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EFFECT OF EPOXY COATING THICKNESS 
ON BOND STmNGTH OF 

NO. 19 [NO. 61 REINFORCING.iBARS 

ABSTRACT 

ASTM A 944 beam-end specimens are used to evaluate the relative bond strength of epoxy- 

coated No. 19 [No. 61 reinforcing bars with coating thicknesses ranging from 160 to 510 pm (6.4 

to 19.9 mils). Three deformation patterns are evaluated using epoxy meeting the requirements of 

ASTM A 775. The reduction in bond strength caused by epoxy coatings between 160 and 420 pm 

(6.4 and 16.5 mils) is largely independent of coating thickness, The reduction increases for 

coatings thicker than 420 pm (16.5 rmls). 

Key words: bond (concrete to reinforcement); deformed reinforcement; development; epoxy 

coating; reinforcing steels; relative rib area; structural engineering. 
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INTRODUCTION 

Epoxy-coated steel reinforcing bars. are widely used in concrete construction to improve 

corrosion resistance. Current standards (ASTM A 775) allow coating thicknesses between 175 

and 300 pm (7 and 12 mils) to be used. The coating, however, causes a reduction in bond 

strength between reinforcing bars and concrete. As a result, the ACI Building Code (ACI 3 18-95) 

and the AASHTO Bridge Specifications (1996) require the use of a development length modifica- 

tion factor of 1.5 for most applications. 

Choi et al. (1990, 1991) evaluated the effect of coating thickness on the bond strength of 

epoxy-coated bars. Their work shows that coating thickness has no significant effect on bond 

strength as the coating thickness increases from 76 to 300 pm (3 to 12 mils) for No. 19 [No. 61 

bars and from 76 to 400 pm (3 to 16 mils) for No. 25 [No. 81 bars. For No. 16 [No. 51 bars, the 

study shows a decrease in bond strength as coating thickness increases. It would be desirable in 

many cases to increase the maximum allowable coating thickness. 

While it has been shown that coating thickness plays little role in the bond strength of No. 

25 [No. 81 bars and larger, and plays a large role in the bond strength of No. 16 [No. 51 bars and 

smaller, no studies to date have evaluated the bond strength of epoxycoated No. 19 [No. 61 bars 

with coating thicknesses significantly greater than 300 pm (12 mils). 

This study addresses the bond strength of No. 19 [No. 61 reinforcing bars coated with 

epoxy meeting the requirements of ASTM A 775. Bars with average coating thicknesses from 160 

to 510 pm (6.4 to 19.9 mils) are tested to determine whether thicknesses greater than 300 pm (12 

mils) can be used on these bars without causing a significant reduction in bond strength. 

EXPERIMENTAL PROGRAM 

The experimental program consisted of 72 beam-end specimens. No. 19 [No. 61 test bars 

were obtained from three companies: Birmingham Steel Corporation, Chaparral Steel Company, 

and Structural Metals Inc. (SMI). The three deformation patterns are designated B, C, and S , 

respectively. For each deformation pattern, tests were run on 12 uncoated bars and 12 coated bars, 



2 

three each with approximate coating thicknesses of 175, 300, 380,-and 460 pm (7, 12, 15, and 18 . . 

mils). Actual coating thicknesses ranged from 160 to 510 pm (6.4 to 19.9 mils). 

Test Specimens 

The test specimens were fabricated according to ASTM A 944 (Fig. 1) with a nominal 

cover of 38 mm (1.5 in.). Test bars were oriented with the longitudinal ribs in the vertical plane. I 

I 

Auxiliary reinforcement consisted of two No. 16 [No. 51 bars parallel to the test bar for flexural 

reinforcement and four No. 10 [No. 31 closed stirrups. Uncoated bars were used as stirrups in the 1 I 

front of the specimens and epoxy-coated bars were used as stirrups in the back of the specimens 

[The use of epoxy-coated stirrups was for convenience only and had no effect on the tests]. No. 

16 [No. 51 transverse bars were used in accordance with ASTM A 944. Prior to testing, cover 
t 

was measured by placing a straight edge on top of the test specimen and measuring the distance 

from the straight edge to the top of the test bar to the nearest 1 mm in.) using a ruler. Norni- i 
nal embedment length, lead length, and cover were constant for all specimens at 267 rnrn (10.5 

I 
in.), 12.7 mrn (0.5 in.) and 38.1 mrn (1.5 in.), respectively. 1 

Materials 

Reinforcing Steel-The test bars were ASTM A 615 grade 420 [60] No. 19 [No. 61 bars 

with three different deformation patterns (Fig. 2). The Birmingham steel, B, bars had diagonal 

ribs oriented 70 degrees to the longitudinal axis. The Chaparral steel, C, bars had diagonal ribs 

oriented 60 degrees to the longitudinal axis. The SMI, S, bars had ribs that were perpendicular to 

the longitudinal axis. The test bars for each deformation pattern came from the same heat of steel. 

Bar properties are listed in Table 1. 

The epoxy coating was applied by ABC Coating Company Inc. at approximate thicknesses 

of 175, 300, 380, and 460 pm (7, 12, 15, and 18 mils) using AkLo Nobel Resicoat 500607 epoxy 

powder. With the exception of coating thickness, the epoxy was applied in accordance with 

ASTM A 775. Average coating thicknesses were measured using a pull-off type gauge (ASTM A 

775). Coating measurements were taken at five points along the bonded length on each side of the 
I 



test bars. The average of these measurements was used to analyze the effects of. coating thickness 

on bond strength. 

Concrete-Air-entrained concrete was supplied by a local ready mix plant. The concrete 

contained Type I portland cement, 19 mm (3/, in.) nominal maximum size crushed limestone, and 

Kansas River sand. The concrete was cast with water-cement ratios between 0.44 and 0.49, 

providing a nominal strength of about 34 MPa (5000 psi). Mix proportions and concrete proper- 

ties are listed in Table 2. 

Placement Procedure 

Concrete was placed in two lifts of nearly equal volume. Each specimen received its frrst 

lift before any specimen received a second lift. After each lift was placed, the specimens were 

vibrated at four points, starting at the end closest to the bonded length. Standard test cylinders 

were cast according to ASTM C 192 and cured side by side with the test specimens. Forms were 

stripped after the concrete had reached a minimum compressive strength of 19 MPa (2700 psi). 

The test specimens were cast in three batches, each covering the full range of deformation 

patterns and coating thicknesses. Each batch was placed with the specimens arranged in a different 

order so as not to create systematic differences in bond strength due to differences in concrete 

properties from different portions of the discharge of the ready-mix truck. Forms were grouped by 

deformation pattern because differences in bond strength between deformation patterns are not a 

consideration in this study. To limit bias due to differences in concrete properties, forms with 

coated and uncoated bars were alternated. Coated bars were placed in a different order (based on 

coating thickness) in each batch, so that no three bars had either an ascending or descending 

coating thickness order. 

Test Procedure 

Specimens were tested in accordance with ASTM A 944 using the testing apparatus shown 

in Fig. 3. Each group of specimens was tested over a 48 hour period at concrete strengths between 

32 and 35 MPa (4700 and 5000 psi). Load was applied at a rate of about 15 kN [3.5 kips] per 



minute using two steel rods with diameters of 25 mm (1 in.), which were, in turn, loaded by 

hollow-core, 500 kN (60 ton) hydraulic jacks, powered by an Amsler hydraulic testing machine. 

Displacement of the test bar at both the loaded and unloaded ends was measured using 

spring-loaded linear variable differential transformers (LVDTs). Two loaded end slip LVDTs were 

mounted on a yoke attached to the test bar 127 rnm (5 in.) from the front face of the specimen. 

Results in this report for loaded end slip include elastic lengthening of the test bar between the yoke 

and the face of the test specimen. Unloaded end slip was measured by one LVDT placed against 1 
L 

the end of the test bar, through the steel conduit at the rear of the specimen. 

RESULTS AND DISCUSSION 

Load-Slip Curve and Cracking Patterns 

Typical load-slip curves for the test specimens (in this case from Test Group B) are shown 

in Figs. A. 1-A.6. The load-loaded end-slip curves exhibit significant scatter, with the uncoated 

bars exhibiting generally, but not universally, greater stiffness than the coated bars. In contrast, 

the load-unloaded end-slip curves for the coated bars are nearly always stiffer than the matching 

curves for the coated bars, since the unloaded slip is sensitive to the bond properties along the full 

embedded length of the bar. 

Cracking patterns were similar for all specimens. As observed in earlier studies (Choi et al. 

1990, Darwin and Graham 1993), a small thin longitudinal crack began at the front of the top of 

the specimen just before failure, and with failure, widened, lengthened and ended in an inverted T 

at the middle of the top face. On the front face of the specimen, cracking occurred in an inverted 

Y, splitting around the test bar. Specimens with epoxy-coated test bars failed with a bang, but 

specimens with uncoated test bars failed more quietly. 

When concrete was chipped away after testing, the epoxy-coated bars showed no sign of 

having bonded with the concrete. Coated bars were clean, and the concrete that had been in contact 

with them was smooth. For the uncoated test bars, some concrete remained stuck to the bars, and 

concrete powder was visible on the front side of the ribs. The concrete that had been in contact 



with the uncoated test bars was rougher than the concrete that had been in contact with the 

epoxy-coated bars. 

Bond Strength 

Bond strengths are given in Table 3, along with coating thicknesses, covers and concrete 

strengths. Modified bond strengths are calculated to account for differences in concrete strength 

and deviations in cover from the nominal value of 38.1 mm (1.5 in.). To do this, test strengths are 

normalized to a concrete strength of 34 MPa (5000 psi), using the assumption that bond strength is 

proportional to the 'I4 power of the compressive strength (Darwin et al. 1995, 1996), and to a 

cover of 38.1 mrn (1.5 in.) using the assumption that bond strength is directly proportional to the 

cover to the center of the bar (Darwin et al. 1995, 1996). Thus, bond strengths are multiplied by 

(34/ftC) 47.6/(9.5+C,,) [(5000lftc) ~4 1. 875/(0.375+Cb)], where PC and Cb are the measured 

compressive strength and cover, respectively. The effect of the epoxy coating is evaluated by 

averaging the modified bond strengths of the uncoated bars tested from each group for each defor- 

mation pattern. The modified bond strength of each epoxy-coated bar is then divided by the aver- 

age strength of uncoated bars from the same group with the same deformation pattern to obtain the 

ratio of the bond strength of the epoxy-coated bar to the bond strength of the uncoated bars, or C/U 

ratio. 

The effect of coating thickness on the C/U ratio is analyzed using the technique of dummy 

variables (Draper and Smith 198 1). Application of this technique is based on the assumption that 

the effect of epoxy coating on bond strength may be different for different deformation patterns, 

but that the effect of coating thickness on bond strength is the same for all patterns. Best-fit lines 

for C/U ratio versus coating thickness established using this technique are shown in Fig. 4. The 

general trend of the best-fit lines is a reduction in the C/U ratio with an increase in coating thick- 

ness for the full range of coating thicknesses evaluated. The test results show significant scatter, 

as expected for bond tests. 

Three of the data points for Chaparral Steel may be considered to be unrepresentative. 

Specimen C7A, with a coating thickness of 187 pm (7.35 mils) and a C/U ratio of 0.856, was cast 



in the first batch with the first concrete discharged from the ready mix truck. Its strength is low for 

C-pattern bars with a nominal thickness of 175 pm (7 mils). The test results for specimen C-12b, 

with a coating thickness of 353 pm (13.89 mils), is significantly higher than any of the data and 

the bond strength for specimen C15C, with a coating thickness of 394 pm (15.50 mils) and a C/U 

ratio of 0.762, is significantly weaker than any of the other test specimens. These three specimens 

are removed from the data base to limit their effect on the analysis. As shown in Fig. 5, however, 

removal of the three data points has little effect on the observed trend, which is an overall decrease 

in bond strength of coated bars as the coating thickness increases from 160 to 510 pm (6.4 to 19.9 

mils). 

In contrast to the results shown in Figs. 4 and 5, a detailed evaluation of the data indicates 

that there is a significant range of coating thickness over which the relative bond strength of coated 

reinforcement is not affected. This point is illustrated in Fig. 6, where the data for bars with 

coatings in excess of 430 pm (17 mils) are removed. In this case, the overall trend of the data is a 

slight increase in C/U as the coating thickness increases from 160 pm (7 mils) to a maximum value 

of 423 pm (16.65 mils), the upper limit for bars with coating thicknesses less than 430 pm (17 

mils). Since the actual data is based on bars with an upper coating thickness very close to 420 pm 

(16.5 mils), this can be considered a safe upper bound for bars with coatings meeting the require- 

ments of ASTM A 775. For No. 19 [No. 61 bars, coating thicknesses in excess of 430 pm (17 

mils) result in a noticeable decrease in bond strength. 

Prior research (Choi et al. 1990, 1991) demonstrated that the bond strength of epoxy- 

coated No. 25 [No. 81 bars is not sensitive to coating thickness for coatings with thicknesses up to 

about 410 pm (16 mils), the upper limit on the data. (It should be noted that most of the data on 

the No. 25 mo. 81 bars in the earlier study were for coatings with thicknesses of 350 pm [14 mils] 

or less.) As observed earlier, the work by Choi et al. also demonstrated that bond strength drops 

si,snificantly with increasing coating thickness for No. 16 [No. 51 bars and smaller. 

Overall, the current study indicates that it is realistic to allow an increase in the maximum 

coating thickness to 420 pm (16.5 mils) for No. 19 [No. 61 and larger bars meeting the require- 



ments of ASTM A 775. The maximum coating thickness for smaller bars should remain 300 pm 

(12 mils). 

CONCLUSIONS 

The following conclusions are based on the results and analysis presented in this report. 

1. ASTM A 775 epoxy coatings with thicknesses in the range of 160 to 510 

ym (6.4 to 19.9 mils) significantly reduce the bond strength of deformed 

No. 19 P o .  61 reinforcing bars to concrete. 

2. For ASTM A 775 epoxy coatings with a thickness between 160 and 420 

ym (6.4 and 16.5 mils), differences in coating thickness have little effect 

on the amount of bond strength reduction for No. 19 [No. 61 bars. Coat- 

ings thicker than 420 pm (16.5 mils) cause an additional drop in bond 

strength relative to the bond strength obtained with thinner coatings. 
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Table l a  Average Test Bar Data (S. I. Units) 

Nominal Rib Yield Rib Height Rib Rib Def. Rib Rib Relative 
Bar Pattern+ Strength Avg.tt ASTM Spacing Gap* Angle Face Bearing Rib 
Dia. Angle k e a  per Area 

*** -** 
(mm> (MPa) (mm) (mm) (mm) (mm) (deg.1 (deg.1 

19 B 437 1.07 1.15 10.4 2.92 70 42 0.0606 0.08929 
19 C 479 0.93 1.1 1 10.9 4.93 60 44 0.0616 0.07108 
19 S 43 1 1-00 1.10 10.9 3.43 90 22 0.0609 0.08093 

Table l b  Average Test Bar Data (Customary Units) 

Nominal Rib Yield Rib Height Rib Rib Rib Rib Rib Relative - 

Bar Pattern+ Strength Avg.++ ASTM Spacing Gap* Angle Face Bearing Rib 
Dia. Angle Area per Area 

*** in** 

(in.) (ksi) (in.) (in.) (in.) (in.) (deg.) (deg.) 
0.75 B 63.4 0.042 0.045 0.409 0.1 15 70 42 0.251 0.08929 

0.75 C 69.4 0.036 0.044 0.429 0.194 60 44 0.231 0.07108 
0.75 S 62.5 0.039 0.043 0.429 0.135 90 22 0.240 0.08093 

+ B, Birmingham Steel Corporation 
C, Chaparral Steel Company 
S, Structural Metals Inc. 

++ The average height of deformations, h,, is determined from measurements made on not less 
than two typical deformations on each side of the bar. Determinations are based on five 
measurements per deformation, one at the center of the overall length, two at the ends of the 
overall length, and two located halfway between the center and the ends. The measurements 
at the ends of the overall length are averaged to obtain a single value and that value is 
combined with the other three measurements to obtain the average rib height, h,. 

* Thickness of the longitudinal rib. 
** Bearing area of the deformations divided by the spacing of the deformations. 
*** Average of the face angles measured for the 4 different faces. 

B: 30,42,45,50 
C: 42,44,45,44 
S: 22,23,22,21 



Table 2a Concrete Mixture Proportions and Properties (Cubic Meter Batch) 

I 

Group W/C Cement Water Aggregate Slump Concrete Age Average 
ratio Fine+ Coarse+ Temperature at Compressive 

+ Test Strength 
(kg) (kg) (kg) (kg) (mm) "C (days) (MPa) - - - 

1 0.49 299 146 914 971 3 6 22 13 34.4 
14 

2 0.48 300 144 917 974 96 23 2 1 32.5 
22 32.8 

3 0.45 303 135 . 927 984 66 2 6 25 32.6 
26 32.8 

Table 2b Concrete Mixture Proportions and Properties (Cubic Yard Batch) 

Group W/C Cement Water Aggregate Slump Concrete Age Average 
ratio Fine+ Coarse+ Temperature at Compressive 

+ Test Strength 

+ Kansas River Sand - Holiday Sand and Gravel Company, Desoto, KS, bulk specific 
gravity = 2.62, absorption = 0.5%, frneness modulus = 3 .O. 

++ Crushed limestone - Fogle Quarry Company, Inc., Ottawa, KS, bulk specific gravity 
= 2.58, absorption = 2.7%, maximum size = 19mm (% in.), unit weight = 1450 kg/m3 

(90.5 lb/ft3) 



Table 3a Beam End Tests (S.I. units) 

Test Group Specimen Coating Cover Concrete Bond Modified C/U Ratio 
Label Thickness Strength Strength Bond 

Strength 

SAl 
SA2 
SA3 
SA4 
S7A 
S12A 
Sl5A 
S18A 



Table 3a Beam End Tests (S.I. units) (cont'd) 

Test Group Specimen Coating Cover Concrete Bond Modified CIU Ratio 
Label Thickness Strength Stren,d Bond 

Strength 

*Modified Bond Force = Test Force [34 MPa / concrete strengthIA(l/4) [47.625 mm /(cover+ 9.525 mm)] 



Table 3b Beam End Tests (U.S. units) 

Test Specimen Coating Cover Concrete Bond Modified C/U Ratio 
Group Label Thickness Strength Strength Bond 

Strength 
(mils) (in.) (psi) (kips) (kips) 

A BA I 0.00 1 112 4990 15.80 15.81 





Fig. 2 Reinforcing bar deformation patterns 
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Fig. 3 Testing apparatus (Darwin and Graham 1993) 






















