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ABSTRACT 

The fatigue performance of high relative rib area reinforcing bars is compared to that 

of conventional bars. Fatigue tests involve No. 4 ( 13mm) and No. 5 ( 16rnm) bars with 

relative rib areas (ratio of projected rib area normal to bar axis to the product of the 

nominal bar perimeter and the center-to-center rib spacing) ranging from 0.064 to 0.146. 

The tests include 69 specimens representing 6 deformation patterns [2 for No. 4 (13mm) 

bars and 4 for No. 5 (16mm) bars] to investigate the effect of deformation pattern on 

fatigue behavior. The tests were conducted in air using stress ranges of 20, 25, 30, and 35 

ksi (138, 172, 207, and 241 MPa) with a minimum stress of zero. Characteristics of 

fatigue crack zones and the details of lug geometry are provided. 

The test results indicate that the stress range, bar diameter, and surface geometry, 

especially the lug base radius-to-height ratio (rib). have significant effects on the fatigue 

strength of the bars. Fatigue strength and fatigue life decrease with increased stress range 

and bar diameter and decreased r/h ratio. Relative rib area has no effect on fatigue 

performance. 
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1.1 General 

l 

CHAPTER ONE 

INTRODUCTION 

The requirements for reinforcing bar defonnation patterns used in the United States, 

given in ASTM A 61 S/615M, A 616/616M, A 617 /6 l 7M, and A 706n06M, were established 

over fifty years ago based on work by Clark ( 1946, 1949). Although a great deal has been 

learned about the behavior of reinforced concrete members in the interim, no changes have 

been made in those requirements. 

Work has been under way at the University of Kansas since 1991 to determine if the 

development characteristics of reinforcing bars can be improved by modifying the bar 

deformation pattern. Early in the study, Darwin and Graham (1993a, 1993b) demonstrated 

that, for uncoated reinforcement, the higher the relative rib area, Rr (ratio of projected rib 

area normal to bar axis ro the product of the nominal bar diameter and the center-to-center rib 

spacing). the higher the bond strength between reinforcing bars and concrete, if the bars are 

confined by transverse reinforcement. If not confined, the bond strength of bars without 

epoxy coating is insensitive to the specific combination of rib height and spacing. Darwin et 

al. (1995, 1996) also found that epoxy-coating is less detrimental to the bond strength of high 

relative rib area bars than to the bond strength of conventional bars, whether or not the bars 

are confined by transverse reinforcement. As a result, the maximum development length 

modification factor used for high relative rib area epoxy-coated bars could be reduced by 20 

percent compared to current requirements. To date, however, there is no data available on the 

fatigue performance of high relative rib area bars. Of particular concern is the effect of closer 

and/or higher ribs on fatigue performance. 

The phenomenon of weakening of a material as the result of repeated loads is called 

fatigue (ACI Committee 215 1974). Fatigue is a process by which cracks initiate and then 
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propagate under cyclic loading in a structural member, resulting in damage or complete 

fracture of the member. The magnitude of loading required to produce fatigue failure may be 

much less than that needed to fail the material with a single application of load. Fatigue 

strength is defined as the greatest stress which can be sustained for a given number of stress 

cycles without failure (ACI Committee 215 1974). However, for design purposes, fatigue 

strength is usually defined as the stress range a material can sustain without failure for a 

specific number of cycles (Narayanaswamy et al. 1977). 

Fatigue is not a major consideration in the design of most reinforced concrete structures. 

To date, there have been no fatigue fractures reported for concrete structures under normal 

service loading. However, reinforced concrete is widely used in bridges, offshore structures, 

and machine foundations. These structures are subjected to time-dependent oscillatory loads 

that result from vehicles, strong wave and wind action, and dynamic loading from machines. 

The stresses due to these loads may cause fatigue in the structures and result in premature 

failure. 

Extensive research on the fatigue strength of conventional deformed bars has been 

conducted over the years. Fatigue loading considerations for the United States are reviewed 

by ACI Committee 215 (1974) and Helgason et al. (1976). Extensive data exists on the 

fatigue characteristics of conventional reinforcing bars (values of Rr between 0.060 and 

0.085) tested both in concrete and in the air. That data has been used to establish the 

AASHTO requirements on fatigue (AASHTO Standard Specifications for Highway Bridges, 

1996). No information, however, has been obtained on the fatigue behavior of the deformed 

bars with high relative rib areas. Since bars with new deformation patterns and high relative 

rib areas can be used under the provisions of ACI T2.1-98, there is a need to understand the 

fatigue behavior of these bars. 

This report describes fatigue tests of commercially produced No. 4 (13 mm) and No. 5 

(16 mm) reinforcing bars with relative rib areas ranging from 0.064 to 0.146. The test results 

show that fatigue behavior is insensitive to the relative rib area, but depends on the bar 
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surface geometry, especially the lug base radius-to-height (r/h.) ratio. Observations on the 

location of crack initiation and characteristics of the fatigue failure surface are presented. 

Details of test specimen preparation and gripping method, the greatest difficulty involved in 

fatigue testing in air, are also provided. 

1.2 Previous Work 

Since the early 1950' s, considerable research has been performed on the fatigue behavior 

of deformed and plain reinforcing bars, alone or embedded in concrete. especially in North 

America, Europe, and Japan. This research has provided valuable information on the factors 

that influence the fatigue behavior of reinforcing bars. 

Pfister and Hognestad (1964) studied the fatigue behavior of reinforcing bars embedded 

in concrete. The study covered three grades and four deformation patterns and included 181 

reinforced concrete beams with straight or cold bent bars. They found that yield strength, test 

beam cross section, and minimum stress level do not significantly affect the fatigue strength 

of bars up to 2 million cycles. However, the fatigue strength for one deformation pattern was 

35 percent lower than that of another, indicating that surface geometry has a strong effect on 

the fatigue performance. They also observed that the fatigue strength of bars cold bent to 45 

degrees was only 50 percent of that of straight bars. By examining the locations where the 

fatigue cracks initiated, they concluded that all fatigue cracks initiate at the root of a lug. 

Burton (1965) reported the results of fatigue tests on reinforcing bars embedded in 

concrete. The tests were conducted using three stress ranges, 31, 35 and 39 ksi (214, 241, and 

269 MPa), with a minimum tensile stress of 5 ksi (35 MPa), on concrete beams reinforced 

with a single No. 8 (25 mm) reinforcing bar conforming to ASTM A 15 for grade and A 305 

for the deformations. One deformation pattern produced by fresh rolls, partially worn rolls, or 

fully worn rolls at the time of manufacture, was used. The longitudinal ribs were placed in a 

horizontal plane (perpendicular to the plane of flexure) in half of the beams, and vertically in 

the remainder. A total of thirty six 8 in. wide by 14 in. deep (203 mm by 356 mm) beams 
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were tested. Three major variables, position of the longitudinal ribs, surface geometry due to 

different condition of the rolls at the time of manufacture, and stress range were investigated. 

From the test results, Burton reported that stress range is the primary factor influencing 

fatigue strength. As the stress range increases, fatigue strength decreases. The maximum 

stress concentration occurred at the junction between the transverse and longitudinal ribs 

instead of at the root of a lug. Burton also concluded that conditions of wear for the rolls had 

a minor effect on the fatigue life of the bars in his study. 

McDermott (1965) performed fatigue tests on No. 4 and No. 11 (13 and 36 mm) A 432 

reinforcing bars with the DI-LOK pattern (the transverse ribs crossed midway between the 

two longitudinal ribs and met at the longitudinal rib - often referred to as an X-pattern). The 

No. 4 and No. 11 (13 and 36 mm) bars had average yield strengths of 69.8 and 66.3 ksi (481 

and 457 MPa) and average tensile strengths of 109.9 and 100.4 ksi (757 and 692 MPa), 

respectively. The tests were conducted under axial loading in air with a stress ratio (ratio of 

minimum stress to maximum stress in a load cycle) between zero and ±0.03. McDermott 

concluded that the fatigue strength was about 39 ksi (269 MPa) corresponding to 3 million 

cycles for the No. 4 (13 mm) bars and about 19 ksi (131 MPa) corresponding to 6 million 

cycles for the No. 11 (36 mm) bars. He explained the size effect by the fact that the No. 4 (13 

mm) bars had a smoother transition between the transverse lug and the barrel of the bar. He 

found that fatigue cracks initiate at the intersection of the transverse and longitudinal 

deformations or at the intersection of two transverse lugs. The test results suggested that 

using a fillet rather than a sharp angle at the root of a lug and tapering (gradually terminating) 

the transverse deformations before they meet the longitudinal ribs will increase fatigue 

strength. He also described the procedures used for preparing the bar and gripping the bar 

during the test, which included complete removal of the transverse ribs in the regions in 

which the bars were gripped. 

Hanson, Burton, and Hognestad (1968) described the effect of deformation pattern on the 

fatigue behavior of No. 8 (25 mm) reinforcing bars in concrete beams. American-made bars 
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(Series I) had crescent~shaped transverse lugs, while European-made bars (Series II) had 

inclined transverse lugs. All of the bars had transverse lugs that did not merge into the 

longitudinal ribs. The beams were 8 in. wide and 14 in. deep (203 mm by 356 mm) 

reinforced with one No. 8 (25 mm) bar. Fourteen beams in Series I and 12 beams in Series II 

were tested. They found that the fatigue strengths corresponding to 2 million cycles for 

Series I and Series II bars were 26 ksi and 37.5 ksi (179 and 258 MPa), respectively. By 

comparing the results with previous tests of American-made bars with transverse lugs that 

merge into the longitudinal ribs, they found that fatigue strength is not necessarily improved 

by terminating the transverse lugs before they meet the longitudinal rib, in contradiction to 

the conclusion by McDermott ( 1965). They observed that fatigue cracks initiated at the base 

of the crescent-shaped lugs in the Series I bars and adjacent to the sharp side of a lug (the 

side with the smaller radius at the root of the lugs) in the Series II bars. The fracture surface 

of Series I bars was a plane normal to the axis of the bar, while the fracture surf ace of Series 

II bars was a plane inclined at an angle of about 45 degrees with the axis of the bar. 

McDermott (1969) studied the fatigue characteristics in air of No. 8 (25 mm) A 615 

Grade 60 reinforcing bars with different deformation patterns. Bars with the DI-LOK pattern, 

bars with seven different experimental patterns, and four domestic competitors' bars were 

included in the program. All tests were conducted under zero-to-tension axial load. 

Sinusoidal load variation was selected, with a frequency of 7 Hz. The purpose of the tests 

was to find the best deformation pattern for further development. From the test results, 

McDermott found that bars with a four-start-helix transverse deformation pattern (a long

pitch spiral pattern in which a transverse cross-section of the bar crosses four transverse 

deformations) had the best fatigue behavior of the bars tested. By examining the details of the 

deformation patterns, McDermott found that decreasing the angle between the transverse lug 

and the longitudinal rib and avoiding the intersection of two transverse deformations results 

in an increase in fatigue strength. This report also described test specimen preparation. The 

deformations were only partially removed from the end portions of the bar, instead of 
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completely machined off as described in his 1965 report, to avoid removing too much of the 

cross-sectional area in the grip region. At both ends of the specimen, he used copper tubing 

with fine white sand bonded to the inside surface with USS Nexus adhesive S-7001. 

McDermott (1971) provided more information on the fatigue behavior of the four-start

helix bars described in his 1969 report and compared the fatigue behavior of the helix bars 

with that of the DI-LOK bars in his 1965 report. In this report, the fatigue strength 

corresponding to 4 million cycles for No. 10 (32 mm) and No. 4 (13 mm) helix bars were 29 

ksi and 37.5 ksi (200 and 258 MPa), respectively. He observed that larger bars had lower 

fatigue strength and explained it by the notch effect resulting from surface imperfections at 

the ribs. which are more pronounced in the larger bars. McDermott concluded that the No. l 0 

(32 mm) helix bars had better fatigue performance than the No. 11 (36 mm) DI-LOK bars 

(McDermott 1965}. The No. 4 (13 mm) helix bars, however, do not appear to behave quite as 

well as the earlier No. 4 (13 mm) DI-LOK bars. In general, he felt that the results for larger 

bars can be conservatively applied to all bars and used as the basis for design criteria. 

Overall, McDermott confirmed his 1969 conclusions that the fatigue characteristics of the 

four-start-helix defonnation pattern are superior to those of the Dl·LOK pattern. The test 

specimen preparation was the same as that described in his 1969 report except that this time 

he used copper tubing only, instead of using the copper tubing with sand bonded to the inside 

surface. 

MacGregor, Jhamb, and Nuttall (1971) reported the fatigue behavior of No. 5 (16 mm), 

No. 8 (25 mm), and No. 11 (36 mm) hot roJled deformed bars with nominal yield strengths of 

40, 60, and 75 ksi (276, 413, and 517 MPa). The study included 72 flexural fatigue tests on 

reinforced concrete beams containing one defonned bar and 36 standard rotating beam 

fatigue tests on plain specimens machined from the bars. They observed that the fatigue 

strength of the hot rolled deformed bars ranged from 29 to 37 ksi (200 to 255 MPa), at 5 

million cycles, but was independent of grade. In contrast, the fatigue strength of the 

specimens machined from the center of the deformed bars increased linearly with an increase 
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of the tensile strength of the bar. They explained the different effects of bar grade on the 

fatigue strength of deformed bars and plain specimens by the stress concentrations at the base 

of the deformations and the presence of a relatively low strength decarburized layer on the 

outside of all the deformed bars. They also observed that larger bars had lower fatigue 

strength and that fatigue cracks originated at the base of a transverse lug or at the point where 

a transverse lug merged into a longitudinal rib. 

Hanson, Helgason. and Ball (1972) studied the fatigue behavior of Grade 60 No. 8 (25 

mm) bars on which the transverse lugs. inclined at an angle of about 45 degrees to the bar 

axis, form helixes around the bar. Their investigation consisted of 24 fatigue tests of bars 

embedded in T-shaped reinforced concrete beams. The minimum stress was 6 ksi (41MPa) 

tension throughout the tests. Based on the test results, they concluded that the mean stress 

range causing fatigue failure in 5 million cycles was 27.8 ksi (192 MPa). They examined the 

fracture surf ace and found that 60 percent of the cracks began at the base of transverse lugs. 

while the other cracks began at the edge of the bar identification marks. 

Jhamb and MacGregor (1974a) studied the effect of surface geometry on the fatigue of 

reinforcing bars. Their study included 88 No. 8 (25 mm) bar specimens and 32 plain 

machined bar specimens tested in air under repeated axial loading to determine the effects of 

the deformations, decarburization of the bar surf ace, rust and mill scale, and grade of steel. 

They concluded that there is a significant decrease in fatigue strength due to the presence of 

deformations and decarburization of the bar surf ace. Rust and mill scale do not influence 

fatigue strength. The grade of steel had no influence on the fatigue strength of the deformed 

bars, while specimens machined from the center of deformed bars showed a linear increase in 

fatigue strength with the grade, matching the results of their 1971 report. They also observed 

that the fatigue strength of bars tested in air was lower than that of bars tested in concrete 

beams. Examining the fracture surface of the deformed bars, they found that the fatigue 

failures originated at the base of a transverse lug. The fatigue fracture zone was a smooth 

surface surrounded by a rough and crystalline tension fracture zone. 
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Jhamb and MacGregor (1974b) also studied the stress concentrations on the surface of 

deformed bars. Typical hot rolled deformed reinforcing bars contain two longitudinal ribs 

and a regular pattern of equally spaced transverse lugs, which cause stress concentrations. In 

1974, there were no published values for stress concentration factors KT that represented the 

stresses at the bases of deformations. They determined the values of KT using finite element 

analysis and a 30-inch (762 mm) No. 8 (25 mm) specimen with electrical resistance strain 

gages. Based on the study, Jhamb and MacGregor concluded that the ratio of the lug base 

radius (r) to the lug height (h) has the most pronounced effect on Ky. The values of Ky 

decrease with an increase in r/h value. The fatigue strength of the deformed bars decreases 

when the ratio of radius to lug height r/h is less than about 1.25 and is almost constant for rib 

ratios greater than 1.25. 

Helgason, Hanson, Somes, Corley, and Hognestad (1976) studied the behavior of Grade 

60 reinforcing bars in test programs designed to permit a valid statistical appraisal of the 

factors that effect fatigue performance. The tests included 353 concrete beams, each 

containing a single straight test bar as the main reinforcement. The major test variables were 

stress range, minimum stress level, bar diameter, grade and surface geometry, and effective 

beam depth. They observed that: (1) The stress range of the load cycle is the predominant 

factor determining the fatigue life of the bar. There exists a limiting stress range, the fatigue 

limit, above which a reinforcing bar is certain to fracture in fatigue and below which a 

reinforcing bar may be able to sustain a virtually unlimited number of cycles. (2) For the 

same stress range, the minimum stress level of a stress cycle has a significant effect on 

fatigue strength in the finite-life region of the bars. An increase in the tensile minimum stress 

(and, thus, an increase in the maximum stress) was found to result in a decrease in fatigue 

strength. Fatigue strength was found to increase with an increasing compressive (more 

negative) minimum stress. (3) Bar diameter and grade of bar were found to influence the 

finite-life fatigue strength of reinforcing bars. Larger size bars have lower fatigue strength, 

while higher grade bars have increased fatigue strength. The conclusion about the effect of 
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grade of steel on fatigue strength is in contradiction to the conclusions of MacGregor, Jhamb, 

and Nuttall (1971) and Jhamb and MacGregor (1974a). (4) Transverse lugs and 

manufacturer's bar identification marks cause stress concentrations at their juncture with the 

barrel of a bar. The magnitude of a stress concentration is primarily related to the ratio of the 

radius at the base of the deformation to its height. By examining the fracture surface, they 

observed that fatigue fractures initiate at the base of a transverse lug or a bar mark. Fatigue 

cracks propagate radially from the point of initiation in a direction perpendicular to the axis 

of a bar. The relatively smooth, dull-appearing fatigue crack zone is surrounded by a rough, 

crystalline tension fracture zone. Fatigue crack growth is most rapid near the end of the 

fatigue life. Based on the test results and the statistical analysis, they provided an equation 

for the design of flexural reinforcement in concrete members subjected to cyclic loading. The 

equation is: fr= 21 - 0.33fmin + 8 (r/h), where fr= stress range (ksi), fmin = minimum stress 

(ksi), r/h = ratio of base radius to rib height; if r/h is not known, a value of 0.3 can be used. 

Narayanaswamy, Gupta, Chhauda, and Rajaraman (1977) studied the fatigue behavior of 

Indian made cold-worked deformed bars. The bars had four longitudinal ribs and crescent

shaped transverse deformations. Their tests included 8 concrete beams with a 300 mm wide 

by 350 mm (12 in. by 14 in.) deep cross-section, reinforced with one 25 mm (No. 8) bar at 

the bottom of the beam. The stress range corresponding to 2 million loading cycles was 240 

MPa (35 ksi), a result comparable to bars of similar type and grade made in Europe. They 

also examined the fatigue fracture surface and observed that the point of crack initiation is at 

the root of the transverse lugs or longitudinal ribs (the reasons for crack initiation for the 

latter case is not clear). By applying a factor of safety of 1.4, they recommended a 

permissible stress range value of 171.5 MPa (24.8 ksi) for the design of reinforced concrete 

members subjected to repeated loading. 

Moss provided information (1980) on the fatigue of British high-yield reinforcing bars 

tested in air for use in updating BS5400, which concerned the design of bridges. Continuous 

and butt-welded specimens using high-yield reinforcing bars were included in his test. The 
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experimental relationship between stress range and fatigue life for continuous bars had the 

same form as the design curves incorporated in BS5400 at that time. The fatigue performance 

of reinforcing bars was reduced by the presence of a butt weld. Moss observed that larger 

bars were significantly less resistant to fatigue damage than smaller bars of the same type. 

Examining the fracture surface, he found that fatigue cracks in continuous bars initiate at 

small defects associated with the surface oxide layer and that the rib pattern on deformed 

bars has little influence on the point of fatigue crack initiation. His observations do not match 

earlier conclusions for U.S. bars that fatigue cracks start at the root of a transverse lug, at the 

intersection between a transverse lug and a longitudinal rib, at the intersection of two 

transverse lugs, or at the root of identification marks. (Pfister and Hognestad 1964. 

McDermott 1965, Hanson, Burton, and Hognestad 1968, Hanson, Helgason, and Ball 1972, 

Helgason, Hanson, Somes, Corley, and Hognestad 1976) 

Matsumoto (1988) studied the fatigue characteristics of reinforcing bars in air and the 

effect of cold-work (pre-strain) on fatigue strength. His experiments included two phases, 

both using axial-tension fatigue tests on Grade 60 No. 3 (9.53 mm) straight bars. Fatigue tests 

were conducted on 28 specimens to obtain the S-N curves for normal bars in Phase I. Nine 

different stress ranges of constant-amplitude sinusoidal load (10 Hz) with 6 ksi (41 MPa) 

minimum stress were used in this phase. In Phase II, 8 specimens were used to investigate the 

effect of cold-work (pre-strain) on fatigue behavior, using a stress range and minimum stress 

of 42 and 6 ksi (289 and 41 MPa), respectively. With the test results, Matsumoto found that 

the fatigue strength of Grade 60 No. 3 (9.53 mm) normal bars was 32 ksi (221 MPa) 

corresponding to 2 million cycles. The fatigue strength of prestrained (cold-worked) bars was 

lower than that of the normal bars by 15 percent or less. 

Zheng and Abel (1998) used finite element analysis to investigate stress concentrations 

on the surface of bars. They constructed two models to simulate transverse lug patterns. 

Model I simulated equally spaced transverse lugs, where each lug is relatively far away from 

its neighbors. Model II simulated bars with unequally spaced lugs distributed in a way that a 
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lug is closer to its neighbor on one side but distant from its other neighbor. The results from 

Model I showed that stress concentrations exist only in a very small area in the vicinity of the 

root of a lug and that the greatest stress is at the junction between the root of the transverse 

lug and the base material. From Model II, they found that when the distance between two 

neighboring Jugs decreases, the stress concentration factor increases at the inner side of the 

lugs and reaches a maximum value of 2.65 when two lugs merge. Zheng and Abel concluded 

that the lug base radius-to-height ratio (rib) is the primary factor influencing the stress 

concentrations. An increase in the rib ratio results in a decrease in stress concentrations and, 

therefore, an increase in fatigue strength. Lug width-to-height ratio (wlh) and flank angles 

have minor effects on the stress concentrations. Decreased wlh ratios and flank angles result 

in decreased stress concentrations and, thus, an increase in fatigue strength. They also 

observed that the stress concentration of bars with transverse lugs normal to the bar axis is 

higher than that of bars with transverse lugs at an angle to the bar axis. 

Thandavamoorthy (1999) studied the fatigue of quenched and tempered bars embedded 

in concrete beams. The bars have low carbon content and are manufactured using the 

Tempcore or Thermex process, in which bars are quenched with water after hot rolling, 

resulting in a tough outer layer of tempered martensite (with residual compressive stress) and 

a core of ferrite-pearlite (with residual tensile stress). The bars have greater ductility than 

conventional bars. Eight concrete beams with a 150 x 300 mm (6 x 12 in.) cross-sections 

were tested to verify whether the bars can resist the safe stress range for 2 million cycles 

determined with the relationship fr= 21 - 0.33fmin + 8(r/h) (ksi) [fr= 145 - 0.33fmin + 55(r/h) 

(MPa)] (Helgason et al. 1976) which is now recommended by ACI Committee 343 on Bridge 

Structures (1991) and required by the AASHTO Bridge Specifications (1996). The beams 

were subjected to sinusoidal constant amplitude loading at 5 Hz (two beams) and 10 Hz (six 

beams). Four were under three-point bending and the other four were under four-point 

bending. All of the beams sustained the designated stress range without failure for over 2 
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million cycles. Thandavamoorthy concluded that the test results indicated that the fatigue 

strength of these bars is comparable to the fatigue strength of conventional bars. 

Zheng and Abel (1999) also studied the fatigue performance of Tempcore bars. ln 

contrast to Thandavamoorthy's (1999) tests, all of the bars in this study were tested under 

axial loading in air instead of being embedded in concrete. Seven different diameters, 

ranging from 12 mm to 36 mm (No. 4 to No. 11), with 400 MPa (58 MPa) nominal yield 

strength were used in the program. The minimum stress level was 0 ksi. Based on the test 

results, Zheng and Abel concluded that the fatigue behavior of the Australian-made 

Tempcore bars is superior to that of conventional high-strength bars. 

1.3 Obiect and Scoee 

The purpose of this research is to compare the fatigue behavior of conventional and high 

relative rib area reinforcing bars. Relative rib areas range from 0.064 to 0.146. This report is 

also intended to provide information that will serve as a guide for preparing and testing small 

diameter bars subjected to fatigue loading in air. Stress range-fatigue life curves, commonly 

referred to as S-N curves, are obtained for the bars. h1 this study, four stress ranges [20, 25, 

30, 35 ksi (138, 172, 207, and 241 MPa)] with 0 minimum stress level, two bar sizes [No. 4 

and No. 5 (13 and 16 mm)], and 6 deformation patterns (Ch4S60, SMI4S60, Ch5S60, Ch5S, 

N5S, and FK5S60) are used to evaluate the effects of stress range. bar diameter, surface 

geometry, and relative rib area on the fatigue behavior of bars. The characteristics of the 

fatigue crack surface and locations of the fatigue crack initiation are examined. 

Chapter 2 presents the properties of the reinforcing bars, the test specimen preparation, 

the test procedures, and the test results. Chapter 3 presents the evaluation and discussion of 

the test results. Chapter 4 summarizes the research effort and presents the conclusions. 
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CHAPTER TWO 

EXPERIMENTAL WORK 

2.1 Overview of Experimental Work 

The experimental program described in this report consisted of 69 fatigue tests of Grade 

60 No. 4 (13 mm) and No. 5 (16 mm) reinforcing bars with relative rib areas ranging from 

0.064 to 0.146. All of the tests were conducted in air under cyclic axial loading. The 

minimum stress level was 0 ksi. The tests included 21 No. 4 (13 mm) bar specimens, 9 

Ch4S60 bars and 12 SMI4S60 bars, and 48 No. 5 (16 mm) bars, 12 each of four patterns. 

Ch5S60, Ch5S, N5S, and FK5S60. The bars are shown in Fig. 2.1. 

The key parameters in the study are stress range (difference between the maximum and 

minimum stress in a load cycle), bar size [No. 4 or No. 5 (13 mm or 16 mm)], surface 

geometry, and relative rib area (0.064 to 0.146). 

Four nominal stress ranges [20, 25, 30, and 35 ksi (138, 172, 207, and 241 MPa)] were 

used. Bars that sustained 2 million cycles without breaking were considered to be loaded 

below their fatigue strength (the greatest stress range under which a bar can sustain virtually 

an unlimited number of cycles without failure). S-N curves, representing the relationship 

between the stress range (S) and the number of cycles (N), were obtained. Detailed surface 

geometries were measured and characteristics of the fatigue cracks were examined. 

2.2 Test Specimens 

The reinforcement used in this program included Grade 60 No. 4 (13 mm) and No. S (16 

mm) bars with relative rib areas ranging from 0.064 to 0.146. The calculation of relative rib 

area, Rr, is illustrated in Fig. 2.2. For the purposes of this study, 
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R, = ~(1- l:gaps) (2.1) 
s, p 

where hr =average height of deformations, in. or mm (explained below) 

Sr = average spacing of deformations, in. or mm 

l:gaps = sum of the gaps between ends of transverse deformations, plus the width 

of any continuous longitudinal lines used to represent the grade of the 

bar multiplied by the ratio of the height of the line to hr, in. or mm 

p = nominal perimeter of the bar, in. or mm 

Two No. 4 (13 mm) bars with MlM (Manufacture Identification Marks) Ch4S60 and 

SMI4S60 and 4 No. 5 (16 mm) bars with MIM Ch5S60, Ch5S, NSS, and FKSS60 were used. 

The SMI4S60 (Rr = 0.064), NSS (Rr = 0.076), and FKSS60 (R, = 0.088) were conventional 

bars, while the Ch4S60 (Rr = 0.128), Ch5S60 (Rr = 0.146), and Ch5S (Rr = 0.100) were high 

relative rib area bars. The FK5S60 bar is a Thermex bar, and the other bars are hot rolled 

bars. 

The Ch4S60, SMI4S60, Ch5S60, and FKSS60 bars had two longitudinal ribs, while the 

Ch5S and N5S bars had two main longitudinal ribs and an additional rib. indicating the bar 

grade. All of the bars had equally spaced transverse deformations {also referred to as ribs or 

lugs). The transverse lugs on the SMI4S60 and FK5S60 bars were normal to the bar axis, 

while the transverse lugs of the other four bars were at an angle to the bar axis. 

The deformation measurements of bars are summarized in Table 2.1. The transverse rib 

height measurements used for calculating Rr are given in Table 2.2. The rib heights shown in 

Table 2.2 were measured using a Starrett dial gage with a 0.01 mm least reading. To match 

the other measurements, the rib heights are changed from millimeters in Table 2.2 to inches 

in Table 2.1. 
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A sample of a bar, about three feet long, was selected and cleaned with a dry cloth to 

remove dust to prepare for the rib height, rib spacing, and gap widths measurements. The rib 

heights were measured at five locations, evenly distributed along the length of the bar. At 

each location, the rib heights were measured at ten points around the bar perimeter (Table 

2.2). The dial gage had a pointed tip to measure the rib heights. At each point, the rib height 

is taken as the difference between measurements at the top of the rib and the barrel of the bar 

(midway between the measured rib and an adjacent rib). The average rib height hr at each 

location is a weighted average. The heights measured at the four points at the base of the 

longitudinal ribs are weighted at one-half of the heights of the other six points 

[(0.5(A+E+F+J)+(B+C+D+G+H+l))/8 Table 2.2J. The average rib height shown in Table 2.1 

represents the average of the 5 locations. This value is slightly different from the ASTM 

average, which is based on three measurements per deformation, one at the center of the 

overall length and the other two at the quarter points of the overall length (ASTM 615). 

The center-to-center rib spacing and gap width for the longitudinal ribs were measured 

using a Peacock caliper with a 0.001 in. least reading. The average rib spacing was 

determined by measuring the distance between the faces of two widely separated ribs and 

divided by the number of ribs within the distance. Gap widths are determined at the points 

where the longitudinal ribs meet the barrel of the bar. The gap width measurements were 

taken at five locations (at least 3 ribs between two adjacent locations) along each longitudinal 

rib. When a bar, such as Ch5S or NSS, had an extra longitudinal rib indicating the bar grade, 

the height and width of that rib were also measured. The height was determined by taking the 

difference between a measurement at the top of the rib and the average of measurements on 

both sides of the rib where it meets the barrel of the bar. The width was measured similar to 

gap width. Measurements on extra longitudinal ribs were taken midway between transverse 

ribs at five locations along the bar. 

The mechanical properties of the bars were obtained using standard tension tests on three 

specimens for each type of bar. The results are given in Table 2.3. Typical stress-strain 
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curves for Ch4S60, SMI4S60, Ch5S60, Ch5S, NSS, and FK5S60 bars are shown in Figs. 2.3-

2.8. All bars met the requirements of ASTM A 615. 

The fatigue test specimens were designed to fit the testing machine grips and provide a 

test section length of at least five-bar diameters. The No. 4 (13 mm) and No. 5 (16 mm) bars, 

had lengths of 12 inches and 13 inches (305 and 330 mm), respectively. 

2.3 Specimen Preparation 

Compared with fatigue tests of bars in concrete, tests of bars in air are cheaper, quicker 

and easier to perform. However, establishing a technique for gripping the bars in the testing 

machine can be difficult because the combination of the gripping force and the fatigue 

loading may cause the test specimen to fail in the grip instead of in the test section. No 

standard testing method has been established to determine the fatigue strength of deformed 

reinforcing bars in the United States. Based on previous work, especially the techniques 

developed by McDermott ( 1969 and 1971) and experience gathered from the pilot tests, a 

procedure for specimen preparation was established. Specimens prepared using this 

procedure are illustrated in Fig. 2.9. 

All of the specimens were free of manufacture's identification marks because their effect 

on the fatigue behavior of reinforcing bars is not considered in this study. Specimen 

preparation involved machining the bars to partially remove the deformations, with a tapered 

transition, at both ends of the bar. The tapered transition was introduced because it provided 

a gradual and smooth surface change, thus, reducing the possibility of the introduction of a 

stress concentration due to specimen preparation. The deformations were not completely 

removed because complete removal reduced the cross-sectional area enough to cause the 

specimen to break and made the bar difficult to grip. The higher gripping pressure needed to 

prevent the bar from slipping caused the bar to break in the grips. After the bars were 

machined, the ends of the bars were shot peened. The central portion of the bar was protected 

during this operation by wrapping with multifold paper towels and UT-602 electrical tape. As 
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described below, fatigue failure of a bar in its central portion was considered satisfactory. 

The Ch4S60, Ch5S60, Ch5S, and N5S bars were shot peened using 90 psi (620 kPa) air 

pressure with steel shot (4 minutes per end) at a commercial facility in Topeka, Kansas. The 

FK5S60 bars were shot peened using 70-80 psi (482-551 kPa) air pressure with steel shot (10 

minutes per end) at the University of Kansas. The SMI4S60 bars did not require preparation 

and were tested directly after being cut to length. 

Type K soft copper tubing with a 0.5 in. (12.7 mm) outside diameter and a 0.049 in. 

( 1.25 mm) wall thickness was used to protect the ends of the specimens in the grips. 

2.4 Test Procedure 

Fatigue tests on 69 specimens representing 6 different bar deformation patterns were 

conducted in air. The SMI4S60 specimens were protected in the grips using one piece of the 

multifold paper towel at each end and split copper tubing, while the other specimens were 

protected using split copper tubing only. The specimens were mounted, as shown in Fig. 

2.10, in a servo-controlled hydraulic Instron machine, with a 110 kip (489 kN) loading 

capacity. The gripping pressure was 500 psi (3445 kPa) for No. 4 (13 mm) bars and 700 psi 

(4823 kPa) for No. 5 (16 mm) bars for all stress ranges. Sinusoidal loading was applied to the 

bars, varying from zero to a load based on the desired peak stress [20, 25, 30, or 35 ksi (138, 

172, 207, and 241 MPa)]. The load was applied at a rate of 600 cycles per minute (10 Hz). 

Bars in this study that sustained 2 million cycles without failure were considered to have 

been loaded below their fatigue strength. Tests on these specimens were stopped at 2 million 

cycles. When a specimen failed under cyclic load, the stroke of the load cell exceeded a 

preset maximum stroke value, causing the testing machine to stop automatically. Since the 

counter of the testing machine was not dependable, the number of cycles a bar sustained was 

obtained by a simple method, described next. 

A battery operated clock and a piece of string were used in this method. The clock was 

tied to the upper load cell of the machine. The specimen was then mounted in the grips. One 
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end of the piece of string was tied to the bottom of the specimen; the other end was tied to a 

battery in the clock. making sure that the string was almost tight. The fatigue test was started 

in the load control mode, and the starting time was recorded. When the specimen broke, the 

lower grip moved down, causing the string to pull out the battery, stopping the clock. The 

number of cycles sustained was calculated based on the time difference and the loading 

frequency. 

Tests in which fatigue failure occurred within the central portion of the bars were 

considered satisfactory. The results for any specimen that broke within the grips or shot 

peened portions were not used. Testing of each type of bar at a particular stress range was 

terminated when three satisfactory tests were obtained. 

Because the fatigue test specimens were not perfectly straight and the grips of the 

machine may not have been perfectly aligned, tensile stress (detrimental to fatigue) may be 

introduced when a specimen was clamped in the jaws. To investigate the stresses introduced 

by the gripping system, the surface deformations of a No. 5 (16 mm) bar were removed in the 

central 4 in. ( 102 mm) portion of the specimen. The diameter of the section was 0.53 in. 

(13.5 mm), as shown in Table 2.4. Three strain gages were glued on the surface of the central 

part of the bar along the longitudinal axis. The gages were located 120 degrees apart around 

the bar perimeter. Copper tubing was used at both ends of the specimen. The load on the 

machine was preset at 0. Before the gripping pressure was applied, the initial strain readings 

of the three strain gages were recorded. Then the gripping pressure was applied and the 

machine was changed from Stroke Control to Load Control. Final strain values were then 

obtained. The process was repeated two more times as the specimen in the grips was 

repositioned. The results of the measurements are given in Table 2.4. The results indicate that 

the specimen was not in a zero stress state before the fatigue loading was applied, and that 

initial tensile stresses as high as 3 ksi (21 MPa) could have existed on the surface of the 

specimen during a test. 
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After testing of the Ch5S60, Ch5S, and N5S bars was completed, the Instron machine 

was recalibrated. According to the recalibration report, the nominal load was 95 percent of 

the actual load that the specimen sustained. Therefore, the actual stress ranges for these three 

types of bars were 21.05, 26.32, 31.58, and 36.84 ksi (145, 181, 218, and 254 MPa) instead 

of 20, 25, 30, and 35 ksi ( 138, 172, 207, and 241 MPa). 

Using the specimen preparation and gripping method described in this Chapter, a success 

rate of greater than 80 percent was achieved for stress cycles from 0 ksi up to 35 ksi (241 

MPa). Considering the pilot tests to establish the gripping techniques, about 150 specimens 

were tested. The following test results represent the 69 successful specimens. 

2.5 Test Results 

The experimental results and observations are summarized in this section. Detailed 

evaluation and discussion are presented in Chapter 3. 

The fatigue test results are listed in Table 2.5. Plots of the S-N curves are shown in Fig. 

2.11 for the No. 4 (13 mm) bars and in Fig. 2.12 for the No. 5 (16 mm) bars, respectively. 

The best fit curves for the bars were based on the average number of cycles at each stress 

range. Based on the report of Jhamb and MacGregor (1974a), the best fit equation was 

chosen in the logarithm form for each series: 

LogN=A+BS 

where Log N = logarithm of number of cycles, to the base 1 O; N (million) 

S = stress range, ksi 

A, B = coefficients 

Fatigue crack sections for Ch4S60, SMl4S60, Ch5S60, Ch5S, NSS, and FK5S60 bars are 

shown in Figs. 2.13-2. 18. The images were obtained with a scanner. 
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To investigate the effect of the surface geometry on fatigue behavior, samples of the bars 

were examined using a scanning electron microscope (SEM) interfaced with a digital image 

acquisition system. One sample was taken from each type of bar. The sample was cut 

through the longitudinal axis and prepared so that two complete deformations were left on 

both sides of the sample as shown in Table 2.6. The sample was cleaned using degreaser and 

100 percent alcohol to remove surf ace dust. Before measuring the bar samples, the SEM was 

calibrated using a low magnification calibration standard with a 1 mm length and a 0.01 mm 

least reading. The SEM was calibrated in both the horizontal and vertical directions. Lug 

measurements were taken using the SEM images. Typical images are shown in Figs. 2.19-

2.24. 

Lug base radii, flank angles, and heights and widths were measured following the 

method described by Helgason et al. (1976). The lug base radii were determined using 

different diameter circles on a template. Flank angles were determined by drawing the lug 

base line and using a protractor to establish the angle that best represented the slopes of the 

sides of the lug. The lug height was determined as the greatest height from the lug base line. 

The lug width was determined as the distance along the lug base line between the points of 

intersection of the tangent lines used to determine the flank angles. A schematic illustration 

and the measurement results are shown in Table 2.6. The specimen has two lugs on each 

side, representing 2 of about 40 lugs between the bar identification marks. The results in 

Table 2.6 indicate that different sides (side 1 and side 2) of the specimen have different 

surface geometry. On the same side of the specimen, different lugs have different properties. 

Even for the same lug, the lug base radius (ra. rb) and flank angles (ex. {3) at the left and right 

side are different. 

The following test results were observed. 

Stress Range: As expected, fatigue strength decreased as the stress range increased. The 

Ch4S60 bars and SMI4S60 bars sustained 2 million cycles without breaking under stress 

ranges of 25 ksi and 20 ksi ( 172 and 138 MPa), respectively. 
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Bar Size: For a given stress range, the No. 4 (13 mm) bars exhibited a longer fatigue life 

than that the No. 5 (16mm) bars. 

Surface Treatment: The Thennex bar (FK.5S60) did not show superior fatigue behavior 

compared to the hot rolled bars of the same diameter (Ch5S60, Ch5S, and N5S). 

Relative Rib Area: Of the No. 4 (13 mm) bars, the Ch4S60 bars had a higher value of 

Rr (0.128) and a longer fatigue life than the SMI4S60 bars (Rr::;: 0.064). For the No. 5 (16 

mm) bars, the S-N curves show very little difference, especially between the Ch5S60, Ch5S, 

and NSS bars, with relative rib areas of 0.146, 0.100, and 0.076, respectively. The fatigue 

strength of the test bars was insensitive to relative rib area. 

Fatigue Fractures: Examination of the fatigue fracture surfaces (Figs. 2.13-2.18) reveal 

that the fatigue cracks initiated at the root of a lug or at the intersection between a lug and a 

longitudinal rib. Fracture sections were normal to the bar axis or parallel to the lugs. Fatigue 

cracks started from both a single source or from multiple sources. For single source initiation, 

whenever a fatigue crack started, it propagated radially to the center of the bar along one 

plane, where the final fatigue fracture occurred (see the single source initiation cases in Figs. 

2.13-2.18). For multiple source initiation, the fatigue cracks either propagated radially to the 

center of the bar along one plane, where the final fracture surface occurred (see the multiple 

source initiation cases in Figs. 2.13, 2.14, and 2.18) or propagated individually along 

different planes (see the multiple source initiation cases in Fig. 2.15, 2.16, and 2.17) radially 

to the center of the bar, where the crack planes gradually merged into a single plane, which 

served as the final fracture surf ace. 

For the SMI4S60 bars, Ch5S60 bars, Ch5S bars, and N5S bars, the fatigue crack zone is 

a smooth and dull-appearing region, surrounded by a rough and light-appearing crystalline 

tension failure zone. The boundary between the fatigue zone and the tension failure zone was 

very clear (Figs. 2.14-2.17). For the Ch4S60 and FK5S60 bars, the fatigue crack zone was 

also smooth and dull-appearing, surrounded by a rough tension failure zone. However, the 



22 

tension failure zone did have a crystalline appearance and the boundary between the two 

zones was not clear (Fig. 2.13 and Fig. 2.18). 

Surface Geometry: Based on the images shown in Figs. 2.19-2.24 and the 

measurements in Table 2.6, it is clear that different deformation patterns have completely 

different lug geometries. For the No. 4 (13 mm) bars, the Ch4S60 and SMI4S60 bars have 

critical r/h values of 1.31 and 0.79, respectively. For the No. 5 (16 mm) bars, the Ch5S60, 

Ch5S, and NSS bars have slightly different critical r/h values of 0.78, 0.80, and 0.90, 

respectively. While the FK5S60 bars have the lowest critical r/h value, 0.45, in the tests. 
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CHAPTER THREE 

EVALUATION AND DISCUSSION OF TEST RESULTS 

3.1 General 

Jn this chapter, the results reported in Chapter 2 are evaluated. The effects of bar 

diameter, surface geometry, and relative rib area on the fatigue performance of the bars are 

discussed. The fatigue strength of reinforcing bars tested in this study is compared with 

previous tests on bars in air and with the design criterion given by the AASHTO Bridge 

Specifications ( 1996). 

3.2 Effect of Bar Diameter 

In the current tests, the fatigue behavior of the No. 4 ( 13 mm) bars is superior to that of 

the No. 5 (16 mm) bars. The effect of bar diameter on the fatigue behavior of bars is shown 

in Fig. 3.1. This observation is in agreement with results reported by McDermott (1965, 

1971), MacGregor, Jhamb, and Nuttall (1971), Helgason et al. (1976), and Moss (1980) that 

showed that the fatigue strength of deformed reinforcing bar decreases as the bar diameter 

mcreases. 

The increase in fatigue strength with decreased bar diameter, as explained by Weisman 

( 1969), results from the additional work needed to produce smaller size bars. The additional 

work in the rolling operation results in a finer grain structure and the fragmentation and 

dispersion of inclusions. These factors produce an increase in fatigue strength. Osgood 

( 1970) also attributes a significant part of the size effect to the total amount of work that the 

material receives, particularly the reduction in thickness from the original ingot to the final 

form. Kravshenko (1964) points out that an increase in the absolute dimensions of a bar 

results in an increase in the surface area that is subjected to maximum stress. Thus, the larger 

surface area increases the likelihood of a fatigue crack being initiated. Tetelman and McEvily 
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(1967) support Kravshenko's opinion and state that there is a size effect related to the 

probability of finding a critical flaw within the most highly stressed regions. ACI Committee 

215 (1974) attributes the size effect to the probability of finding a critical notch on the bar 

surface, supporting the opinion of Tetelman and McEvily (1967). Both the extra work on the 

smaller bars and the increased surface area on the larger bars likely play a role in the effect of 

bar size on fatigue strength. 

3.3 Effect of Surface Geometry 

The transverse deformations on the surface of reinforcing bars provide improved 

bond characteristics between the concrete and the steel. The surface geometry or deformation 

pattern is designed primarily for bond characteristics, not fatigue considerations. The 

transverse deformations, in addition to transmitting forces between steel and concrete, also 

cause stress concentrations on the surface of the bar. which serve as potential fatigue crack 

initiators. In the current tests. fatigue cracks started at the root of a lug or at the intersection 

between a longitudinal rib and a lug, where the highest stress concentrations exist. The effect 

of manufacture's identification marks on the fatigue behavior of the bars was not considered 

in this study. 

As described in Chapter 1, stress concentrations are related to the lug base radius-to

height ratio (r/h), to the lug width-to-height ratio (w/h), and to the flank angles. The lug base 

radius-to-height ratio (r/h) is considered to be the prime factor affecting the stress 

concentration factors (Hanson, Burton, and Hognestad 1968, MacGregor, Jhamb, and Nuttall 

1971, Jhamb and MacGregor 1974a, 1974b, Helgason et al. 1976, Zheng and Abel 1998, 

1999). 

Based on the fatigue results shown in Table 2.5 and the SEM measurements shown in 

Table 2.6, the effect of surface geometry such as the critical r/h ratio, average w/h ratio, and 

the sharpest average flank angles are shown in Figs. 3.2-3.4. Comparisons are made based on 

the average number of cycles (from best-fit lines) at 25 and 35 ksi (172 and 241 MPa) for 
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each pattern. In Fig. 3.4, for each type of bar, the sharpest average flank angle was obtained 

by comparing the values of the average left flank angles and the average right flank angles of 

the two lugs on each side of the specimen, as shown in Table 2.6. 

For the No. 4 (13 mm) bars, N increases as the critical r/h ratio increases (Fig. 3.2). N 

decreases as the average w/h ratio increases (Fig. 3.3). Thus, increased rib ratio and 

decreased w/h ratio result in increased fatigue strength. This is in agreement with the 

conclusions of Zheng and Abel (1998). However, as shown in Fig. 3.4, N increases as the 

sharpest average flank angle increases. 

For the No. 5 (16 mm) bars, N increases as the critical r/h ratio increases (Fig. 3.2), also 

in agreement with Zheng and Abel's (1998) conclusions. However, the effects of average 

w/h ratio and flank angle on the fatigue performance of the bars are not clear (Figs. 3.3 and 

3.4). 

The current results confirm the previous conclusions that the r/h value has a significant 

influence on the fatigue behavior of deformed bars. The w/h value and flank angles have 

much less effect. The lower the r/h ratio, the higher the resulting stress concentration. 

Increasing the r/h value decreases the stress concentration, and, thus, results in an increase in 

fatigue strength. 

As mentioned in Chapter 1, Jhamb and MacGregor (1974b) reported that the fatigue 

strength of deformed bars decreases when the r/h ratio is less than 1.25 and is almost constant 

for r/h ratios greater than L25. In the current study, only the Ch4S60 bars had a critical r/h 

ratio (1.31) greater than 1.25. Therefore, determining of fatigue strength is almost constant 

for r/h ratios greater than 1.25 is not possible. However, for critical r/h ratios less than 1.25, 

the number of cycles sustained clearly decreases as the r/h ratio decreases. 

3.4 Effect of Relative Rib Area 

As described in Chapter 1, high relative rib area bars have advantages over conventional 
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bars. But until the current study, the effect of increased relative rib area on the fatigue 

behavior of deformed reinforcing bars has been unclear. 

In this section, the effect of relative rib area, Rr, on the fatigue behavior of deformed bars 

will be discussed using both the test results and the expression that defines Rr. First, the 

effect of Rr values on the fatigue performance of bars in this study is shown in Fig. 3.5. As 

shown in the figure, an increase in the relative rib area of the bars tested in this study did not 

result in a decrease in the fatigue life of the bars. Specifically, for the No. 4 ( 13 mm) bars, N 

increases as Rr increases. The fatigue strength of the Ch4S60 bars (Rr = 0.128) is superior to 

that of SMI4S60 bars (Rr = 0.064). For the No. 5 (16mm) bars, the Ch5S60 (Rr= 0.146) and 

ChSS (Rr = 0.100) bars are high relative rib area bars, while the N5S (Rr :;; 0.076) and 

FK5S60 (Rr = 0.088) bars are conventional bars. The high relative rib area bars did not show 

lower fatigue strength than the same diameter conventional bars. The fatigue performance of 

deformed reinforcing bars, thus, appears to be insensitive to relative rib area. 

The relative rib area, Rr, is defined as the ratio of projected rib area normal to the bar 

axis to the product of the nominal bar diameter and the average center-to--center rib spacing. 

It can be calculated using Eq. (2.1 ). 

Rr = ~(1 I gaps) (2.1) 
s, p 

In the equation, there are four variables used to determine the value of Rr. Only the 

variable, p, has a direct relation to the fatigue behavior of the bars because the bar perimeter 

is proportional to the bar diameter. No evidence shows that the other variables, average rib 

height (hr), average deformation spacing (Sr), and sum of gaps (I.gaps), influence the fatigue 

performance of reinforcing bars. For bars with the same diameter but with different values of 

Rn the bar perimeter is a constant, and Rr is totally determined by the other three variables, 
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hr. Sr, and Z,gaps. Because none of these has any effect on fatigue strength, Rr should have no 

effect on the fatigue strength of reinforcing bars. 

The results clearly demonstrate that high relative rib area bars, because of the value of Rr 

alone, should not be expected to show lowered fatigue strength compared with conventional 

bars of the same diameter. 

3.5 Comparison with Previous Test Results in Air 

In the current study, fatigue tests were conducted on No. 4 (13 mm) and No. 5 (16 mm) 

deformed bars. In this section, fatigue test results of small diameter deformed bars in air from 

previous studies are compared with the current results. 

In McDermott's 1965 report, the fatigue tests were conducted in air with a stress ratio 

between 0 and± 0.03. The DI-LOK No. 4 (13 mm) bars had a fatigue strength of 39 ksi (269 

MPa) at 3 million cycles. 

In McDermott's 1971 report, No. 4 (13 mm) helix bars were tested in air with a stress 

ratio of 0. The test results showed that the fatigue strength of the No. 4 (13 mm) bars was 

37.5 ksi (258 MPa) at 4 million cycles. 

In Moss's 1980 report, fatigue tests on British high-yield bars were conducted in air. The 

fatigue strength of the 16 mm diameter continuous bars under constant amplitude cyclic 

loading (stress ratio= 0.2) was 190 MPa (28 ksi) at 108 cycles. 

In Matsumoto's 1988 report, Grade 60 No. 3 (9.53 mm) bars were tested in air with a 

minimum stress of 6 ksi ( 41 MPa). The fatigue strength of the bars was 32 ksi (22 l MPa) at 2 

million cycles. 

In Zheng and Abel's 1999 report, the fatigue characteristics of Australian-made 

Tempcore 12 mm (No. 4) to 36 mm (No. 11) bars were tested in air with a stress ratio of 0. 

The fatigue strengths of the 12 mm (No. 4) and the 16 mm (No. 5) bars were 270 and 310 

MPa (39 and 45 ksi), respectively, corresponding to 5 million cycles. 
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In the current study, fatigue tests of No. 4 (13 mm) and No. 5 (16 mm) bars were 

conducted in air at a stress ratio of 0. The fatigue strengths of the Ch4S60 and SMl4S60 bars 

were 25 ksi and 20 ksi (172 and 138 MPa), corresponding to 2 million cycles, respectively. 

However, all of the No. 5 ( 16 mm) bars failed in less than 1 million cycles at 21.05 ksi ( 145 

MPa) [20 ksi (138 MPa) for FK5S60 bars]. Thus, the fatigue performance of the bars tested 

in this study was inferior to that obtained in the previous tests. One reason may come from 

the fact, as described in Chapter 2 (Table 2.4), that before the fatigue load was applied, 

tensile stresses were induced in the specimens when the specimens were gripped. These 

tensile stresses [as high as 3 ksi (21 MPa)] result in an increased minimum stress, a positive 

stress ratio instead of 0, and a higher maximum stress level. All of these factors are known to 

decrease fatigue strength. 

3.6 Comparison with AASHTO Fatigue Design Criteria 

In real reinforced concrete members, it is hard to know the exact state of stress at the 

root of a rolled deformation. It is also hard to know how forces are transmitted between 

reinforcing bars and concrete at crack locations in the concrete. No statistically valid 

comparison between fatigue tests of reinforcing bars in air and embedded in concrete has 

been carried out (ACI Committee 215 1974). Questions exist as to whether a bar has the 

same fatigue strength when tested in air as it does in a concrete member. And so far, no test 

has been standardized in the United States to detennine the fatigue properties of deformed 

reinforcing bars. Based on the equations developed by Helgason et al. (1976), the AASHTO 

Bridge Specifications (1996) provides a simplified design criterion for straight deformed hot 

rolled reinforcing bars embedded in concrete. According to that criterion, the design stress 

range is 

fr= 21 - 0.33fmin + 8(r/h) ksi (3. la) 

fr= 145-0.33fmin+55(r/h)MPa (3. lb) 
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where ff = stress range, in ksi (MPa) 

fmin =algebraic minimum stress, tension positive, compression negative, in ksi 

(MP a) 

rib = ratio of base radius to rib height, a value of 0.3 can be used 

In the current tests, the minimum stress is 0 ksi. According to Eq. (3.1) above, the design 

stress range should be 23.4 ksi (161.5 MPa). This means that for any stress range below 23.4 

ksi (161.5 MPa), a bar in this experiment should sustain virtually an unlimited number of 

cycles without breaking. Only the fatigue behavior of the Ch4S60 bars met this criterion. 

Corresponding to 2 million cycles, the Ch4S60 bars did not break at a stress range of 25 ksi 

(172 MPa). The SMI4S60 bars did not break at a stress range of 20 ksi (138 MPa) and were 

not evaluated at fr= 23.4 ksi. 

The No. 5 (16 mm) bars ill this study deviated significantly from the criteria in Eq. (3.1). 

The bars broke after less than 1 million cycles for a stress range of 21.05 k:si (145 MPa) [20 

ksi (138 MPa) for FK.5S60 bars]. These results, however, do not mean that the No. 5 (16 

mm) bars in this study are not qualified for use in concrete structures subjected to fatigue 

loading. 

The principle reasons are two fold, both due to the severity of the current tests. First, the 

bars had added stresses, as high as 3 ksi (21 MPa), induced due to the gripping mechanism. 

Second, testing in air results in a shorter fatigue life than testing in concrete where the tensile 

strength of concrete between cracks helps to limit the effect of the cyclic loading on 

reinforcing steel. Thus, for most of the length of reinforcing bars embedded in concrete, the 

tension stress is well below the value calculated by neglecting the tensile strength of the 

concrete. Only at flexural cracks will reinforcing steel be subjected to the full stress, and 

statistically, those locations are not expected to expose a region of the bar with the lowest 

fatigue life. This contrasts with tests in air that involve a length of bar, all of which is 
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exposed to the maximum tensile stress, allowing the region with the lowest fatigue life to 

govern. 



4.1 Summary 
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CHAPTER FOUR 

SUMMARY AND CONCLUSIONS 

The purpose of this research is to study the fatigue performance of high relative rib area 

bars and compare their performance with conventional bars. This study includes a review of 

previous work; results from fatigue tests on 69 specimens under axial loading in air; and a 

discussion of the factors that may influence the fatigue behavior of the bars. The major test 

variables in this research are the stress range [20, 25, 30, and 35 ksi ( 138, 172, 207, and 241 

MPa)] with 0 ksi minimum stress, bar diameter [No. 4 (13mm) and No. 5 (16mm)], surface 

geometry (6 different bar deformation patterns), and relative rib area (0.064 to 0.146). 

4.2 Conclusions 

The following conclusions are made based on the test results and the discussion 

presented in this report: 

1. The results confirm previous conclusions that the stress range is the predominant 

factor influencing the fatigue strength of reinforcing bars. 

2. The results tend to confirm previous conclusions that there exists a stress range. the 

fatigue strength above which a bar is certain to break in fatigue and below which a 

bar can sustain a virtually unlimited number of cycles without fatigue failure. 

3. Bar diameter has a significant effect on the fatigue strength of reinforcing bars. For 

bars subjected to the same stress range, an increase in bar diameter results in a 

decrease in fatigue strength. 

4. Surface geometry has a great effect on the fatigue strength of reinforcing bars. The 

lug base radius-to-height ratio (r/h) was found to have a primary influence on the 
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fatigue strength of the bars. For bars with the same diameter, the lower the r/h ratio, 

the lower the fatigue strength. 

5. Relative rib area value, Rr. does not effect the fatigue strength of deformed 

reinforcing bars. High relative rib area bars exhibit similar fatigue performance to 

conventional bars of the same bar diameter, subjected to the same stress range. 
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Table 2.1 

Deformation Properties of Reinforcing Bars 

Bar 
Identification 

Ch4S60 

SMI4S60 

ChSS60 

Ch SS 

NSS 

FKSS60 

+ 

* 
** 
*** 

Nominal Weight % Light Rib 
Diameter or Heavy Angle+ 

(in.) (lb/ft) (degrees) 
0.500 0.638 4.5%L 65 

0.500 0.639 4.3%L 90 

0.625 1.017 2.5%L 65 

0.625 1.032 1.1% L 70 

0.625 1.011 3.1%L 70 

0.625 I.018 2.4%L 90 

Angle of transverse rib to the bar axis 

See Table 2.2 for detailed rib height measurement 

Average rib height (see section 2.2) 

See Fig. 2.2 and Eq. 2.1 

I in. = 25.4 mm; 1 lb/ft= 1.49 kglm; 

Avg. Rib Rib Height* 
Spacing ASTM Avg.** 

(in.) (in.) (in.) 

0.206 0.035 0.034 

0.333 0.028 0.027 

0.258 0.047 0.047 

0.275 0.039 0.036 

0.350 0.037 0.034 

0.409 0.044 0.043 

Average Relative Rib 
2,gaps Area*** 
~in.~ 

0.338 0.128 

0.326 0.064 

0.398 0.146 

0.413 0.100 

0.359 0.076 
w 

0.335 0.088 
0\ 



Table 2.2 

Rib Heights of Transverse Deformations on Bars Investigated 

Am=E J F 

I . 
H 

I 

Bar Rib Heights * (mm) 
Identification A B C D E F G H I J 

Ch4S60 0.68 0.90 0.87 1.00 0.86 0.74 0.86 0.86 0.85 0.72 
0.68 0.93 0.85 0.98 0.88 0.72 0.83 0.87 0.83 0.72 

VJ 
0.70 0.93 0.85 0.95 0.85 0.73 0.85 0.87 0.84 0.74 -...} 
0.70 0.95 0.86 0.98 0.88 0.71 0.84 0.87 0.85 0.73 
0.68 0.94 0.86 0.99 0.87 0.73 0.80 0.86 0.85 0.72 

Sl\114S60 0.61 0.72 0.67 0.73 0.74 0.62 0.73 0.69 0.65 0.56 
0.61 0.72 0.66 0.73 0.74 0.62 0.75 0.70 0.65 0.55 
0.63 0.73 0.66 0.74 0.75 0.62 0.75 0.70 0.64 0.54 
0.63 0.73 0.67 0.73 0.74 0.63 0.74 0.69 0.62 0.54 
0.63 0.73 0.66 0.73 0.74 0.62 0.74 0.70 0.63 0.55 

Ch5S60 1.42 1.32 1.25 1.25 1.15 1.00 1.32 0.82 1.25 1.15 
1.45 1.33 1.23 1.26 1.13 1.00 1.33 0.85 1.25 1.14 
1.41 1.32 1.20 1.26 1.10 1.00 1.34 0.95 1.25 1.11 
1.43 1.31 1.23 1.25 1.10 1.03 1.34 0.85 1.25 1.14 
1.43 1.32 1.22 1.25 1.09 1.00 1.33 0.83 1.26 1.14 



Table 2.2 (continued) 

Rib Heights of Transverse Deformations on Bars Investigated 

Bar Rib Heights* ~mm~ 
Identification A B c D E F G H I J 

Ch5S 0.60 0.96 0.86 1.04 0.89 1.02 1.26 0.88 0.90 0.56 
0.61 0.98 0.89 I.03 0.86 1.02 1.22 0.87 0.92 0.56 
0.57 0.99 0.90 1.03 0.84 1.07 1.21 0.88 0.91 0.54 
0.63 0.96 0.89 1.00 0.82 1.10 1.24 0.86 0.89 0.55 
0.61 0.95 0.88 1.01 0.85 1.16 1.20 0.88 0.92 0.52 

NSS 0.66 0.77 0.95 1.20 0.80 0.56 0.70 0.90. 0.97 0.64 
0.64 0.79 0.99 1.17 0.80 0.57 0.70 0.93 0.96 0.69 w 

0.69 
00 

0.63 0.83 0.99 1.14 0.85 0.55 0.95 0.99 0.66 
0.62 0.85 0.97 1.17 0.83 0.56 0.67 0.94 1.01 0.64 
0.60 0.82 0.95 1.13 0.80 0.55 0.72 0.95 0.99 0.62 

FKSS60 1.14 1.15 1.04 I.17 1.13 1.06 0.99 1.05 1.17 1.08 
1.15 1.15 1.03 1.22 1.14 1.04 1.00 l.06 1.20 1.13 
1.13 1.18 1.04 1.19 1.13 1.04 1.00 1.06 1.22 1.12 
1.12 1.17 1.05 1.17 1.13 1.07 0.99 1.06 1.19 1.15 
1.12 1.17 1.04 1.17 1.08 1.05 1.01 1.06 1.21 1.13 

* Measured using Starrett dial gage with 0.0 I mm ]east reading 
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Table 2.3 

Mechanical Properties of Reinforcing Bars 

Bar Diameter L L' AL Elongation Yield Strength Tensile strength 

Name (in) (in) (in) (in) AL/L (%) (ksi) (ksi) 
Ch4S60 0.500 8.000 9.500 1.500 18.75 71.0 103.9 

0.500 8.000 9.250 .1.250 15.63 75.8 108.4 

0.500 8.000 9.250 1.250 15.63 74.7 107.6 

SMI4S60 0.500 8.000 ! 9.250 l.250 15.63 63.2 107.4 

0.500 1.375 17.19 ""st 110.0 

0.500 .375 1.375 17.19 107.9 

Ch5S60 0.625 8.000 9.500 1.500 18.75 106.1 

0.625 8.000 9.300 l.300 16.25 102.9 

0.625 0 1.350 16.88 71.1 t- 102.3 

_ f-9.500 Ch5S 0.625 1.500 18.75 65.3 102.7 -
0.625 8.000 9.500 l.500 18.75 --·-
0.625 8.000 9.450 1.450 18.13 6::u:s 98.9 

N5S 0.625 8.000 9.450 1.450 18.13 71.1 115.3 

0.625 8.000 9.400 1.400 17.50 72.6 109.8 

0.625 8.000 9.450 1.450 18.13 72.l 109.5 

FK5S60 0.625 8.000 9.525 ·l.525 19.06 77.4 103.4 

0.625 
,.. ,...,...,... 

".375 1.375 17.19 78.9 103.4 

0.625 8.000 9.500 l.500 18.75 Ill ?. 103.2 

where: L = original gage length, in. 

L' = final gage length, in . 

.6L = elongation of the bar, in. 

1 in. = 25.4 mm; I ksi = 6.89 MPa; 
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Table 2.4 
Stresses Introduced by Gripping System 

+ 

Measuring Strain Gage Strain 

Time Number (microstrain) 

1 -14 

1st Time 2 41 

3 31 

1 -12 

2nd Time 2 34 

3 92 

1 -50 

3rd Time 2 37 

3 53 

strain reading before the gripping pressure was applied 

strain reading after the gripping pressure was applied 

modulus of elasticity of the steel bar = 29 x 103 ksi 

1 ksi = 6.89 MPa 

o.s9l 
A I strain gage 

I 

4.5 in. 41n. 

stntinpgc 
1 

2®t!ln. 
A 

Stress 

(ksi) 

-0.41 

1.19 

0.90 

-0.35 

0.99 

2.67 

-1.45 

1.07 

1.54 

4.Sln. 
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Table 2.5 
Fatigue Test Results of Reinforcing Bars 

Ch4S60 bars: 
Stress Ranee Number of Cycles Crack Initiation Location Fracture Section 

623,800 root of a lug angled to the bar axis 
(parallel to lue: direction) 

35 ksi 823,800 root of a lug angled to the bar axis 
(parallel to lue; direction) 

706,500 intersection between a lug angled to the bar ax.is 
and a longitudinal rib (parallel to lu2 direction) 

1,211,300 intersection between a lug angled to the bar axis 
and a longitudinal rib (parallel to lue; direction) 

30ksi 912,000 root of a lug angled to the bar axis 
(parallel to lue: direction) 

1,295,900 intersection between a lug angled to the bar axis 
and a longitudinal rib (parallel to lug direction) 

2,000,000* = NIA NIA 
25 ksi 2,000,000* NIA NIA 

2,000,000* NIA NIA 
* bar did not break 

SMI4S60 bars: 
Stress Ranee Number of Cvcles Crack Initiation Location Fracture Section 

601,400 root of aluS?: nonnal to the bar axis 
35 ksi 460,600 root of a lug normal to the bar a.xis 

688,500 root of a lug normal to the bar axis 
933,700 root of a lu2 nonnal to the bar axis 

30ksi 801.900 root of a lug normal to the bar axis 
868,900 root of a lusi; normal to the bar axis 

1,528,400 root of a lug normal to the bar a.xis 
25 ksi 1,144,000 root of a lug normal to the bar a.xis 

1,373,700 root of a lu2 normal to the bar axis 
2,000,000* NIA NIA 

20ksi 2,000.000* NIA NIA 
2,000,000* NIA NIA 

• bar did not break 

1 ksi = 6.89 MPa 



ChSS60 bars: 
Stress Ran2e 

36.84 ksi 

31.58 ksi 

26.32 ksi 

21.05 ksi 
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Table 2.5 (continued) 
Fatigue Test Results of Reinforcing Bars 

Number of Cvcles Crack Initiation Location Fracture Section 
171,600 intersection between a lug normal to bar axis 

and a.longitudinal rib 
164,600 intersection between a lug normal to bar axis 

and a lon~itudinal rib 
168,900 intersection between a lug nonnal to bar axis 

and a lon~itudinal rib 
243,300 intersection between a lug normal to bar axis 

and a longitudinal rib 
317,200 intersection between a lug normal to bar axis 

and a longitudinal rib 
266,600 intersection between a lug normal to bar axis 

and a lonRitudinal rib 
409,800 intersection between a lug normal to bar axis 

and a longitudinal rib 
394,400 intersection between a lug normal to bar axis 

and a longitudinal rib 
381,700 intersection between a lug nonnal to bar axis 

and a longitudinal rib 
643,600 intersection between a lug normal to bar axis 

and a lonlritudinal rib 
676,600 intersection between a lug normal to bar axis 

and a longitudinal rib 
651.100 intersection between a lug nonnal to bar axis 

and a longitudinal rib 

l ksi = 6.89 MPa 
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Table 2.5 (continued) 
Fatigue Test Results of Reinforcing Bars 

ChSS bars: 
Stress Ranee Number of Cvcles Crack Initiation Location Fracture Section 

204,100 intersection between a lug normal to bar axis 
and a longitudinal rib 

36.84 ksi 169,900 intersection between a lug normal to bar axis 
and a longitudinal rib 

193,500 intersection between a Jug normal to bar axis 
and a longitudinal rib 

281,200 intersection between a lug normal to bar axis 
and a longitudinal rib 

31.58 ksi 255,300 intersection between a lug normal to bar axis 
and a lon~itudinal rib 

312,800 intersection between a lug normal to bar axis 
and a longitudinal rib 

430,800 intersection between a lug normal to bar axis 
and a longitudinal rib 

26.32 ksi 417,800 intersection between a lug normal to bar axis 
and a longitudinal rib 

424,400 intersection between a lug normal to bar axis 
and a longitudinal rib 

720,700 intersection between a lug normal to bar axis 
and a longitudinal rib 

21.05 ksi 659,800 intersection between a lug normal to bar axis 
and a lon~itudinal rib 

701,700 intersection between a lug normal to bar axis 
and a longitudinal rib 

1ksi=6.89 MPa 
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Table 2.5 (continued) 
Fatigue Test Results of Reinforcing Bars 

NSS bars: 
Stress Ran2e Number of Cvcles Crack Initiation Location Fracture Section 

210,800 root of a lug: normal to the bar axis 
235,200 root of a lug angled to the bar axis 

36.84 ksi (parallel to Jui;?; direction) 
215,100 intersection between a lug normal to the bar axis 

and a fomdtudinal rib 
293,600 root of a lu2 nonnal to the bar axis 

31.58 ksi 272,900 root of a lug normal to the bar axis 
210,300 root of a lug angled to the bar axis 

(parallel to lug direction) 
410,400 root of a lug angled to the bar axis 

(parallel to lug direction) 
26.32ksi 396,600 root of a lug angled to the bar axis 

(oarallel to lul? direction) 
436,600 root of a lug normal to the bar axis 
702,200 root of a lug = normal to the bar axis 

21.05 ksi 660.400 root of a lug normal to the bar axis 
679,600 root of a lu2 normal to the bar axis 

FKSS60 bars: 
Stress Ranee Number of Cycles Crack Initiation Location Fracture Section 

137,100 root of a lue: normal to the bar axis 
35 ksi 173,000 root of a lu2 normal to the bar axis 

162,900 root of a lug normal to the bar axis 
270,100 root of a lue normal to the bar axis 

30ksi 246.300 root of a luR nonnal to the bar axis 
222,000 root of a lug onnal to the bar axis 
360.600 root of a Jug nonnal to the bar axis 

25 ksi 374,200 root of alu~ nonnal to the bac axis 
282.000 root of a lug normal to the bar axis 
657,400 root of a lug normal to the bar a.xis 

20ksi 566,900 root of a Im! normal to the bar axis 
604,100 root of a lu2 normal to the bar axis 

I ksi = 6.89 MPa 



Table 2.6 

Measurements of Lug Properties Obtained with Scanning Electron Microscope 

Bar ex 
Identification (degrees) 

side 42.5 
Ch4S60 1 45.0 

side 40.0 
2 43.0 

side 28.0 
SMI4S60 1 28.0 

side 30.0 
2 32.5 

ex, ~: flank angles of lugs 
r1, rr: base radius 

h: lug height 

w: lug width 

~ ra rb 
(de2rees) (mm) (mm) 

56.0 I.79 1.30 
55.0 1.90 1.34 
45.5 1.46 1.94 
42.5 1.43 1.93 
26.0 1.75 I.69 
26.0 1.93 l.41 
24.0 0.66 2.32 
23.0 0.50 2.29 

I ------, 

h w rJh ri/h critical 
(mm) (mm) rib 
0.99 2.86 1.81 1.31 1.31 
1.01 2.88 1.88 1.33 
1.03 3.12 1.42 1.88 
1.04 3.06 1.38 2.00 
0.74 3.83 2.37 2.28 
0.76 3.82 2.54 I.86 
0.65 3.22 1.01 3.57 
0.63 3.12 0.79 3.63 0.79 

w/h 

2.89 
2.85 
3.03 
2.94 
5.18 
5.03 
4.95 
4.95 

~ 
Ui 



Bar (l 

Identification (degrees) 
ChSS60 I side 34.0 

1 33.0 
side 49.0 

2 48.5 
Ch SS I Side 46.5 

1 48.0-
Side 44.0 

2 43.0 
NSS I side 46.5 

1 43.0 
side 48.5 

2 46.0 
FKSS60 I Side 45.0 

1 45.5 
Side 41.5 

2 43.0 

~ 

Table 2.6 (continued) 

Measurements of Lug Properties 

r. rb h w 
(degrees) (mm) (mm) (mm) (mm) 

52.0 1.78 1.43 1.25 3.85 
49.0 1.86 1.41 1.27 4.10 
53.0 1.15 1.71 1.48 3.69 
48.0 1.35 l.76 1.52 3.95 
45.0 1.26 1.01 1.27 3.82 
46.0 1.35 1.15 1.30 3.79. 
45.0 1.39 1.25 1.34 3.93 
47.0 1.52 1.06 1.31 3.80 
50.0 1.28 1.07 1.15 4.22 
48.0 1.62 1.09 1.21 4.46 
32.0 1.02 2.49 1.05 4.79 
43.0 1.20 1.43 1.06 4.40 
48.0 1.36 0.62 1.37 4.42 
48.0 0.94 0.74 1.35 4.47 
45.0 1.30 0.95 1.32 4.79 
53.0 1.50 0.66 1.35 4.58 

rJh ri/h critical I w/h 
r/h 

1.42 1.14 3.08 
1.32 1.11 3.23 
0.78 1.16 0.78 2.49 
0.89 1.16 2.36 
0.99 0.80 0.80 3.01 
1.04 0.88 Z.92 . 
1.04 0.93 2.93 I .i::.. 

°' 
1.16 0.81 2.90 
1.11 0.93 3.67 
1.34 0.90 0.90 3.69 
0.97 2.37 4.56 
1.13 1.35 4.15 
0.99 0.45 0.45 3.23 
0.70 0.55 3.31 
0.98 0.72 3.63 
1.11 0.49 3.39 
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Fig. 2.1 Test Bars 
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Bearing Area 
Rr= Shearing Area 

Shearing Area 

= _h_r (1--L_g_ap_s) 
s p r 

Fig. 2.2 Schematic Illustration of Relative Rill Area (see Eq. 2.1) 
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Fig. 2.3 Typical Stress-Strain Curve for Ch4S60 Bars 
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Fig. 2.4 Typical Stress-Strain Curve for SMI4S60 Bars 
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Fig. 2.5 Typical Stress-Strain Curve for Ch5S60 Bars 
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Fig. 2.6 Typical Stress-Strain Curve for ChSS Bars 
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Fig. 2.8 Typical Stress-Strain Curve for FKSS60 Bars 
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Fig. 2.13 Fatigue Crack Surfaces on Ch4S60 Bars 
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Fig. 2.14 Fatigue Crack Surfaces on SMI4S60 Bars 
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Fig. 2.15 Fatigue Cr-ack Surfaces on Ch5S60 Bars 
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Fig. 2.l!7 Fatigue Crack Surfaces on NSS Bars 
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Fig. 2.18 Fatigue Crack Surfaces on FK5S60 Bars 
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Fig. 2.19 Scanning Rlectroo Microscope Image of a LU?g on a Ch4S60 Bar 
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Fig. 2.20 Scanning Electron Microscope Image ·of a Lug on a SMI4S60 Bar 
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Fig. 2.21 Scanning Electron Microscope Image of a Lug on a ChSS60 Bar 
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Fig. 2.22 Scanning Electron Microscope Image of a Lug on a Ch SS Bu 



69 

Fig. 2;23 Scanning Electron Microscope Image of a Lug on a N5S Bar 
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Fig. 2.24 Scanning Electron Microscope Image of a Lug. on a FK5S60 Bar 
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APPENDIX 

NOMENCLATURE 

fatigue: the phenomenon of rupture of a material, when subjected to repeated loading, at 
a stress substantially less than the static strength. 

fatigue strength: the greatest stress which can be sustained for a given number of load 
cycles without failure. For design purposes, the fatigue strength is usually defined as the 
stress range sustained without failure for a specified number of cycles. 

stress range: the difference between the maximum stress and the minimum stress in a 
stress cycle, (S). 

S-N curve: the curve reflecting the relationship between the stress range (S) and the 
number of load cycles (N). 

relative rib area: ratio of projected rib area normal to bar ax.is to the product of the 
nominal bar perimeter and the center-to-center rib spacing. 




