulated concrete pore solution with sodium chloride 

(0.4 or 1.6 m ion concentration).  Corrosion potentials of the anode and cathode with 

respect to a saturated calomel reference electrode (SCE) are also recorded.  The tests 

run for 100 days.  Tests are performed on bare bars, mortar-encased specimens with 

epoxy-filled caps on the ends of the bars, and mortar specimens without caps on the 

ends.  

For the anode, one specimen is placed in the center of a container. In the case 

of mortar-encased specimens, the specimen is surrounded with mortar fill.  The top of 

the bar is supported with styrofoam.  As in the corrosion potential test, the simulated 
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concrete pore solution with NaCl is added to the container until the level of the 

solution is 51 mm (2 in.) from the top of the bar for bare specimens, and 13 mm (1/2 

in.) from the top of the steel-mortar interface for mortar specimens.  The free end of a 

copper wire attached to the specimen is threaded through the container lid and then 

attached to a black binding post in a terminal box.  Two specimens are placed in 

another container to act as the cathode.  Mortar specimens are surrounded with mortar 

fill. The bars are fixed in place with the help of a styrofoam support.  Simulated 

concrete pore solution is added to the container until the level of the solution is the 

same as in the other container.  The free ends of copper wires attached to the 

specimens are threaded through the container lid and then attached to a third wire that 

has its other end attached to a red binding post in a terminal box.  Air, scrubbed to 

remove CO2, is bubbled into the solution surrounding the cathode specimens to 

provide enough oxygen for the cathodic reaction.  A salt bridge connects the solution 

surrounding the cathode and the anode. 

Figure 2.2 – Macrocell test setup with bare bars. 

Specimen

Simulated Pore
Solution with NaCl

Simulated Pore
 Solution

Styrofoam Support

Scrubbed Air

CathodeAnode

Terminal Box

Salt Bridge

Voltmeter

10 Ohm

V
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Figure 2.3 – Macrocell test setup with mortar specimens. 

V
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The voltage drop is measured across a 10-ohm resistor that completes the 

macrocell circuit by connecting the black binding post to the red binding post in the 

terminal box.  The negative terminal of the voltmeter is connected to the black 

binding post and the positive terminal of the voltmeter is connected to the red binding 

post.  After the voltage drop reading has been measured, the anodes are disconnected 

from the terminal box. Two hours after being disconnected, corrosion potentials of 

the anode and the cathode are measured by placing the saturated calomel electrode in 

the solution surrounding the bar and connecting it to the positive terminal on the 

voltmeter and the bar (cathode or anode) to the negative terminal of the voltmeter.  

Figure 2.4 shows the setup of the macrocell test when measuring the corrosion 

potential of the anode. 
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. Figure 2.4 – Macrocell test setup for corrosion potential readings 

Anode Cathode

Simulated Pore
 Solution

Mortar Fill

Styrofoam Support

Simulated Pore
Solution with NaCl

Scrubbed
    Air

OPEN CIRCUITTerminal Box
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As described in Chapter 1, the voltage drop obtained from the macrocell 

readings is converted to a corrosion rate (in µm/year) using the following formula: 

 

    
RA

ViRate c ⋅
⋅

=⋅=
116006.11                (2.1) 

where 

ic = corrosion current density, µA/cm2 

V = voltage drop across the resistor, mV 

R = resistance of the resistor, ohm 

A = area of exposed metal at the anode bar, cm2 
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2.3.2 Test Specimen Preparation 

The specimen used in the corrosion potential and macrocell tests consists of a 

127 mm (5 in.) long, No. 16 [No. 5] reinforcing bar, either bare or partly embedded in 

mortar, as shown in Figure 2.5.  Sharp edges on the bar ends are removed with a 

grinder, and the bar is drilled and tapped at one end to receive a 10-24 threaded bolt, 

10 mm (3/8 in.) long, which is used to connect the copper wire. 

Figure 2.5 – Mortar specimen 

 

26 mm

13 mmProtective Epoxy Coating
No. 16 [No.5] Rebar

Electrical Connection

15 mm
Epoxy Filled Plastic Cap

Mortar Cover

Epoxy Band
15 mm

53.5 mm

30 mm

51 mm

102 mm

No. 16 Copper Wire

10-24 Screw

 The bar is then cleaned with acetone to remove oil or dust from the bar 

surface.  Sections of the bar that will be covered with epoxy are sandblasted to 

provide a better surface for the epoxy to adhere.  These sections include the tapped 

end of the bar, and for mortar-encased bars, a 15 mm (0.60 in.) wide band centered 51 

mm (2 in.) from the tapped end of the bar, and in some cases, the unthreaded end of 

the bar.  Before sandblasting, sections of the bars that will not be sandblasted are 

covered with duct tape to protect them. After sandblasting, the duct tape is removed 
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and the bars are again cleaned with acetone to remove the sand.  The epoxy is applied 

in two coats.  The second coat is applied when the first coat feels tacky 

(approximately two hours). Some specimens had plastic caps placed on the ends.  In 

this case, a first coat of epoxy is applied to the unthreaded end of the bar.  Two hours 

later, a cap is half-filled with epoxy, and the end of the bar is inserted into the cap.  

The epoxy and caps are applied at least 24 hours before casting the bar in mortar. 

Since the mill scale on the bars is believed to provide some corrosion protection, caps 

were used to protect the ends of some specimens to prevent the areas without mill 

scale from exposure to the deicing chemicals.  Figure 2.5 shows a sketch of the 

macrocell specimen with a cap on the end of the bar. 

 

Mold Design and Assembly 

 The mold design was developed by Martinez et al. (1990).  The mold, shown 

in Figure 2.6, consists of the following commercially available materials: 

1) One laboratory grade No. 6 ½ rubber stopper with a centered 16 mm (5/8 in.) 

diameter hole (D) 

2) One laboratory grade No. 9 rubber stopper with a centered 16 mm (5/8 in.) 

diameter hole (C). 

3) One ASTM D 2466 25.4 mm (1 in.) to 25.4 mm (1 in.) PVC fitting, 33 mm (1.3 

in.) internal diameter.  The fitting is turned in a lathe to 40.6 mm (1.6 in.) external 

diameter so that it will fit in an ASTM D 2466 32 mm (1¼ in.) to 32 mm (1¼ in.), 

42 mm (1.65 in.) internal diameter PVC fitting (E). 

4) One ASTM D 2466 32 mm (1¼ in.) to 32 mm (1¼ in.) PVC fitting, 42 mm (1.65 

in.) internal diameter, shortened by 14 mm (0.55 in.) on one end (B). 
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5) One ASTM D 2241 SDR 21 25.4 mm (1 in.) PVC pipe, 30 mm (1.18 in.) internal 

diameter, 102 mm (4 in.) long.  The pipe is sliced longitudinally to allow for 

specimen removal.  The cut in the pipe is covered with a single layer of masking 

tape to avoid leakage during casting (G). 

6) Two pieces of 2 x 8 pressure treated lumber.  Holes and recesses are bored into 

the flat surfaces to accept the specimen mold assembly and facilitate mortar 

placement (A). 

7) Four threaded rods (H). 

The laboratory grade rubber stoppers are used to hold the reinforcing bars in place 

and maintain uniform cover. 

 

A

D

C

H

A
G

E

B
2 mm

13 mm

3 mm

17 mm
21 mm

33 mm

30 mm

30 mm

15 mm5 mm

17 mm

21 mm
22 mm

21 mm

58 mm
49 mm

19 mm

50 mm
42 mm

38 mm

21 mm

Figure 2.6 – Mold assembly for mortar specimens 
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The mold (Figure 2.6) is assembled as follows: 

1) The tapped end of the reinforcing bar is inserted through the hole of the small 

rubber stopper, D, beginning at the widest end of the stopper.  The distance 

between the untapped end of the bar and the rubber stopper is 76 mm (3 in.) 

2) The rubber stopper is inserted in the machined end of the small connector, E.  The 

widest end of the small rubber stopper has to be in contact with the shoulder (an 

integral ring) on the internal surface of the small connector. 

3) The large rubber stopper, C, is inserted in the cut end of the larger connector, B, 

until it makes contact with the shoulder on the inside surface of the connector. 

4) The machined end of the small connector, E, is inserted in the free end of the 

large connector, B.  At the same time, the tapped end of the reinforcing bar is 

inserted through the hole of the large rubber stopper, C. 

5) The longitudinal slice along the side of the PVC pipe, G, is taped with masking 

tape.  The pipe is then inserted in the free end of the small connector. 

6) The assembled mold is inserted into the recesses in the top and bottom wooden 

pieces of the fixture, A.  The threaded rods, H, are then inserted between the 

wooden boards.  The rods are used to hold the molds together and center the 

reinforcing bar by tightening or loosening the nuts on the rods. 

 The specimens are cast in three layers.  Each layer is rodded 25 times with a 

2-mm (0.080-in.) diameter rod.  The rod is allowed to penetrate the previous layer of 

mortar.  After rodding, each layer is vibrated for 30 seconds on a vibrating table with 

amplitude of 0.15 mm (0.006 in.) and a frequency of 60 Hz.  To eliminate the effect 

of variations in the mortar mix, specimens for the different types of steel are cast from 

the same batch of mortar. 
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 The specimens are removed from the molds 24 hours after casting and placed 

in lime-saturated water for 13 days.  After this period, the specimens are removed 

from the lime-saturated water.  The tapped end of the specimen is dried with 

compressed air and a 16-gage copper wire is attached to the specimen with a 10-24 x 

9.5 mm threaded bolt.  The electrical connection is epoxy coated to prevent crevice 

corrosion.  Two coats of epoxy are applied as described above.  The epoxy is allowed 

to dry for one day before the tests are started. 

 

2.3.3 Materials and Equipment 

The following equipment and materials are used in the rapid evaluation tests. 

• Voltmeter:  Hewlett Packard digital voltmeter, Model 3455A, with an impedance 

of 2MΩ. 

• Mixer:  Hobart mixer, Model N-50.  This mixer complies with ASTM C 305 and 

is used for mixing the mortar for the specimens used in the rapid evaluation tests.  

• Saturated Calomel Electrode (SCE): Fisher Scientific Catalog No. 13-620-52. 

The reference electrode is used to measure the corrosion potential of the bars. 

• Terminal Box: Terminal boxes are used to make the electrical connections 

between the test specimens.  Each terminal box consists of a project box (from 

Radio Shack) with 5 pairs of binding posts (one red and one black). A 10-ohm 

resistor connects each pair of binding posts in the terminal boxes used for the 

macrocell tests. 

• Wire: 16-gage insulated copper wire is used to make the electrical connections to 

the bars.  

• Mortar: The mortar is made with Portland Cement Type I (ASTM C 150), ASTM 

C 778 graded Ottawa sand, and deionized water.  The mortar has a water-cement 
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ratio of 0.5 and a sand-cement ratio of 2.  The mortar is mixed in accordance with 

the requirements of ASTM C 305. 

a. Mortar fill:  Mortar fill is used to surround the specimens with mortar cover.  It is 

prepared with the same materials and mixing procedure as the mortar for the 

specimens. It is cast 25 mm (1 in.) deep on a metal baking sheet.  The mortar fill 

in the container is crushed into 25 to 50 mm (1 to 2 in.) pieces prior to use. 

b. Epoxy coating:  A two-part epoxy coating (Nap Gard Rebar Patch Kit, 

manufactured by Herberts-O’Brien) is used to cover the electrical connections. It 

is applied in accordance with manufacturer’s recommendations. 

c. Caps: Plastic caps 16 mm (5/8 in.) in diameter and 15 mm (0.6 in.) long (from 

ACE hardware) are used to cover the ends of the bars in some mortar specimens. 

d. Concrete Pore Solution: The simulated concrete pore solution is prepared based 

on the analysis by Farzammehr (1985) which states that one liter of pore solution 

contains 974.8 g of distilled water, 18.81 g of potassium hydroxide (KOH), 17.87 

g of sodium hydroxide (NaOH), and 0.14 g of sodium chloride (NaCl).  The 

amounts used in the present study differ from those measured by Farzammehr, 

providing a somewhat lower pH solution.   One liter of pore solution contains 

974.8 g of distilled water, 16.34 g of potassium hydroxide (KOH), and 17.54 g of 

sodium hydroxide (NaCl).  Following the procedures used by Senecal et al. 

(1995) and Schwensen et al. (1995), NaCl is not used in the simulated pore 

solution. 

e. Sodium Chloride Solution:  The sodium chloride solutions are used in both the 

corrosion potential and macrocell tests.  They are prepared by adding 11.4 or 45.6 

g of NaCl to one liter of simulated concrete pore solution to obtain 0.4 and 1.6 

molal ion concentration solutions, respectively. 
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f. Salt bridges: Salt bridges are used to provide an ionic path between the solutions 

surrounding the cathode and the anode in the macrocell tests, and between the 

solution surrounding the specimen and the solution surrounding the reference 

electrode in the corrosion potential tests.  They are prepared following a 

procedure described by Steinbach and King (1950).  A salt bridge consists of a 

flexible latex tube with an inner diameter of 9.5 mm (3/8 in.), filled with a gel.  

The gel is made using 4.5 g of agar, 30 g of potassium chloride (KCl), and 100 g 

of distilled water, enough to produce 4 salt bridges, each with a length of 0.6 m (2 

ft). Salt bridges are prepared by mixing the constituents and heating them over a 

burner or hotplate for about 1 minute, or until the solution starts to thicken.  The 

gel is poured into the latex tubes using a funnel.  The salt bridges are then placed 

in boiling water for one hour, keeping the ends of the tubes out of the water.  

After boiling, the salt bridges are allowed to cool until firm.  To provide an 

adequate ionic path, the gel in the salt bridge must be continuous, without any air 

bubbles. 

g. Air scrubber: Air is bubbled into the simulated concrete pore solution 

surrounding the cathode in the macrocells to provide enough oxygen for the 

cathodic reaction.  An air scrubber is used to prevent carbonation of the pore 

solution by eliminating the carbon dioxide from the air.  To prepare the air 

scrubber, a 5 gallon container is filled with a 1M sodium hydroxide solution.  

Compressed air is channeled into the scrubber and out to the specimens through 

latex tubing. The procedure for preparing the air scrubber is as follows: 

1) Two barbed fittings are inserted on the top of the container. 

2) A 1.5 m (5 ft) piece of plastic tubing is cut. On one end of the tubing, 1.2 m (4 

ft) is perforated with a knife, making hundreds of holes to allow the air to 
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produce small bubbles.  The end of the tubing closest to the holes is sealed 

with a clamp. 

3) The end with the holes is coiled at the bottom of the container and trap rock is 

used to hold down the tubing.  The other end of the tubing is connected to the 

inside part of one of the barbed fittings. 

4) The other side of the barbed fitting is connected to a plastic tube, which is 

connected to the compressed air outlet. 

5) Another piece of plastic tubing is connected to the outside of the other barbed 

fitting.  The air is distributed to the solution surrounding the cathodes using 

0.3 m (1 ft) lengths of latex tubing and polypropylene T-shaped connectors. 

6) Screw clamps are placed to regulate the amount of air bubbled into each 

container. 

Distilled water is periodically added to the container to replace water that is lost 

due to evaporation.  The pH of the solution is checked every 2 months.  Additional 

NaOH is added as needed. 

 

2.3.4 Test Program 

 A total of 55 corrosion potential tests were performed.  These include five 

tests for each type of steel in the bare condition in 1.6 m ion NaCl solution and three 

for each steel with a mortar cover in each of the NaCl concentrations (0.4 and 1.6 m). 

 A total of 115 macrocell tests were performed.  These include five bare bar 

tests for each type of steel in the 1.6 m ion NaCl concentration, four mortar-encased 

bar tests for each type of steel with the ends covered with an epoxy-filled cap in 0.4 

and 1.6 m ion NaCl solutions, and five mortar-encased bar tests for each type of steel 

without caps, at the same concentrations. 
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 A summary of the test program for the rapid evaluation tests is given in Tables 

2.3 and 2.4. 

 

Table 2.3 – Corrosion potential test program 
 

Steel designation No. of tests NaCl concentration

N 5 1.6 m
T 5 1.6 m

CRPT1 5 1.6 m
CRPT2 5 1.6 m

CRT 5 1.6 m

N 3 0.4 m
T 3 0.4 m

CRPT1 3 0.4 m
CRPT2 3 0.4 m

CRT 3 0.4 m
N 3 1.6 m
T 3 1.6 m

CRPT1 3 1.6 m
CRPT2 3 1.6 m

CRT 3 1.6 m

Bare specimens

Mortar specimens
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Table 2.4 – Corrosion macrocell test program 
 

Steel designation No. of tests NaCl concentration

N 5 1.6 m
T 5 1.6 m

CRPT1 5 1.6 m
CRPT2 5 1.6 m

CRT 5 1.6 m

N 4 0.4 m
T 4 0.4 m

CRPT1 4 0.4 m
CRPT2 4 0.4 m

CRT 4 0.4 m

N 4 1.6 m
T 4 1.6 m

CRPT1 4 1.6 m
CRPT2 4 1.6 m

CRT 4 1.6 m

N 5 0.4 m
T 5 0.4 m

CRPT1 5 0.4 m
CRPT2 5 0.4 m

CRT 5 0.4 m
N 5 1.6 m
T 5 1.6 m

CRPT1 5 1.6 m
CRPT2 5 1.6 m

CRT 5 1.6 m

Bare specimens

Mortar specimens with epoxy-filled caps

Mortar specimens without caps
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2.4 BENCH-SCALE TESTS 

Three bench-scale tests, the Southern Exposure, cracked beam, and ASTM G 

109 tests, are used for this study.  In each case, the testing period is 96 weeks.  As in 

the rapid evaluation tests, the specimens are monitored by measuring the corrosion 

rate and corrosion potential of the bars.  In addition, the mat-to-mat resistance is also 

recorded.  A total of 102 bench-scale tests were performed. 

  

2.4.1 Test Procedures 

Southern Exposure (SE) 

 The Southern Exposure specimen (Figure 2.7) consists of a concrete slab, 305 

mm (12 in.) long, 305 mm (12 in.) wide, and 178 mm (7 in.) high.  The slab contains 

two mats of steel electrically connected across a 10-ohm resistor.  The top mat of 

steel has two bars, and the bottom mat of steel has four bars. A concrete dam is cast 

around the top edge of the specimen at the same time as the specimen is cast.  The top 

and bottom concrete cover is 25.4 mm (1 in.).  

Figure 2.7 – Southern Exposure specimen 
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Cracked Beam (CB) 

 The cracked beam specimen (Figure 2.8a) is the same length and height as the 

SE specimen, but half the width.  It contains one bar in the top mat electrically 

connected across a 10-ohm resistor to two bars in the bottom mat.  A crack is 

simulated in the concrete parallel to and above the top bar using a 0.30 mm (0.012 

in.) stainless steel shim, 152 mm (6 in.) long, cast into the concrete and removed 24 

hours after casting.  As in the Southern Exposure specimen, the concrete cover to the 

top and bottom steel is 25.4 mm (1 in.).   

  

ASTM G 109 

 ASTM G 109 was developed to test the effect of chemical admixtures on the 

corrosion of metals in concrete.  The specimen (Figure 2.8b) has the following 

dimensions:  279 mm (11 in.) x 152 mm (6 in.) x 114 mm (4.5 in.).  The specimen 

contains two layers of bars; the top layer has one bar with a 25.4 mm (1 in.) top 

concrete cover and the bottom layer contains 2 bars with a bottom concrete cover of 

25.4 mm (1 in.).  The two layers are electrically connected across a 100-ohm resistor.  

A plexiglass dam is used to pond a solution on the top of the specimen over a region 

with dimensions of 76 x 150 mm (3 x 6 in.). 
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  (a)                         (b) 

Figure 2.8 – (a) Cracked Beam specimen and (b) G 109 specimen 
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Test Procedure for Southern Exposure (SE) and Cracked Beam (CB) Tests 

The test procedure for the Southern Exposure and cracked beam specimens 

proceeds as follows: 

1) On the first day, the specimens are ponded with a 15% NaCl solution at room 

temperature, 20 to 29oC (68 to 84oF).   This solution is left on the specimen 

for 4 days. 

2)  On the fourth day, the voltage drop across the 10-ohm resistor connecting the 

two mats of steel is recorded for each specimen.  The circuit is then 

disconnected and the mat-to-mat resistance is recorded.  Two hours after 

disconnecting the specimens, the solution on top of the specimens is removed 

with a vacuum, and the corrosion potentials with respect to a copper-copper 

sulfate electrode (CSE) of the top and bottom mats of steel are recorded. 
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3) After the readings have been obtained, a heat tent is placed over the 

specimens, which maintains a temperature of 38 + 2oC (100 + 3oF)  The 

specimens remain under the heat tent for three days. 

4) After three days, the tent is removed and the specimens are again ponded with 

a 15% NaCl solution, and the cycle starts again. 

5) This cycle is repeated for 12 weeks.  The specimens are then subjected to 12 

weeks of continuous ponding.  During this period the solution is not removed 

and the specimens are not placed under the heat tents.  Since the specimens 

are ponded, the corrosion potential during this period is taken with respect to a 

saturated calomel reference electrode (SCE) instead of a copper-copper sulfate 

electrode (CSE), since the SCE is more convenient when the electrode has to 

be immersed in solution. 

After 12 weeks of continuous ponding, the drying and ponding cycle is 

repeated for 12 weeks, followed by 12 weeks of continuous ponding.  This 24 week 

cycle is repeated to complete 96 weeks of testing. 

 

Test procedure for ASTM G 109 test 

 The ponding and drying cycles in the G 109 test differ from those used in the 

Southern Exposure (SE) and cracked beam (CB) tests.  For the G 109 test, the 

specimens are ponded with a 3% NaCl solution for two weeks.  After two weeks the 

solution is removed with a vacuum and the specimens are allowed to dry for two 

weeks.  This cycle is repeated for the full test period.  The same readings as obtained 

for the Southern Exposure and cracked beam tests are taken weekly. 
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2.4.2  Test Specimen Preparation 

The procedure for preparing the bench-scale specimens is as follows. 

1) The bars are cut to the desired length, 305 mm (12 in.) for Southern Exposure 

and cracked beam specimens and 279 mm (11 in.) for G 109 specimens. 

2) The sharp edges on the ends of the bars are removed with a grinder. 

3) The ends of the bars are drilled and tapped to receive a 10-24 threaded bolt, 10 

mm (3/8 in.) long.  The bolt is used to hold the bars in place during casting and 

to make an electrical connection during the testing period. 

4) The bars are then cleaned with acetone to remove dust and oil.  The bars used 

in the G 109 test are pickled in a 10% sulfuric acid solution for 10 minutes 

and then dried and wire brushed.  The procedure in the present study deviates 

from ASTM G 109 in two ways.  First, the bars do not project out of the 

specimen.  Second, electroplater’s tape is not used to cover part of the bars, as 

described in the standard.   

5) Mineral oil is applied to the wooden forms prior to placing the bars in the 

forms. 

6) For the cracked beam specimens, a 0.30 mm stainless steel shim is fixed on to 

the bottom part of the form so that the shim is located underneath and parallel 

to the top bar. 

7) The bars are bolted into the forms.  The Southern Exposure and cracked beam 

specimens are cast upside down to allow for the integral concrete dam to be 

cast at the same time.  The ASTM G 109 specimens are also cast upside down 

to provide a smooth surface for attaching the plexiglass dams. 

The specimens are cast using the following procedure: 

1) The concrete is mixed following the procedure in described in ASTM  C 192.   
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2) The specimens are cast in two layers.  Each layer is vibrated for 30 seconds on 

a vibrating table with an amplitude of 0.15 mm (0.006 in) and a frequency of 

60 Hz. Specimens for the different types of steel are cast using the same 

concrete batch to eliminate the effect of variations in the concrete mix on the 

test results. 

3) After the second layer is vibrated, the surface of the specimen is finished 

using a wooden float. 

4) The specimens are cured in air for 24 hours.   

5) After 24 hours, the Southern Exposure and cracked beam specimens are 

removed from the molds and the stainless steel shims are removed from the 

cracked beam specimens. The specimens are placed in a plastic bag with 

distilled water for 48 hours and then removed from the bags and cured in air 

for 25 days. After the first 24 hours, the G 109 specimens are removed from 

the molds and placed in a curing room, with a temperature of 23 + 2oC (73.4 + 

3.6oF) and a relative humidity above 95%, for 26 days. 

6) Several days before the testing period starts, 16-gage insulated copper wire is 

attached to the bars in the specimens using 10-24 threaded bolts, 10 mm (3/8 

in.) long.  The sides of the specimens are then covered with epoxy, with 

emphasis on coating the electrical connections to prevent crevice corrosion or 

galvanic corrosion from occurring.  The electrical connections are made to the 

bars in the G 109 specimens after the specimens have been removed from the 

curing room.   

7) The top of the specimens is lightly sanded. 

8) The specimens are supported on two pieces of wood, at least 13 mm (2 in.) 

thick, to allow air to flow under the specimens. 
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9) Plexiglass dams are attached to top of the G 109 specimens using superglue. 

The joints are sealed with silicone. 

10) The top layer of steel is then connected to the outside red binding post on the 

terminal box, while the bottom layer of steel is connected to the outside black 

binding post (Figure 2.9) 

 

2.4.3  Equipment and materials 

The following equipment and materials are used in the bench-scale tests. 

• Voltmeter: Hewlett Packard digital voltmeter, Model 3455A, with an impedance 

of 2MΩ. 

• Ohmmeter:  Hewlett Packard digital milliohmmeter, Model  4338A. 

• Mixer: Lancaster, counter current batch mixer, with a capacity of 0.06 m3 (2  ft3). 

• Saturatel Calomel Electrode (SCE): Fisher Scientific Catalog No. 13-620-52.  

The saturated calomel electode was used to take potential readings during the 

continuous ponding cycle. 

• Copper-copper sulfate electrode (CSE):  MC Miller Co. Electrode Model RE-5.  

The copper-copper sulfate electrode was used to take potential readings during the 

ponding and drying cycle. 

• Epoxy: Ceilgard 615 provided by Ceilcote.  The epoxy is used to cover the sides 

of the specimens and the electrical connections to the specimen.  

• Concrete: The concrete consists of Portland Type I cement, crushed limestone 

obtained from Fogle Quarry [¾ in. nominal maximum size, SG(SSD) = 2.58, 

absorption = 2.27%, unit weight = 1536 kg/m3 (95.9 lb/ft3)] as coarse aggregate , 

Kansas river sand (fineness modulus = 2.51, SG(SSD) = 2.60, absorption = 
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0.78%) as fine aggregate, tap water, and vinsol rensin as air-entraining agent.  The 

concrete has a water-cement ratio of 0.45, and the following proportions: 

• Water:  160 kg/m3   (269 lb/yd3) 

• Cement: 355 kg/ m3   (599 lb/yd3) 

• Fine aggregate:  852 kg/ m3   (1436 lb/yd3) 

• Coarse aggregate: 874 kg/ m3   (1473 lb/yd3) 

• Vinsol rensin: 90 mL/m3   (70 mL/yd3) 

The concrete has a slump of 3 in., an air content of 6.0%, and a unit weight of 

2241 kg/m3 (139.9 lb/ft3). 

• Plexiglass: Plexiglass with a wall thickness of 3 mm (0.125 in.) is used to build 

the plastic dams on top of the G 109 specimens. 

• Sulfuric acid: A 10% solution by weight of sulfuric acid is used to pickle the bars 

for the G 109 test. 

• Terminal Box: As in the macrocell tests, a terminal box was prepared and used to 

make electrical connections between specimens.  In this case, it was made up of a 

project box obtained from Radio Shack with 6 sets of 3 binding posts attached to 

it.  Binding posts were either red or black. A sketch of the setup is shown in 

Figure 2.9.  A 10-ohm resistor for the Southern Exposure and cracked beam tests 

and a 100-ohm resistor for the G 109 test is placed between the outside red 

binding post and the inner binding post.  The top layer of steel is connected to the 

outside red binding post, while the bottom layer of steel is connected to the 

outside black binding post. A 16-gage insulated copper wire connects the outside 

black binding post to the inside binding post. This wire is disconnected from the 

inside binding post when an open circuit is required for taking the corrosion 

potential of the bars. 
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Figure 2.9 – Terminal box setup for bench-scale tests. 

 

2.4.4   Test Program 

To bottom matTo top mat

16-gage copper 
wire

16-gage copper 
wire (open circuit)

16-gage copper wire 
(closed circuit)

Red BlackRed or 
Black

10 ohm Resistor

BINDING POSTS

 Six Southern Exposure (SE), cracked beam (CB) and G 109 tests are used for 

each type of steel.  The effect of combining conventional steel with corrosion-

resistant steel is also tested using six SE specimens with N steel on the top mat and 

CRPT1 on the bottom mat (N/CRPT1) and six SE specimens with CRPT1 steel on the 

top mat and N steel on the bottom mat (CRPT1/N).  The test program for the bench-

scale tests is summarized in Table 2.5. 
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Table 2.5 – Bench-scale test program 

 
Test Steel designation No. of tests
SE N 6
SE T 6
SE CRPT1 6
SE CRPT2 6
SE CRT 6
SE N/CRPT1 6
SE CRPT1/N 6
CB N 6
CB T 6
CB CRPT1 6
CB CRPT2 6
CB CRT 6

G 109 N 6
G 109 T 6
G 109 CRPT1 6
G 109 CRPT2 6
G 109 CRT 6  

 

2.5 MECHANICAL TESTS 

Tension tests were performed on the microalloyed steels to determine if their 

composition affects their mechanical properties.  Results include tensile strength, 

yield strength, and percent elongation.  Since CRPT1, CRPT2, and CRT do not have 

a well-defined yield plateau, their yield strengths were determined from the stress-

strain diagram based on 0.5% strain.  Bend tests were also performed to evaluate the 

ductility of the steels. 

 

 



CHAPTER 3 

RESULTS 

 

 This chapter presents the results obtained in the corrosion potential, macrocell, 

Southern Exposure, cracked beam, and ASTM G 109 tests.  The tests cover the two 

conventional (N and T) and three microalloyed steels (CRPT1, CRPT2, and CRT) 

described in Chapter 2.  Mechanical properties, including yield and tensile strengths, 

elongation, and the results of the bend tests are also presented for T, CRPT1, CRPT2 

and CRT steels. 

 Results from the corrosion potential test demonstrate that the five different 

steels have a similar tendency to corrode, while the macrocell test results show no 

advantage of the microalloyed steels over the conventional steels.  The more realistic 

bench-scale tests show a relatively consistent advantage for CRT steel (11%, 4%, and 

64% less total corrosion loss than N steel for the SE, CB and G 109 tests, 

respectively), although the advantage is smaller in the SE and CB tests than observed 

for one of the microalloyed steels in a previous study (Darwin 1995), which 

consistently exhibited one-half the corrosion rate of conventional steel in the bench-

scale tests. 

 

3.1 RAPID EVALUATION TESTS 

 

3.1.1 Corrosion Potential Test 

Average corrosion potential results are shown in Table 3.1 and Figures 3.1 to 

3.3.  The tests cover bare bars in 1.6 m ion NaCl and simulated concrete pore 
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solution, and mortar-embedded bars in 0.4 and 1.6 m ion NaCl and simulated 

concrete pore solution.  Table 3.1 lists the average corrosion potentials with respect to 

a saturated calomel electrode on the last day of the testing period (day 40).  Results 

for individual specimens are given in the Appendix (Figures A.1 to A.15). The more 

negative the corrosion potential, the greater the likelihood of corrosion.  As presented 

in Table 1.2, when the corrosion potential versus the saturated calomel electrode is 

more negative than –0.275 V, there is greater than 90% probability that corrosion is 

occurring; when the potential is more positive than –0.125 V, there is greater than 

90% probability that corrosion is not occurring; and when the potential is between     

–0.125 and –0.275 V, it is uncertain if corrosion is occurring (ASTM C 876). 

 
Table 3.1 – Corrosion potential in volts versus saturated calomel electrode 

 on day 40. 

 

 

 

 

 

 

 

 

 

 

 

Steel Std.
Designation 1 2 3 4 5 Deviation

N -0.522 -0.261 -0.529 -0.518 -0.446 -0.455 0.114
T -0.536 -0.541 -0.525 -0.526 -0.564 -0.538 0.016

CRPT1 -0.541 -0.501 -0.482 -0.501 -0.507 -0.506 0.022
CRPT2 -0.528 -0.509 -0.453 -0.521 -0.523 -0.507 0.031

CRT -0.567 -0.579 -0.576 -0.519 -0.551 -0.558 0.025

N -0.545 -0.470 -0.469 - - -0.495 0.044
T -0.517 -0.412 -0.470 - - -0.466 0.053

CRPT1 -0.424 -0.412 -0.490 - - -0.442 0.042
CRPT2 -0.495 -0.570 -0.572 - - -0.546 0.044

CRT -0.452 -0.461 -0.405 - - -0.439 0.030

N -0.520 -0.487 -0.375 - - -0.461 0.076
T -0.521 -0.284 -0.420 - - -0.408 0.119

CRPT1 -0.530 -0.520 -0.529 - - -0.526 0.006
CRPT2 -0.533 -0.511 -0.131 - - -0.392 0.226

CRT -0.393 -0.280 -0.467 - - -0.380 0.094

Bare bars in 1.6 m ion NaCl

Mortar-embedded bars in 0.4 m ion NaCl

Mortar-embedded bars in 1.6 m ion NaCl

Specimen Average
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Results from the corrosion potential test indicate that the five different steels 

have a similar tendency to corrode. After the end of the test period, all steels, either 

bare or embedded in mortar, have an average corrosion potential that is more negative 

than -0.275 V, which indicates a high probability that corrosion is occurring.  Table 

3.1 shows that for bare specimens, N steel has the lowest tendency to corrode while 

CRT steel had the highest tendency to corrode.  For bars embedded in mortar in 0.4 m 

ion NaCl solution, CRT and CRPT1 have the lowest tendency to corrode while 

CRPT2 has the highest tendency to corrode.  Finally, for bars embedded in mortar, in 

1.6 m ion NaCl solution, CRT has the lowest tendency to corrode, while CRPT1 has 

the highest tendency to corrode. 

Figure 3.1 shows the average corrosion potential with respect to a saturated 

calomel electrode for bare bars in 1.6 m ion NaCl and simulated concrete pore 

solution.  Figures A.1 to A.5 show the results for the individual specimens.  At the 

initial reading, all average potential readings are below –0.300 V, and after two days 

all readings are below –0.400 V, indicating that the steels have a high tendency to 

corrode.  The potential continues to decrease slightly with time, reaching values 

between –0.450 and –0.550 V at day 40.  Through most of the testing period the 

conventional steels, N and T, show the most positive potentials, although the potential 

of T steel becomes more negative in the last 7 days.  CRPT1 and CRT steel show the 

most negative corrosion potentials through most of the testing period.  At the end of 

the 40-day test period, N had the most positive corrosion potential with –0.455 V, 

followed by CRPT1 with –0.506 V, CRPT2 with –0.507 V, T with –0.538 V, and 

CRT with –0.558 V. 
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Figure 3.1 – Average corrosion potential versus saturated calomel electrode, bare 

         bars in 1.6 m ion NaCl and simulated concrete pore solution. 
 

 

Figure 3.2 shows the average corrosion potential with respect to a saturated 

calomel electrode for bars embedded in mortar in 0.4 m ion NaCl and simulated 

concrete pore solution.  Figures A.6 to A.10 show the results for the individual 

specimens.  All of the average readings on the first day were close to –0.200 V; they 

gradually decreased to values between –0.400 to –0.500 V by day 8, where they 

remained for the balance of the test.  Through most of the testing period CRPT2 had 

the most positive corrosion potential, around –0.400 V, while N steel had the most 

negative corrosion potential, around –0.500 V, with the other steels exhibiting 

intermediate values. At day 37, the corrosion potential of CRPT2 steel became more 

negative and went from a value of –0.400 V, which had been maintained through 

most of the test period, to a value of –0.440V, ultimately dropping below –0.500 V by 

the end of the test.  At the end of the 40-day test period, CRT had the most positive 
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corrosion potential with –0.439 V, followed by CRPT1 with –0.442 V, T with –0.446 

V, N with –0.495 V, and CRPT2 with –0.546 V. 
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Figure 3.2 – Average corrosion potential versus saturated calomel electrode, mortar-

embedded bars in 0.4 m ion NaCl and simulated concrete pore solution. 
 

Figure 3.3 shows the average corrosion potential with respect to a saturated 

calomel electrode for bars embedded in mortar in 1.6 m ion NaCl and simulated 

concrete pore solution.  Figures A.11 to A.15 show the results for the individual 

specimens.  The average readings on the first day are between –0.200 and –0.300 V 

for the 5 types of steel.  The corrosion potential gradually becomes more negative, 

and by day 8, the average corrosion potential for N and CRPT2 steels is about –0.350 

V, while for T, CRPT1 and CRT steel it is about –0.500 V.  The potential for CRPT1 

steel continues to become more negative and reaches a value of about –0.525 V for 

the rest of the testing period.  After day 8, the average corrosion potential of CRT and 

T steel increases to values of approximately –0.400 V, while the average corrosion 
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potential of N and CRPT1 steel decreases to a value of approximately –0.400 V.  

After day 34 the corrosion potential of N steel drops to –0.450 V.  At the end of the 

40-day test, CRT had the most positive corrosion potential with –0.380 V, followed 

by CRPT2 with –0.392 V, T with –0.408 V, N with –0.461 V, and CRPT1 with         

–0.526 V. 
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Figure 3.3 – Average corrosion potential versus saturated calomel electrode, mortar-
embedded bars in 1.6 m ion NaCl and simulated concrete pore solution. 

 

3.1.2 Corrosion Macrocell Test 

Average corrosion rate results are shown in Table 3.2 and Figures 3.4 to 3.8.  

Table 3.2 lists the average corrosion rates on the last day of the testing period (day 

100).  Figures with the results for the individual specimens are given in the Appendix 

(Figures A.16 to A.40).  The tests cover bare bars in 1.6 m ion NaCl and simulated 

concrete pore solution, and mortar-embedded bars in 0.4 and 1.6 m ion NaCl and 
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simulated concrete pore solution.  Mortar specimens include bars with the ends 

protected with an epoxy-filled cap and bars without caps on the ends. 

The results from the macrocell tests show no improved corrosion performance 

for the microalloyed steels when compared to the conventional steels.  Table 3.2 

shows that for bare bars, T steel had the lowest corrosion rate in the last day of 

testing, while CRPT2 has the highest corrosion rate.  For the different tests with bars 

embedded in mortar, the lowest corrosion rate corresponds to conventional steel. 

 

Table 3.2 – Corrosion rate in µm/year on day 100 as measured in the macrocell test. 

 Steel Std.
Designation 1 2 3 4 5 Deviat

N 54.59 56.17 12.28 37.20 40.79 40.21 17.68
T 48.52 26.57 26.10 8.35 42.06 30.32 15.68

CRPT1 26.27 37.52 64.70 21.51 37.09 37.42 16.75
CRPT2 45.77 77.69 26.10 53.67 43.93 49.43 18.74

CRT 74.56 42.08 35.94 44.01 27.60 44.84 17.81

N 1.32 1.11 0.71 0.71 - 0.96 0.30
T 4.12 0.59 0.87 1.70 - 1.82 1.60

CRPT1 2.89 0.52 0.00 0.95 - 1.09 1.26
CRPT2 1.58 0.40 4.24 1.47 - 1.92 1.64

CRT 1.47 0.27 0.16 3.03 - 1.23 1.34

N 3.47 3.80 0.63 5.43 - 3.33 2.00
T 3.72 3.41 2.94 1.00 - 2.77 1.22

CRPT1 4.37 7.66 5.04 3.05 - 5.03 1.94
CRPT2 5.66 2.66 4.02 3.49 - 3.96 1.26

CRT 4.46 4.79 3.84 9.41 - 5.62 2.55

N 3.17 0.45 2.28 1.40 0.16 1.49 1.25
T 0.78 0.74 1.00 0.00 1.00 0.70 0.41

CRPT1 1.73 2.09 1.82 0.42 1.47 1.51 0.65
CRPT2 2.16 1.64 1.82 0.20 0.16 1.20 0.95

CRT 1.57 2.18 0.00 0.45 0.92 1.02 0.87

N 3.59 2.49 2.27 0.67 2.21 2.25 1.04
T 4.65 3.41 2.81 3.85 1.03 3.15 1.36

CRPT1 6.56 3.21 2.86 0.35 4.21 3.44 2.25
CRPT2 3.68 2.76 4.95 3.81 0.93 3.23 1.50

CRT 3.49 4.73 3.61 0.64 2.66 3.03 1.53

Mortar-embedded bars without caps in 0.4 m ion NaCl

Mortar-embedded bars without caps in 1.6 m ion NaCl

Specimen

Bare bars in 1.6 m ion NaCl

Mortar-embedded bars with caps in 0.4 m ion NaCl

Mortar-embedded bars with caps in 1.6 m ion NaCl

Average ion
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Figure 3.4 shows the average corrosion rate for bare bars in 1.6 m ion NaCl 

and simulated concrete pore solution.  Figures A.16 to A.20 show the results for the 

individual specimens.  The average corrosion rates on day 0 range from 0.1 to 13.7 

µm/year, and by day 2 all types of steel show corrosion rates above 25 µm/year.  The 

corrosion rate gradually increases for all steel types until it reaches a maximum 

(ranging from 30 to 55 µm/year) between days 10 and 20; it then begins to slowly 

decrease.  CRPT1, CRPT1, and CRT steels had the highest corrosion rate for the first 

45 days.  For most of the testing period, T steel showed the lowest corrosion rate, 

although at day 79 its corrosion rate increased, and for the last 21 days, T steel had a 

corrosion rate that was similar to that of CRPT1 and CRT steels.  The corrosion rate 

of CRT steel was similar to that of T steel for the first 45 days, but increased 

thereafter.  As shown in Table 3.2, at the end of the test period, T steel has the lowest 

average corrosion rate with 30.32 µm/year, followed by CRPT1 with 37.42 µm/year, 

N with 40.21 µm/year, CRPT with 44.84 µm/year, and CRPT2 with 49.43 µm/year. 

Figure 3.5 shows the average corrosion rate for bars with epoxy-filled caps on 

the ends, embedded in mortar, in 0.4 m ion NaCl and simulated concrete pore 

solution.  Figures A.21 to A.25 show the results for the individual specimens.  

Average corrosion rates for most of the test period ranged from 0.50 µm/year for N 

steel to 2.5 µm/year for CRPT2 steel.  The rest of the steels had intermediate values, 

ranging from 1.0 to 1.75 µm/year.  As shown in Table 3.2, at the end of the test 

period, N steel has the lowest average corrosion rate with 0.96 µm/year, followed by 

CRPT1 with 1.09 µm/year, CRT with 1.23 µm/year, T with 1.82 µm/year, and 

CRPT2 with 1.92 µm/year. 
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Figure 3.4 – Macrocell Test.  Average corrosion rate, bare bars in 1.6 m ion NaCl 
and simulated concrete pore solution. 
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Figure 3.5 – Macrocell Test.  Average corrosion rate, mortar-embedded bars with 
epoxy-filled caps on the end, in 0.4 m ion NaCl and simulated concrete pore solution. 
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Figure 3.6 shows the average corrosion rate for bars with epoxy-filled caps on 

the ends, embedded in mortar in 1.6 m ion NaCl and simulated concrete pore 

solution.  Figures A.26 to A.30 show the results for the individual specimens.  After 

week 20, all steels show relatively constant average corrosion rates, ranging from 2 to 

4 µm/year.  Conventional Thermex (T) steel exhibited a constant corrosion rate of 

approximately 2 µm/year for most of the testing period, which is significantly lower 

than other steels, which showed corrosion rates above 3 µm/year for most of the 

testing period.  CRPT1 steel showed consistently higher corrosion rate than the other 

steels in this test, with N steel also showing a higher corrosion rate for the first 50 

days.  CRT steel showed a corrosion rate of approximately 3.0 µm/year until day 68, 

after which it increased with time for the rest of the testing period, reaching values 

greater than 4.0 µm/year after day 73 and greater than 5.0 µm/year after day 91.  The 

jumps in the average corrosion rate observed at days 73 and 91 for CRT are caused by 

very high corrosion rates for one of the four individual specimens, as shown in Figure 

A.29.  As shown in Table 3.2, at the end of the test period, T steel has the lowest 

average corrosion rate with 2.77 µm/year, followed by N with 3.33 µm/year, CRPT2 

with 3.96 µm/year, CRPT1 with 5.03 µm/year, and CRT with 5.63 µm/year. 
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Figure 3.6 – Macrocell Test.  Average corrosion rate, mortar-embedded bars with 
epoxy-filled caps on the end, in 1.6 m ion NaCl and simulated concrete pore solution. 

 

Figure 3.7 shows the average corrosion rate for bars embedded in mortar, 

without caps on the ends, in 0.4 m ion NaCl and simulated concrete pore solution.  

Figures A.31 to A.35 show the results for the individual specimens.  The average 

corrosion rates range from 0.50 to 2.00 µm/year, with T steel showing a slightly 

lower corrosion rate than the rest of the bars during most of the testing period.  N and 

CRPT1 steels show the highest corrosion rates during most of the testing period.  As 

shown in Table 3.2, at the end of the test period, T steel has the lowest average 

corrosion rate with 0.70 µm/year, followed by CRT with 1.02 µm/year, CRPT2 with 

1.20 µm/year, N with 1.49 µm/year, and CRPT1 with 1.51 µm/year. 
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Figure 3.7 – Macrocell Test.  Average corrosion rate, mortar-embedded bars without 

cap on the end, in 0.4 m ion NaCl and simulated concrete pore solution. 
 
 

Figure 3.8 shows the average corrosion rate for bars embedded in mortar, 

without caps on the ends, in 1.6 m ion NaCl and simulated concrete pore solution.  

The corrosion rates range from 2 to 5 µm/year.  Figures A.36 to A.40 show the results 

for the individual specimens.  The lowest average corrosion rate corresponds to N 

steel, while CRPT2 and CRT have the highest average corrosion rates for most of the 

test period, although the corrosion rate for CRPT1 steel increased during the last 15 

weeks to values of approximately 1.75 µm/year.  As shown in Table 3.2, at the end of 

the test period, N steel has the lowest average corrosion rate with 2.25 µm/year, 

followed by CRT with 3.03 µm/year, T with 3.15 µm/year, CRPT2 with 

3.23 µm/year, and CRPT1 with 3.44 µm/year. 
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Figure 3.8 – Macrocell Test.  Average corrosion rate, mortar-embedded bars without 

cap on the end, in 1.6 m ion NaCl and simulated concrete pore solution. 

 

3.2 BENCH-SCALE TESTS 

Results from the bench-scale tests include the corrosion rate, total corrosion loss, 

corrosion potential of top and bottom mats, and mat-to-mat resistance.  Corrosion 

potential readings on the bench-scale tests are reported versus the copper-copper 

sulfate electrode.  As presented in Table 1.2, when the corrosion potential versus a 

copper-copper sulfate electrode is more negative than –0.350 V, there is greater than 

90% probability that corrosion is occurring; when the potential is more positive than 

–0.200 V, there is greater than 90% probability that corrosion is not occurring; and 

when the potential is between –0.200 and –0.350 V, it is uncertain if corrosion is 

occurring (ASTM C 876).  

Tables 3.3 to 3.8 summarize the average values for six specimens for each 

type of steel at week 70 of the 96-week testing period.  Week 70 was chosen as the 
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cutoff point for reporting results since some individual specimens in the Southern 

Exposure and cracked beam tests exhibit unusual behavior after this period, which 

affects the average results.  This behavior includes specimens with extremely high 

corrosion rates when compared to the other individual specimens in the same set, and 

specimens that show drops in corrosion rate as a result of more negative potentials in 

the bottom mat of steel, which indicates that chlorides have reached the bottom steel.  

Figures 3.9 to 3.15 show the average readings for the full testing period.  Results for 

the individual specimens are shown in Figures A.41 to A.75.  Besides tests for the 

five steels, Southern Exposure test results also include specimens with a combination 

of conventional and microalloyed steels.  CRPT1 steel was chosen as the 

microalloyed steel used for these tests because, at the time that the decision was 

made, initial results from the Southern Exposure tests (Figure 3.9) indicated better 

corrosion performance of this steel when compared to the other two microalloyed 

steels.  

 
Table 3.3 – Corrosion rate in µm/year at week 70 as measured in 

 the bench-scale tests 

 Steel Std.
Designation 1 2 3 4 5 6 Deviati

N 8.41 0.73 3.41 2.33 3.80 5.76 4.07 2.70
T 10.70 2.44 4.98 32.63 1.30 6.51 9.76 11.68

CRPT1 4.36 1.30 10.06 6.94 0.05 2.13 4.14 3.79
CRPT2 7.56 4.90 13.28 7.20 3.41 2.25 6.43 3.94

CRT 3.78 6.96 6.70 1.46 5.03 0.91 4.14 2.57
N/CRPT1 3.75 9.58 9.54 4.39 6.47 6.18 6.65 2.48
CRPT1/N 9.58 0.21 5.06 4.56 3.71 6.61 4.96 3.11

N 9.55 4.55 2.22 3.92 17.61 6.22 7.34 5.61
T 9.43 3.14 2.27 9.85 4.16 1.57 5.07 3.65

CRPT1 2.41 1.50 1.00 6.88 12.27 4.93 4.83 4.27
CRPT2 1.54 1.64 0.56 9.61 1.76 9.39 4.08 4.22

CRT 1.30 4.64 0.00 5.99 9.81 3.30 4.17 3.51

N 3.37 0.99 1.21 0.00 9.642 7.607 3.80 3.94
T 0.00 0.00 2.13 8.30 4.587 2.066 2.85 3.16

CRPT1 1.48 1.91 0.00 10.72 4.508 4.881 3.92 3.82
CRPT2 1.92 2.70 2.68 11.15 1.979 0.000 3.40 3.92

CRT 2.08 1.96 0.50 6.90 2.426 4.173 3.01 2.24

Specimen Average

Southern Exposure

Cracked Beam

ASTM G 109

on
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Table 3.4 – Total corrosion loss in µm at week 70 as measured in 
 the bench-scale tests 

Steel Std.
Designation 1 2 3 4 5 6 Deviati

N 7.13 8.89 6.90 3.02 4.19 4.56 5.78 2.21
T 11.50 4.92 5.35 5.15 0.93 7.66 5.92 3.49

CRPT1 3.96 3.15 7.95 7.90 1.43 1.64 4.34 2.94
CRPT2 8.22 4.56 13.06 6.95 4.79 1.40 6.50 3.97

CRT 8.31 7.45 7.68 1.39 5.09 1.14 5.18 3.22
N/CRPT1 6.00 3.92 4.72 7.62 7.95 8.45 6.44 1.85
CRPT1/N 6.05 6.00 2.84 4.46 9.14 11.58 6.68 3.18

N 10.36 7.75 4.98 8.57 7.61 5.78 7.51 1.93
T 9.59 7.42 8.86 10.96 10.48 4.99 8.72 2.21

CRPT1 9.08 5.80 5.17 12.34 9.67 6.97 8.17 2.70
CRPT2 7.20 5.96 4.14 13.04 5.79 8.88 7.50 3.14

CRT 5.57 8.52 5.47 8.09 8.29 7.47 7.24 1.37

N 2.92 1.45 1.03 3.05 4.190 3.007 2.61 1.17
T 0.01 0.00 0.34 6.71 0.687 1.839 1.60 2.60

CRPT1 0.38 0.34 0.01 6.82 2.073 3.084 2.12 2.59
CRPT2 0.46 0.51 0.94 8.95 1.377 0.041 2.05 3.41

CRT 0.65 0.21 0.01 1.77 1.853 1.138 0.94 0.78

Specimen

Southern Exposure

Cracked Beam

Average

ASTM G 109

on 

 

 

 

 

 

 

 

 

 
 
 
 
 

Table 3.5 – Mat-to-mat resistance in ohms at week 1 as measured in 
 the bench-scale tests 

 Steel Std.
Designation 1 2 3 4 5 6 Deviation

N - - - 158 147 139 148 10
T - - - 154 176 119 150 29

CRPT1 - - - 150 174 124 149 25
CRPT2 - - - 144 131 123 133 11

CRT - - - 164 131 136 144 18
N/CRPT1 111 150 149 124 120 121 129 16
CRPT1/N 116 113 152 130 122 125 126 14

N 327 341 358 297 306 323 325 22
T 288 306 253 196 206 229 246 44

CRPT1 272 312 305 189 190 305 262 58
CRPT2 293 274 331 199 224 279 267 48

CRT 304 286 347 197 218 291 274 56

N 158 168 163 145 143 138 159 10
T 327 325 20 139 128 155 182 121

CRPT1 320 - 261 144 148 158 206 80
CRPT2 312 222 255 138 155 159 207 68

CRT 316 229 270 130 164 164 212 72

Cracked Beam

ASTM G 109

Specimen

Southern Exposure

Average
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Table 3.6 – Mat-to-mat resistance in ohms at week 70 as measured in 
 the bench-scale tests 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.7 –Corrosion potential of top mat in volts versus copper-copper sulfate 

electrode at week 70 as measured in the bench-scale tests 

 

 

 

 

 

 

 

 

 

 
 

on
Steel Std.

Designation 1 2 3 4 5 6 Deviati

N 514 362 1035 1509 1201 824 908 430
T 411 1390 833 523 6461 448 1678 2372

CRPT1 680 1985 359 400 6727 656 1801 2486
CRPT2 211 1234 280 580 890 2640 973 902

CRT 206 698 445 1659 563 2720 1048 959
N/CRPT1 390 466 497 405 377 377 419 51
CRPT1/N 339 1216 758 586 556 458 652 309

N 909 2026 3603 2179 1354
T 581 1741 2904 641 1198 5455 2087 1859

CRPT1 3679 2369 3089 630 446 1818 2005 1301
CRPT2 4288 3402 1028 673 3938 918 2375 1673

CRT 1628 1564 3980 1578 487 2678 1986 1198

N 632 1528 1690 563 484 536 906 549
T 1509 1135 1548 350 665 2086 1216 635

CRPT1 1420 1634 740 359 641 895 948 486
CRPT2 1301 1362 965 579 1815 734 1126 456

CRT 1196 1425 997 634 1619 827 1116 370

Cracked Beam

ASTM G 109

Specimen

Southern Exposure

Average

Steel Std.
Designation 1 2 3 4 5 6 Deviati

N -0.536 -0.503 -0.587 -0.592 -0.606 -0.618 -0.574 0.045
T -0.627 -0.596 -0.618 -0.627 -0.492 -0.615 -0.596 0.052

CRPT1 -0.601 -0.603 -0.578 -0.597 -0.459 -0.606 -0.574 0.057
CRPT2 -0.611 -0.594 -0.588 -0.621 -0.617 -0.600 -0.605 0.013

CRT -0.595 -0.610 -0.573 -0.512 -0.606 -0.580 -0.579 0.036
N/CRPT1 -0.529 -0.525 -0.587 -0.550 -0.392 -0.412 -0.499 0.079
CRPT1/N -0.584 -0.599 -0.652 -0.402 -0.412 -0.478 -0.521 0.105

N -0.620 -0.576 -0.640 -0.516 -0.626 -0.639 -0.603 0.049
T -0.666 -0.653 -0.640 -0.656 -0.614 -0.428 -0.610 0.091

CRPT1 -0.646 -0.625 -0.598 -0.619 -0.671 -0.590 -0.625 0.030
CRPT2 -0.629 -0.645 -0.581 -0.638 -0.378 -0.644 -0.586 0.105

CRT -0.611 -0.603 -0.591 -0.623 -0.392 -0.655 -0.579 0.094

N -0.479 -0.512 -0.535 -0.475 -0.556 -0.536 -0.516 0.033
T -0.112 -0.164 -0.405 -0.532 -0.502 -0.526 -0.374 0.189

CRPT1 -0.423 -0.407 -0.090 -0.514 -0.514 -0.515 -0.411 0.164
CRPT2 -0.410 -0.416 -0.446 -0.530 -0.519 -0.133 -0.409 0.144

CRT -0.426 -0.387 -0.328 -0.541 -0.517 -0.516 -0.453 0.085

Cracked Beam

ASTM G 109

Specimen

Southern Exposure

Average on
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Table 3.8 – Corrosion potential of bottom mat in volts versus copper-copper sulfate 

electrode at week 70 as measured in the bench-scale tests 

 Steel Std.
Designation 1 2 3 4 5 6 Deviati

N -0.344 -0.453 -0.242 -0.327 -0.346 -0.375 -0.348 0.068
T -0.399 -0.400 -0.437 -0.196 -0.186 -0.383 -0.334 0.112

CRPT1 -0.444 -0.552 -0.404 -0.244 -0.232 -0.306 -0.364 0.125
CRPT2 -0.541 -0.280 -0.349 -0.212 -0.341 -0.247 -0.328 0.117

CRT -0.560 -0.378 -0.237 -0.234 -0.256 -0.365 -0.338 0.126
N/CRPT1 -0.254 -0.353 -0.349 -0.323 -0.233 -0.225 -0.290 0.059
CRPT1/N -0.246 -0.186 -0.283 -0.208 -0.184 -0.240 -0.225 0.039

N -0.468 -0.280 -0.328 -0.562 -0.378 -0.505 -0.420 0.109
T -0.545 -0.262 -0.369 -0.252 -0.431 -0.252 -0.352 0.120

CRPT1 -0.174 -0.344 -0.287 -0.365 -0.459 -0.311 -0.323 0.094
CRPT2 -0.358 -0.418 -0.291 -0.315 -0.208 -0.352 -0.324 0.071

CRT -0.313 -0.255 -0.257 -0.440 -0.177 -0.359 -0.300 0.092

N -0.420 -0.280 -0.281 -0.485 -0.210 -0.225 -0.317 0.111
T -0.105 -0.225 -0.191 -0.218 -0.229 -0.256 -0.204 0.053

CRPT1 -0.174 -0.172 -0.162 -0.205 -0.249 -0.229 -0.199 0.035
CRPT2 -0.162 -0.186 -0.167 -0.231 -0.245 -0.132 -0.187 0.043

CRT -0.237 -0.178 -0.162 -0.246 -0.237 -0.224 -0.214 0.035

Cracked Beam

ASTM G 109

Specimen

Southern Exposure

Average on

 

 

 

 

 

 

 

 

 

 

 

3.2.1 Southern Exposure Test 

As shown in Table 3.3, at week 70 N, CRPT1, and CRT steels have the lowest 

average corrosion rates (4.07 µm/year for N steel and 4.14 µm/year for CRPT1 and 

CRT), while T steel has the highest corrosion rate (9.76 µm/year).  CRPT2 steel, as 

well as the specimens with a combination of N and CRPT1 steels have intermediate 

corrosion rates, ranging from 4.96 to 6.65 µm/year.  The average total corrosion loss 

shown in Table 3.4 indicates that, after 70 weeks, CRPT1 and CRT steels have the 

lowest corrosion loss with 4.34 µm and 5.18, respectively.  This corresponds to 25% 

and 11% less than N steel, which has a corrosion loss of 5.78 µm.  CRPT2 has the 

highest corrosion loss with 6.50 µm, 12% higher than N steel.  Mat-to-mat resistance 

for all specimens is between 126 and 150 ohms after 1 week, and increases to values 
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between 419 and 1801 by week 70.  The increase in the mat-to-mat resistance is a 

result of the deposition of corrosion products on the surface of and in the region 

surrounding the reinforcing bars.  Average corrosion potential of the top mat for all 

steels is more negative than –0.499 V, which indicates a high tendency to corrode. 

Average corrosion potential of the bottom mat ranges from –0.225 to –0.364 V, 

which indicates a lower probability of corrosion.   

Figure 3.9 shows that the corrosion rates start increasing after the first week 

for all steels and reach values between approximately 4 and 8 µm/year after 30 

weeks, after which the corrosion rates remains relatively constant.  After week 80 the 

corrosion rates drop slightly.  CRPT1 has a slightly lower corrosion rate than the rest 

of the steels for the first 50 weeks of the testing period.  The corrosion rate for T steel 

jumps to values as high as 15 µm/year after week 70, after which it remains at 14 

µm/year for 9 weeks and then drops to around 10 µm/year for the last weeks of 

testing.  This jump in the average is the result of extremely high corrosion rates in one 

of the specimens, as shown in Figure A.42.  The corrosion rate of CRT drops below 

the rest of the steels during the last two weeks.  
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Figure 3.9 – Southern Exposure Test.  Average corrosion rate. 

 

Figure 3.10 shows the corrosion rate for specimens with mixed steel.  Figures 

A.48 to A.49 show the results for the individual specimens.  Specimens with N steel 

in the top mat have the same behavior as those with CRPT1 on the top mat.  Although 

the specimens with N steel on the top mat start corroding later than the other 

specimens, after week 10, both show very similar corrosion rates for the rest of the 

testing period.  The average corrosion rate increases with time and reaches a 

maximum value between 8 and 10 µm/year at week 32.  The corrosion rates remain in 

the range of 6 to 8 µm/year from week 34 to week 60, after which the values start to 

drop.  At the end of the testing period, corrosion rates for both types of specimens are 

around 5 µm/year. 
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Figure 3.10 – Southern Exposure Test – Average corrosion rate, specimens with 
mixed steel. 

 

Figure 3.11 shows the total corrosion loss for the SE tests.  Figures A.49 to 

A.53 show the results for the individual specimens.  During the first 35 weeks, the 

slope of the curves increases with time, as the corrosion rate increases.  For the first 

10 weeks all steels show similar total corrosion loss.  After week 10, CRPT1 begins 

to show a lower corrosion loss than the rest of the steels and the difference increases 

slightly with time.  After week 60, CRPT2 begins to show a higher corrosion loss 

than the rest of the steels.  The jump in the corrosion rate for T steel at week 70 is 

reflected in the total corrosion loss by an increased slope for the curve representing 

this steel.  After 70 weeks of testing, CRPT1 shows the lowest total corrosion loss 

with values of 4.34 µm, followed by CRT with 5.20 µm, T steel with 5.75 µm, and N 

steel with 5.79 µm.  CRPT2 steel has the highest total corrosion loss with 6.50 µm. 

Figure 3.12 shows the total corrosion loss for specimens with mixed steels.  

Figures A.49 to A.53 show the results for the individual specimens.  Since the 
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corrosion rates are very similar for both types of specimens throughout the testing 

period, no difference in corrosion loss is observed between the average plots until 

week 65 when the specimens with CRPT1 steel on the top mat start to show a slightly 

higher average corrosion loss.  After 70 weeks of testing, specimens with N steel on 

the top mat have an average total corrosion loss of 6.08 µm and specimens with 

CRPT1 steel on the top mat have an average total corrosion loss of 6.51 µm. 
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Figure 3.11 – Southern Exposure Test.  Average total corrosion loss. 
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Figure 3.12 – Southern Exposure Test.  Average total corrosion loss, specimens with 
mixed steel. 

 

 Figures 3.13 and 3.14 show the average corrosion potentials versus a copper-

copper sulfate electrode for the top mat of steel.  Figures A.56 to A.62 show the 

results for the individual specimens.  After the first week, the corrosion potential of 

the top mat for all steels is above –0.250 V but decreasing fairly rapidly.  By week 6 

the corrosion potential of all steels is below –0.350 V, with the exception of CRPT1, 

which does not fall below this value until week 16.  A potential more negative than   

–0.350 V versus the copper-copper sulfate electrode indicates that the steel has begun 

to corrode.  CRPT1 shows a more positive corrosion potential than the other steels for 

the first 35 weeks, after which all steels have a similar potential.  The potential of the 

top mat decreases with time for all steels and after week 40 and until the end of the 

testing period, the corrosion potential for all steels is between –0.500 and –0.600 V, 

which indicates that there is a high probability that corrosion is occurring.  Specimens 

with mixed steel show a similar behavior.  The corrosion potential of the top mat 
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starts at approximately –0.200 V and starts decreasing with time.  At week 12 it has a 

corrosion potential of approximately –0.350 V, which indicates a loss of passivity.  

By week 40 the corrosion potential has reached values between –0.500 and –0.600 V, 

were they remain relatively constant for the rest of the testing period.   
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Figure 3.13 – Southern Exposure Test.  Average corrosion potential versus copper-

copper sulfate electrode, top mat. 
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Figure 3.14 – Southern Exposure Test.  Average corrosion potential versus copper-
copper sulfate electrode, top mat.  Specimens with mixed steel. 

 

Figures 3.15 and 3.16 show the average corrosion potentials versus the 

copper-copper sulfate electrode for the bottom mat of steel.  Figures A.63 to A.69 

show the results for the individual specimens.  During the first week the average 

potential for all steels is approximately –0.200 V and then starts to decrease slightly 

until it reaches values between –0.300 and –0.375 V after 35 weeks, which indicates 

that it is uncertain if the steel is corroding.  The potentials remain in this range until 

week 70 when some steels exhibit a potential close to –0.400 V.  This drop in 

potential indicates a high probability that chlorides have reached the bottom mat of 

steel.  At week 79, the corrosion potential of N steel drops and reaches values close to 

–0.550 V at week 90.  For the specimens with mixed steel, the corrosion potential of 

the bottom mat is approximately –0.200 V for the first 9 weeks, after which it drops 

to    –0.300 V until week 80.  Up to this point the steel in the bottom mat is passive.  

After week 80 the corrosion potential of the top mat becomes more negative, and by 
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week 90, the potential is –0.400V, which indicates a high probability that chlorides 

have reached the bottom mat of steel. 
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Figure 3.15 – Southern Exposure Test.  Average corrosion potential versus copper-

copper sulfate electrode, bottom mat. 
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Figure 3.16 – Southern Exposure Test.  Average corrosion potential versus copper-

copper sulfate electrode, bottom mat.  Specimens with mixed steel. 
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Figures 3.17 and 3.18 show the average mat-to-mat resistance.  Figures A.70 

to A.76 show the results for the individual specimens. The average mat-to-mat 

resistance for weeks 1 and 70 of the testing period are given in Tables 3.5 and 3.6, 

respectively.  The mat-to-mat resistances for all steels start close to 150 ohms and 

increase with time.  Up to week 50 all steels show very similar mat-to-mat resistance, 

with very little scatter.  After this period, the average plots show more scatter, but in 

general, the values continue to increases with time.  Mat-to-mat resistance for N steel 

shows a drop in value after week 80, indicating the possible formation of cracks in the 

specimens.  The average mat-to-mat resistances at week 70 show that N and CRPT2 

have the lowest mat-to-mat resistance, with 908 and 973 ohms, respectively.  The 

highest mat-to-mat resistances at this point are for T steel with 1678 ohms and 

CRPT1 steel with 1801 ohms.  CRT steel has a mat-to-mat resistance at week 70 of 

1048 ohms.  Specimens with mixed steels start with mat-to-mat resistances of 

approximately 130 ohms, and at week 70 they show values of 652 and 419 ohms.   
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Figure 3.17 – Southern Exposure Test.  Average mat-to-mat resistance. 
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Figure 3.18 – Southern Exposure Test.  Average mat-to-mat resistance, specimens 

with mixed steel. 
 

3.2.2 Cracked Beam Test 

As shown in Table 3.3, at week 70, CRPT2 and CRT have the lowest average 

corrosion rates (4.08 µm/year for CRPT2 and 4.17 µm/year for CRT), and N steel has 

the highest average corrosion rate with 7.34 µm/year.  CRPT1 and T steels have 

intermediate values of corrosion rate.  Average corrosion losses (Table 3.4) show that 

at week 70, CRT has the lowest corrosion loss with 7.24 µm, 4% less than 

conventional steel, which has a corrosion loss with 7.51 µm.  T steel has the highest 

corrosion loss with 8.72 µm.  CRPT1 and CRPT2 have corrosion losses of 7.50 and 

8.17 µm, respectively.  The mat-to-mat resistances after one week range from 246 to 

325 ohms, and by week 70, the values are between 1986 and 2375 ohms.  The values 

obtained in the CB test are higher than those observed in the SE test. This is attributed 

to the fact that the chlorides reach the top mat of steel on the CB specimen beginning 

on the first day of testing and deposition of corrosion products starts earlier.  

Corrosion potentials for the top mat at week 70 range from –0.579 to –0.630 V, which 
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indicates that the steel is actively corroding.  The bottom mat has corrosion potentials 

that range from –0.252 to –0.505 V.  As discussed before, values more negative than     

–0.350 Vindicate a high tendency to corrode. This occurs for the bottom mat of steel 

once chlorides reach that level.  Corrosion potential values that are more positive than 

–0.350 V indicate that the steel is passive. 

Average corrosion rates for the cracked beam specimens are shown in Figure 

3.19, and the average corrosion rates for week 70 of testing are summarized in Table 

3.4.  Figures A.77 to A.81 show the results for the individual specimens.  Since the 

crack allows for direct access of the salt solution to the bars, the average corrosion 

rates during the first week show values above 15 µm/year.  The corrosion rates 

decrease with time, and by week 30, all steels show values below 5 µm/year.  After 

week 80, CRPT1 and CRT start showing increased corrosion rates. 
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Figure 3.19 – Cracked Beam Test.  Average corrosion rate. 

 



 71 
 

The average total corrosion loss, shown in Figure 3.20, is similar for all steels.  

After week 30, CRT shows a lower value than the rest of the steels and this is 

maintained through week 90, when CRPT2 shows the lowest total corrosion loss.  

After week 40, T steel shows a higher value than the rest of the steels.  After week 85, 

the curve representing CRPT1 steel shows a sharp increase in its slope.  By the end of 

week 70 CRT steel has the lowest corrosion loss with 7.25 µm followed by CRPT2 

with 7.49 µm and N steel with 7.75 µm.  The highest corrosion losses were for T steel 

with 8.81 µm and CRPT1 steel with 8.73 µm.  Figures A.82 to A.86 show the plots 

for the individual specimens. 
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Figure 3.20 – Cracked Beam Test.  Average total corrosion loss. 
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Figure 3.21 shows the average corrosion potentials versus the saturated 

calomel electrode for the top mat of steel.  Figures A.87 to A.91 show the results for 

the individual specimens.  Starting in the first week, all corrosion potentials for the 

top mat are well below –0.500 V, and all steels show similar values, indicating that all 

have a similar tendency to corrode.  Throughout the testing period, the corrosion 

potential ranges from –0.500 V to –0.650 V, and there is no difference between the 

steels.  

Figure 3.22 shows the average corrosion potentials versus the saturated 

calomel electrode for the bottom mat of steel.  Figures A.92 to A.96 show the results 

for the individual specimens.  After 1 week of testing all steels have a bottom mat 

corrosion potential between –0.200 and –0.250 V, which indicates a passive 

condition.  The corrosion potential remains above –0.350 V until week 60 for all 

steels, with the exception of N steel, which shows values close to –0.400 V from 

week 11 to week 30.  After week 60, all specimens show a slight decrease in the 

corrosion potential of the bottom mat, which might indicate the presence of chloride 

ions at the level of this barst.  N steel shows the more negative corrosion potential, 

and by week 90 it reaches values lower than –0.500 V.  CRPT2 steel shows the more 

positive corrosion potentials during the last weeks of testing. 
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Figure 3.21 – Cracked Beam Test.  Average corrosion potential versus copper-copper 
sulfate electrode, top mat. 
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Figure 3.22 – Cracked Beam Test.  Average corrosion potential versus copper-copper 
sulfate electrode, bottom mat. 
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Figure 3.23 shows the average mat-to-mat resistance. Figures A.97 to A.101 

show the results for the individual specimens.  The average mat-to-mat resistance for 

the first week of testing is given in Table 3.5. All steels start with values of mat-to-

mat resistance close to 300 ohms and increases with time.  As in the SE tests, up to 

week 50 all steels show very similar mat-to-mat resistance, and very little scatter.  

After this period the average plot shows more scatter, but in general, the values 

continue to increases with time.  Similarly to the SE test, N steel shows a drop in the 

average mat-to-mat resistance after week 80.  The average mat-to-mat resistance for 

week 70 is given in Table 3.6.  These values show that CRT steel had the lowest mat-

to-mat resistance, 1986 ohms, followed by CRPT1 steel with 2005 ohms, and T steel 

with 2087 ohms.  The highest mat-to-mat resistances at the end of the testing period 

are for CRPT2 steel with 2375 ohms and N steel with 3603 ohms. 
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Figure 3.23 – Cracked Beam Test.  Average mat-to-mat resistance. 
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3.2.3 ASTM G 109 Test 

As shown in Table 3.3, at week 70, T and CRT steels have the lowest average 

corrosion rates (2.85 µm/year for T steel and 3.01 µm/year for CRT), while N and 

CRPT1 steel have the highest corrosion rate (3.80 µm/year for N steel and 3.92 

µm/year for CRPT1 steel).  CRPT2 steel has a corrosion rate of 3.40 µm/year.  The 

average total corrosion loss shown in Table 3.4 indicates that after 70 weeks CRT has 

the least corrosion loss with 0.94 µm, only 36% of the value for N steel, which has 

the highest corrosion loss with 2.61 µm.  Mat-to-mat resistance for all specimens is 

between 159 and 212 ohms after 1 week, and increases to values between 906 and 

1216 ohms by week 70.  Average corrosion potential of the top mat for all steels 

ranges from –0.374 to –0.516 V, which indicates a high tendency to corrode. Average 

corrosion potential of the bottom mat ranges from –0.187 to –0.317 V, which 

indicates that chlorides have not reached the bottom mat of steel in some specimens. 

Average corrosion rates for the G 109 specimens are shown in Figure 3.24, 

and the average corrosion rates at week 70 are summarized in Table 3.5.  Figures 

A.102 to A.106 show the results for the individual specimens.  Unlike the Southern 

Exposure and cracked beam tests, corrosion rates remain close to zero for several 

months after the tests have started.  The first steel to show activity is N steel at week 

18, followed by T and CRPT2 steels at week 22, CRPT1 steel at week 31 and CRT at 

week 39.  Corrosion rates reach nearly constant values after week 60 for all steels and 

values range from 2 to 4 µm/year.  N steel shows the lowest corrosion rates after 

week 70 with values between 1 and 2 µm/year.  Once corrosion starts, the G 109 

specimens exhibit large differences in corrosion rate from week to week.  This 

variation is due to the four week ponding and drying cycle used for these specimens. 
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Figure 3.24 – G 109 Test.  Average corrosion rate. 

 

Total corrosion losses versus time are plotted in Figure 3.25, and values at 

week 70 are given in Table 3.4.  Figures A.107 to A.111 show the results for the 

individual specimens.  N steel shows the highest corrosion loss during the testing 

period since it started corroding earlier than the other steels.  CRT steel shows the 

lowest corrosion loss since it started corroding last, which might indicate a slightly 

higher corrosion threshold.  The slopes for the five curves are very similar since the 

corrosion rates are similar once the steels start to corrode.  N steel shows a change in 

slope at the end of the testing period since, as mentioned above, its corrosion rate 

dropped at the end of the testing period.  This decrease coincides with a large increase 

in mat-to-mat resistance, indicating that the deposition of corrosion products is high 

enough to decrease the rate of corrosion, and not that the steel is more corrosion 

resistant.  After 70 weeks, CRT shows the lowest total corrosion loss with a value of 
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0.94 µm, followed by T steel with 1.61 µm, CRPT2 steel with 1.98 µm, and CRPT1 

steel with 2.10 µm.  N steel has the highest total corrosion loss with 2.46 µm. 
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Figure 3.25 – G 109 Test.  Average total corrosion loss. 

 
Figures 3.26 and 3.27 show the average corrosion potentials versus a copper-

copper sulfate electrode for the top and bottom mats of steel.  Figures A.112 to A.121 

show the results for the individual specimens.  The potential of the top mat of steel 

for all specimens is more positive than –0.200 V during the first 30 weeks of testing, 

with the exception of N steel, for which the potential starts to drop at week 21.  By 

week 36 the potential of the top mat for N steel is below –0.500 V, while for the rest 

of the steels it is above –0.250 V.  The potential for the rest of the steels starts to drop 

at week 35 and reaches values close to –0.400 V by week 60.  The corrosion potential 

of the bottom mat has values above –0.200 V for all steels until week 60, except for N 

steel which shows values below –0.200 V at week 30.  During the last weeks of 

testing, all steels show bottom mat corrosion potentials between –0.200 and –0.300 V. 

 



 78 
 

 

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

0 10 20 30 40 50 60 70 80 90 100

TIME (weeks)

CO
RR

O
SI

O
N 

PO
TE

NT
IA

L 
(V

)

G-N G-T G-CRPT1 G-CRPT2 G-CRT

 
Figure 3.26 – G 109 Test.  Average corrosion potential versus copper-copper sulfate 

electrode, top mat. 
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Figure 3.27 – G 109 Test.  Average corrosion potential versus copper-copper sulfate 

electrode, bottom mat. 
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Figure 3.28 shows the average mat-to-mat resistance and Tables 3.5 and 3.6 

give the average mat-to-mat resistance for weeks 1 and 70, respectively. Figures 

A.122 to A.126 show the results for the individual specimens.  All steels start with 

values of mat-to-mat resistance between 150 and 220 ohms, which increase with time.   

Throughout most of the testing period, all steels show similar mat-to-mat resistances.  

During the last weeks of testing the mat-to-mat resistance of N steel increases rapidly 

in comparison to the other steels.  The average mat-to-mat resistance at week 70 is 

given in Table 3.5.  These values show that CRPT1 steel has the lowest mat-to-mat 

resistance, 948 ohms, followed by CRT steel with 1116 ohms, and CRPT2 steel with 

1126 ohms.  The highest mat-to-mat resistances are for T steel with 1244 ohms and N 

steel with 1283 ohms. 
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Figure 3.28 – G 109 Test.  Average mat-to-mat resistance. 
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3.2.4   Appearance of specimens 

After the 96-week test period, a visual inspection of the bars was performed.  

The concrete portions of the specimens were destroyed and the bars were removed 

and photographed.  Figures 3.29 to 3.34 show representative pictures obtained from 

the specimens. 

Rust stains were observed on the surface of some Southern Exposure 

specimens, as shown in Figure 3.29.  The surface of the cracked beam specimens was 

totally stained since the corrosion products were carried to the surface of the 

specimen through the cracks.  Very thin cracks that run parallel to the reinforcing 

bars, as shown in Figure 3.30, were also observed on some of the Southern Exposure 

specimens.  The G 109 specimens did not show cracks or rust stains on the concrete. 

Figures 3.31 to 3.34 show the corrosion products observed on some of the 

specimens with different types of steel.  Figures 3.31 and 3.32 show one of the top 

bars of specimens SE-N-3 and SE-CRPT2-1, respectively,  and the corrosion products 

surrounding them, after the concrete cover was removed.   Figure 3.33 shows a side 

view of one of the top bars of specimen SE-CRT-1.  In the three cases shown, 

corrosion products were a combination of greenish-black and red-brown products.  

The greenish-black corrosion products are formed by ferrous hydroxide, while the 

red-brown corrosion products are ferric oxides, which form when the ferrous 

hydroxides react with oxygen.  The greenish-black products changed to a red-brown 

color after several hours.  Figure 3.34 shows the bottom bars of specimen SE-CRPT1-

3.  Corrosion products were observed on the four bars.  As shown in Figure A.60, the 

corrosion potential of the bottom bars had dropped below –0.350 V versus the 

copper-copper sulfate electrode, which indicated the high probability of corrosion on 

these bars. 
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Figure 3.29 – Rust stains on surface of specimen SE-CRPT2-1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 – Thin cracks on specimen SE-CRPT1/N-3 
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Figure 3.31 – Corrosion products on top bar of specimen SE-N-3 
 

 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.32 – Corrosion products on top bar of specimen SE-CRPT2-1 
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Figure 3.33 – Corrosion products on top bar of specimen SE-CRT-1 (side 

view of specimen). 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.34 – Corrosion products on bottom bars of specimen SE-CRPT1-3 

 



 84 
 

3.3 MECHANICAL TESTS 

 

The mechanical properties of four steels, T, CRPT1, CRPT2, and CRT were 

tested according to ASTM A 615.  The results are shown in Table 3.9.  Stress-strain 

curves for each sample are shown in Figures A.126 to A.137.  All steels meet the 

requirements of ASTM A 615 for tensile strength, yield strength, and percent 

elongation for Grade 420 [Grade 60] steel.  The results obtained for all steels are 

similar to those reported by Gerdau AmeriSteel (Table 2.2). All steels meet the 

minimum bending requirements, which indicates that the higher alloy contents, 

especially phosphorus, did not affect the ductility of the steel.  The results indicate 

that the microalloyed steels can be used as a replacement for standard A 615 

reinforcement. 

 

Table 3.9 – Mechanical tests 
Steel Elongation in

Designation (MPa) (ksi) (MPa) (ksi) 202.3 mm (8 in.)
561.3 81.4 715.0 103.7 14.8% OK
559.9 81.2 716.4 103.9 13.3% OK
573.7 83.2 727.4 105.5 12.5% OK
564.9 81.9 719.6 104.4 13.5% OK
568.1 82.4 746.0 108.2 10.9% OK
591.6 85.8 746.0 108.2 10.9% OK
590.9 85.7 755.0 109.5 12.5% OK
583.5 84.6 749.0 108.6 11.4% OK
577.8 83.8 775.7 112.5 13.3% OK
581.9 84.4 768.8 111.5 13.3% OK
579.2 84.0 770.9 111.8 14.1% OK
579.6 84.1 771.8 111.9 13.6% OK
566.1 82.1 728.1 105.6 14.1% OK
517.1 75.0 727.4 105.5 12.5% OK
499.2 72.4 715.0 103.7 11.7% OK
527.5 76.5 723.5 104.9 12.8% OK

Bending

CRPT2

CRT

Yield Strength Tensile Strength

T

CRPT1
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3.4 DISCUSSION 

The corrosion potential test gives an indication of the tendency of a metal to 

corrode.  As shown Section 3.1.1, the five steels have similar corrosion potentials 

when exposed to the same conditions.  The steels were tested in a bare condition and 

with a mortar cover in NaCl and simulated concrete pore solution.  On day 40 of the 

test, the least negative corrosion potential for all the tests performed was –0.380 V, 

which indicates that the steels have a very high probability of corrosion under those 

conditions.  The corrosion potential test only gives the probability that corrosion is 

occurring, it does not indicate the rate of corrosion.  The macrocell test allows the 

corrosion rate of the bars to be measured when exposed to a NaCl and simulated 

concrete pore solution.  The bars were tested in a bare condition and embedded in 

mortar (Section 3.1.2).  The results for the different tests performed showed that the 

five steels had similar corrosion rates, with no improved behavior for the 

microalloyed steels. 

In the bench-scale tests, the corrosion rate, mat-to-mat resistance, and 

corrosion potential of the top and bottom mats were used to monitor the specimens.  

One of the microalloyed steels, CRT, showed consistently lower corrosion losses than 

conventional steel, after 70 weeks.   Although CRT appears to be much more 

corrosion resistant than conventional steel in the G 109 tests (64% less total corrosion 

loss after 70 weeks), its overall performance does not show such an advantage.  In the 

cracked beam test after 70 weeks, it had only 4% less corrosion loss than 

conventional steel, which indicates that in cracked concrete the two steels behave in a 

similar manner.  In the Southern Exposure test, CRT steel had a 11% lower corrosion 

loss than conventional steel after the same period. Comparison of the two 
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conventional steels (N and T) shows no advantage of the Thermex treated 

conventional steel (T) over the hot-rolled conventional steel (N).   

In all of the bench-scale tests, the mat-to-mat resistance increased with time 

due to the deposition of corrosion products on the surface and in the region 

surrounding the reinforcing bars.  The corrosion potential of the top bars at week 70 

was more negative than –0.350 V versus a copper-copper sulfate electrode, indicating 

a high tendency to corrode, for all steels.  The G 109 specimens exhibit less negative 

corrosion potentials than the other two tests.  This behavior results from the lower salt 

concentration at the level of the steel in the G 109 test, due to the less aggressive 

ponding and drying cycles and the lower salt concentration used in the ponding 

solution.  The corrosion potential of the bottom mat of steel, at week 70, ranges from 

–0.187 V to –0.420 V with respect to a copper-copper sulfate electrode.  The values 

that are more negative than -0.350 V indicate a high probability that the salt has 

reached the bottom reinforcing bars. 

All steels meet the requirements of ASTM A 615 for tensile strength, yield 

strength, and percent elongation for Grade 420 [Grade 60] steel as well as the 

minimum bending requirements, which indicates that the higher alloy contents, 

especially phosphorus, did not affect the ductility of the steel.  The results indicate 

that the microalloyed steels can be used as a replacement for standard A 615 

reinforcement. 

 

 

 

 



CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

 

4.1  SUMMARY 

The evaluation of the corrosion-resistant properties of three microalloyed and 

two conventional steels was performed.  Earlier tests had shown that microalloyed 

steels similar to those in the study were twice as corrosion resistant as conventional 

steel.  The same studies showed that, when epoxy-coated, the new steels were up to 

10 times as corrosion resistant as conventional epoxy-coated steel.  The microallyed 

steels contain small amounts of chromium, copper and phosphorus, which exceed the 

amounts allowed in ASTM specifications.  One conventional steel and the three 

microalloyed steels are heat treated by the Thermex process, which includes 

quenching and tempering of the steel immediately after rolling while the other 

conventional steel is hot-rolled.  The evaluation was performed using five different 

tests, the corrosion potential, corrosion macrocell, Southern Exposure, cracked beam, 

and ASTM G 109 tests.  The tests use the corrosion potential and corrosion rate to 

evaluate the steel.  Tension and bending tests were also performed to evaluate the 

effect of the microalloys and heat treatment on the mechanical properties of the 

reinforcing steel. 

The five types of reinforcing steel tested, provided by Gerdau AmeriSteel, 

include:  hot-rolled conventional steel (N); Thermex-treated conventional steel, (T); 

Thermex-treated microalloyed steel with a high phosphorus content, 0.117%, 

(CRPT1); Thermex-treated microalloyed steel with a high phosphorus content, 

0.100%, (CRPT2); and Thermex-treated microalloyed steel with normal phosphorus 

content, 0.017%, (CRT).   

87 
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Bars for the rapid evaluation tests were tested with and without mortar cover 

at two different NaCl ion concentrations (0.4 m and 1.6 m).  A water-cement ratio of 

0.5 and a sand-cement ratio of 2 were used for the mortar specimens.  The bench-

scale specimens had a water-cement ratio of 0.45.  Specimens with a combination of 

conventional steel and microalloyed steel were also tested in the Southern Exposure 

test. 

 

4.2  CONCLUSIONS 

The following conclusions are based on the test results obtained in this study. 

1. The corrosion potential of the five steels was approximately the same, indicating 

that they have a similar tendency to corrode.  By the last day of testing, the 

corrosion potential versus the saturated calomel electrode for all steels is more 

negative than –0.380 V, which indicates a high probability that corrosion is 

occurring. 

2. The corrosion rate of the five steels was approximately the same in the macrocell 

tests indicating no improved corrosion protection for microalloyed steels over 

conventional steel. 

3. The microalloyed steel with regular phosphorus content (CRT) exhibited 

consistently lower corrosion losses than conventional steel on the bench-scale 

tests.  This improved behavior, however, is not enough to use the steel without an 

epoxy coating or to justify continued research on the steel as a superior epoxy-

coated material. 

4. The microalloying, including increased phosphorus, did not affect the mechanical 

properties or ductility of the steel.  The mechanical properties of the microalloyed 

steel were similar to those of conventional steel. 
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5. No improved corrosion performance was observed for the Thermex treated 

conventional steel over the hot-rolled conventional steel. 

6. The specimens with a combination of CRPT1 steel and conventional steel (N) had 

higher corrosion losses than specimens with only conventional steel. 

7. The mat-to-mat resistance increases with time for all specimens, indicating the 

deposition of corrosion products on the surface and adjacent to the bars. 

8. In the bench-scale tests, the corrosion potential versus the copper-copper sulfate 

electrode at week 70 for all steels is more negative than –0.374 V, indicating a 

high probability that corrosion is occurring. 

9. In some bench-scale specimens the corrosion potential of the bottom mat became 

more negative during the last weeks of testing, indicating that chlorides had 

reached the bottom steel.   

 

4.3 RECOMMENDATIONS 

Based on the test results and conclusions presented in this report it is 

recommended that microalloyed steel should not be used as part of a corrosion 

protection system.  The three microalloyed steels showed no advantage over 

conventional steel in the macrocell tests, and the corrosion potential of the five steels 

evaluated was very similar, indicating that they have approximately the same 

tendency to corrode.  CRT steel showed lower corrosion losses than N steel in the 

bench-scale tests, but the difference was only 11% in the Southern Exposure test and 

4% in the Cracked Beam test, which is only a slight advantage over conventional 

steel in uncracked concrete and basically the same behavior as conventional steel in 

cracked concrete.  The new steels did not duplicate the performance of earlier 

microalloyed steel that corroded at only 50% of the rate of conventional steel.  
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Although CRT steel had only 36% the corrosion loss of conventional steel in the G 

109 tests, its overall performance does not justify its use as uncoated steel or the 

pursuit of additional research on its use as epoxy-coated reinforcement. 
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Figure A.1 - Corrosion potential versus saturated calomel electrode.  Bare conventional,
                    normalized steel in 1.6 m ion NaCl and simulated concrete pore solution.

Figure A.2 - Corrosion potential versus saturated calomel electrode.  Bare, thermex-treated
                    conventional steel in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.3 - Corrosion potential versus saturated calomel electrode.  Bare, thermex-treated
                    microalloyed steel with high phosphorus content (0.117%) in 1.6 m ion NaCl 
                     and simulated concrete pore solution.

Figure A.4 - Corrosion potential versus saturated calomel electrode.  Bare, thermex-treated
                    microalloyed steel with high phosphorus content (0.100%) in 1.6 m ion NaCl 
                     and simulated concrete pore solution.
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Figure A.5 - Corrosion potential versus saturated calomel electrode.  Bare, thermex-treated
                    microalloyed steel with normal phosphorus content (0.017%) in 1.6 m ion NaCl 
                     and simulated concrete pore solution.
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Figure A.6 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    conventional, normalized steel in 0.4 m ion NaCl and simulated concrete pore
                    solution.

Figure A.7 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    Thermex-treated, conventional steel in 0.4 m ion NaCl and simulated concrete
                    pore solution.
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Figure A.8 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with high phosphorus content (0.117%) 
                    in 0.4 m ion NaCl and simulated concrete pore solution.

Figure A.9 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with high phosphorus content (0.100%) 
                    in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.10 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with regular phosphorus content (0.017%) 
                    in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.11 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    conventional, normalized steel in 1.6 m ion NaCl and simulated concrete pore
                    solution.

Figure A.12 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, conventional steel in 1.6 m ion NaCl and simulated concrete
                    pore solution.
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Figure A.13 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with high phosphorus content (0.117%) 
                    in 1.6 m ion NaCl and simulated concrete pore solution.

Figure A.14 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with high phosphorus content (0.100%) 
                    in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.15 - Corrosion potential versus saturated calomel electrode.  Mortar-embedded
                    thermex-treated, microalloyed steel with regular phosphorus content (0.017%) 
                    in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.16 - Macrocell Test.  Corrosion rate.  Bare conventional, normalized steel
                     in 1.6 m ion NaCl and simulated concrete pore solution.

Figure A.17 - Macrocell Test.  Corrosion rate.  Bare, thermex-treated, conventional steel
                     in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.18 - Macrocell Test.  Corrosion rate.  Bare, thermex-treated, conventional steel
                     with high phosphorus content (0.117%), in 1.6 m ion NaCl and simulated 
                     concrete pore solution.

Figure A.19 - Macrocell Test.  Corrosion rate.  Bare, thermex-treated, conventional steel
                     with high phosphorus content (0.100%), in 1.6 m ion NaCl and simulated 
                     concrete pore solution.
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Figure A.20 - Macrocell Test.  Corrosion rate.  Bare, thermex-treated, conventional steel
                     with regular phosphorus content (0.017%), in 1.6 m ion NaCl and simulated 
                     concrete pore solution.
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Figure A.21 - Macrocell Test.  Corrosion rate.  Mortar-embedded conventional, normalized
                     steel with epoxy-filled caps on the end, in 0.4 m ion NaCl and simulated 
                     concrete pore solution.

Figure A.22 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     conventional steel with epoxy-filled caps on the end, in 0.4 m ion NaCl
                     and simulated concrete pore solution.
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Figure A.23 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.117%), with epoxy-filled 
                     caps on the end, in 0.4 m ion NaCl and simulated concrete pore solution.

Figure A.24 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.100%), with epoxy-filled 
                     caps on the end, in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.25 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with regular phosphorus content (0.017%), with epoxy-filled 
                     caps on the end, in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.26 - Macrocell Test.  Corrosion rate.  Mortar-embedded conventional, normalized
                     steel with epoxy-filled caps on the end, in 1.6 m ion NaCl and simulated 
                     concrete pore solution.

Figure A.27 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     conventional steel with epoxy-filled caps on the end, in 1.6 m ion NaCl
                     and simulated concrete pore solution.
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Figure A.28 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.117%), with epoxy-filled 
                     caps on the end, in 1.6 m ion NaCl and simulated concrete pore solution.

Figure A.29 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.100%), with epoxy-filled 
                     caps on the end, in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.30 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with regular phosphorus content (0.017%), with epoxy-filled 
                     caps on the end, in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.31 - Macrocell Test.  Corrosion rate.  Mortar-embedded conventional, normalized
                     steel without cap on the end, in 0.4 m ion NaCl and simulated concrete
                     pore solution.

Figure A.32 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     conventional steel without cap on the end, in 0.4 m ion NaCl and
                     simulated concrete pore solution.
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Figure A.33 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.117%), without cap
                     on the end, in 0.4 m ion NaCl and simulated concrete pore solution.

Figure A.34 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.100%), without cap
                     on the end, in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.35 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with regular phosphorus content (0.017%), without cap
                     on the end, in 0.4 m ion NaCl and simulated concrete pore solution.
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Figure A.36 - Macrocell Test.  Corrosion rate.  Mortar-embedded conventional, normalized
                     steel without cap on the end, in 0.4 m ion NaCl and simulated concrete
                     pore solution.

Figure A.37 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     conventional steel without cap on the end, in 1.6 m ion NaCl and
                     simulated concrete pore solution.
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Figure A.38 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.117%), without cap
                     on the end, in 1.6 m ion NaCl and simulated concrete pore solution.

Figure A.39 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with high phosphorus content (0.100%), without cap
                     on the end, in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.40 - Macrocell Test.  Corrosion rate.  Mortar-embedded, thermex-treated 
                     microalloyed steel with regular phosphorus content (0.017%), without cap
                     on the end, in 1.6 m ion NaCl and simulated concrete pore solution.
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Figure A.41 - Southern Exposure Test.  Corrosion rate. Conventional, normalized steel.

Figure A.42 - Southern Exposure Test.  Corrosion rate. Thermex-treated conventional
                       steel
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Figure A.43 - Southern Exposure Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.117%)

Figure A.44 - Southern Exposure Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.100%)
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Figure A.45 - Southern Exposure Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.017%)

Figure A.46 - Southern Exposure Test.  Corrosion rate. Top mat = Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%).  Bottom mat = 
                       conventional, normalized steel.
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Figure A.47 - Southern Exposure Test.  Corrosion rate. Top mat = Conventional,
                       normalized steel. Bottom mat = Thermex-treated microalloyed steel
                       with high phosphorus content (0.117%)
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Figure A.48 - Southern Exposure Test.  Total corrosion loss.  Conventional,  
                       normalized steel.

Figure A.49 - Southern Exposure Test.  Total corrosion loss.  Thermex-treated
                       conventional steel.
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Figure A.50 - Southern Exposure Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with regular phosphorus content (0.017%)

Figure A.51 - Southern Exposure Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%)
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Figure A.52 - Southern Exposure Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%)

Figure A.53 - Southern Exposure Test.  Total corrosion loss.  Top mat = Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%).  Bottom mat = 
                       conventional, normalized steel.
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Figure A.54 - Southern Exposure Test.  Total corrosion loss.  Top mat = Conventional,
                       normalized steel.  Bottom mat = Thermex-treated, microalloyed steel
                       with high phosphorus content (0.117%).
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Figure A.55 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Conventional, normalized steel.

Figure A.56 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Conventional, normalized steel.
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Figure A.57 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated conventional steel.

Figure A.58 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated conventional steel.
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Figure A.59 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                      content (0.117%).

Figure A.60 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                      phosphorus content (0.117%).
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Figure A.61 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                      content (0.100%).

Figure A.62 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                      phosphorus content (0.100%).
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Figure A.63 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with regular 
                      phosphorus content (0.017%).

Figure A.64 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with regular
                      phosphorus content (0.017%).
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Figure A.65 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Top mat = Thermex-treated, microalloyed steel with high 
                      phosphorus content (0.017%).  Bottom mat = conventional, normalized
                      steel.

Figure A.66 - Southern Exposure Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Top mat = Thermex-treated, microalloyed steel
                      with high phosphorus content (0.017%).  Bottom mat = conventional, 
                      normalized steel.
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Figure A.67 - Southern Exposure Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Top mat = Conventional, normalized steel.  Bottom mat = 
                      Thermex-treated microalloyed steel with high phosphorus content (0.017%).

Figure A.68 - Southern Exposure Test.  Bottom mat corrosion potential versus copper
                      copper sulfate electrode.  Top mat = Conventional, normalized steel. 
                      Bottom mat = Thermex-treated microalloyed steel with high phosphorus
                      content (0.017%).
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Figure A.69 - Southern Exposure Test.  Mat-to-mat resistance.  Conventional,
                      normalized steel.

Figure A.70 - Southern Exposure Test.  Mat-to-mat resistance.  Thermex-treated
                      conventional steel.
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Figure A.71 - Southern Exposure Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.117%).

Figure A.72 - Southern Exposure Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.100%).

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70 80 90 100

TIME (weeks)

M
A

T-
TO

-M
A

T 
R

ES
IS

TA
N

C
E 

(o
hm

s)

SE-CRPT2-1 SE-CRPT2-2 SE-CRPT2-3

SE-CRPT2-4 SE-CRPT2-5 SE-CRPT2-6

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70 80 90 100

TIME (weeks)

M
A

T-
TO

-M
A

T 
R

ES
IS

TA
N

C
E

(o
hm

s)

SE-CRPT1-1 SE-CRPT1-2 SE-CRPT1-3

SE-CRPT1-4 SE-CRPT1-5 SE-CRPT1-6

 



 136 
 

Figure A.73 - Southern Exposure Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.017%).

Figure A.74 - Southern Exposure Test.  Mat-to-mat resistance.  Top mat = Thermex-
                      treated microalloyed steel with high phosphorus content (0.117%).
                      Bottom mat = Conventional, normalized steel.
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Figure A.75 - Southern Exposure Test.  Mat-to-mat resistance.  Top mat = Conventional,
                      normalized steel.  Bottom mat =  Thermex-treated microalloyed steel with 
                      high phosphorus content (0.117%).
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Figure A.76 - Cracked Beam Test.  Corrosion rate. Conventional, normalized steel.

Figure A.77 - Cracked Beam Test.  Corrosion rate. Thermex-treated conventional
                       steel
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Figure A.78 - Cracked Beam Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.117%)

Figure A.79 - Cracked Beam Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.100%)
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Figure A.80 - Cracked Beam Test.  Corrosion rate. Thermex-treated microalloyed
                       steel with high phosphorus content (0.017%)
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Figure A.81 - Cracked Beam Test.  Total corrosion loss.  Conventional,  
                       normalized steel.

Figure A.82 - Cracked Beam Test.  Total corrosion loss.  Thermex-treated
                       conventional steel.
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Figure A.83 - Cracked Beam Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with regular phosphorus content (0.017%)

Figure A.84 - Cracked Beam Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%)
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Figure A.85 - Cracked Beam Test.  Total corrosion loss.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%)
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Figure A.86 - Cracked Beam Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Conventional, normalized steel.

Figure A.87 - Cracked Beam Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Conventional, normalized steel.
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Figure A.88 - Cracked Beam Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated conventional steel.

Figure A.89 - Cracked Beam Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated conventional steel.
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Figure A.90 - Cracked Beam Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                      content (0.117%).

Figure A.91 - Cracked Beam Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                      phosphorus content (0.117%).
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Figure A.92 - Cracked Beam Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                      content (0.100%).

Figure A.93 - Cracked Beam Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                      phosphorus content (0.100%).
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Figure A.94 - Cracked Beam Test.  Top mat corrosion potential versus copper-copper
                      sulfate electrode.  Thermex-treated, microalloyed steel with regular 
                      phosphorus content (0.017%).

Figure A.95 - Cracked Beam Test.  Bottom mat corrosion potential versus copper-
                      copper sulfate electrode.  Thermex-treated, microalloyed steel with regular
                      phosphorus content (0.017%).
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Figure A.96 - Cracked Beam Test.  Mat-to-mat resistance.  Conventional,
                      normalized steel.

Figure A.97 - Cracked Beam Test.  Mat-to-mat resistance.  Thermex-treated
                      conventional steel.
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Figure A.98 - Cracked Beam Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.117%).

Figure A.99 - Cracked Beam Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.100%).
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Figure A.100 - Cracked Beam Test.  Mat-to-mat resistance.  Thermex-treated
                      microalloyed steel with high phosphorus content (0.017%).
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Figure A.101 - ASTM G 109 Test.  Corrosion rate. Conventional, normalized steel.

Figure A.102 - ASTM G 109 Test.  Corrosion rate. Thermex-treated conventional
                        steel.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

TIME (weeks)

C
O

R
R

O
SI

O
N

 R
A

TE
 (

m
/y

r)

G-N-1 G-N-2 G-N-3 G-N-4 G-N-5 G-N-6

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

TIME (weeks)

C
O

R
R

O
SI

O
N

 R
A

TE
 (

m
/y

ea
r)

G-T-1 G-T-2 G-T-3 G-T-4 G-T-5 G-T-6

 



 153 
 

Figure A.103 - ASTM G 109 Test.  Corrosion rate. Thermex-treated microalloyed
                        steel with high phosphorus content (0.117%)

Figure A.104 - ASTM G 109 Test.  Corrosion rate. Thermex-treated microalloyed
                        steel with high phosphorus content (0.100%)
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Figure A.105 - ASTM G 109 Test.  Corrosion rate. Thermex-treated microalloyed
                        steel with high phosphorus content (0.017%)
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Figure A.106 - ASTM G 109 Test.  Total corrosion loss.  Conventional,  
                        normalized steel.

Figure A.107 - ASTM G 109 Test.  Total corrosion loss.  Thermex-treated
                        conventional steel.
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Figure A.108 - ASTM G 109 Test.  Total corrosion loss.  Thermex-treated
                        microalloyed steel with regular phosphorus content (0.017%)

Figure A.109 - ASTM G 109 Test.  Total corrosion loss.  Thermex-treated
                        microalloyed steel with high phosphorus content (0.117%)
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Figure A.110 - ASTM G 109 Test.  Total corrosion loss.  Thermex-treated
                        microalloyed steel with high phosphorus content (0.117%)
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Figure A.111 - ASTM G 109 Test.  Top mat corrosion potential versus copper-copper
                       sulfate electrode.  Conventional, normalized steel.

Figure A.112 - ASTM G 109 Test.  Bottom mat corrosion potential versus copper-
                       copper sulfate electrode.  Conventional, normalized steel.
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Figure A.113 - ASTM G 109 Test.  Top mat corrosion potential versus copper-copper
                       sulfate electrode.  Thermex-treated conventional steel.

Figure A.114 - ASTM G 109 Test.  Bottom mat corrosion potential versus copper-
                       copper sulfate electrode.  Thermex-treated conventional steel.
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Figure A.115 - ASTM G 109 Test.  Top mat corrosion potential versus copper-copper
                       sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                       content (0.117%).

Figure A.116 - ASTM G 109 Test.  Bottom mat corrosion potential versus copper-
                       copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                       phosphorus content (0.117%).
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Figure A.117 - ASTM G 109 Test.  Top mat corrosion potential versus copper-copper
                       sulfate electrode.  Thermex-treated, microalloyed steel with high phosphorus
                       content (0.100%).

Figure A.118 - ASTM G 109 Test.  Bottom mat corrosion potential versus copper-
                       copper sulfate electrode.  Thermex-treated, microalloyed steel with high
                       phosphorus content (0.100%).
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Figure A.119 - ASTM G 109 Test.  Top mat corrosion potential versus copper-copper
                       sulfate electrode.  Thermex-treated, microalloyed steel with regular 
                       phosphorus content (0.017%).

Figure A.120 - ASTM G 109 Test.  Bottom mat corrosion potential versus copper-
                       copper sulfate electrode.  Thermex-treated, microalloyed steel with regular
                       phosphorus content (0.017%).
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Figure A.121 - ASTM G 109 Test.  Mat-to-mat resistance.  Conventional,
                       normalized steel.

Figure A.122 - ASTM G 109 Test.  Mat-to-mat resistance.  Thermex-treated
                       conventional steel.
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Figure A.123 - ASTM G 109 Test.  Mat-to-mat resistance.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.117%).

Figure A.124 - ASTM G 109 Test.  Mat-to-mat resistance.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.100%).
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Figure A.125 - ASTM G 109 Test.  Mat-to-mat resistance.  Thermex-treated
                       microalloyed steel with high phosphorus content (0.017%).
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Figure A.126 - Stress-strain curve for T steel, sample #1. 
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Figure A.127 - Stress-strain curve for T steel, sample #2. 
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Figure A.128 - Stress-strain curve for T steel, sample #3. 
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Figure A.129 - Stress-strain curve for CRPT1 steel, sample #1. 



 168 
 

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STRAIN (%)

ST
R

ES
S 

(M
Pa

)

 

Figure A.130 - Stress-strain curve for CRPT1 steel, sample #2. 
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Figure A.131 - Stress-strain curve for CRPT1 steel, sample #3. 
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Figure A.132 - Stress-strain curve for CRPT2 steel, sample #1. 
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Figure A.133 - Stress-strain curve for CRPT2 steel, sample #2. 
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Figure A.134 - Stress-strain curve for CRPT2 steel, sample #3. 
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Figure A.135 - Stress-strain curve for CRT steel, sample #1. 
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Figure A.136 - Stress-strain curve for CRT steel, sample #2. 
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Figure A.137 - Stress-strain curve for CRT steel, sample #3. 
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