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Abstract
Line triangulation, a classical geometric problem in computer vision, is to determine the 3D

coordinates of a line based on its 2D image projections from more than two views of cam-

eras with known projection matrices. Compared to point features, line segments are more

robust to matching errors, occlusions, and image uncertainties. In addition to line triangula-

tion, a better metric is needed to evaluate 3D errors of line triangulation. In this paper, the

line triangulation problem is investigated by using the Lagrange multipliers theory. The main

contributions include: (i) Based on the Lagrange multipliers theory, a formula to compute

the Plücker correction is provided, and from the formula, a new linear algorithm, LINa, is pro-

posed for line triangulation; (ii) two optimal algorithms, OPTa-I and OPTa-II, are proposed

by minimizing the algebraic error; and (iii) two metrics on 3D line space, the orthogonal met-

ric and the quasi-Riemannian metric, are introduced for the evaluation of line triangulations.

Extensive experiments on synthetic data and real images are carried out to validate and

demonstrate the effectiveness of the proposed algorithms.

Introduction
Line triangulation [1], [2] refers to the process of determining a 3D line given its projections in
two or more images and the corresponding camera matrices. As one of the fundamental prob-
lems in computer vision, this problem is trivial in theory, since the corresponding 3D line is
the intersection of the back-projection planes of the image lines. However, when the number of
views is larger than 2, the back-projection planes usually do not intersect at one line in the 3D
space due to measurement errors and image noise. This leads to find a 3D line that fits the mea-
sured data optimally, i.e., optimal line triangulation.

Minimizing the algebraic error of line triangulation is a linear least squares problem with a
quadratic constraint (called the Klein constraint), as defined in Section 2 of this paper. Adrien
and Sturm [3], [4] proposed a linear algorithm for the algebraic error minimization. This algo-
rithm first finds a solution of the corresponding linear least squares problem (i.e., by ignoring
the Klein constraint), then, the solution is corrected subsequently by a singular value decompo-
sition (SVD) method with the Klein constraint enforcement. This algorithm yields only an
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approximation of the optimal solution to the algebraic error minimization. The paper [5] pro-
posed a suboptimal solution to algebraic-error line triangulation. This algorithm finds a subop-
timal solution of the original problem by relaxing the quadratic unit norm constraint to six
linear constraints. However, this still cannot yield an optimal solution to algebraic error mini-
mization. To the best of our knowledge, how to find optimal solution of the algebraic error
minimization is still an open problem.

In studies on line triangulation, a natural question is that which one of the above three opti-
mality criteria is the “best”? In order to answer this question, we need a criterion which is inde-
pendent of the three optimality criteria to describe the “bestness”. One intuitive criterion is the
3D error, i.e. distance between a reconstructed line and its ground truth. The Euclidean dis-
tance does not give a reasonable measure since it is not an intrinsic distance on 3D line space.
So far, no study on the metrics of 3D lines is available in the literature, and thus, it is still an
open problem for the evaluation of line triangulations.

This paper focuses on the triangulations and metrics of lines. The main contributions are
summarized as follows:

• Based on the Lagrange multipliers theory, a formula to compute the Plücker correction is
given and this Plücker correction formula is used to establish a quasi-Riemannian metric in
3D line space. From the formula, a new linear algorithm, LINa, is proposed for line triangula-
tion. The computational complexity of our new linear algorithm is much simpler compared
with the SVD method in the literature.

• For the algebraic error minimization, two new algorithms, OPTa-I and OPTa-II, are pro-
posed to find the optimal solution. The OPTa-I is based on finding roots of a system of
2-degree polynomial equations in five variables; and the OPTa-II is based on solving a system
of polynomial equations in two variables (one polynomial is of 6-degree and the other is of
10-degree). The continuous homotopy algorithm [6], [7] is used to solve these systems of
polynomial equations.

• Two new metrics on 3D line space, named as the orthogonal metric and the quasi-Riemann-
ian metric, are proposed for the evaluation of line triangulations. The orthogonal metric is
based on the angular distance on rotation groups [8] and the orthogonal representation of
3D lines [4]; and the quasi-Riemannian metric is based on the Riemannian metric on the
5-dimensional unit sphere and our proposed Plücker correction formula.

The rest of the paper is organized as follows. Section 2 presents some preliminaries used in the
paper. The Plücker correction formula and a new linear algorithm are presented in Section 3. Sec-
tion 4 elaborates the two optimal algorithms for the algebraic error minimization. Section 5 gives
two new metrics on 3D line space. Some experimental results with synthetic and real data are
presented in Section 6 and Section 7, respectively. Finally, the paper is concluded in Section 8.

Preliminaries

2.1 Plücker Coordinates
In 3D projective space, the Plücker coordinates of a line is defined by a nonzero 6-vector:

L ¼ x� y

x4y� y4x

 !
≜

u

v

 !
ð1Þ

whereX ¼ x

x4

 !
; Y ¼ y

y4

 !
are two non-coincident points on the line. The Plücker
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coordinates is homogeneous since the two 6-vectors computed with two different pairs of
points on the line are equal up to a nonzero factor. From Eq (1), it is easy to see that uTv = (x4y
−y4x)

T(x×y) = 0, i.e. the Plücker coordinates satisfies uTv = 0, or written in a matrix form:

LTKL ¼ 0 K ¼ I3

I3

 ! !
ð2Þ

In 5D projective space, the quadric defined by Eq (2) is called the Klein quadric [9], thus,
the Plücker coordinates satisfies the Klein quadric constraint. Conversely, if a nonzero 6-vector
satisfies the Klein constraint, it must be the Plücker coordinates of a line in a 3D projective
space.

2.2 Point-Line Distance
In the image plane, the algebraic distance from a point x = (x,y,1)T to a line l is defined as [10]:

daðx; lÞ ¼ jxTlj ðlTl¼ 1Þ ð3Þ

Given a measured point set of a line l, ℓ = {xj = (xj,yj,1)
T: 1�j�M}, and let

la ¼ arg min
XM
j¼1

da2ðxj; lÞ subject to lTl¼ 1 ð4Þ

then,la is called the linear least squares fitting of the measured point set ℓ, which has linear solu-
tion [10].

2.3 Optimality Criteria
Given N line-projection matrices,P ið1 � i � NÞ, and let ℓi = {xij = (xij,yij,1)

T: 1�j�Mi} be a
measured point set from the imaged line P iL of a 3D line L, the line triangulation is meant to
estimate the 3D line L from these measured point sets ℓi(1�i�N). The algebraic distance of
point-line in the image plane leads to the following optimality criteria to solve this problem [4],
[10]:

L�
a ¼ arg min aðLÞ≜

XN
i¼1

XMi

j¼1

da2ðxij;P iLÞ

subject to LTKL ¼ 0 and LTL ¼ 1

ð5Þ

where L�
a is called the optimal solution to minimize algebraic error. L�

a makes the sum of
squared algebraic distances from the measured points xij to the re-projection lines P iL

�
a reach a

minimum, thus, fP1L
�
a ;P2L

�
a ; . . . ;PNL

�
ag are the linear least squares fittings of the measured

point sets {ℓ1,ℓ2,. . .,ℓN}.
The minimization term in Eq (5) can be expressed as

aðLÞ ¼
XN
i¼1

XMi

j¼1

ðxT
ijP iLÞ2

¼ LTAL ðwhere A ¼
XN
i¼1

PT
i ð
XMi

j¼1

xijx
T
ijÞP iÞ

ð6Þ
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Thus, the cost function Eq (5) can be rewritten as

L�
a ¼ arg minLTAL

subject to LTKL ¼ 0 and LTL ¼ 1
ð7Þ

which means that the minimization of the algebraic error is a linear least squares problem with
the Klein constraint.

Linear Solution to Minimize Algebraic Error
Adrien and Sturm [4] first proposed a linear algorithm to estimate L�

a , which is divided into
the following two steps:

(a) Solve the linear least squares problem:

�L ¼ arg minLTAL

subject to LTL ¼ 1
ð8Þ

The solution �L is the eigenvector correspond to the matrix A’s smallest eigenvalue.

(b) Compute the nearest point L�
k from �L to the Klein quadric as the final estimate:

L�
k ¼ arg minkL� �Lk

subject to LTKL ¼ 0
ð9Þ

Adrien and Sturm [4] gave an SVD method to compute the nearest point L�
k.

The step (b) in the above algorithm is called the Plücker correction. When there are errors

in the measurement data, �L does not strictly satisfy the Klein constraint, hence, it can not be
the Plücker coordinates of a line in the 3D projective space. Thus, the Plücker correction is an
important step in the algorithm. This section presents a formula to compute the Plücker cor-
rection and a new linear algorithm ‘LINa’.

3.1 Linear Algorithm LINa
We consider the following minimization:

L�
s ¼ arg minkL� �Lk

subject to LTKL ¼ 0 and LTL ¼ 1
ð10Þ

Although this minimization contains a unit norm constraint, it is in fact equivalent to Eq
(9) according to the following Lemma.

Lemma 1: (a) If L�
s is the optimal solution of Eq (10), then Lk≜L

�T
s
�L � L�

s must be the opti-
mal solution of Eq (9).

(b) Conversely, if L�
k is the optimal solution of Eq (9), then Ls≜ðL�T

k L�
kÞ�1=2

L�
k must be the

optimal solution of Eq (10).
Proof: For an arbitrary unit 6-vector L, there must be

kL� �Lk ¼
ffiffiffi
2

p
ð1� LT�LÞ ð11Þ

Since L�
s is the optimal solution of Eq (10), 0 � L�T

s
�L � 1 and

kL�
s � �Lk ¼

ffiffiffi
2

p
ð1� L�T

s
�LÞ ð12Þ
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Let Lk ¼ L�T
s
�L � L�

s , then

kLk � �Lk ¼ kL�T
s
�L � L�

s � �Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL�T

s
�LÞ2

q
ð13Þ

Let Ls ¼ ðL�T
k L�

kÞ�1=2
L�

k, then,

kLs � �Lk ¼
ffiffiffi
2

p
ð1� LT

s
�LÞ ð14Þ

Since L�
k is the optimal solution of Eq (9), L�

k ¼ LT
s
�L � Ls and 0 � LT

s
�L � 1, thus

kL�
k � �Lk ¼ kLT

s L
�
k � Ls � �Lk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðLT

s
�LÞ2

q
ð15Þ

(a): If Lk is not the optimal solution of Eq (9), then,kLk � �Lk > kL�
k � �Lk. From Eqs (13)

and (15), we have ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL�T

s
�LÞ2

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðLT

s
�LÞ2

q
ð16Þ

and thus,L�T
s
�L < LT

s
�L. Then, by Eqs (12) and (14),kL�

s � �Lk > kLs � �Lk, which is contrary
to the fact that L�

s is the optimal solution of Eq (10). Therefore,Lk must be the optimal solution
of Eq (9).

Similarly, (b) can be proved.
According to Eq (11), the minimization problem Eq (10) is simplified to

L�
s ¼ arg minð1� LT�LÞ subject to LTKL ¼ 0 and LTL ¼ 1 ð17Þ

Proposition 1 below gives an analytical expression of L�
s . Compared with the SVD method

to compute L�
k, the computation of L�

s is much simpler.

Proposition 1: For �L ¼ ð�uT; �vTÞT 2 R6 and k�Lk ¼ 1, (a) The minimization Eq (10) has a
unique solution if �u 6¼ ��v as:

L�
s ¼

1

2

�u þ �v

k�u þ �vk þ
�u � �v

k�u � �vk
�u þ �v

k�u þ �vk �
�u � �v

k�u � �vk

0
BB@

1
CCA ð18aÞ

(b) The minimization Eq (10) has infinitely many solutions if �u ¼ ��v as:

L�
s ¼

ffiffiffi
2

p �uTd � d
�ð�u � �uTd � dÞ

 !
ðd 2 R3; kdk ¼ 1Þ ð18bÞ

The proof of the proposition is given in the next subsection. The geometric interpretations

for Eqs (18a) and (18b) are shown in Fig 1. Since k�u þ �vk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�uT�v

p
and

k�u � �vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�uT�v

p
, Eq (18a) can be rewritten as

L�
s ¼

1

2

�u þ �vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�uT�v

p þ �u � �vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�uT�v

p

�u þ �vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�uT�v

p � �u � �vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�uT�v

p

0
BB@

1
CCA ð19Þ

Thus, when �L satisfies the Klein constraint �uT�v ¼ 0, there must be L�
s ¼ �L.

Algebraic Error Based Triangulation and Metric of Lines
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(a) �u 6¼ ��v(b) �u ¼ �v(c) �u ¼ ��v

Based on the above discussion, our linear algorithm LINa can be summarized in Table 1.
Remark 1: In practice, the case (b) in Proposition 1 happens rarely. This is because the

Klein constraint makes {u, v} orthogonal to each other, thus, they must be linearly independent
of each other. When there are errors in the measurement data, the solution of Eq (8) cannot
guarantee the orthogonality of {u, v}, except for their linear independency. Hence, the case (b)
rarely happens in practice.

By Lemma 1 and Proposition 1, the optimal solution of Eq (15) can be obtained as:
(a) If �u 6¼ ��v, then

L�
k ¼

k�u þ �vk þ k�u � �vk
4

�u þ �v

k�u þ �vk þ
�u � �v

k�u � �vk
�u þ �v

k�u þ �vk �
�u � �v

k�u � �vk

0
BB@

1
CCA ð20aÞ

(b) If �u ¼ ��v, then

L�
k ¼ ð1þ 4ð�uTdÞ2Þ �uTd � d

�ð�u � �uTd � dÞ

 !
ðdTd ¼ 1Þ ð20bÞ

3.2 Proof of Proposition 1
Construct the Lagrange function of Eq (17) as follows:

f ðL; a; bÞ ¼ ð1� LT�LÞ � að LTKLÞ � bðLTL� 1Þ ð21Þ

According to the optimization theory [11], the solution of Eq (17) must be a stationary
point of the Lagrange function, i.e., there are multipliers (α�,β�) such that ðL�

s ; a
�; b�Þ is a

Fig 1. Geometric interpretation of the Plücker correction L�
s ¼ ðu�T

s ;v�T
s ÞT .

doi:10.1371/journal.pone.0132354.g001

Table 1. Linear algorithm: LINa.

(a) Compute the eigenvector L
�
associated with the smallest eigenvalue of matrix A

(b) Compute the Plücker correction L�
s by Eq (12) as the final estimation of L�

a

doi:10.1371/journal.pone.0132354.t001
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solution of the following Lagrange equations:

@f
@L

¼ �2ðaKþ bIÞL� �L ¼ 0

@f
@a

¼ LTKL ¼ 0

@f
@b

¼ LTL� 1 ¼ 0

ð22Þ

8>>>>>>><
>>>>>>>:

Thus, by solving the Lagrange equations we can obtain the optimal solution L�
s . The first

equation in Eq (25) can be rewritten as

ðaþ bÞðuþ vÞ ¼ � �u þ �v

2

ða� bÞðu� vÞ ¼ � �v � �u

2

ð23Þ

8>><
>>:

From the last two equations in Eq (22), we have

u 6¼ �v ð24Þ

(i) If �u 6¼ ��v, then by Eqs (23) and (24), we have

aþ b 6¼ 0; a� b 6¼ 0 ð25Þ

Let α0 = (α+β)−1 and β0 = (α−β)−1, then from Eq (23) we have

L ¼ � 1

4

a0ð�u þ �vÞ � b0ð�u � �vÞ
a0ð�u þ �vÞ þ b0ð�u � �vÞ

 !

¼� 1

4

a0a� b0b

a0aþ b0b

 !
where

a

b

 !
¼

�u þ �v

�u � �v

 ! !
ð26Þ

Thus,

LTKL ¼ 0 , ða0a� b0bÞTða0aþ b0bÞ ¼ 0

, a02aTa� b02bTb ¼ 0
ð27Þ

LTL ¼ 1 , ða0a� b0bÞTða0a� b0bÞ þ ða0aþ b0bÞTða0aþ b0bÞ ¼ 16

, a02aTaþ b02bTb ¼ 8
ð28Þ

Therefore, the following linear equations on (α02,β02) hold:

aTa �bTb

aTa bTb

 !
a02

b02

 !
¼ 0

8

 !
ð29Þ

Algebraic Error Based Triangulation and Metric of Lines
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then,

a0 ¼ 2

� ffiffiffiffiffiffiffiffi
aTa

p

b0 ¼ 2

�
ffiffiffiffiffiffiffiffiffi
bTb

p
ð30Þ

8>><
>>:

Substituting Eq (30) into Eq (26) gives the following four solutions to L:

L�;� ¼ � 1

2
ffiffiffiffiffiffiffiffiffi
bTb

p b

�b

 !
� 1

2
ffiffiffiffiffiffiffiffi
aTa

p a

a

 !

¼ � 1

2k�u � �vk
�u � �v

�ð�u � �vÞ

 !
� 1

2k�u þ �vk
�u þ �v

�u þ �v

 !
ð31Þ

The geometric interpretations of the four solutions are shown in Fig 2.

It can be easily verified that Lþ;þ ¼ arg minf1� LT
�;�

�L�;�g, and thus,

L�
s ¼ Lþ;þ ¼ 1

2

�u þ �v

k�u þ �vk þ
�u � �v

k�u � �vk
�u þ �v

k�u þ �vk �
�u � �v

k�u � �vk

0
BB@

1
CCA ð32Þ

(ii) When �u ¼ �v, there must be �uT�u ¼ 1
2
ð�uT�u þ �vT�vÞ ¼ 1

2
. According to Eq (24) and the

second equation of Eq (23), we have β = α. Substituting it into the first equation in Eq (23), we
have

2aðuþ vÞ ¼ � �u þ �v

2
¼ ��u ð33Þ

Fig 2. Geometric interpretation for L�;� ¼ ðuT
�;�; v

T
�;�ÞT .

doi:10.1371/journal.pone.0132354.g002
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Therefore,

a2ðuþ vÞTðuþ vÞ ¼ �uT�u ¼ 1

2
ð34Þ

By the last two equations in Eq (22), we have

ðuþ vÞTðuþ vÞ ¼ uTuþ 2uTvT þ vTv ¼ 1 ð35Þ

Thus,a ¼ � 1ffiffi
2

p . Substituting it into Eq (23), we have

v ¼ �u�
ffiffiffi
2

p
�u or v ¼ �uþ

ffiffiffi
2

p
�u ð36Þ

If v ¼ �u� ffiffiffi
2

p
�u, then

LTKL ¼ 0 , uTuþ
ffiffiffi
2

p
uT�u ¼ 0 ð37Þ

LTL� 1 ¼ 0 , uTuþ ðuþ
ffiffiffi
2

p
�uÞTðuþ

ffiffiffi
2

p
�uÞ ¼ 1 , uTuþ

ffiffiffi
2

p
uT�u ¼ 0 ð38Þ

Thus,

uTuþ
ffiffiffi
2

p
uT�u ¼ 0 , LTKL ¼ 0

LTL� 1 ¼ 0
ð39Þ

(

and 8u 2 S�≜fu : uTuþ ffiffiffi
2

p
uT�u ¼ 0g,

1� LT�L ¼ 1� uT�u � ð�u�
ffiffiffi
2

p
�uÞT�u ¼ 1þ

ffiffiffi
2

p
�uT�u ¼ 1þ

ffiffiffi
2

p

2
ð40Þ

Similarly, if v ¼ �uþ ffiffiffi
2

p
�u, then

uTu�
ffiffiffi
2

p
uT�u ¼ 0 , LTKL ¼ 0

LTL� 1 ¼ 0
ð41Þ

(

and 8u 2 Sþ≜fu : uTu� ffiffiffi
2

p
uT�u ¼ 0g,

1� LT�L ¼ 1�
ffiffiffi
2

p

2
ð42Þ

By Eqs (40) and (42), L�
s has infinitely many solutions:

L�
s ¼

u

�uþ ffiffiffi
2

p
�u

 !
; u 2 Sþ ð43Þ

Next, we consider the set Sþ. Let u = sd (where d is a unit 3-vector, s 6¼0), then

uTu�
ffiffiffi
2

p
uT�u ¼ 0 , s2 � s

ffiffiffi
2

p
dT�u ¼ 0 , s ¼

ffiffiffi
2

p
�uTd ð44Þ

thus, Sþ ¼ fu ¼ ffiffiffi
2

p
�uTd � d : dTd ¼ 1g. Therefore Eq (43) can be rewritten as

L�
s ¼

ffiffiffi
2

p �uTd � d
�uTd � d� �u

 !
ðdTd ¼ 1Þ ð45Þ

Algebraic Error Based Triangulation and Metric of Lines
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(iii) Similarly, when �u ¼ ��v, L�
s also has infinitely many solutions:

L�
s ¼

ffiffiffi
2

p �uTd � d
�u � �uTd � d

 !
ðdTd ¼ 1Þ: ð46Þ

Optimal Solution by Minimizing Algebraic Error
The algorithm LINa can only provide an approximate solution by minimizing algebraic errors.
This section will present two algorithms ‘OPTa-I’ and ‘OPTa-II’ to compute the optimal solu-
tion. The algorithm OPTa-I converts the optimization problem to that of finding the real solu-
tions of two systems of 2-degree polynomial equations in five variables, and the algorithm
OPTa-II to that of finding the real solutions of a system of polynomial equations in two vari-
ables (one is of 6-degree, and the other is of 10-degree).

4.1 Algorithm OPTa-I
The optimal algorithm OPTa-I is summarized in Table 2.

Eq (47) is a system of 2-degree polynomial equations in six variables, and it has at most 64
real solutions based on the algebraic equations theory. Proposition 2 next shows this system
can be simplified into two systems of 2-degree polynomial equations in five variables. Here we
at first prove that Eq (48) is the optimal solution to the algebraic error minimization.

Proof: Consider the Lagrange function and the Lagrange equations of Eq (7):

faðL; a; bÞ ¼ LTAL� aðLTKLÞ � bðLTL� 1Þ ð49Þ

@fa
@L

¼ 2ðA� aK� bIÞÞL ¼ 0

@fa
@a

¼ LTKL ¼ 0

@fa
@b

¼ LTL� 1 ¼ 0

ð50Þ

8>>>>>>><
>>>>>>>:

Table 2. The optimal algorithm: OPTa-I.

(a) Construct the following system of polynomial equations by the matrix: A (see Eq (6)):
uTv ¼ 0

uTuþ vTv ¼ 1

½uþ v��ððA11 þ A21Þuþ ðA12 þ A22ÞvÞ ¼ 0

½u� v��ððA11 � A21Þuþ ðA12 � A22ÞvÞ ¼ 0

 
where A ¼

 
A11 A12

A21 A22

!!
(47)

8>>>><
>>>>:

Then compute its real solution set S I;

(b) Determine the optimal solution by

L�
a ¼ arg minfLTAL : L ¼

 
u

v

!
2 SIg (48)

doi:10.1371/journal.pone.0132354.t002
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The first equation in Eq (50) can be rewritten as

A11uþ A12v ¼ avþ bu

A21uþ A22v ¼ auþ bv
ð51Þ

(

It is obvious that this equation is equivalent to the following equation:

ðA11 þ A21Þuþ ðA12 þ A22Þv ¼ ðaþ bÞðuþ vÞ
ðA11 � A21Þuþ ðA12 � A22Þv ¼ ðb� aÞðu� vÞ ð52Þ

(

By eliminating the multipliers (α,β) in the above equation, we obtain the following 2-degree
polynomial equations in (u,v):

½uþ v��ððA11 þ A21Þuþ ðA12 þ A22ÞvÞ ¼ 0

½u� v��ððA11 � A21Þuþ ðA12 � A22ÞvÞ ¼ 0
ð53Þ

(

The last two equations in Eq (50) can be rewritten as

uTv ¼ 0

uTuþ vTv ¼ 1
ð54Þ

(

By combining Eqs (53) and (54), we have Eq (47). L from the stationary points (L,α,β) of the
Lagrange function Eq (49) must be a real solution of Eq (47), thus the optimal solution of Eq

(7) must belong to the real solution set of Eq (47), i.e.,L�
a 2 SI. Therefore,

L�
a ¼ arg minfLTAL : L 2 SIg ð55Þ

Proposition 2: The solution set of Eq (47) is the union of solution sets of two systems of
2-degree polynomial equations in five variables.

Proof: Let S be the solution set of Eq (47), then it must be the union of the following two
sets:

S0 ¼ fL ¼ ðuT;vTÞT 2 S : v3 ¼ 0g
S1 ¼ fL ¼ ðuT;vTÞT 2 S : v3 6¼ 0g

ð56Þ

Clearly,S0 is the solution set of the system of 2-degree polynomial equations in five variables
obtained by setting v3 = 0 in Eq (47). For the set S1, we consider the resulting equation system
obtained by removing the unit norm constraint in Eq (47):

uTv ¼ 0

½uþ v��ððA11 þ A21Þuþ ðA12 þ A22ÞvÞ ¼ 0

½u� v��ððA11 � A21Þuþ ðA12 � A22ÞvÞ ¼ 0

ð57Þ

8><
>:

It is second order homogeneous on L = (uT,vT)T, and the set formed by normalizations of its

all nonzero solutions is just the solution set S of Eq (47). Thus, let ~S 1 be the solution set of the
system of 2-degree polynomial equations in five variables obtained by setting v3 = 1 in Eq (57),
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there must be

S1 ¼ L ¼ ð~uT; ~vT; 1ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~uT~u þ ~vT~v þ 1

p :
~u

~v

 !
2 ~S 1

( )
ð58Þ

Hence, Proposition 2 holds.

4.2 Algorithm OPTa-II
Let A(α,β) = A−αK−βI and its adjoint matrix be denoted as A�ða; bÞ ¼ ðA�

1ða; bÞ;A�
2ða; bÞ;

. . . ;A�
6ða; bÞÞ, all its elements are at most 5-degree polynomials of (α,β). It is easy to see,

AiTða; bÞA�
j ða; bÞ ¼

detðAða; bÞÞ; i ¼ j

0; i 6¼ j
ð59Þ

(

where AiT(α,β) is the i-th row vector of A(α,β), therefore,

Aða; bÞA�ða; bÞ ¼ detðAða; bÞÞI ð60Þ

For each k (1�k�6),A�
kða; bÞ ¼ 0 is a system of 5-degree polynomial equations of (α,β),

whose real solution set is denoted as Sk ¼ fðak
i ; b

k
i Þ : 0 � i � tkg. Next, we prove that this sys-

tem has at least one real solution, i.e.Sk 6¼ ;.
Let AdðkÞða; bÞ ¼ ða1ða; bÞ; a2ða; bÞ; . . . ; a6ða; bÞÞ be the sub-matrix formed by deleting the

k-th row of A(α,β), thenA�
kða; bÞ ¼ 0 can be expressed as

(a):

detða2ða; bÞ; a3ða; bÞ; . . . ; a6ða; bÞÞ ¼ 0

detða1ða; bÞ; a3ða; bÞ; . . . ; a6ða; bÞÞ ¼ 0

..

.

detða1ða; bÞ; a2ða; bÞ; . . . ; a5ða; bÞÞ ¼ 0

ð61Þ

8>>>>><
>>>>>:

and it has the same solutions as the following equation system:
(b):

detða2ða; bÞ; a3ða; bÞ; . . . ; a6ða; bÞÞ ¼ 0

detða1ða; bÞ; a3ða; bÞ; . . . ; a6ða; bÞÞ ¼ 0
ð62Þ

(

This is because: From (b), both a1 and a2 can be linearly represented with
A≜fa3; a4; a5; a6g, thus, for arbitrary ai; aj; ak 2 A, {a1, a2,ai, aj,ak} must be linearly depen-

dent, i.e., det(a1, a2,ai, aj,ak) = 0. Hence, solutions of (b) must be the ones of (a). Obviously,
solutions of (a) are also the ones of (b). Therefore, (a) has the same solutions with (b).

Since non-real solutions of a system of real polynomial equations occur in complex conju-
gate pairs, there is at least one real solution in the 25 solutions of (b). Thus,A�

kða; bÞ ¼ 0 has at
least one real solution.

The algorithm OPTa-II is summarized in Table 3.
For the two polynomial equations in the step (b) of OPTa-II, one is of 6-degree and the

other is of 10-degree, and thus it has at most 60 real solutions based on the algebraic equations
theory. Next, we prove that Eq (65) is the optimal solution to the algebraic error minimization.
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Proof: The first equation in Eq (50) can be rewritten as A(α,β)L = 0, thus, L 6¼0 leads to the
following 6-degree polynomial equation of (α,β):

detðAða; bÞÞ ¼ 0 ð66Þ

i.e., the multipliers (α,β) of the stationary points (L,α,β) of the Lagrange function Eq (48) satis-
fies Eq (66).

Since the system of polynomial equations fA�
k1
ða; bÞ ¼ 0; A�

k2
ða; bÞ ¼ 0g has no real

solutions, there must beA�
k1
ða; bÞ 6¼ 0 orA�

k2
ða; bÞ 6¼ 0 for (α,β)2R2. This leads to rank(A(α,

β)) = 5 for (α,β)2R2. Therefore, from Eqs (60) and (66), L of the stationary points (L,α,β) can
be expressed as

L1ða; bÞ ¼ s1A
�
k1
ða; bÞ or L2ða; bÞ ¼ s2A

�
k2
ða; bÞ ðs1 6¼ 0; s2 6¼ 0Þ ð67Þ

By the second equation in Eq (50), the multipliers (α,β) of the stationary points (L,α,β) must
belong to one of the real solution sets of the following two systems of polynomial equations:

detðAða; bÞÞ ¼ 0

A�T
ki
ða; bÞKA�

ki
ða; bÞ ¼ 0

:ði ¼ 1; 2Þ ð68Þ
(

i.e.,ða; bÞ 2 SII
1 [ SII

2 . Thus, from Eq (66) and the unit norm constraint LTL = 1, L of the sta-
tionary points (L,α,β) must belong to the following set:

S ¼ Liða; bÞ ¼
A�

ki
ða; bÞ

kA�
ki
ða; bÞk : ða; bÞ 2 SII

i ; i ¼ 1; 2

( )
ð69Þ

Table 3. The optimal algorithm: OPTa-II.

(a) Compute the adjoint matrix, A�ða;bÞ ¼ ðA�
1ða;bÞ;A�

2ða; bÞ; . . . ;A�
6ða;bÞÞ, and choose k1,k2 such that the

following system of polynomial equations has no real solutions:
A�

k1
ða; bÞ ¼ 0

A�
k2
ða; bÞ ¼ 0

(63)

(

(b) Compute the real solution set S II
i ði ¼ 1; 2Þ of the following system of polynomial equations:
detðAða; bÞÞ ¼ 0

A�T
ki
ða; bÞKA�

ki
ða; bÞ ¼ 0

(64)

(

(c) Determine the optimal solution from:

L�
a ¼ arg min LT

i ða; bÞALiða; bÞ : Liða; bÞ ¼
A�

ki
ða; bÞ

kA�
ki
ða; bÞk ; ða; bÞ 2 SII

i ; i ¼ 1; 2g (65)

(

doi:10.1371/journal.pone.0132354.t003
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Therefore,

L�
a ¼ arg minfLTAL : L 2 Sg

¼ arg minLT
i ða; bÞALiða; bÞ : Liða; bÞ ¼

A�
ki
ða; bÞ

kA�
ki
ða; bÞk ; ða; bÞ 2 SII

i ; i ¼ 1; 2g ð70Þ

The algorithm OPTa-II needs only to solve some systems of polynomial equations in two
variables, it effectively simplifies the algorithm OPTa-I. If for any {i,j} pairs, the system of poly-
nomial equations fA�

i ða; bÞ ¼ 0;A�
j ða; bÞ ¼ 0 g has real solution, the algorithm OPTa-II may

fail. However, this situation never happened in our extensive numerical simulations.
Remark 2: In the experiments of this paper, we use the continuous homotopy method [6]

[7] to solve the system of polynomial equations. The method is first proposed in [12]. Through
30 years of efforts of many researchers, the method has made a great success in computing zero
points of non-linear mappings. It can give all zero points of a polynomial mapping [6][7][13].
In the field of computer vision, the method has been used to solve self-calibrations of cameras,
such as the Kruppa equations [14], the modulus constraint equations and the absolute quadric
constraint equations [15]. For the 2-degree polynomials with five variables in OPTa-I and the
high-degree polynomials with two variables in OPTa-II, the continuous homotopy method is
of high computational efficiency.

Metrics on 3D Line Space
In order to evaluate 3D errors of line triangulations, we need a metric in 3D line space. The
Euclidean distance

dEðL; L0Þ≜minfkL� L0k; kL� ð�L0Þkg(where L, L0 are the normalized Plücker coordi-
nates of lines L; L0) is not appropriate for the evaluation of line triangulations since is not an
intrinsic distance on 3D line space. The aim of this section is to introduce two new metrics on
3D line space, called the orthogonal metric and the quasi-Riemannian metric. Compared with
the Euclidean metric and the orthogonal metric, the quasi-Riemannian metric appears more
appropriate.

In this section, the 5-dimensional unit sphere centered at the origin inR6 is denoted by

S5ð1Þ, and the intersection of the Klein quadricK and S5ð1Þ is denoted byKð1Þ≜S5ð1Þ \K,

which is a 4-dimensional smooth sub-manifold of S5ð1Þ, called the unit Klein quadric.

5.1 Orthogonal Metric in 3D Line Space
The proposed orthogonal metric is mainly from the angular distance of rotation matrices [8]
and the orthogonal representation of 3D lines [4]. The angular metric on rotation group is
given in Appendix I.

If L ¼ u

v

 !
2 Kð1Þ, then (a): u6¼0,v 6¼0; or (b):u = 0,kvk = 1; or (c): kuk = 1,v = 0. By the

definition of Plücker coordinates, for the case (b), L is the Plücker coordinates of a 3D line pass-
ing through the origin and v is its direction; for the case (c), L is the Plücker coordinates of a
3D line on the infinite plane and u is its normalized coordinates as a 2D line on the infinite
plane.
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LetKað1Þ ¼ fL 2 Kð1Þ : u 6¼ 0;v 6¼ 0g,Kbð1Þ ¼ fL 2 Kð1Þ : u ¼ 0; kvk ¼ 1g and
Kcð1Þ ¼ fL 2 Kð1Þ : kuk ¼ 1;v ¼ 0g. We define L = (u, v)for L 2 Kað1Þ, then

L ¼ u

kuk ;
v

kvk
� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

AL

kuk 0

0 kvk

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

BL

ð71Þ

Thus, from the following mappings:

AL !
u

kuk ;
v

kvk ;
u� v

ku� vk
� �

RL

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2 SOð3Þ ð72Þ

BL !
kuk �kvk
kvk kuk

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

WL

2 SOð2Þ ð73Þ

we obtain the mapping � : Kað1Þ7!SOð3Þ � SOð2Þ by [4]:
�ðLÞ ¼ ðRL; WLÞ ð74Þ

and it is called the orthogonal representation of L 2 Kað1Þ.
The above mapping fails forKbð1Þ andKcð1Þ. In order to obtain a complete mapping from

Kð1Þ into SOð3Þ � SOð2Þ, we add definition forKbð1Þ andKcð1Þ as follows:

�ðLÞ ¼ ð2vvT � I3; Wp=2Þ; L 2 Kbð1Þ
ð2uuT � I3; I2Þ; L 2 Kcð1Þ

ð75Þ
(

where Wπ/2 is the 2D rotation of angle π/2. An explanation of this definition will be given later.
Using the angular distance on SOð3Þ � SOð2Þ, the following distance onKð1Þ is obtained:

dOðL; L0Þ ¼ dffð�ðLÞ; �ðL0ÞÞ; L; L0 2 Kð1Þ ð76Þ

Since L 2 Kð1Þ if and only if L is the normalized Plücker coordinates of a 3D line
L 2 Lð3Þ; and�L 2 Kð1Þ are the normalized Plücker coordinates of the same 3D line, the
distance dO leads directly to the following distance on 3D line space Lð3Þ:

dOðL; L0Þ ¼ minfdffð�ðLÞ; �ðL0ÞÞ; dffð�ðLÞ; �ð�L0ÞÞg; L; L0 2 Lð3Þ ð77Þ

and it is called the orthogonal distance of 3D lines.
Now, we can give an explanation for the definition Eq (75). If L;L0 2 Kbð1Þ, then

dOðL; L0Þ ¼ arccosð2ðvTv0Þ2 � 1Þ
¼ 2 � yðv;v0Þ

ð78Þ

Thus, the first mapping in the definition Eq (75) is meant the orthogonal distance of two
lines passing through the origin is just twice their included angle.

Similarly, If L;L0 2 Kcð1Þ, then dOðL; L0Þ ¼ 2 � yðu;u0Þ. Since u and u
0
are the normalized

coordinates of the infinite lines L and L0, respectively, and they are the normal vectors of plane
passing through L and that passing through L0. Hence, the second mapping in the definition
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Eq (75) is meant the orthogonal distance of two infinite lines L and L0 is just twice the included
angle of the two planes.

5.2 Quasi-Riemannian Metric on 3D Line Space
Based on the Riemannian metric [16] and analysis in Appendix II, the quasi-Riemannian dis-
tance onKð1Þ leads directly to the quasi-Riemannian distance on Lð3Þ:

dQRðL; L0Þ ¼ minfdKðL; L0Þ; dKðL; � L0Þg ð79Þ

It is not difficult to verify that: lines L and L0 are coplanar if and only if their Plücker coordi-
nates satisfy LTKL

0
= 0. Thus, the quasi-Riemannian distance of coplanar lines is given by the

following formula:

dQRðL; L0Þ ¼ minfarccosðLTL0Þ; p� arccosðLTL0Þg ð80Þ

5.3 Comparison of the Three Metrics
In order to compare the performance of different metrics, we gerenated a 3D unit cube cen-
tered at the origin in space, and Fig 3 shows the 12 edges of the unit cube. Fig 4(a), 4(b) and 4
(c) shows respectively the distances between the edges computed by the Euclidean metric, the
Orthogonal metric, and the quasi-Riemannian metric, where different distance values are rep-
resented with different colors.

Based on their relative positions, the edge pairs belong to either the two parallel relation-
ships (P-I and P-II) or the two orthogonal relationships (O-I and O-II) are listed as below:

P� I¼fð1;3Þ;ð1;5Þ;ð2;4Þ;ð2;6Þ;ð3;7Þ;ð4;8Þ;ð5;7Þ;ð6;8Þ;ð9;10Þ;ð9;12Þ;ð10;11Þ;ð11;12Þg
P� II¼fð1;7Þ;ð2;8Þ;ð3;5Þ;ð4;6Þ;ð9;11Þ;ð10;12Þg

O� I¼
ð1;2Þ;ð1;4Þ;ð1;9Þ;ð1;10Þ;ð2;3Þ;ð2;10Þ;ð2;11Þ;ð3;4Þ;ð3;11Þ;ð3;12Þ;ð4;9Þ;ð4;12Þ;

ð5;6Þ;ð5;8Þ;ð5;9Þ;ð5;10Þ;ð6;7Þ;ð6;10Þ;ð6;11Þ;ð7;8Þ;ð7;11Þ;ð7;12Þ;ð8;9Þ;ð8;12Þ

( )

O� II¼
ð1;6Þ;ð1;8Þ;ð1;11Þ;ð1;12Þ;ð2;5Þ;ð2;7Þ;ð2;9Þ;ð2;12Þ;ð3;6Þ;ð3;8Þ;ð3;9Þ;ð3;10Þ;

ð4;5Þ;ð4;7Þ;ð4;10Þ;ð4;11Þ;ð5;11Þ;ð5;12Þ;ð6;9Þ;ð6;12Þ;ð7;9Þ;ð7;10Þ;ð8;10Þ;ð8;11Þ

( )

Each of the three metrics can give a unique distance for each relationship, as shown in
Table 4. However, from Table 4 it can be seen that the Euclidean metric could not distinguish
between O-I and O-II; the orthogonal metric could not distinguish between P-I and O-I; while
the quasi-Riemannian metric gives different distances for all four relationships, and these dis-
tances are consistent with our intuition that the distances for P-I, P-II, O-I and O-II should
increase gradually. This observation implies that the quasi-Riemannian metric is reasonable
than the Euclidean metric or the orthogonal metric.

In the experiments of this paper, the quasi-Riemannian metric is used to evaluate the 3D
errors of line triangulations. In real experiment, the true line and the estimated line are close
with each other, so they can be considered as lying on the same plane. Therefore, the Quasi-

Riemannian metric would be dQRðL; L0Þ ¼ arccosðLTL0Þ. Let arccos(LTL0
) = θ. Since the angle

of the two lines is small, so the Euclidean metric (kL�L0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2LTL0

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2cosy
p ¼

2sinðy=2Þ) can be approximated by 2sin(θ/2)
θ. Therefore, the Quasi- Riemannian metric is
equal to the Euclidean metric. The same situation also applies to the Orthogonal metric. As a
result, the three metrics would be equal to each other or equal up to a scale factor.
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Fig 3. 12 edges on the unit cube. (a) Euclidean metric; (b) Orthogonal metric; (c) Quasi-Riemannian metric.

doi:10.1371/journal.pone.0132354.g003

Fig 4. Distances between the edges on the unit cube by the three metrics.

doi:10.1371/journal.pone.0132354.g004

Table 4. Distances computed by the three metrics for P-I, P-II, O-I and O-II.

P-I P-II O-I O-II

dE 0.82 1.15 1.29 1.29

dO 1.57 3.14 1.57 2.09

dQR 0.84 1.23 1.40 1.55

doi:10.1371/journal.pone.0132354.t004
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Experiments with Simulated Data
In the experiments of this section, we simulated eight 3D space lines on two orthogonal planes,
as shown in Fig 5. Using the synthetic data, we generated six images by adjusting the cameras
location and parameters. The size of the images is of 1024×1024. In order to simulate the effect
of image noise, we evenly sample 20 points on each image line segment, and add Gaussian
noise with zero mean and σ standard deviation to these sampled image points, then, the actual
projected image line is fitted by the orthogonal least squares fitting from these noise-corrupted
point set.

We evaluated and compared the performance of the linear algorithm LIN [4], the proposed
linear algorithm LINa; and the optimal algorithms based on the algebraic optimality criterion
(AOC): OPTa-I and OPTa-II. The used criteria of evaluation are RMS (root mean square) of
the 3D errors (i.e., the quasi-Riemannian distance of reconstructed line to its ground truth),
the algebra errors, and the orthogonal errors.

6.1 Stability to Noise
This experiment is to test the numerical stability of the algorithms with respect to different
noise levels in the same geometric configuration. During the experiment, Gaussian noise with
zero mean and σ standard deviation is added to each image point, and the noise level σ varies
from 0.0 to 3.0 pixels in steps of 0.5, and 150 independent trials are carried out under each
noise level. Fig 6 shows the experimental results on 6 views.

According to Lemma 1, LIN and LINa algorithm should yield the same result. On the
other hand, since OPTa-I and OPTa-II algorithms both solve the algebraic-error minimiza-
tion problem with the same error cost function, the two optimization algorithms should yield
comparable estimation results, and only difference may be caused by the computational errors

Fig 5. Eight 3D lines (in pink color) on two orthogonal planes used in the simulations, where the small pyramids stand for camera viewpoints.

doi:10.1371/journal.pone.0132354.g005
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when solving the high-degree functions. These results have been verified by the experiments.
In our experiments, both the LIN and the LINa algorithms produce the same errors, while the
OPTa-I and the OPTa-II yield very close results, thus, we only show the results of LINa and
OPTa-II in Fig 6. From this experiment, we can see that the RMS errors of all the algorithms
increase with the increase of noise levels. The two optimal algorithms based on the AOC yield
lower 3D errors, algebraic errors, and orthogonal errors than the two linear algorithms. Please
note that since the three criteria are with different meanings and units, they are not compara-
ble to each other.

In the experiments, both the OPTa-I and OPTa-II algorithms rarely have the situation of no
real solutions. With the increase of noise level and image number, the possibility of no real
solutions will increase slowly.

We also compared the computational cost of these algorithms. The real computation time
of the LIN, LINa, OPTa-I, and OPTa-II algorithms are 0.002, 0.002, 11.681, 36.688 seconds,
respectively. The two linear algorithms have comparable running time, while the two optimal
algorithms are much computational intensive. Among the two optimal algorithms, the OPTa-I
is faster than the OPTa-II since the former only needs to solve a 2-degree polynomial equation
system, while the OPTa-II needs to solve one 6-degree and one 10-degree systems. Thus,
OPTa-I is a better choice in practice.

6.2 Stability to Configurations
This experiment is to test the numerical stability of the algorithms with respect to geometrical
configurations. The number of views varies from 4 to 12 in steps of 2 during the experiments. At
each number of views, 150 independent trials are carried out. Fig 7 shows the experimental
results at noise level σ = 1.5, where only the results from LINa and OPT-II are plotted, as ana-
lyzed in Section 6.1, the LIN and LINa algorithms yield the same results, and the OPTa-I and
OPTa-II produce very similar results. We can see from this experiment that the RMS error of all
the algorithms decreases when the number of view increases. The two optimal algorithms out-
perform the two linear algorithms in term of 3D error, algebraic error, and orthogonal error.

Experiments with Real Images
The proposed algorithms were evaluated using extensive real images. The experimental results
on four data sets are reported below. As shown in Fig 8, the used images include a calibration
cube, a planar checkerboard, and the Oxford datasets “model house” and “corridor” (http://

Fig 6. Stability of the algorithms with respect to different noise levels. (a) 3D errors; (b) algebraic errors; (c) orthogonal errors.

doi:10.1371/journal.pone.0132354.g006
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www.robots.ox.ac.uk/~vgg/data/data-mview.html). The lines marked with white and red in
these images are used to test the algorithms.

For the calibration cube, six images were taken by a Nikon D40 camera, with the image size
of 3008×2000. The correspondences between the 3D points on the cube and their images are
used to compute the camera matrices. For the planar checkerboard, six images were taken by a
Sony HX5C camera, with the image size of 2592×1944, while the camera matrices are com-
puted by the calibration toolbox (http://www.vision.caltech.edu/bouguetj/calib_doc/). For the
model house images and the corridor images, the camera matrices and the two end coordinates
of the image lines are provided by the Oxford datasets.

Fig 8. Image sets used in the experiments. (a) Calibration cube; (b) planar checkerboard; (c) Corridor; (d) Model House.

doi:10.1371/journal.pone.0132354.g008

Fig 7. Stability of different algorithms with respect to geometrical configurations. (a) 3D errors; (b) Algebraic errors; (c) orthogonal errors.

doi:10.1371/journal.pone.0132354.g007

Algebraic Error Based Triangulation and Metric of Lines

PLOS ONE | DOI:10.1371/journal.pone.0132354 July 28, 2015 20 / 27

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.vision.caltech.edu/bouguetj/calib_doc/


Fig 9 shows the 3D errors, algebra errors, and orthogonal errors of different algorithms asso-
ciated with the four data sets. From these experiments we can obtain the same conclusion as
the simulation tests. The two optimal algorithms yield similar results which are better than
those from the two linear algorithms. Although we plot the 3D error, algebraic error, and
orthogonal error in one graph in Fig 9, these three errors are not comparable to each other
since they are obtained using different criteria with different units. Fig 10 shows the 3D recon-
struction results of the fours objects using the OPTa-I algorithm. The 3D models of these lines
are correctly recovered by the proposed algorithm.

Conclusion
In this paper, we have investigated line triangulations and line metrics. First, a new formula for
the Plücker correction is introduced, by which a new linear algorithm for line triangulation is
proposed. Then, two optimal algorithms are proposed from the algebraic optimality criterion.
In addition, two metrics in 3D line space, the orthogonal metric and the quasi-Riemannian
metric, are proposed for the quality evaluation of line triangulations. The experiments using

Fig 9. Experimental results. (a) Calibration cube; (b) planar checkerboard; (c) model house; (d) corridor.

doi:10.1371/journal.pone.0132354.g009
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simulated data and real images validate the proposed algorithms and show that the optimal
solution can reconstruct more accurate 3D lines.

Appendix I: Angular Metric on SOð3Þ � SOð2Þ
Let SOð3Þ ¼ fR 2 R3�3 : RRT ¼ I; detðRÞ ¼ 1g be the 3D rotation group. For R 2 SOð3Þ
there is the following angle- axis representation:

R ¼ Iþ sinðyÞ½a�� þ ð1� cosðyÞÞ½a�2� ð81Þ

where θ (0�θ�π) and a(kak = 1) are respectively the rotation angle and rotation axis of R, and
the rotation angle satisfies:

y ¼ arccos
trðRÞ � 1

2

� �
ð82Þ

Fig 10. 3D Reconstruction results. (a) Calibration cube; (b) planar checkerboard; (c) model house; (d) corridor.

doi:10.1371/journal.pone.0132354.g010
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The angular distance of R; R0 2 SOð3Þ is defined as [8]

dð3Þ
ff ðR; R0Þ ¼ arccos

trðRR0TÞ � 1

2

� �
ð83Þ

Similarly, for the 2D rotation group SOð2Þ≜fW 2 R2�2 : WWT ¼ I; detðWÞ ¼ 1g, the
angular distance is defined as

dð2Þ
ff ðW; W0Þ ¼ arccos

trðWW0TÞ
2

� �
ð84Þ

According to the angular distances dð3Þ
ff and dð2Þ

ff , the angular distance on SOð3Þ � SOð2Þ
can be defined as

dffðX; X0Þ ¼ dð3Þ
ff ðR; R0Þ þ dð2Þ

ff ðW; W0Þ;
X ¼ ðR; WÞ; X0 ¼ ðR0; W0Þ 2 SOð3Þ � SOð2Þ

ð85Þ

Since the geodesic distances of metric spaces ðSOð3Þ; dð3Þ
ff Þ and ðSOð2Þ; dð2Þ

ff Þ are the angu-
lar distances dð3Þ

ff and dð2Þ
ff themselves [8], it is not difficult to verify that:dff is also the geodesic

distance of metric space ðSOð3Þ � SOð2Þ; dffÞ.

Appendix II: Quasi-Riemannian Metric onKð1Þ
We first state briefly the Riemannian metric on S5ð1Þ in order to introduce quasi-Riemannian
metric onKð1Þ. Let S = (0,. . .,0,−1)T and N = (0,. . .,0,1)T, called respectively the south pole

and north pole of S5ð1Þ, we define the mappings φ� : U� ! R5 as follows:

Y ¼ φ�ðXÞ≜ 1

1� x6
ðx1; x2 . . . ; x5Þ; X 2 U� ð86Þ

where Uþ ¼ S5ð1ÞnfSg and U� ¼ S5ð1ÞnfNg. Their inverse mappings are

X ¼ φ�1
� ðYÞ ¼ 1

1þ
X

i
y2i
ð2y1; . . . ; 2y5;�ð1�

X
i
y2i ÞÞT; Y 2 φðU�Þ ð87Þ

and J ¼ fðUþ; φþÞ; ðU�;φ�Þg is a smooth structure on S5ð1Þ. The Riemannian metric on

S5ð1Þ induced by the standard Euclidean metric, h ¼
X

i
ðdxiÞ2, inR6 is

g ¼ 4

ð1þ Siy2i Þ2
X

i
ðdyiÞ2 ð88Þ

Let g ¼ fYðtÞ ¼ ðy1ðtÞ; . . . ; ynðtÞÞT : 0 � t � 1g be a smooth or piecewise smooth curve in

S5ð1Þ, its length is defined as

LðgÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ð1þ Siy2i ðtÞÞ2
X

i
ðdyiðtÞ=dtÞ2

s
dt ¼

Z 1

0

2

1þ kYðtÞk2 k
dYðtÞ
dt

k dt ð89Þ

ForY0; Y1 2 S5ð1Þ, let GY0 ; Y1
be the set of all smooth or piecewise smooth curves with

the endpoints at Y0 and Y1, the Riemannian distance induced by the metric Eq (88) is

dSðY0; Y1Þ≜inffLðgÞ : g 2 GY0 ; Y1
g
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¼ LðεðY0; Y1ÞÞ whereεðY0; Y1Þ is the short arc from Y0 to Y1 on a great circle in S5ð1Þ.
¼ arccosðYT

0Y1Þ ð90Þ

It is not difficult to verify that the Riemannian distance ds and the Euclidean distance
dE (= kY0−Y1k) both satisfy the following relation:

Lemma 2: ForY0;Y1;Y2;Y3 2 S5ð1Þ,
dSðY0; Y1Þ < dSðY2; Y3Þ , dEðY0; Y1Þ < dEðY2; Y3Þ ð91Þ

Next, we introduce the quasi-Riemannian distance onKð1Þ from the Riemannian metric on

S5ð1Þ.

For X0 ¼
u0

v0

 !
; X1 ¼

u1

v1

 !
2 Kð1Þ, let

XðtÞ ¼ ð1� tÞX0 þ tX1

¼
ð1� tÞu0 þ tu1

ð1� tÞv0 þ tv1

 !
≜

uðtÞ

vðtÞ

 !
; 0 � t � 1

ð92Þ

Then, we have the following lemma.
Lemma 3: (a) If u0±v0 6¼−(u1±v1), then u(t)±v(t)6¼0, t2[0,1]
(b) If u0+v0 = −(u1+v1), then

uðtÞ þ vðtÞ 6¼ 0; t 2 ½0; 1�nf1=2g; uð1=2Þ þ vð1=2Þ ¼ 0

(c) If u0−v0 = −(u1−v1), then

uðtÞ � vðtÞ 6¼ 0; t 2 ½0; 1�nf1=2g; uð1=2Þ � vð1=2Þ ¼ 0

Proof: From u(t)±v(t) = (1−t)(u0±v0)+t(u1±v1),

uðtÞ � vðtÞ ¼ 0 , u0 � v0 ¼ �sðu1 � v1Þ
s ¼ t=ð1� tÞ ð93Þ

(

Since ku0±v0k = ku1±v1k = 1, s = 1 by the first equation in Eq (93), thus u0±v0 = −(u1±v1).
Therefore (a) holds. If u0±v0 = −(u1±v1), there must be t = 1/2 by the second equation in Eq
(93), and thus (b) holds. Similarly, (c) holds.

Clearly, the short arc from X0 to X1 on a great circle in S5ð1Þ is

�XðtÞ ¼ XðtÞ
kXðtÞk ¼ 1

kXðtÞk
uðtÞ
vðtÞ

 !
; 0 � t � 1 ð94Þ

Since

XTðtÞKXðtÞ ¼ 2uTðtÞvðtÞ
¼ 2tð1� tÞðuT

0v1 þ vT
0u1Þ

¼ 2tð1� tÞXT
0KX1; 80 � t � 1

we have

a. IfXT
0KX1 ¼ 0, then �XðtÞ 2 Kð1Þ for 0 � t � 1;

b. IfXT
0KX1 6¼ 0, then �XðtÞ=2Kð1Þ for 0 < t < 1.
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For the case (a), the Riemannian distance on S5ð1Þ leads directly to the Riemannian dis-
tance between X0 and X1 inKð1Þ:

dKðX0; X1Þ ¼ arccosðXT
0X1Þ ð95Þ

We consider the case (b) next. According to Proposition 1 and Lemma 3, the best approxi-

mation of �XðtÞ ðt 6¼ 1=2Þ on the sub-manifold Kð1Þ under the Euclidean metric is

X�ðtÞ ¼ 1

2

uðtÞ þ vðtÞ
kuðtÞ þ vðtÞk þ

uðtÞ � vðtÞ
kuðtÞ � vðtÞk

uðtÞ þ vðtÞ
kuðtÞ þ vðtÞk �

uðtÞ � vðtÞ
kuðtÞ � vðtÞk

0
BBB@

1
CCCA 2 Kð1Þ ð96Þ

By Lemma 2, X�(t) is also the best approximation of �XðtÞ onKð1Þ under the Riemannian

metric, thus X�(t) is the orthogonal projection of �XðtÞ onKð1Þ under the Riemannian metric.
By Lemma 3, X�(t) is a smooth or piecewise smooth curve onKð1Þ. Thus by letting
Y�ðtÞ ¼ φðX�ðtÞÞ, a quasi-Riemannian distance between X0 and X1 inKð1Þ is obtained using
the Riemannian metric on S5ð1Þ:

dKðX0; X1Þ ¼
Z 1

0

2

1þ kY�ðtÞk2 k
dY�ðtÞ

dt
k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðtÞ

dt ð97aÞ

Proposition 3: The integration Eq (97a) can be expressed as:

dKðX0; X1Þ ¼
ffiffiffi
2

p Z 1=2

0

a

ðt2 þ aÞ2 þ
b

ðt2 þ bÞ2
 !1=2

dt ð97Þ

where,

a ¼
ð2� qþÞ=ð4qþÞ; qþ 6¼ 0

0; qþ ¼ 0
b ¼

ð2� q�Þ=ð4q�Þ; q� 6¼ 0

0; q� ¼ 0

q� ¼ 1� ðXT
0X1 �XT

0KX1Þ;ð98Þ
8<
:

8<
:

Specifically, ifXT
0KX1 ¼ 0 then dKðX0; X1Þ ¼ arccosðXT

0X1Þ, i.e., Eq (91) is a special case
of Eq (97).

Proof: By some mathematical manipulation, the integrand of Eq (97a) can be expressed as:

f ðtÞ ¼ 1ffiffiffi
2

p ð2� qþÞqþ
ð2qþðt2 � tÞ þ 1Þ2 þ

ð2� q�Þq�
ð2q�ðt2 � tÞ þ 1Þ2

 !1=2

¼ 1ffiffiffi
2

p ð2� qþÞqþ
ð4qþðt � 1=2Þ2 þ ð2� qþÞÞ2

þ ð2� q�Þq�
ð4q�ðt � 1=2Þ2 þ ð2� q�ÞÞ2

 !1=2

¼ 1ffiffiffi
2

p a

ððt � 1=2Þ2 þ aÞ2 þ
b

ððt � 1=2Þ2 þ bÞ2
 !1=2

ð99Þ
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Thus,

dKðX0; X1Þ ¼
1ffiffiffi
2

p
Z 1

0

a

ððt � 1=2Þ2 þ aÞ2 þ
b

ððt � 1=2Þ2 þ bÞ2
 !1=2

dt

¼ ffiffiffi
2

p Z 1=2

0

a

ðt2 þ aÞ2 þ
b

ðt2 þ bÞ2
 !1=2

dt

ð100Þ

IfXT
0KX1 ¼ 0, then a ¼ b ¼ 4�1ð1þXT

0X1Þ=ð1�XT
0X1Þ, and

dKðX0; X1Þ ¼ 2
ffiffiffi
a

p Z 1

2

0

1

t2 þ a
dt ¼ 2arctan

1

2
ffiffiffi
a

p

¼ 2arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�XT

0X1

1þXT
0X1

s
¼ arccosðXT

0X1Þ
ð101Þ
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